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Abstract

The purpose of the investigation described in this thesis
was to develop a device which could determine the concentration
of dissolved oxygen in sea water. The instrument developed,
measures the amount of dissolved oxygen by constant potential
coulometry. A reproducibility of one part per thousand was an
important design consideration of this device.

Up to the present time the only recommended method for
dissolved oxygen determination has been the Winkler method.
The need for a new approach to this problem is evident when
the uncertainties of the Winkler method are considered.

Dr. Dayton E. Carritt, a chemical oceanographer of Woods
Hole Oceanographic Institution, states that the uncertainties
inherent in current dissolved oxygen determinations under some
conditions are on the order of 1 ml in 5 ml. These uncertain-
ties, furthermore, are tied to an entire series of reactions
and very difficult if 4ot impossible to eliminate.

The instrument which was built demonstrated the feasibi-
lity of determining the concentration of dissolved oxygen in
sea water by constant potential coulometry, but it did not
achieve the desired degree of precision.

Suggestions have been made for modifications on the basis
of the experience gained with this instrument which may allow
the desired degree of precision to be achieved.

Thesis Supervisor: Dr. Delbar P. Keily

Title: Associate Professor
of Meteorology
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I.;INTRODUCTION

It is first necessary to discuss electrolysis before a

description of the chemical transducer which is found in the

dissolved oxygen determining device. A previous discussion of

electrolysis will also be usaful wYhen discussing the reasons

for choosing the constant potential coulometric method of de-

termining dissolved oxygen.

There are two main types of designations which may be

applied to electrochemical cells. The term galvanic coll is

used when an electrode reaction occurs spontaneously vfhen the

electLodes are externally connected. In an electrolysis cell

the reactions at the electrodes are forced to occur by applying

an external electromotive force to them.

To obtain a representation of the actual chemical process

or pr-ocesses which occur in a coll, half reactions are employed.

The half reactions are the actual chemical reactions occurring

at each electrode of the cell. The sum of the half reactions

is the net cell reaction. These reactions will include the

electrons transferred.

In accordance with the convention of J. J. Lingane the

cathode and the anode of a cell are defined in the following

manner. The cathode is the electrode at which reduction takes

place where reduction is taken to mean the consumption of elec-

trons. By similar reasoning the anode is the electrode wihere

oxidation occurs and oxidation is defined as supplying the
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electrode with electrons. There is one underlying principle

which applies to the sign convention of the electrodes and it

is this: The cathode is always negative with respect to the

anode.

Since it would be impractical to list the emf of all

possible combinations of electrodes and it is desirable to have

some means of tabulating the relative electron donating ability

of the individual electrodes some type of standard electrode is

necessary. It is impossible to measure the emf of a single

electrode, therefore, one can arbitrarily be selected as having

zero emf. The hydrogen electrode was selected as the reference.

It consists of a platinum or palladium or gold electrode immersed

in a solution which is saturated with hydrogen gas at a known

partial pressure. The standard electrode potential of an elec-

trode represents the tendency'of an electrode to deliver elec-

trons through an external circuit relative to the hydrogen

electrode to do so.

It is generally assumed that the same "current" flows in

the electrochemical cell that flows through the external cir-

cuit. This idea should be examined in.more detail. There is

electron flow in the external circuit of a cell and positive

and negative ion migration in the cell. The electrons which

are transferred at each electrode upset the electroneutrality

of the solution at the surface of the electrodes. This causes

a potential gradient to arise between the solution in the imme-

diate vicinity of the electrodes and the remaining volume of

the electrolyte. There is also a concentration gradient
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established in the electrolyte due to the electron transfer at

the electrodes. Therefore the movement of ions in an electro-

lyte result from the action of the potential gradient and con-

centration gradient. Two new terms can now be defined, electri-

cal migration and diffusion. Electrical migration is the move-

ment of ions due to the influence of the potential gradient and

diffusion is the movement of ions due to the influence of the

concentration gradient. Flow of current through an electro-

chemical cell is then accomplished by the migration of positive

and negative ions under the influence of the potential and con-

centrat ion gradient.

Some interesting information can be gained by discussing

the current vs.voltage curves of an electrochemical cell with

various combinations of electrolytes and electrodes.

The first case to be considered is two silver electrodes

in a solution of dilute silver nitrate, (AgNO3 ). If a slight

external voltage is applied to the cell and a graph of the re-

sulting current as a function of the applied voltage is plotted,

the result is very nearly linear as illustrated by curve 1 in

figure [1]. This result is very similar to the linear relation-

ship that exists for electron flow through a metallic conductor.

To obtain a linear relationship such as illustrated by

curve 1, the solution must be well stirred in order that the

silver ion concentration throughout the solution be as uniform

as possible. Regardless of the efficiency of the :stirring pro-

cess there will always be a concentration gradient in the

solution due to the half cell reaction which occurs at one of
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the electrodes,i..4,Ag+ + e = Ag * This causes the development

of an opposing or "baclk 'emf!'. , which increases as the applied

voltage increases and causes the current to increase at a less

than linear rate. The current-voltage curve will then become

concave with respect to the applied voltage axis. This is

illustrated by curve 2 in figure 1. The difference in voltages

of curves 1 and 2 at equal currents is a measure of the back

emf.

Curve 3 of figure 1 is obtained under the following set

of rather special circumstances

1. The solution should be fairly dilute.

2. One of the electrodes is quite small.

3. The solution isn't stirred.

The limiting current now results from the fact that above

a certain applied voltage, the rate of reduction of silver ions

at the cathode becomes so great that the current is limited by

the rate of supply of ions from the body of the solution and

is practically proportional to the bulk concentration of the

solution. This statement will be verified by a mathematical

discussion that follows later.

A voltage-current curve is obtained that is different from

the preceding three if two different electrode:reactions occur

in the same electrolytic solution. If a zinc electrode and a

silver electrode are placed in a solution of ;inc chloride

(Zn C12) saturated with silver chloride (Ag Cl) a curve with

different characteristics is obtained.
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If an external emf is applied in opposition to the spon-

taneous emf of the cell a current flows in the external circuit.

(In this example the'emf of the cell is +0.96V4 .When the applied

voltage is less than +0.96V the cell causes the current flow in

the external circuit. The cell reaction is as follows:

Zn0 + 2 Ag Cl = Zn ++ + 2 Cl" + 2 Ago

When the applied emf is exactly equal to the emf of the

cell, no current flows in the external circuit. (This is the

basis of the potentiometric method for measuring the emf of a

cell.)

If the applied voltage is greater than +0.96V, current

will flow in the opposite direction in the external circuit.

The cell reaction now is:

2 Ag0 + 2 Cl + Zn++ = Zn0 + 2 Ag Cl

the reverse of the above equation. The above, logically enough,

constitutes the definition of a reversible cell. This type of

cell produces a current-voltage plot represented by curve 4 in

figure 1.

The most common case encountered with electrochemical

cells is the condition where one or both of the electrodes are

not in equilibrium with the solution. This case will now be

discussed.

Consider the preceding cell with the zinc electrode re-

placed by a platinum electrode. There is no definite spontane-

oub emf since the platinum electrode isn't in equilibrium with

the solution.
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In this solution the platinum, electrode acts asa noble

electrode, i.e., one that serves only to transfer electrons

from the solution to the external circuit without being oxi-

dized itself. Any metal behaves nobly when the solution lacks

.ions of the metal and when the oxidation potential of the solu-

tion is smaller (more reducing) than that of the metal so oxida-

tion of it can not occur. If an applied emf is connected to

the cell with its negative side connected to the platinum

electrode and its potential gradually increased, the current

will rise slowly until approximately +0.96V and then rise more

rapidly until it merges with the curve previously obtained for

the zinc electrode. The two curves merge because the platinum

electrode is gradually plated with zinc, effectively making

it thermodynamically equivalent to a zinc electrode. This is

shown graphically in curve 5 of figure 1.

An important fact has been demonstrated by the above ex-

amples. It is very evident that the cells are non-linear cir-

cuit elements which do not obey Ohm's Law. This means that

current flow through a circuit containing an electrochemical

cell can not be calculated in advance since the cell presents

a varying resistance which depends upon the applied voltage.

There is another type of current potential curve, whidh

can be plotted to yield useful information. If the potential

of the working electrode vs. an external reference electrode

is plotted as a function of the current through the cell, a

curve is obtained which doesn't reflect the iR drop through

the cell or the current dependent back emf. This type of curve
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depends entirely upon the characteristics of the reaction at

the working electrode. This property makes this type of repre-

sentation a very useful one. For an example of such a curve

see figure 2.

.In general the curve will have one or more diffusion li-

mited "plateaus" between the potential where a noticeable current

is observed and the potential where either the reduction or oxi-

dation of water occurs.

The cathode reactions for the reduction of water are:

2H + + 2e = H2t acid medium

2H 20 + 2e = H2t+ 20H' basic medium

the anode reactions for the oxidation of water are:

2120 = 02T + 4H+ + ke acid medium

1OH" = 02t + 2H20 + 4e basic medium

Thus the working electrode is limited as to what potentials it

may assume.

If the cation or anion has a oxidation or reduction poten-

tial less than that of water it may be determined in an aqueous

solution.

There are three main methods by which all electrolysis

may be carried out. They are the following:

1. Maintain a constant current through the cell.

2. Maintain a constant applied voltage across the cell.

3. Maintain the working electrode at a fixed potential

with respect to some reference electrode.
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In constant current electrolysis there is very little

control of the working electrode potential and consequently

very little selectivity as to what reaction is to occur at the

electrodes.

In the constant applied voltage method there is a little

more selectivity over the potential of the working electrode

but the control is relatively coarse and electrolysis with

this method requires a very long time.

Therefore it appears if any degree of appreciable selecti-

vity is going to be achieved it will have to be with the method

where the potential of the working electrode is maintained con-

stant with respect to some external reference electrode.

The theory behind constant potential coulomety will now

be considered in a little more detail. Consider an electrotyte

containing two substances A and B whose current-cathode poten-

tial curves are given in figure 3. To obtain appreciable re-

duction of substance A the cathode potential must be greater

than a but to keep the reduction of B negligible less than b.

The voltage "a" is called the decomposition voltage of A and

the voltage "b" is called the decomposition voltage of B. For

reduction of A to occur at 1000/o efficiency the cathode poten-

tial must be kept between a and b. If the voltage is greater

than b reduction of both A and B will occur and the efficiency

of B's reduction will be less than 1000/o, unless all of A has

been previously removed.

If the current flow through the cell is large the potential

of the working voltage may change enough (in the negative
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direction if the working electrode is the cathode) to make some

type of potential controlling device necessary. If the total

current flow through the cell is small enough a potential regu-

lating device isn't necessary, since the variation in voltage

isntt enough to cause the working electrode to shift from a to

b if the potential is initially set at valve slightly greater

than a. This allows the elimination of a potentiostat in the

circuit with the resulting simplification in circuit design.

In the following section a quantitative approach to con-

stant. potential coulometry will by considered.

The current at any time t is given by:

i NF dN
it = NF

where:

N = # of electron equivalents per molar unit of the

reaction.

F = the faraday constant

N =4 of moles that react at the electrode in unit

t ime.

If diffusion through the layer of solution in immediate

contact with the electrode s the current-controlling factor.
1

Ficks Law, can be utilized giving:

dN D(dC
S=DA($)

where:

D = The diffusion coefficient of the reacting substance

A = Electrode area

i For a complete development see Moore, W. J., Physical Chemistry,
2nd edition, Prentice-Hall, Inc. 1955, pp. 144 .
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= concentration gradient at the electrode surface,dX

a function of the actual concentration in the

' electrolyte.

This equation only gives the steady state condition for diffu-

sion.

The instantaneous current is equal to:

i = NF DA()

If the solution is well stirred, theoretically there is

a thin diffusion layer and the concentration is approximated

by a linear function.

dC 0~ 0
dX -d

where:

C = concentration in the body of the solution

C = concentration at the electrode surface.

d = thickness of diffusion layer.

Another expression can be written for the instantaneous current.

C-Co
it=NFDA d

When the electrode potential increases much beyond the

decomposition potential C << C

Therefore, it Nd 0

The above equation presents a theoretical basis for the

often observed relationship of the limiting current being di-

rectly proportional to the bulk concentration of the substance

which is undergoing oxidation or reduction. This equation holds
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only if the effective diffusion layer thickness is a constant,

independent of concentration of the diffusion material.

since N = CV the equation:

- NF dN
t = dt

can be written

i.= NFV

equating this to:

= NFDAC
t d

we obtain if is negative.

dC DAC
dt vd

integrating from o to t gives C0 Ce -2DA

or if i Is proportional to concentration: i = i 0 DAT

The value of this equation is that it permits a logical

basis for the choice of components in an electrochemical cell

which gives the best possible. results.

To balance the equation dimensionally the following units

must be assigned to the various quantities.

2A = cm

V = cm3

d = cm

D = cm2/minute or by introducing the factor 60 then is

equal to cm 2/sec.

The time necessary for electrolysis will be shorter the
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larger the ratio of A to V. The time will also be shorter

the smaller d, and d is kept small by efficient stirring.

D is also a function of temperature and its temperature

coefficient is approximately equal to 20/o per degree.

There are two assumptions i-n the above derivations.

1. One or both of the electrodes are not in equilibrium

with the solution before electrolysis.

2. The instantaneous current is entirely diffusion con-

trolled.

II. Briefly Describing Theory Behind Oxygen Measuring Device.

It was found in making polarographic determinations with

dropping mercury electrode of various substances that their

characteristic waves were masked by the wave of oxygen unless

the dissolved oxygen was first removed from the solution by

flushing with nitrogen gas.

The characteristic current-potential curve of oxygen as

determined with.a dropping mercury electrode is shown in

figure 4.

The reaction responsible for the first "plateau" on the

wave is:

02 + 2H20 + 2e = H2 02 + 20H

The second plateau results from:

H2 02 + 2e = 20H~

If the electrode used is a small platinium wire a differ-

ent shaped current-potential curve results. This current-
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potential curve is shown in figure 5.

As can be seen from the curve this oxygen wave has only

one plateau. It first begins at approximately -0.4V with re-

spect to a saturated calomel electrode and results from the

following reaction:

02 + 2e + 2H+ = H2 02

The basic mechanism for the operation of the dissolved

oxygen determining device is now clearly evident. If the po-

tential of a platinium electrode with respect to a saturated

calomel cell is maintained at a voltage of approximately -0.5v,

the above reaction is caused to occur until all available

dissolved oxygen is reduced. To measure the total number of

oxygen molecules reduced it is only necessary to integrate the

total amount of current which has flowed during the reduction.

The current is integrated from the time that the reaction is

first initiated until the time that the current decays to its

residual value.

When the concentration of oxygen is determined in the

above manner it is assumed that the electrode reaction is 1000/0

efficient. Any other reducing reaction which may be occurring

at the same time introduces an error into the value determined

for. -the : dissolved 02 determination.

If the concentration of dissolved oxygen in sea water is

assumed to be 9 ml/liter the concentration in molar form is

4 X 10' moles/liter. Since the concentration of dissolved

oxygen is so low, the initial current flow can be expected to
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be small. [It turns out to be in the tenth of milliamp range).

Therefore, the iR drop across the cell will be small and if

so a potenti'ostat need not be used. If it is decided that the

potentiostat as such can be eliminated from the circuit, a new

concept may be introduced. The anode as a separate electrode

may be eliminated and the reference electrode made to perform

a dual function. The reference electrode must function as

both the reference electrode and as the anode. If an appreciable

current (1 ma) is to flow a reference electrode must have sev-

eral special characteristics. These characteristics will now

be discussed.

The primary characteristic that the reference electrode

must possess is an unaltered potential as current flows through

it. Low resistance is the second characteristic that the cell

should have. The electrode should be easy to assemble and its

components should be stable in contact with the atmosphere.

These above requirements are fulfilled by the saturated

calomel electrode. This electrode consists of a mercury elec-

trode in contact with a solution saturated with mercurous

chloride (Hg2 C12) and potassium chloride (K Cl). The cell

reaction is:

Hg2 C12 + 2e = 2Hg0 + 2Cl

The potential of the electrode is given by the following formula:

E;+ 0.242 - 7.6 X 1o~ (T - 25)

0
where T = Temperature C., or E = + 0.242V at 250C with respect to

a standard hydrogen electrode. It can easily be verified by
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substitution that a temperature variation of + 7 C results in

a variation of potential of 1 5 millivolts. Hence the elotrode

is adequate for use at room temperatures without serious error.

A saturated calomel electrode is shown in figure 6.

III.Definition of the Terms Used

The terminology used in describing the performance of the

dissolved oxygen determining instrument is drawn from three

main sources.
1. From the course "Instrumentation and Research methods"(7.911)

and'notes-given*by Dr. Kurt S. Lion in the Dept. of Biology.
2. From selected notes and lectures of a course "Meteorological

Instruments" (19.22) offered by Dr. Delbar P. Keily in the
Department of Meteorology.

3. From the three volumes of Instrument Engineering by
C. S. Draper, W. McKay and S. Lees, the first edition
published by the McGraw-Hill Book Company, Inc. in 1952.

Since there is ambiguity associated with the usage of common

words when describing an instrument and coupled with a lack of

standard instrument terminology it is necessary to define any

terms used in describing an instrument.

An element may be considered as a unit which performs one

task. It is usually represented by a block in a block diagram.

In electrical instrumentation, all elements may be

classified under three main types. The three types are defined

as follows.

The first type of element is the input transducer which

converts a non-electric magnitude into a corresponding electric
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one.' There are seven recognized types of input transducers,

mechanical, thermal, magnetic, electrical, optical, nuclear

radiation and chemical.

An element with an electrical input and an electrical out-

put is known as a modifier. This element changes or modifies

an electrical quantity in some fixed manner.

The last classification of types of elements is the output

transducer. Output transducers are elements which have an elec-

trical input but a non-electrical output. All types of meters,

recorders and display elements belong in this category.

Any instrumentation element may also be characterized by

the following general properties:

The first of these properties is the input characteristics.

Input characteristics are defined by the type of input, the useful

range of the input quantity for which the element can be used,

and the effect of the element upon the preceding stage or upon

the object under investigation.

The second of these properties is the transfer character-

istics. The transfer characteristics are defined by the trans-

fer function, the instrument error, and the response to environ-

mental influences.

The last of the general properties possessed by any element

inan electric instrument is output characteristics. The output

characteristics of an element are defined by the type of output,

the useful output level or range, and the output impedance.

Unfortunately there were some terms in the above definitions

which themselves need defining. These terms are defined below.
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Transfer function--relationship between the magnitude of

the input squantity, Q , and the output quantity or resultQO'

O =

Sensitivity--derivative of the transfer function 0

Instrument error--when an instrument doesn't follow QO

exactly but has the output f(Q) + F where F = the abso-

lute error of the result or output quantity.

The error function is usually complex and therefore requires

standardized terms to define it. The error function can be de-

composed into three parts, the scale error, dynamic error, and

noise and drift.

Each of the terms used in the above definition also need

defining.

The scale error can be composed offbewrparts. The observed

output may deviate from the correct output by an amount which

is constant throughout the entire range of the instrument.

The observed output may deviate from the correct value by a

constant factor throughout the range of the instrument. The

experimentally observed transfor function may deviate from the

one derived theoretically. The output of the instrument may

depend on the applied input quantity and also upon the past

history of the element (' this will be defined as hystersis).

Dynamic error has a rather straightforward definition.

The output of the instrument doesn't follow the variation with

time of the input precisely or it depends upon a time function.

Noise and drift are signals or a signal, originating in the
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element, that appears at the output terminals or is super-

imposed upon the output signal. If enough information of a

statistical nature of the noise is available it is possible

to distinguish between the output signal and the noise.

This completes the list of special definitions needed to

describe both the oxygen determining instrument and its per-

formance.

IV. Describing the Instrument

An actual idea of the physical size of the oxygen deter-

mining device and the electrochemical cell may be obtained

from the following photographs.

The instrument is composed of a polarographic H-cell which

was made to function as an electrochemical cell. The electri-

cal part of the device is mounted in a desk top rack manufac-

tured by the Bud Radio Corporation. The rack contains a

Philbrick 6009 operational manifold and a + 300VDC regulated

power supply, R-100B.

Mounted in the rear are three Philbrick operational ampli-

fiers. Two meters were used as monitors. A R.C.A. senior

voltohmyst Type WV-98A was used to check the voltage applied

to the working electrode. A Tripolet model 630 was used to

determine the amount of current passing through the cell. The

integrated value of the voltage was read on another R.C.A.

voltohmyst.

The physical configuration of the electrochemical cell may

be seen from the photographs. This electrochemical cell wasn't
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designed specifically for constant potential coulometry and

hence the ratio of the area of the working electrode to the

volume of the cell is poor. This means that the reduction of

the dissolved oxygen will take longer.

Choosing a proper cell for use in this instrument proved

to be a difficult problem. There are just 2 manufacturers

which produce cells suitable for constant potential coulometry.

They are E. H. Sargent and Company of Chicago, Illinois and

Leeds and Northrup Company of Philadelphia, Pennsylvania.

None of the commercially manufactured cells were designed

to operate with the sample.isolated from the atmosphere. The

cell finally selected for use was one which had been previously

fabricated for use as a polarographic cell. This particular

cell was selected because it was immediately available and be-

cause it was constructed with a flat bottom, which allowed the

use of a magnetic stirrer. This cell also required very little

modification to permit the sample to be electrolized isolated

from the atmosphere.

The problem of selecting a correct integrator was considered

in more detail than the difficulties surrounding the design

of the electrochemical cell. A careful literature search was

conducted in pertinent journals and abstracts contained in the

Massachusetts Institute of Technology libraries.

Each integrator or coulometer as it is called in the chemi-

cal literature, was examined with two criteria in mind. These

criteria were, did it have the required degree of precision

and could it be assembled or easily obtained.
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After this search was completed. and a suitable integrator

selected.and built, a much more practical integrator which com-

pletely filled the specifications was accidentally uncovered.

It is possible to construct an integrator using an opera-

tional amplifier produced by the G. A. Philbrick Company of

Boston, Massachusetts. When the proper type and value of re-

sistor and capacitor are appropriately connected, an integrator

with a reproducibility of ±0.10/o can be built. This integra-.

tor will be described in more detail in a following section.

V. Technical Description of the Instrument

The oxygen determining device may be represented by the

block diagram given in figure 0 -

The terms shown in the generalized functional diagram in

figure 8 will now be defined.

C2 - concentration of dissolved oxygen injected into the

electrochemical cell.

ICT - chemical transducer output current.

VR - reaistor output voltage.

VS INT. - integrator output voltage sum.

IVSVOLT. - voltmeter indicated voltage sum.

To operate this instrument as it now appears, it is only

necessary to inject a sample containing dissolved oxygen gas

and read the voltage as indicated on the voltmeter. The se-

quence of events is the following.

The chemical transducer transduces or changes the concen-

tration of dissolved oxygen to a current by means of the
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Fig. 8. Generalized functional diagram of dissolved oxygen indicating instrument.
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following reaction 02 + 2e + 2H±-A H2 0O2 . The chemical trans-

ducer output current is modified by the resistor into the re-

sistor output voltage. This was done because the integrator

is a voltage integrator not a current integrator. The integra-

ted output voltage sum is transduced by the voltmeter into an

indicated value for the output of the integrator.

The complete schematic of the circuit is shown in figure 9.

The design of the instrument will now be discussed in more

detail. At this point the reader might refer to the discussion

of feedback in the appendix. Further information concerning

feedback can be obtained from the book by T. S. Graylor the

advertising literature published by the G. A. Philbrick Company

of Boston, Massachusetts. The advertising literature of the

G. A. Philbrick Company also contains a technical description

of the components utilized.

The K2-XA operational amplifier connected as shown in the

schematic will operate as a constant potential source effec-

tively keeping the potential of the working electrod6 at any

desired value. The value of potentiometer R2 is chosen to keep

the current drain of battery B1 low. R is chosen to have a

value that will limit the amount of the current that the ampli-

fier must supply to a value it is designed to supply when the

potentiometer wiper is at one extreme of the potentiometer.

The drift of the K2-XA is stated to be + 8 millivolts per day

referred to input.

The value of R is chosen to be considerably smaller than3
the estimated resistance of the electrochemical cell. R here

1 Gray, T. S., Applied Electronics 2nd edition (1954)
John Wiley and Sons, Inc., New York.
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is a modifier changing a AI which is some function of time

to a AE which is a function of time.

The K2-W operational amplifier is connected to function

as a feedback amplifier. Its gain will be determined by the

position of the wiper of potentiometer R . The function of

A2 must be discussed in conjunction with the method of selec-

tion of R5 and Cl.

The only restriction on the capacitor C1 is that it must

not charge during the course of integration to a voltage greater

than the rated output voltage of the amplifier. The R-C con-

stant is adjusted until the voltage, over the course of inte-

gration, is less than the output 'swing of the amplifier. To

facilitate finding this value the gain of A2 is adjusted until

the final voltage on Cl is less than the output swing of A3.
Then the resistance from 2 to 1 and 2 to 3 of R is measured

and the gain of A2 determined. If the gain is less unity,

then the voltage drop A2 can be calculated and this effect in-

corporated in the value of R5* R5 is constrained as to the

value it can assume, It must be small with respect to 100

megohms.

If high quality components are utilized in the feedback

circuit of the integrator, integrations with a reproducibility

of +.10/o are possible. The requirement for the capacitor is

on the order of ,107 megohm-microfarads.

The- important point in the above discussion that should

be emphasized is the ease that circuits can be designed and

built to give the desired results. An entirely new circuit
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with radically different characteristics could be designed and

built in approximately 10-15 minutes when plug-in type opera-

tional amplifiers are utilized.

VI. Experimental Procedure

The actual experimental procedure followed with this de-

vice was a relatively simple one. Preparation of the platizium.

working electrode was the first operation undertaken. The

working electrode consisted of a0.032" diameter platiftum wire

attached 1" X 2" X 0.006" platinum plate. The platiftum wire

was first welded to the plate using an 80 microfarad 450WVDC

capacitor as a source and discharging it through the wire and

plate. However, the resulting weld lacked the mechanical

strength required.

It finally became necessary to drill a small hole through

the plate and crimp the wire to the plate. An electrical connec-

tion was made to the working electrode by sealing the platidum

wire into a soft glass tube and filling the tube with mercury

and inserting a wire into the mercury.

The electrode was washed in 0.1 normal nitric acid,

(HNO 3 ) and then heated to a red heat over a bunsen flame to re-

move all traces of grease and impurities. At this time the

platinum electrode had a bright shiny- look and at no time

during the experiments could any change in appearance be de-

tected after cleaning.

A supporting electrolyte of one normal sodium sulphate

(NA2S) was then placed into the working electrode compartment.
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A 448,3 hole stopper was then inserted into'the working elec-

trode chamber and~all connections were sealed with Apiezon wax.

When the stopper was inserted into the cell the platinum

cathode was positioned as close as possible to the tip of the

salt bridge. The electrode was placed in this position to mini-

mize the iR drop through the cell.

After the supporting electrolyte has been placed in the

cell it was necessary to deaerate it. The dissolved oxygen in

the supporting electrolyte may be removed by two different me-

thods. Dissolved 02 may be removed by constant potential .

coulometry or by flushing with nitrogen gas. Of the two methods

flushing with nitrogen gas and then removal by constant poten-

tial coulometry is the best and the quickest method. Figure

10 is a current vs. time curve for the removal of dissolved

oxygen by constant potential coulometry from the supporting

electrolyte. As a check to determine if all the dissolved

oxygen has been removed and to see if there are no oxygen leaks

in the system, set the potential of the working electrode to

approximately -O.5vDC and read the value of-the residual current.

The value should be approximately 10 micpoamps.

Introduce the sample whose oxygen content it is desired

to measure into the cell through a serum cap using a hypodermic

needle. For a method of obtaining a sample with a known oxygen

content see the appendix.

It was noticed as the hypodermic needle was being filled

with the test sample fine bubbles of air were forming on the

inside of the syringe and when the sample was injected not all

the gas returned to the solution. The hypodermic was filled
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by withdrawing the plunger and pouring the sample into the

syringe and then replacing the plunger and decreasing the

volume to the desired value.

To determine the optimum control potential at which to

operate this cell it is first necessary to plot a current-

electrode potential curve of the reaction under the same con-

ditions that will-prevail during electrolysis.

The current electrode potential curve is determined very

simply. The potential of the working electrode was increased

in steps of 0.1 volts or 0.05 volts and current readings are

taken for each step. These values were plotted on graph paper

and the cell is operated at the potential just about midway

on the plateau. Such a curve for a the current-electrode po-

tential cell is given in figure 11.

When selecting the operating point the following considera-

tion should be kept in mind. The apparent observed potential

of the working electrode is related to the actual voltage by

the following relationship

Eobs = Etrue + iR

where

Eobs = voltage observed at the working electrode

Etrue = actual voltage at the working electrode

iR = ohmic drop in potential between the working elec-

trode and the tip of the salt bridge.

The polarity of the iR drop is such that the observed potential

is more negative than the true potential.

After the optimum control point is chosen electrolysis is
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is started and the current is integrated until the current

flowing through the cell had decayed to the value of the re-

sidual current.

Samples were injected into the working electrode until

it began to show signs of contamination. The electrolyte was

adjudged to be contaminated when the level of the residual

current varied unreasonably.

The temperature of the sample was taken just prior to

injection into the working electrode compartment. The tempera-

ture was taken with a centigrade thermometer whose bulb was

kept continually immersed in the unused portion of the sample.

Vi. Presentation of the Data

The first series of tests run with this instrument were

for the purpose of determining the transfer function of the

instrument and the transfer function of the electrochemical

cell. After a transfer function for the instrument was ob-

tained, it was desired to inject a known predetermined concen-

tration of oxygen into the instrument several times to obtain

a quantitative idea of the reproducibility of the instrument.

The transfer function of the instrument is shown in figure 12.

Figure 13 is the transfer function of the input transducer.

As is readily evident from the two figures there is a

paucity of data. There is a legitimate reason for this scarcity

and it is evident from figure 10. The time required to elec-

trolize a sample down a residual current is on the order of

150 minutes. This is due to a poor electrolytic cell design.
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VIII. Analysis of All Errors

After seeing the data plotted in graphical form it is a

logical step to consider in some detail the errors affecting

this instrument. Each element will be discussed separately

and any input which could cause a deviation of the observed

output quantity will be examined in detail.

Since it is necessary to measure in some manner the volume

of the sample which is injected into the input transducer, this

is a good place to begin. There is a volume error in measuring

the sample, it is estimated to be +.1 of a cubio centimeter.

Since the sample sizes ranged in size from 2.5cc. to 15cc. the

error varied from 0.660/o to 40/o. It would be logical to find

some non-linearity in the transfer function of this transducer

at the small sample size end and we do.

A second error arises from the reliability of the table

from whichis determined the oxygen content of the calibration

sample. The table is reliable to the first decimal place, i.e.,

if the oxygen content of the sample is given as 8.35ppm for a

given temperature 5 is uncertain. An error is introduced due

to the variation of dissolved oxygen in the sample with tem-

perature. Since the observed temperature variation was +1.500

this error was adjudged to be slight.

Another type of error was due to the diffusion of 02 from

the atmosphere into the cell and hence into the supporting

electrolyte. It can be shown that this is negligible. It is

done by electrolyzing the supporting electrolyte until the re-

sidual current reaches a small value. The cell is then allowed

to stand for a period of time and then the residual current is
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read and compared with the first value. If the stopper is well

sealed with wax the leakage is negligible

Due to the construction of the electrochemical cell when

the supporting electrolyte was flushed with nitrogen gas, some

of the gas remained in a small airspace immediately under the

rubber stopper. The error due to any oxygen trapped in this

space would be small.

There could also be an error due to other reductions

taking place at the cathode. This would cause a working elec-

trode efficiency of less than 1000/o. After consulting a table

of standard oxidation potentials 2 there doesn't appear to be

any reductions which would occur to an appreciable extent.

This is further verified by visual examination of the platnium

cathode. It never lost its bright shiny appearance in over

30 hours of electrolysis. It is also for this reason that

hystersis of the cathode is ruled out as a source of error.

There could be an error induced by the working electrode

drifting far enough in the negative direction until hydrogen

evolution occurred. This was never observed to occur and the

potential control circuit appeared to be very stable.

The resistor which acted as a modifier also had a tempera-

ture input. There were two methods by which the temperature

of the resistor could vary. The first is by variation of the

ambient temperature of the environment and the second is a

heating effect due to the current flow. Since the temperature

2 See Latimer in bibliography.
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coefficient of restivity of carbon is listed as -.0005 a

temperature variation of +1.50C was adjudged insignificant.

It appears that the resistor isn't a source of appreciable

system errors.

The integrator also has inputs which may contribute to

the overall system error. Temperature compensation has been

built into the operational amplifier used in the circuit so

errors due to ambient room temperature variations are assumed

to be small. It is designed to give results reproducible to

+0.10/0 up to 650c. The drift of this amplifier is stated to

be +5 millivolts/day referred to the input. If better results

are desired the K2-W amplifier can be stabilized with a K2-P

stabilizing amplifier and the drift reduced to a submillivolt

level. There is one source of error which might be quite

appreciable in this instrument due to the long electrolysis

time required. This is an error due to the leakage of the

capacitor. This can be considered as a resistor in parallel

with the capacitor. See the appendix for the calculation.

The value of this resistor for an error of +.17o in 150 min.-

utes or 9000 seconds is 4.5X1013 dWms. This is not an unreason-

able value value for mylar or polystyene computer type capaci-

tors. Thus it appears even though the integrator extends over

a long period of time the integrator maintains its reproduci-

bility.

The factors influencing the errors of the output trans-

ducer are more difficult to ascertain since it is a commercially

produced instrument. The output transducer is a R.C.A. Senior
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voltohmyst, vacuum tube voltmeter model [WV-9§A. Specifications

of this instrument may be obtained from the Radio Corporation

of America in Camden, New Jersey.

There is an error introduced due to the zeroing adjustment.

The zero of the instrument either drifted or was accidentally

moved during the course of several integrations. There is a

very definite scale error associated with this instrument. It

is estimated that the error in voltage readings is +1 volt on

the 50 volt scale. The largest value this error reached was

4.2k/ofor the lowest reading of the integrator output voltage

sum. It could logically be expected to see this deviation on

the transfer function of the instrument.

There is an error associated with the output transducer

which results from deciding the exact time to stop the integra-

tion. If the integration is to be stopped when the current de-

cays to a value of 10A. there is a difficulty in ascertaining

when this point is reached.

IM. Suggested Improvements

of the Oxygen Determining Device

If the instrument just described an be considered as a

prototype model, and a device to verify the principle of opera-

tion, which allowed the builder to gain designing and operating

experience, many valuable suggestions can be made to improve

it.

There are four main improvements necessary to make this

device a precise measuring instrument.
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An electrochemical cell must be designed which will

shorten the electrolysis time to approximately 10 minutes.

Some type of adjustable meter relay is necessary to stop

the integration when the residual current through the cell

drops to a preselected value.

A more precise method of determining either the weight

or the volume of the sample which is injected into the cell.

It is necessary to select a method which will permit the

voltage of the integrating capacitor to be measured more pre-

cisely.

As an aid in design of an electrochemical cell a previ-

ously developed equation will be utilized

it =i 0 *-kt

where k DA

It is recalled that

D = diffusion coefficient

A = area of working electrode

V = volume of the cell

d = thickness of the diffusion layer.

The cell should have the as large a ratio of electrode

area to cell volume as possible. To obtain maximum electrode

area a platihum gauze electrode in the form of a right circular

cylinder appears to be the best in this respect. Such an elec-

trode may be obtained from the E. H. Sargent Company of Chicago,

Illinois. To keep the cell resistance as low as possible the



cross sectional area of the salt bridge which connects the

reference electrode and the working electrode should be as

large as possible.

Efficient stirring of the solution will permit d to be

made as small as possible thus decreasing electrolysis time.

This will also aid in determining the initial cell current

when a sample is injected.

A suitable type of adjustable meter relay should be a

Simpson 29XA adjustable meter relay. This meter has non-

locking contacts which may be positioned anywhere along the

instrument scale arc by means of an external front-adjusted

gear drive mechanism. This will allow the selection of the

value of residual current at which the integration, will be

stopped.

The volume of the sample to be injected could be measured

in a pipette prior to transfer to a hypodermic needle for

injection.

There is one feature of this instrument which has so

far been unmentioned. The voltage remains upon the capacitor

until the capacitor is externally discharged. This allows

any method for measuring this voltage which might require

some time. This allows the integrator output voltage sum to

be measured by potentiometric methods.

A large reduction in the physical size of the components

necessary for the electrical circuitry of this instrument can

be obtained by using a Philbrick model MK operational manifold.
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This is manufactured by the George A. Philbrick Company of

Boston, Massachusetts. Use of the model MK operational mani-

fold permits a reduction in size to the overall dimensions of

17A *X 6" X 8". The power requirements of this is 115VAC,

60 cycle with a power rating of 175 watts. Its weight is

approximately 30 pounds. Everything could be included in this

unit except the input and output transducer.
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Appendix

Feedback is defined as a voltage or current proportional

to the amplifier output voltage or current which is fed back

and -.superimposed on the input signal. If the amplification

increases, the feedback is positive or regenerative, and if

the amplification decreases, the feedback is negative or de-

generative.

The advantages of a negative feedback are as follows:

1. It tends to flattent the frequency response

characteristics

2. It extends the range of uniform response

3. It reduces nonlinearity and phase distortion

i.. It improves the stability of the amplifier

making the gain less dependent on the opera-

ting voltages or on variations in tube

characteristics.

5. It tends to make the gain less dependent on

the load.

Postive feedback has exactly the opposite effects of those

listed above. In practice negative feedback is much more

common.

It is very easy to determine if the feedback is current

or voltage feedback. With voltage feedback the voltage feed-

back is equaltdzaiowhen the load is short circuited. With

current feedback the feedback voltage is equal to zerOuwhen the
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load is open circuited.

There are several assumptions usually made when analyzing

a feedback circuit.

1. The circuit parameters including the tube co-

efficients over the operating range are constant.

2. The circuit is operating in a steady state condi-

tion with sinusoidal excitation.

3. The feedback voltage is connected in a series

with the grid.

1.. The input impedance of the amplifier is large,

compared to the other associated impedances.

5. The amplifier is unilaterial, i.e., it transmits

the signal only in one direction.

6. Any reaction the amplifier and source might have

on the feedback network can be neglected.

See figure 14 for a diagram of the circuit.

Series injection is used in the above circuit for purposes

of analysis.

The indicated voltages are as follows:

E = input voltage applied to amplifier terminals

E resultant voltage at the output terminals

PE portion of Epk feedback in series with the

input voltage.

The voltage between the grid and cathode terminals has

. the following form.

E K = E + E
g g pk

E
The gain of the amplifier = K ork



Epk

Amplifier with series injectionF ig. 14. feedback
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so Eg KE

substituting into the first equation results in

Epj = KEg +.KPEpg

or

E '-pk 1-Kp

Now consider the overall gain of the amplifier including

the effect of feedback.

output potential k
Kr input signal potential g E

by substitution the following relationship is obtained:

K K

where K, K- and P may be complex quantities.

Consider a negative feedback and the voltage fed back (KA)

that is very large compared to one, the following equation is

obtained:

K =~

This equation leads to a very important conclusion. The actual

gain of a properly designed amplifier when used with feedback

is a function only of the components in the feedback circuit.

A Method for Preparing a Sample

with a Known Oxygen Concentration

Dissolve 5.0 gins. of powered gelatin in 75 milliliters
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of hot water. Cool the solution and add 2.0 grams of phenol

(carbolic acid) and 0.3 grams of. sodium chloride (FA Cl).

Adjust the volume of the mixture to 100 milliliters with

distilled water.

To obtain an air saturated calibration solution add the

gelatin-phenol-sodium chloride solution at the rate of 2 milli-

liters of solution per 100 milliliters of distilled water.

Saturate with air by bubbling for one hour at a constant tem-

perature and allow it to stand for one-half hour. This solu-

tion will contain an amount of dissolved oxygen given by table

(1). Table (1) is obtained from table (2) as shown from the

following sample calculation.

This calculation will verify the value of oxygen concen-

tration at 260C found in table (1).

In the gelatin-phenol-sodium chloride solution there is 7.3

grams of solute per 100 milliliters of solution. The assump-

tion is made that all of the solute acts the same as an equal

weight of sodium chloride in lowering the solubility of oxygen.

If 2 milliliters of the gelatin-phenol-sodium chloride solution

is added for each 100 milliliters of distilled water there will

be 1.465X10~1 grams of solute per 100 milliliters of distilled

water, or 1465 PPM of chloride in the water. Interpolating

the value at 260C and 760 centimeters of mercury from table

8.10PPM of dissolved oxygen is obtained. The results of the

above calculation are believed to be accurate to the first

decimal place.
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Table 1. Dissolved Oxygen in Water
at Various Temperatures

(Solution contains 10 ml. of gelatin-phenol-
salt solution per pint)

Temperature
0 C. 0 F.

10 50
11 51.8
12 53.6
13 55.4
14 57.2
15 59.0
16 60.8
17 62.8
18 64.4
19 66.2
20 68.0
21 69.8
22 71.6
23 73.4
24 75.2
25 77.0
26 78.8
27 80.6
28 82.4
29 84.2
30 86.0

Dissolved Oxygen,
P.P.M. by Wt.

11.2
10.9
10.7
10.4
10.2
10.0

9.8
9.6
9.4
9.2
9.0
8.9
8.7
8.6
8.4
8.3
8.1
8.0
7.8
7.7
7.5
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-SOLUBILITY OF OXYGEN IN FRESH WATER AND IN SEA WATER OF
STATED DEGREES OF SALINITY AT VARIOUS TEMPERATURES WHEN EXPOSED TO WATER

SATURATED AIR AT A TOTAL PRESSURE OF 760 iMM Hg. DRY AIR Is ASSUMED TO
CONTAIN 20.90 PER CENT OXYGEN.*

(Calculated by G. C. Whipple and M. G. Whipple from measurements of C. J. J. Fox.)

Chlorides in Sea Water (parts per million)

0 5000 10000 15000 20000

Dissolved oxygen in parts per million by weight

14.62
14.23
13.84
13.48
13.13
12.80

12.48
12.17
11.87
11.59
11.33

11.08
10.83
10.60
10.37
10.15

9.95
9.74
9.54
9.35
9.17

8.99
8.83
8.68
8.53
8.38

8.22
8.07
7.92
7.77
7.63

13.79
13.41
13.05
12.72
12.41
12.09

11.79
11.51
11.24
10.97
10.73

10.49
10.28
10.05
9.85
9.65

9.46
9.26
9.07
8.89
8.73

8.57
8.42
8.27
8.12
7.96

7.81
7.67
7.53
7.39
7.25

12.97
12.61
12.28
11.98
11.69
11.39

11.12
10.85
10.61
10.36
10.13

9.92
9.72
9.52
9.32
9.14

8.96
8.78
8.62
8.45
8.30

8.14
7.99
7.85
7.71
7.56

7.42
7.28
7.14
7.00
6.86

12.14
11.82
11.52
11.24
10.97
10.70

10.45
10.21
9.98
9.76
9.55

9.35
9.17
8.98
8.80
8.63

8.47
8.30
8.15
8.00
7.86

7.71
7.57
7.43
7.30
7.15

7.02
6.88
6.75
6.62
6.49

* Under any other barometric pressure, P,
corresponding value in the table by the formul;

P P1

760 29.92

11.32
11.03
10.76
10.50
10.25
10.01

9.78
9.57
9.36
9.17
8.98

8.80
3.62
8.46
8.30
8.14

7.99
7.84
7.70
7.56
7.42

7.28
7.14
7.00
6.87
6.74

6.61
6.49
6.37
6.25
6.13

C*

*C

Dissolved
Oxygen in

Chloride-free
Water

C* ppm

30 7.6
31 7.5
32 7.4
33 7.3
34 7.2
35 7.1

36 7.0
37 6.9
38 6.8
39 6.7
40 6.6

41 6.5
42 6.4
43 6.3
44 6.2
45 6.1

46 6.0
47 5.9
48 5.8
49 5.7
50 5.6

the solubility may be obtained from the

in which S' = Solubility at P or P'.
S = Solubility at 760 mm or 29.92 in.
P = Barometric pressure in mm and
P' = Barometric pressure in in.

The second decimal place in the above table is not accurately known. The average differ-
ence from the mean of five different investigators represents 0.07 ppm. Until further data
are obtained, however, the second decimal place has been retained in the table.

Difference
per

100 pm

ppm

0.0165
.0160
.0154
.0149
.0144
.0140

.0135
.0130
.0125
.0121
.0118

.0114
.0110
.0107
.0104
.0100

.0098
.0095
.0092
.0089
.0088

.0086

.0084

.0083

.0083

.0082

.0080

.0079

.0078

.0076

.0075
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Sample Calculation for Determining

Size of Leakage Resistance of the Integrating Capacitor

For an error of +.10 /oin 9000 seconds the capacitor must

have a self time constant of

T = RLC = 9X106 seconds . 6
if C = 0.2ff then RL = 9X10

0 .2X10

or 4.5xlO13 ohms or 4.5xl07 megohms.
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