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Abstract

We have contrived a regional model (K, o, n, #, A) for the distribution of low
frequency variability energy in horizontal wavenumber, frequency, vertical mode and
geography. We assume horizontal isotropy, 4D(K, w, n, #, A) = 27K (k, 1, w, n, #, A),
with K designating the amplitude of total horizontal wavenumber.

The parameters of 1(K, w, n, #, A) can be derived from observations: (i) satellite
altimetry measurements yield the surface eddy kinetic energy wavenumber and fre-
quency spectra and the geographic distribution of surface eddy kinetic energy magni-
tude, (ii) XBT measurements yield the temperature wavenumber spectra, (iii) current
meter and thermistor measurements yield the frequency spectra of kinetic energy and
temperature, (iv) tomographic measurements yield the frequency spectra of range-
and depth-averaged temperature, and (v) the combination of satellite altimetry and
current meter measurements yields the vertical partitioning of kinetic energy among
dynamical modes. We assume the form of the geography-independent part of our
model 4(K, w, n) oc Kroq. The observed kinetic energy and temperature wavenum-
ber spectra suggest p = 3/2 at K < Ko and p = -2 at K > Ko for the barotropic
mode, and p = -1/2 at K < Ko and p = -3 at K > Ko for the baroclinic mods,
where Ko is the transitional wavenumber of the wavenumber spectra. The observed
frequency spectra of temperature and kinetic energy suggest that q = -1/2 for w < wo
and q = -2 for w > wo, where wo is the transitional frequency of the frequency spec-
tra. The combination of satellite altimetry and current meter measurements suggests
the vertical structure of the low frequency variability is governed by the first few
modes. The geography-dependent part of our model is the energy magnitude.

Although we have shown analytically that the tomographic measurements behave
as a low-pass filter, it is impossible to identify this filtering effect in the real data
due to the strong geographic variability of the energy magnitude and the vertical
gradient of the mean temperature. The model wavenumber spectrum is appropriate
only where the statistical properties are relatively homogeneous in space.

Thesis Supervisor: Carl Wunsch
Title: Cecil and Ida Green Professor of Physical Oceanography
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Chapter 1

Introduction

The time-dependent motions of the ocean can be divided into several different groups

according to their frequencies, e.g. tides, internal waves, inertial waves, etc. Low

frequency oceanic variability is one such group of time-dependent motion. By the

expression "low frequency variability", we mean the time-dependent motion with a

time scale longer than a day and a spatial scale ranging from tens of kilometers to the

ocean basin scales. It was not realized that the ocean's general circulation is strongly

time-dependent until the 1960s. The main hindrance to our understanding of the

ocean general circulation is lack of data. Very little of the ocean has been actually

sampled.

In the last decade, the advent of modern measurement technology: ocean acoustic

tomography and satellite observations of sea surface topography, enables oceanogra-

phers to observe the ocean circulation and its variability on sufficiently fine space

and time scales. The principles and applications of satellite remoting and acoustic

tomography have been reviewed by Munk and Wunsch [19821. Satellite altimetry

has proven to be extremely important in providing nearly-synoptic and basin-wide

observations of the three dimensional state of the sea surface shape r/(x, y, t). Due

to the intimate coupling of the sea surface shape (the slope of the surface) with the

near surface geostrophic flow field, altimetric data have become indispensible in in-



vestigating the low frequency oceanic variability. Based on two years of high-quality

TOPEX/POSEIDON data, Wunsch and Stammer [1995] constructed the first global

frequency-wavenumber spectrum of sea surface height (SSH) variability and related

one-dimensional wavenumber spectra for SSH and sea surface slope.

The tomographic method was introduced by Munk and Wunsch [1979] in direct

response to the formidable task of measuring and understanding the behaviour of both

the mesoscale and larger-scale features associated with the general circulation. Two

advantages of the tomographic measurements over the spot measurements are the

geometric increase of information with each additional instrument deployed, and the

spatial integration inherent in the measurement. We will show analytically that the

spatial integration acts as a low-pass filter, which filters out the small scale motions.

The path-band width of the filter is related to the length of the acoustic ray path.

Combining the results from different measurements, we obtain the following dif-

ferent kinds of spectral descriptions of the oceanic low frequency variability.

Measurement Name Spectral Type

thermistor temperature frequency spectra at different depths

current meter velocity frequency spectra at different depths

X B T temperature wavenumber spectra at different depths

satellite altimetry surface kinetic energy frequency-wavenumber spectra

acoustic tomography range-averaged temperature frequency spectra

Table 1.1: All spectra from different measurements.

In addition, the combination of current meter and altimeter data yields what is the

partition of oceanic horizontal kinetic energy among vertical modes [Wunsch 1997].

The low frequency oceanic varibility is a multivariate and multidimensional pro-



cess. We have different kinds of spectra (frequency and wavenumber) for different

variables (temperature, velocity and density) at different depths and different places

in the ocean. How can we describe this large amount of data using as few parameters

as possible? The incentive for this work is to answer this question.

Using linear dynamics under the hypothesis of horizontal isotropy and vertical

symmetry of the wave field, Garrett and Munk [1972] patched together a univer-

sal simple algebraic representation of the distribution of internal wave energy in

wavenumber frequency space in the deep ocean, which has become known as the

Garrett-Munk spectrum. Later Garrett and Munk [1975] gave an improved version.

The GM spectrum is focused on internal waves (f < w < N). A scientifically in-

teresting problem is to find out whether we can extend the GM spectrum to lower

frequencies. We will combine the model, current meter, altimetry, XBT and acoustic

methods to produce an analytic wavenumber and frequency spectrum of low frequency

oceanic variability with an emphasis on obtaining answers to the following questions:

Is there a universal frequency/wavenumber spectrum of the low frequency variability?

If not, how do the components of the frequency-wavenumber spectrum (energy level,

spectral shape, ...) vary with the physical environment (topography, proximity of

large currents, etc.)? Our method is analogous to that of Garrett and Munk [1972].

The three dimensional frequency/wavenumber spectrum is a fundamental element

in a description of the ocean circulation variability [Wunsch and Stammer 1995]. The

potential use of such a spectrum is wide. First, the spectral representation is impor-

tant in that most time-dependent phenomena are expressed theoretically in terms of

frequency and wavenumber. Therefore, if the data are also expressed in the form of

frequency and wavenumber, it will be convenient for comparing and combining the

theory with the observations. Second, the three dimensional frequency/wavenumber

spectrum tells us how the energy of time-dependent ocean general circulation is dis-

tributed among different space and time scales and what are the dominant space

and time scales of low frequency variability. Accordingly, the three dimensional fre-



quency/wavenumber spectrum provides a basis for practical filter designing. Third,

such a spectrum is also useful for evaluating the quality of the sampled data and

for the design of observational strategies. Moreover, it can be used as a stan-

dard to judge the skill of the global-scale general circulation models. Stammer et

al.[1996] have compared the two dimensional frequency/wavenumber spectrum of

TOPEX/POSEIDON data with that of an ocean climate model. The three dimen-

sional frequency/wavenumber spectrum also gives rise to fundamental dynamical and

theoretical issues of why the particular spectral forms are displayed by the ocean.

In chapter 2, a simple model is presented, the equations are solved and the so-

lutions are normalized. Chapter 3 presents the frequency spectrum of the spatially

averaged temperature as well as the frequency/wavenumber spectra of the kinetic

energy and temperature. In chapter 4 the observed properties of ocean low frequency

variability are presented and we focus on describing how the low frequency oceanic

variability energy is distributed among horizontal wavenumber, frequency and ver-

tical mode. A simple model for the energy density <b(K, w, n, #, A) is contrived in

chapter 5. Conclusion and discussion are presented in chapter 6.



Chapter 2

Dynamical model for

low-frequency motion

2.1 The governing equations

Away from the equator and beneath the upper mixed layer, the time-dependent mo-

tions of the continuously stratified ocean can be described by the following dimen-

sional linearized equations [Gill, 1982]:

Oni 1a1p
(2.1)

at Po 0

+ =(2.2)
at Po0 !y

0 = pg, (2.3)
po z Po

ap -opo(z)_S+ w ~ O = -0, (2.4)
at 0z

a+ + 0. (2.5)

Here we have assumed that the oceanic mean velocities are zero, i.e., uo vo =

wo = 0. Equations (2.1) and (2.2) are the horizontal momentum equations, equation

(2.3) is the hydrostatic equation, equation (2.4) is the density conservation equation



and equation (2.5) is the continuity equation. The variables n, i) and zb are the

perturbation velocities, 3 is the perturbation density, P is the perturbation pressure,

f is the Coriolis parameter and po(z) is the density of the rest ocean. By using the

Boussinesq approximation, po is treated as constant in equations (2.1) and (2.2). The

carat (^) denotes dimensional quantities.

We adopt the following scaling [Pedlosky, 1987]:

x=Lx, Ly,z= Hz, =Tt, (2.6)

j fo±+ #09 = fof, f = y ,30  (2.7)
fo

UH foUL
! = Uu, Uv, = -- w, = pofoLUp,3= po P. (2.8)

L gH

Here we choose a length scale L 100 kin, depth scale H = 4.5 kin, velocity scale

U = 0.1 m/s, coriolis parameter fo = 7 x 10-5 s1, and time scale T = 1/fo . If the

3 effect is not considered, f = 1.

Substitution of the above scaling into the dimensional equations yields the follow-

ing nondimensional equations:

au ap- f V = , (2.9)
at Ox

+ fu = O , (2.10)
at By

-p, (2.11)
Dz

Op A/2H2

mf2 W 0, (2.12)
at fo2L2

&u Dv Dw
+ + = 0. (2.13)

OX Oy Oz



Here the buoyancy frequency is

2 gpz) = N 2N2 (z), (2.14)

where No is the scale of the buoyancy frequency and N(z) is a nondimensional function

of z which represents the vertical structure of the buoyancy frequency.

From equations (2.11) and (2.12), by eliminating p, we get

_2_P_ = -s 2 N 2w (2.15)
azat

where we have defined
No H

s f . (2.16)
fo L

An equation with only one dependent variable, p, can be obtained by eliminating

u, v, w and p from equations (2.9)-(2.13). We derive the equation in terms of p

because it's easy to find u, v, w and p once p is known and the boundary conditions

are simple when p is used [Leblond and Mysak, 19781.

A single equation for p is

2  ga3 3p a2 f 1 2P 2Op 03P 02
( +f 2)[Ox2t Oy2t Ot2 ±OZ S2N2 OZat OX x2 2 fyt ) = 0.

(2.17)

Following custom, we use the method of separation of variables to solve the above

equation. We have

n=+oo n=+oo

p (X, y, Z, 0) E P. (X, y, zI t) =E Pn (X, y, t) Fn(Z), (2.18)
n=o n=o

therefore the solution is written as the sum of various vertical modes. The vertical

modes are orthogonal to each other, and are called normal modes. The vertical

structure of a mode is described by Fn(z), while P(x, y, t) represents the horizontal

propagation of the mode, and Pn (x, y, z, t) is the full solution for each mode.



Substitution of equation (2.18) into (2.17) gives the horizontal component

a2 p 02 P 2aPn a3pn 02p_
at2 + [ax2at Oy2at n Oa8t2 Ot ax Ox2t 2fayat) 0 ,

(2.19)

and the vertical component

d 1 dF
dz s2N2-) = -rF. (2.20)

where r2 is the separation constant.

In order to simplify equation (2.20), we define

1 dF~
G,(z) = N d". (2.21)

s2N2 dz

Substitution of (2.21) into (2.20) gives

dG 2

dG = -rF , (2.22)
dz

and
d "2G + r2 S2 N 2Gn 0. (2.23)
dz 2

If the ocean is vertically bounded, the equation (2.23) and the two vertical bound-

ary conditions constitute an eigenvalue problem for the eigenvalue rn and eigenfunc-

tion Gn(z). For a realistic profile of N(2), we can solve it numerically. If the ocean

is vertically unbounded, the solution to equation (2.23) takes the form of waves, ei-

ther trapped or propagating, depending on the values of N(z) and rn [Wunsch and

Stammer, 1997].

2.2 The form of N(2)

Analytic solutions to the vertical equation (2.23) are available for a few forms of

N(2). The simplest situation is N(2)=constant. However, analytical solutions can

also be obtained using the exponential profile N(2) = Noez/b = Noeaz [Garrett and



Munk 1972], which more closely resembles actual buoyancy profiles in the ocean. In

spite of the different quantitative results for N(2)=_constant and N(i) = Noez/b, the

qualitative nature of the solutions remains unchanged.

Emery et al. [1984] used the long term mean temperature and salinity profiles to

investigate the geographic and seasonal distributions of buoyancy frequency. They

found that there are marked meridional and zonal changes in the mean N-profiles,

primarily within the upper 1000m. As shown in figure 2.1 the contours of buoyancy

frequency are relatively uniform within the "abyssal ocean", defined as extending

from 40'S to 48'N and between depths of 1 and 4 km. The N(2) at 2 1000m is

about 0.004 s-1. The following model for the buoyancy frequency:

N(i) = NoN(z), N(z) eaz, No = 0.04s-1, a = 11.25 (2.24)

is a reasonable fit to the real N(z) below 1 km [Figure 2.2]. We will use this model

of N(2) in our study. Although large differences exist between the model and obser-

vations above 1 kin, where there are strong seasonal and geographical variations of

we will use this model in our study because of its simplicity.

2.3 Vertical representation

Given the idealized exponential form for N(z), we can solve equation (2.23) analyti-

cally. There are two typical types of solutions to equation (2.23): propagating waves

and standing modes. The mode solutions are determined by the equation (2.23) and

two vertical boundary conditions. In the standing mode representation, vertically up-

ward and downward propagating wave components have equal amplitude and a fixed

phase relation, thus forming a mode. In the propagating wave representation, the

ocean is taken as vertically unbounded, the amplitudes and phases of the waves are

independent and the vertical structure is approximated by WKBJ solutions [M6ller

et al 1978].
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Figure 2-1: Contours of buoyancy frequency as function of latitude. TOP: global
average of 10 degree squares. BOTTOM: Central Pacific (Munk and Wunsch 1997).
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0.04

Figure 2-2: The vertical structure of buoyancy frequency. Solid line: from near
33.2 0 N, 21.9'W. Dashed line: for the model.



2.3.1 The WKBJ approximation

The WKBJ solution to the equation (2.23) is [Bender and Orszag, 1978]:

G.(z) = N isrnfNdz (2.25)+ 2 -isrnf Ndz
/N

The condition for the WKBJ approximation to hold is:

d 1 < (2.26)
dz srN

That is:

a <1. (2.27)
Smn

So the WKBJ solution is better for slowly varying N(z) and higher modes (larger

rn). Because the internal waves are dominated by high modes, the vertical structure

is represented by propagating waves in GM spectrum.

2.3.2 The normal modes

The vertical component equation and the two boundary conditions form the eigen-

value problem, whose solutions are the modes Gn(z) and eigenvalues rn. The subscript

n=0, 1, 2, ... , represents the mode number. The zeroth mode is the barotropic one.

Here we use the rigid-lid upper and lower boundary conditions:

'>(z) =0 at 2 = 0 and 2 = -H. (2.28)

By using equations (2.15), (2.18) and (2.21), we can write the vertical boundary

conditions in terms of Gn(z):

at z=0 aand (2.29)G,,(z) = 0 Z =_ -1.



Using N(z) = ea, the solution to equation (2.23) is

Gn(z) = An Jo (sr eaz) + BnYo(srneaz),
a a

(2.30)

where Jo(z) is the Bessel function of the first kind, of order zero and Yo(z) is the

Bessel function of the second kind, of order zero.

Under the rigid-lid boundary conditions, we get the eigenvalue equation:

Jo(_1)YO(o) - Jo(o)Yo(&- 1 ) = 0, (2.31)

where for simplicity we have defined:

srn eaz srn

a a

The corresponding eigenfunction is

G,(z) = An[JO() -

where

Sn a
sa e
a

or - 1,

F.(z) = Jo() - = J( e aza
Jo(srn/a) yO(srneaz).
Yo(srn/a) a

(2.35)

From equation (2.22), we get

1 dGn AndF (z)
( r dz r2 dzn

(2.36)

The first four eigenvalues are listed in the following table, and the corresponding

first four normal modes are shown in figure 2.3.

(2.32)

and

p = 0

(2.33)

(2.34)

JO Yo()= AnFn (Z),

JO Y()
YO(()



Table 2.1: Eigenvalues and equivalent deformation radius

Here we overestimate the first baroclinic Rossby deformation radius. The typical

first baroclinic Rossby deformation radius is about 50 km in middle latitudes. The

difference is due to the fact that we used the idealized formula for N(i) and the

eigenvalues of the equation (2.23) are determined by the form of N(z). In the GM

spectrum, because short propagating waves are assumed in the vertical direction,

most of the results can be expressed in terms of the local N(z) and it doesn't much

matter which model of N(z) is taken.

To a good first approximation, most of the baroclinic energy can be found in a

form in which the thermocline simply moves up and down, the entire water column

moving together [Wunsch 1981]. This dominance of the "lowest mode" is in striking

contrast to the mixture of high modes required to describe the internal-wave obser-

vations [Munk 1981]. The simplest explanation of this lowest-mode character of the

observations is in the tendency of quasi-geostrophic nonlinear interactions to drive

the motion toward larger scales both in the vertical and horizontal [Charney 1971,

Rhines 1977, Fu and Flierl, 1979]. Wunsch [1997] made a survey of the vertical struc-

ture of kinetic energy profiles in a large number of globally distributed long current

records. He found that in most regions the water-column-averaged kinetic energy

is dominated by the barotropic and first baroclinic modes, and because of the near-

surface intensification of baroclinic modes sea surface height variability mainly reflects

the first baroclinic mode, and thus the motion of the main thermocline. Therefore,

barotropic models alone can't describe the sea surface height variability.

Mode No. Eigenvalue Equivalent Deformation Radius

0 0 00

1 1.117 89.5(km)

2 2.486 40.2(km)

3 3.860 25.9(km)



2.4 Horizontally propagating waves

Consider horizontally propagating wave solutions to equation (2.19) as

P"(x, y,t) = J Jp, (k, 1, o)ei(kx+ly -ut)dkdldo-.

Substitution of equation (2.37) into (2.19) yields the dispersion relation:

o-(f 2 _ 2 )[k 2 + 12 + r (f2 _ 2 )] + #[(f 2 _ O.2 )k + 2flo-] 0.

(2.37)

(2.38)

The equation (2.38) is typically simpified in two limits: the high frequency limit

and the low frequency limit [Gill, 1982].

(1) In the high frequency limit, i.e., or >> f with # - 0, the dispersion relation

equation (2.38) can be simplified as

k2 + l2 r(f 2 - O.2) = 0. (2.39)

Because the hydrostatic approximation was made in equation (2.3) which is equivalent

to the assumption that o- << N, equation (2.39) holds only for f << o << N. The

GM spectrum is focused on this frequency range.

(2) In the low frequency limit, i.e., o- << f, the dispersion relation equation can

be approximated by

o-(k 2 + 12 + f 2 r2) + #k = 0. (2.40)

This is the Rossby wave dispersion relation. We will restrict our attention to the low

frequency limit in the following.

Substitution of equations (2.36) and (2.37) into (2.18) yields the solution for each

mode for the pressure:

[ T(k,l1o-,n)dF (z) ei(kx+ly-otdkdldo,
r2 dz e adkdu (2.41)Pn(x, Y, z, t) =



where we have set

T (k, 1, o, n) = Ajp (k, 1, a). (2.42)

At very low frequency, i.e., a << f, the horizontal momentum equations (2.9)

and (2.10) can be approximated by the geostrophic relations:

f v = , (2.43)

f u- - (2.44)ay

Using equations (2.43), (2.44), (2.11) and (2.15), we find the wave solutions of

each mode for the horizontal velocities, vertical velocity and density:

G (x, y, z,t) / [ ilT(k~ 1, un) dF17(z) 1ei(kx+ly-at)dkdldo, (2.45)
iii fr2 dz

Zf ik T(k, 1, a, rn) dF,,(z)
Vn(xy,z,t) fr dz )]ei(kx+ly-- Ot)dkdldu, (2.46)

7Ln(x, y, zt) =f J[ij T (k, 1, o, n)Fn(z)]ei(kx+ly-ot)dkdldU, (2.47)

n(X, y, Z, t) J f [-T(k, 1, a, n)s 2N 2 (z) Fn(z)]ei(kx+ly-ot)dkdld. (2.48)

2.5 Normalization:

In the above section, the solutions to the governing equations for low frequency

oceanic motion were obtained. In order to relate the spectra of different variables,

both to each other and to the total energy of each wave, we will normalize the solutions

in this section.

Let n, ii ,u and p designate the single wave solution of each mode to equations

(2.9)-(2.13), according to equations (2.45)-(2.48), we get:

IlT(k, 1, U, n) dF,(z) e(kx+ly-t) (2.49)
fr2 dz



_ _ ikT (k, 1, -, n) dFn(z) ei(kx+ly-ot) (2.50)
fr2 dz

7i) = f oT (k, 1, o-, n) F, (z) ei(kx+ly--t), (2.51)

= -T(k, 1, o, n)s2N2(z)Fn(z)ei(kx~lY-t). (2.52)

Let poE(k, 1, o-, n) designate the dimensional total energy per unit surface area of

the single wave with wavenumber k and 1, frequency o and mode number n. Then

po E(k, 1, o-, n) j-H i2 _ 2) ± ]d2, (2.53)

where u, v and P are the dimensional perturbation horizontal velocities and the di-

mensional perturbation density associated with the single wave, po is the density of

the rest ocean, and N is the dimensional buoyancy frequency [Gill 1982]. We have

neglected the vertical kinetic energy which is much smaller than the horizontal kinetic

energy for low frequency motion.

Substitution of the scaling equations (2.6) - (2.8) into (2.53) gives:

1 f 2 L 2

poE(k, l,o-, n) = -poU 2H ][ U 2 2]dz. (2.54)
2 1N 2H 2

If we let E(k, 1, U, n) designate the corresponding nondimensional total energy of

each wave, then

1 f[ 1 2 + I| f 2 2 |2]dz = E(k, l, o-, n), (2.55)2 -1u~+"I N2H2  (.5

and

E(k, 1, U, n) = U2 HE(k, 1, o, n). (2.56)

The normalization function T(k, 1, U, n) is derived from the equation (2.55). Sub-

stituting equations (2.45), (2.46), (2.48) and the idealized form of the buoyancy fre-

quency N = Noe" into the equation (2.55) gives



T2 (k, 1, o, n)

2
J f(k + 12) dI,(z))2 + s2 N2 (z)F(z)]dz = E(k, l, o, n).

f 2r dz

By using equation (2.35) and the properties of Bessel function [Abramowitz and

Stegun, 1964], we get:

/0 dFf(Z))2dz
-1dz

J 0-I

tJ

N 2 (z)F2(z)dz =

a]F ( )d,

s2r( n

c =2 0 2O) - 2( )]
-1

(2.58)

(2.59)

(2.60)

Substitution of equations (2.58)-(2.60) into (2.57) yields

ac(k2 + 12 + f 2 Ty) 2 (k, l, a, n) = E(k, 1, o, n).
nfr

(2.61)

The equation (2.61) yields the normalization function T(k, 1, u, n):

v'fr2
T(k, l, o, n)= ga(k, l, , n) + a,'

Jk2 + 12 + f 2r2ac

(2.62)

where for simplification we have defined

ga(k, l, , n) = E(k, l, , n). (2.63)

Substitution of equation (2.62) into equations (2.45)-(2.48) yields the normalized

solutions:

in(x, y, z, t) = J f [g(k, l, u, n) irl dF (z) ei(kx+ly--t) (2.64)
k2 + 12 f 2r2 ac dz

(2.57)



(x, y, z, t)= [-ga(k, 1, , n) k 2 2 dF, (z) ei(kx+ly-ot), (2.65)
v~xyV~)k

2 + 12 + f 2 r 2 ac dz (.5

in(x, y,z,t) = [ga(k, 1, o-, n) k 2 r rn F (z)ei(kx+ly-at), (2.66)

#4(x yz, t = --ga(klfr n)s 2 N 2 (z)r, EIn (z)e(kx±Iy-t).
k2 + l2 + f 2r2 ac

(2.67)

The above equations (2.64)-(2.67) can be simplified as

iin(x, y, Z, t) J J ga(k, 1, u, n)Ua(k, 1, u, z, n)ei(kx+ly-at)dkdldo-, (2.68)

n (x, y, z,t) J J ga(k, l,,9 n)va(k, l,1 o, z, n)ei(kx+y-gt)dkdIdu, (2.69)

~n (x, y, Z, t) J f ga(k, 1, o-, n)Wa(k, 1, o-, z, n)ei(kx+y-Ort)dkdldo-, (2.70)

& (x, y,z,t) = JJga(k, l, , n)pa(k, l, o z, n)ei(kx+ly-at)dkdldo, (2.71)

where we have defined

Ua (k, , o- Z, n) =Pn (z), (2.72)
Jk 2 + 12 + f 2r,

va (k,l,Uo, z,fn) =- ~ k Pa(z), (2.73)
k2 + 12 + f2 r

WV (k, l, o- , n) " QP(Z), (2.74)
k2 + 12 + f2r2

p a (ko, 1 7z, n) n nN (ZQ ), (2.75)

k2 + 12 + f 2r2

and

P 1 dFn(z) = se [ y (2.76)n (Z) ac d z ac 1Y(~ ~-J(), n>1(.6



1
Q"(z) = r. -' (z). (2.77)

ac

The eigenfunctions Ps(z) and Qn(z) satisfy the orthogonal conditions

/ 0
Pm (z) P (z)dz = onm, (2.78)

J S 2 N 2 (Z)Qm(Z)Qn(z)dz = 6nm. (2.79)

where 6 nm is the Kronecker delta function.

For the barotropic mode (n=0), we have

ro = 0.0, Po(z) = 1.0, Qo(z) = 0.0, (2.80)

meaning that there is no vertical structure in the horizontal velocities and vertical

velocity is zero.

The vertical eigenfunctions Pn(z) and Qn(z) are plotted in figure 2.3 for n=O to 3.

An important property in figure 2.3 is the near-surface intensification of P,(z) for n=1

to 3. Equations (2.72) and (2.73) suggest that the vertical structure of the horizontal

kinetic energy is proportional to P,2(z), so that the vertical structure of baroclinic

horizontal kinetic energy will correspondingly show a near-surface intensification.

2.6 The model for the temperature

To a good first approximation, the temperature variability can be attributed to the

vertical advection of the mean vertical temperature profile. Thus the dimensional

heat equation can be simply written as

0- + 1 00 =Z 0. (2.81)
at 8

where 0 is the dimensional perturbation temperature, tb is the dimensional perturba-

tion vertical velocity and 0o(z) is the temperature of the rest state.
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Figure 2-3: Normal modes 0 to 3 (a) Horizontal velocity (b) Vertical velocity.



The corresponding nondimensional equation is

80
t+ pw 0, (2.82)

at

where
TW 0o(z) (2.83)

and E is the scale of the temperature 0. The Levitus et al. [1994] climatology is used

to calculate the vertical gradient of the mean temperature at different places.

Substitution of equation (2.70) into (2.82) yields

O(x, y, z, t) = ga(k, l, o, n)Oa(k, 1,7 , z, n)ei(k+ly-ot)dkdIdu, (2.84)

where

Oa(k, l, , , n) = + i2 fr pQ(Z). (2.85)

Equation (2.84) gives the solution for the temperature perturbation associated

with the low frequency oceanic motion. In section 2.5, we related solutions for different

variables to each other and to the total energy of each wave through the normalization

process. By definition, the potential energy is associated with the density perturba-

tion. For simplicity, we ignore variations in salt, so that density perturbations are

proportional to the temperature perturbations to a first order approximation, thus

the potential energy can be expressed in terms of the temperature perturbation also.

As shown in section 2.5, the potential energy per unit volume for a wave is defined

as
9 2 1 P oU 2 f02 L 2 2

Pw= - - 9aPa. (2.86)
2N 2po 2N 2H 2

From equations (2.12) and (2.82), we find the relation between the temperature

perturbation and density perturbation

Pa S2 N2 a. (2.87)
y



Substituting equation (2.87) into (2.86), the potential energy can be expressed in

terms of the temperature perturbation

poU 2 S 2N 2

S= 2 t2 _ga . (2.88)

Since we have normalized the total energy for each wave in section 2.5 and the po-

tential energy is related to the temperature perturbation, the solution for temperature

has been normalized, correspondingly.

2.7 Summary

In this chapter, we introduce a dynamical model for low frequency oceanic motion.

Using the method of separation of variables, we separate the model equations into

horizontal and vertical components. The solutions to the horizontal components are

given in the form of propagating waves. The solution to the vertical component is

determined by the buoyancy frequency N(2). An idealized exponential form for N(2)

is assumed, the corresponding solution to the vertical component is given in the form

of standing modes. The solution is normalized so that spectra of different variables

can be related, both to each other and to the total energy of each wave.

The solution to the model equations can be summarized as:

n=+o n=-+o

U(XY, Z, t) - : iin (X, y, Z, t) = S J ] ga (k, 1, o, n)Ua (k, 1, -, z, n)ei(kx+y-Ot) dkdldo
n=O n=O

(2.89)

v(x, y, z, t) E i (x, y, z, t) f ga(k, l, o, n)va(k, l, 0, z, n)ei(kx+ly-Ot)dkdldo-,
n=o n=o

(2.90)
f=+c n +COo

w(x, y, z, t) = 5 n)9(x, y, z, t) = f J ] ga(k, 1, a, on)Wa(k, 1, o, z, n)ei(kx+ly- Ot)dkdldo-
n=o n=o

(2.91)
n=+o n=+o

p(x, y, z, t) = & y(x y, z, t) ff] ga (k, 1, o, n)pa(k, 1, o, z, n)ei(kx+ly-Ot)dkdldo-,
nz(o n=o

(2.92)



n=+oo n=+oo

O(x, y, z, t) = E #(x, y, Z, t) = ff ga (k, 1, o-, n)0a(k, 1, o-, z, n)e(kx+Y-ot)dkdIdo-,
n=o n=o

(2.93)

where iin(x, y, z, t), n (x, y, z, t), yn(X, Y, zt), y &(x, y, z, t) and O.(x, y, z, t) are the so-

lutions for each mode. The characteristic amplititude factors ua(k, 1, o-, Z, n), Va(k, 1, o-, z, n),

Wa(k, , u, z, n), Pa(k, 1, o, z, n) and Oa(k, 1, o, z, n) are defined in equations (2.72)-

(2.75) and (2.85), and ga(k, l, o, n) is a common random factor which is related to

the total energy of each wave and hasn't been specified so far.



Chapter 3

Spectra and coherence of the

model

In chapter 2, we derived the solutions to the model equations. In this chapter, we will

obtain the model frequency and wavenumber spectra of kinetic energy and tempera-

ture for each mode based on the solutions obtained in chapter 2. We will also obtain

the frequency spectrum for the range-averaged temperature from tomographic data.

The frequency and horizontal wavenumber spectra we will derive in this chapter are

for each mode. In chapter 5, we will compare the model spectrum with the cor-

responding observation by adding up the contributions from the first few important

modes.

3.1 Covariance

In this section, we will derive the covariance of the normalized solutions obtained in

chapter 2, from which various model spectra can be found.

Let h(x, y, z, t, n) represent the normalized solution to the model equations (2.9)-

(2.13) for each mode, where h(x, y, z, t, n) could be any of the following variables

i64(x, y, z, t), 3n(x, y, Z1 t 1) (x, y, z, t), y&(x, y, z, t) or O,(x, y, z, t). According to the



normalized solutions for each mode (2.68)-(2.71), h(x, y, z, t, n) can be written as

h(x, y, z, t, n) = f (3.1)

where ga(k', 1', o', n) is a common random factor of the normalized solutions iin(x, y, z, 0

in(x, y, z, t), ?)(x, y, z, t), y(x, Y, z, t) and O4(x, y, z, t). If h(x, y, z, t, n) represents

i4i(x, Y, z, t), ha (k', 1', o-', z, n) represents the deterministic amplitude factor, ua (k',i'7 l ', Z, n),

and so forth.

Taking a shift of rx in x, ry in y and T in t, the above equation (3.1) yields

h(x+rx, y+ry, z, t+T, n) = J J ga(k,1, o-, n) ha(k, 1, o-, z, n)ei[k(x+rx)+I(y+ry)-o(t+T)]dkddo-,

(3.2)

and

h* (x+rx, y+ry, z, t+r, n) = g*(k, 1, U, n)h* (k, 1, o-, z, n)e-i[k(x+r)+l(y+ry )-a(t+r)]dkdld,

(3.3)

where * denotes the complex conjugate.

By definition, the covariance function of h(x, y, z, t, n) is

R(x, y, z, t, rX, ry, rn) =< h(x, y, z, t, n)h*(x + rx, y + ry, z, t + r, n) >, (3.4)

where the brackets denote a hypothetical ensemble average.

Substitution of equations (3.1) and (3.3) into the equation (3.4) gives

R(x, y, z, t, rx, ry, r, n) = < ga (k' I' o-',/ n)g* (k, 1, o-, n) >

ha(k', I' o-' a17z, n)h*(k, 1, o-, z, n e ei[(k'-k)x+(l'-l)y-(o-'-o,)t] -i(krx+ Iry -OrT)dk'd1'do-'dkdido-(3.5)

If the oceanic process is considered to be both homogeneous in horizontal space

and stationary in time, then the covariance R(x, y, z, t, r1 , rY, T, n) will be indepen-

dent of the spatial base point x and y and temporal base point t and be a function only

ga (k', 1', o-', n)ha(k' l' 7 ' 1 7/1z, n)e i(k' x+l'u-o't)dk'dl'dor',



of the horizontal space lag r, and ry, time lag T, depth z and mode number n. Because

the function ha(k, 1, a, z, n) has been specified, in order for the right-hand side of equa-

tion (3.5) to be independent of x, y and t, the product < g(k',l', ', n)g*(k,l, a, n) >

in the right-hand side of equation (3.5) must be in the form of Dirac delta functions

with the only contribution to the integral occurring at k' = k, 1' = 1 and o-' = r.

So for the homogeneous and stationary process, we have the orthogonality rela-

tions,

< ga(k', l', c', n)g *(k, l, , n) >= 6(k' - k)6(1' -l)6(c' - a) < |ga(k, 1, a, n) 2 > . (3.6)

Define the energy density spectrum as

T(k,l, r, n) =< gea(k, l, a, n) > (3.7)

Substitution of equation (2.63) into (3.7) yields the relationship between the en-

ergy density spectrum and the energy of a single wave

TJ(k, 1, a, n) =< E(k, 1, 9, n) >, (3.8)

meaning that the energy density spectrum T'(k, 1, or, n), which is characteristic of the

random process as a whole, equals to the average of the energy distribution of the

individual realization E(k, 1, or, n).

Substitution of equations (3.6) and (3.7) into (3.5) yields the covariance function

of each mode for the homogeneous and stationary process

R(rX, rY, r, z, n) ha(k, 1, o, z, n)h* (k, 1, U7 z, n)4(k, l, a, n)e-i(kr+Iry -o-)dkdida.
(3.9)

Various spectra will be derived in next sections from this covariance function. In

the following, we will find the relationship between the total energy per unit surface



area of each mode and the energy density TI(k, I, o, n).

If r, = rY = T 0, the covariance function (3.9) becomes simply the mean-square

quantity of each mode

R(0, 0, 0, z, n) =< h(x, y, z, t, nj2 >= J ha(k, 1, or, z, n)h*(k,l, or, z, n)(k, 1, o, n)dkdld31.

(3.10)

Substitution of ii, 1, y and 0 for h into the above equation gives the mean-square

quantities of ii, 1, y and 0 for each mode

[< || 2 > 2 > > < |N|2 >] - JJ a 2 |Va |2, Pa 2, 1a|2 ]T (k, 1, o, n)dkdlda.

(3.11)

Let pOE, designate the dimensional total energy per unit surface area for each

mode, so that

poE.
POW I-H<

poU2HJ I<
PO[< 2> + < 2

UV >
2

Ini2 > 2 >

492 ]dz12
2N 2 po

fo2L 2

< 2 >]dz.
N 2H2

Substitution of equation (3.11) into equation (3.12) yields

U2HJ I ( Ua 2+
If 1- J -i i

fo2L 2

|Va 12+ |IPa|2 )dz]IF(k,l,o-,n)dkdlido-.N2 H 2 (3.13)

Substitution of equations (2.72), (2.73) and (2.75) into equation (3.13) gives

n = u2 H J I(k, 1, o, n)dkdldo,. (3.14)

Define E, as the corresponding dimensionless total energy for each mode, then

1 = U2HEn, (3.15)

(3.12)



and

E J= f (k, l, a, n)dkdda. (3.16)

It is relation (3.16) that gives validity to the interpretation of T'(k, I, , n) as an

energy density for each mode.

For horizontal isotropy, we may introduce the two-dimensional energy density for

each mode

<b (K, a, n) J f T(k, 1, a, n)Kd# = 27rK T(k, 1, a, n) (3.17)

where K = v/k 2 + 12 is the horizontal wavenumber amplitude.

Now the dimensionless total energy per unit surface area of each mode can be

written as

E J =<(K, o, n)dKd (3.18)
J-O -00

3.2 Spectra and coherence

Propagating signals have spatial as well as temporal spectra. Data at a fixed spatial

point can yield a frequency spectra, whereas data along a certain spatial line at

a fixed time can yield a wavenumber spectrum. In the following, we will derive

the model frequency and wavenumber spectra of each mode for kinetic energy and

temperature and we will see that various spectra are related to each other through the

energy density spectrum TI(k, 1, U, n). The corresponding observational frequency and

wavenumber spectra of temperature and kinetic energy will be described in chapter

4. Then, in chapter 5 we will find out if we can find a universal form of 'IF(k, 1, U, n)

so that each model spectrum can fit the corresponding observation.

3.2.1 Frequency spectra

In (3.9) let the horizontal space lags r, = 0 and ry = 0, i.e., we consider the time

series data at a fixed spatial point. Then covariance function (3.9) reduces to a one



dimesional temporal autocovariance function

R(T, z, n) JfJ hah* (k, 1, o, n)eir T dk dldo-.

By definition, we can find the frequency spectra of each mode from (3.19):

R(T, z, n)e-'dT k hah* T(k, 1, W, n)dkdl. (3.20)

Here we have used the following fundamental Fourier identity

J e 43 dr = 276(w - o-). (3.21)

Substitution of Ua, Va, pa and Oa for ha into equation (3.20) gives the frequency

spectrum of ii, 9, y, and 0 for each mode:

FuV,,,o(U, n, z) = jH I [ 2 Ua| 2 , |pa|2 , 12 ]W (k, 1, w, n)dkdl. (3.22)

Therefore, the nondimensional kinetic energy frequency spectrum for each mode is

1
Fk (w, ri, z) = Ua|2 + |a 12 )p (k, 1, w, n)dkdl = I (Ua |2 + IVa 1)4(K, ,n)dK,

(3.23)

and the nondimensional total kinetic energy for each mode at depth z is

Ek(n, z) = SFk (w,n, z)dw = (Ua|2 + |Va|2)(K, w, n)dKdW. (3.24)

We can get the total kinetic energy per unit surface area for each mode from the

above equation (3.24)

Kh(n) J E(n, z)dz = I J (Ua1 2 + |Va 12)(K, w, n)dKdWdz.

For horizontal isotropy, the temperature frequency spectrum in equation (3.22)

F(w, n, z) =

(3.19)

J +0000

(3.25)



can be simplified as

FO (w, n, z) = , I'l|2<b(K, w, n) dK. (3.26)

3.2.2 Horizontal wavenumber spectra

If we let T = 0 in (3.9), i.e., we shall consider only instantaneous pictures of the

oceanic variability in a horizontal plane. Then the covariance function reduces to

R(r,, ry, Z, n) = Jhah*TW(k, 1, o-, n)e-i(kr-+Iry)dkdldo-. (3.27)

From equation (3.27), we get the two dimensional spectra of ii, y9 / and 0 for each

mode

Fu, k, z, n) = I [Ua|2 , IVa12 PI 12 , a 12],F (k, 1, w, n)dw, (3.28)

Therefore, the two dimensional kinetic energy wavenumber spectrum for each

mode is

Fk(k, l, z, n) (|Ua|2 + |Va| 2 )4 (k, l, w, n)dw. (3.29)
2 -oo

Studies of two dimensional spectrum of ocean waves are very important in deter-

mining the directions of the wave motions and in clarifying the fundamental process

of wave generation. However, in contrast to a great many studies of the one dimen-

sional spectrum, few attempts have been made to study the two dimensional spectrum

of ocean waves. Wunsch and Hendry [1972] analyzed the two dimensional velocity

wavenumber spectra to determine both the directions and the wavelengths of internal

waves. Richman [1976] studied the two dimensional temperature wavenumber spec-

trum of low frequency variability. However, the data he used were too short to assess

the isotropy of the temperature field.

To put it simply, we first try to reduce the two dimensional problem into a one

dimensional one by trying to see how the kinetic energy and potential energy depend

on the total horizontal wavenumber. Eventually we will study how they depend on k



and 1.

For horizontal isotropy, we may introduce the one dimensional kinetic energy

wavenumber spectrum Fk(K, n, z), so that

Ek(n, z) Ik F(k, 1, n, z)dkdl = Fk(K, n, z)dK

Substitution of (3.29) into (3.30) yields the kinetic energy wavenumber spectrum

Fk (K, n, z) =-
- 2 -oo (Ua |2 + Va 12)<bD(K, w, n)dw. (3.31)

The corresponding wavenumber spectrum for temperature is

(3.32)

3.2.3 Horizontal coherence

For two points at the same depth separated horizontally by a vector:

R = X 3 - Xi = (rx, ry),

the cross spectrum of the variable h(x, y, z, t, n) at these two points is

hah*xF(k, 1, w, n)ei(kr+lry)dkdl,

(3.33)

(3.34)

from which we obtain the coherence of the variable h(x, y, z, t, n) at these two points:

Rij (w, z, n) - C23

Cr Cn3

fk fi hah* T(k, 1, w, n)e-i(krx+Iry)dkdl

fkfl hah* T(k, 1,wa, n) dkdl

Substitution of Ua, Va and 0a for ha in the above equation yields the coherence of

i, i and 0 for each mode at these two points.

(3.30)

(3.35)

FO (K, n, z) = f|10"|2<bD(K, w, n)do. -

Cij (w, z, n) = f



3.3 The frequency spectrum and coherence of the

acoustic tomographic data

A key attribute of tomographic measurements is that they are spatially integrating.

The ability of forming horizontal averages over large ranges is an attractive tool. The

integration suppresses small scales and the suppressed scales are dependent on the

length of acoustic path. Transmissions over a few hundred kilometers subdue the

internal wave "noise" and transmissions over a few thousand kilometers subdue the

mesoscale noise [Munk et al. 19951. In this section, we will show analytically that the

integration has the same effect as a low-pass filter, which will filter out the energy

at large wavenumbers. The filtering effect depends on the length of the acoustic ray

path.

Suppose two acoustic ray paths AB and CD are parallel and both are in the

direction of the x-axis [Figure 3.1]. The lengths of the paths AB and CD are L1 and

L 2 , respectively, and AB and CD are separated by a distance Y in the y direction.

Assume di and d2 represent the range-averaged temperature along the paths AB and

CD for each mode:

1 B .
di(LI, y, z, t, n) = I 1(x, y, z, t, n)dx (3.36)

d2 (L 2 ,y , z,t,n) = LJ 2 (x y z t, n)dx. (3.37)

In the following, we will derive the frequency spectrum and coherence of the

range-averaged temperature of each mode.

3.3.1 Tomographic frequency spectrum

By definition, the covariance of di and d2 for each mode is

R~d12 (r, z, n) =< d1 (L1,I y, z, t, n)d* (L2, Y', Z, t + r, n) > .(3.38)
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Figure 3-1: Sketch of the ray paths AB and CD.
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We can relate the covariance of di and d2 to that of 01 and 02 by substituting

equations (3.36) and (3.37) into (3.38):

1
Rd12 (T, z, n) = L

L1L2

B D

A c
(3.39)

Recalling from section 3.1 that the covariance of Oi and 02 for each mode is

Roi2 (r, z, n) =< #1 (x, y, z, t, n)* (x', y', z, t + r, n) >

ff a0 *T(k, 1, r,nje-i[k(x'-x)+1ty'

Substitution of equation (3.40) into (3.39) gives

-y)-r] dkdldu. (3.40)

D Sa10i~k(x' -x)+l(y y-7

(3.41)
L1L2 IA

Changing the sequence of the integration, we find

j a0* XI(k, 1, o, n)e-i[I(YY)T1[1f I D eik(x' x)dxdx']dkdldu.

(3.42)

If the path AB and CD are coincident, then Li = L2 = La, y' = y and the

covariance function (3.42) reduces to the autocovariance

Rd(r, z,n) = Ik Jf Oa04* (kl,
B J

9, nje B A

e-k(x'-x)
dxdxI' ] dkdidcr.

If we define the effect due to spatial averaging as

B
W(k, La) =- a

B *,

e ik(x -x)dxdx
sgn 2 (kLa/2)

(kLa/2)2

then the equation (3.43) can be written as

F00(k, 1, , n)W(k, La)e T'dkdl.

Rd12(, z, n) =

Rd12 (r, z, n) =

(3.43)

(3.44)

< 01 (X, y, z, t, n)* (x ,y', z, t + rn) > d dz .

(3.45)Rd (T,z, n) =-



Finally, from the autocovariance function (3.45), we obtain the tomographic fre-

quency spectrum of each mode

Fd(w, z, n) j 0,6*IF(k, 1, w, n))W(k, La)dkdl. (3.46)

Recall that the temperature frequency spectrum of each mode for point measure-

ments is given by equation (3.22). Comparing the frequency spectra of tomographic

data, equation (3.46), with the frequency spectra of point measurements, equation

(3.22), we note that there is an additional factor (3.44) in the spectrum of the range-

averaged data. The additional factor W(k, La) is due to the spatial average.

The function W(k, La) has the following properties [Figure 3.2]:

(1) It filters out the high wavenumber components along the acoustic ray path.

The function |W(k, La)| < 1 and obtains its maximum of 1 at k = 0. For a fixed

ray path length La, as |kI increases, W(k, La) first drops very rapidly to zero, then

oscillates with decaying amplitude.

(2) The passband width of the filter depends only on the length of the ray path.

The longer the acoustic ray path, the more rapidly W(k, La) decays. This implies

that longer acoustic ray paths can filter out more small scale motions. So the longer

the acoustic ray path, the smaller the energy level of the range-averaged spectra.

(3) We will see in the next chapter that most of the potential energy is distributed

at smaller wavenumbers, so that the effect of filtering due to the spatial average is

very small, even negligible.

(4) The frequency spectral shape of the tomographic data is the same as that of

point measurements, the only difference between them is the energy level.

3.3.2 Tomographic coherence

Let the pathes AB and CD be parallel, both in the direction of the x-axis with

XA - Xc, XB = XD. Both lengths of AB and CD are La, and AB and CD are

separated by a distance Y in the y direction [Figure 3.3]. Under the above conditions,



the cross-covariance equation (3.42) becomes

Rd12 (T, z,n) = k j aO*4(k, l,o-,T n)11 2 (k La|2) ei~lY-"dkdldo-.
(kLa2)

The corresponding cross spectrum between the range-averaged temperature along

the path AB and the range-averaged temperature along the path CD is

CQi2(W, z, n) = O* ((k, / w, n) 2) e "Ydkdl,
k l (kLa|2)2

(3.48)

then the coherence function is

Rd12 (W, z, n) fk fJi OaO*J(k, 1, w, n)W(k, La)e-"dkdl

fk Ii OaO*j'(k, 1, w, n)W (k, La)dkdl

W(k, La) = sin2 (kLa/2)
(kLa/2)2 (3.50)

3.4 Summary

Under the assumption of statistical spatial homogeneity, temporal stationarity and

isotropy, we have derived the following relations for each mode:

(1) the nondimensional kinetic energy frequency spectrum

Fk (w, n, z) = P2(z) j

(2) the nondimensional kinetic energy wavenumber spectrum

/+00Fk (K, n, z) = P2(z) 0

(3) the nondimensional temperature frequency spectrum

+00 2f 2,2 <b(Kwn)dK,

Jo K 2 f 2 r2

(3.47)

where

(3.49)

K 2  (Kwn)dK,

K 2 + f 2r2 (3.51)

K <
2 

b(K, w, n)dw,
K 2 + f 2 ,

(3.52)

Fo (w, n, z) = p2Q2 (Z) (3.53)



(4) the nondimensional temperature wavenumber spectrum

+00 2f 2 r 2

Fo (Knz) =,p2Q2(z)f -oK2+ 2,(K,w,r)dw. (3.54)
''~Joo K 2 f rn

(5) the nondimensional frequency spectrum for range-averaged temperature (tomog-

raphy)

+00 +00 2f 2 r2

Fd(w,n,z) - p 2 Q2(Z) ] " ±(k, 1, w, n)W(k, La)dkdl
-n - K2 +f2r2

/Q Z)f+OC +0 2 f2,r2 D(K) W n)
- (z * ' W(k, La)dkdl,(3.55)

-0 (K 2 + f 2r2) 27rK

(6) the nondimensional kinetic energy at an arbitrary depth z

Ek(n, z) = P 2 (z) [+00 [0 K 2  (K, w, n)dKdw, (3.56)
- 0 Jo K 2 + f 2r~

(7) the nondimensional total kinetic energy per unit surface area

Kh(n) - 0 E(n, z)dz = + 2  (K, w, n)dKdw, (3.57)
1-i f-00 Jo K 2 + f 2r

where Pn(z), Q,(z), p and W(k, La) are defined in (2.76), (2.77), (2.83) and (3.44),

respectively.

From equation (3.51) to (3.57), we note that the wavenumber and frequency spec-

tra of kinetic energy and temperature, the frequency spectra of range-averaged tem-

perature and the kinetic energy are related to each other through the energy density

(K, w, n).

In the following chapters, we will review the observed spectral properties of low

frequency oceanic variability and we will see whether we can find a universal form of

the energy density 4(K, w, n) so that all the model spectra can fit the corresponding

observations.
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Figure 3-2: The filtering function W(k, La).
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Figure 3-3: Sketch of the ray paths AB and CD in a special case.



Chapter 4

Spectral description of low

frequency oceanic variability

The oceanic variability is a function of (x, y, z, t) in physical space and a function

of horizontal wavenumber, vertical mode and frequency (k, 1, n, w) in Fourier space.

Wunsch [1981] gave a review of frequency spectra of temperature and velocity based

on data obtained before 1981. During the past decades, because of the advance

of measurements and the emergence of two new measurement techniques, acoustic

tomography and satellite altimetry, a three-dimensional description of oceanic vari-

ability has become possible. In this chapter, we review the low frequency oceanic

variability based on the more recent results. We will also analyze some new data

ourselves. Emphases are put on answering the following questions: how the kinetic

energy and temperature variability depends on horizontal wavenumber, frequency

and vertical mode? which characteristic features of low frequency variability are in-

dependent of geography? which ones are geography-dependent? and how do they

depend on geography? We will summarize the various observations and give a zero

order description of the low frequency oceanic variability.



4.1 Frequency spectra

Frequency spectra of oceanic variability have previously been computed from time

series of moored current meters and thermistors. A review of earlier results is given

by Wunsch [1981]. According to his findings, almost everywhere the frequency spec-

tra of velocity show an isotropic high-frequency with a spectral slope of about w

followed by an energy containing band towards longer periods. At the longest periods,

observed motions become anisotropic with a tendency towards zonality. Overall, the

temperature frequency spectral shape is independent of geography also and is similar

to that of velocity. In the regions away from the main topography, the frequency spec-

tral shape of the horizontal velocities and temperature is independent of depth, and

the energy level of the temperature frequency spectra drops more rapidly with depth

than that of horizontal velocities. One important property of the frequency spectra is

that the energy level depends on geography and the energy level increases toward the

western boundary. Recently, Wunsch and Stammer[1995] calculated the frequency

spectra of sea surface height and sea surface slope from TOPEX/POSEIDON altime-

try data. The global averaged frequency spectrum of sea surface slope is shown in

figure 4.1. On time scales shorter than 60 days the spectra approximately follow

an w-2 power law, with an almost "white" long-period plateau and an intermedi-

ate w-1/2 regime. The peak near a period of 60 days is a tidal alias [Wunsch and

Stammer, 1995].

According to Stammer [1997], the regional frequency spectra from T/P altimetry

can be summarized by three basic types representing: (i) the energetic boundary cur-

rents, (ii) the bulk of the extratropical basins, and (iii) the tropical interior oceans.

There exists pronounced similarity in the shape of all the spectra from each dynamical

category. In the interior ocean the general shape of the sea surface height and sea sur-

face slope spectra basically agrees with that of the global average but with less energy

[Figure 4.2]. In general, the slope spectral characteristic, with a flat low-frequency

part and a steeper decay at higher frequencies appears qualitatively consistent with

results from moored current meter data.
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Figure 4-1: The global averaged frequency spectrum of sea surface slope (Stammer
1997).
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4.2 Kinetic energy wavenumber spectra

Compared with the frequency spectra, the wavenumber spectra of low frequency

oceanic variability are much more difficult to obtain by conventional measurements.

The time series from repeated expendable bathythermograph (XBT) lines yield some

regional temperature wavenumber spectra. Due to satellite altimetry, the wavenum-

ber spectra for whole ocean basin have been obtained. The first global wavenumber

spectra for sea surface height and sea surface slope were constructed by Wunsch and

Stammer [1995]. Stammer [1997] studied how the frequency and wavenumber spectra

of the sea surface height and sea surface slope depend on geography. Basically the

global averaged wavenumber spectrum of sea surface slope has a maximum at about

400 km wavelength. The spectrum follows a k+ 3/2 relation at wavelengths greater

than 400 kin, a k- relation between 400 km and 150 km wavelength, and a k-2

relation at shorter wavelengths [Figure 4.3]. The "blue" wavenumber energy spectral

shape at wavelengths shorter than 60 km in figure 4.3 is dominated by noise rather

than oceanic signal and the possible reasons for this include residual aliasing of high

frequency motions and the break down of the geostrophic assumption [Wunsch and

Stammer, 1995].

The examples of regional wavenumber spectra are shown in figure 4.4 from several

100 by 100 area in the latitude band spanning 300 to 40' across the North Atlantic. In

general the regional wavenumber spectral shape is consistent with the global averaged

one. However, there exists striking geographical variation in the energy level. The

energy level for the sea surface height and cross-track velocity for wavelengths longer

than about 100 km increases greatly from the low energy area in the eastern and

central subtropical gyre toward the energetic western boundary.

Besides the energy level, the cutoff wavenumber ko where the slope wavenumber

spectrum obtains its maximum exhibits a latitudinal dependency, decreasing from

high latitudes toward the equator [Figure 4.5]. Stammer [1997] found a close rela-

tionship between ko and the first baroclinic Rossby radius.
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Figure 4-3: The global averaged wavenumber spectrum of sea surface slope (Stammer
1997).
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4.3 Temperature wavenumber spectra

Review of previous results

Roemmich and Cornuelle [1990] investigated the temperature horizontal wavenum-

ber spectrum from a time series of expendable bathythermograph (XBT) sections

between New Zealand and Fiji. Figure 4.6 shows horizontal wavenumber spectra of

temperature at 400 m depth. The solid line is the wavenumber spectrum of the mean

temperature. The dashed line in figure 4.6 is the averaged spectrum of the fluctua-

tions. At a wavelength of about 2000 km, the spectra of the mean and fluctuations

have equal energy. The energy level of the mean field is higher at wavelengths longer

than 2000 km and it drops off very sharply at wavelengths near 2000 km. At wave-

lengths shorter than 2000 kin, the energy level of the fluctuations is higher. Energy

in the fluctuations slopes off at a rate of about k- 1/2 out to a wavelength of about

300-500 km. At that point there is an increase in the slope, which becomes about

k .

Results from new data

The data used in the following come from the repeated XBT lines in the North

Pacific between San Francisco and Hawaii. The data provide many "snapshots" of a

slice across the low energy area in the eastern and central subtropical gyre. The data

are unique since the horizontal resolution is sufficiently fine so that mesoscale eddies

can be resolved. The details of the XBT data are listed in table 4.1. The data have

been mapped on a regular grid using an objective mapping technique by Cornuelle.

The objectively mapped data were then averaged in time at each grid point over all

20 transects of the region. The sample mean and standard deviation are shown in

figure 4.7. The gyre-scale slopes of isotherms are obvious in the figure of the sample

mean. The large-scale slope of isotherms is upward towards the south. The vertical

gradient of the mean temperature at a certain depth changes strongly along the XBT

line. The standard deviation map shows a pronounced surface maximum. In the

main thermocline, there are some distinct maxima and the position of the maxima

in the figure of standard deviation corresponds to the maximum vertical temperature



gradients in the mean temperature field.

The wavenumber spectra for the mean temperature and perturbations are shown

in figure 4.8. In general, the spectral shape in figure 4.8 is similar to that in figure 4.6.

For the averaged spectrum of the fluctuations, the slope is about k-'I2 at wavelengths

longer than 400 km. There is a transitional point at wavelengths between 300 km and

500 km. At wavelengths shorter than 300 kin, the spectral slope of the fluctuations

in figure 4.8 becomes about k -. One interesting fact is that the transitional point

in figure 4.8 corresponds to the cutoff wavenumber in the wavenumber spectrum

of sea surface slope in figure 4.3. By comparing figure 4.3 with 4.8, we find that

the ratio of temperature fluctuation horizontal wavenumber spectrum to the kinetic

energy horizontal wavenumber spectrum is proportional to k- at the wavelengths

longer than 100 km. These imply that there is a relation between the temperature

wavenumber and velocity wavenumber spectrum and we will discuss this in detail in

next section. There are two obvious differences between figures 4.6 and 4.8. First, the

energy level in figure 4.8 is about one order of magnitude lower than that in figure

4.6. We must-be aware of the different scales used in figures 4.6 and 4.8. The data for

figure 4.8 is taken from the low energy area in the eastern and central North Pacific,

while the data for figure 4.6 is from the area near the western boundary in the South

Pacific where there is strong variability. Second, at wavenumbers greater than 0.008

CPK, the spectral slope in figure 4.8 is steeper than that in figure 4.6. One possible

reason for this is that the ship track between New Zealand and Fiji was precisely

repeated and from one voyage to the next the ship did not deviate by more than a

few kilometers. In contrast, between San Francisco and Hawaii the deviation of the

ship track from one voyage to the next is greater, on the order of tens kilometers.

This deviation of the ship track might contribute to the spectral difference between

figures 4.6 and 4.8 at wavenumbers higher than 0.008 CPK. Just as the frequency

spectra of temperature and horizontal velocities, the wavenumber spectral shape of

the temperature is approximately independent of depth and the energy level drops

with depth [Figure 4.9].
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Cruise designation Dates Shallowest depth Deepest depth

1 19-23 Sep 1991 0 850 (m)

2 16-20 Apr 1992 0 850 (m)

3 12-16 Nov 1992 0 850 (m)

4 8-12 Apr 1993 0 850(m)

5 22-26 Jul 1993 0 850 (m)

6 4- 8 Nov 1993 0 850(m)

7 17-21 Feb 1994 0 850 (m)

8 2- 6 Jun 1994 0 850(m)

9 11-15 Aug 1994 0 850 (m)

10 24-28 Nov 1994 0 850 (m)

11 2- 6 Feb 1995 0 850(m)

12 18-22 May 1995 0 850 (m)

13 27-31 Jul 1995 0 850 (m)

14 9-13 Nov 1995 0 850 (m)

15 1- 6 Feb 1996 0 850(m)

16 16-20 May 1996 0 850 (m)

17 25-29 Jul 1996 0 850 (m)

18 3- 7 Oct 1996 0 850(m)

19 16-20 Jan 1997 0 850 (m)

20 27-31 Mar 1997 0 850 (m)

Table 4.1: List of XBT cruises
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Figure 4-7: (a) Mean temperature field formed by time-averaging of gridded (objec-
tively mapped) data from all cruises. (b) Standard deviation of temperature.
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4.4 Consistency relation between kinetic energy

and temperature wavenumber spectra

The astute reader might have noticed a superficial relationship between the kinetic en-

ergy horizontal wavenumber spectrum and temperature horizontal wavenumber spec-

trum. First, both the kinetic energy horizontal wavenumber spectrum and the tem-

perature horizontal wavenumber spectrum have a transitional point at the wavelength

of about 400 km. Second, the ratio of temperature horizontal wavenumber spectrum

to the kinetic energy horizontal wavenumber spectrum at wavelengths longer than

100 km is proportional to K- 2 . Because the observed horizontal wavenumber spec-

tral shape is independent of depth, we can infer that the spectral shape of each mode

is identical, just like the spectral shape of the obsevations, and that the vertical

modes only contribute to the energy level, not the spectral shape. Therefore, the

ratio of temperature horizontal wavenumber spectrum to the kinetic energy horizon-

tal wavenumber spectrum of each baroclinic mode is proportional to K2 (For the

barotropic mode, the temperature perturbation is zero). These are not mere coinci-

dences. On the other hand, these imply some dynamical relationships between the

temperature and the velocity. In chapter 3, we derived the model wavenumber spec-

tra of the kinetic energy and the temperature. As shown by the equations (3.52) and

(3.54), the model wavenumber spectra of the kinetic energy and the temperature of

each mode are indirectly related to each other through the intermediate variable: the

energy density <b(K, w, n). The ratio of the model temperature horizontal wavenum-

ber spectrum to the model kinetic energy horizontal wavenumber spectrum of each

baroclinic mode is proportional to K- 2 as well. So the model result is consistent with

the observations.

In some cases, it's possible to derive direct relationships among different variables

from a theoretical model that may be tested directly against the same relationships

evaluated from observations so that the implied dynamics between different variables

will be more obvious to us. In the following, we will derive a direct relationship



between the velocity horizontal wavenumber spectrum and the temperature horizontal

wavenumber spectrum from a simple theoretical model.

As we have mentioned in chapter 2, away from the immediate vicinity of the sea

surface and the equator, the low frquency and large scale oceanic general circulation

is dominated by the geostrophic balance relations in the horizontal direction:

fv 1 , (4.1)
Po Dx

1 Op
f = , OP(4.2)

po Dy'

and the vertical momentum equation is dominated by hydrostatic balance:

Dp_
D = pg. (4.3)

Here u and v are the perturbation horizontal velocities, p is the perturbation pressure,

p is the perturbation density, f is the Coriolis parameter and po is the density of the

rest ocean.

From equations (4.1), (4.2) and (4.3), one can get the thermal wind relation:

Dv g op
f - = - - -- (4.4)Dz po Dx'

Du _g 8p
f - = -- (4.5)

Dz po By

The density p is a function of temperature T and salinity S (for fixed pressure p),
and the effect of salinity is relatively small. An equation for p in terms of T and S is

a complicated function but to zero order can be linearized as:

p = 7T, (4.6)

where -y is a constant coefficient.

Substitution of equation (4.6) into equations (4.4) and (4.5) yields the relationship



between the horizontal velocities and temperature

f = 7 T (4.7)0z po Ox'

Du gD8T
f =U - .T (4.8)Oz Po Dy

Define the Fourier transform of f(x) as (k):

f(k) = .F(f (x)) =- f (x)eikxdx. (4.9)27 -oo

The derivative theorem gives:

.F(f'(x)) = ik f(k). (4.10)

Because the horizontal wavenumber spectral shape is independent of depth and

we are only interested in the spectral shape here, we don't need to worry about the

vertical dependent factors in equation (4.7) and (4.8) which only contribute to the

energy level of horizontal wavenumber spectrum.

Using the property of Fourier Transform (4.10) and taking the Fourier transform

of equation (4.7) with respect to x, one get

fv(k) oc kfT(k). (4.11)

Similarly, equation (4.8) yields

fu (l) 0oc fr (l). (4.12)

From these above two equations, it is readily shown that the relationship be-

tween the velocity horizontal wavenumber spectrum and the temperature horizontal

wavenumber spectrum is:
Fv(k) \ fv (k)|2 2= oc k (4.13)FT(k) ||T(k)|12



FT(l) |fT(l)| 12

where k and l are the horizontal wavenumber along x-axis and y-axis, respectively.

By assuming isotropy, one could heuristically get the following relationship be-

tween kinetic energy horizontal wavenumber spectrum and temperature horizontal

wavenumber spectrum:
Fk(K)oc K 2  

(4.15)
FT(K)

where K is the horizontal wavenumber amplitude.

So the relationship between observed kinetic energy horizontal wavenumber spec-

trum and temperature horizontal wavenumber spectrum suggests that the dynamics

between them is governed by the thermal wind relation.

4.5 Spectra of acoustic tomographic data

Several experiments have demonstrated the success of acoustic tomography in mon-

itoring the oceanic temperature field, current velocities, and vorticity field [Munk et

al. 1995]. In section 3.3, we have shown analytically that the the spatial integration

of the tomographic data can filter out small scale motions. In the following, we will

use the tomographic data to investigate the low frequency variability of the ocean.

4.5.1 RTE87 data

From May to September 1987, three acoustic transceivers were deployed north of

Hawaii between the subtropical and subarctic fronts [Figure 4.10]. This experiment,

called the 1987 Reciprocal Tomography Experiment (RTE87), has been described in

detail by Dushaw et al [1993a,b, 1994]. During RTE87, transmissions were made

bihourly on every fourth day. The data collected consisted of the travel times of

acoustic pulses associated with identified ray paths. The travel times are first inverted

to give the sound speed fields between the transceivers. These are then converted to

temperature. Dushaw et al [1993a,b] described the inversion procedure in detail. After



inversion, Dushaw et al [1993b] obtained the range- and depth-averaged temperature

10 L
T = Tddz, (4.16)

hL -h0

where L is the length of acoustic ray along the horizontal direction. The depth interval

of the integral is from -h to 0, where h = 2000 m. The lengths of the three acoustic

rays are East Le = 995 km, West L_ = 1275 km, and North L, = 745 km. Figure

4.11 shows the range- and depth-averaged temperature perturbations of the three

legs. Because the tomographic data in figure 4.11 are range- and depth-averaged,

the small-scale variations have been filtered out. Thus, the temperatures change

relatively smooth over time in figure 4.11. The most noticeable point in figure 4.11

is the seasonal variability of temperature. The temperatures of the three legs all

increase from May to September and three legs have nearly the same magnitude of

temperature perturbations.

Spectral description of RTE87 data

The spectra of the three different legs are displayed in figure 4.12. In figure 4.12,

a line with slope -2 is drawn on the log-log form of plots to make it easy to compare

the spectral shapes of different data. The spectral shape of the entire group is similar.

The spectral slopes of the three different legs are indistinguishable from -2. Wunsch

[1981] reported that almost all the spectra of the point measurements have a similar

shape with a slope not far from -2, independent of geography. So the spectral shape

of the range-averaged tomographic data is the same as that of point measurements

just as we predicted from theory in section 3.3. The energy level of the three legs

is nearly identical. Given the form of <D(K, w, n), the filtering effect of tomographic

data can be calculated quantitatively from equation (3.55). In chapter 5, first we will

find the form for <b(K, w, n) from diverse measurements such as altimetry, XBT, etc.,

then we will calculate quantitatively the filtering effect due to range-averaging. The

temperature wavenumber spectrum in section 4.3 shows that most of the potential

energy is concentrated in low wavenumbers. So, roughly speaking, the filtering effects

of these three legs are very small.



Figure 4-10: Geometry of the 1987 gyre-scale reciprocal acoustic transmission ex-
periment, with acoustic transceivers at locations 1. 2, 3. A current meter mooring
with temperature sensors is on the northern of the acoustic triangle at location CM.
Reproduced from Worcester et al (1990), as modified from Roden (1975).
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Figure 4-11: Range- and depth-averaged temperature time series for the three legs
during RTE87.
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4.5.2 ATOC data

The experiment

Acoustic transmission from the Acoustic Thermometry of Ocean Climate (ATOC)

source on Pioneer Seamount off California began 28 December 1995. The precise

schedule is determined by the sampling requirements of the Marine Mammal Research

Project, but typically consists of 4-day periods two to four times a month and the data

are irregularly spaced [Dushaw et al 1996]. Figure 4.13 indicates acoustic propagation

paths for the ATOC experiment. Dushaw et al [1996] elaborated on obtaining ray

travel time time series from the raw data, identification of measured ray arrivals,

inversion of travel times for sound speed, and the derivation of temperature and heat

content. Here we use the range- and depth-averaged temperature T obtained by

Dushaw from the inversions to investigate the low frequency variability of the ocean.

Note that
10 L

T h fh OTddz, (4.17)

where h = 1000 m. The length of the acoustic rays k and 1 is about 6000 km and the

length of the acoustic rays n and o is about 2000 km.

Low frequency variability of ATOC data

The low-frequency temperature perturbations [Figure 4.14] are inferred from the

travel times averaged over each 2- or 4-day period [Dushaw et al. 1996].

We have shown that the range-averaged temperature has filtered out certain small

length scale variations and thus is most sensitive to large-scale variations. The range

and depth averaged temperature time series for rays k, 1 and n show the general

overall trend [Figure 4.14]. The most conspicuous point in figure (4.14) is that the

temperature perturbations for rays k, 1, n and o are dominated by very low frequency

variability. The temperature decreased for the first two months and then increased.

The decreased temperatures are consistent with cooling during the winter season.

In addition to these general trends, higher-frequency variations are also evident in

these time series, perhaps indicating the influence of advection or the movement



of sharp features such as ocean fronts. The temperature perturbations for ray k

have the largest amplitude. The temperature time series for ray o is coolest in late

winter and early spring, about two months later than that of k, 1, and n. These

differences are related to the geography of each ray. Ray k is roughly located within

the subarctic front where the variability is very strong. The receivers of k and I are

quite close together and ray 1 is located north of ray k. The difference of temperature

perturbations between k and 1 is very small. Ray 1 and o cross the subarctic and

subtropical front, respectively. The receiver of ray o is located south of the subtropical

front. The Northern part of it is within the cool California Current. The delayed

cooling of ray o is related to the seasonal variability of the California Current. Ray

n is situated between the subarctic and subtropical fronts where the low frequency

variability is relatively smaller.

Because the ATOC data are irregularly spaced, we use a special spectral analysis

method (the Lomb-Scargle algorithm) to calculate the frequency spectra. The fre-

quency spectra of range- and depth-averaged temperature for rays k, 1, n, and o are

displayed in figure 4.15. The spectral slope of the entire group is indistinguishable

from -2. According to the theory, we have shown the longer the ray path, the lower

the energy level, and so the energy level for rays k and 1 should be lower than that

of rays n and o. However, in figure 4.15 the energy level for ray k is relatively higher

which contradicts the result predicted by the theory. Two possible reasons exist for

explaining the difference between the theory and observation. First, if the energy is

concentrated in large scales (very small wavenumbers), then the difference among the

rays k, 1, n, and o due to the range-averaged filtering effect is negligible, even if the

length of rays k and 1 is about two times longer than that of n and o. Second, the

theoretical result is based on the assumption that the statistical properties are homo-

geneous in space. However, we will see in section 4.8 that the energy level of ocean

variability and the vertical gradient of mean temperature vary strongly with geogra-

phy. This horizontal inhomogeneity makes it very difficult to explain the difference

among spectral energy levels of different acoustic paths.
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4.6 Coherence

The coherency spectrum is useful in practice because it provides a nondimensional

measure of the correlation between two time series as a function of frequency. From

the calculation of spatial coherence at a particular frequency W, we can derive the

coherence scale, which is defined as the separation distance at which the coherence

drops to one half.

Using current meter data, Richman [1976] found that the horizontal coherence is

a function of frequency and depth. At low frequencies, the horizontal scale in the

thermocline is 50-70 kin, while the scale in relatively higher frequencies is too small

to be determined from the observations. In the deep water the coherence is lower

than in the thermocline with an apparent scale of 35 km.

4.7 Anisotropy

The ocean variability is filled with time-varying features with all space and time

scales. The ocean variability exhibits different properties at different frequency bands

and wavenumber bands, one of which is anisotropy.

Richman et al. [1977] studied the difference between the zonal and meridional

kinetic energies in different frequency bands. They concluded that the low frequency

band has a distinct tendency for zonality, especially in the thermocline. At shorter

periods, the horizontal kinetic energies are isotropic and energy is partitioned equally

between potential energy and the two kinetic energy components.

Due to the limitations of oceanographic data, it is still beyond our capability to dis-

tinguish the wavenumber spectrum of zonal velocity from that of meridional velocity.

Physical oceanography is to some extent a mirror of meteorology, so meteorological

results might give us some hints about the ocean. Figure 4.16 shows the wavenumber

spectrum of (g/N) (T - T)/T for the winter and summer of 1964. The corresponding



wavenumber spectra of u and v are superimposed as dashed and dotted lines, respec-

tively. It can be seen that there is approximate equipartition among the components

of kinetic energy and available potential energy for hemispheric wavenumbers k > 6.

However, below k < 5 or so, there is considerably more energy in the zonal winds.

The spectral slope for both u and (g/N)(T - T)/T is about -1/2 at hemispheric

wavenumbers k < 5. On the other hand for v, the wavenumber spectral slope is

about +2 at hemispheric wavenumbers k < 5.

As a starting point, we won't take into account the anistropy in our model for

simplicity, we will study the spectra of the horizontal kinetic energy instead of the

spectra of zonal and meridional velocity.

4.8 Horizontal inhomogeneity

The ocean variability is not only a function of frequency, horizontal wavenumber and

vertical mode but also a function of geography. The statistical properties of the ocean

variability (energy level, degree of baroclinicity, ...) change strongly with geographical

position [Wunsch 1981, 1997]. This horizontal inhomogeneity is a very important

part of the oceanic dynamics. However, this horizontal inhomogeneity makes much

of the utility of the wavenumber spectral description invalid. The traditional method

to deal with inhomogeneous or nonstationary processes is to try to transform the

process into a homogeneous or stationary form. If there is a general trend in the

data, one might find the form of the trend and then subtract the function for the

trend from the data. Another method is that one can divide the data into several

regions in space or several periods in time where the statistical properties are relatively

homogeneous or stationary in each region or period. Stammer [1997] made the first

frequency/wavenumber analysis as a function of dynamical region.



105 \10*

10 3 103 _\
WINTER 1964 = SUMMER 1964 \-

- g T-T :-g T-T -
- N- -N

------- V .
102Q 0 0 07 1n

100 10, .100 10,

K WAVENUMBER K WAVENUMBER

Figure 4-16: The observed wavenumber spectra of u, v and (g/N) (T - T))/T at 400 N
and 500 mb for winter and summer 1964 as a function of the hemispheric wavenumber
(Charney 1971).



4.8.1 Energy level

The most pronounced feature of horizontal inhomogeneity is the magnitude of the

eddy energy. It is well known that the eddy kinetic energy varies strongly with geo-

graphical position and that this pattern of geographical inhomogeneity is connected

to the pattern of the general ocean circulation. The most energetic eddies occur

primarily in the vicinity of strong currents. This is related to the dominant energy

source for the eddies. The possible physical parameters for the horizontal inhomo-

geneity include latitude, proximity to eastern and western boundaries, topography,

fronts, etc. In this section, we try to use some mathematical formulations to quantify

how the energy level depends on geography.

Figure 4.17.a [taken from Wunsch 1997] shows surface kinetic energy from the

current meters in the North Pacific. Figure 4.17.b [taken from Stammer 1997] shows

the surface kinetic energy from the altimeter in the North Pacific. Figure 4.17.c shows

the surface kinetic energy from the empirical formula, equation 4.18. Figure 4.18 is

the same as Figure 4.17 except in the North Atlantic. Altimeter results are from

a uniform three-year coverage, spatially averaged over 20, while the current meter

results are of inhomogeneous duration, and are based on an extrapolation to the sea

surface. Note the general agreement between them. The most conspicuous point in

these figures is that the energy magnitude is inhomogeneous in the ocean. As shown

in the figures 4.17.b and 4.18.b, amplitudes of background variability are of the order

of 50 cm 2 /s 2 in the eastern North Atlantic and as low as 20 cm 2/s 2 in the northern

North Pacific. In middle and high latitudes, the maximum amplitudes of KE are

associated with the paths of energetic current systems. In the North Atlantic the

maximum occurs in the Gulf Stream with a value of about 2500 cm 2/s 2 and in the

North Pacific the maximum is near 4000 cm2/s 2 . Across the middle ocean, the surface

eddy kinetic energy changes by roughly two orders of magnitude. In the tropics, the

kinetic energy increases very rapidly toward the equator.

The zonal averages between 0' and 360'E of eddy kinetic energy KE and sea



surface slope K,1 = KEsin2 $ are provided as a function of latitude in figure 4.19. The

zonal averaged KE decreases from maximum amplitude near the equator to minimum

amplitude in high latitudes. In terms of K,1, values remain almost constant in the

low latitudes between 25'S and 25'N, which implies equatorwards of 250 the zonally

averaged KE is proportional to 1/sin 2o.

According to the figure 4.17 (a) and (b), we can regard the surface eddy kinetic

energy in the North Pacific as being composed of four parts: (1) the background part,

(2) the low latitude part (south of the energetic currents) where KE oC (1/sin 2O), (3)

the high energy source with a center around (35'N, 150'E), and (4) the low energy

area in the north North Pacific. According to these, we can express the surface eddy

kinetic energy in the North Pacific with the following empirical formula

z 32 (A - 50)2 (0 -35)2E(#, A, z = 0) =30 + .n~ + 1000exp{ -[ 0 + ]}sin2 #q 900 50

(A- 902 #+ 42)2
-800exp{-(A - 190)2 + 16002 ' (4.18)1600 200'

where A is the longitude from 0 to 360' E, # is the latitude from 10 to 60' N, and the

units of Ek, are cm2 /s2.

The pattern of the surface eddy kinetic energy in the North Atlantic is different

from that of the North Pacific. There is a strong jet on the western side of the

Atlantic ocean and there are two low energy areas in the eastern Atlantic. South of

25'N the energy increases toward the equator. Similarly we can express the surface

eddy kinetic energy in the North Atlantic as

35 (A - 305)2 (# - 43)2Ek(#, A, z = 0) = 50 + .i 2 + 1000exp{-[ + ]} 8 -+s100 400 80

(A - 320)2 (# - 16)2 (A - 320)2 (4 - 16)2280exp{ -[ 200 + 20-]} - 160exp{ -[ 90 + 5 } (4.19)2000 200 6ep[ 900 + 50 (.9

where the units are cm 2/s 2.

The results from equations (4.18) and (4.19) are drawn in figure 4.17.c and 4.18.c,



respectively. As shown in figure 4.17 and 4.18, equations (4.18) and (4.19) are rea-

sonable fits to the general pattern of the corresponding observations.

The reader is reminded that the observed frequency and wavenumber spectral

shape is independent of location and depth, only the energy level of the frequency

and wavenumber spectra depends on location and depth. If we integrate the surface

kinetic energy frequency (wavenumber) spectrum of a relatively homogeneous region

with respect to frequency (wavenumber), we will get the surface kinetic energy for that

region. Therefore, the energy level of the frequency and wavenumber spectra is higher

in the regions of higher kinetic energy. In chapter 5, we will relate the geography-

dependent part of our energy density model to the empirical formulas (4.18) and

(4.19). The vertical structure of horizontal kinetic energy will be discussed in section

4.9.

4.8.2 Others

In addition to the strong geographic variation of the magnitude of eddy kinetic energy,

there are still many other factors depending on space, as we mentioned previously.

First, the degree of baroclinicity is inhomogeneous in space. As we will discuss in

detail in the next section, the percentage of the kinetic energy in the first three modes

varies with geography. Second, the cutoff wavenumber ko in the slope wavenumber

spectrum in figure 4.5 decreases from high latitude toward the equator. Third, the

buoyancy frequency N(z) changes with latitude and longitude especially above 1 km.

If the interior N(z) varies on spatial scales for which the WKBJ approximation is

not valid, a host of complex scattering interactions become possible. Whether such

processes are important in the ocean is still not clear [Wunsch and Stammer 1997].

Last but not least, the vertical gradient of mean temperature as well as the depth of

the ocean can exhibit strong changes in space.
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4.9 Vertical structure of kinetic energy

Schmitz [1978, 1988, 1996] studied the vertical distribution of kinetic energy at differ-

ent sites in the Atlantic and Pacific. He concluded that the vertical profile for kinetic

energy is independent of geography as a first approximation across the entire mid-

latitudes, with amplitudes generally decreasing eastward and away from the western

boundary current. Figure 4.20 is an example of the vertical profile of kinetic energy

at some key sites. The eddy kinetic energy KE drops exponentially from the surface

to the depth of 1.2 km, then remains almost constant within the deep water. Given

the strong spatial inhomogeneity in properties of the eddy field, the observation that

the relative vertical KE distribution is nearly the same in widely varying locations

might be especially significant. These similarities in vertical structure might imply

similarities in origin and/or dynamics.

Wunsch [1997] systematically studied the question: what is the partition through-

out the water column of the kinetic energy of time-varying motions amongst the

dynamical modes? Figure 4.21 and 4.22 [taken from Wunsch 1997] show maps of the

logarithm of the kinetic energy per unit depth and of the approximate percentage

of the kinetic energy found in the barotropic and first two baroclinic modes in the

North Pacific and the North Atlantic. In general, the barotropic and first baroclinic

modes dominate the water column average kinetic energies except in the Tropics.

Crudely speaking, the North Pacific kinetic energy is about 35% contained in the

barotropic mode and about 55% in the first baroclinic mode. The North Atlantic is

on average about 40% in the barotropic and 50% in the first baroclinic mode in the

middle ocean. Near the Gulf stream, the motions are more barotropic in character

than in the records obtained elsewhere. Just south of the Gulf Stream near 90% of

the kinetic energy is contained in the barotropic mode. Near the equator the higher

modes become important.
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Figure 4-20: (a) The vertical distribution of KE at key sites in the Gulf Stream (along
55 W) and in the Kuroshio(mooring 724), (b) at sites in the Gulf Stream (moorings
771 and 780 and near 55 W),Kuroshio, and Agulhas Retroflection(moorings 835and
838, and (c) including a site near the North Brazil Current (Schmitz 1996).
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Figure 4-21: (a) Logio of the water column average kinetic energy per unit mass in

the North Pacific Ocean. (b) Percentage of water column average kinetic energy per

unit mass found in the barotropic mode. (c) Percentage of water column average

kinetic energy per unit mass found in the first baroclinic mode. (d) Percentage of

water column average kinetic energy per unit mass found in the second baroclinic

mode (Wunsch 1997).
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Figure 4-22: (a-d) same as in figure 4.19 except for the North Atlantic (Wunsch 1997).



4.10 Summary

The ocean variability is very complicated. It occurs at all time and space scales and

it is spatially inhomogeneous as well as anisotropic. In spite of this complexity, the

major outcome from this chapter is that over most of the ocean, the ocean variability

shows strikingly universal characteristics. The frequency and wavenumber spectral

shape of temperature and horizontal velocities is independent of location and depth.

The largest variations in frequency and wavenumber spectra appear to be related to

the geographic variation of the amplitude of the eddy energy. To zero order, the low

frequency oceanic variability can be summarized as follows

(1) the frequency spectrum for temperature and velocity:

F(w) cifW<W (4.20)
W2 if W> WO

where so is about 0.01 cycles/day.

(2) the horizontal wavenumber spectrum for temperature and velocity:

Both the kinetic energy wavenumber spectrum and the temperature wavenumber

spectrum have a transitional point at a wavelength of about 400 km. At wavelengths

longer than 400 kin, the wavenumber spectrum of kinetic energy and temperature fol-

lows a relation of k+3 /2 and a relation of k-1/2, respectively. At wavelengths shorter

than 400 kin, the temperature wavenumber spectrum follows a relation of k-'. The

kinetic energy wavenumber spectrum follows a k-1 relation at wavelengths between

150 km and 400 kin, and a k- 2 relation at shorter wavelengths. The relationship be-

tween the observed kinetic energy wavenumber spectrum and temperature wavenum-

ber spectrum implies that for large scale and low frequency varibility, the temperture

and the velocity are related to each other through the thermal wind relation.

(3) the vertical structure of horizontal kinetic energy:

As discussed by Wunsch [1997], to a first good approximation the vertical structure

of eddy kinetic energy can be simply represented by the barotropic and first baroclinic

modes in the middle ocean. Roughly speaking, the vertical partitioning of the kinetic



energy in the barotropic and the first baroclinic modes is equal.

(4) the energy level:

The energy magnitude shows strong inhomogeneity in space and typically the

energy level increases toward the western boundary and the equator. The general

pattern of the surface eddy kinetic energy in the North Pacific and the North Atlantic

can be represented empirically by the equations (4.18) and (4.19), respectively.



Chapter 5

Energy distribution in K, w space

In previous chapters, we have derived the frequency and wavenumber spectra for

the model and we have obtained a zero order description of low frequency oceanic

variability based on various observations. Now, we come to answer the question we

raised in the introduction: whether it is possible to find a single model 1(K, w, n)

for each mode so that each model spectrum can fit the corresponding observation.

For the time being, we do not know whether 1(K, w, n) really exists or not. In GM's

model, 1(K, w, n) does exist. Moreover, there is a surprising universality to the value

of the energy level (mostly within a factor two) [Munk 1981]. However, the strong

spatial variability of energy magnitude, buoyancy frequency and vertical gradient of

mean temperature as indicated in chapter 4 suggests that the spectral representation

in the wavenumber domain isn't appropriate. In order to overcome the difficulties

associated with spatial inhomogeneity, we can break the global ocean into several

regions where the statistical properties do not vary too much with geography. For

example, in the open ocean far from intense currents the energy magnitude is quasi-

homogeneous and the vertical gradient of mean temperature and buoyancy frequency

at depth below 1000m are relatively uniform.

Because of the spatial inhomogeneity, we must modify the universal form 4(K, W, n)

to a regional form 41(K, w, n, #, A) so that the model spectrum can fit the correspond-

ing observation. The reader is reminded that the definition of P(K, W, n) is given by

equation (3.17). Here we don't take the direction of the spectrum into consideration.



The investigation of the directional property of the spectrum is in progress. We sup-

pose that I)(K, w, n, #, A) exists and a convenient representation of Ii(K, W, n, #, A)

for each mode is

41 (K, u), n, , A) = C, (K) D, (w) Eo (n)I1(#, A). (5.1)

Here Ca(K) represents the wavenumber spectral shape, Dn(w) stands for the

frequency spectral shape, Eo(n) is a constant associated with each mode which will

determine how the energy is divided among vertical modes and I(#, A) is the spatial

function which represents how the energy level depends on space. In this chapter, we

will decide on the form of C,(K), Dn(w), Eo(n) and I(#, A) according to observations.

Because most of the region is dominated by the first few modes as seen in the last

chapter, we just include the barotropic and first two baroclinic modes in our model:

n=O, 1, 2. When we try to estimate the total energy spectrum from the individual

modes at an arbitrary depth, we will face the problem of "modal coupling". Wunsch

[1997] studied this problem in detail. Here we simply assume that each mode is

independent of all other modes in our model.

It has become conventional to think of and to present frequency spectra only for

positive frequency. Actually, the part on the negative side of the frequency axis also

exists. The spectrum at the positive frequency and the negative frequency is sym-

metric about w = 0 so that the frequency spectrum at the positive frequency contains

all the available information and the total variance is twice that of positive frequency.

We will double the signal content for the positive frequency in both the model and

observation, essentially folding over the negative frequencies onto the positive and

adding. The wavenumber spectrum will be handled similarly.

5.1 Fitting <D(K, w, n, #, A) from observations

In this section, we will decide what the key parameters of 'I(K, w, n, #, A) are needed

so that the model spectrum can fit the corresponding observation. First of all, because



the observed frequency and wavenumber spectral shape is independent of depth, we

infer that the frequency and wavenumber spectral shape of each mode is approxi-

mately identical. Therefore, we will decide on the form of C,(K) and D"(w) so that

the model frequency and wavenumber spectral shape of each mode is the same as the

observed frequency and wavenumber spectral shape.

Choosing the form of Ca(K) to fit the observed wavenumber spectra

Substitution of equation (5.1) into (3.52) and the assumption that there is no

modal coupling at each arbitrary depth gives the kinetic energy spectrum

n=3 + oo K 2
Fk(K, z, #, A) = I(#, A) [K 2 K 2 , (5.2)n Pf(z) Eo(n)[ Df(wKd21 + f2 r2C(5.2)

n=On

where the factor of 2 before Dn(w) arises since we have folded over the negative

frequencies onto the positive ones.

The corresponding dimensional form is

Fk(K, z, #, A) = U2 LFk(K, z, #, A) = 1 x 104Fk (K, z, #, A) (5.3)

where the units are cm 2/s 2/CPK.

Because the barotropic eigenvalue ro = 0, the wavenumber spectral shape of the

barotropic mode is decided by Co(K). According to the observations, we choose a

simple form:

CoK3/2 if K < Ko (5.4)
K -2 if K >Ko

where Ko = KoL = 0.33 corresponds to the nondimensional wavenumber maximum

energy. In order for Co(K) to be continuous at KO, Co = 48.44. From (5.4), we get

Co(K)dK = 4.24. (5.5)

For the baroclinic modes, the shape of the wavenumber spectrum is determined

by Cn(K)K 2 /(K 2 + f 2 r2). To fit the observed wavenumber spectra, we choose for



both n=1 and n=2

C(K) { (15.99K- 1/2

Cn K-)
if K < KO

ifK> Ko.
(5.6)

The above equation yields for the baroiclinic modes: n=1 and n=2

o 00 (5.7)

Choosing the form of D,(w) to fit the observed frequency spectra

Substitution of (5.1) into (3.51) yields

n=2 00
I(#, A) P2(z)Eo(n)[j

n-0

K 2 Cn(K)dK]2Dn(w).
K 2 +f 2 r

(5.8)

The corresponding dimensional form is

Fk(W, z, #, 0) = U2 TFk(w, z, #, 0) = 16.5Fk(w, z, #, A), (5.9)

where the units are cm2/s 2/CPD.

According to the observation of the frequency spectra, we choose for n=0 to n=2

D(w) { ;(14880w-1/
2 if wj < W0

if W > W
(5.10)

where the nondimensional parameter wo = u3oT = 0.00165.

The above equation gives for the three modes: n=O to n=2

o 00Dn(w)dw = 1816. (5.11)

Cn(K)dK = 22.96.

The energy level of each mode

Fk (w, z, #, A) =



The total kinetic energy per unit surface area for each mode is:

Kh(n, #, A) = JF, (K, n, z, #, A)dKdz = fF (w, n, z, #, A)dwdz

= I(1, A)Eo(n)[j
K 2  Cn (K)dK][2 00 Dn (w)dw] (5.12)

K 2 + f 2r2 Jo

Substitution of (5.4), (5.6) and (5.10) into the above equation gives

Kh (n, #, A) =

15400Eo(0)I(#, A);
4800Eo(1)I(#, A);

1400Eo(2)I(#, A);

As seen in chapter 4, the vertical structure of eddy kinetic energy can be simply

represented by the barotropic and first two baroclinic modes in the middle ocean and

roughly speaking, the kinetic energy of the three modes is in the ratio of 1 : 1 : 1/2.

Accordingly, if we choose Eo(0) = 1.0, then Eo(1) = 3.2 and Eo(2) = 5.4.

Choosing I(0, A) to fit the observed surface kinetic energy

The surface kinetic energy for the model is

E(#, A, z = 0)
n=I A =)2 0)Eo(nj00 K2 00

= (#, A) P(z o K2 + f2r 2 GC (K)dK][2 j Dn (w)dw]
n=On

= 5.4 x 1051(#, A). (5.14)

The corresponding dimensional form is

Ek(#, A, z = 0) U2 Ek(#, A, z = 0) = 5.4 x 1071(#, A), (5.15)

where the units are cm2 /s2.

The above equation yields

T(0A) Ek(#, A, z = 0)
5.4 x 107

In chapter 4, we derived an empirical formula for the surface kinetic energy

n=0

n=1

n=2

(5.13)



Ek(#, A, z = 0). The empirical formulas for the surface kinetic energy in the North

Pacific and the North Atlantic are given by equations (4.18) and (4.19), respectively.

The wavenumber spectrum of the temperature

Substitution of equation (5.1) into (3.54) gives

n=2 0o

FO (K, z, #, A) = I(#, A)1  Eo(n)Qn(z)[2 j
nsi

The corresponding dimensional formula is

2f 2r2
Dn (w)dc]K 2 + f 2,g C2(K).

Fo(K, z, #, A) - 8 2 LFo (K, z, #, A).

Substitution of equation (2.83) and (5.17) into the above equation gives

fo(K, z, #, A) )2 '086 n=2 oo
= (TW)2LI(#, A)( 0O)2 E[2 j8n=1

2f 2r2

Dn(w)dw]Eo (n)Q(z)K2 + f 2r Cn(K)

90 n=2 2f 2 r 2

1.5 x 1091(q$, A)( ) Eo (n)Qn" )K2 + f 2 r2 Cn (K),
n=1

(5.19)

where the units of &0o/&2 are 0C/m and the units of FO(K, z, #, A) are C2 /CPK.

The frequency spectrum of the temperature

Substitution of (5.1) into (3.53) yields

n=2

FO (w, z, q$, A) =1(q0, A)? [12
n=1

Q
Eo (n) Qn~) fo

2 f2,22f 2r _ Cn(K)dK]2Dn(w).
K2 + f 2 r2

The corresponding dimensional formula is

Fo(w, z, #, A) = 2TFo (w, z, #, A).

Substitution of equation (2.83) and (5.20) into the above equation gives

)20 2 n=2 Q2() 00
(TW)2 TI(#, A)(&)2 nEEo2(n) n

n=1

2f 2r2

K 2 + f 2r2 Ca(K)]2Dn(w)

(5.17)

(5.18)

(5.20)

Fo(w, z, #, A)

(5.21)



800 n=2 DO 2 f2r2
= 683I(#, A)( ")2 E Eo()Q (z) " Z Cn(K)]2Dn(wo5.22)

02 ni o K 2 + f 2r2

where the units of 00/&2 are 'C/m and the units of Fo(w, z, #, A) are C2 /CPD.

The frequency spectrum for tomographic data

In chapter 3, we derived the frequency spectrum for the range-averaged temper-

ature in equation (3.55). However, the real tomographic data is depth-averaging as

well as the range-averaged, so we need to modify (3.55) to take into account the

depth-averaged effect. The ATOC data were depth averaged from 0 to 1000m. The

corresponding spectrum is

n=2 1 0 2f[2]r2 C (K)Fatoc (w) = I(# 0, A) S Eo (n)f[ - pQK(z)dz]2 n W(k, La)dkdl]2Dn(W)
nah -h K2 + f 2r2 21eK

(5.23)

where h=1000m/4500m=0.222 is the nondimensional depth and K = k2 + 12.

The corresponding dimensional frequency spectral formula is:

Fatoc (W) = 2TFatoc(w). (5.24)

Substitution of equation (2.83) and (5.23) into the above equation yields

n2--2 1 0 (goo 2f2r 2 Cn(K) sin2(kLa/2)
Patoc (w) = 683I(#, A) EEo(n)[- Qn (Z) dz]2[ n dkdl]2Dn(W),-fh 0z (K2 + f 2r2)2-FK'- (kLa/2)2

(5.25)

where the units of 80o/82 are 'C/m and the units of FO(w, z, #, A) are C2 /CPD.

We must be aware that

(1) The kinetic energy wavenumber spectrum (5.2) is useful only in the regions

where the energy magnitude is relatively homogeneous.

(2) The conditions for the temperature wavenumber spectrum (5.19) holding are

more strict. There are two parameters in equation (5.19): the energy level and the

vertical gradient of mean temperature, both of which change strongly in space in

the global ocean. So the equation (5.19) is appropriate only in areas where both



the energy magnitude and the vertical gradient of mean temperature are relatively

uniform.

(3) The conditions for the frequency spectrum of tomographic measurements are

the same as those for the temperature wavenumber spectrum.

5.2 Model and data comparison

In the above section, we have specified the formula for each component of <b(K, w, n, #, A):

Cn(K), Dn(w), Eo(n) and I(#, A), based on different observations. There might,

however, be some incompatibilities among different observations. For example, in

our model we specify the vertical structure according to the vertical structure of the

kinetic energy of the observations. However, we don't know whether the vertical stuc-

ture of the temperature is consistent with that of the kinetic energy. In this section,

we will make model/data comparisons to see whether each model spectrum can fit the

corresponding observation with our specified regional energy density <D(K, w, n, #, A).

Kinetic energy wavenumber spectrum

The model and observed surface kinetic energy wavenumber spectra are plotted

in figure 5.1. The observed spectrum is from 100 x 10' areas between 30' and 40' N

with a center longitude at 3300 E. The energy level in this area is relatively uniform.

According to the equation (4.19), the average value Ek(#, A, z = 0) in this area is

about 250 cm 2/s 2. As shown in figure 5.1, the model spectrum fits the observation

quite well except at wavenumbers higher than 0.01 CPK. The high wavenumber tail

with a k+1 relation in the observed wavenumber spectrum is dominated by noise rather

than ocean signal [Wunsch and Stammer 1995]. The model and observed spectrum

in figure 5.1 both have a maximum in energy at the cutoff wavelength of about 400

km, with roughly ka/ 2 and k- 2 relations toward longer and shorter wavelengths.

Temperature wavenumber spectrum

The observed temperature wavenumber spectrum in figure 5.2 is from the XBT

data in the eastern North Pacific described in section 4.3.2. The surface eddy kinetic



energy along this XBT line is relatively homogeneous. The mean value of surface

kinetic energy from equation (4.18) is about 150 cm2/s2 . As shown in figure 4.7.(a),

the vertical gradient of mean temperature changes strongly in space especially in the

upper ocean. Because the depth of this XBT data is limited to 850 m, we will compare

the model spectrum with that of observations at the depth of 800m. The vertical

gradient of mean temperature along the XBT line at this depth changes relatively

less sharply. The mean value of D00/82 is about 0.0028 'C/m, and the corresponding

standard deviation is 0.0005 'C/m. With this choice of energy level and vertical

gradient of mean temperature, we plot the model temperature wavenumber spectrum

in figure 5.2. In general, the model spectrum fits the observed spectrum quite well.

The obvious deviation is that at wavenumbers larger than 0.008 CPK, where the slope

of the observed spectrum is steeper than that of the model. As we have mentioned in

section 4.3, the steeper slope at wavenumbers higher than 0.008 CPK in this observed

wavenumber spectrum between San Francisco and Hawaii might be due to deviations

in the ship track.

Frequency spectrum of kinetic energy and temperature

Here we analyze one set of current meter data which is located at (33.20 N,

338.10 E) inside the low energy area in the eastern North Atlantic. It has cur-

rent and temperature meters at nominal depths of 560, 1160 and 3050 (in). From

equation (4.19), Ek(33.2 0N,338.10E,z = 0) = 108cm 2 /s2 . Equation (5.16) yields

I(33.20 N, 338.1 0E) = 2 x 10-6. The vertical gradients of the mean temperature at

depths of 560, 1160 and 3050 (in) are 0.0127, 0.0064 and 0.0007 OC/m, respectively.

We plot the model and observed spectra in figure 5.3. The vertical profile of the ki-

netic energy is shown in figure 5.4. The general agreement between the model and the

observed spectra is quite pleasing. The most conspicuous lack of agreement between

the model and the observation is in figure 5.3.1, the energy level of model temperature

spectrum at 560 m is about 2 times higher than that of the corresponding observed

spectrum. Several possibilities exist for rationalizing this difference. One of which is

that we have assumed the idealized exponential profile for the buoyancy frequency

N(z) However, in the real ocean the buoyancy frequency changes in space especially



in the upper ocean. The buoyancy frequency determines the vertical structure of the

velocity, hence influences the spectral energy level. A second possibility is that the

idealized and universal modal partitioning in the model is invalid. A third possibil-

ity is that there are also some errors on the vertical gradient of mean temperature,

and the energy level of the spectrum is proportional to the square of the the vertical

gradient of mean temperature. The vertical profile of the kinetic energy-exponential

decay in the upper ocean and almost constant below 1000 m-agrees quite well with

those observed by Schmitz.

Frequency spectrum of tomographic data

As discussed in section 3.5, the tomographic data acts as a low-pass filter and

the path-band width of the filter is related to the length of the acoustic ray path.

Because we have specified the form of 1(K, w, n, #, A) in section 5.1, we can calculate

the filtering effect quantitatively. Define c(n) as the ratio of equation (3.57) to (3.55):

dw ) I 2f 2  (Kw n)W(k, La)dkdlFd(w, n, z) f (K2 + f 2r2) 27rK
E(n) =2fT2) 2= (5.26)

Fo(w, n, z) f(K, w, n)dK
I (K 2 + f 2r2)

c(n) represents the filtering effect for each mode due to the range average. If La = 0,

then W(k, La)= 1, c(n) =1 which means no filtering at all. Substitution of equation

(5.1) into the above equation yields

|| 2f 2r2 Cn (K)

+f Cn ( W(k, La)dkdl
(K 2 + f2r2) 2rK (5.27)

I ( 2  nf2r Cn(K)dK(K2 + f2r2)n

Because the form of Cn(K) has been specified by equation (5.6), given the nondi-

mensional length of acoustic ray La, we can calculate e(n) through equation (5.27).

Table 5.1 gives e(n) of the first two baroclinic modes: n=1 and n=2, for three different

values of La.
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Table 5.1 c(n): the filtering effect due to range average.

Because the dimensional length of the ray path is La = LaL, the dimensional

value of La= 10 is 1000 km. Table 5.1 shows that when the length of the acoustic

ray path is 6000 kin, the energy level will drop by one half. As we have mentioned

in section 3.6, the above results are based on the assumption spatial homogeneity

and isotropy. Because the energy level in the real data changes by several orders of

magnitude across the ocean basin, it's very hard to extract the filtering effect due to

range-average form the real data.

The observed temperature frequency spectra for rays k and n from ATOC and

the corresponding model spectra are plotted in figures 5.5 and 5.6. For the model

spectrum, we use the mean value of the surface eddy kinetic energy along the path

as the energy level and the mean value of the vertical gradient of mean temperature

along the ray path as the vertical gradient of mean temperature of the model. Figure

5.6 shows that the model spectrum fails here. The energy level of the model spectrum

is about 3 times higher than that the corresponding observed spectrum. The reason

is that the ray path for n is longer than 2000 km and that it starts from a point near

the eastern boundary and passes through the California Current, so in addition to the

energy level, the vertical gradient of mean temperature changes strongly above 1000 m

along the ray path. Just as we mentioned in the previous section, the equation (5.23)

is inappropriate along the path where the vertical gradient of mean temperature and

energy level change rapidly along the acoustic ray path.
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5.3 Summary

In this chapter, we find a regional model for the energy density 1b(K, W, n, #, A) of the

low frequency variability in the ocean. Only the first three modes are included in our

model: the barotropic and first two baroclinic modes. For each mode we choose

<b5(Kw, n, n,, A) = Cn(K)D, (w)Eo (n)I(#, A), (5.28)

and based on various observations, we get:

(1) the wavenumber spectral shape:

For the batropic mode: n=0

Co(K) =
48K 3 /2

K-2

if K < Ko

if K >Ko
(5.29)

where Ko = 0.33 is the nondimensional transitional wavenumber and the correspond-

ing dimensional one is k = K/L = 3.3 x 10-3 CPK.

For the baroclinic modes: n=1 and n=2

if K < Ko

if K > K0 .
(5.30)

(2) the frequency spectral shape:

For the three modes: n=0 to n=2

1.5 x 104w-1/2
Da(w) = -

if W < WO

if W> W0

(5.31)

where wo = 0.00165 is the nondimensional transitional frequency and the correspond-

ing dimensional one is Wo = wo/T = 0.01 CPD.

(3) the partition among vertical modes:

E0 (0) = 1; Eo(1) = 3.2; Eo (2) = 5.4. (5.32)
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(4) the energy magnitude:

I(#, A) = E(#, /A, z = 0) (5.33)
5.4 x 107

The empirical formula for the surface kinetic energy in the North Pacific is

Ek(# A, z = 0)
30+ 32 + lOO0exp{ (A - 50)2 + ( - 35)2

sin 2 # - 900 50

(A - 190)2
-800exp{-[ 1600

+ (# 42)2

200 ],
(5.34)

where A is the longitude , # is the latitude and the units of Ek are cm2/s 2.

The empirical formula for the surface kinetic energy in the North Atlantic is

Ek(#, A, z

2 S~ep{~(A -280exp{-[ I2 0C

35 (A - 305)2 (# - 43)2
0) 50+ 2 1000exp{[ 400 + 80

320)2

00
(0 - 16)2 (A - 320)2

+ 200 ]} 160exp{-[ 900 + (# 16)2]
50 ]}

(5.35)

where the units of Ek are cm 2 /s 2.
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Figure 5-1: Kinetic energy wavenumber spectrum. Solid line is the observed spectrum
from 100 x 10' areas between 30' and 40'N with center longitude at 330'E. Dashed
line is the corresponding model spectrum.
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Figure 5-2: Temperature wavenumber spectrum. Solid line is the observed spectrum
at depth of 800m from XBT data between San Francisco and Hawaii. Dashed line is
the model spectrum.
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Figure 5-3: Frequency spectra of kinetic energy (a) and temperature (b) at depths of
560m (i), 1160m (ii) and 3050m (iii) at (33.2 0N,338.1 OE). Solid line is the observed
spectrum and dashed line is the model spectrum.
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Figure 5-4: Vertical profile of the model kinetic energy at (33.2 0N, 338.1 0E).

109

-500-

-1000-

-1500-

-2000-

-2500-

-3000-

-3500-

-4000

-4500
120

K E(Cn2 /s2 )



101

10-2

C
0

0

10-

10-

10~3 10-2 10-1
Frequency(CPD)

Figure 5-5: The observed range- and depth-averaged temperature frequency spec-
trum for the ray path "k" from ATOC (solid line) and the corresponding model
spectrum (dashed line).
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Figure 5-6: Same as in figure 5.7 except for ray path "n".
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Chapter 6

Conclusion and discussion

Our work can be summarized as a spectral description of ocean low frequency vari-

ability and an attempt to contrive a simple empirical algebraic representation of the

distribution of low frequency variability energy in wavenumber/frequency space.

The observations presented in chapter 4 suggest that a universal frequency/wavenumber

spectrum does not exist for the low frequency variability because statistical properties

such as the energy level and degree of baroclinicity are very sensitive to the phys-

ical environment. However, to zero order there are some properties independent of

geography. The frequency spectra of velocity and temperature always show a steep

decay with a spectral slope of about -2 at frequencies higher than 0.01 CPD and a

flat slope at low frequencies. The wavenumber spectra of the velocity follows a k+3/2

relation at wavenumbers smaller than about 0.003 CPK, k-1 relation at wavenumbers

between 0.003 CPK and 0.007 CPK and k 2 relation at shorter wavelengths. The

wavenumber spectra for the temperature from XBT data follows a k-1/2 relation at

wavenumbers smaller than about 0.003 CPK and a steeper decay with a slope of

-3 at larger wavenumbers. The transitional point in the temperature wavenumber

spectra and velocity wavenumber spectra is coincident both are at about 0.003 CPK.

We show that the relationship between the observed wavenumber spectrum of kinetic

energy and that of temperature is consistent with the thermal wind relation. The fre-

quency and wavenumber spectral shape is independent of depth as well. The vertical
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profile of kinetic energy is very similar across the middle ocean. Most of the kinetic

energy of low frequency variability is confined to the upper ocean above 1000 m. To

a good first approximation the vertical structure of the kinetic energy can be simply

represented by the barotropic and the first baroclinic modes.

The low frequency variability is a function of frequency, wavenumber, vertical

mode and space. Although we have shown that the tomographic measurements be-

have as a low-pass filter, the horizontal inhomogeneity makes it difficult to identify

this filtering effect in the data. The spectral representation in wavenumber space is

appropriate only in the areas where the statistical properties are relatively homoge-

neous. In order to overcome the difficulties associated with the inhomogeneity, we

can only break the global ocean into regions where the statistical properties change

slowly with geography.

Roughly speaking, there exists a regional energy density for low frequency vari-

ability. A regional model spectrum for the low frequency variability was developed in

chapter 5. The model frequency spectra of temperature and kinetic energy include a

parameter which represents the geography-dependent part. The model wavenumber

spectra of kinetic energy are appropriate where the energy magnitude is relatively

homogeneous. The model wavenumber spectra of temperature and the model fre-

quency spectra of tomographic data are valid where both the energy magnitude and

the vertical gradient of mean temperature vary slowly with geography.

If the regional energy density 1D(K, w, n, #, A) is normalized by the geography-

dependent factor I(4, A), we get the universal factors of the energy density, 1(K, w, n)

C,(K)Dn(w)Eo (n) cx KPoq. The observed kinetic energy and temperature wavenum-

ber spectra suggest p = 3/2 at K < KO and p = -2 at K > KO for the barotropic

mode, and p = -1/2 at K < KO and p = -3 at K > KO for the baroclinic mods,

where KO is the transitional wavenumber of the wavenumber spectra. The observed

frequency spectra of temperature and kinetic energy suggest that q = -1/2 for w < wo

and q = -2 for w > wo, where wo is the transitional frequency of the frequency spec-
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tra. The combination of satellite altimetry and current meter measurements suggests

the vertical structure of the low frequency variability is governed by the barotropic

and first two baroclinic modes. The normalized energy density which is universal is

shown in Figure 6.1.

The present model has the following assumptions

(1) We assume that the energy distribution is isotropic. The assumption of hor-

izontal isotropy is only valid at the high frequency and high wavenumber bands. At

the low frequency and low wavenumber bands, there is more energy in the east-west

direction.

(2) We assume that the observations at different times can be reasonably related,

which implies the oceanic variability is stationary in time.

(3) The basic state is steady and the bottom of the ocean is flat.

(4) Last but not least, we assume that the buoyancy frequency N(z) is universal

and can be modelled by an idealized exponential form.

Identifying where the energy of low frequency variability in the ocean comes from

is an interesting problem. There are many mechanisms for the oceanic low frequency

varibility [Wunsch 1981]. Some theoretical work suggests that the eddy energy is

generated mainly by instability processes of intense boundary current and is radiated

subsequently into the interior ocean by Rossby waves [Pedlosky 1977, Hogg 1988].

Based on the five years of high quality altimetric data from TOPEX/POSEIDON, we

can obtain the three dimensional spectrum of the sea surface height rj(k, 1, w). The

three dimensional spectrum can help us to identify the direction of wave propagation

and thus, to answer the question whether there is energy generated by the western

boundary current and radiated subsequently into the interior.
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Figure 6-1: The universal factors of the energy density. (a) for the barotropic mode
(b) for the first two baroclinic modes.

116



Bibliography

[1] Abramowitz, M. and I. A. Stegun, 1964. Handbook of mathematical functions,

with formulas, graphs, and mathematical tables. Dover Publications, New York,

1046 pp.

[2] Bender, C. M. and S. A. Orszag, 1978. Advanced mathematical methods for sci-

entists and engineers. McGraw-Hill, New York, 593 pp.

[3] Charney, J. G., 1971. Geostrophic turbulence. J. Atmos. Sci., 28, 1087-1095.

[4] Dushaw, B. D., P. F. Worcester, B. D. Cornuelle, and B. M. Howe, 1993a. On

equations for the speed of sound in seawater. J. Acoust. Soc. Am., 93, 255-275.

[5] Dushaw, B. D., P. F. Worcester, B. D. Cornuelle, and B. M. Howe, 1993b. Vari-

ability of heat content in the central North Pacific in summer 1987 determined

from longe-range acoustic transmissions. J. Phys. Oceanogr., 23, 2650-2666.

[6] Dushaw, B. D., P. F. Worcester, B. D. Cornuelle, and B. M. Howe, 1994.

Barotropic currents and vorticity in the central North Pacific Ocean during summer

1987 determined from long-range reciprocal acoustic transmissions. J. Geophys.

Res., 99, 3263-3272.

[7] Dushaw, B. D., B. M. Howe, J. A. Mercer, and R. C. Spindel, 1996. Acoustic

receptions at SOSUS arrays "k" and "1" of transmissions from Pioneer Seamount

and Pacific basin acoustic thermometry. ATOC Occasional Notes, NO. 35.

117



[8] Emery, W. J., W. G. Lee, and L. Maagard, 1984. Geographic and seasonal distri-

bution of Brunt-Viissli frequency and Rossby radii in the North Pacific and North

Atlantic. J. Phys. Oceanogr., 14, 294-317.

[9] Fu, L. -L., and G. R. Flierl,1980. Nonlinear energy and enstrophy transfers in a

realistically stratified ocean. Dynamics of Atmospheres and Oceans, 4, 219-246.

[10] Garrett, C., and W. Munk, 1972. Space-time scales of internal waves. Geophys.

Fl. Dyn., 3, 225-264.

[11] Garrett, C., and W. Munk, 1975. Space-time scales of internal waves: a progress

report. J. Geophys. Res., 80, 291-297.

bibitem Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

[12] Hogg, N. G., 1988. Stochastic wave radiation by the Gulf Stream. J. Phys.

Oceanogr., 18, 1687-1701.

[13] LeBlond, P. H., and L. Mysak, 1978. Waves in the ocean. Elsevier, New York,

602 pp.

[14] Levitus, S., and T. P. Boyer, 1994. World ocean atlas 1994. Vol. 4,Temperature,

NOAA Atlas NESDIS 4, U.S.GOV.Printing Office, 117 pp.

[15] Munk, W. H., 1981. Internal waves and small-scale process. In Evolution of Phys-

ical Oceanography. Scientific Surveys in Honor of Henry Stommel, ed. B. Warren

and C. Wunsch, 264-291. MIT Press, Cambridge, Massachusetts.

[16] Munk, W., P. F. Worcester and C. Wunsch, 1996. Ocean Acoustic Tomography.

Cambridge University Press, Cambridge, 433 pp.

[17] Munk, W., and C. Wunsch, 1979. Ocean acoustic tomography: a scheme for

large scale monitoring. Deep-Sea Res., 26, 123-161.

[18] Munk, W., and C. Wunsch, 1982. Observing the oceans in the 1990s. Phil. Trans.

Roy. Soc., A307, 439-464.

118



[19] Munk, W., and C. Wunsch, 1997. The moon and mixing: abyssal recipes II.

Deep-Sea Res., in press.

[20] M6ller, P., D. J. Olbers, and J. Willebrand, 1978. The IWEX spectrum. J.

Geophys. Res., 83, 479-500.

[21] Pedlosky, J., 1977. On the radiation of mesoscale energy in the mid-ocean. Deep-

Sea Res., 24, 591-600.

[22] Pedlosky, J., 1987. Geophysical fluid dynamics. Springer-Verlag, New York, 710

pp-

[23] Richman, J. G., 1976. Kinetics and energetics of the mesoscale mid-ocean cir-

culation: mode, Ph.D. thesis, Massachusetts Institute of Technology/Woods Hole

Oceanographic Institution, 205 pp.

[24] Richman, J. G., C. Wunsch and N. G. Hogg, 1977. Space and time scales of

mesoscale motion in the sea. Rev. Geophys., 15, 385-420.

[25] Rhines, P. B., 1977. The dynamics of unsteady currents. In "The Sea" (E. D.

Goldberg et al., eds.), vol. 6, Chapter 7. Wiley, interscience, New York, pp. 189-318.

[26] Roden, G. I., 1975. On North Pacific temperature, salinity, sound velocity and

density fronts and their relation to the wind and energy flux fields. J. Phys.

Oceanogr., 5, 577-571.

[27] Roemmich, D., and B. Cornuelle, 1990. Observing the fluctuations of gyre-scale

ocean circulation: a study of the subtropical South Pacific. J. Phys. Oceanogr., 20,

1919-1930.

[28] Schmitz, W. J., Jr., 1978. Observations of the vertical distribution of low fre-

quency kinetic energy in the western North Atlantic. J. Marine Res., 36, 295-310.

[29] Schmitz, W. J., Jr., 1988. Exploration of the eddy field in the mid-latitude North

Pacific. J. Phys. Oceanogr., 18, 459-468.

119



[30] Schmitz, W. J., Jr., 1996. On the world ocean circulation: volumme I some

global features/north atlantic circulation. Woods Hole Oceanographic Institution

Technical Report. WHOI-96-03.

[31] Stammer, D., 1997. Global characteristic of ocean variability estimated from

regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27,

1743-1770.

[32] Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch, 1996. How well does

a 1/4' global circulation model simulate large-scale oceanic observations? J. Geo-

phys. Res., 101, 25 779-25 812.

[33] Worcester, P. F., B. D. Dushaw, and B. M. Howe, 1990. Gyre-scale current

measurements using reciprocal acoustic transmissions. Proc. Fourth IEEE Working

Conference on Current Measurement, Clinton, MD, IEEE, 65-70.

[34] Wunsch, C., 1981. Low-frequency variability in the sea. In Evolution of Physical

Oceanography. Scientific Surveys in Honor of Henry Stommel, ed. B. Warren and

C. Wunsch, 342-374. MIT Press, Cambridge, Massachusetts.

[35] Wunsch, C., 1997. The vertical partition of oceanic horizontal kinetic energy. J.

Phys. Oceanogr., 27, 1770-1794.

[36] Wunsch, C., and R. Hendry, 1972. Array measurements of the bottom boundary

layer and the internal wave field on the continential slope. Geophys. Fl. Dyn., 4,

101-145.

[37] Wunsch, C., and D. Stammer, 1995. The global frequency-wavenumber spec-

trum of oceanic variability estimated from TOPEX/POSEIDON altimeter mea-

surements. J. Geophys. Res., 100, 24,895-24,910.

[38] Wunsch, C., and D. Stammer, 1997. Atmospheric loading and the oceanic "in-

verted barometer" effect. Rev. Geophys., 35, 79-107.

120


