LHC physics with early data

Stefan Tapprogge

Institut für Physik

DESY Theory Workshop "Collider Phenomenology"

Hamburg Sep. 29th - Oct. 2nd 2009

- Motivation
- LHC & ATLAS and CMS
- "Rediscovery" of Standard Model
 - \rightarrow ... and more
- New physics beyond SM
- Summary

LHC motivation / expectation

LHC & ATLAS and CMS

Expectation for 2009/2010

 all numbers shown have uncertainties

start-up end of 2009

o 1 month commissioning

o 1 month commissioning / pilot run

- \rightarrow 3 months at \sqrt{s} = 7 TeV
 - o 1 month 'step-up'
- \rightarrow 5 months at \sqrt{s} = 8-10 TeV
- → 1 month heavy ions

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Expectation for 2009/2010 (cont'd)

- instantaneous luminosity of up to 1-2*10³² cm⁻² s⁻¹
 - at most 2-3 inelastic events per crossing (on average)
- integrated luminosity (delivered by LHC)
 - → up to 200-300 pb⁻¹
 - possibly shared between two c.m.s. energies
 - o 7 TeV and 8-10 TeV
- impact of reduced c.m.s. energy on cross-sections compared to design
 - \rightarrow M_X = 100 GeV
 - 0.3-0.5 resp. 0.6-0.7 (7 resp. 10 TeV)
 - \rightarrow M_X = 1 TeV
 - 0.1-0.2 resp. 0.3-0.5 (7 resp. 10 TeV)

ratios of parton luminosities

at 7 TeV, 10 TeV and 14 TeV LHC

ATLAS and CMS

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel 1 T endcap)	4 T solenoid + return yoke
Tracker	Si pixels, strips + TRT σ/p _T ≈ 5x10 ⁻⁴ p _T + 0.01	Si pixels, strips σ/p _T ≈ 1.5x10 ⁻⁴ p _T + 0.005
EM calorimeter	Pb+LAr $\sigma/E \approx 10\%/\sqrt{E} + 0.007$	PbWO4 crystals $\sigma/E \approx 3\%/\sqrt{E} + 0.003$
Hadronic calorimeter	Fe+scint. / Cu+LAr (10λ) σ/E ≈ 50%/√E + 0.03 GeV	Brass+scintillator (7 λ + catcher) σ/E ≈ 100%/√E + 0.05 GeV
Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (ID +MS)	σ/p _T ≈ 1% @ 50GeV to 10% @ 1TeV (DT/CSC+Tracker)
Trigger	L1 + Rol-based HLT (L2+EF)	L1+HLT (L2 + L3)

Commissioning with cosmic muons

Energy deposited by muons

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Experiments are functioning

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Start-up of LHC physics

threefold approach (not fully sequentially)

- 1. detector (and reconstruction) understanding with collision data
 - beyond extensive commissioning with cosmic muons

2. "re-discovery" of Standard Model

- establish how pp collisions really look like at LHC
- followed later on by precision measurements
- search for new physics beyond the SM
 - and (precision) measurements of its properties

References

- > ATLAS: Expected Performance of the ATLAS Experiment
 - o CERN-OPEN-2008-020 or arXiv 0901.0512
- > ATLAS: further public results
 - o <u>https://atlas-physco.web.cern.ch/atlas-physco/ATLASPubNotes.html</u>
 - o <u>https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults</u>
- > CMS: "Physics TDR"
 - > CERN-LHCC-2006-001 or J.Phys. G 34 (2007) 995-1579
- > CMS: "Post Physics TDR" Results

><u>https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults</u>

• most (simulation) studies done for $\sqrt{s} = 14$ TeV

 \rightarrow recently studies 'published' for $\sqrt{s} = 10$ TeV as well

The complexity of pp at LHC

• Pile-up included or not yet ?

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Schema of pp collision

The SM menu (sort of)

- minimum bias properties
- underlying event
- jet production
 - cross-section, di-jet mass and angular distribution, shapes
- direct photon production
- W/Z production
 - \rightarrow incl. in association with jets
- Drell-Yan lepton pair production
 - → incl. low mass resonances
- di-boson production
 - → gauge boson self coupling
- top quark production

"Roadmap" for first data

 1-10 pb⁻¹: calibration and alignment with collision data, first measurements ("minimum bias", ...)

 ~100 pb⁻¹: refinement of calibration and alignment, re-discovery and measurement of SM processes, first serious sensitivity for new physics

• expected statistics, scaled to 10 TeV (and 100 pb⁻¹)

- >5*10⁶ "minimum bias" events (after trigger)
 - 10⁸ jet events (after Trigger)
- 5*10⁶ direct photon events
- 2.5*10⁵ W \rightarrow Iv events
- 2.5 $*10^4$ Z→II events
 - >10⁴ Drell-Yan events (small invariant masses)

~1 fb⁻¹: sensitivity for Higgs boson discovery, supersymmetry, new resonances (O(TeV))

Minimum bias event properties

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Seite 17

Underlying event structure

underlying event (UE) definition

- all particle production accompanying the hard scatter
- → importance → contribution from multiparton interaction to UE
- measurement in transverse region
 - relative to jets (or Drell-Yan pair)
 distributions shown for 100 pb⁻¹
- importance of minimum track p_{T}

Dijet azimuthal decorrelation

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Jet shape measurements

- global transverse thrust
 - $\rightarrow \frac{1}{2}$ for homogenous event

global thrust minor

deviation from thrust axis

sensitivity to modeling of multi-jet events

- \rightarrow insensitive to jet algorithm and energy scale corrections
- \rightarrow input for MC tuning

Z(ee) production

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

$W(\mu\nu)$ production

²0,4000 € 0,3500

2000

1000

500

0

20

40

g 1500

= 10 pb⁻¹

CUT

60

80

- W selection
 - single muon with \rightarrow p_{T} > 25 GeV and $|\eta|$ < 2 o as well as isolation
- background suppression by cut on m_{T} :

$$m_T^{\rm W} = \sqrt{2 p_T^l p_T^{\rm v} (1 - \cos \Delta \phi)}$$

reconstruction efficiency via "tag & probe" also for muons

√s=14TeV

CMS-PAS-EWK-07-002

CMS Preliminary

 $QCD \rightarrow \mu X$

100 120 140 160 180 200

 M_{τ} (GeV/c²)

W→µv

 $t\bar{t} \rightarrow \mu X$ Z → µµ $W \rightarrow \tau \nu$

 $Z \rightarrow \tau \tau$

Measurement of μ charge asymmetry

W mass determination

with initial data (only 15 pb⁻¹) Events/(1.0) ATLAS 120 🕀 117 MeV р_т(е): \rightarrow → energy scale dominates 2000 M_T(μ): 57 ⊕ 231 MeV 1500 → recoil modeling dominates 1000 $m_T^{\rm W} = \sqrt{2 p_T^l p_T^{\rm v} (1 - \cos \Delta \phi)}$ precision measurement: with 500 higher integrated luminosity

CERN-OPEN-2008-020

= 1.0

W/Z+jet production

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Drell-Yan lepton pair production

- two electrons with E_T > 30 GeV and $|\eta|$ <2.5
 - with identification criteria
 - not required: opposite charges

top pair background determination
 → from data using eµ events

Rediscovery of top quark

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Stefan Tapprogge, Johannes Gutenberg-Universität Mainz

Top quark cross-section

400 Store 350 eµ-channel tt dilepton 300 tt other 250E single top 200 Z+jets W+jets 150 WW/WZ/ZZ 100 E ATLAS preliminary 50 Simulation Q_h 2 3 4 5 6 9 10 Number of Jets

$\Delta\sigma/\sigma$ (%)	ee channel	$\mu\mu$ channel	$e\mu$ channel	combined
Stat only	-7.5 / 7.8	-6.0/6.2	-4.0/4.1	-3.1/3.1
Luminosity	-17.3 / 26.3	-17.4 / 26.2	-17.4/26.2	-17.4 / 26.2
Electron Efficiency	-4.5 / 5.0	0.0 / 0.0	-2.2/2.4	-1.9 / 1.9
Muon Efficiency	0.0 / 0.0	-4.6 / 5.2	-2.1 / 2.2	-2.2 / 2.3
Lepton Energy Scale	-0.3 / 1.6	-2.4/2.0	-0.5 / 0.5	-0.8 / 0.8
Jet Energy Scale	-3.4/3.2	-3.0/4.5	-2.5 / 2.5	-2.8 / 3.0
PDF	-2.1 / 2.3	-1.4/1.6	-1.6/1.8	-1.7 / 1.8
ISR FSR	-4.0/4.2	-3.6/3.7	-3.5/3.5	-3.6/3.7
Signal Generator	-4.7 / 5.4	-4.6/5.4	-4.7 / 5.3	-4.7 / 5.3
Cross-Sections	-0.3 / 0.3	-0.3 / 0.3	-0.3 / 0.3	-0.3 / 0.3
Drell Yan	-1.4/1.3	-2.2 / 2.2	-0.5 / 0.5	-0.8 / 0.9
Fake Rate	-9.7/9.5	-1.1 / 1.1	-6.2 / 6.2	-4.0 / 4.0
All syst but Luminosity	-12.7 / 13.9	-8.9 / 10.2	-9.4 / 10.2	-8.7/9.6
All systematics	-21.0/30.3	-19.3 / 28.3	-19.5 / 28.5	-19.3 / 28.1
Stat + Syst	-22.3 / 31.3	-20.2 / 29.0	-19.9/28.8	-19.5 / 28.3

- dilepton channel
 - integr. lumin. 200 pb⁻¹
- simple object and event selection
 - → leptons (e,µ) E_T > 20 GeV ○ isolation required
 - → jets (Cone 0.4) E_T > 20 GeV
 - \rightarrow $E_T^{miss} > 20 \text{ GeV}$
- data driven background determination
- signal-to-background ratio between 3.8 (μμ) and 5.5 (eμ)

AS

ATL-PHYS-PUB-2009-086

"re-discovery" of Standard Model (and more...)

Search for the Higgs boson at LHC

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

Examples of Higgs signals

Discovery potential Higgs boson

• for an integrated luminosity of 2 fb⁻¹ (\sqrt{s} =14 TeV)

- → 5σ sensitivity for discovery: 143 GeV < M_{H} < 179 GeV
- \rightarrow expected range of exclusion (95% C.L.)on M_H: 115 to 460 GeV
 - 0 studies valid only for $\ L \ge 2 \ fb^{-1}$
 - o not all relevant channels have been included

√s=14TeV

search for new physics beyond the Standard Model

On the way to Terra Incognita ...

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Recipe (checklist) for discoveries

• to find a deviation is easy ...

> to prove that it stems from new physics is harder

→ simple-minded recipe

o find variable(s) discriminating between signal and background
o cut away most background (maximing signal significance)
o estimate remaining background events → look at yield ...

• need to care/worry about

is the detector behavior really understood ?

• efficiencies, fake rates, energy/momentum scales, non-Gaussian resolution, ...

try to obtain as much information as possible from data

→ is the SM prediction really understood ?

o cross-section, kinematic distributions, underlying event, ...

 \rightarrow must know sources for uncertainties on these

Compositeness

• present exclusion limit (Tevatron) Λ^+ : ~2.7 TeV

Resonances in dijets

• present exclusion limit (Tevatron) dijet mass: ~ 0.8 TeV

Drell-Yan lepton pair production

- with identification criteria
- not required:
 opposite charges

√s=14TeV

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

Search for new gauge bosons: Z'

• two electrons with $E_{\rm T}$ > 30 GeV and $|\eta|$ <2.5

- \rightarrow with identification criteria
- not required:
 opposite charges

Standard Model

√s=14TeV

Search for new gauge bosons: Z'

- two electrons with $E_{\rm T}$ > 30 GeV and $|\eta|$ <2.5
 - with identification criteria
 - not required: opposite charges

Z' discovery potential
 2 electrons (p_T > 65 GeV)

→ exclusion limit (95% C.L.)
 ~ 1 TeV by Tevatron

DESY Theory Workshop "Collider Phenomenology" Sep. 29 - Oct. 2nd, 2009

√s=14TeV

Misalignment and discovery potential

Z' χ model mass spectrum

 invariant μμ mass distribution for several misalignment scenarios

 Σ'_χ model

• 1-CL_b value vs. integrated luminosity

o for Z'_{χ} model

Discovery potential for W'

Supersymmetry

• mSUGRA

- In the symmetry breaking
- defines benchmark
 points

 $\tilde{\chi}_{2}^{0}$

w⁺

a

b

W

Inclusive SUSY search

event selection

- → lepton(s): electron or muon ($|\eta|$ <2.5 and p_T > 10 GeV)
- \rightarrow jets: cone algorithm (R=0.4, $|\eta|$ <2.5 and E_T > 20 GeV)
- $\rightarrow E_T^{miss}$: using calorimeter cells, adding muon contribution

Discovery reach for SUSY

• inclusive search ($\sqrt{s} = 10$ TeV and 200 pb⁻¹)

- → using 0,1 or 2 leptons and up to 4 jets
- discovery of squarks and gluinos with masses up to 600-700 GeV possible (case of R-parity conservation)

√s=10Te\

TL-PHYS-PUB-2009

Extra dimensions / mini black holes

mini black

Universal extra dimensions

analysis similar to inclusive supersymmetry search

A vision towards initial results ...

ATL-PHYS-CONF-2008-015

Summary and outlook

• first LHC physics run in 2010

- $\rightarrow \sqrt{s}$ = 7 TeV (with possible step-up to 8-10 TeV)
- \rightarrow integrated luminosity of 200 300 pb⁻¹
- ATLAS and CMS are ready and well prepared to exploit this initial data
 - → extensive commissioning (e.g. muons from cosmic rays)
- threefold approach to initial data taking
 - refine detector understanding with collision data
 - establish properties of pp collisions at 7 TeV and beyond

o 're-discovery' of the Standard Model

search for new phenomena and surprises
 first possibility to move beyond Tevatron sensitivity

The very final slide

 hope to be soon in a situation where we know that there are a lot of unknowns to be explored

