
C
ER

N
-A

TS
-2

00
9-

11
1

01
/1

1/
20

09

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN – ACCELERATORS AND TECHNOLOGY SECTOR

CERN‐ATS‐2009‐111

JDATAVIEWER – JAVA­BASED CHARTING LIBRARY

G. Kruk, M. Peryt
CERN, Geneva, Switzerland

Abstract

The JDataViewer is a Java‐based charting library developed at CERN, with
powerful, extensible and easy to use function editing capabilities. Function
edition is heavily used in Control System applications, but poorly supported in
products available on the market. The JDataViewer enables adding, removing
and modifying function points graphically (using a mouse) or by editing a table
of values. Custom edition strategies are supported: developer can specify an
algorithm that reacts to the modification of a given point in the function by
automatically adapting all other points. The library provides all typical 2D
plotting types (scatter, polyline, area, bar, HiLo, contour), as well as data point
annotations and data indicators. It also supports common interactors to zoom
and move the visible view, or to select and highlight function segments. A clear
API is provided to configure and customize all chart elements (colors, fonts, data
ranges ...) programmatically, and to integrate non‐standard rendering types,
interactors or chart decorations (custom drawings). Last but not least, the
library offers class‐leading performance.

Presented at the International Conference on Accelerator and Large Experimental

Physics Control System (ICALEPCS2009) – October 12-16, 2009, Kobe, Japan

Geneva, Switzerland, November 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44234475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JDATAVIEWER – JAVA-BASED CHARTING LIBRARY

G. Kruk, M. Peryt

CERN, Geneva, Switzerland

Abstract

The JDataViewer is a Java-based charting library de-
veloped at CERN, with powerful, extensible and easy to
use function editing capabilities. Function edition is heav-
ily used in Control System applications, but poorly sup-
ported in products available on the market. The JData-
Viewer enables adding, removing and modifying function
points graphically (using a mouse) or by editing a table of
values. Custom edition strategies are supported: developer
can specify an algorithm that reacts to the modification of
a given point in the function by automatically adapting all
other points. The library provides all typical 2D plotting
types (scatter, polyline, area, bar, HiLo, contour), as well
as data point annotations and data indicators. It also sup-
ports common interactors to zoom and move the visible
view, or to select and highlight function segments. A clear
API is provided to configure and customize all chart ele-
ments (colors, fonts, data ranges ...) programmatically,
and to integrate non-standard rendering types, interactors
or chart decorations (custom drawings). Last but not least,
the library offers class-leading performance.

MOTIVATION
An integral part of most of control systems GUI appli-

cations are charts and plots. They are used to display cur-
rent measurements of various signals, browse logged data
or display results of diverse simulations. Another impor-
tant feature often required by controls applications is a
possibility to graphically modify displayed plots which
typically represent functions to be played by the hardware
(device settings).

Although there are many charting libraries available on
the market, both open source and commercial, all of them
provide either none or very limited support for functions
edition. Extending or trimming functionality of these li-
braries is not an obvious choice as one has no influence
on internal APIs and in case of commercial products there
is even no access to the source code. Also considering the
number of licences required for tens of controls applica-
tions and developers, and the level of support required by
these developers, it is also not economically sound.

Taking into account all these aspects, it was decided to
develop a new charting library with support for typical
plotting types used in controls applications and with pow-
erful and extensible editing facilities that would be used
by all operational controls applications at CERN.

LIBRARY OVERVIEW

Chart
The central component of the library is the Chart

class. The Chart is a graphical component (JLay-
eredPane) that initializes and coordinates the drawing
process of all other chart elements i.e. plots and decora-
tions (discussed later in this paper), scales, grids and a
legend.

Figure 1 Chart component with three rendering types
associated with three different Y scales

All the drawings are made on a centrally placed chart
Area (JComponent). In the centre of the area there is a
plotting rectangle surrounded by scales.

The chart can contain a single X scale and one or more
Y scales. The scale has many configurable attributes like
title text, title position and rotation, foreground color, tics
size, layout etc. Values that appear on the scale (steps and
sub steps) are computed by the StepsDefinition
associated with every scale. By default the Scale in-
stances use DefaultStepsDefinition that com-
putes steps using 1, 2 and 5 factors. The library includes
also a TimeStepsDefinition, which computes
appropriate time units, a LogarithmicStepsDefi-
nition with configurable logarithm base and a Cate-
goryStepsDefinition which is useful when one
wants to display on the scale custom labels rather than
numeric values.

Grids (instances of the Grid class) are associated with
scales. All lines drawn by every grid follow step and sub-
step values of corresponding scale. Similarly, like in case
of the Scale, one can configure all visual attributes of
the Grid like visibility, stroke or color.

The Legend component can be drawn in two different
forms – as a floating panel that can be dragged on the
plotting area (by default with a semi-translucent back-
ground) or as a panel placed on the side of the chart.
Again, its visibility, position and paint attributes are con-
figurable.

Data model
In order to display a plot in the chart one has to first

create an instance of the DataSet interface that repre-
sents a single series of data points (X, Y) of type double.
There are several implementations of this interface pro-
vided by the library but the two most frequently used are
DefaultDataSet and ShiftingDataSet. The
generic DefaultDataSet is well suited for a typical
“snapshot” data, allowing adding, removing and modify-
ing all points. The ShiftingDataSet is dedicated for
signals whose values change over time. It keeps data
points in an internal circular buffer of specified size, so
that when new points are added (with higher timestamp),
the oldest are removed automatically.

The package contains also a DataSet3D interface and
a default implementation that is meant for 3-dimensional
charts. At the moment such 3D data sets can be displayed
using contour plot (color-coded surface) – see Fig 3.

All data sets which should be displayed using the same
plot type (e.g. as poly lines) must then be put into a
DataSource which is simply a container for a group of
DataSets. Such DataSource can then be connected
to an appropriate chart renderer, which draws all series of
data points.

Renderers
Chart renderers (classes that extend the

ChartRenderer class) are responsible for the drawing
process of data points. There are several types of render-
ers implemented in the library and each draws data in a
specific way e.g. the PolylineChartRenderer
draws data sets as polylines, the BarChartRenderer
paints data points as bars, etc. Every renderer paints all
the data sets that are contained in the associated
DataSource.

Once the data source is linked with a selected type of
renderer, the renderer should be registered in the chart. In
general, many renderers can be added to a single chart
therefore it is possible to mix plot types e.g. one can dis-
play certain data sets as bars and other data sets as points
or as polylines – see Fig 1.

Interactors
Chart interactors (classes that extend the

ChartInteractor class) are non-graphical compo-
nents that can be used to interact with the chart. Every
instance of an interactor that is registered in the chart is
notified about all mouse and keyboard events received by
the chart, so that it can perform appropriate actions. The
library provides the most commonly used interactors: a
ZoomInteractor that zooms in and out selected re-
gions of the chart, a DataPickerInteractor that
displays as a tooltip the coordinates, data set name and
other custom information for the point the mouse is hov-
ering over, or a CursorInteractor that can be used
to graphically select (with a vertical or horizontal line) a
single value or a data range - see Fig 4. There are also a

number of edition interactors that will be discussed in the
next part of this paper.

Decorations and Annotations
The library also supports two other types of compo-

nents that can be added to the chart: data point annota-
tions and chart decorations – see Fig 2.

Figure 2 Chart with data indicators and annotations

Annotations (implementations of the DataAnnota-
tion interface) can be typically used to display informa-
tion about all or predefined data points e.g. Y value of this
point or a custom label associated with it. Annotations
can be configured in terms of the look and feel, the text
that is displayed and placement with respect to the data
point.

Decorations (extensions of the ChartDecoration
class) on the other hand are dedicated for custom text or
drawings which are not related to specific data sets or
points. The library includes two custom decorations. The
first one ChartAnnotation, can be used to display a
text label on a chart in a specified place e.g. to show in-
formation about currently displayed plots. The second one
DataIndicator, is dedicated to marking a single
value, a range of values or a window of values (data range
on X and Y axis). This functionality is typically useful
when one wants to highlight limits of a displayed signal
(to see whether they are exceeded or not) or values which
have some special meaning for the displayed data.

Configuration using CSS
In typical applications, all chart attributes are config-

ured directly in Java code using an API provided by the
library. However in some cases it might be interesting to
describe chart properties and properties of all its compo-
nents using an external configuration file. Such function-
ality might be desired when the same look and feel of the
chart should be applied in several applications (to avoid
code repetition) or by frameworks that automatically gen-
erate chart components.

This possibility has been implemented in JDataViewer
using the Cascade Style Sheets (CSS) format. Most of the
chart properties and properties of its components (plots,
grids, scales, legend ..) can be configured using appropri-
ate tags in a CSS file.

chart {
 renderingType: 'POLYLINE';
 interactors: 'DATA_PICKER, ZOOM';
 legendVisible: true;
 legendTitle: "My Legend";
}
scale[axis='X'] {
 title: 'X coordinates';
 titleAlignment: LEFT;
 foregroundColor: BLUE;
}
dataset[index='1'] {
 renderingType: 'AREA';
 strokeColor: #FF0000;
}

Example of CSS file defining chart properties

DataViewer
The library includes also a graphical component called

DataViewer, which simplifies layout and display of
charts in case there are several of them to be shown in a
single application.

Figure 3 DataViewer component with three views

The DataViewer is essentially a panel that may con-
tain a number of views (DVView) where each consecu-
tive view may contain one or more charts. Only one
DVView can be visible at a time but a user has a possibil-
ity to browse through available views and select the one
that should be displayed at a given moment. Additionally
the user can dynamically modify layout, maximize or
minimize selected charts and change a current rendering
type of selected plots e.g. from a polyline to bars or to a
table.

FUNCTIONS EDITION
One of the key features offered by the package is a

graphical and a tabular edition of functions. This func-
tionality has been implemented via a set of edition inter-
actors that are well integrated with the Chart e.g.
AddPointsInteractor, RemovePointInterac-
tor, ChangePointInteractor, or Align-
PointsInteractor. Every interactor can define its
control components – typically buttons or a drop down
list - which are used to activate them or to modify their

properties. Typically, only one edition interactor is active
at a time so that one can add, remove, select and change
points with few mouse clicks and movements.

Figure 4 Function edition by dragging selected points

All interactors that are included in the library fire
events every time an interaction is performed, providing
additional information when applicable e.g. nature of the
interaction or coordinates of modified points. Therefore
one can subscribe to such events and execute custom ac-
tions.

The chart provides also a method to create a toolbar
containing all control components defined by the associ-
ated interactors and undo/redo operations that can be per-
formed on the edited function.

The function edition is heavily used at CERN in appli-
cations dedicated for settings management i.e. generation
and trimming. Examples of such function settings are
magnet strengths, power converter currents or radio fre-
quency voltages that are typically functions of time.

EXTENSIBILITY
The library offers a rich set of generic and configurable

components, both graphical and non-graphical. Although
this is satisfactory for majority of controls applications, in
some cases more specialized components or behaviour
might be required.

Thanks to the clear API, all existing classes can be ex-
tended and tailored to specific needs. Also custom render-
ers, interactors or decorations can be implemented and
easily integrated with the chart if necessary.

CONCLUSIONS
Since initial implementation in 2005, the library has

been very well perceived by developers. The number of
applications depending on it, has been rapidly growing
over the past few years. Diversity of uses has also in-
creased over time, changing from trivial signals displayed
offline, to applications used to edit function settings, and
GUIs displaying data coming with a relatively high fre-
quency (10-20Hz).

Today, JDataViewer is used by almost all operational
applications (requiring charting) in the Controls group at
CERN and it is now being adopted by the LHC experi-
ments and other laboratories like GSI.

