


HEC Wheel

on assembly stand

**3 HEC Module** 

interconnected

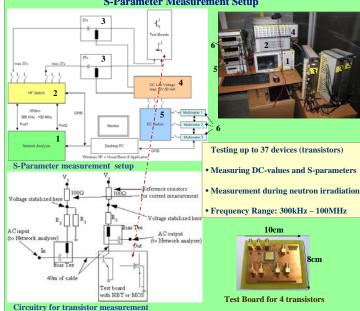
# Upgrade of the Cold Electronics of the ATLAS HEC Calorimeter for sLHC

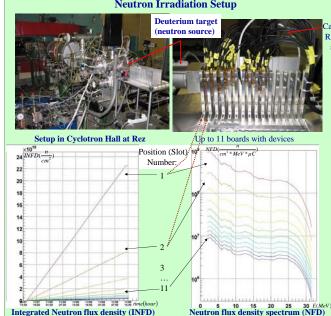
## Generic Studies of Radiation Hardness and Temperature Dependence

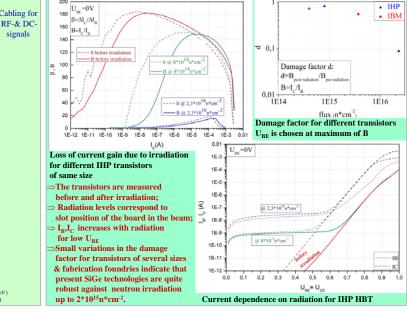
H. Oberlack, D. Dannheim, A. Fischer, A. Hambarzumjan, G. Pospelov, O. Reimann, A. Rudert, P. Schacht Max-Planck-Institut für Physik, Munich, Germany



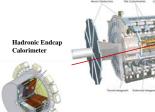
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)


IEP Kosice, Slovakia; Univ. Montreal, Canada; IEAP Prague, Czech Republik; NPI Rez, Czech Republik


### Hadronic End-cap Calorimeter (HEC) at the Large Hadron Collider (LHC)


**Technology Overview** 




signals







**RF** measurement of device parameters



# Upgrade of the Cold Electronics of the ATLAS HEC Calorimeter for sLHC

## Generic Studies of Radiation Hardness and Temperature Dependence

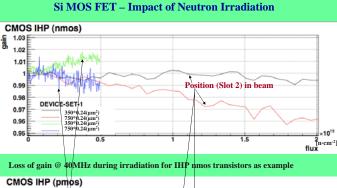
H. Oberlack, D. Dannheim, A. Fischer, A. Hambarzumjan, G. Pospelov, O. Reimann, A. Rudert, P. Schacht Max-Planck-Institut für Physik, Munich, Germany

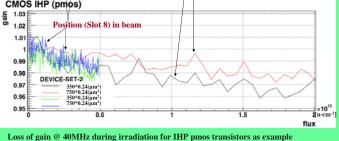


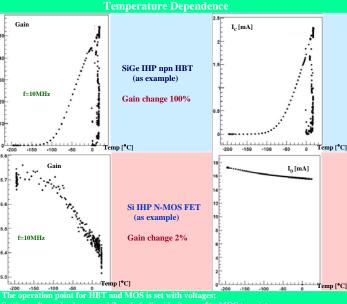
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

IEP Kosice, Slovakia; Univ. Montreal, Canada; IEAP Prague, Czech Republik; NPI Rez, Czech Republik

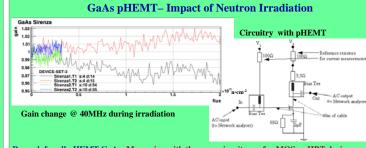
SiGe Bipolar – Impact of Neutron Irradiation





Loss of Gain @ 40MHz up to 2,3\*10<sup>16</sup>n\*cm<sup>-2</sup> for 2 equal transistors of IHP as example




## SiGe –Bipolar AMS Transistors:


| DC                | C Operation 1                                    | Point – V              | oltage                     | Correct                                                                                                                                   | tion afte                                                                                                              | er Ra                               | diation                                |                               |  |
|-------------------|--------------------------------------------------|------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------|--|
| AMS<br>Transistor | Irradiation<br>(n*cm <sup>-2</sup> )             | UBE (V)                | I <sub>B</sub> (μA)        | UCE (V)                                                                                                                                   | I <sub>C</sub> (mA)                                                                                                    | ß                                   | S <sub>21</sub>   (dB)<br>@ 40MHz      | Change<br>In  S <sub>21</sub> |  |
| 24µm <sup>2</sup> | 0                                                | 0,827                  | 6,64                       | 2,32                                                                                                                                      | 2,59                                                                                                                   | 390                                 | 17,4                                   | 100%                          |  |
|                   | 2,4*1016                                         | 0,790                  | 47,9                       | 2,43                                                                                                                                      | 0,91                                                                                                                   | 19                                  | 8,9                                    | 51%                           |  |
|                   | 2,4*1016                                         | 0,826                  | 112.8                      | 2,31                                                                                                                                      | 2,72                                                                                                                   | 24                                  | 15,7                                   | 90%                           |  |
| @ 2,4*1016        | n*cm <sup>-2</sup> change of                     | U <sub>BE</sub> is sig | nificant; f                | or stabile                                                                                                                                | S <sub>21</sub>   a corre                                                                                              | ection                              | is necessary                           |                               |  |
| AMS               | Irradiation                                      | UBE (V)                | $I_B(\mu A)$               | UCE (V)                                                                                                                                   | I <sub>C</sub> (mA)                                                                                                    | ß                                   | S <sub>21</sub>   (dB)                 | Change                        |  |
| Transistor I      | 3 (n*cm <sup>-2</sup> )                          |                        |                            |                                                                                                                                           |                                                                                                                        |                                     | @ 40MHz                                | In  S21                       |  |
| 24µm <sup>2</sup> | 0                                                | 0,828                  | 8,29                       | 2,33                                                                                                                                      | 2,56                                                                                                                   | 309                                 | 17,4                                   | 100%                          |  |
|                   | 3,5*1015                                         | 0,82                   | 16,9                       | 2,34                                                                                                                                      | 2,4                                                                                                                    | 142                                 | 16,5                                   | 95%                           |  |
|                   | 3,5*1015                                         | 0,829                  | 24,2                       | 2,28                                                                                                                                      | 3,22                                                                                                                   | 133                                 | 18,3                                   | 105%                          |  |
|                   | U <sub>BE</sub> =0,826V                          |                        | >> 2,4*10 <sup>16</sup> cn | $\begin{array}{c} & \searrow L \\ \text{the} \\ & \searrow I_{\text{H}} \\ & >\beta \\ & (\text{see} \\ r^2 \\ & \text{irra} \end{array}$ | beginning<br>is much h<br>is significa<br>Fig. Loss<br>idiation)                                                       | of irn<br>nigher<br>ant sn<br>of cu | after irradi<br>aller<br>rrent gain dı | ation                         |  |
| 11<br>10<br>9     | U <sub>BE</sub> =0,79V<br>U <sub>CE</sub> =2,43V |                        |                            | >R<br>ope                                                                                                                                 | ≻ S <sub>21</sub>   is nearly the same ≻Radiation effects can be reduced by operation point stabilization. uency (MHz) |                                     |                                        |                               |  |







Setting voltages leads to a stabile gain in liquid nitrogen for MOS transistors, but not for HBTs.



<u>Remark for all pHEMT GaAs:</u> Measuring with the same circuitry as for MOS or HBT devices, an immediate gain drop under irradiation can be observed. To avoid this, see circuitry above.

#### All Technologies - Impact of Neutron Irradiation

|                             | SiGe                                  |                                                                                                                                                                  | Si                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               | GaAs                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bipolar HBT                 |                                       |                                                                                                                                                                  | CMOS FET                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               | FET                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IHP                         | IBM                                   | AMS                                                                                                                                                              | IHP                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                | AMS                                                                                                                                                                                                                                                                                           | Triquint                                                                                                                                                                                                                                                                                                            | Sirenza                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | MB HB                                 |                                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| npn                         | npn                                   | npn                                                                                                                                                              | nmos                                                                                                                                                                                             | pmos                                                                                                                                                                                                                                                                                           | nmos                                                                                                                                                                                                                                                                                          | pHEMT                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3%                          | 2% 2%                                 | 5%                                                                                                                                                               | 2%                                                                                                                                                                                               | 3%                                                                                                                                                                                                                                                                                             | 3%                                                                                                                                                                                                                                                                                            | 2%<br>1.2*10 <sup>15</sup>                                                                                                                                                                                                                                                                                          | 2%                                                                                                                                                                                                                                                                                                                                                                                                              |
| 75%<br>2.2*10 <sup>16</sup> | 11% 20%<br>(3.6 7.8)*10 <sup>15</sup> | 55%<br>2.3*10 <sup>16</sup>                                                                                                                                      | 8%<br>8*10 <sup>15</sup>                                                                                                                                                                         | 11%<br>8*10 <sup>15</sup>                                                                                                                                                                                                                                                                      | 22%<br>2.3*10 <sup>16</sup>                                                                                                                                                                                                                                                                   | 2%<br>1.2*10 <sup>15</sup>                                                                                                                                                                                                                                                                                          | 2%<br>2*10 <sup>15</sup>                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | npn<br>3%<br>75%                      | Bipolar HBT           IHP         IBM           MB         HB           npn         npn           3%         2%         2%           75%         11%         20% | Bipolar HBT           IHP         IBM         AMS           MB         HB            npn         npn         npn           3%         2% 2%         5%           75%         11% 20%         55% | Bipolar HBT         CC           IHP         IBM         AMS         IH           MB         HB         IH         IH           npn         npn         npn         nmos           3%         2%         2%         5%         2%           75%         11%         20%         55%         8% | Bipolar HBT         CMOS FI           IHP         IBM         AMS         IHF           MB HB              npn         npn         npn         nmos         pmos           3%         2% 2%         5%         2%         3%           75%         11% 20%         55%         8%         11% | Bipolar HBT         CMOS FET           IHP         IBM         AMS         IHP         AMS           mpn         npn         npn         nmos         nmos           3%         2%         5%         2%         3%         3%           75%         11%         20%         55%         8%         11%         22% | Bipolar HBT         CMOS FET         FE           IHP         IBM         AMS         IHP         AMS         Triquint           MB HB         mpn         npnos         npnos         npnos         pmos         pHE           3%         2%         2%         5%         2%         3%         3%         2%           75%         11%         20%         55%         8%         11%         22%         2% |

# SUMMARY Radiation test results: > Loss of current gain of at most 6% have been measured for all technologies tested up to the required irradiation level of 2\*10<sup>15</sup> n/cm² All devices tested are radiation hard. > A change of the operation point with irradiation is observed for some technologies, in particular for the AMS bipolar devices. A stabilization might be necessary. > The operation points of the MOS FETs tested are stable under irradiation. Stabilization is not necessary for losses due to irradiation. Temperature results

 Gain and operation points of the MOS FETs tested are stable within the required limits of the specifications over a temperature range from room temperature to LAr temperature.
 Large gain variations are observed for all bipolar devices tested over a temperature range

from room temperature to LAr temperature. A change of the bias point is necessary for operation at LAr temperature.

#### OUTLOOK

>The IC architecture for sLHC will remain the same as for LHC:
The basic element of the cold HEC electronics is an integrated chip consisting of eight preamplifiers and two summing amplifiers.
The concept of 'active pads' is employed: each preamplifier is connected to one pad of the calorimeter cells, the individual signals being amplified.
The read-out channels are formed by summing signals from 2 / 4 / 8 or 16 pads to the required output granularity with subsequent amplification. This concept results in an optimal signal to noise ratio.
>Next steps: Measurement of transistor behaviour in cold, choice of technology, design of amplifier stages as well as tests of the design criteria:
IC power consumption should not exceed 200 mW in order to avoid boiling of LAr
Gain difference of a read-out channel between warm and cold not be more than a factor of two
Noise level should not exceed the present low level
Dynamic range of the preamplifier has to be 12-bit, that of the summing amplifier 13-bit

Dynamic range of the preamplifier has to be 12-bit, that of the summing amplifier 13-bit
IC has to be safe with respect to potential HV discharges in the gaps of the HEC