

Experimental prospects at the LHC

Outline

- Expected performance of ATLAS and CMS detectors
- What have the experiments learned this fall?
- Early physics: a few examples

Next year is at last going to see the culmination of the work of thousands of people across the world over some 20 years: the excitement is really growing in the experiments as data-taking with proton-proton collisions at ~ 10 TeV approaches

Generic features required of ATLAS and CMS

- **Detectors must survive for 10 years or so of operation**
 - Radiation damage to materials and electronics components
 - Problem pervades whole experimental area (neutrons): NEW!
- <u>Detectors must provide precise timing and be as fast as feasible</u>
 25 ns is the time interval to consider: NEW!
- Detectors must have excellent spatial granularity
 - Need to minimise pile-up effects: NEW!
- <u>Detectors must identify extremely rare events, mostly in real time</u>
 - Lepton identification above huge QCD backgrounds (e.g. e/jet ratio at the LHC is ~ 10⁻⁵, i.e. ~ 100 worse than at Tevatron)
 - Signal X-sections as low as 10⁻¹⁴ of total X-section: NEW!
 - Online rejection to be achieved is ~ 10⁷: NEW!
 - Store huge data volumes to disk/tape (~ 10⁹ events of 1 Mbyte size per year: NEW!

D. Froidevaux (CERN)

DISCRETE 2008, Valencia, 15th of December 2008

Physics at the LHC: the environment

 $(1 \text{ MeV } n_{eq}/\text{cm}^2/\text{yr})$

Physics at the LHC: the environment

ATLAS superimposed to the 5 floors of building 40

FORWARD CALORMETER CRYSTAL ECAL **CMS ATLAS ATLAS** CMS Overall weight (tons) 7000 SUPERCONDUCTING RETURN YOKE

How huge are ATLAS

and CMS?

12500 Total weight : 12,500t. Overall diameter : 15.00 m Overall length : 21.60 m Magnetic field : 4 Tesla CMS-PARA-001-11/07/97 Diameter 22 m 15 m 46 m Length 22 m Solenoid field 2 T **4** T

How huge are ATLAS and CMS?

• Size of detectors

- Volume: 20 000 m³ for ATLAS
- Weight: 12 500 tons for CMS
- 66 to 80 million pixel readout channels near vertex
- 200 m² of active Silicon for CMS tracker
- 175 000 readout channels for ATLAS LAr EM calorimeter
- 1 million channels and 10 000 m² area of muon chambers
- Very selective trigger/DAQ system
- Large-scale offline software and worldwide computing (GRID)
 <u>Time-scale</u> will have been about 25 years from first conceptual studies (Lausanne 1984) to solid physics results confirming that LHC will have taken over the high-energy frontier from Tevatron (early 2009?)
- Size of collaboration
- Number of meetings and Powerpoint slides to browse through

ATLAS Collaboration (As of July 2006)

35 Countries 162 Institutions 1650 Scientific Authors (1300 with a PhD)

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku,

IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, Bern, Birmingham, Bologna, Bonn, Boston, Brandeis,

Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN, Chinese Cluster, Chicago, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Humboldt U Berlin, Indiana, Innsbruck, Iowa SU, Irvine UC, Istanbul Bogazici, KEK, Kob e, Kyoto Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubijana, QIMV London, RHBMC London, LUC London, Lund, UA Madrid, Mainz, Manchester, Mannheim, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan SU, Milana SU, Minsk NAS , Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Naples, Naruto UE, New Mexico, New York U, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Oregon, L AL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, TU Prague, HEP Protvino, Ritsumeikan, UFRJ Rio de Janeiro, Rochester, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby,

Southern Methodist Dallas, NPI Petersburg, SLAC, Stockholm, KTH Stockholm, Stony Brook, Sydney, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine, Uppsala, Urbana UI, Valencia, UBC Vancouver, Victori a, Washington, Weizmann Rehovot, Wisconsin, Wuppertal, Yale, Yerevan

ATLAS physics workshop in Rome (June 2005)

DISCRETE 2008, Valencia, 15th or December 2008

INFN

~ 450 participants

Istituto Nazionale di Fisica Nucleare

Main specific design choices of ATLAS/CMS

• Size of ATLAS/CMS directly related to energies of particles produced: need to absorb energy of 1 TeV electrons (30 X_0 or 18 cm of Pb), of 1 TeV pions (11 λ or 2 m Fe) and to measure momenta of 1 TeV muons outside calorimeters (BL² is key factor to optimise)

- Choice of magnet system has shaped the experiments in a major way
 - Magnet required to measure momenta and directions of charged particles near vertex (solenoid provides bend in plane transverse to beams)
 - Magnet also required to measure muon momenta (muons are the only charged particles not absorbed in calorimeter absorbers)
 - <u>ATLAS choice</u>: separate magnet systems ("small" 2 T solenoid for tracker and huge toroids with large BL² for muon spectrometer)
 - <u>Pros</u>: large acceptance in polar angle for muons and excellent muon momentum resolution without using inner tracker
 - <u>Cons</u>: very expensive and large-scale toroid magnet system
 - <u>CMS choice</u>: one large 4 T solenoid with instrumented return yoke
 - <u>Pros</u>: excellent momentum resolution using inner tracker and more compact experiment
 - <u>Cons</u>: limited performance for stand-alone muon measurements (and trigger) and limited space for calorimeter inside coil D. Froidevaux (CERN) 11 DISCRETE 2008, Valencia, 15th of December 2008

Main specific design choices of ATLAS/CMS

• At the LHC, which is essentially a gluon-gluon collider, the unambiguous identification and precise measurement of leptons is the key to many areas of physics:

- electrons are relatively easy to measure precisely in EM calorimeters but very hard to identify (imagine jet \rightarrow leading π ⁻ with π ⁻ \rightarrow leading π^0 very early in shower)
- muons in contrast are relatively easy to identify behind calorimeters but very hard to measure accurately at high energies
- → This has also shaped to a large extent the global design and technology choices of the two experiments
- EM calorimetry of ATLAS and CMS is based on very different technologies
 - ATLAS uses LAr sampling calorimeter with good energy resolution and excellent lateral and longitudinal segmentation (e/y identification)
 - CMS use PbWO₄ scintillating crystals with excellent energy resolution and lateral segmentation but no longitudinal segmentation
 - Broadly speaking, signals from $H \rightarrow \gamma\gamma$ or $H \rightarrow ZZ^* \rightarrow 4e$ should appear as narrow peaks (intrinsically much narrower in CMS) above essentially pure background from same final state (intrinsically background from fakes smaller in ATLAS)

	CMS		ATLAS	
Parameter	Solenoid	Solenoid	Barrel toroid	End-cap toroids
Inner diameter	5.9 m	2.4 m	9.4 m	1.7 m
Outer diameter	6.5 m	2.6 m	20.1 m	10.7 m
Axial length	12.9 m	5.3 m	25.3 m	5.0 m
Number of coils	1	1	8	8
Number of turns per coil	2168	1173	120	116
Conductor size (mm ²)	64×22	30×4.25	57×12	41×12
Bending power	$4 \mathrm{T} \cdot \mathrm{m}$	$2 \mathrm{T} \cdot \mathrm{m}$	$3 \mathrm{T} \cdot \mathrm{m}$	$6 \mathrm{T} \cdot \mathrm{m}$
Current	19.5 kA	7.6 kA	20.5 kA	20.5 kA
Stored energy	2700 MJ	38 MJ	1080 MJ	206 MJ

TABLE 3 Main parameters of the CMS and ATLAS magnet systems

Three magnets have reached their design currents: a major technical milestone!

ATLAS/CMS: from design to reality Amount of material in ATLAS and CMS inner trackers

• Active sensors and mechanics account each only for ~ 10% of material budget

• Need to bring 70 kW power into tracker and to remove similar amount of heat

• Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which were not at all understood at the time of the TDRs

TABLE 5 Evolution of the amount of material expected in the ATLAS and CMS trackersfrom 1994 to 2006

Date	$\begin{array}{l} \text{ATLAS} \\ \eta \approx 0 \end{array}$	$\etapprox 1.7$	$\begin{array}{l} \text{CMS} \\ \eta \approx 0 \end{array}$	$\eta pprox 1.7$
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.90	0.35	1.50

The numbers are given in fractions of radiation lengths (X/X₀). Note that for ATLAS, the reduction in material from 1997 to 2006 at $\eta \approx 1.7$ is due to the rerouting of pixel services from an integrated barrel tracker layout with pixel services along the barrel LAr cryostat, to an independent pixel layout with pixel services routed at much lower radius and entering a patch panel outside the acceptance of the tracker (this material appears now at $\eta \approx 3$). Note also that the numbers for CMS represent almost all the material seen by particles before entering the active part of the crystal calorimeter, whereas they do not for ATLAS, in which particles see in addition the barrel LAr cryostat and the solenoid coil (amounting to approximately $2X_0$ at $\eta = 0$), or the end-cap LAr cryostat at the larger rapidities.

- Material increased by ~ factor 2-2.5 from 1994 (approval) to now (end constr.)
- Electrons lose between 25% and 70% of their energy before reaching EM calo
- Between 20% and 65% of photons convert into e⁺e⁻ pair before EM calo
- Need to know material to ~ 1% X_0 for precision measurement of m_W (< 10 MeV)!

TABLE 7 Main performance characteristics of the ATLAS and CMS trackers

	ATLAS	CMS
Reconstruction efficiency for muons with $p_T = 1 \text{ GeV}$	96.8%	97.0%
Reconstruction efficiency for pions with $p_T = 1 \text{ GeV}$	84.0%	80.0%
Reconstruction efficiency for electrons with $p_T = 5 \text{ GeV}$	90.0%	85.0%
Momentum resolution at $p_T = 1$ GeV and $\eta \approx 0$	1.3%	0.7%
Momentum resolution at $p_T = 1$ GeV and $\eta \approx 2.5$	2.0%	2.0%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 0$	3.8%	1.5%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 2.5$	11%	7%
Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0 (\mu m)$	75	90
Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5$ (µm)	200	220
Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 0 (\mu m)$	11	9
Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 2.5$ (µm)	11	11
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0 \; (\mu m)$	150	125
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5 (\mu m)$	900	1060
Longitudinal i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 0 \ (\mu m)$	90	22-42
Longitudinal i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 2.5$ (µm)	190	70

Performance of CMS tracker is undoubtedly superior to that of ATLAS in terms of momentum resolution. Vertexing and b-tagging performances are similar. However, impact of material and B-field already visible on efficiencies.

D. Froidevaux (CERN)

Remember that tracking at the LHC is a risky business!

ATLAS pixels, September 2006

- All modules and services integrated and tested
- 80 million channels !
- 10%-scale system test with cosmics done at CERN
- Inst. in ATLAS: June 2007

D. Froidevaux (CERN)

<u>CMS silicon strips</u> • 200 m² Si, 9.6 million channels • 99.8% fully operational • Signal/noise ~ 25/1

- 20% cosmics test under way
- Inst. in CMS: August 2007

R&D and construction for 15 years \rightarrow excellent EM calo intrinsic performance

• Stand-alone performance measured in beams with electrons from 10 to 250 GeV

D. Froidevaux (CERN)

D. Froidevaux (CERN)

One word about neutrinos in hadron colliders:

- ✓ since most of the energy of the colliding protons escapes down the beam pipe, one can only use the energy-momentum balance in the transverse plane
 - → concepts such as E_T^{miss} , missing transverse momentum and mass are often used (only missing component is E_z^{miss})
 - → reconstruct "fully" certain topologies with neutrinos, e.g. W → lv and even better H → $\tau\tau$ → lv_1v_{τ} hv_{τ}
- ✓ the detector must therefore be quite hermetic
- → transverse energy flow fully measured with reasonable accuracy
- → no neutrino escapes undetected
- → no human enters without major effort

(fast access to some parts of ATLAS/CMS quite difficult)

For an integrated luminosity of ~ 100 pb⁻¹, expect a few events like this? This is apparent E_T^{miss} occurring in fiducial region of detector!

CMS muon spectrometer

- Superior combined momentum resolution in central region
- Limited stand-alone resolution and trigger (at very high luminosities) due to multiple scattering in iron

• Degraded overall resolution in the forward regions ($|\eta| > 2.0$) where solenoid bending power becomes insufficient

ATLAS muon spectrometer

- Excellent stand-alone capabilities and coverage in open geometry
- Complicated geometry and field configuration (large fluctuations in acceptance and performance over full potential $\eta \ x \ \phi$ coverage ($|\eta| < 2.7$)

TABLE 12 Main parameters of the ATLAS and CMS muon measurement systems as well asa summary of the expected combined and stand-alone performance at two typicalpseudorapidity values (averaged over azimuth)

Parameter	ATLAS	CMS
Pseudorapidity coverage		
-Muon measurement	$ \eta < 2.7$	$ \eta < 2.4$
-Triggering	$ \eta < 2.4$	$ \eta < 2.1$
Dimensions (m)		
-Innermost (outermost) radius	5.0 (10.0)	3.9 (7.0)
-Innermost (outermost) disk (z-point)	7.0 (21-23)	6.0-7.0 (9-10)
Segments/superpoints per track for barrel (end caps)	3 (4)	4 (3-4)
Magnetic field B (T)	0.5	2(+4)
-Bending power (BL, in T· m) at $ \eta \approx 0$	3	16
-Bending power (BL, in T· m) at $ \eta \approx 2.5$	8	6
Combined (stand-alone) momentum resolution at		
$-p = 10 \text{ GeV}$ and $\eta \approx 0$	1.4% (3.9%)	0.8% (8%)
$-p = 10 \text{ GeV}$ and $\eta \approx 2$	2.4% (6.4%)	2.0% (11%)
$-p = 100 \text{ GeV}$ and $\eta \approx 0$	2.6% (3.1%)	1.2% (9%)
$-p = 100 \text{ GeV}$ and $\eta \approx 2$	2.1% (3.1%)	1.7% (18%)
$-p = 1000 \text{ GeV}$ and $\eta \approx 0$	10.4% (10.5%)	4.5% (13%)
$-p = 1000 \text{ GeV}$ and $\eta \approx 2$	4.4% (4.6%)	7.0% (35%)

CMS muon performance driven by tracker: better than ATLAS at $\eta \sim 0$ ATLAS muon stand-alone performance excellent over whole η range

How operational will LHC detectors be in summer 2009?

<u>Current status of ATLAS</u>: installation and global commissioning finished

All measurements below given in situ after installation, cabling and sign-off (but not always for 100% of all channels)

ATLAS sub-detector	Nb of channels	Non-working channels(%)
Pixels	80x10 ⁶	0.4
Silicon strip detector (SCT)	6x10 ⁶	0.3
Transition Radiation Tracker (TRT)	3.5x10 ⁵	1.5
Electromagnetic calorimeter	1.7x10⁵	0.04
Fe/scintillator (Tilecal) calorimeter	9800	0.8
Hadronic end-cap LAr calorimeter	5600	0.09
Forward LAr calorimeter	3500	0.2
Barrel Muon Spectrometer	7x10⁵	0.5
End-cap Muon Spectrometer (TGC)	3.2x10 ⁵	0.02

Current status of CMS:

pixels and end-cap crystals installed last summer, a real feat: just in time!

First beams: a time of excitement (and panic!)...

The beginning of any experiment is exhilarating and fraught with stress:

- ✓ Are we going to be ready from detector to online to Grid distribution of data?
- ✓ How soon can we see all detectors switched on?
- ✓ When are we really going to need trigger switched on fully?

Bunch intensity measured by the beam pick-up monitoring system during a coast of more than 20 minutes of beam 2 on 12/09/2008. The relative precision determined from the scatter of data points is 10%. The absolute intensity value is not calibrated yet and corresponds roughly to unit of 10¹⁰ protons. **!9**

Beam splash from collimators in front of ATLAS

2D display in $\eta - \phi$ of energy deposited in LAr EM calorimeter per cell (layer 2):

 structures seen are due to material between collimators and calorimeter (mostly 8-fold structure of end-cap

energy seen per event is huge!

Artist view of beam halo event in ATLAS TRT

Note that beam conditions were not yet considered safe enough to operate ATLAS silicon-strip or pixel detectors at nominal settings

D. Froidevaux (CERN)

<u>Global cosmics</u>: accumulate data for calibration and alignment and get better prepared for 2009 collisions

<u>Global cosmics</u>: accumulate data for calibration and alignment and get better prepared for 2009 collisions</u>

Cosmic-ray data with solenoid on:Cosmic-ray data with solenoid on:look at 200k tracks going through pixelslook at 2M tracks going through barrel TRT

Cosmic-ray data particularly useful for tracking detectors:

- See talks by M.-J. Costa and T. Rodrigo on ATLAS/CMS commissioning
- Calibration of gaseous detectors (e.g. high threshold for TRT)
- Alignment of inner detector and muon spectrometer systems (e.g. pixels) D. Froidevaux (CERN) 34 DISCRETE 2008, Valencia, 15th of December 2008

<u>Global cosmics</u>: accumulate data for calibration and alignment and get better prepared for 2009 collisions</u>

Cosmic-ray data particularly useful for tracking detectors:

- Global alignment of inner detector and muon spectrometer (and calorimeters?)
- Correlation between two measurements reasonable, energy loss in calorimeters as expected
 - D. Froidevaux (CERN)

A realistic luminosity scenario for 2009 and beyond?

Parameter	Phase A	Phase B	Phase C	Nominal
k / no. bunches	43-156	936	2808	2808
Bunch spacing (ns)	2021-566	75	25	25
N (10 ¹¹ protons)	0.4-0.9	0.4-0.9	0.5	1.15
Crossing angle (µrad)	0	250	280	280
√(β*/β* _{nom})	2	$\sqrt{2}$	1	1
σ* (μ m, IR1&5)	32	22	16	16
L (cm ⁻² s ⁻¹)	6x10 ³⁰ -10 ³²	10 ³² -10 ³³	(1-2)x10 ³³	10 ³⁴
Year ("revised" schedule ∫Ldt (crystal ball) Energy (if not 14 TeV)	e) 2009 10-100 pb ⁻¹ 8-10 TeV	2010 0.5-2 fb ⁻¹	2010-2012 o(10 fb ⁻¹)	> 2012 o(100 fb ⁻¹)
Based on J.Wenninger CERN-FNAL School June 2007	Note: for ~ $6x10^6$ s of pp physics running per year, Expect: ~ 0.6 fb ⁻¹ /year if L = 10^{32} ~ 6 fb ⁻¹ /year if L = 10^{33} ~ 60 fb ⁻¹ /year if L = 10^{34}			

First physics with early data: a few examples ...

Main point is that this is going to be unchartered territory!

However, early data analysis will focus mostly on SM

- 1.
- ...u performance of ...mplex detector measure basic SM processes und compare to theory and rious MC tools 2.

This is far more important than superseding e.g. Tevatron Higgs-boson limits, in the cases where they are not at the level of the expected rates for a SM Higgs boson

Jets are going to be everywhere... Look for the unexpected!

- Contact interactions create large rate at high P_T and immediate discovery possible
 - Error dominated by jet E-scale (~10%) in early running (10 pb⁻¹)
 - $\Delta E \sim 10\%$ not as big an effect as $\Lambda^+= 3 \text{ TeV}$ for $P_T > 1 \text{ TeV}$.
- 10 pb⁻¹: reach beyond Tevatron exclusion Λ⁺ < 2.7 TeV.</p>

Electrons pairs in ATLAS at low luminosity

Same with muons ...

Sources of low invariant mass di-muons

After all cuts:

~ 160 Z $\rightarrow \mu\mu$ evts per day at L = 10³¹ Note: σ_Z (LHC)/ σ_Z (Tevatron) ~ 10

Muon spectrometer alignment, ECAL uniformity, energy/momentum scale of full detector, lepton trigger and reconstruction efficiency, ...

After all cuts: ~ 4200 (800) J/ψ (Y) → μμ evts per day at L = 10³¹ (for 30% machine x detector data taking efficiency) Tracker momentum scale, trigger performance, detector efficiency, ...

Precision on σ (Z \rightarrow µµ) with 100 pb⁻¹: < 2% (exp. error), ~10% (luminosity error)

D. Froidevaux (CERN)

40

DISCRETE 2008, Valencia, 15th of December 2008

Z decays to leptons:

a tool for precise understanding of the detector First few pb⁻¹'s: tracker & calorimeters

Tracker Alignment

	Expected Day 0	Goals for Physics
Tracker alignment	20-200 μm in Rφ	Ο(10 μm)

Calorimeter calibration

	Expected Day 0	Ultimate goals
ECAL uniformity	~4%	< 1%
Lepton energy	0.5-2%	0.1%
HCAL uniformity	2-3%	< 1%
Jet energy	<10%	1%

ECAL, HCAL: intercalibration using azimuthal symmetry (min bias).

ECAL: π^0 calibration, then electrons

HCAL: di-jet balancing; check with photon+jets; Jet Energy Scale set by W→jj in top events

D. Froidevaux (CERN)

First top quarks seen outside Fermilab: top-pair cross-section through semileptonic channel

- Extract signal using event > 120 counting or fit to M_{jjj} 8 100 distribution 2 2 80
 - Can establish signal for 100 pb⁻¹ even with pessimistic background

- With 100 pb⁻¹ expect to commission b-tagging and understand efficiency to ~5% - use in selection
 - Require 1 or 2 b-tagged jets, reduces non-tt b/g and helps select correct combination

For O(fb⁻¹), b-tagging, PDFs & luminosity become important

Expt Int.L Stat (%) Syst (%) Method Lumi (%) ATLAS count (W→e) 100 pb⁻¹ 2.5 14 5 7.4 ATLAS 100 pb⁻¹ likelihood 15 5 CMS 1 fb⁻¹ 1.2 9.2 10 count CMS 10 fb⁻¹ 9.2 0.4 3 count

Obvious candidates for first searches: heavy resonances decaying to leptons (e.g. Z'_{SSM})

Mass	Expected events for 1 fb ⁻¹ (after all analysis cuts)	Integrated luminosity needed for discovery (corresponds to 10 observed events)
1 TeV	~ 160	~ 70 pb ⁻¹
1.5 TeV	~ 30	~ 300 pb ⁻¹
2 TeV	~ 7	~ 1500 pb ⁻¹

- ✓ With 100 pb⁻¹ large enough signal for discovery up to m > 1 TeV
- ✓ Signal is (narrow) mass peak on top of small **Drell-Yan background**
- ✓ Ultimate calorimeter performance not needed Tevatron reach (5σ, 7 fb⁻¹): ~ 1 TeV

```
Tevatron reach (5\sigma, 7 \text{ fb}^{-1}): ~ 1 TeV
```

```
Ultimate ATLAS reach (300 fb<sup>-1</sup>): ~ 5 TeV
```


Obvious candidates for first searches: R-parity conserving SUSY

Eventual discovery reach of the LHC

Excited quarks $q^* \rightarrow \gamma q$: up to $m \approx 6$ TeV Leptoquarks: up to $m \approx 1.5$ TeV Monopoles $pp \rightarrow \gamma \gamma pp$: up to $m \approx 20$ TeV Compositeness: up to $\Lambda \approx 40$ TeV Z' $\rightarrow ll$, jj: up to $m \approx 5$ TeV W' $\rightarrow lv$: up to $m \approx 6$ TeV etc... etc....

• Opportunities for discoveries of new physics are numerous and detectors have been optimised using benchmarks from many models

• But some things might be beyond reach of LHC (and even SLHC!):

✓ Higgs-boson self-coupling
 ✓ Charginos and neutralinos
 in most scenarii

LHC discovery potential versus time

What next?

Why this fear that experimental particle physics is an endangered species? The front-wave part of this field is becoming too big for easy continuity between the generations. I have been working on LHC for 25 years already. Most of the analysis will be done by young students and postdocs who will have no idea what the 7000 tonnes of ATLAS is made of. More importantly, fewer and fewer people remember for example that initially most of the community did not believe tracking detectors would work at all at the LHC.

The stakes are very high: one cannot afford unsuccessful experiments (shots in the dark) of large size, one cannot anymore approve the next machine before the current one has yielded some results and hopefully a path to follow

Theory has not been challenged nor nourished by new experimental evidence for too long

This is why the challenge of the LHC and its experiments is so exhilarating! A major fraction of the future of our discipline hangs on the physics which will be harvested at this new energy frontier.

How ordinary or extraordinary will this harvest be? Only nature knows.

Fortunately, there is much more to experimental particle physics

than its dinosaurs!

