STATISTICAL APPROACHES TO

CERTAIN PROBLEMS IN GEOPHYSICS

ЪУ

STEPHEN MILTON SIMPSON, JR.

B.S., YALE UNIVERSITY

(1950)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(1953)

Signature of Author Department of Geology and Geophysics August 14, 1953 Certified by Thesis Supervisor Chairman, Departmental Committee on Graduate Students

ABSTRACT

STATISTICAL APPROACHES TO CERTAIN PROBLEMS IN GEOPHYSICS by Stephen Milton Simpson, Jr.

Submitted to the Department of Geology and Geophysics on August 14, 1953, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Several specific problems in seismic and gravitational data interpretation are considered from the statistical viewpoint. Least squares techniques are applied to the two types of interpretation, and, for seismic records, other approaches are discussed.

The fitting of an nth order polynomial in x and y to gravity data by the method of least squares is investigated as a method for approximating regional gravitational anomalies. The normal equations for the general case are derived and simplification considered. It is shown that. with a symmetrical rectangular distribution of gravity readings, each set of these equations breaks up into smaller subsets. The resulting simplification brings fairly high order polynomials into the range of practical computation. For a particular gridwork the polynomial coefficients may be expressed explicitly as linear combinations of the right hand members of the normal equations. Once this is done, the least squares fitting of any data taken over such a gridwork may be effected relatively easily. The explicit expressions for the coefficients are derived for a square gridwork of 121 points and for polynomials of order 2, 3, and 4. A set of actual gravity readings is analysed in this fashion. The gravity residuals are determined and contoured. The comparison of these contours with each other (for various order polynomials) and with contours derived by a standard, much more involved process, is favorable. This consistency, despite certain detrimental features of the data used indicates that the method may deserve to find practical application as a routine, first step, gavity reduction procedure. The problem is pursued with regard to different gridworks, and a table is derived which contains, in effect, the normal equations for representative grids up to a size containing 2601 points, and for polynomials through order four.

As an approach to the understanding of linear operators, as they apply to the analysis of seismic records, a simple form of linear operator is studied. For this form of operator, the so-called "cosine operator", certain properties are derived in the general case, and interpreted geometrically. These include relationships between the exact form of cosine operator chosen, the correlation properties of the series which the operator is to predict, the individual errors of prediction, and the sums of squared errors of prediction. The results are applied to two classes of time series in connection with spectrum analysis, and, for one class, filter characteristics are computed for a specific cosine operator.

An iterative method for determining least squares fits of linear operators to multiple time series is discussed geometrically. An argument is presented, based on the geometry of the two term operator, to show that, in the case of near singularity where many solutions will almost satisfy the least squares criterion, the exact solution is necessary for the purposes under consideration.

Several interpretive procedures are devised for finding information from seismic records. The first deals with discriminating an unknown velocity in a two velocity system. An adaption is made for detecting reflections, and practical example are given of the two uses. The second employs a form of testing phase, between seismic traces and their predictions by linear operators, to determine reflection times, and is illustrated with an example. The third combines the concept of ensemble averages with linear operators to determine step-out times of reflections. The last procedure suggests a special experimental arrangement, coupled with a certain type of correlation analysis, for detecting reflections.

Included as appendixes are descriptions of four programs written by the author for the Whirlwind I Digital Computer. These permit high speed computation of: two dimensional polynomial residuals; linear operator prediction errors and their running averages; least squares linear operator coefficients (by an iterative method); and autocorrelations, cross-correlations and "traveling" auto- or cross-correlations.

Thesis Supervisor: Patrick M. Hurley Title: Professor of Geology

TABLE OF CONTENTS

•

Acknowledgments	1 11
PART I LEAST SQUARES RESIDUAL GRAVITY Introduction Theory Simplified Solutions Case n = 1 Case n = 2 Case n = 3 Case n = 4 Discussion Applications Example Setting up the Normal Equations	I-1 I-2 I-5 I-6 I-7 I-8 I-11 I-15 I-16 I-17 I-20
Statistical Methods Single Frequency Cosine Operators Geometry of Cosine Operators Conclusions Example Cyclical Nature of Cosine Operators Cosine Operator Predicting an Autoregressive Series Cosine Operators on Series with Gaussian Spectrum Distribution Computational Example A Method of Finding Linear Operators for Least Squares Fitting Procedures	II-1 II-2 II-4 II-6 II-8 II-9 II-10 II-11 II-14 II-15 II-18 II-22
Velocity Separation I Tests of the Method I Conclusions I Phase Test I Ensemble Average I	II-1 II-2 II-6 II-9 II-10 II-13 II-15

.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professor P.M. Hurley, thesis supervisor, for his encouragement of and confidence in the work of this thesis.

Among his many co-workers, the author must acknowledge the help of the following persons: Enders A. Robinson for his stimulation, advice, and training in the fundamentals and practice of time series analysis, and in the programming for digital computers; Theodore B. Madden for his interest and assistance, especially in developing the concept of velocity separation and suggesting the problem of least squares residual anomalies; Markwick Smith for many helpful discussions and comments on the various subjects treated here; Howard Briscoe for assistance with programming difficulties; Whirlwind tape room personnel Margaret Mackey and Katherine Campbell, and machine operator Robert Gilday, for their invaluable cooperation.

Finally, the author is deeply indebted to his wife Pauli, on whom fell the task of preparing the manuscript with its very involved mathematical notations.

1

INTRODUCTION

It is well known that experimental data taken in Geophysical studies surpasses in accuracy the interpretation that must be made on the data. The reason is that the problems are very complex. For one thing, it can be shown, in the treatment of certain types of problems, that no unique solution exists. An example is the infinity of possible mass distribution corresponding to a given gravity profile. In other problems the physical situation dealt with is so inhomogeneous and anisotropic that exact solution is impossible. It would be hopeless to attempt to explain rigorously the presence of any particular oscillation on a seismogram.

Data such as this, subject to a certain amount of randomness, and on which "best" estimates must be made, is well suited to statistical evaluation. The numerical data taken in gravity surveys does undergo evaluation of this type. The least squares approach, however, is not being utilized on a large scale. This is probably due to practical limitations, and it is one of the problems of this paper to see if these limitations may be minimized.

On the other hand, the raw data of seismology occurs in analogue or curve form. Standard procedures of interpretation consist mainly of rules of thumb, learned by long experience, and still largely dependent on the qualification of the individual interpreter. There is a need to put these

11

procedures on a more rigorous basis. This basis may be found in the concepts of time series as developed in economics, meteorology, and other fields. Much work must be done to determine the best means of applying these concepts to seismic data, since, in certain ways, both the data and the desired information are unique. Another purpose of this paper, then, is to propose several special methods of application, and to develop certain theory necessary for a better understanding of time series concepts as they apply to seismology.

Statistical methods, in general, require computation, and often on a large scale. A "program" written for a digital computer is a tool which will do this work automatically. The author has written several programs for the Whirlwind I Digital Computer to perform computations related to the above discussed problems, and includes these programs as appendixes, with the feeling that other investigators may find them useful.

111

PART I

.

.

LEAST SQUARES RESIDUAL GRAVITY Introduction

Variations in the attraction of gravity over the surface of the earth are due to many causes, but these often fall into two general categories. Phenomena such as the thickening or thinning of the crust cause relatively slow, smooth and widespread gravity fluctuations. We call these regional effects. On the other hand, such things as ore body emplacements, caverns, and local density heterogeneities cause more rapid irregular changes, and these are termed local effects.

The actual gravity values measured over an area usually represent a combination of regional and local effects. The separation of these effects is of primary importance in interpretation, and many mathematical methods have been devised to eliminate guesswork in the problem. Essentially, most of the methods represent an averaging process which gives at each point and approximate value of the regional effect alone. The local effect is then found simply by subtraction from the measured values.

Many of these methods possess two undesirable aspects. First of all the averaging must be done at each point individually. Secondly, the averaging includes only gravity values in the vicinity of the point considered. It is hard to say just how serious these drawbacks are, but it seems worth-while to investigate a method which does not

encounter them. In a least squares approximation all values are averaged simultaneously. Moreover, the resulting approximation is not merely a set of discreet points but a continuous surface of values over the area, a property which is sometimes of value.

The purpose of Part I is to consider in some detail how the method of least squares may be applied to this problem, and how a simplified method of procedure may be set up for practical application.

Part I represents an extension of the work done by W.B. Agocs ‡. Agocs approximates the regional anomaly by a plane surface derived from least squares criteria. He shows that, in an artifical example, the residual anomaly is better derived from least squares procedures than by the use of the "arithmetic mean regional" procedure. For higher order polynomials than a plane surface the algebra rapidly becomes more involved.

Theory

It is easiest to illustrate the method for an idealized geologic example in two dimensions. Fig. 1.1 shows a wave in the bottom of the crust and a single ore body emplacement. The points on the graph would then be the measured values of gravity across the area. Fitting a fairly low order polynomial to these values by least squares gives us the curve AB which best fits all the points. ‡ Ref. 1

This curve will approximate the regional effect more closely than the local effect, and it is apparent that the fit will be closest at some distance from the ore body. Thus the dashed line of Fig. 1.1, representing the difference between the polynomial and the observed values, gives a good indication of the location of the anomalous mass.

In the two-dimensional problem the approximating polynomial is a surface, and interpretation is made from contours of the residuals.

Let us approximate the regional gravity by a polynomial of order n in x and y.

$$G(xy) = \sum_{\substack{j=0 \ j=0}}^{n} \sum_{j=0}^{n-1} c_{j} x^{j} y^{j} \qquad 1.1$$

Thus for n=2

$$G(xy) = c_{00} + c_{10}x + c_{20}x^2 + c_{11}xy + c_{01}y + c_{02}y^2$$

The c's are unknown coefficients to be determined in accordance with the condition that the sum of the squares of the residuals is to be minimized. Let g(xy) be the measured values of gravity. Then the residuals are

and
$$B(xy) = g(xy) - G(xy)$$

 $R^{2}(xy) = [g(xy) - G(xy)]^{2}$

Hence

$$\Sigma R^{2}(xy) = \Sigma \left[\sum_{xy}^{n} \sum_{i=0}^{n-1} c_{ij} x^{i} y^{j} \sum_{k=0}^{n} \sum_{\ell=0}^{n-k} c_{k\ell} x^{k} y^{\ell} \right]$$

$$-2 \Sigma g(xy) \sum_{xy}^{n} \sum_{i=0}^{n-1} c_{ij} x^{i} y^{j} + \Sigma g^{2}(xy)$$

$$xy \quad i=0 \quad j=0$$

or

$$\sum_{xy} R^{2}(xy) = \sum_{xy} \left[\sum_{i=0}^{n} \sum_{j=0}^{n-i} n - k \sum_{k=0}^{n-k} \sum_{j=0}^{n-k} \sum_{k=0}^{n-k} \sum_{j=0}^{k} \sum_{k=0}^{k+i} \sum_{j=0}^{k+i} \sum_{j=0}^$$

Differentiating this expression with respect to c_{ij} , and setting each derivative equal to zero for minimization, we obtain (n + 1)(n + 2)/2 linear equations for the same number of unknown coefficients

$$\sum_{k=0}^{n} \sum_{k=0}^{n-k} c_{k\ell} \sum_{xy} x^{k+1} y^{\ell+j} = \sum_{xy} g(xy) x^{j} y^{j}$$

$$\sum_{k=0}^{n-k} c_{k\ell} \sum_{xy} x^{k+1} y^{\ell+j} = \sum_{xy} g(xy) x^{j} y^{j}$$

$$\sum_{xy} xy$$

$$\sum_{xy} xy$$

$$i = 0, 1, \dots (n-i)$$

$$i = 0, 1, \dots n$$

There are really three variables, or sets of variables, in equations 1.2 — the order of the polynomial n, the set of points xy, and the set of gravity values at these points. The first two of these variables determine the coefficient matrix of the $c_{k,l}$'s. Once these two are chosen, a unique inverse matrix exists, which, if found, may be used to compute the $c_{k,l}$'s for all sets of gravity values taken over the same xy pattern. This alone would be a major simplification if the method were to be used on a production basis. But we shall also see that, using a simple reasonable restriction, both the problem of finding the inverse and the form of the inverse itself will be greatly simplified.

,

Simplified Solutions

In many cases gravity readings are taken over a square, or at least rectangular, network. When this is so we may take the axes so that the rectangle is symmetrical about them, and number our ordinates and absiscae in integers, as in Fig. 1.2. It is then easy to see that over such a network summations of the form $x^{i}y^{j}$ will vanish whenever i or j is odd. Thus many of the coefficients of the $c_{k,l}$'s in equations 1.2 will drop out. This leads to considerable simplification, with the bigger systems breaking up into several smaller ones. Furthermore, if we take a definite network we may solve the equations explicitly for the $c_{k,l}$'s in terms of the summations $\Sigma_{g}(xy)x^{i}y^{j}$.

To demonstrate how this is done we shall solve the equations for n = 1, 2, 3, and 4, over a square network of 121 points. The systems are positive definite and symmetric, well adapted to solution by the matrix method of P.D. Crout[‡].

The non-vanishing summations over this network are $\sum x^{0}y^{0} \equiv M = 121$ $\sum x^{2} = \sum y^{2} = 1210$ $\sum x^{2}y^{2} = 12100$ $\sum x^{4} = \sum y^{4} = 21538$ $\sum x^{2}y^{4} = \sum x^{4}y^{2} = 215380$ $\sum x^{6} = \sum y^{6} = 451330$ $\sum x^{2}y^{6} = \sum x^{6}y^{2} = 4513300$ $\sum x^{8} = \sum y^{8} = 10185538$ $\sum x^{4}y^{4} = 3833764$

‡ Ref. 2

<u>Case n = 1</u>

The normal equations are

$$c_{00}^{M} + c_{10}^{\Sigma}x + c_{01}^{\Sigma}y = \Sigma g(xy)$$

$$c_{00}^{\Sigma}x + c_{10}^{\Sigma}x^{2} + c_{01}^{\Sigma}xy = \Sigma g(xy)x$$

$$c_{00}^{\Sigma}y + c_{10}^{\Sigma}xy + c_{01}^{\Sigma}y^{2} = \Sigma g(xy)y$$

Reducing immediately to

$$c_{00} = \frac{\Sigma g(xy)}{M} \qquad c_{10} = \frac{\Sigma g(xy)x}{\Sigma x^2} \qquad c_{01} = \frac{\Sigma g(xy)y}{\Sigma y^2}$$

giving

$$G(xy) = \frac{1}{121} \Sigma g(xy) + \frac{x}{1210} \Sigma g(xy)x + \frac{y}{1210} \Sigma g(xy)y$$

or, to six places

$$G(xy) = 8.26448 \cdot 10^{-4} [10\Sigma g(xy) + x\Sigma g(xy)x + y\Sigma g(xy)y]$$

Case n = 2

The normal equations are

°00	°01	°02	°ll	°10	°20		
M	Σу	Σ y ²	Σχγ	Σх	Σx^2	32	$\Sigma_{g}(\mathbf{xy})$
Σу	Σy^2	Σy ³	$\Sigma x y^2$	Σχγ	Σ x ² y	-	Σg(xy)y
Σy^2	Σy ³	Σ у ⁴	Σ xy ³	Σ xy ²	Σx ² y ²	=	$\Sigma_g(xy)y^2$
Σχγ	Σxy ²	Σ ху ³	$\Sigma \mathbf{x}^2 \mathbf{y}^2$	Σx ² y	Σ x ³ y	=	Σg(xy)xy
Σx	Σχγ	Σxy ²	Σx ² y	Σx^2	Σx^3	=	$\Sigma g(xy)x$
$\Sigma \mathbf{x}^2$	$\Sigma \mathbf{x}^2 \mathbf{y}$	$\Sigma \mathbf{x}^2 \mathbf{y}^2$	Σx ³ y	Σ x ³	$\Sigma \mathbf{x}^4$	æ	$\Sigma_g(xy)x^2$

which reduce to

$$c_{01} = \frac{1}{1210} \sum_{xy} (xy)y$$
 $c_{11} = \frac{1}{12100} \sum_{xy} (xy)xy$ $c_{10} = \frac{1}{1210} \sum_{xy} (xy)x$

and three equations for $c_{00}^{}$, $c_{02}^{}$, and $c_{20}^{}$

$$1210_{00} + 1210c_{02} + 1210c_{20} = \Sigma g(xy)$$

$$1210c_{00} + 21538c_{02} + 12100c_{20} = \Sigma g(xy)y^{2}$$

$$1210c_{00} + 12100c_{02} + 21538c_{20} = \Sigma g(xy)x^{2}$$

The solutions are

$$c_{00} = \frac{1}{9438} [278\Sigma g(xy) - 10(\Sigma g(xy)x^{2} + \Sigma g(xy)y^{2})]$$

$$c_{02} = \frac{1}{9438} [\Sigma g(xy)y^{2} - 10\Sigma g(xy)]$$

$$c_{20} = \frac{1}{9438} [\Sigma g(xy)x^{2} - 10\Sigma g(xy)]$$

Thus

٠

$$G(xy) = \frac{1}{9438} [278\Sigma g(xy) - 10(\Sigma g(xy)x^{2} + \Sigma g(xy)y^{2})] + y[\frac{1}{1210} \Sigma g(xy)y] + y^{2}[\frac{1}{9438} (\Sigma g(xy)y^{2} - 10\Sigma g(xy))] + xy[\frac{1}{9438} \Sigma g(xy)xy] + x[\frac{1}{12100} \Sigma g(xy)x] + x[\frac{1}{1210} \Sigma g(xy)x] + x^{2}[\frac{1}{9438} \Sigma g(xy)x^{2} - 10\Sigma g(xy)]$$

Or to six places

$$G(xy) = [.0294554\Sigmag(xy) - 1.05955 10^{-3}(\Sigmag(xy)x^{2} + \Sigmag(xy)y^{2}] + y[8.26448 10^{-4}\Sigmag(xy)y] + y^{2}[1.05955 10^{-4}(\Sigmag(xy)y^{2} - 10\Sigmag(xy))] + xy[8.26448 10^{-5}\Sigmag(xy)xy] + x[8.26448 10^{-4}\Sigmag(xy)x] + x[8.26448 10^{-4}\Sigmag(xy)x] + x^{2}[1.05955 10^{-4}(\Sigmag(xy)x^{2} - 10\Sigmag(xy))]$$

<u>Case n = 3</u>

The normal equations are

	°,00	°01	°02	°03	°11	°12	°21	°10	°20	°30		
1)	M	у	y ²	y ³	xy	xy ²	x ² y	x	x ²	x ³	Ħ	g
2)	у			y ⁴								
3)	y ²	_y 3	y ⁴	y ⁵	xy ³	xy ⁴	x^2y^3	xy ²	x ² y ²	x ³ y ²	=	gy ²
4)	_у 3	y ⁴	y ⁵	y ⁶	xy ⁴	xy ⁵	x ² y ⁴	xy ³	x ² y ³	x ³ y ³	#	gy ³
5)	xy	xy ²	xy ³	xy ⁴	x^2y^2	x^2y^3	x^3y^2	x ² y	x ³ y	x ⁴ y	Ħ	gxy
6)	xy ²	xy ³	xy ⁴	xy ⁵	x ² y ³	x ² y ⁴	x ³ y ³	x^2y^2	x ³ y ²	x⁴y²	=	gxy ²
7)	x ² y	x^2y^2	x ² y ³	x^2y^4	x ³ y ²	x ³ y ³	x^4y^2	x ³ y	x ⁴ y	x ⁵ y	8	gx ² y
8)	x	xy	xy ²	xy ³	x ² y	x ² y ²	x ³ y	x ²	x ³	x ^b		gx
9)	\mathbf{x}^2	x ² y	x^2y^2	x ² y ³	x ³ y	x^3y^2	x ⁴ y	x ³	x ⁴	x ⁵	H	gx ²
10)	x ³	x ³ y	x ³ y ²	x ³ y ³	x ⁴ y	x ⁴ y ²	x ⁵ y	x ⁴	x ⁵	x ⁶	#	gx ³
Summations are assumed for all these quantities and g is												
written for g(xy). The equations reduce considerably.												

Equation 5 gives us

$$c_{11} = \frac{1}{12100} \Sigma g x y$$

1, 3, and 9, combine to give three equations for c_{00} , c_{02} , and c_{20} , which have the same solutions as for the case n = 2. 2, 4, and 7, and 6, 8, and 10, combine to give two independent systems which have identical coefficients. Thus 2, 4, 7, are

 $1210c_{01} + 21538c_{03} + 12100c = gy$ $21538c_{01} + 451330c_{03} + 215380c_{21} = gy^{3}$ $12100c_{01} + 215380c_{03} + 215380c_{21} = gx^{2}y$

L-8

With solutions

$$o_{01} = \frac{1}{679536} [4450\Sigma gy - 178\Sigma gy^{3} - 72\Sigma gx^{2}y]$$

$$c_{03} = \frac{1}{679536} [10\Sigma gy^{3} - 178\Sigma gy]$$

$$o_{21} = \frac{1}{94380} [\Sigma gx^{2}y - 10\Sigma gy]$$

also

•

$$c_{10} = \frac{1}{679536} [4450\Sigma gx - 178\Sigma gx^{3} - 72\Sigma gxy^{2}]$$

$$c_{30} = \frac{1}{679536} [10\Sigma gx^{3} - 178\Sigma gx]$$

$$c_{12} = \frac{1}{94380} [\Sigma gxy^{2} - 10\Sigma gx]$$

and from the case n = 2

the case n = 2

$$c_{00} = \frac{1}{9438} [278\Sigma g - 10(\Sigma g x^{2} + \Sigma g y^{2})]$$

$$c_{02} = \frac{1}{9438} [\Sigma g y^{2} - 10\Sigma g]$$

$$c_{20} = \frac{1}{9438} [\Sigma g x^{2} - 10\Sigma g]$$

We also have

$$c_{11} = \frac{1}{12100} \Sigma g x y$$

To six places

.

,

$$\begin{aligned} G(xy) &= \\ &+ \left[.0294554\Sigma g - 1:05955 \ 10^{-3} (\Sigma gx^{2} + \Sigma gy^{2}) \right] \\ &+ y \left[6.54859 \ 10^{-3}\Sigma gy - 2.61943 \ 10^{-4}\Sigma gy^{3} - 1.05955 \ 10^{-3}\Sigma gx^{2}y \\ &+ y^{2} \left[1.05955 \ 10^{-4} (\Sigma gy^{2} - 10\Sigma g) \right] \\ &+ y^{3} \left[1.47159 \ 10^{-5}\Sigma gy^{3} - 2.61943 \ 10^{-4}\Sigma gy \right] \\ &+ xy \left[8.26445 \ 10^{-5}\Sigma gxy^{2} - 1.05955 \ 10^{-4}\Sigma gx \right] \\ &+ xy \left[8.26445 \ 10^{-5}\Sigma gxy^{2} - 1.05955 \ 10^{-4}\Sigma gx \right] \\ &+ xy \left[1.05955 \ 10^{-5}\Sigma gx^{2}y - 1.05955 \ 10^{-4}\Sigma gx \right] \\ &+ x^{2} y \left[1.05955 \ 10^{-5}\Sigma gx^{2}y - 1.05955 \ 10^{-4}\Sigma gx \right] \\ &+ x \left[6.54859 \ 10^{-3}\Sigma gx - 2.61943 \ 10^{-4}\Sigma gx^{3} - 1.05955 \ 10^{-3}\Sigma gxy^{2} \right] \\ &+ x^{2} \left[1.05955 \ 10^{-4} (\Sigma gx^{2} - 10\Sigma g) \right] \\ &+ x^{3} \left[1.47159 \ 10^{-5}\Sigma gx^{3} - 2.61943 \ 10^{-4}\Sigma gx \right] \end{aligned}$$

,

The normal equations are

80 81 82 83 84 91 92 93 91 92 91 90 90 90 90

1)	M	у	2 y	3	4	xy	xy ²	хy ³	2 xy	22 xy	ży	x	2 x	£	4 *	=	g
2)	у	\$	3	4 7	5	xý ²	хy ³	xy ⁴	22 XY	23 xy	3 2 X	xy	2 xy	З у	4 xy	=	gу
3)		3	-	-	-	-	-	-	-	•	-	•	•		-	æ	вž
4)	z	4 3	5	y	¥	xy ⁴	xý	xy	24 xy	25 xy	₹\$	xy ³	23 XY	33	<u>4</u> 3	Ħ	g y 3
5)	¥ ¥	5	\$	¥	₽	xy ⁵	хý	хý	25 xy	26 x9	35 xJ	xy	24 24	24	羖		ву 4
6)	xy	хŷ	x3	xy	x y 5	22 XY	2 3	24 XY	3 2	33 xy3	#2	źy	3	势	<u>5</u> xy		gxy
7)		хŷ	-	-	-	-	-	-	-	-	-	-	-	•	-	H	gxý ²
8)	ху	xy xy	хy ⁵	xy	х7	24 XY	25	2 6	3 4	3 5	岁	23 XY	<u>3</u> 3	羖	<u>5</u> 3	=	gxy
9)	х у	22 XY	23 23	2 4	25 x5	3 2	33 xy	3 4	<u>4</u> 2	4 3	₹	<u>з</u> у	44 Xy	x y	6 xy	8	gxy
10)	22 XY	2 3∕	£4	25 x5	26 x9	<u>3</u> 3	3 4	3 5	¥3	44 xy	53	<u>3</u> 2	4 2	,5 2	62 XY	=	g xy
11)	хy	<u>3</u> 2	33	34	35	羖	#3	쓋	5 2 xy	53 xy	£2	4 xy	х у	xy	Ζy	=	g xy
12)	x	xy	хý	хy	хÿ	хy	2 3	23 23	хy	32 xy	ц ху	2 X	£	4 X	ž	Ħ	gx
13)	²	2 Xy	2 2 x ∮	23 x3	24 24	Зy	32	3 3	4 xy	4 ₽ x ₹	хy	ž	¥	ź	x	-	g x
14)	3	Зу	3 2	33	34	失	₩	¥3	źy	<u>5</u> 2	ху	¥	Ź	£	¥	m	gx
15)	¥	4xy	42 xy	43 x3	¥¥	xy	<u>5</u> 2	53 XY	xy	62 xy	Ży	ź	£	¥	× x	=	gx ⁴

Equations 1, 3, 5, 10, 13, 15, reduce to give a system of six equations for c_{00} , c_{02} , c_{04} , c_{22} , c_{20} , and c_{40} . 2, 4, 9, and 7, 12, 14, give two sets of equations for c_{01} , c_{03} , c_{21} , and c_{10} , c_{30} , c_{12} , respectively, which are equivalent to the corresponding equations for the case n = 3.

The new equations to be solved are

and

$$\begin{array}{cccc} c_{11} & c_{13} & c_{31} \\ x^2 y^2 & x^2 y^4 & x^4 y^2 &= \Sigma g x y \\ x^2 y^4 & x^2 y^6 & x^4 y^4 &= \Sigma g x y^3 \\ x^4 y^2 & x^4 y^4 & x^6 y^2 &= \Sigma g x^3 y \end{array}$$

The last set has solutions

$$c_{11} = \frac{1}{679536} [689.84\Sigma gxy - 17.8(\Sigma gxy^{3} + \Sigma gx^{3}y)]$$

$$c_{13} = \frac{1}{679536} [\Sigma gxy^{3} - 17.8\Sigma gxy]$$

$$c_{31} = \frac{1}{679536} [\Sigma gx^{3}y - 17.8\Sigma gxy]$$

The solution of the first set to six places is

$$c_{00} = 4.53280 \ 10^{-2}\Sigma g + 1.58932 \ 10^{-4} (\Sigma g y^4 + \Sigma g x^4)$$

1.35839 $10^{-4}\Sigma g x^2 y^2 - 6.399122 \ 10^{-3} (\Sigma g y^2 + \Sigma g x^2)$

$$c_{02} = 1.62141 \ 10^{-3}\Sigma gy^{2} - 2.81527 \ 10^{-3}\Sigma g$$

-5.51847 $10^{-5}\Sigma gy^{4} - 1.35839 \ 10^{-5}(\Sigma gx^{2}y^{2} - 10\Sigma gx^{2})$
$$c_{04} = 2.20739 \ 10^{-6}\Sigma gy^{4} - 5.51847 \ 10^{-5}\Sigma gy^{2} + 1.58932 \ 10^{-5}\Sigma g$$

$$c_{22} = 1.35839 \ 10^{-6}(\Sigma gx^{2}y^{2} - 10(\Sigma gx^{2} + \Sigma gy^{2}) + 100\Sigma g)$$

$$c_{20} = 1.62141 \ 10^{-3}\Sigma gx^{2} - 2.81527 \ 10^{-3}\Sigma g$$

-5.51847 $10^{-5}\Sigma gx^{2} - 1.35839 \ 10^{-5}(\Sigma gx^{2}y^{2} - 10\Sigma gy^{2})$

 $c_{40} = 2.20739 \ 10^{-6} \Sigma g x^4 - 5.51847 \ 10^{-5} \Sigma g x^2 + 1.58932 \ 10^{-5} \Sigma g$ To simplify writing G(xy) we introduce the abbreviations

$A = \Sigma g$	$H = \Sigma g x^3 y$
$\mathbf{B} = \Sigma \mathbf{g} \mathbf{x}$	$I = \Sigma g x y^2$
$C = \Sigma g x^2$	$\mathbf{J} = \Sigma \mathbf{g} \mathbf{x}^2 \mathbf{y}^2$
$D = \Sigma g x^3$	$K = \Sigma g x y^3$
$E = \Sigma g x^{\mu}$	$\mathbf{L} = \Sigma \mathbf{g} \mathbf{y}$
$\mathbf{F} = \Sigma \mathbf{g} \mathbf{x} \mathbf{y}$	$M = \Sigma g y^2$
$G = \Sigma g x^2 y$	$N = \Sigma g y^3$
	$P = \Sigma g y^4$

I-13

.

Hence

$$\begin{aligned} \mathbf{G}(\mathbf{xy}) &= \begin{bmatrix} 4.53280 \ 10^{-2}\text{A} + 1.58932 \ 10^{-4}(\mathbf{P} + \mathbf{E}) \\ &+ 1.35839 \ 10^{-4}\text{J} - 6.39122 \ 10^{-3}(\mathbf{M} + \mathbf{C}) \end{bmatrix} \\ &+ y[6.54859 \ 10^{-3}\text{L} - 2.61943 \ 10^{-4}\text{N} - 1.05955 \ 10^{-3}\text{G}] \\ &+ y^2[1.62141 \ 10^{-3}\text{M} - 2.81527 \ 10^{-3}\text{A} - 5.51847 \ 10^{-5}\text{P} \\ &- 1.35839 \ 10^{-5}(\text{J} - 100) \end{bmatrix} \\ &+ y^3[1.47159 \ 10^{-5}\text{N} - 2.61943 \ 10^{-4}\text{L}] \\ &+ y^4[2.20739 \ 10^{-6}\text{P} - 5.51847 \ 10^{-5}\text{M} + 1.58932 \ 10^{-5}\text{A}] \\ &+ xy[1.01516 \ 10^{-3}\text{F} - 2.61943 \ 10^{-5}(\text{K} + \text{H})] \\ &+ xy^2[1.05955 \ 10^{-5}\text{I} - 1.05955 \ 10^{-4}\text{B}] \\ &+ xy^3[1.47159 \ 10^{-6}\text{K} - 2.61943 \ 10^{-5}\text{F}] \\ &+ x^2y[1.05955 \ 10^{-5}\text{G} - 1.05955 \ 10^{-4}\text{B}] \\ &+ x^2y^2[1.35839 \ 10^{-6}(\text{J} - 10(\text{C} + \text{M}) + 100\text{A})] \\ &+ x^3y[1.47159 \ 10^{-6}\text{H} - 2.61943 \ 10^{-5}\text{F}] \\ &+ x[6.54859 \ 10^{-3}\text{B} - 2.61943 \ 10^{-4}\text{D} - 1.05955 \ 10^{-3}\text{I}] \\ &+ x^2[1.62141 \ 10^{-3}\text{C} - 2.81527 \ 10^{-3}\text{A} - 5.51847 \ 10^{-5}\text{C} \\ &- 1.35839 \ 10^{-5}(\text{J} - 10\text{M})] \\ &+ x^3[1.47159 \ 10^{-5}\text{D} - 2.61943 \ 10^{-4}\text{B}] \\ &+ x^4[2.20739 \ 10^{-5}\text{C} - 1.58932 \ 10^{-5}\text{A}] \end{aligned}$$

Discussion

An interesting property which has developed in these four cases makes the extension to higher order approximations somewhat simpler. If n is odd then all the coefficients c_{ij} whose subscripts add to an even number are the same as the corresponding coefficients for the (n - 1)rst case. If n is even the coefficients with subscripts adding to an odd number are the same as for the preceding case. This property can be shown directly from equation 1.2.

Thus for the case n = 5 we expect nine of the coefficients (c_{00} , c_{02} , c_{04} , c_{40} , c_{20} , c_{11} , c_{13} , c_{31}) to be the same as for the case n = 4, and we need only write the twelve remaining equations for i + j odd.

A polynomial of order equal to the number of points taken will exactly fit the data. However it is practically impossible to use polynomials even approaching such a high order for reasonably-sized gridworks, and this danger seems slight. There is still a real problem in the choice of n. If the regional effect is in reality a fairly low order effect, polynomials of high n will begin to approximate the local anomalies too closely. Other systems, however, run into the same problem, and this point would be best settled by experience with the data.

Another important practical consideration is the amount of work to be done, i.e., the determination of the

summations $\Sigma g x^{i} y^{j}$, of the c_{ij} 's and the solution of G(xy) at each point. We devote the next section to this problem.

Applications

To illustrate the work necessary we discuss a convenient scheme for application to the case n = 3. The use of a computing machine with cumulative multiplication is desirable.

Assume that the grid has been determined and the gravity values written at each intersection as shown. This is done on tracing paper as shown in Fig. 1.3.

The numbers α_1 and β_1 above each vertical line and to the left of each horizontal line represent the sums of g(xy) along those lines. Then as we may easily compute the sums Σg , Σgx , Σgx^2 , Σgx^3 , Σgy , Σgy^2 , Σgy^3 , from the relations $\Sigma g = \sum_{i=1}^{2\alpha} \sum_{j=1}^{2\alpha} \sum_{i=1}^{2\alpha} (1)^3 \sum_{j=1}^{2\alpha} \sum_{i=1}^{2\alpha} (1)^2 \sum_{j=1}^{2\alpha} \sum_{i=1}^{2\alpha} \sum_{i=1}^{2\alpha} \sum_{j=1}^{2\alpha} \sum_{i=1}^{2\alpha} \sum_{i=1}^{2\alpha} \sum_{j=1}^{2\alpha} \sum_{i=1}^{2\alpha} \sum_{i=1}^{2$

Each of these computations involves one machine operation of eleven cumulative multiplications.

For the remaining summations Σgxy , Σgx^2y , Σgxy^2 it is convenient to have a similar grid which can be placed under the original one. This second grid has the values of xy, x^2y , xy^2 , at each point as shown in Fig. 1.4 and can be used for each application.

The values of g(xy) then appear in the vacant upper left hand corner of each point, making the multiplications apparent. Each of these three summations then involves a cumulative addition of 100 multiplications.

The c_{ij}'s are then found as ten cumulative additions of two of three multiplications each.

G(xy) is now completely determined with the writing down of less than 50 numbers and it remains to solve this equation for each point. This involves ten cumulative multiplications at each of the 121 points with a final subtraction to determine the residuals. A second tracing paper grid laid over both of the others would simplify this and the residuals could be written down in a form ready to be contoured.

A nice feature of this scheme is the absence of any tabulation of data. It may be extended fairly simply to higher degrees.

Example

As a test of this method residuals were computed on gravity readings supplied by a mining company. This data was not in a convenient form for use since the readings were taken in mine tunnels and not over a grid. To get them in grid form, the readings were first contoured as shown in Fig. 1.5 and then values extrapolated to the grid. This involves several inaccuracies. First of all, where readings are sparse, the extrapolated values are bound to contain

considerable error. Secondly, the computations weight all values equally so that the accurately extrapolated points, in areas of dense readings, suffer from the inaccuracies in the less dense areas.

Three sets of residuals were computed, one for second, third, and fourth order polynomials. This was done to test the effect of polynomial degree on the residuals. The polynomials were fitted directly to the raw gravity, without making the usual topographic corrections. The justification for neglecting to do this is seen in Fig. 1.11. This figure shows values of regional minus topographic corrections computed by the mining company, and contours of these values. The contours demonstrate that this correction is a low order effect (in this particular situation) and can obviously be easily absorbed into a polynomial as low as degree two.

Figs. 1.6, 1.7, and 1.8 then show residuals for second, third, and fourth order polynomials respectively, and were computed as described previously. Once the reading had been contoured and extrapolated, it took about a day to compute each set of residuals. The computed polynomials appear in the upper right-hand corner of Figs. 1.6, 1.7, and 1.8. Fig. 1.10 shows the contours of the polynomials themselves, and shows that the similarity of the residuals is due to the similarity of the polynomials used.

In Fig. 1.9 is contoured the residual gravity as computed by the mining company which supplied the data. Their computational procedure required several months to produce this diagram, which, in important respects, is quite similar to the contours of Figs. 1.6, 1.7, and 1.8. Part of the difference is due to the fact that the least squares residuals are forced to oscillate around a mean of zero, so that many negative contours appear. Other differences may well be attributable to the inaccuracies of contouring as mentioned above. It seems clear however, that the similarity is sufficiently great to justify the use of the least squares procedure, at least for a first evaluation of gravity data. This seems particularly true in view of the relative speed with which this procedure may be carried out.

These results were encouraging enough so that a program was written for the WWI Digital Computer to perform the majority of the computations automatically. This program finds the residuals for a polynomial up to the sixth order over an arbitrary grid shape, once the polynomial is known. A description of this program appears in Appendix A.

In the next section, we take up the problem of setting up the normal equations for various sizes and shapes of grids.

Fig. 1.5

Fig. 1.6

Fig. 1.9

Fig. 1.10

REGIONAL CORRECTION MINUS

Fig. 1.11

Setting Up the Normal Equations

We are concerned here with the problem of setting up the normal equations for various grids and polynomial degrees. If we limit ourselves to polynomials of degree 4 or less, we are then interested in finding the following quantities:

 $\Sigma x^2 \Sigma x^4 \Sigma x^6 \Sigma x^8 \Sigma y^4 \Sigma y^6 \Sigma y^8$

$$\sum x^2 y^2 \sum x^2 y^4 \sum x^2 y^6 \sum x^4 y^2 \sum x^4 y^4 \sum x^6 y^2 \sum x^0 y^0$$
 1.3

where the summations are to be taken over the particular grid we are dealing with.

If the grid has the dimensions 2N by 2M as shown in Fig. 1.2, we may set up a fairly simple procedure for finding these summations.

First we note that Σx^k over the grid is equal to the Σx^k on a single horizontal line, times the number of lines. Thus

$$\Sigma \mathbf{x}^{\mathbf{k}} = (2\mathbf{M} + 1) \sum_{1=-\mathbf{N}}^{\mathbf{N}} \mathbf{1}^{\mathbf{k}}$$

but since in our case k is always even

$$\Sigma x^{k} = 2(2M + 1)(\Sigma i^{k})$$

 $i=1$ 1.4

Likewise

$$\Sigma y^{k} = 2(2N + 1)\Sigma i^{k}$$

 $i=1$

For the cross terms $\Sigma x^k y^{\sharp}$ we have

$$\sum_{\substack{g \text{rid}}} \mathbf{x}^{k} \mathbf{y}^{\ell} = \sum_{\substack{\Sigma \\ j = -M}}^{M} \sum_{\substack{j = -N}}^{N} \mathbf{x}^{k} \mathbf{y}^{\ell} = \sum_{\substack{\{\Sigma \\ -N \\ -N \\ j = 1 \end{bmatrix}}^{N} \sum_{\substack{\{\Sigma \\ j = 1 \end{bmatrix}}}^{M} \mathbf{x}^{k} \mathbf{y}^{\ell} = 4(\sum_{\substack{j = 1 \\ j = 1 \end{bmatrix}}^{N} \sum_{\substack{\{\Sigma \\ j = 1 \end{bmatrix}}^{N} \sum_{\substack{\{\Sigma \\ j = 1 \end{bmatrix}}}^{N} \mathbf{x}^{k} \mathbf{y}^{\ell} = 4(\sum_{\substack{j = 1 \\ j = 1 \end{bmatrix}}^{N} \sum_{\substack{\{\Sigma \\ j = 1 \end{bmatrix}}^{N}$$

Table III contains the sums 1.3 computed for six representative grids 10 by 10, 10 by 20, 20 by 20, 30 by 30, 40 by 40, and 50 by 50.

I-21

TABLE I 1^k

	for	k = 2, 4, 6, 8	, i = 1, 2,	
1	12	1 ⁴	1 ⁶	1 ⁸
1	l	1	l	1
2	4	16	64	256
3	9	81	729	6561
4	16	256	4096	65536
5	25	625	15625	390625
6	36	1296	46656	1679616
7	49	2401	117649	5764801
8	64	4096	262144	16777216
9	81	6561	531441	43046721
10	100	10000	1000000	100000000
11	121	14641	1771561	214358881
12	144	20736	2985984	429981696
13	169	28561	4826809	815730721
14	196	38416	7529536	1475789056
15	22 5	50625	11390625	2562890625
16	256	65536	16777216	4 294967 296
17	289	83521	24137569	6975757441
18	324	104976	34012224	11019960576
19	361	130321	47045881	16983563041
20	400	160000	64000000	25600000000
21	441	194481	85766121	37822859361
22	484	234256	113379904	54875873536
23	529	279841	148035889	78310985281
24	576	331776	191102976	110075314176
25	625	390625	244140625	152587890625

TABLE II $\Sigma \mathbf{i}^k$ $\mathbf{i=l}$

	for k	= 2, 4, 6, 8	L = 1, 2, 3,	25
L	k= 2	k=4	k=6	k= 8
1	. 1	1	1	1
2	5	17	65	257
3	14	9 8	794	6818
4	30	354	4890	72354
5	55	979	20515	462979
6	91	2275	67171	2142595
7	140	4676	184820	7907396
8	204	8772	446964	24684612
9	285	15333	978405	67731333
10	38 <i>5</i>	2 5 333	1978405	167731333
11	506	39974	3749966	382090214
12	650	60710	6735950	812071910
13	819	89271	11562759	1627802631
14	1015	127687	19092295	3103591687
15	1240	178312	30482920	5666482312
16	1496	243848	47260136	9961449608
17	1785	327369	71397705	16937207049
18	2109	432345	105409929	27957167625
19	2470	562666	152455810	44940730666
20	2870	722666	216455810	70540730666
21	3311	917147	302221931	108363590027
22	3795	1151403	415601835	163239463563
23	4324	1431244	563637724	241550448844
24	4900	1763020	754740700	351625763020
25	5525	2153645	998881325	504213653645

		N=5 M=5	N=5 M=10	N=10 M=10	N=15 M=15	N=20 M=20	N=25 M=25
Σ ϫ^Οy^Ο	8	<u>1</u> 21	231	441	961	1681	2601
$\Sigma \mathbf{x}^2$		1210	2310	1 617 0	7688 0	235340	563550
Σ x ⁴	-	21538	41118	1063986	11055344	59258612	219671790
Σx ⁶	722	451330	861630	83093010	1889941040	17749376420	1018 85895150
Σx ⁸	=	10185538	1 944 5 118	7044715986	351321903344	5784339914612	51429792671790
Σy ²	#	1210	8470	16170	76880	235340	563550
Σy ⁴	=	21538	557326	1063986	11055344	59258 6 12	219671790
Σy ⁶	=	451330	43524910	83093010	1889941040	17749376420	101885895150
Σy ⁸	Ħ	10185538	369008 9 32 6	7044715986	351321903344	5784339914612	51429792671790
$\Sigma \mathbf{x}^2 \mathbf{y}^2$	=	12100	84700	592900	6150400	32947600	122102500
Σx ² y ⁴	=	215380	557326 0	39012820	884427520	829 62 05680	47595554500
Σx ² y ⁶	; =	4 51330 0	435249100	3046743700	151195283200	2484912698800	220 752772825 00
$\Sigma \mathbf{x}^4 \mathbf{y}^2$) 	215380	1507660	39012 9 20	884427520	8296205680	47595554500
Σx ⁶ y ²) 	451330 0	3159 31 00	3046743700	1 5119528 3200	2484912698800	22075277282500
Σx ⁴ y ⁴	ł =	3833764	99204028	2567043556	127180677376	2088984590224	18552747144100

,

.

Over various grids measuring 2N x 2M

for k = 0, 2, 4, 6, 8 $l = 0, 2 \dots (8-k)$

•

TABLE III Exky

PART II

SEISMIC RECORD ANALYSIS BY LINEAR OPERATORS Introduction

In the study of reflection seismic records, taken in the exploration for oil, it is becoming increasingly difficult to pick reflection times by the standard procedures. The reason for this is that, as the simpler geologic areas are being fully exploited, exploration is being forced into the more complicated areas. Seismic records taken in these structurally complex areas contain much in the way of unwanted information and much not-understood information. Energy reflected from the strata of interest is largely masked by this "noise". At least two different approaches to unscrambling these records are being developed at present.

The first of these approaches is largely instrumentational. Its principle is: take more and more information (more traces on each record, etc.), filter it in different ways and mix it up in a variety of combinations to see if a procedure for averaging out the unwanted information can be arrived at. This approach has led oil companies to the use of 24-trace records, each trace representing the responses from up to thirty geophones. The success of these methods is not publicly available, but the oil industry is expressing great interest in the approach described below, so probably they are not completely satisfactory.

The second of these approaches is basicly analytic. Rather than taking more information, we attempt to sharpen up the interpretive procedure on the information we have.

The search for such procedure has been largely carried out at MIT in the Mathematics Department, and subsequently in the Mathematics and Geology Departments. The tools in this analysis have been the statistics of time series.

Statistical Methods

After some experimentation it was found at MIT that the use of the "linear operator" seemed most promising in the determination of reflection times. The exact methods used are described in Refs. 5 and 6. The linear operator permits a measure of the change in dynamics as we proceed down a seismic record. As these dymanics are amplitude, frequency, and phase relationships, it was hoped that the dynamical change at a reflection could be discriminated even when the changes due to amplitude were small. This was hoped for since the usual interpretive procedures depend heavily on "amplitude reflections". The results were very encouraging and stimulated increased research.

One direction this study has taken is the empirical one. We know the linear operator gives us added information. But, since there is considerable freedom in the choice of the exact mathematical form of the operator we use, we try many different forms and see which ones give us the <u>most</u> information. This is a trial and error procedure and involves an immense amount of computation. For this reason a program was written for the WWI Digital Computer which would compute automatically the measure of dynamic change, for a great

variety of forms of linear operators, at very high speed. A copy of this program and a description of its functions is contained in Appendix B. Case studies designed to test the effects of individual parameters of the linear operator are being run with this program, but the results are as yet incomplete.

Along with this empirical approach an attempt is being made to study the linear operator from theoretical grounds. Although the form of the operator which is being tested at present is relatively complicated, it is instructive to consider a simpler form, the so-called "cosine operator". This operator is a mathematical expression which generates a pure cosine wave of given frequency. We can determine quite simply the effects of this type of operator on various time series including those found on seismic records. We hope to gain insight into the physical function of such operators as well as correspondence between them and simple filters.

We shall also consider two other more practical problems connected with the statistical analysis of seismograms by the use of linear operators. One concerns certain iterative methods for approaching the values of the linear operator coefficients for least squares fitting. The other is a related problem, the necessity for accuracy in finding these values.

Single Frequency Cosine Operators

A cosine operator is a prediction mechanism which exactly predicts equally spaced points on a cosine wave. It has the general form \ddagger

$$\hat{x}_{i+2} = c + ax_{i+1} + bx_i$$
where $a = 2 \cos 2\pi h f \equiv 2u$
 $b = -1$
 $h = time between observation
 $c = (1-a-b)\bar{x} = 2(1-u)\bar{x}$
 $\bar{x} = mean of series$
 $f = frequency of cosine wave$
 $\hat{x}_{i+2} = predicted value of x_{i+2}$$

Suppose we use this operator to predict an arbitrary series x. Then the error of prediction $x_{1+2} - \hat{x}_{1+2}$ will be

$$E_{i+2} = x_{i+2} - [2(1-u)\bar{x} + 2ux_{i+1} - x_i]$$

$$= x_{i+2} - 2(1-u)\bar{x} - 2ux_{i+1} + x_i$$

$$= (x_{i+2} - \bar{x}) + (x_i - \bar{x}) - 2u(x_{i+1} - \bar{x})$$
2.2

For simplicity let us deal with a series X_1 measured around its equilibrium mean \bar{x} , i.e. $X_1 = x_1 - \bar{x}$ then 2.2 becomes

$$E_{1+2} = X_{1+2} + X_1 - 2uX_{1+1}$$
 2.3

Now if we sum the squares of these errors over an interval of the series we get # Ref. 6 II-4

$$\sum_{i}^{\Sigma} E_{i+2}^{2} = \sum (X_{i+2}^{2} + X_{i}^{2} + 4u^{2}X_{i+1}^{2} + 2X_{i+2}X_{i} - 4uX_{i+2}X_{i+1} - 4uX_{i+2}X_{i+1} - 4uX_{i}X_{i+1} - 4uX_{i}X_{i+1$$

If the series is stationary and the interval sufficiently great we may write this in terms of the auto-correlations. Let the series be normalized so that $\sum_{i=1}^{2} X_{i}^{2} = 1$ then

$$\sum_{1}^{2} E_{1+2}^{2} = R_{0} + R_{0} + 4u^{2} R_{0} + 2R_{2} - 8uR_{1}$$
 2.5

where $R_1 = i \frac{th}{t}$ lag auto-correlation and $R_0 = 1$ or

$$\Sigma E_{1+2}^{2} = 2(1 + E_{2} - 4uE_{1} + 2u^{2})$$
 2.6

This expression has a minimum value when

$$u = \frac{-(-4R_1)}{2 x 2} = R_1$$
 2.7

or

$$\cos 2\pi hf = R_1$$

 $f = \frac{1}{2\pi h} [\cos^{-1} R_1 + 2n\pi]$ 2.8

Hence we have the least squares fit for a cosine operator predicting an aribtrary stationary series. We find that f is determined only by the first lag of the auto-correlation function of the series, and that f is only determined modulo 1/h. This last fact is apparent if we refer back to equation 2.1, where we see that cosine operators have identical forms for angular frequencies differing by 1/h.

Hence

$$\min \sum_{i=1}^{\infty} E_{i+2}^{2} = 2(1 + B_{2} - 2B_{1}^{2})$$
 2.9

If we want a perfect least squares fit we have

$$R_1 = \pm \sqrt{\frac{1}{2}(1 + R_2)}$$
 2.10

with the restriction cosine $2\pi hf = R_1$

One way to meet this condition is to let the interval h shrink toward zero so that $R_1 \rightarrow 1$ and $R_2 \rightarrow 1$. This is equivalent to saying that any small segment of the original series approaches a straight line, in the case where the function is continous and its first derivative exists.

The Geometry of Cosine Operators

A. Error Sum as Function of W

Consider the sum of squared errors as a function of u. We have

$$\sum_{i=1}^{2} E_{i+2}^{2} = 2(1 + R_{2} - 4uR_{1} + 2u^{2})$$
 2.6

This is a parabola in u as shown in Fig. 2.1. $u = \cos 2\pi hf$ must lie in the range $-1 \le u \le 1$. We have shown that $u = R_1$ is the condition for a minimum fit, and since $-1 < R_1 < +1$, ΣE^2 will always have its minimum in this range.

This means that, for any series, we can always get a minimum fit with some cosine operator of frequency f, where f must be in the range

$$\begin{array}{c} 0 < f < 1 \\ \uparrow & 2h \\ (u = 1 \\ 2\pi h f = 0 \end{array}) & (u = -1 \\ 2\pi h f = \pi \end{array}$$
 2.11

We require ΣE^2 to be non-negative. This means the discriminant of 2.9 must be ≤ 0 or

$$16 \ H_1^2 - 8(1+H_2) \le 0$$
 2.12

Therefore the curve cannot cross the u axis, but can be tangent to it at one point, when the equality sign holds above. This is the condition for a perfect fit.

B. Error Sum as Function of f

The error sum as a function of frequency f is not truly parabolic but has the general shape of a parabola. It is periodic in f with a period 1/h. It appears as shown in Fig. 2.2.

C. Individual Errors as Functions of u and f

Equation 2.3 gives us an expression for the individual errors

$$E_{i+2} = X_{i+2} + X_i - 2uX_{i+1}$$
 2.3

If we fix attention on a single individual error (i constant) and let u vary we see that $E_{1\pm 2}$ is sinusoidal since u = cos $2\pi hf$. Thus $E_{1\pm 2}$ varies sinusoidally about a mean given by the sum of the $i\frac{th}{1}$ and the $(1-2)\frac{nd}{rst}$ value of the series, with an amplitude of twice the $(1-1)\frac{rst}{rst}$ value of the series. The period is 1/h. There is no phase shift

between these curves for different i values. Thus all individual errors must increase or decrease simultaneously with f.

Fig. 2.3 shows individual errors as functions of f. This figure explains why the error sum of Fig. 2.2 is reflected across the line f = 1/2h. This line in Fig. 2.3 is the axis of symmetry for the individual errors, so that it must also be the symmetry axis for the error sum.

Conclusions

From the above, we can draw certain conclusions. 1. If one limits himself to the general class of cosine operators, there is a maximum error obtainable for the particular data, using any frequency whatever. That is, there is such a thing as a <u>worst fit</u> for cosine operators.

2. Since ΣE^2 is parabolic, determining 3 values of ΣE^2 is sufficient to determine the complete shape of the error curve for all other frequencies.

3. Moreover, since the individual errors are sinusoidual in f, determining the individual errors for 3 values of f determines the errors for all f.

Looking at the problem another way, much of the information obtainable from any data series by a study of

this type is contained in the first and second lags of the auto-correlation function of the series, for these two quantities determine the shape and position of the curve ΣE^2 .

Example

The prediction program described in Appendix B provided a means for testing the conclusions reached about cosine operators. Individual errors and sums of squared errors were computed for cosine operators of frequencies 25, 30, 75 cps. The data for which these were computed were readings taken from a typical seismic trace at intervals of 2 ms.

The sums of squared errors are plotted in Fig. 2.4 over two intervals of 240 readings each. Both curves exhibit very good parabolic shapes. The average minimum for the two curves occurs for u = .85. This should equal the first lag auto-correlation over the two intervals, which was computed by the correlation program (Appendix D) to be .853.

Fig. 2.4 shows several individual errors plotted as functions of the frequency of the cosine operator used. They appear to be sections of sinusoids as expected.

These curves, computed on an arbitrary time series, seem to be in remarkable agreement with the theory.

~

The Cyclical Nature of Cosine Operators

We have mentioned that cosine operators differing in frequency by n/h have identical forms. It is interesting to see what this means physically.

Suppose we are trying to represent a cosine wave of 1 cycle / second with a spacing of h = 1/4 second. The points we would plot might appear as in Fig. 2.6.

Now consider a cosine wave of frequency l + l/h = 5 cycles/sec. If we try to plot this frequency with a spacing of l/4 sec. we find that it can be exactly represented by the points we plotted for the one cycle wave. This is illustrated in Fig. 2.7. We would find the same would be true for frequencies of l + n/h = 1, 5, 9, 13, 17.... Thus, it is the fact that we cannot uniquely represent frequencies differing by n/h that explains the identity of form for cosine operators whose frequencies differ by this amount.

This is also the explanation for the so-called "condensed" power spectra met with in computational procedures.[‡] The computed power at a frequency f must represent the sum of the powers at frequencies f, f,+ 1/h, f + 2/h.... Therefore power spectra can only have the range 0 to 1/h cycles. In practice h must be chosen so that 1/h is greater than the greatest frequency from which significant contribution is expected.

‡ Ref. 3

Cosine Operator Predicting an Autoregressive Series

In order to examine the filter characteristics of cosine operators it is convenient to consider their effect on autoregressive-type series. The autoregressive series has a known Cauchy-type distribution of its spectrum.[‡] It will be interesting to examine what the spectrum of the error function will be when we predict such a series with a cosine operator.

Referring back to equation 2.3 we have the error function for cosine operators.

$$E_{1+2} = X_{1+2} + X_1 - 2uX_{1+1}$$
 2.3

To get the spectrum of this function we first find the auto-correlation R_{τ} .

$$R_{\tau} = \sum (X_{i+2} + X_{i} - 2uX_{i+1}) (X_{i+2-\tau} + X_{i-\tau} - 2uX_{i+1-\tau})$$

$$R_{\tau} = \sum X_{i+2}X_{i+2-\tau} + \sum X_{i+2}X_{i-\tau} + \sum X_{i}X_{i+2-\tau}$$

$$+ \sum X_{i}X_{i-\tau} - 2u(\sum X_{i+1}X_{i+2-\tau} + \sum X_{i+1}X_{i-\tau})$$

$$+ \sum X_{i+1-\tau}X_{i+2} + \sum X_{i+1-\tau}X_{i}) + 4u^{2}\sum X_{i+1}X_{i+1-\tau}$$

If the X series is properly normalized we may write this in terms of the correlations $r_{_{\rm T}}$ of the X series.

$$B_{\tau} = r_{\tau} + r_{\tau+2} + r_{\tau-2} + 4u^{2}r_{\tau}$$
$$+ r_{\tau} - 2u(r_{\tau-1} + r_{\tau+1} + r_{\tau+1} + r_{\tau-1})$$

1 Ref. 7

$$R_{\tau} = r_{\tau-2} + r_{\tau-1}(-4u) + r_{\tau}(2+4u^2) + r_{\tau+1}(-4u) + r_{\tau+2}$$
2.13

Since the series is taken to be autoregressive

$$r_{\tau} = \cos 2\pi f_0 \tau h e^{-\alpha \tau h} \equiv \cos \alpha \tau e^{-b\tau} \ddagger \tau \ge 0$$
 2.14

.

Substituting equation 2.14 into 2.13 we have

$$R_{T} = \cos[a(\tau-2)]e^{-b(\tau-2)}$$

- 4ucos[a(\tau-1)]e^{-b(\tau-1)}
+ (2+4u^{2})cosate^{-b\tau}
- 4ucos[a(\tau+1)]e^{-b(\tau+1)}
+ cos[a(\tau+2)]e^{-b(\tau+2)}

Using trigonometric identities

$${}^{R}_{T} = e^{2b} [\cos a \tau \cos 2a + \sin a \tau \sin 2a] e^{-bT}$$

$$- 4u e^{b} [\cos a \tau \cos a + \sin a \tau \sin a] e^{-bT}$$

$$+ (2+4u^{2})(\cos a \tau) e^{-bT}$$

$$- 4u e^{-b} [\cos a \tau \cos a - \sin a \tau \sin a] e^{-bT}$$

$$+ e^{-2b} [\cos a \tau \cos 2a - \sin a \tau \sin 2a] e^{-bT}$$

or

5

$$B_{T} = \cos a \tau e^{-b\tau} [e^{2b} \cos 2a - 4u e^{b} \cos a + 2 + 4u^{2} -4u e^{-b} \cos a + e^{-2b} \cos 2a]$$

‡ Ref: 5

•

+
$$sinate^{-bt}[e^{2b}sin2a - 4ue^{b}sina + 4ue^{-b}sina - e^{-2b}sin2a]$$

Hence

$$R_{T} = A \cos a \tau e^{-bT} + B \sin a \tau e^{-bT}$$

= $e^{-bT}(A \cos a \tau + B \sin a \tau)$ 2.15

where

$$A = \cos 2a(e^{2b}+e^{-2b}) - 4u\cos a(e^{b}+e^{-b}) + 2 + 4u^{2}$$

$$B = \sin 2a(e^{2b} - e^{-2b}) - 4u\sin a(e^{b} - e^{-b}) \qquad 2.16$$

$$B_{T} = e^{-bT}(A^{2}+B^{2})^{1/2} \left[\frac{A}{(A^{2}+B^{2})^{1/2}} \cos aT + \frac{B}{(A^{2}+B^{2})^{1/2}} \sin aT\right]$$

$$= e^{-bT}(A^{2}+B^{2})^{1/2} (\cos aT \cos \beta + \sin aT \sin \beta)$$

where
$$\beta = \tan^{-1} \frac{B}{A}$$

Thus

$$B_{T} = e^{-bT} (A^{2} + B^{2})^{1/2} \cos(aT + \beta)$$
 2.17

 R_{T} is now in a form similar to the r_{T} for the original series. The spectrum of this type is known to be a Cauchy distribution. The specific shape will be controlled by values of b, A, B, and β .

Rather than continuing with this example we shall proceed to another type of series. The autoregressive series is somewhat non-typical. Its spectrum, the Cauchy distribution, is very broad, in fact there is no mean value of frequency for this spectrum.

Cosine Operators on Series with Gaussian Spectrum Distribution

A much more stringent series than the autoregressive type is a series with a power spectrum composed of two Gaussian curves. The spectrum has the form ‡

$$\phi(\omega) = \frac{1}{2\sigma\sqrt{2\pi}} \begin{bmatrix} e^{-(\omega-a)^2} & \frac{-(\omega+a)^2}{\sigma^2} \\ e^{\sigma^2} & + e^{\sigma^2} \end{bmatrix} 2.18$$

where +a and -a are the respective means of the two Gaussian curves, and σ is their standard deviation in radians. With such a series the normalized auto-correlation function may be written as \ddagger

$$\mathbf{r}_{\tau} = \mathbf{e}^{-\frac{\sigma^2 \tau^2}{2}} \cos a$$

If we predict such a series with a cosine operator, we generate an error series whose auto-correlation function is, as before

$$R_{T} = r_{T-2} + r_{T-1}(-4u) + r_{T}(2+4u^{2}) + r_{T+1}(-4u)$$

+ r_{T+2} 2.13

‡ Ref. 5

This can be reduced, as before, to the form

$$= \frac{e^2 \tau^2}{2}$$

$$B_{\tau} = e^{2} [A(\tau)\cos \alpha \tau + B(\tau)\sin \alpha \tau] \qquad 2.21$$

where

$$A(\tau) = \cos 2a \left[e^{\frac{-e^2(-4\tau+4)}{2}} + e^{\frac{-e^2(4\tau+4)}{2}} \right]$$

$$-\frac{e^2(-2\tau+1)}{2} + e^{\frac{-e^2(2\tau+1)}{2}}$$

$$-\frac{4u \cos a \left[e^{\frac{-e^2(-2\tau+1)}{2}} + e^{\frac{-e^2(4\tau+4)}{2}} \right]$$

$$+ (2 + 4u^2)$$

$$B(\tau) = \sin 2a \left[e^{\frac{-e^2(-4\tau+4)}{2}} + e^{\frac{-e^2(4\tau+4)}{2}} \right]$$

$$2.22$$

$$B(\tau) = \sin 2a \left[e^{\frac{-e^2(-2\tau+1)}{2}} + e^{\frac{-e^2(2\tau+1)}{2}} \right]$$

If we are interested in the power spectrum of this series we want

$$\phi(\omega) = 2 \int_{0}^{\infty} R(\tau) \cos \omega \tau \, d\tau \qquad 2.23$$

Probably this integral cannot be expressed in closed form, and we shall have to resort to a computed example. <u>Computational Example</u>

Here we illustrate the filter characteristics of cosine operators in a particular case. We choose a series with a Gaussian spectrum peaked at 50 cycles and with a standard deviation of 22.36 cycles. The power spectrum of such a series is shown in Fig. 2.8, and was computed from equation 2.18. In general shape this is not unlike power spectra dealt with on seismic traces. Fig. 2.9 shows

the normalized auto-correlation function for this type of series, as derived from equation 2.19. The series has essentially no correlation for lags greater than about .03 sec.

To examine the effectiveness of cosine operators as frequency filtering mechanisms, a cosine operator of frequency 50 cps was taken. The spacing interval was chosen to be 2.5 ms. The auto-correlation function of the error series generated by this operator is shown in Fig. 2.9, and is computed from equation 2.13. In this case the function is unnormalized so that the zeroth lag autocorrelation is proportional to the total power contained in the power spectrum of the error series. Thus we see that less than 20 per cent of the power contained in the original Gaussian series remains in the error series. More than 80 per cent has been "filtered" out. However, since some of this is due merely to curve continuity, the shape of the spectrum of errors is more important than the total power.

The unnormalized spectrum of the error series is shown in Fig. 2.8, and, as might be expected, is definitely bimodal. This curve clearly indicates that the operator is acting as a filter peaked at 50 cps, at which frequency all power has been removed. Lower frequencies are also well reduced but the higher ones are not so much affected. In fact, the power at 100 cycles is slightly greater than

in the original series. This is not a computational error. As discussed below it seems to be a necessary characteristic.

A more convenient way of showing the filter characteristics is to plot the quantity

Power removed at w Initial power at w

This graph is shown in Fig. 2.10 . It shows how frequencies lower than 50 cycles are much preferred to those greater. It is possible that this curve would not represent the filter characteristics of a 50 cycle cosine operator used on another type of series. There is some reason, however. to suspect that it does, and that, in fact, the curve of Fig. 2.10 continues downward considerably below the axis (thus representing amplification rather than filtration). If we were to use a series containing mostly frequencies between 100 and 200 cycles, the 50 cycle operator would yield very high errors of prediction. The sum of squared errors would be far from the minimum of Fig. 2.1 . Hence the power in the error series would probably be greater than that in the original series. This could only come about by an amplification of certain frequencies, which would naturally occur for frequencies greatly different from 50 cycles. In this example 200 cycles is chosen as an upper limit, because with a spacing of 2.5ms unique curves only exist from 0 cycles to 1/2h or 200 cycles.

Fig. 2.9

Fig. 2.10

FILTER CHARACTERISTICS

FOR 50 CYCLE COSINE OPERATOR

WITH h = 2.5 ms.

A Method of Finding Linear Operators for Least Squares Fitting Procedures

Described in this section is an iterative method of approaching the values of coefficients for a least squares fitting of linear operators to multiple time series. The problem arose in connection with the determination of linear operators to use in picking reflections from seismograms. [‡] The method is extremely inefficient and is really only possible with the aid of very high speed computing machines, but it gives interesting insight into the behaviour of matrices, which helps in constructing other techniques.

We are trying to fit a linear operator of the form

$$\widehat{\mathbf{x}}_{\mathbf{i}+\mathbf{k}} = \mathbf{c} + \mathbf{a}_{0}\mathbf{x}_{\mathbf{i}} + \mathbf{a}_{1}\mathbf{x}_{\mathbf{i}-1} \cdots + \mathbf{a}_{M}\mathbf{x}_{\mathbf{i}-M}$$

$$+ \mathbf{b}_{0}\mathbf{y}_{\mathbf{i}} \cdots + \mathbf{b}_{M}\mathbf{y}_{\mathbf{i}-M}$$

$$+ \mathbf{c}_{0}\mathbf{z}_{\mathbf{i}} \cdots + \mathbf{c}_{M}\mathbf{z}_{\mathbf{i}-M}$$

$$+ \mathbf{d}_{0}\mathbf{u}_{\mathbf{i}} \cdots + \mathbf{d}_{M}\mathbf{u}_{\mathbf{i}-M}$$

$$2.24$$

to an interval of the sequences x_i , y_i , z_i , and u_i so that

$$I = \sum_{i=1}^{\infty} (x_{i+k} - \hat{x}_{i+k})^2 \text{ is a minimum.} 2.25$$

The plan is to guess initial values of the constants a, a_s , b_s , c_s , and d_s and compute 2.24. Then adjust the constants so that I is continually reduced. The initial ‡ Ref. 5 values chosen are a = \bar{x} (mean of x_1 series) $a_s = b_s = c_s = d_s = 0$. These values are the values which the constants would assume under least squares fitting procedures if the x_1 series were truly random and had no predictability. With these values of the constants I = I($\bar{x}, 0, 0, ...$) becomes the sample variance about the sample mean.

The computational procedure is:

- 1. Find $I(\bar{x}, 0, 0, ...)$
- 2. Find $I(\bar{x}+\Delta a, 0, 0, ...)$
- 3. If 2 < 1, continue adding △a until I(x+n △a, 0,0, ...)> I(x+(n-1) △a, 0,0, ...). If 2> 1, subtract △a and continue to subtract until I(x-n △a, 0,0, ...)> I(x-(n-1) △a, 0,0, ...)
- 4. Using $\bar{x}_{\pm}(n-1) \triangle a$, 0,0, ..., as the new starting point, find $I(\bar{x}_{\pm}(n-1) \triangle a, \Delta a_0, 0, 0, ...)$ and repeat the steps under 3.
- 5. Work successively in this fashion with each of the variables $a_1, a_2, a_1 \dots d_M$.
- 6. Start the process over again with the variable a.
- 7. Continue recycling until the desired accuracy is reached.

It is interesting to consider the geometry of this process. If we substitute equation 2.24 into 2.25, we find that I is parabolic in each of the coefficients a, a_s, b_s, c_s, d_s. For simplicity consider the case where we have only two coefficients a and b. Then I is a two dimensional paraboloid in a and b whose minimum we wish to find. I is positive or zero for all a, b and has one minimum. Contours of I = c are ellipses in the a b plane of constant major to minor axis ratios, and are centered at the minimum. Figs. 2.11, 2.12, and 2.13 illustrate three situations that might arise. In Fig. 2.11 the contours are circular which is the case when the matrix of the normal equations associated with the minimum fit is well-behaved. Fig. 2.12 is the more usual situation where the contours are definitely elliptial. Fig. 2.13 shows a very badlybehaved situation corresponding to near singularity of the associated matrix.

The solid line shows how the iterative method described above would converge toward the minimum point in the three situations. The dashed curve shows how another iterative method, the steepest descent method, would converge in these situations. The steepest descent method runs into trouble in the near singular case because with finite increments it cannot land on the long axis of the ellipse. It is forced to wobble back and forth, much as a small ball would wobble rolling in such a trough. The method described above would also encounter trouble if the increment were not fine enough, for if it got near the

trough the next increment would carry it across the trough to a greater value of I.

These figures illustrate a fundamental problem met with in iterative methods. The fine increments necessary in treating the near singular case are very inefficient when used on well-behaved data, whereas the larger increments applicable in Fig. 2.11 could never find the minimum of Fig. 2.13.

A program was written for the WWI Digital Computer which would do this one-variable-at-a-time type of iteration. It is described in Appendix C. The computations it carries out take fifteen or twenty minutes of machine time, but they represent nearly a year of hand computation. The program can print out each successive value of I as it is computed. Fig. 2.14 shows a plot of these values as the program converges towards the solution of a particular problem. This diagram shows how I is parabolic in each coefficient. We also note that all the parabolas have approximately the same shape. This indicates that if there is a predominant long ellipse axis as in Fig. 2.13, it cannot be close to parallel to any of the axes a, a, d,, for if it were, the parabolic section in the corresponding direction would be quite flat. One surprising feature of this diagram is the failure of the parabolas to tend to flatten as I is diminished.

Acouracy

This is a convenient point to consider the problem of the importance of obtaining the exact solution. If we look at Fig. 2.13, we see that values of a and b at the point A will reduce I almost as well as values at the true minimum 0. Individual errors $(x_1 - \hat{x}_1)$ will likewise be practically identical. The effect of the displacement OA will not be felt until the values at A are used to predict outside the interval where the minimum fit is taken.

Suppose the series is

and the minimum fit is taken in the interval I of this series. What happens when we predict the interval II with coefficients chosen in I?

Consider Fig. 2.15. The dark solid line represents the long axis of the ellipses for interval I and the light solid lines, the contours for this interval. The true minimum of these contours is at O. Likewise, we can draw a similar contour picture for the interval II. If we assume the dynamics are but slightly different in the two intervals, the second contours will be slightly rotated with respect to the first, and, there will be a small displacement of the minimum. The heavy and light dashed lines in Fig. 2.15

Fig. 2.15

represent these contours for interval II. Since we are considering the near singular case, the deviation of the sum of squared errors for the second interval from its value on the heavy dashed line will vary as the square of the distance from a point in the ab plane to the heavy dashed line.

Now suppose in finding our minimum point for interval I we had landed at the point A which satisfies the least squares oriterion almost as well as the true point O. The deviation of the sum of squared errors when point A is used to predict interval II will be proportional to $(AD)^2$ which would be about sixteen times greater than if the point O were used, since OE - 1/4 AD. On the other hand, if we had landed at the point B for the first interval we would get a sum of squared errors smaller than if the point O were chosen. Again, if the point F were taken, the sum of squared errors for interval II would not be appreciably different than for the point O.

These effects have been noted in computed data. The indication is that the true minimum point 0 must be chosen if we are to take the sum of squared errors as a valid comparison of the changing dynamics in various intervals of a series by this method.

II-23

PART III

SOME INTERPRETIVE PROCEDURES

Introduction

In this part we present several ideas which may be applicable to answering certain questions involving seismogram analysis. Two of the ideas have had some testing, the others none. With one exception these ideas relate specifically to reflection seismic records, and wrious possibilities in picking reflections therefrom. The questions are:

1. In a two velocity system, e.g., shear and compressional waves, can we set up a method for separating these velocities and can we apply it to reflection determination?

In the use of linear operators for seismogram
 analysis, is there another measure of prediction error,
 other than the "error curve", which will show reflections?
 Can we obtain information on the step-out times of
 reflections, by the use of linear operators and the
 concept of ensemble averages?

4. Can a special seismometer set-up be used in conjunction with correlation analysis to pick reflections?

Velocity Separation

The determination of velocities for compressional waves in the earth at shallow depths is relatively simple due to (1) the ease in generating such waves, and (2) the fact that the first arrivals are the compressional waves. Shear waves are more difficult to generate with sifficient amplitude to separate from the earlier arriving types. Although with the proper equipment this can be done by visual inspection of the seismogram, \ddagger it seemed of interest to consider if a statistical test could be devised to help in this problem.

The approach was to set up a simple model approximating the physical situation.

Assume we have two wave forms A and B traveling horizontally at velocities V_A and V_B , where V_A V_b , past three geophones F, G, and H, equally spaced with separation d. The wave shapes do not change with time. Traces F, G, and H then represent composites of A and B with different time lags. Assuming V_A is known, the problem is to find V_B and, if possible, the wave forms A and B.

Divide the time scale into units such that the no. of units per sec. is L. Since V_A and d are known we may line up F, G, and H so that very nearly

‡ Ref. 8

$$F_{\rm N} = A_{\rm N} + B_{\rm N}$$
 3.1

$$G_{N} = A_{N} + B_{N-j} \qquad 3.2$$

$$H_{N} = A_{N} + B_{N-2j} \qquad 3.3$$

where the time lag between traces is approximated by j units so that $\frac{j}{L} \neq \frac{-d}{V_A} + \frac{d}{V_B}$

or

$$V_{\rm B} = \frac{IAVA}{JV_{\rm A} + IA} \qquad 3.4$$

This is illustrated in Fig. 3.1 .

From equations 3.1, 3.2, and 3.3 we can get

$$A_{N} - A_{N-j} = G_{N} - F_{N-j} \qquad 3.5$$

$$A_{N} - A_{N-2j} = H_{N} - F_{N-2j}$$
 3.6

3.5 and 3.6 are recursion formulas giving A_{N-kj} and A_{N-2kj} respectively (k = 1, 2, ...) once $A_N \cdots A_{N-j+1}$ are known. Now if j has its correct value then it is easy to show that <u>regardless of how we choose the initial A's</u> both formulas give the same value for A_{N-2kj} . If j is slightly wrong then the two series will differ slightly. The difference will increase as j strays further from its true value. We may now set up a procedure for finding this value. Assume values for j and for A_N , A_{N-1} , \cdots A_{n-j+1} , use equations 3.5 and 3.6 to calculate the two series (to

Fig 3.2

a certain length), find the mean square difference between the series, and plot this difference as a function of j. In the ideal case, this function will go to zero for the correct value of j. In practice we can expect this difference function to have a minimum at the correct value.

Thus in theory at least, j is determinable. Equation 3.4 may be used to find V_B . Although the exact wave shapes are indeterminate in the general case, there may be obtained some information about them. Assume the first j values of A_N are taken to be zero. If j is correct, then the series from equation 3.5 represents the true A_N with the first j values subtracted successively. Thus the series from equation 3.5 might be expected to have the same frequency characteristics as the true A_N .

In certain cases the assumption that $A_N \cdots A_{N-j+1}$ = 0 will be fairly accurate. In these cases the wave forms should be determinable. Examples would arise in the separation of shear and compressional waves where it is known that the shear waves arrive late, and in reflection picking.

Another possibility in this problem would be the use of pure cross-correlation between two traces. We should expect to get a peak in the correlation at a lag corresponding to the velocity V_B and the particular geophone separation. However, if the wave form B were of small

amplitude, the shape of the cross-correlation curve would effectively be dominated by that of the auto-correlation of wave form A, and the selection of the peak would be somewhat arbitrary. On the other hand, the mean square difference between equations 3.5 and 3.6 should still show a true minimum at the correct lag.

We can adapt this idea to the selection of reflections on seismic records. Here we make the simplified assumptions that the reflection consists of a wave train with zero simplitude between reflections as in Fig. 3.2. This is assumed to occur on two traces in the same form and at the same time (i.e., there is no step out time of the reflection which is assumed to be coming in vertically). In this case equation 3.5 alone is applicable and we need only two traces.

$$A_{N} - A_{N-j} = G_{N} - F_{N-j}$$
 3.5

j is taken from the step-out time of the initial breaks on the seismogram. We then select some interval j units in length in which A_N is zero (a non-reflection interval), and use equation 3.5 to predict the remainder of the reflected wave. For interpretation it is convenient to plot the running variance of the predicted reflection.

Now the assumptions will certainly not be upheld exactly on any real seismic record. A certain amount of random energy will be in phase between any two traces and would be picked out by this method as part of the predicted

reflection. To alleviate this situation we can use three traces and predict the reflected wave from the three possible pairings of these traces. Adding the three predicted waves would tend to accentuate components in phase between all three, and to minimize the random, in-phase components between any two traces. For three traces F_N , G_N , and H_N we can express this sum as

$$3A_{N+K} = A_N + A_{N+j} + A_{N+K-j} + G_{N+K}$$

+ $2H_{N+K} - F_N - F_{N+K-j} - G_{N+j}$ 3.7

where j corresponds to the step-out between F_N and G_N , and K the step-out between F_N and H_N .

Tests of the Method

1. Selection of Shear Velocity

An initial test was constructed which showed that, when the assumptions were exactly upheld, the minimum of the plot of the squared differences between equations 3.5 and 3.6 was quite sharp.

On this basis three adjacent traces of a seismogram were converted to numerical form and the method applied to these real series. The seismogram was taken at Revere Beach, Mass., in unconsolidated sediments, by Peter Southwick.[‡] Special generating apparatus was used so that the shear arrivals were quite prominent. This record is now lost, but

‡ Ref. 8

Fig. 3.3 shows a very similar seismogram taken with the same apparatus. The first line of check marks on this seismogram indicates the first arrivals, and the second line of check marks was picked as the arrivals of the shear waves. This second line permitted a direct computation of the shear velocity.

The readings for the three traces were lined up in accordance the first line of time breaks, and equations 3.5 and 3.6 were computed for a variety of values of j. In each case the first j values of A_N were assumed to be zero. The sum of squared differences between these two series were computed for each j, and normalized by the number of terms in the series for each j. A plot of these quantities appears in Fig. 3.4.

This figure shows two distinct minima (at j = 13.3and j = 16.0) rather than just one. Upon examination it turned out that the value j = 13.3 corresponded to a shear velocity which would have been computed by direct interpretation of the first two traces chosen. The second minimum corresponded to a velocity which would have been determined directly from the second and third traces chosen. The value of velocity computed by the <u>entire</u> second line of check marks of Fig. 3.3 lay between these two values.

Fig. 3.5 shows a running average of the points in Fig. 3.4 (by overlapping groups of three) which exhibits a flat minimum between j = 13.3 and j = 16.0. The

corresponding velocity was quite close to that computed from the second line of check marks.

2. Predicting a Reflected Wave

To test whether or not a reflection could be predicted by these methods, a seismogram showing a prominent reflection was chosen (MIT Record No. 1 \ddagger). In this record linear operators had been computed and error curves derived. These error curves showed marked peaks at the reflection so the curves were taken as a basis of comparison.

From two traces on this record equation 3.5 was computed. j was selected from the initial step-out between the traces and the non-reflection interval chosen to occur after the reflection. The variance of the predicted wave (in overlapping groups of ten) is plotted in Fig. 3.6. The dotted and dashed curves of this figure show error curves for linear operators with different prediction distances k. The variance curve does not reach a peak in the reflection as rapidly as do the error curves, but it does compare favorably with them in general shape during and after the reflection. Before the reflection the discrepancy is more noticeable. This may very well be attributable to the fact that operator interval was chosen just before the reflection. In the operator interval, the least squares fitting procedure forces the error curves to be as low as possible.

‡ Ref. 4

Fig. 3.6

Conclusions

The two tests discussed show that the expected effects are noted. However, the data used are reasonably ideal, in the sense that ordinary methods of interpretation are adequate. Whether or not the statistical techniques are better can only be determined by many further trials. Situations difficult to treat by the ordinary methods will also fail to uphold the simple assumptions of the theory presented here. On the other hand, only the simplest forms of the theory were used in the examples. Refinements, such as the use of three or more traces for reflection picking may give more valid results.

Phase Test

The "error curve", as used by the Geophysical Analysis Group for picking reflections, is a running average of the squared differences between a predicted and an actual seismic trace. Fig. 3.7 shows an actual trace (the solid curves), and three predictions of this trace, from linear operators with different values of prediction distance. From this diagram we see that the error curve is a running measure of the vertical differences between the predicted and a ctual traces.

At the reflection (shaded) these differences are seen to become large, and hence the error curve rises to a peak in this interval. The reason the differences become large is not because there is a big discrepancy between the average amptitudes of the predicted and actual traces. From the diagram it appears that the reason is that there is a horizontal displacement of the oscillations of one trace with respect to the other. In other words, there is a phase shift between the predicted and actual traces during the reflection, which disappears shortly after the reflection.

It seems then that a test of phase relationships might well show the reflections as well as the error curve does. A fairly rigorous way of testing this phase shift would be the following:

 Select highly overlapping intervals of the record.
 Compute the cross-spectrum between the predicted and actual traces in each interval, thus obtaining the phase relationships.

3. Plot the phase angle of the dominant frequency as a function of the interval chosen.

Practically, this is an involved procedure. We can use a simple but crude method to get approximately the same results. Since phase shift is expressed by horizontal displacement we can measure this displacement directly from graphs such as in Fig. 3.7. This requires that we be able to follow corresponding waves in the two traces, which is subject to personal interpretation.

The displacement was measured for the upper set of curves in Fig. 3.7. From equally spaced points (in time) on the solid curve the horizontal displacements to the dashed curve were measured. Displacements to the right were considered positive, those to the left negative. Where such measurements could not logically be made (for example on the peak occurring at about .96 sec.) values were taken midway between the last value that <u>could</u> logically be made and the next such value. Once this series of displacements was determined, its individual terms were summed in groups of twenty overlapping by ten, in order to smooth the data. These sums are plotted in Fig. 3.8.

This curve indicates a rapid change of phase occurs at the reflection, the phase rising to a peak in the middle of the reflection, and falling off more gradually thereafter. It seems surprising that the curve is almost entirely positive. If this effect is characteristic, perhaps we should consider as significant only those portions of the curve above a certain mean (about 25 or 30 units in Fig. 3.7). From the original record it appears that there may be another reflection at about 1.23 seconds, which could conceivably cause the rise at the end of the curve.

This is a purely empirical curve. Perhaps it only holds for the particular case treated. One would suspect that the arrival of reflected energy would be accompanied by a rapid change in phase relationships. However, it does not seem reasonable that these changes should be in one direction since the times of arrival of reflected energy are random. Possibly we should deal with the original series only, and compute the <u>rate of change</u> of phase angle (between two overlapping intervals) as a function of interval.

Ensemble Average

The step-out time of a reflection is a property of several seismic traces rather than just a single trace. The error curve for linear operators, as defined elsewhere in this paper, is a property of a single trace - a time average of a single error time series. To get information on the step-out time we must consider operators chosen for different traces. In this connection it is convenient to use an "ensemble" average. This is an average across the "ensemble" of error time series generated by the various operators chosen.

Let us suppose that we have taken a series of operators on a record which consists of traces from equally spaced seismometers. Suppose there are T traces, and on the i^{th} trace (i = 1, 2, ...T) we have chosen N_j operators. For the k^{th} operator on this trace ($k = 1, ...N_j$) there is an associated error time series which we define as $e_1^{(ki)}$. Then, for example, we may construct a single error time series ϵ_1^i to be associated with the i^{th} trace by the expression

$$\epsilon_{1}^{\sharp} = \sum_{k=1}^{N} [e_{1}^{(k,l)}]^{2} \qquad 3.7$$

We may then average these error time series over the various traces. Between traces we observe the effect of step-out. Hence we construct the error time series $\delta_i^{(\alpha)}$ with an arbitrary lag or lead α

$$S_{1}^{(\alpha)} = \sum_{\substack{k=1 \\ k=1}}^{T} \epsilon_{1-\alpha k}^{(k)} \qquad \alpha = 0, \pm 1, \pm 2, \dots 3.8$$

with the expectation that a peak on this error time series, corresponding to a certain reflection, should be highest and narrowest for that value of α most closely corresponding to the true step-out of the given reflection.

No attempt has been made yet to compute 3.8. It would be a fairly simple task to program this equation for the WWI Digital Computer as a follow-up of the Prediction XV program described in Appendix B.

Travelling Correlations

As an approach to the problem of using a special geophone layout for reflection picking, consider the following arrangement. Two geophones G_1 and G_2 are placed in the ground, one vertically under the other at a distance d. Assuming the ground homogeneous and non-dispersive around the geophones, the responses of G_1 and G_2 may be considered to be due to superpositions of many plane waves travelling with a velocity V from many different directions. In the absence of big reflections, the major contribution to the responses will come from waves having directions not far from the horizontal.

Now consider the cross-correlation of the two responses at G_1 and G_2 . In particular consider the value of the function for a time lag equal to d/V. It appears that this value will be strongly influenced by the amount of vertical wave contribution present in the responses, since d/V is the time of direct travel from G_2 to G_1 . The cross-correlation at the lag d/V should rise rapidly at a reflection and drop off afterward.

In practice we would have to compute this correlation over highly overlapping time intervals of the response functions in order to obtain the correlation as a function of time. The correlation program described in Appendix D is adaptable to this type of analysis. So far however, no seismograms with the above geophone arrangement have been available.

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

It is difficult to make evaluations of validity on methods which have undergone little testing. Nevertheless we may draw certain conclusions from the work presented here.

Polynomial gravity approximation, as presented here, seems of sufficient simplicity and validity to justify a considerable amount of further study. If further trials show more promise it would be well worth-while to find the inverses of the matrices of Table III. In any event, polynomial approximations of this type have applications in many other fields, and the simplifications brought forward here may be of real value in these other applications.

The properties of cosine operators are of mathematical interest, but it is hoped that studies of this sort will lead to more practical results. In particular, further pursuit of the filter characteristics of linear operators will lead to a better understanding of the extent of realizability of equivalent electronic filters, and or to simplification in the determination of such operators.

The author is more hesitant about recommending the various procedures discussed in Part III. Seismograms exhibit extreme variability in their characteristics and, whereas the examples given here are encouraging, the procedures may fail on other types of records. However, the problems they attempt to settle are of great practical concern and all promising techniques should be either proved or disproved. Phase is a crucial variable in these problems, and probably considerable effort should be spent studying this parameter.

As for the Appendixes, the author feels that the programs described therein have genuine value. Anyone concerned with research depending largely on computation appreciates the fact that obtaining errorless results is a major problem. Programs such as these effectively eliminate this type of problem, and are available for the use of persons interested in the sort of computations they perform.

REFERENCES

- 1. Agocs, W.B., "Least Squares Residual Anomaly Determination," Geophysics XVI, 4, October, 1951
- 2. Crout, P:D., "A Short Method for Evaluating Determinants and Solving Systems of Linear Equations with Real or Complex Coefficients," Trans. Am. Inst. of Elect. Eng., Vol. 60, 1941
- 3. Tukey, J:W., "The Sampling Theory of Power Spectrum Estimates," Woods Hole Symp. Autocorr. Applic. to Phys. Prob., pp. 46 - 67 D.N.R. NAVEXOS - P - 735, 1949
- 4. Wadsworth, G.P., and Robinson, E.A., Directors, M.I.T. G.A.G. Report No. 1, "Results of an Auto-Correlation and Cross-Correlation Analysis of Seismic Records, Presented at M.I.T. Industrial Liason Conference of August 6, 1952," October 1, 1952
- 5. Wadsworth, G.P., and Robinson, E.A., Directors, M.I.T. G.A.G. Report No. 2, "A Prospectus on the Application of Linear Operators to Seismology," November, 1952
- 6. Wadsworth, Robinson, Hurley, "Detection of Reflections on Seismic Records," Geophysics XVIII, 3, July, 1953
- 7. Kendall, Maurice G., <u>The Advanced Theory of Statistics</u> <u>Vol. II</u>, Charles Griffin and Compnay Limited, London, 1947
- 8. Southwick, Peter, Velocity of Shear Waves Through Unconsolidated Materials, M.I.T. Ph.D. Thesis, 1952

APPENDIX A

.

APPENDIX A

POLYNOMIAL I (2492 m 1) - Description and Use Of

This program was written for the WWl Digital Computer to eliminate the task of computing the residuals from a least squares fitting of an $n^{\frac{th}{t}}$ order polynomial to data taken over an arbitrary-sized rectangle. A copy of the program appears at the end of this Appendix.

Polynomial I does the following:

I. It solves the equation $g(xy) = C_{00} + C_{10}x + C_{20}x^{2} + \dots + C_{n0}x^{n}$ $+ C_{01}y + C_{11}xy + \dots + C_{(n-1),1}x^{n-1}y$ \vdots $+ C_{0,(n-1)}y^{n-1} + C_{1,(n-1)}xy^{n-1}$ $+ C_{0n}y^{n}$

where the C_{jk} 's are given, n, the order of the polynomial is given, and the values of x and y are to be taken over a rectangular grid measuring 2N by 2M, and with axes centered as in Fig. 1.2.

II. It then forms the differences g(xy) for all values of g(xy) on the grid. These are the residuals. III. It prints out these residuals in the same network fashion that the grid was chosen.

Use of Polynomial I

There are certain conventions which must be observed in the use of this program. The constants defining the nature of the polynomial and grid must appear as follows:

Register 440 +n order of polynomial (less than 7)

(Octal) 441 +N greatest value of x

442 +M greatest value of y The coefficients C_{jk} of the polynomial must be scale factored in a special way because they decrease in magnitude rapidly as *l*+k increases. The scale factor is $10^{(l+k)-2}$, which in most instances will guarantee that all are less than unity in absolute value, but not greatly so. They must appear in the machine as follows: Register: 443 $C_{00} \propto 10^{-2}$ 461 $C_{12} \propto 10$ (Octal) 444 $C_{10} \propto 10^{-2}$ 461 $C_{12} \propto 10^{2}$

	-10	x	10 -	462	C ₂₂	x	10~
445	с ₂₀	x	1	463	с ₃₂	x	10 ³
446	с ₃₀	x	10	464			
447	с ₄₀	x	10 ²	465	с ₀₃	x	10
450	с ₅₀	x	103	466	c ₁₃	x	10 ²
451	с ₆₀	x	104	467	C ₂₃	x	10 ³
452	C _{Ol}	x	10-1	470	с ₃₃	x	104
453	с ₁₁	x	1	471	c ₀₄	x	10 ²
454	C ₂₁	x	10	472	c ₁₄	x	10 ³

455	с ₃₁	x	10 ²	473	с ₂₄	X	104
456	C41	x	103	474	с ₀₅	x	10 ³
457	°51	X	104	475			
460	с ₀₂	x	l	476	°06	x	104

The data g(xy) which is presumed to be taken over the gridwork, is scale factored by 10^{-2} and appears in the machine as follows:

Register	540	g(-N,M)	x	10-2
	541	g(-N+1,M)	x	10-2
	542	g(-N+2,M)	x	10-2
	•	•		
	•	•		
	•	g(N,M)	x	10 ⁻²
	٠	g(-N,M-1)	x	10 ⁻²
	•	g(-N+1,M-1)	x	10-2
	•	•		
	•	•		
	•	g(N,M-1)	x	10 ⁻²
	•	g(-N,M-2)	x	10-2
	•	•		
	•	•		
	•	•		
	•	g(-N,-M)	x	10-2
	•	g(-N+1,-M)	x	10-2
	•	•		

• •

$$g(N,-M) = 10^{-2}$$

$$g(-N+1,-M) = 10^{-2}$$

$$g(N,-M) = 10^{-2}$$

Now suppose the information n, N, M, and the C_{fk} 's are prepared on a tape with the tape number X, and the date g(xy) is prepared on a tape with the tape number Y. Then the instructions for the operation of this program would be

Erase storage Read in 2492 m l Read in X Read in Y Start at 127 (Octal)

The residuals are printed out by the direct printer in about three minutes or so depending on the size of the grid. They appear as four-digit numbers where the decimal point is understood to occur after the second digit.

As an example of the output we include a sample of three sets of residuals. These were derived for the three sets of coefficients used elsewhere in this paper. The sample illustrates the convenience of this form of answer for contouring purposes. In fact, with only slight modification (inserting two extra carriage returns between lines) these numbers would appear on a grid with square unit cell, and could be contoured directly, on the result sheet.

A Technical Feature in Polynomial I

We describe here a technical feature in this program which might be of use to other programmers. The problem is that we are multiplying numbers rapidly decreasing in magnitude with l+k (the C_{lk} 's) by numbers rapidly increasing in magnitude with l+k ($x^{\ell}y^{k}$) while the product is of a relatively constant order of magnitude, which must be in a form which we can add to other such products.

What we want is the product $C_{jk}x^{j}y^{k}$ to be scale factored finally by 10^{-2} . To preserve accuracy during the computation of the product we do the following:

1. Form $x^{\ell} 2^{-15}$ and $y^{k} 2^{-15}$ and then scale factor to $x^{\ell} 2^{-15+\alpha}$ and $y^{k} 2^{-15+\beta}$ by use of the scale factor order. 2. Form $C_{\ell k} 10^{(\ell+k)-2} x^{\ell} 2^{-15+\alpha} y^{k} 2^{-15+\beta}$ $= C_{\ell k} x^{\ell} y^{k} 2^{-30+\alpha+\beta} 10^{(\ell+k)-2}$ (1)

To get this product to the form $C_{sk}x^{s}y^{k}10^{-2}$ we must multiply by $10^{-(s+k)}2^{30-(\alpha+\beta)}$

It appears that we merely need to store the negative powers of 10, multiply the expression (1) by $10^{-(\ell+k)}$ and then shift left 30-($\alpha+\beta$). However the negative powers of 10 cannot be stored with any accuracy for high $\ell+k$ so we write $10^{-(\ell+k)}2^{30-(\alpha+\beta)}$ in the form

$$= \frac{(l+k)\log_{2}10+30-(\alpha+\beta)}{2}$$

$$= \frac{2}{2}-3\cdot32193(l+k)+30-(\alpha+\beta)}$$

$$= \frac{1}{2}\cdot\frac{1}{32193(l+k)} [2^{-3}(l+k)+30-(\alpha+\beta)]$$

$$= \frac{1}{(2\cdot32193)(l+k)} [2^{-3}(l+k)+30-(\alpha+\beta)]$$

$$= (.800)^{l+k} [2^{-3}(l+k)+30-(\alpha+\beta)]$$

We can store the powers of (.800) with ample accuracy. Thus we multiply by the appropriate power of (.800) and follow this by a shift left or right according to the exponent of 2. (The zeroth power of (.800) is put in as +.9999.)

ŝ

M	\$	4	M
---	----	---	---

	· ·	
+0163 +0004 -032 +0086 -0132 -0082 +0039 -0083 -009 -0180 -0195 +0032	m = 4 m $3 -0147 -0094 -0136 +0082$ $5 +0062 -0049 -0193 -0007$ $2 +0133 +0553 +0301 -0056$ $7 +0250 +0199 -0115 -0176$ $2 +0311 -0058 -0043 -0014$ $5 +0141 +0050 -0007 -0247$	-0045 +0031 +0001 -0120 -0116 +0063 +0069 -0078 -0122 -0003 +0017 -0030 -0158 -0018 +0049 -0021
-0145 -0164 -0076 +0099 -0028 +0076 +0249 +0225 +0098 +0095 -0060 -0008	9 +0376 +0563 +0179 -0186 0 +0071 +0138 +0175 -0222 3 -0149 -0151 -0045 -0231 4 -0097 -0264 -0141 -0070 2 -0112 +0106 +0097 +0220	-0208 +0220 +0084 +0149 -0124 -0158 +0037 +0165 -0123 -0041 +0030 +0098 -0010 +0173 +0104 +0044

m		3	
---	--	---	--

	-	· · · · ;	· · ·	•	~
· · ·	· ·	m=	3	2. j. 2. j. s. 2. f.	ی معنی م
$\begin{array}{r} +0193 +01 \\ +0067 -01 \\ -0057 -01 \\ -0333 -01 \\ -0363 -01 \\ -0249 -01 \\ +0107 -01 \\ +0404 +01 \\ +0390 -01 \\ \end{array}$	085 -0211 087 +0020 114 -0057 299 +0003 292 -0050 296 -0170 112 -0008 205 +0033 041 -0095	+0179 +0035 +0318 +0684 +0343 +0313 +0350 +0019 +0138 +0100 +0355 +0605 +0047 +0181 -0184 -0122 -0193 -0309	-0300 -0154 -0166 -0051 +0393 -0027 -0021 -0132 +0036 +0027 +0063 -0196 +0259 -0108 +0270 -0108 +0046 -0100 -0115 +0014 -0067 +0133	-0140 -0058 -0150 -0000 -0145 -0081 -0179 -0108 -0253 +0070 -0169 -0248 -0030 -0117 +0012 +0062 +0106 +0288	+0021 +0175 +0050 +0078 -0065 -0021 -0082 -0124 +0001 -0084 -0018 -0002 +0056 +0070 +0075 +0079 +0186 +0076

- m= 2

			- 01	= 2						,
+0105	-0402	-0035	-0189			-0242	-0189	-0009	+0297	+0632
+0044	+0079	-0158	+0231	+0043	-0203	-0138	-0240	-0115	+0085	+0464
-0000	-0019	+0136 +0099	+0421 +0478	+0731 +0383	+0369 -0033	-0115 -0224	-0273	-0104 -0224	+0041 -0134	+0264
-0333	-0164	+0181	+0504	+0104	+0030	-0065	-0334	-0277	-0192	-0080
-0372	-0158	+0130	+0298 +0510	+0192	+0063	-0288	-0413	-0111	-0131	-0075
+0003	-0043	+0134	+0190	+0273	+0283	-0179	-0165	-0274	-0056	+0088
+0218	+0215	+0138	-0061	-0033	+0070	-0148	-0039	-0054	+0007	+0147
-+0102 -0195	-0106 +0239	-0039	-0093 -0309	-0222	-0073	+0002	+0054	+0234 +0391	+0191 +0243	+0225

· ·

,

01 101 $d_{12}^{-1}d_{22}^{-0}d_{20}^{-1}$ 02 102 $d_{12}^{-1}d_{20}d_{20}^{-1}$ 03 103 $d_{12}^{-1}d_{20}d_{20}^{-1}$ 04 103 $d_{12}^{-1}d_{20}d_{20}^{-1}$ 05 103 $d_{12}^{-1}d_{20}d_{20}^{-1}$ 06 103 $d_{12}^{-1}d_{20}^{-1}d_{20}^{-1}$ 07 103 $d_{12}^{-1}d_{20}^{-1}d_{20}^{-1}$ 101 $d_{12}^{-1}d_{20}^{-1}d_{20}^{-1}d_{20}^{-1}d_{20}^{-1}$ 103 $d_{12}^{-1}d_{20}^{-1}d_{20}^{-1}$ 101 $d_{12}^{-1}d_{20}^{-1}d_$						- 1			
of is	00				-+!	00	0,46000		
03 103 104 126000 05 104 12000 104 06 109 12000 104 07 106 107 107 10 106 107 107 10 107 107 107 10 107 107 107 107 107 107 107 108 107 107 107 109 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101 107 107 107 101					┢──╁┊	늜	0.66000		
04 104 $(3/2,00)$ 05 105 (200) 07 106 (200) 08 106 (200) 09 107 $(3/2,200)$ 09 107 $(3/2,200)$ 107 13 107 108 107 $(3/2,00)$ 109 107 $(3/2,00)$ 109 107 $(3/2,00)$ 109 107 $(3/2,00)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$ 109 107 $(4/2,0)$					┝──┼┼	02	0.56000		
09 109 220^{00} 00 100 100 100 10 100 100 100 11 11 110 110 110 11 110 110 110 110 110 11 110 110 110 110 110 111 111 111 110 111 111 111 111 110 111 111 111 111 1111 111 111 <td< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td>03</td><td>0.06000</td><td></td><td></td></td<>			<u> </u>			03	0.06000		
00 100 1/22000 10 100 1/0 1/0 10 100 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 11 1/0 1/0 1/0 12 1/0 1/0 1/0 13 1/0 1/0 1/0 14 1/0 1/0 1/0 15 1/0 1/0 1/0 16 1/0 1/0 1/0 17 1/0 1/0 <td< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td>04</td><td>1.54000</td><td></td><td></td></td<>			<u> </u>			04	1.54000		
10 d_10 d_10 d_10 11 d_10 d_10 d_10 18 d_10 d_10 d_10 18 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 10 d_10 d_10 d_10 10 d_10 d_10 d_10 10 d_10 d_10 d_10 11 d_10 d_10 d_10 11 d_10 d_10 d_10 11 d_10 d_10 d_10 12 d_10 d_10 d_10 13 d_10 d_10 d_10 14 d_10 d_10 d_10 15 d_10 d_10 d_10 14 d_10 d_10 d_10 d_10 15 d_10						05	0.20000		
10 d_10 d_10 d_10 11 d_10 d_10 d_10 18 d_10 d_10 d_10 18 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 10 d_10 d_10 d_10 10 d_10 d_10 d_10 10 d_10 d_10 d_10 11 d_10 d_10 d_10 11 d_10 d_10 d_10 11 d_10 d_10 d_10 12 d_10 d_10 d_10 13 d_10 d_10 d_10 14 d_10 d_10 d_10 15 d_10 d_10 d_10 14 d_10 d_10 d_10 d_10 15 d_10	06	H				06	1.22000		
10 d_10 d_10 d_10 11 d_10 d_10 d_10 18 d_10 d_10 d_10 18 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 19 d_10 d_10 d_10 10 d_10 d_10 d_10 10 d_10 d_10 d_10 10 d_10 d_10 d_10 11 d_10 d_10 d_10 11 d_10 d_10 d_10 11 d_10 d_10 d_10 12 d_10 d_10 d_10 13 d_10 d_10 d_10 14 d_10 d_10 d_10 15 d_10 d_10 d_10 14 d_10 d_10 d_10 d_10 15 d_10	07	/				07	+3		
11 $4i$ 0 13 113 $4i$ 0 14 $4i$ 0 113 15 113 $4i$ 0 16 113 $4i$ 0 17 113 $4i$ 0 18 113 $4i$ 0 19 113 $4i$ 0 19 113 $4i$ 0 19 116 116 $4j$ 116 118 $4j$ 0 118 $4j$ 128 128 128 128 139 139 139 $4j$ 140 139 139 139 $4j$ 140 139 139 139 139 140 140 $4j$ 120 139 139 <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>AL O</td> <td></td> <td></td>	10					10	AL O		
18 118 42.0 19 113 42.0 19 113 42.0 19 113 42.0 19 113 42.0 19 113 42.0 19 113 42.0 19 116 62.12.1 19 117 117 117 117 117 118 62.12.0 118 119 42.45 118 110 12.2000 118 111 118 62.2000 118 62.2000 118 119 62.400 118 110 12.322 118 110 12.322 119 110 12.322 119 110 12.322 119 111 119 12.325 119 12.42 119 119 12.42 119 119 12.42 119 119 12.42 119 119 12.42 119									
13 113 113 114 $Q_P (23)$ 146 116 $Q_P (23)$ 116 16 116 $Q_P (23)$ 117 16 116 $Q_P (23)$ 117 16 116 $Q_P (23)$ 118 17 117 117 117 180 $Q_P (23)$ 118 $Q_P (23)$ 181 180 $Q_P (20)$ 118 181 180 $Q_P (20)$ 118 181 181 0.32000 118 183 0.32000 118 $A_P (2)$ 184 0 118 $A_P (2)$ 185 118 $A_P (2)$ 118 185 113 $A_P (2)$ 117 185 113 $A_P (2)$ 117 185 113 $A_P (2)$ 117 185 129 118 $A_S (2)$									
16 116 $2p/23$ 15 119 $2l/23$ 16 119 $2l/23$ 17 110 $2l/23$ 17 117 110 $2l/23$ 17 117 110 $2l/23$ 18 $2l/2000$ 18 18 $0l/22000$ 18 19 180 $0l/22000$ 19 180 $0l/22000$ 19 180 $0l/2000$ 19 19 $0l/2000$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
19 118 $(2, 1/2, 1)$ 10 118 $(2, 1/2, 1)$ 10 117 117 10 118 $(2, 1/2, 1)$ 110 $(2, 1/2, 1)$ 118 111 118 $(2, 1/2, 1)$ 111 118 $(2, 1/2, 1)$ 111 118 $(2, 1/2, 1)$ 111 118 $(2, 1/2, 1)$ 111 118 $(2, 1/2, 1)$ 111 118 $(2, 1/2, 1)$ 111 118 $(2, 1/2, 1)$ 112 118 $(2, 1/2, 1)$ 113 118 $(2, 1/2, 1)$ 114 118 $(2, 1/2, 1)$ 115 $(2, 1/2, 1)$ 118 113 $(2, 1/2, 1)$ 118 113 $(2, 1/2, 1)$ 118 113 $(2, 1/2, 1)$ 118 113 $(2, 1/2, 1)$ 118 114 $(2, 1/2, 1)$ 118 115 $(2, 1/2, 1)$ 118 116 $(2, 1/2, 1)$ 118 113 118 $(2, 3/2, 1)$									
16 118 p_{c} (16 117 118 p_{c} (17 118 p_{c} (17 118 119 q_{d} (17 118 111 q_{d} (17 118 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
17 17 180 $4g$ 180 $4g$ 180 $4g$ 180 $4g$ 1 181 180 $6g$ $4g$ 1 181 181 $6g$ 12000 1 182 183 110 12000 1 183 181 110 12000 1 183 183 110 110 110 110 183 184 4100 1 1 110 110 110 184 185 11000 11000 11000 11000 11000 11000						115	Ca 121		
17 17 $(17) G_{4}$ (107 18 18 $(17) G_{4}$ (19 18 18 $(18) G_{2} g_{2} g_{0} g_{0}$ 18 188 $(12) G_{2} g_{0} g_{0}$ 19 19 $(12) G_{2} g_{2} g_{1}$ 10 19 $(12) G_{2} g_{2} g_{1}$ 11 118 $(12) G_{2} g_{2} g_{1}$ 12 138 138 $(12) G_{2} g_{2} g_{1}$ 139 138 $(12) G_{2} g_{2} g_{1}$ 1 130 138 $(12) G_{2} g_{2} g_{1}$ 1 131 $(12) G_{2} g_{2} g_{1}$ 1 1 130 138 $(12) G_{2} g_{2} g_{1}$ 1 131 130 130 $(12) G_{2} g_{2} g_{1}$ 1 <td>16</td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td>rc /16</td> <td></td> <td></td>	16					16	rc /16		
10 10 $40 45$ 11 110 $40 45$ 121 111 $612,000$ 122 111 $612,000$ 123 111 $612,000$ 124 111 $41,00$ 125 111 $41,00$ 126 112 111 127 111 $41,00$ 128 $41,00$ 111 128 $41,00$ 111 128 128 $41,00$ 128 128 128 130 128 $41,00$ 131 128 128 132 131 131 138 132 132 139 132 132 131 133 132 132 133 1333 133 133 1333 134 134 142 135 133 1334 138 132 140 139 134 142 130 140 142	17	/				117	C+ 107		
81 181 (181) $(72,200)$ 82 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 84 188 $(72,200)$ 85 188 $(72,200)$ 86 188 $(72,200)$ 87 188 $(72,200)$ 88 188 $(72,200)$ 93 188 $(72,200)$ 94 195 $(72,200)$ 95 188 $(72,200)$ 95 188 $(72,200)$ 95 198 $(72,200)$ 95 198 $(72,200)$ 95 198 $(72,20)$ 95 198 $(72,20)$ 95 198 $(72,20)$ 95 198	20								
28 188 (2.72) 20 188 (2.72) 21 188 (2.72) 22 188 (2.72) 23 188 (2.72) 24 188 (2.72) 25 185 (2.72) 26 188 (2.72) 27 188 (2.72) 27 188 (2.72) 30 190 (2.72) 31 190 (2.72) 31 190 (2.72) 31 190 (2.72) 32 190 (2.72) 33 190 (2.72) 34 190 (2.72) 35 191 (2.442) 36 193 (2.442) 37 191 (2.442) 38 193 (2.442) 40 (2.432) 191 41 (2.432) 191 41 (2.432) 191 41 (2.432) 191 41 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>122000</td> <td>···· ··· ····</td> <td></td>							122000	···· ··· ····	
23 118 $a_{1}/16$ 25 125 $a_{1}/0$ 26 186 186 27 28 180 30 130 $f_{1}/2$ 31 131 $f_{1}/2$ 32 133 131 33 132 132 34 138 $f_{2}/2$ 35 138 $f_{2}/2$ 36 138 $f_{2}/2$ 37 138 $f_{2}/2$ 38 138 $f_{2}/2$ 40 $f_{2}/2$ $f_{2}/2$ 37 138 $f_{2}/2$ 38 138 $f_{2}/2$ 40 $f_{2}/2$ $f_{2}/2$ 41 $f_{2}/2$ $f_{2}/2$ 42 $f_{2}/2$ $f_{2}/2$ 43 $f_{3}/2$ 148 $f_{3}/2$ 44 $f_{2}/2$ 148 $f_{3}/2$ $f_{3}/2$ 44 $f_{2}/2$ $f_{3}/2$ $f_{3}/2$ $f_{3}/2$ 45 $f_{4}/2$ $f_{2}/2$ $f_{3}/2$ $f_{3}/2$				······			0.72000		
26 166 $4/1/6$ 25 185 $4/1/6$ 27 28 185 $4/1/6$ 27 28 29 20 30 31 130 $4/1/6$ 20 30 31 130 $4/1/6$ 20 31 131 $4/1/6$ 27 27 33 131 $4/1/6$ 27 27 34 138 $4/1/6$ 27 27 35 138 $4/1/6$ 27 27 36 138 $4/1/6$ 27 7 35 138 $4/1/6$ 27 7 36 138 $4/1/6$ 27 7 37 139 $4/1/6$ 27 7 38 139 $4/1/6$ 27 7 37 139 $4/1/6$ 27 7 38 139 $4/1/6$ 27 7 39 $4/1/6$ 27 27 7 39 $4/1/6$ 161 27					╟───┼╎		Ca. 172		
15 18 410 27 30 18 410 30 130 123 2441 31 131 414 441 32 132 133 413 441 33 133 133 414 441 34 132 132 4444 1 33 133 133 414 441 34 134 134 134 444 35 135 135 134 134 34 134 134 134 134 134 35 135 137 134 135 442 36 137 137 137 137 137 137 37 137 137 137 143 143 147 230 1 441 147 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 144 144 144			·						\vdash
1 1							4.10		
27 30 100 127 $(24.94/1)$ 30 130 4.332_{4} 131 $4.44/1$ 31 131 131 131 131 32 132 132 $4.44/1$ 1 33 133 133 $4.44/1$ 1 34 134 135 $4.44/2$ F 35 135 $4.44/2$ F 1 34 138 $4.44/2$ F 1 35 135 $4.44/2$ F 1 36 136 $4.44/2$ F 1 37 138 138 $4.47/2$ F 36 136 $4.44/2$ F 1 37 138 140 $32/2$ F 40 76.725 141 49.225 F 44 4.114 P 144 $62.32/2$ T 45 4.100 R 148 $62.32/2$ T 45 4.113 1 146 $2.32/2$ T			h				ano		4
30 130 $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{31}$ $\frac{1}{44}$ $\frac{4}{47}$ 31 131 $\frac{4}{4}$ $\frac{4}{47}$ 1 1 $\frac{4}{47}$ 1 33 133 $\frac{1}{4}$ $\frac{4}{472}$ E 1 1 1 $\frac{4}{472}$ E 35 138 $\frac{4}{472}$ T 1			L				AU O		
30 130 f_{33} 130 f_{33} 131 f_{44} 31 131 f_{44} 131 f_{44} 132 131 33 133 f_{44} 133 f_{44} 133 f_{44} 141 35 135 135 f_{44} 135 f_{44} 17 17 36 135 135 f_{44} 135 f_{44} 17 17 36 136 136 f_{44} 122 17 17 36 136 140 f_{43} 27 161 17 17 37 131 1 140 f_{43} 32.5 161 17 40 f_{44} f_{44} P 148 $f_{322.6}$ 17 163 17 17 17 17 17 17 161 163 22.6 17 150 22.6 17 150 22.6 17 150 22.6 17 150 22.6 17 150 22.6 17 150			L				CA 441		
31 131 $\mu_1 444'$ 32 138 $\mu_1 24'$ 33 138 $\mu_1 2'$ 34 138 $\mu_1 2'$ 35 138 $\mu_1 2'$ 36 138 $\mu_1 2'$ 37 138 $\mu_1 442'$ 36 138 $\mu_1 442'$ 40 $\mu_1 22'$ E 41 $\mu_1 2''$ E 40 $\mu_1 22''$ E 41 $\mu_2 2''$ E 41 $\mu_1 22''$ E 42 $\mu_1 22''$ E 43 $\mu_1 13'''$ I 44 $\mu_1 4''''''''''''''''''''''''''''''''''''$	30	2				30	t 372		
32 132 $\frac{7}{12}$ 1 33 133 134 $\frac{1}{12}$ 5 34 134 $\frac{1}{12}$ 5 35 135 $\frac{1}{134}$ $\frac{4}{42}$ 7 35 135 $\frac{40}{42}$ 7 7 36 136 $\frac{442}{42}$ 7 37 137 138 $\frac{442}{42}$ 7 40 $\frac{7}{40}$ $\frac{7}{40}$ 140 $\frac{7}{42}$ 7 40 $\frac{7}{40}$ $\frac{7}{40}$ 140 $\frac{7}{42}$ 7 7 41 $\frac{7}{40}$ 141 $\frac{7}{60}$ 141 $\frac{7}{60}$ 142 42 $\frac{1}{225}$ 148 $\frac{1}{40}$ $\frac{3}{225}$ 5 43 $\frac{1}{13}$ 1 148 $\frac{7}{42}$ 32.6 7 43 $\frac{1}{10}$ 1 146 $\frac{7}{23}$ 1 1 44 $\frac{1}{12}$ 1 146 $\frac{7}{23}$ 1 1 50 $\frac{1}{24}$ $\frac{1}{12}$ 1 164 1	31	1				31			
33 133 133 133 133 134 124 127 34 139 $(\mu, 4/4)^2$ F F 35 139 $(\mu, 4/4)^2$ T 37 137 137 F F 37 139 $(\mu, 4/4)^2$ F F 40 f_{α} δ_{β} 140 $(\mu, 3/2)^2$ F 41 f_{α} $3/2$ F F F 42 $(\mu, 2/2)^2$ 141 $(\mu, 3/2)^2$ F F 43 f_{α} $7/2$ 143 f_{α} $3/2$ F 43 f_{α} f_{α} $3/2$ F F F 44 f_{α} $7/2$ F 143 f_{α} $3/2$ F 45 f_{α} f_{α} $3/2$ f_{α} $3/2$ F 46 f_{α} f_{α} f_{α} $3/2$ f_{α} f_{α} $3/2$ F 50 f_{α} f_{α} f_{α} f_{α}	32	2				32	FE 3/17		+ - +
36 136 136 442 E 35 138 442 T 36 138 442 T 37 137 442 R 40 164 227 E 41 160 12325 E 41 160 12325 E 42 4225 148 12370 I 43 173 148 12370 I 43 173 148 12375 S 44 173 148 12370 I 45 172 148 12370 I 46 173 1 144 12320 I 47 150 12326 I I I 46 177 R 150 41225 I I 50 177 R 150 41232 I I 51 17234 I 154 2323 I I 53 1133									<u>e</u> – I
36 136 $\frac{7}{4}$, $\frac{27}{42}$ R 40 $\frac{7}{4}$, $\frac{7}{63}$ 137 $\frac{7}{44}$, $\frac{27}{42}$ R 40 $\frac{7}{4}$, $\frac{7}{63}$ 140 $\frac{7}{4}$, $\frac{27}{36}$ E 41 $\frac{7}{4}$, $\frac{7}{24}$ 141 $\frac{7}{64}$, $\frac{27}{36}$ E 42 $\frac{1}{44}$, $\frac{7}{42}$ 141 $\frac{7}{64}$, $\frac{27}{36}$ I 43 $\frac{7}{4}$, $\frac{1}{3}$ 1 143 $\frac{7}{36}$, $\frac{32}{36}$ S 44 $\frac{1}{44}$ P 144 $\frac{7}{6}$, $\frac{32}{325}$ S 45 $\frac{7}{64}$, $\frac{1}{10}$ R 145 $\frac{2}{32}$, $\frac{32}{5}$ S 50 $\frac{7}{64}$, $\frac{1}{7}$ R 153 $\frac{2}{32}$, $\frac{2}{5}$ C 51 $\frac{7}{12}$, $\frac{51}{54}$ 153 $\frac{2}{32}$, $\frac{2}{3}$ N S 52 $\frac{1}{54$			<u> </u>			-	1. 442		<u>¥</u>
36 136 $\frac{7}{4}$ 921 97 137 $\frac{7}{4}$ \frac			F				41111		<u></u>
37 137 q_4 442 R 40 t_6 63 140 t_6 325 E 41 t_6 76 140 t_6 325 E 42 $\mu_2 225$ 141 t_6 325 E 43 t_1 13 143 d_7 325 5 44 t_1 13 148 t_1 326 7 45 t_6 113 1 148 d_7 325 5 46 t_6 113 1 148 d_7 325 5 47 131 1 148 d_8 326 7 46 t_6 113 1 148 d_8 326 7 47 R 150 d_8 326 7 1 50 d_8 72 T 150 d_8 322 1 51 t_7 54 151 t_8 322 1 1 51 t_8 113 0 153 d_8 322 1 1 52 t_8 113 0 153 d_8 323 1 1 53 t_8 112							ALL 4414		
40 t_a 140 t_a 32.5 41 t_a 72.5 141 $(a \cdot 34)$ $(a \cdot 34)$ 43 t_a 72.5 143 $a \cdot 32.5$ $(a \cdot 34)$ 43 t_a 73.5 $(a \cdot 34)$ $(a \cdot 34)$ $(a \cdot 34)$ 43 t_a 73.5 $(a \cdot 34)$ $(a \cdot 32.5)$ $(a \cdot 32.5)$ $(a \cdot 32.5)$ 44 t_a 73.5 $(a \cdot 32.5)$ $(a \cdot 32.5)$ $(a \cdot 32.5)$ $(a \cdot 32.5)$ 45 T_a 71.5 71.5 71.5 71.5 71.5 46 c_a 71.7 71.5 71.5 71.5 72.5 71.5 50 a_a 72.7 71.5 71.5 72.5 71.5 71.5 71.5 71.5 72.5 71.5 72.5 71.5 72.5 71.5 72.5 71.5 72.5 71.5 72.5 72.5 71.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5									
40 T_{42} , T_{6} 140 T_{42} , T_{6} 140 T_{42} , T_{6} 140 T_{42} , T_{6} 141 G_{42} , $34/1$ G_{7} 41 T_{42} , T_{6} 142 T_{42} , $34/2$ G_{7} 142 T_{42} , $34/2$ G_{7} 43 T_{11} , T_{12} 1 143 a_{13} , a_{25} G_{7} G_{7} 44 T_{11} P 144 T_{12} , a_{22} G_{7}							ca 442		
12 42 42 52 142 52 1 13 113 143 42 52 5 143 42 325 5 5 143 42 325 5 143 42 325 7 1 145 42 317 1 1 146 42 320 k k 151 71 N 147 62 312 k 150 40 312 7 150 $4u$ 312 0 151 72 74 151 7232 0 0153 $4u$ 312 0 151 7232 77 753 $4u$ 312 0 0154 3233 01 154 640 01 154 5232 01 0154 3227 55 155 71 156 64 312 01 016 0164 01232 0164		0 ta 63				40	te 325		E
42 $\mu_{12}^{2} 2_{12}^{2}$ 142 $\pi_{13}^{2} a_{2}^{2}$ 1 43 μ_{11}^{2} 143 $\mu_{13}^{2} a_{2}^{2}$ 5 44 μ_{14}^{2} P 144 π_{22}^{2} 5 45 $\mu_{21}^{2} \mu_{10}^{2}$ R 143 μ_{32}^{2} 5 45 $\mu_{21}^{2} \mu_{10}^{2}$ R 143 μ_{32}^{2} 5 46 μ_{31}^{2} 1 144 π_{32}^{2} 7 47 μ_{11}^{2} N 141 μ_{44}^{2} μ_{32}^{2} 7 47 μ_{11}^{2} N 141 144 μ_{42}^{2} μ_{42}^{2} μ_{42}^{2} μ_{42}^{2} 50 μ_{42}^{2} T N 147 μ_{42}^{2} <t< td=""><td>- 14</td><td>1 ta 70</td><td></td><td></td><td></td><td>41</td><td>Ca 341</td><td></td><td>G</td></t<>	- 14	1 ta 70				41	Ca 341		G
43 L_1 143 a_2 5 44 L_1 P 144 d_2 325 5 45 L_2 P 144 d_2 326 T 45 L_2 P 144 d_2 326 T 46 L_2 N 146 d_2 320 4 47 mA 72 N 146 d_2 320 4 47 mA 72 T 180 d_2 326 7 50 ad 72 T 180 d_2 326 7 51 f_2 54 181 L_2 326 7 51 f_2 54 181 L_2 226 7 53 f_2 III_3 0 153 $du2$ 312 0 54 du V 154 f_2 323 T 55 T 155 $du2$ 312 T 55 du2	4	2 41.225				42			A
44 d_D //f P 144 f_D 32.6 T 45 16 165 f_D 32.6 T 45 1 145 f_D 32.6 T 46 Can, 1/3 1 148 f_D 32.6 7 50 32.0 A 1 167 f_D 32.6 7 51 71.7 7 150 f_D 32.2 C 7 51 7.13 0 151 f_D 32.4 C 7 53 70 f_D 46 N 155 f_D 32.4 R 8 60 70 f_D 46 N 157 f_D 32.4 R 61 72 f_D 46 N 157 f_D 32.4 R 60 74 f_D 160 f_D 32.7 7 57 61 72 f_D 46 N 157 f_D 32.4 R 62 74 f_D 160 f_D 32.7 7 57<	43	3 F. 113				43	11 375		5
49 $\frac{7}{4}$, $\frac{100}{100}$ R 148 $\frac{24}{2}$, $\frac{317}{1}$ 1 46 $\frac{7}{60}$, $\frac{7}{12}$ I 146 $\frac{2}{6}$, $\frac{317}{2}$ I 50 $\frac{17}{62}$, $\frac{7}{12}$ T 150 $\frac{46}{60}$, $\frac{312}{20}$ I 51 $\frac{7}{12}$, $\frac{7}{7}$ 150 $\frac{46}{60}$, $\frac{312}{20}$ I 51 $\frac{7}{12}$, $\frac{7}{7}$ R 150 $\frac{42}{60}$, $\frac{312}{20}$ I 52 $\frac{1137}{100}$ 0 153 $\frac{42}{60}$, $\frac{312}{20}$ I 53 $\frac{1137}{60}$ 0 153 $\frac{42}{60}$, $\frac{322}{20}$ I 54 $\frac{1137}{100}$ 0 153 $\frac{42}{60}$, $\frac{322}{20}$ N 54 $\frac{1100}{100}$ 1 154 $\frac{4}{6}$, $\frac{32}{23}$ N 55 T 158 $\frac{6}{60}$, $\frac{312}{20}$ R R 60 $\frac{6}{20}$, $\frac{400}{100}$ 1 156 $\frac{6}{12}$, $\frac{32}{27}$ S 61 $\frac{6}{20}$, $\frac{112}{20}$ R 160 $\frac{12}{2}$, $\frac{2}{2}$ A 62 $\frac{6}{20}$, $\frac{112}{20}$ R		al an IIM		P			F. 221		7
46 $cm, 1/3$ 1 146 $f_2, 32.0$ k 47 $md, 7/$ N 147 $cd, 32.0$ j 50 $cd, 72.$ T 180 $du, 3/2.$ j 51 $f/, 54$ 181 $f_4, 32.0$ j 52 $dh, 1/7$ R 182 $du, 3/2.$ j 53 $f_4, 1/7$ R 182 $du, 3/2.$ j 53 $f_4, 1/7.$ R 193 $f_4, 32.2$ j 54 $du.$ U 194 $f_4, 32.2$ U 54 $du.$ U 194 $f_4, 32.2$ N 55 T 195 $f_4, 32.3$ N N 56 $cr, 1/0.$ 1 195 $f_4, 32.3$ N 57 $cp, 46$ N 157 $f_4, 32.3$ T 58 $cr, 1/0.$ 1 195 $f_4, 32.7$ S 61 $ce, 6/1.$ 161 $f_4, 32.7$ G A 62 $f_4, 1/2.$ 161	~ ~						4 240		4
47 m 147 $(a_1, 326)$ 7 50 ad_1 $7d_2$ T 180 au_2 $3/2$ 51 $1d_2$ $7d_2$ $7d_1$ 180 au_2 $3/2$ 51 $1d_2$ $3/2$ $1d_2$ $3/2$ C 52 ab_2 $1d_2$ $3/2$ C 53 $7d_2$ $1d_2$ $3/2$ C 54 ab_2 0 183 $au_2 3/2$ C 55 $1d_2$ 0 183 $au_2 3/2$ U 55 $1d_2$ $1d_2$ $1d_2$ 0 $1d_2$ $3/2$ T 56 ae_110 $1d_2$			·	n		43	Ca. 31/		<u>k</u>
50 qd. 72. T 150 du. $3/2.$ 51 $7/.54$ 151 $7.32.6$ C 52 40.17 R 151 $7.32.6$ C 53 7.17 R 152 $40.22.2$ C 53 7.17 R 153 $40.232.2$ C 53 7.17 R 153 $40.232.2$ C 54 $60.232.2$ C C C C 54 $60.232.2$ C C C C 55 7.135 $40.232.2$ N C C 56 $co.100$ 1 156 $co.322.2$ C C 57 $Co.46.5$ 156 $co.322.2$ C C						46	A 320		<u>+</u>
31 t_{4} , 54 [31 t_{4} , 324 C 38 d_{4} , 77 R [35 d_{4} , 322 C 35 t_{4} , 113 0 [15] d_{4} , 312 U 34 d_{4} U [154 t_{4} , 323 N 35 t_{4} , 113 0 [154 t_{4} , 323 N 35 t_{4} , 110 1 [154 t_{4} , 323 N 35 t_{4} , 110 1 [156 t_{4} , 3123 T 36 t_{4} , 110 1 [156 t_{4} , 312 T 37 t_{6} , t_{4} , 312 T T t_{56} , t_{4} , 312 R 37 t_{6} , t_{6} , t_{1} , 327 T T T t_{56} , t_{4} , 312 R 461 t_{6} , t_{1} , 327 T T T T T T 47 t_{6} , t_{1} , t_{2} , t_{2} R T T T T T T T T T T T T T <td></td> <td></td> <td></td> <td></td> <td></td> <td>47</td> <td>Ca. 326</td> <td>·</td> <td>2</td>						47	Ca. 326	·	2
31 t_{4} , 54 [31 t_{4} , 324 C 38 d_{4} , 77 R [35 d_{4} , 322 C 35 t_{4} , 113 0 [15] d_{4} , 312 U 34 d_{4} U [154 t_{4} , 323 N 35 t_{4} , 113 0 [154 t_{4} , 323 N 35 t_{4} , 110 1 [154 t_{4} , 323 N 35 t_{4} , 110 1 [156 t_{4} , 3123 T 36 t_{4} , 110 1 [156 t_{4} , 312 T 37 t_{6} , t_{4} , 312 T T t_{56} , t_{4} , 312 R 37 t_{6} , t_{6} , t_{1} , 327 T T T t_{56} , t_{4} , 312 R 461 t_{6} , t_{1} , 327 T T T T T T 47 t_{6} , t_{1} , t_{2} , t_{2} R T T T T T T T T T T T T T <td>50</td> <td>ad 12</td> <td></td> <td>1</td> <td></td> <td>150</td> <td>su 3/2</td> <td></td> <td></td>	50	ad 12		1		150	su 3/2		
38 d_{L} 17 K 18 c_{L} d_{L} </td <td>51</td> <td></td> <td></td> <td></td> <td></td> <td>[51]</td> <td>L 326</td> <td></td> <td>C</td>	51					[51]	L 326		C
33 t_{k} t_{k3} 0 133 $du = 312$ U 54 $du =$ U 154 t_{k3} 223 N 55 T 154 t_{k3} 223 N 55 T 156 t_{k3} 223 N 56 t_{k100} 1 156 t_{k32} T 57 Cp t_{k6} N 157 t_{k324} R 60 t_{k6} N 157 t_{k3227} S 60 t_{k6} N 157 t_{k3227} S 61 t_{k6} t_{k3314} R t_{k3314} R 62 t_{k7} t_{k3314} R t_{k3314} R 64 t_{k7} t_{k3314} t_{k3314} t_{k3314} t_{k3314} t_{k3314} 65 t_{k106} t_{k104} t_{k	51			R		52	ca 322		C
94 du V 194 $f_2, 32, 3$ N 95 $VC, 55$ T 195 $LC, 32, 3$ T 95 $VC, 55$ T 195 $LC, 32, 3$ T 95 $VC, 55$ T 195 $LC, 32, 3$ T 97 $CD, 46$ N 195 $LC, 32, 3$ T 97 $CD, 46$ N 197 $f_{1,2}, 32, 3$ R 96 $Ca, 405$ E 198 $La, 32, 7$ S 96 $Ca, 405$ E 198 $La, 32, 7$ S 96 $VC, 61$ 198 $La, 32, 7$ S 97 $LA, 102$ 198 $Ld, 23, 7$ O 98 $LC, 65$ 198 $Ld, 44, 90$ D 98 $LC, 65$ 198 $Ld, 44, 90$ D 98 $LC, 65$ 198 $Ld, 44, 90$ D 98 $Ld, 104$ 198 $Ld, 44, 90$ D S 97 $Ld, 104$ 198 $Ld, 44, 90$ S S	5	3 6 113				53	MU 317		
35, $10 \cdot 55$ T 153 103 T 56 100 1 156 123 T 57 00 100 1 156 123 T 57 00 100 1 156 123 T 50 00 100 123 1232 R 60 126 157 2324 R 60 126 153 224 R 61 100 1327 S 160 61 100 1237 S 160 61 100 1237 S 160 62 100 1237 O 0 63 100 163 124 440 O 0 64 124 100 160 12344 R 160 12344 S 170 171 124264 S 171 124264 S S 171 124264 S S 171 124264 S S	54	4 64				54	t. 272		
56 ar 110 1 156 $cr. 3/2_{-}$ F 57 Cp 46 N 157 $t. 3/2_{-}$ R 60 Ca. 405 E 160 $t. 32.7$ S 61 Ac. 61 161 Ca. 331 S 62 ar 112 162 $t. 32.7$ S 63 ar 112 163 $t. 32.7$ S 64 ar 112 163 $t. 33.1$ S 65 cr. 61 163 $t. 33.3$ Q 66 cr. 111 164 $t. 31.3$ Q 65 Ac. 65 168 $t. 31.4$ N 66 cr. 111 168 $t. 31.4$ N 67 tr. 12. 167 tr. 31.6 S 70 ap 170 cr. 34.0 S 71 + 10 170 cr. 34.4 S 71 + 10 171 tr. 31.6 S 73 174.00 173 t. 26.4 S 78 5.2000 173 <td></td> <td></td> <td></td> <td></td> <td></td> <td>55</td> <td>10272</td> <td></td> <td></td>						55	10272		
57 c_0 46 N 157 t_a 324 R 60 t_a 327 S S <t< td=""><td></td><td>1 10</td><td></td><td></td><td></td><td>5.6</td><td>20 212</td><td></td><td></td></t<>		1 10				5.6	20 212		
100 110 100 100 100 100 100		2 0.4 11	ł		┣+'		+ 2201		<u> </u>
102 11 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 12 14 12 <		100 40	├ ───────────						<u>\$</u>
100 110 100 100 100 100 100	6	0 CA 105	L	E	$ \downarrow \downarrow$	60	LI 327		2
65 C_{d} 165 C_{d} U 64 $6a$ 165 U U 65 AC 65 165 U 66 C_{d} 165 U V 66 C_{d} 165 U V 67 T_{d} 120 V V 70 $4b$ 170 C_{d} 340 5 71 410 170 171 $7d_{d}$ 264 E 72 C_{d} 340 5 170 264 5 71 410 171 $7d_{d}$ 264 5 710 170 710			ļ			61	Ca 331		
65 C_{d} 165 C_{d} U 64 $6a$ 165 U U 65 AC 65 165 U 66 C_{d} 165 U V 66 C_{d} 165 U V 67 T_{d} 120 V V 70 $4b$ 170 C_{d} 340 5 71 410 170 171 $7d_{d}$ 264 E 72 C_{d} 340 5 170 264 5 71 410 171 $7d_{d}$ 264 5 710 170 710	61					62	td 230		A
47 7.72 167 7.346 S 70 49 170 62.346 S 71 4.10 171 72.264 E 72 776 776 72.264 E 73 77600 173 742.264 E 73 77600 173 742.264 S 73 77600 173 742.233 I 780.52000 178 742.0 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 743.3 I I 780.6000 178 745.3 I I	6	3 (0	1			63	CA 440		D
47 7.72 167 7.346 S 70 49 170 62.346 S 71 4.10 171 72.264 E 72 776 776 72.264 E 73 77600 173 742.264 E 73 77600 173 742.264 S 73 77600 173 742.233 I 780.52000 178 742.0 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 743.3 I I 780.6000 178 745.3 I I		4 Ka IOL				64	ta 3/3		
47 7.72 167 7.346 S 70 49 170 62.346 S 71 4.10 171 72.264 E 72 776 776 72.264 E 73 77600 173 742.264 E 73 77600 173 742.264 S 73 77600 173 742.233 I 780.52000 178 742.0 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 743.3 I I 780.6000 178 745.3 I I		5 16 15				84	F. 314		
47 7.72 167 7.346 S 70 49 170 62.346 S 71 4.10 171 72.264 E 72 776 776 72.264 E 73 77600 173 742.264 E 73 77600 173 742.264 S 73 77600 173 742.233 I 780.52000 178 742.0 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 742.3 I I 780.52000 178 743.3 I I 780.6000 178 745.3 I I			1			66	F 210		12-1
70 4b 170 cs 340 5 $71 4/0$ 171 ts 266 E $78 0.00073$ 172 cs 364 5 $78 0.52000$ 173 ts 233 1 $78 0.52000$ 174 cs 0 1 $78 0.52000$ 178 cs 493 1 $78 0.6000$ 178 ts 345 1			↓			67	1 217		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			↓						2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			 				a 340		-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 +10	l				Td. 266		Ë.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71	0.00073	L						5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73	1.74000	L			73	74.233		
150.36000 175 (2.343 180.46000 176 (2.345)	1 74	40.52000	1			74	Ca O		
76 0. 16000	7	50.3600C				75	ta 343		
	71	0.16000	l		IF - 1 I	76	7. 345		1 - 1
1 77 0-26 and 1 1 177 Ca 396	-+	1 0.26000	<u>+</u>		╟──┼╎	77	CA 376		1
		1							<u>t</u>
NOTES REG 540 g (-NM) x 10 2	OTES		1	1	11	B	EG 540.	g (-NM) x 10 2	
REG 440 + n 452 Co. 541 g(-N+1, M)		440 +1	N 452 Ca.				541	9 (-N+1. M)	
441 + N 453 Cu 416 Cos				11/1 (<u> </u>			
$441 \pm N \pm 453 = C_{H} \pm 476 C_{04}$				710 006				- / //	
142 + M : (-N. M-1)				HARL CIK		L			
444 (1460 Cuz	lare ((+k)-2			g (-N+1, M-1)	
444 () · · · · · · · · · · · · · · · · · ·				11 +10				0 ,	
								······································	

2.00	HL253 (A. 324 AL 34/	¥	200	20 ap 40		
201	(A. 324	······	- 01	1040 EL 0		
: 03	E 350		.03	t 330		
6.04	04 007	F	304	10 200		_
205	14 347	O R	305	10 300 10 320		
206	1. 351	R	306	Cp 155		
2 07	1 32/ 1 347 1 35/ 1 35/ 1 4 35/ 1 4 343 1 4 343 1 4 353 1 1 1 1 4 352 1 1 1 1 4 352	M	307	ar 321		
210	su 345		310	C6 145		
219	11 19	364	312		PROFRAM END	
213	1 352	M	312	+1		
214	A10 346		314	u o		
215	Au 346	Ň	- 15	si 0		
216	Co 223		316	sio		
217	42.313	\$_	317	ai O		<u>A</u>
220	Ca 273 ta 234 10230 10250 1000 1000 10050 10050 10050 10050 10050 10		320	AL O		P
222	10220	g(ny)	328			Dec
/ 23	16.375		1 23	si o		Ē
2 24	str 17		3.84	si o		
2 25	th 314		1 25	Ai O		5
226	12 17 72 374 Ca 374 Ca 234 Ca 0		26	10		E
227	CA 0	┝─────┣───	27	<u>ai o</u>		2
230	**		31			<u>c</u>
2.32	ml. 250		+ 32	Ca 452		à
2 33	mh		333	CA 460		V.
2 34	sio		34	Ca 465		N
2.35	al 330		335	Ca 460 Ca 465 Ca 471 Ca 474		. .
2 36	ta 330 ca 324 mh 323		336	Ca. 474		E S
2 40	w 1,222		340	CA. 476		<u> </u>
241			341			
2 42	ta 324 ao 230		342	sio		
2 43	ao 230		243	rio.		9
2 4 4			344	sio		Ň
2.45	ao 343	-	3 45	sio		S
240	ao 314		346	sic		_ T
250	ao 343 ao 343 ao 314 ao 314 ao 345	<u>├───</u> ── <u></u>	3 47	1:0 1:0		_ <u>H</u>
2 51	Caro			1:0		<u>₩</u>
2 52			352	+30		5
2 53	CA O		353	1 + 3		1
. 54			354			
2 55	ca o	<u>↓</u>	355	+ .9999		
2 57		├─── ─		+.8000	<u> </u>	
2 60	Ca 327		li 360	4.5120		
2 61	mik 326		1 201	+.4096		1
2 62	sh 17		262	+.4096 +.3276		
2 63	ts 327 ca 312 ta 324		263	+.2621		_
2 64 65	Ca 312	• • •	364	CA 355		_
265	Ca 0	<u>├</u> ──── ─── │ ───		CA 356		
2 67		l l	167	Ca 360		-+
2 70			70	Ca 361		
2 71	1230		271	CA 362		
172	100 266		72			
273	ao 313		:73	stro		_
2 74	to 314	<u>↓</u>	74			
1 10	100 201	╉ <u>──</u> ──────── ┃ ────	- 75	-1 ca 365		- \
217	CA 330	<u></u>	77	<u>د مد ده م</u>	h	- J
				OCTAL	OMPUTER LABO	
<u> </u>					ALI INDEX	
					2492 - m	1
·						

01-40

APPENDIX B

.

APPENDIX B

PREDICTION XV (2539 m 2) - <u>Description and Use Of</u> This program was written to provide computational facility for predicting a series $x_i(y_i, z_i, \text{ or } u_i)$ with a linear operator of the general form $x_{i+k}(y_{i+k}, z_{i+k} \text{ or } u_{i+k}) = a + a_0 x_i + a_1 x_{i-1} \dots + a_M x_{i-M}$

+ $b_0 y_1$ + $b_M y_{1-M}$ + $c_0 z_1$ + $c_M z_{1-M}$ + $d_0 u_1$ + $d_M u_{1-M}$

where the prediction distance k and the number of lags M are arbitrary but have the restrictions that M 7 and M+k 19. The four series which this program handles contain 500 members each so that i ranges from o through 499. This first prediction computed is for i+k = 20 and the last one for i+k = 499. After doing this computation the program forms the running average of squared errors between the predicted and actual series

> j+4 Σ $(x_1-x_1)^2$ j = 25, 35, 45, 55, ...495i=j-5

which is called the "Error Curve".

There is considerable choice of output. The alternatives are any combination of or none of the following:

Print-out of the errors and sums of squares
 Print-out of just the sums of squares of
 errors.

3. Photographs of oscilloscope displays of the sums of errors squares

An additional choice is the use of magnetic tape delayed output for 1 and 2 above, which is about fifteen times faster than direct print-out.

This program handles up to eight operators at a time in the above fashion. When the magnetic tape output is used, the error curves can be removed from the machine at the rate of one every ten seconds whereas the individual errors and error curves require fifty seconds for each operator. Each curve would represent about a week of hand computation. Once the computations are completed the individual errors (x_1-x_1) for all operators are left in magnetic drum storage so other programs can use them for different types of averaging processes rather than just the Error Curve as described above.

On the next three pages are illustrated the various output forms. The first page is a reproduction of the individual errors and error curves for two operators. The results for each operator appear as a block of numbers 10 by 48 and a right-hand column of 48 numbers. The block represents the 480 individual errors whereas the right-hand column is the Error Curve, each member representing the sums of the squares of the 10 individual errors in the corresponding row to the left. The number appearing over the upper left corner of each block is a number assigned to the particular operator for identification purposes, and is printed by the program. The number printed over the center of each block was inserted later.

The next page shows the output form for four operators when just the Error Curve is desired. The +0000 identification number indicates that the operator was chosen as the variance operator which has the forn $x_1 = \tilde{x}$ (means of series). The Error Curve for this type operator becomes the sample variance curve and provides a basis for testing the statistical significance of other operators predicting the x_1 series.

The third page is a photograph taken automatically by the program of an oscilloscope display of one-half of an Error Curve. A vertical and horizontal axis are also displayed.

•

.

+1300 12.4 Second Half	12.4 Second half
+0027 +0052 +0008 -0036 -0009 +0027 +0016 +0024 +0032 +0024 +00024	
+0000 +0007 +0001 -0012 -0006 +0014 -0001 -0041 -0000 -0011 +000	
-0020 +0000 -0009 -0014 -0007 -0030 -0031 -0008 +0054 +0073 +000	
+0058 +0053 +0009 -0025 +0032 +0014 +0003 -0016 -0066 -0024 +001	
+0006 +0019 +0062 +0013 -0021 -0015 +0003 -0002 +0034 +0050 +000	
+0010 +0005 +0013 +0011 -0016 -0007 +0008 +0031 +0040 +0055 +000	
+0057 +0030 +0043 +0012 -0067 -0032 -0019 -0028 +0009 +0003 +001	11 +0069 +0035 +0024 -0024 -0081 -0096 -0068 -0046 -0041 -0023 +0030
-0019 +0001 -0008 -0064 -0021 -0043 -0019 +0043 +0020 +0053 +001	11 +0014 +0012 +0004 +0030 +0014 -0024 -0003 +0006 +0004 +0051 +0003
+0088 +0079 +0054 +0041 +0005 -0040 -0046 -0036 -0034 -0049 +002	
-0059 +0043 +0093 -0006 +0034 -0025 -0078 -0009 -0042 -0091 +003	
-0021 -0011 -0005 +0095 +0153 +0056 +0009 -0048 -0022 +0075 +004	
+0000 -0003 +0046 -0001 -0001 +0021 -0003 +0001 +0027 +0048 +0000 +0016 +0008 +0031 +0005 +0014 -0009 -0022 +0001 -0003 +0026 +0000	
+0016 +0008 +0031 +0005 +0014 -0009 -0022 +0001 -0003 +0026 +0000 +0000 +0010 +0054 +0024 +0019 +0025 -0021 -0027 +0013 +0000 +0000	
-0005 -0006 +0014 -0016 +0010 +0030 -0014 -0002 -0054 -0041 +000	
-0049 -0073 -0022 -0050 -0042 +0019 +0045 +0042 +0035 +0028 +001	
-0013 +0002 +0018 -0013 -0027 -0018 -0017 +0008 -0019 +0019 +000	
+0047 +0032 +0040 +0020 +0025 +0002 -0048 -0022 -0024 -0028 +000	
+0002 +0025 +0051 +0067 +0079 +0067 +0037 +0035 -0047 -0058 +002	²⁵ +0002 -0007 +0018 +0039 +0057 +0067 +0074 +0029 -0050 -0041 +0019
-0048 -0092 -0036 -0048 -0060 +0013 -0000 +0007 +0019 -0013 +001	
-0029 -0021 -0025 -0010 +0039 +0018 +0033 +0044 -0043 -0051 +001	10 -0037 -0052 -0037 -0029 -0000 +0039 +0078 +0068 +0021 -0020 +0018
-0002 -0035 -0005 +0010 -0022 +0025 +0040 +0054 +0086 +0031 +001	¹⁴ -0038 -0050 -0071 -0057 -0003 -0027 -0006 +0085 +0087 +0042 +0028
+0009 -0010 -0060 -0053 -0025 -0049 -0032 +0042 +0046 +0039 +001	
+0017 +0010 -0043 -0031 -0003 -0057 -0039 -0053 -0009 +0070 +001	
+0037 +0017 -0025 -0058 +0001 -0011 -0010 -0012 -0040 -0005 +0000 +0028 +0021 -0001 +0008 +0014 -0014 -0004 +0021 -0002 +0017 +0000	
+0028 +0021 -0001 +0008 +0014 -0014 -0004 +0021 -0002 +0017 +000 +0050 +0036 +0017 ~0007 -0060 -0052 -0041 -0086 -0023 -0010 +001	
+0021 +0060 -0002 +0003 +0000 -0052 -0052 -0041 -0066 -0061 +001	
-0028 -0008 +0013 +0035 +0029 +0034 +0062 +0082 +0067 +0029 +001	
+0005 -0040 -0069 -0059 -0038 -0040 -0025 -0007 -0004 +0025 +001	
+0043 +0028 -0004 -0004 -0014 -0028 -0036 -0027 -0025 -0017 +000	
-0010 -0002 -0002 -0021 +0008 +0026 -0001 +0005 +0022 -0013 +000	
-0021 -0003 -0009 -0011 -0047 -0039 -0051 -0072 -0001 +0010 +001	11 -0043 -0036 -0009 +0001 +0006 +0013 -0045 -0090 -0054 +0007 +0015
+0023 +0036 +0002 -0002 +0014 +0003 -0031 -0010 -0001 -0017 +000	2^{-2} +0032 +0017 +0027 +0013 -0040 -0008 -0003 -0025 -0018 -0031 +0004
-0009 +0012 -0234 -0242 +0186 -0140 -0191 -0075 -0075 -0075 +022	20 -0015 +0010 -0219 -0222 -0215 -0213 -0219 -0209 -0201 -0175 +0352
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	- oree eres sree sree oree oree oree oree
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	54 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 +0323
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 +005	

+0339 +0569 +0396 +038	+0 43 7 +0366 +0354 +0465 3 +0422 +0384 +0313 +0593	+0418 +0611 - +0343 +046 6	+0357 +0348 8 +0429 +05 :	3 +0422 +0288 1 2 +0332 +035	+0674 +0390 5 +0775 +0256
+0875 +0728 +1 129 +0536	+0509 +1182 +0834 +0761 +0977 +0687 +0848 +1040	+1013 +0594 +0949 +0520	+1030 +087: +0853 +1589	L +0437 +1340) +0155 +1276	+0646 +0771 - +0878 +0532
+0391 +0394 +0359 +0406	+0589 +0437 +0468 +0431 +0510 +0307 +0279 +0451	+0386 +0442 +0372 +0408	+0423 +033 +0413 +043	7 +0442 +0395 7 +0326 +0395	+0539 +0328 +0427 +0326
+0691 +0887 +0653 +069ප	+0818 +0886 +0893 +0804 +0877 +0663 +0856 +0755	+0659 +0938 +0758 +0905	+0780 +0797 +0747 +0802	7 +0695 +0823 2 +0603 +0802	+1077 +0800 +0952 +0696

+0000

Use of Prediction XV

• • • ,

It is necessary to prepare a tape containing the operators and a tape containing the traces x_1 , y_1 , z_1 , u_1 . These are prepared as described in the following two pages. Assume these are given tape numbers X and Y respectively. Then the operating instruction would be:

> Erase storage, put Sil switch off Read in 2539 m 2 Read in 2539 P ---- (Control Tape) Read in X Place Y in Photoelectric Reader Start at 145

The control tapes control the output and serve the following functions:

2539 - P4	Print errors and sums of squares and scope display sums of squares Print sums of squares and scope display sums of squares Scope display sums of squares Print errors and sums of squares Print sums of squares	DIRECT PRINTOUT
2539 - P10 2539 - P11 2539 - P12	Print nothing, display nothing Print errors and sums of squares and scope display sums of squares Print sums of squares and scope display sums of squares Print errors and sums of squares Print sums of squares	DELAYED PRINTOUT (MAGNETIC TAPE)

If one of the operators on X were badly prepared, it might happen that machine overflow would occur causing the machine to stop while computing for that operator. If this does happen, starting the machine over at 166 will have the effect of ignoring the bad operator and proceeding to the remaining ones.

Preparation of Data Parameter

Each set of data x_1 , y_1 , z_1 , and u_1 is prepared as a separate parameter and then the four parameters are combined into one long one. The form of each is identical.

Notes:

It is not necessary that the series contain 499 members. However, there must be four traces. If less than four are to be used, short dummy traces must be inserted. For consistency with the operator tape, the order of combination of the separate parameters must be x_1 , y_1 , z_1 , u_1 .

The data must appear as integers in the range -99 through +99.

Preparation of Operator Parameters

Up to 8 operators may be prepared on a single tape in the following fashion.

1061 \pm .XXXX $a_7 \times 10^{-1}$ Constants1062 \pm .XXXX $a_6 \times 10^{-1}$ for x_1 1070 $a_0 \times 10^{-1}$ for x_1 1071 $b_7 \times 10^{-1}$ Constants1071 $b_7 \times 10^{-1}$ for y_1 1100 $b_0 \times 10^{-1}$ for z_1 1101 $c_7 \times 10^{-1}$ Constants1101 $c_0 \times 10^{-1}$ Constants1110 $d_0 \times 10^{-1}$ for u_1 1120 $d_0 \times 10^{-1}$ for second operator		Explanation		Octal Add re s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l ^{rst} 0 P	Ident. no. for first operator -0 if x_1 , -1 if y_1 -2 if z_1 , -3 if u_1 a x 10 ⁻³ a ₇ x 10 ⁻¹ Constants	-(5 -(1054 1055 1056 1057 1060 1061
1111 $d_7 \times 10^{-1}$ Constants 1120 1121 d_0 x 10^{-1} for u_1 Ident. no. for second operator	P E R ▲ T O R	a $x 10^{-1}$ b $x 10^{-1}$ Constants for y_1 b $x 10^{-1}$ Constants $x 10^{-1}$ Constants $x 10^{-1}$ Constants $x 10^{-1}$ Constants) L	1070 1071 1100 1101
etc.	2 nd 0 P.	$\frac{d_0 \times 10^{-1} \qquad \text{for u}_1}{\text{Ident. no. for second operator}}$) L	1120 1121

Notes:

It is not necessary to put anything into irrelevant registers. For example, if the first operator had an M of 3 registers 1061-1064, 1071-1074, 1101-1104, and 1121-1124 would be considered irrelevant. Again, if this operator did not use the u_1 series in its prediction mechanism, registers 1111-1120 would be irrelevant.

SHEET	

00			
	l l	100 0.16 000	
01		101 0.26000	
80		02 0.4 6000	
03		103 0.66000	
04		104 0.56000	
06		106 0.06000	
07		106 1.54000	
10		107 0 20000	
		110 1.22.101	
12		111 +3	
13		118 20	
		113 20	P
		114 260	
		110 200	R
		118 CA 126 117 CA 124	
20		117 Ca 124 180 rc 120	I
21			NI
1 22			N
23			
24		123 40 44	-
25		125 0.72 000	· · · · · · · · · · · · · · · · · · ·
26	•	126 CA 125	
27		127 40 120	
30		130 / 134	
3)		131 Ca 142	1
32		132 ad 144	1
33		33 00 /32	
34		134 40	
35		135 7. 141	
36		136 Ca 143 137 ad 144	
37		137 ad 144	
40 ta 64	^	140 Cm /37	
		141 <u>a.6</u> 142 -140	
		142 -140	
43 <u>46</u> /16		1931-123	<u>_</u>
44 th 112 45 Cm 115		144 + 1	
	╧╼╼╾┥╼╟╾	148 20550	A
47 24 74		146 10/002 147 10/02/	
50 27 53		147 10/027 150 10/1	<u>F</u>
51 sh 17		191 20 234	8
58 E 1/5		182 40262	Ğ
53 CA		153 4617	<u>y</u>
34 Nr 54		154 10 356	R
55 Ap/35		155 50441	M
56 20112		154 40 476	L.2
57 64 45		157 10 332	С
31 66 45			
00 Ca 107		160 44.306	0
61 rc 61		160 41.306	<u>N</u>
60 Ca 107 61 rc 61 62 Ap 135		160 41,306 161 46617 162 36372	
60 (a. 107 61 nc 61 62 dp 135 63 at 114		160 11,306 161 26617 162 26372 163 26455	- N
60 (a. 107 61 nc 61 62 dp 135 63 at 114		160 41,306 161 46617 162 26372 163 49455	
60 CL/07 61 7C 6/ 62 40/35 63 41/4 64 CD 66 CL/10		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- N
60 (2 /07 61 7c 6/ 62 42 /35 63 24 /14 64 26 65 Ck /10 66 Ck /10 66 Ck /10		1400 1,306 141 26617 142 26372 143 26372 143 26372 143 26372 143 26372 143 26374 143 26344 144 26477	- N
0 (2 /07 0 / 1 (6/ 0 / 2 6/ 0 /		140 1,306 141 26617 142 36372 143 36455 143 26476 143 363445 144 26476 145 36344 146 267 147 267 147 267 147 0 147 0	- N
60 (\$ 107 61 72 61 62 40 135 63 40 135 64 (4 66 (2) 66 (2) 110 66 72 66 67 40 135 70 (\$ 113		160 11.306 161 40617 162 46372 163 14455 164 476 163 4976 163 4974 166 4976 163 49344 166 49267 167 450 170 450	- N
60 \$\$\frac{2}{2}\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$ \$		160 11.306 161 16617 162 36372 163 14455 164 166476 165 369344 166 4067 167 140 0 170 162 224	- N
60 <i>(c. 107</i> 61 <i>7c. 61</i> 62 <i>4p. 135</i> 63 <i>4p. 135</i> 63 <i>4p. 14</i> 64 <i>Co</i> 65 <i>Cd. 110</i> 66 <i>7c. 66</i> 67 <i>4p. 135</i> 70 <i>Cd. 113</i> 71 <i>Le. 114</i> 72 <i>4p</i>		160 1,306 161 40617 162 46372 163 1,4455 164 476 168 40476 168 40247 168 40247 168 40247 167 420 170 420 170 420 171 (2224)	
60 52 107 61 72 61 62 42 135 63 82 14 66 62 110 68 72 46 67 40 135 70 62 113 71 62 114 72 420 73 73 70 62		$\begin{array}{c} 100 & 1.1, 306 \\ \hline 101 & 40, 617 \\ \hline 102 & 40, 872 \\ \hline 103 & 1.4, 455 \\ \hline 103 & 40, 476 \\ \hline 103 & 40, 476 \\ \hline 104 & 40, 207 \\ \hline 105 & 40, 007 \\ \hline 107 & 41, 0 \\ \hline 107 & 41, 0 \\ \hline 107 & 41, 0 \\ \hline 107 & 10, 204 \\ \hline 107 & 10, 204 \\ \hline 107 & 10, 204 \\ \hline 100 & 10,$	- N
$\begin{array}{c} \textbf{e}0 \ (\textbf{c} \ 107 \\ \textbf{e}1 \ 1c \ 61 \\ \textbf{e}2 \ 4p \ 135 \\ \textbf{e}3 \ 4p \ 135 \\ \textbf{e}4 \ p \ 135 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \$		$\begin{array}{c} 100 & 1.1, 306 \\ \hline 101 & 40, 617 \\ \hline 102 & 40, 872 \\ \hline 103 & 1.4, 455 \\ \hline 103 & 40, 476 \\ \hline 103 & 40, 476 \\ \hline 104 & 40, 207 \\ \hline 105 & 40, 007 \\ \hline 107 & 41, 0 \\ \hline 107 & 41, 0 \\ \hline 107 & 41, 0 \\ \hline 107 & 10, 204 \\ \hline 107 & 10, 204 \\ \hline 107 & 10, 204 \\ \hline 100 & 10,$	
$\begin{array}{c} \textbf{e}0 \ (\textbf{c} \ 107 \\ \textbf{e}1 \ 1c \ 61 \\ \textbf{e}2 \ 4p \ 135 \\ \textbf{e}3 \ 4p \ 135 \\ \textbf{e}4 \ p \ 135 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \$		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	
$\begin{array}{c} \textbf{e}0 \ (\textbf{c} \ 107 \\ \textbf{e}1 \ 1c \ 61 \\ \textbf{e}2 \ 4p \ 135 \\ \textbf{e}3 \ 4p \ 135 \\ \textbf{e}4 \ p \ 135 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \$		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	
60 52 107 61 72 61 62 42 135 63 82 14 66 62 110 68 72 46 67 40 135 70 62 113 71 62 114 72 420 73 73 70 62		$\begin{array}{c} 100 & 1.1, 306 \\ \hline 101 & 40, 617 \\ \hline 102 & 40, 872 \\ \hline 103 & 1.4, 455 \\ \hline 103 & 40, 476 \\ \hline 103 & 40, 476 \\ \hline 104 & 40, 207 \\ \hline 105 & 40, 007 \\ \hline 107 & 41, 0 \\ \hline 107 & 41, 0 \\ \hline 107 & 41, 0 \\ \hline 107 & 10, 204 \\ \hline 107 & 10, 204 \\ \hline 107 & 10, 204 \\ \hline 100 & 10,$	
$\begin{array}{c} \textbf{e}0 \ (\textbf{c} \ 107 \\ \textbf{e}1 \ 1c \ 61 \\ \textbf{e}2 \ 4p \ 135 \\ \textbf{e}3 \ 4p \ 135 \\ \textbf{e}4 \ p \ 135 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \ \textbf{e}5 \\ \textbf{e}5 \ \textbf{e}5 \$		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	
$\begin{array}{c} \bullet 0 \ (\pounds \ 107 \\ \bullet 1 \ 1c \ 61 \\ \bullet 1 \ 7c \ $		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	
$\begin{array}{c} \bullet 0 \ (\pounds \ 107 \\ \bullet 1 \ 1c \ 61 \\ \bullet 1 \ 7c \ $		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	
$\begin{array}{c} \bullet 0 \ (\pounds \ 107 \\ \bullet 1 \ 1c \ 61 \\ \bullet 1 \ 7c \ $		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	
$\begin{array}{c} \bullet 0 \ (\pounds \ 107 \\ \bullet 1 \ 1c \ 61 \\ \bullet 1 \ 7c \ $		$\begin{array}{c} 100 \ i, 306 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 101 \ d_0 \ 6/7 \\ \hline 102 \ d_0 \ 372 \\ \hline 103 \ d_0 \ 476 \\ \hline 103 \ d_0 \ 476 \\ \hline 104 \ d_0 \ 374 \\ \hline 106 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 374 \\ \hline 107 \ d_0 \ 207 \ d_0 \ 207 \\ \hline 107 \ d_0 \ 207 \ d_0 \ d_$	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Syz B B C C C C C C C C C C C C C C C C C
0: d_{2} 231 F 10: f_{2} 247 00: d_{2} 232 R 10: -3 00: d_{2} 232 R 10: f_{2} 232 R 00: d_{2} 232 N 10: d_{2} 325 D 00: d_{2} 322 N 10: d_{2} 325 D 10: d_{2} 232 N 10: d_{4} 325 D 11: d_{2} 237 R 11: d_{4} 325 D 11: d_{2} 207 11: d_{4} 325 D D 10: d_{2} 277 11: d_{4} 325 D D 10: d_{2} 207 11: d_{4} 325 D D 11: d_{2} 207 11: d_{4} 237 D D D D D D D D D <t< th=""><th>SZ BACCES N K</th></t<>	SZ BACCES N K
Bit 232 R 108 -3 OF M 109 -3 OF M 109 -3 OF M 109 -3 OF M 109 -3 00 OF M 100 Call 325 D3 OF M 100 Call 325 D3 OF M 100 Call 324 D3 OF M 100 Call 324 D3 II L 232 N 116 Call 324 D3 II d 232 N 118 Call 325 D3 II d 227 M 118 Call 324 D3 II d 227 Los 230 118 Call 325 118 II d 227 Los 320 118 Call 325 118 II d 227 Los 325 118 Call 327 128 III d 220 IIII Gall 327 128 1416 III d 220 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SZ BACCES N K
Bit 232 R 108 -3 OF M 109 -3 OF M 109 -3 OF M 109 -3 OF M 109 -3 00 OF M 100 Call 325 D3 OF M 100 Call 325 D3 OF M 100 Call 324 D3 OF M 100 Call 324 D3 II L 232 N 116 Call 324 D3 II d 232 N 118 Call 325 D3 II d 227 M 118 Call 324 D3 II d 227 Los 230 118 Call 325 118 II d 227 Los 320 118 Call 325 118 II d 227 Los 325 118 Call 327 128 III d 220 IIII Gall 327 128 1416 III d 220 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SZ BACCES N K
0° C_{a} M 10° </th <th>SZ BACCES N K</th>	SZ BACCES N K
00 1000 <t< th=""><th>SZ BACCES N K</th></t<>	SZ BACCES N K
98 $4/a / 7$ 300 $6a 325$ $B3$ 97 md 1 107 $4d 325$ $B3$ 97 md 1 107 $4d 763$ $B3$ 97 md 1 107 $4d 763$ $B3$ 97 $dd 222$ N 10 $(a 325)$ $B3$ 97 $dd 227$ 18 $dd 325$ 18 $dd 325$ 98 $dd 227$ 1 148 $dd 325$ 18 $dd 227$ 98 $dd 227$ 148 $dd 225$ 166 $dd 225$ 176 168 $dd 225$ 98 $dd 227$ 149 188 $dd 225$ 1647 16326 98 $dd 227$ 149 188 4227 188 4227 188 467 1764 188 4227 188 42287 188 198 1764 188 1727 188 187 188 1727 188 187 187 188 187287 188 1877	SZ BACCES N K
0^{o} mt. 1 1^{oo}	SZ BACCES N K
10 $dd, 732$ N 10 $Ca, 324$ 11 $dd, 732$ 11 $dd, 334$ 11 $dd, 207$ 11 $dd, 334$ 11 $dd, 334$ 13 $dd, 207$ 11 $dd, 334$ 11 $dd, 334$ 13 $dd, 207$ 11 $dd, 334$ 11 $dd, 334$ 14 $dd, 237$ 12 13 $dd, 334$ 13 13 14 $dd, 227$ 14 13 $dd, 237$ 14 14<	SZ BACCES N K
11 f_{12}^{2} (11) f_{12}^{2} 18 $d\sigma_{2}^{2}$ (11) f_{12}^{2} (12) 18 $d\sigma_{2}^{2}$ (11) f_{12}^{2} (12) 19 $d\sigma_{2}^{2}$ (12) (12) (12) (12) 19 $d\sigma_{2}^{2}$ (12) (12) (12) (12) (12) 19 $d\sigma_{2}^{2}$ (12) $(12$	
18 der 204 10 10 der 325 13 der 207 210 der 337 14 der 321 110 der 325 18 der 207 210 der 327 18 der 207 210 der 327 18 der 207 210 der 323 18 der 207 200 der 323 17 der 207 der 323 der 323 17 der 207 der 323 der 323 17 der 207 der 325 der 325 18 der 217 der 323 der 323 18 der 217 der 325 der 325 18 der 217 der 324 der 327 18 der 217 der 323 der 325 18 der 217 der 327 der 327 18 der 217 der 327 der 327 18 der 217 der 327 der 327 18 der 227 der 327 der 327 18 der 227 der 327 der 330 18	
13 $d_{12} 207$ 213 $d_{14} 32$ 14 $d_{12} 237$ 744 $d_{12} 325$ 15 $d_{12} 237$ 744 $d_{12} 325$ 16 $d_{12} 237$ 744 $d_{12} 237$ 16 $d_{12} 237$ 744 $d_{12} 237$ 16 $d_{12} 237$ 744 $d_{12} 237$ 17 $d_{12} 237$ 744 $d_{12} 237$ 18 $d_{12} 227$ $d_{13} 237$ 744 18 $d_{12} 227$ $d_{13} 237$ 745 18 $d_{12} 277$ $d_{13} 237$ 745 18 $d_{10} 2277$ $d_{13} 337$ 744 18 $d_{10} 2277$ $d_{13} 337$ 747 18 $d_{10} 277$ $d_{13} 337$ 747 19 $d_{10} 277$ $d_{13} 337$ 747 19 $d_{10} 277$ $d_{13} 337$ 743 19 $d_{10} 237$ $d_{13} 337$ 743 10 $d_{13} 337$ $d_{13} 337$ 743 10 $d_{12} 257$ $d_{13} 347$ 743 <	
13 $22/2^{\circ}$ 218 $24/3^{\circ}$ 14 $47/2^{\circ}$ 1 118 $46/2^{\circ}$ 18 $26/2^{\circ}$ 1 118 $46/2^{\circ}$ 18 $42/2^{\circ}$ 1 118 $46/2^{\circ}$ 18 $42/2^{\circ}$ 1 118 $46/2^{\circ}$ 18 $42/2^{\circ}$ 188 $4/2^{\circ}$ 1 18 $42/2^{\circ}$ 188 $4/2^{\circ}$ 1 18 $42/2^{\circ}$ 1 188 $4/2^{\circ}$ 18 $24/2^{\circ}$ 1 188 $4/2^{\circ}$ 18 $24/2^{\circ}$ 1 188 $4/2^{\circ}$ 18 $2/2^{\circ}$ 1 1 1 1 18 $2/2^{\circ}$ 1 1 1 1 1 18 $2/2^{\circ}$ 1 1 1 1 1 1	
10 ba 23.2 B 10 10 23.3 10 da 21.7 10 cb 32.5 11 da 22.7 cb cb 32.5 11 da 22.7 cb cb 32.5 11 da 22.7 cb <	
10 ba 23.2 B 10 10 23.3 10 da 21.7 10 cb 32.5 11 da 22.7 cb cb 32.5 11 da 22.7 cb cb 32.5 11 da 22.7 cb <	
80 $ac 2 17$ 100 $c 325$ 81 $ac 227$ $ac 320$ 181 $c 320$ 82 $c 20^{\circ}$ 181 $c 320^{\circ}$ 181 $c 320^{\circ}$ 83 $c 4$ 983 $a / 6/$ 181 $c 320^{\circ}$ 83 $c 4$ 983 $a / 6/$ 181 $c 20^{\circ}$ 84 983 $a / 6/$ 181 $f 220^{\circ}$ 84 $c 22^{\circ}$ 181 $f 22^{\circ}$ 181 85 $c 20^{\circ}$ 386 $f 22^{\circ}$ 181 86 $c 20^{\circ}$ 386 $f 22^{\circ}$ 181 86 $c 0$ 386 $f 22^{\circ}$ 181 86 $c 0$ 380 -3 380 -3 87 $c 0$ $f 381$ $c 0 2^{\circ}$ $f 381$ $c 0 2^{\circ}$ 88 $c 0$ $f 381$ $c 0 2^{\circ}$ $f 381$ $c 0 2^{\circ}$ 88 $c 257$ $f 381$ $c 0 2^{\circ}$ $f 240$ $f 341$ $f 240$ 89 $f 22^{\circ}$ $f 341$ $f 24^{\circ$	
80 $ac 2 17$ 100 $c 325$ 81 $ac 227$ $ac 320$ 181 $c 320$ 82 $c 20^{\circ}$ 181 $c 320^{\circ}$ 181 $c 320^{\circ}$ 83 $c 4$ 983 $a / 6/$ 181 $c 320^{\circ}$ 83 $c 4$ 983 $a / 6/$ 181 $c 20^{\circ}$ 84 983 $a / 6/$ 181 $f 220^{\circ}$ 84 $c 22^{\circ}$ 181 $f 22^{\circ}$ 181 85 $c 20^{\circ}$ 386 $f 22^{\circ}$ 181 86 $c 20^{\circ}$ 386 $f 22^{\circ}$ 181 86 $c 0$ 386 $f 22^{\circ}$ 181 86 $c 0$ 380 -3 380 -3 87 $c 0$ $f 381$ $c 0 2^{\circ}$ $f 381$ $c 0 2^{\circ}$ 88 $c 0$ $f 381$ $c 0 2^{\circ}$ $f 381$ $c 0 2^{\circ}$ 88 $c 257$ $f 381$ $c 0 2^{\circ}$ $f 240$ $f 341$ $f 240$ 89 $f 22^{\circ}$ $f 341$ $f 24^{\circ$	¥-
II $day 2, 2, 7$ L_{44} it i $day 320$ III $day 2, 2, 7$ L_{44} it i $day 320$ III $day 2, 2, 7$ $day 320$ it i $day 320$ III $day 2, 2, 7$ IIII $day 320$ it i $day 320$ IIII $day 320$ IIIII $day 320$ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	¥-
18 Color 143 188 Color 18 Color 188 Color 188 4220 18 Color 188 4220 188 4220 18 Color 188 4220 188 420 18 Color 188 420 188 420 18 Color 188 420 188 420 18 Color 188 420 188 420 18 Color 188 60 344 188 60 344 18 Color 188 Color 188 60 342 188 60 342 188 60 342 188 60 342 188 60 342 188 60 344 188 60 344 188 188	¥-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¥-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¥-
$383 \ ce, 1/dc$ $381 \ f + 22 \ f 7$ $387 \ -23$ $386 \ f + 22 \ f 7$ $387 \ -23$ $386 \ f + 22 \ f 7$ $380 \ -7$ $380 \ -3$ $310 \ -7$ $380 \ -3$ $314 \ co$ $387 \ -3$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $388 \ f - 372 \ dots$ $384 \ co$ $388 \ f - 372 \ dots$ $384 \ f - 372 \ dots$ $388 \ f - 372 \ dots$ $384 \ f - 372 \ dots$ $388 \ f - 374 \ dots$ $386 \ f - 257 \ dots$ $388 \ f - 374 \ dots$ $41 \ co \ 257 \ dots$ $348 \ f - 372 \ dots$ $41 \ co \ 256 \ dots$ $348 \ f - 357 \ dots$ $41 \ co \ 224 \ dots$ $348 \ f - 357 \ dots$ $41 \ co \ 224 \ dots$ $348 \ f - 357 \ dots$ $42 \ f - 251 \ dots$ $348 \ f - 357 \ dots$ $41 \ co \ 224 \ dots$ $348 \ f - 357 \ dots$ $47 \ f - 1 \ dots$ <	¥-
$383 \ ce, 1/dc$ $381 \ f + 22 \ f 7$ $387 \ -23$ $386 \ f + 22 \ f 7$ $387 \ -23$ $386 \ f + 22 \ f 7$ $380 \ -7$ $380 \ -3$ $310 \ -7$ $380 \ -3$ $314 \ co$ $387 \ -3$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $781 \ f + 376 \ dots$ $384 \ co$ $388 \ f - 372 \ dots$ $384 \ co$ $388 \ f - 372 \ dots$ $384 \ f - 372 \ dots$ $388 \ f - 372 \ dots$ $384 \ f - 372 \ dots$ $388 \ f - 374 \ dots$ $386 \ f - 257 \ dots$ $388 \ f - 374 \ dots$ $41 \ co \ 257 \ dots$ $348 \ f - 372 \ dots$ $41 \ co \ 256 \ dots$ $348 \ f - 357 \ dots$ $41 \ co \ 224 \ dots$ $348 \ f - 357 \ dots$ $41 \ co \ 224 \ dots$ $348 \ f - 357 \ dots$ $42 \ f - 251 \ dots$ $348 \ f - 357 \ dots$ $41 \ co \ 224 \ dots$ $348 \ f - 357 \ dots$ $47 \ f - 1 \ dots$ <	¥-
138 -23 388 $+2297$ 21 200 387 -3 30 -7 380 -3 31 410 711 $+797$ 31 410 711 $+797$ 31 410 711 $+797$ 314 200 711 $+797$ 314 200 711 7177 316 41707 71160 71160 316 2177 71160 71160 71160 316 2256 6100 71160 71160 317 1000 71170 71160 71160 317 1000 71170 71160 71160 317 1000 71170 71160 71160 71160 317 1000 71170 71160 71160 71160 71160 317 1000 71160 71160 71160 71160 71160 711600 711600 711600 <t< th=""><th>т Г⁄2</th></t<>	т Г⁄2
aico $3i7 - 3$ $300 - q$ $300 - 3$ $310 - 2$ $310 - 3$ $31 aico$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 3$ $310 - 32$ $310 - 3$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32$ $310 - 32 - 32$ $310 - 32$ $310 - 32 - 32$ $310 - 32$ $310 - 32 - 32$ $310 - 32$ $310 - 32 - 32$ $310 - 32$ <th>т Г⁄2</th>	т Г⁄2
30 -9 30 -3 31 $4i$ 0 781 $+37$ 32 $4i$ 0 381 $6a$ $34/3$ 33 $+10$ 933 $4i$ 707 703 33 $+10$ 933 $4i$ 707 703 33 $+10$ 933 $4i$ 707 703 346 ca 257 0 3346 ca 3472 356 ca 257 0 3346 ca 3472 357 $4i$ ca 2542 0 3486 ca 3472 40 ca 2564 a 3406 a 3472 41 ca 2564 a 5486 42400 43 a 5466 2420 3446 $6a$ 3557 43 a 2524 3486 $6a$ 357 3477 44 ca 2577 34877 44677 4466	т Г⁄2
31 $d_{12} \circ 0$ (31) + 57° 32 $d_{12} \circ 0$ (31) + 57° 33 $d_{10} \circ 0$ (31) + 57° 33 $d_{10} \circ 0$ (31) + 57° 34 $d_{12} \circ 57$ (31) + 57° 35 $d_{12} \circ 7$ (31) + 57° 36 $d_{12} \circ 57$ (31) + 57° 37 $d_{12} \circ 57$ (31) + 57° 38 $d_{12} \circ 57$ (31) + 57° 39 $d_{22} \circ 57$ (31) + 57° 311 $d_{12} \circ 57$ (31) + 57° 312 $d_{12} \circ 57$ (31) + 57° 313 $d_{12} \circ 57$ (31) + 57° 314 $d_{12} \circ 57$ (31) + 57° 315 $d_{12} \circ 57$ (32) + 57° 314 $d_{12} \circ 57°$ (34) + 57° 315 $d_{12} \circ 57°$ (34) + 57° 316 $d_{12} \circ 57°$ (34) + 57° 317 (32) + 57° (34) + 57° <	т Г⁄2
38 ΔL 0 34 <th>т Г⁄2</th>	т Г⁄2
33 μ (0) (33) μ (70) 44 (26,25) (34) (26,24) 58 μ (70) (34) (26,24) 58 μ (70) (34) (26,24) 58 μ (70) (34) (26,24) 58 μ (27) (27) (28) 59 μ (27) (28) (26,24) 50 (26,257) (26) (26) 50 (26,257) (27) (28) 51 (27) (28) (24) 52 (27) (28) (24) 54 (27) (28) (24) 54 (27) (28) (24) 54 (27) (28) (24) 54 (27) (28) (24) 54 (27) (24) (24) 54 (27) (24) (24) 54 (24) (24) (24) 55 (24) (24) (24) 56 (24) (24) (24) 50 (24	
34 $(2a, 256)$ $(2a, 247)$ 38 $(a, 7)3$ $(a, 3)4$ $(a, 3)42$ 38 $(a, 7)3$ $(a, 3)43$ $(a, 3)43$ 37 $(a, 277)$ $(a, 3)43$ $(a, 3)43$ 37 $(a, 256)$ $(a, 3)43$ $(a, 3)43$ 37 $(a, 256)$ $(a, 3)43$ $(a, 3)43$ 37 $(a, 256)$ $(a, 3)43$ $(a, 3)43$ 314 $(a, 257)$ $(a, 3)43$ $(a, 2)42$ 34 $(a, 256)$ $(a, 3)43$ $(a, 2)42$ 34 $(a, 256)$ $(a, 3)43$ $(a, 2)42$ 344 $(a, 256)$ $(a, 3)43$ $(a, 2)42$ 344 $(a, 256)$ $(a, 3)44$ $(a, 2)42$ 345 $(a, 2)60$ $(a, 3)44$ $(a, 2)77$ $(a, 4)40$ 44 $(a, 2)24$ $(a, 3)43$ $(a, 3)44$ $(a, 2)77$ 346 $(a, 2)71$ $(a, 3)74$ $(a, 3)74$ $(a, 3)74$ 346 $(a, 2)71$ $(a, 3)74$ $(a, 3)74$ $(a, 3)74$ 346 $(a, 2)71$ $(a, 3)74$ </th <th></th>	
33 $42,7/23$ 230 <	Ĕ
18 $\mathcal{Q}_{1}, 257$ 0 38 $\mathcal{Q}_{1}, 257$ 37 \mathcal{L}_{10} $\mathcal{Q}_{1}, 257$ $\mathcal{Q}_{1}, 343$ 37 \mathcal{L}_{10} $\mathcal{Q}_{1}, 343$ 37 \mathcal{L}_{10} $\mathcal{Q}_{1}, 343$ 37 \mathcal{L}_{10} $\mathcal{Q}_{1}, 343$ 37 \mathcal{L}_{10} \mathcal{L}_{10} 38	-
40 $ce. 256$ 500 $\vec{e}. 343$ 41 $ed. 257$ $\vec{e}. 341$ $ed/60$ 44 $ed. 256$ $\vec{e}. 341$ $ed/60$ 43 $da, 152$ $\vec{e}. 341$ $ed/60$ 44 $da. 260$ $\vec{O}. 344$ $ed. 555$ 44 $da. 260$ $\vec{O}. 344$ $da. 767$ 45 $da. 261$ $\vec{B}. 344$ $da. 767$ 46 $ca. 224$ $\vec{S}. 344$ $da. 354$ 47 $da. 251$ $\vec{S}. 344$ $da. 354$ 47 $da. 251$ $\vec{S}. 355$ $\vec{S}. 355$ 51 $\vec{B}. 344$ $\vec{A}. 354$ $\vec{S}. 355$ 51 $\vec{B}. 344$ $\vec{A}. 354$ $\vec{S}. 355$ 51 $\vec{B}. 342$ $\vec{S}. 355$ $\vec{S}. 355$ 51 $\vec{B}. 3257$ $\vec{S}. 457$ $\vec{S}. 457$ 52 $\vec{S}. 4724/1$ $\vec{S}. 457$ $\vec{S}. 457$ 53 $\vec{A}. 257$ $\vec{S}. 457$ $\vec{S}. 457$ 54 $\vec{A}. 477$ $\vec{S}. 477$ $\vec{S}. 477$ 57 $\vec{S}. 457$ $\vec{S}. 44$	<u> </u>
40 $ce. 256$ 500 $\vec{e}. 343$ 41 $ed. 257$ $\vec{e}. 341$ $ed/60$ 44 $ed. 256$ $\vec{e}. 341$ $ed/60$ 43 $da, 152$ $\vec{e}. 341$ $ed/60$ 44 $da. 260$ $\vec{O}. 344$ $ed. 555$ 44 $da. 260$ $\vec{O}. 344$ $da. 767$ 45 $da. 261$ $\vec{B}. 344$ $da. 767$ 46 $ca. 224$ $\vec{S}. 344$ $da. 354$ 47 $da. 251$ $\vec{S}. 344$ $da. 354$ 47 $da. 251$ $\vec{S}. 355$ $\vec{S}. 355$ 51 $\vec{B}. 344$ $\vec{A}. 354$ $\vec{S}. 355$ 51 $\vec{B}. 344$ $\vec{A}. 354$ $\vec{S}. 355$ 51 $\vec{B}. 342$ $\vec{S}. 355$ $\vec{S}. 355$ 51 $\vec{B}. 3257$ $\vec{S}. 457$ $\vec{S}. 457$ 52 $\vec{S}. 4724/1$ $\vec{S}. 457$ $\vec{S}. 457$ 53 $\vec{A}. 257$ $\vec{S}. 457$ $\vec{S}. 457$ 54 $\vec{A}. 477$ $\vec{S}. 477$ $\vec{S}. 477$ 57 $\vec{S}. 457$ $\vec{S}. 44$	5
42 $f_2 2.56$ f_1 $f_2 44$ $f_2 40$ 33 $d_1 / 52$ 348 $f_2 40$ 43 $d_2 / 52$ 348 $f_2 40$ 44 $f_2 260$ 0 348 $f_2 40$ 45 $f_2 261$ 8 346 $f_2 / 57$ 45 $f_2 24$ 348 $f_2 / 57$ $f_4 / 57$ 46 $f_2 224$ 348 $f_2 / 57$ $f_4 / 57$ 50 $f_2 / 51$ 348 $f_2 / 57$ $f_4 / 57$ 51 $f_2 / 57$ 38 $f_2 / 240$ $f_4 / 57$ 53 $f_2 / 57$ $f_4 / 57$ $f_4 / 57$ 54 $f_2 / 570$ $f_6 / 4 / 57$ $f_8 / 79 / 7$ 54 $f_2 / 570$ $f_8 / 79 / 7$ $f_8 / 79 / 7$ 54 $f_2 / 570$ $f_8 / 79 / 7$ $f_8 / 79 / 7$ 55 $f_2 / 6 / 57 / 7$ $f_8 / 79 / 7$ $f_8 / 79 / 7$ 57 $f_8 / 6 / 70 / 7$ $f_8 / 70 / 7$ $f_8 / 70 / 7$ 58 $f_2 / 6 / 57 / 7$ $f_8 / 70 / 7 / 7$ $f_8 / 70 / 7 / 7 / 7$ <td< th=""><th>6</th></td<>	6
42 $f_2 2.56$ f_1 $f_2 44$ $f_2 40$ 33 $d_1 / 52$ 348 $f_2 / 40$ 43 $d_2 / 52$ 348 $f_2 / 40$ 44 $f_2 2.61$ 8 344 $f_2 / 52$ 45 $f_2 / 24$ 344 $f_2 / 257$ $f_4 / 45$ 46 $f_2 / 24$ 344 $f_2 / 277$ $f_4 / 45$ 47 $f_2 / 251$ 346 $f_2 / 357$ $f_4 / 45$ 50 $f_2 / 10$ 348 $f_2 / 357$ $f_4 / 45$ 51 $f_2 / 10$ $f_4 / 10$ $f_4 / 457$ $f_4 / 45$ 52 $f_2 / 250$ $f_4 / 457$ $f_4 / 457$ $f_4 / 457$ 53 $f_2 / 457$ $f_3 / 46$ $f_4 / 457$ $f_4 / 457$ 54 $f_4 / 457$ $f_3 / 46$ $f_4 / 457$ $f_4 / 46$ 57 $f_3 / 46$ $f_4 / 30$ $f_4 / 457$ $f_4 / 46$ 57 $f_3 / 46$ $f_4 / 457$ $f_4 / 457$ $f_4 / 46$ 57 $f_3 / 46$ $f_4 / 457$ $f_4 / 46$ $f_4 / 46$ <td< th=""><th><u>s</u></th></td<>	<u>s</u>
43 $a_{12}/52$ Jest f 6/4/5 44 $d_{12}/52$ Jest f 6/4/5 45 $d_{12}/52$ Jest f 6/4/5 46 $d_{12}/52$ Jest f 6/4/5 47 $d_{12}/52$ Jest f 6/4/5 48 $d_{12}/52$ Jest f 6/4/5 49 $d_{12}/52$ Jest f 6/4/5 49 $d_{12}/52$ Jest f 6/4/5 40 $d_{12}/52$ Jest f 6/4/5 40 $d_{12}/52$ Jest f 6/4/5 40 $d_{12}/52$ Jest f 6/4/5 41 $d_{12}/52$ Jest f 6/4/5 41 $d_{12}/52$ Jest f 6/4/5 41 Jest f 6/4/5 Jest f 6/4/5 41 Jest f 6/4/5 Jest f 6/4/5 41 Jest f 6/4/5 Jest f 6/4/5 42 Jest f 6/4/5 Jest f 6/4/5 41 Jest f 6/4/5 Jest f 6/4/5 42 Jest f 6/4/5 Jest f 6/4/5 42 Jest f 6/4/5 Jest f 6/4/5 42 Jest f 6/4/5 Jest f 6/4/6 42 Jest f 7/4 Jest f 7/4	<u>e</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¥
44 $Ca, 224$ S 344 $Ca, 354$ 47 $Td, 251$ 347 $Td, 460$ 90 $Ca, 703$ 1 380 $Ca, 357$ 91 $Ed, 251$ 347 $Td, 460$ 92 $Ar, 751$ 381 $Ca, 357$ 91 $Ed, 257$ 348 $Ca, 357$ 92 $Ar, 251$ 384 257 93 $Ar, 251$ 384 257 94 $4r, 257$ 384 $4r, 257$ 95 $2r, 657$ 384 $4r, 240$ 96 $2r, 657$ 384 $74, 237$ 97 737 387 $74, 2255$ 97 737 397 $4r, 300$ 97 737 $560, 4r, 130$ 72 97 $360, 4r, 130$ 72 $760, 4r, 130$ 97 $360, 4r, 130$ 72 $760, 4r, 130$	¥.
44 $Ca, 224$ S 344 $Ca, 354$ 47 $Td, 251$ 347 $Td, 460$ 90 $Ca, 703$ 1 380 $Ca, 357$ 91 $Ed, 251$ 347 $Td, 460$ 92 $Ar, 751$ 381 $Ca, 357$ 91 $Ed, 257$ 348 $Ca, 357$ 92 $Ar, 251$ 384 257 93 $Ar, 251$ 384 257 94 $4r, 257$ 384 $4r, 257$ 95 $2r, 657$ 384 $4r, 240$ 96 $2r, 657$ 384 $74, 237$ 97 737 387 $74, 2255$ 97 737 397 $4r, 300$ 97 737 $560, 4r, 130$ 72 97 $360, 4r, 130$ 72 $760, 4r, 130$ 97 $360, 4r, 130$ 72 $760, 4r, 130$	<u>T</u>
$4777_{-1}/460$ $3477_{-1}/460$ 300 Car, $10/3$ 311 311 311 311 311 311 311 311 311	<u>.</u>
$4777_{-1}/460$ $3477_{-1}/460$ 300 Car, $10/3$ 311 311 311 311 311 311 311 311 311	<u> </u>
30 $c_{a, 10/3}$ 300 $c_{a, 255}$ 51 $c_{a, 10/3}$ 781 $c_{a, 257}$ 51 $c_{a, 257}$ 781 $c_{a, 257}$ 53 $A\sigma 24/$ $rag rag 53 A\sigma 24/ rag rag 54 c_{a, 257} rag rag 54 rag 257 rag rag rag 54 rag 257 rag $	¥
a_1 a_2 n_1 n_1 n_2 n_2 a_2 a_2 a_3 a_2 a_2 a_2 a_3 a_2 a_2 a_2 a_2 a_2 a_4 a_2	<u>e</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$46 \ (c_{2} \ 250)$ $(46) \ 1/2 \ 40$ $58 \ L_{0} \ (c_{5} \ 7)$ $(36) \ 1/2 \ 40$ $58 \ L_{0} \ (c_{5} \ 7)$ $(38) \ 1/2 \ 431$ $58 \ 1/2 \ 431$ $(57) \ 4.225$ $57 \ +37$ $(57) \ 4.225$ $60 \ -237$ $(50) \ 4/1 \ 130$ $60 \ -237$ $(60 \ 4/2 \ 10) \ 100$	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŧ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¥
87 +37 -197 -1	T
$\frac{10}{10} - 239$ $\frac{500}{20} \frac{40}{30}$ $\frac{10}{10}$	+
301 Callo 16	1
	+
	5
	6
63 at 703 (35)	ř
44 Ca 300 344 Ca 1007	4—
es 6: 1054 72 1es 14 40 es ca 301 72 1es 14 40	<u>N</u>
66 ca 30/1 566 ca 110	I
er ad 305 re 367	_
10 ± 301 R 20 35 11 ad 303 A 211 40 375	E
" ao 303 A A A A 303	R R
$\frac{72}{6} \frac{277}{2}$ C $\frac{372}{4} \frac{43}{4}$	R
73 fa 212	0
14 ta 301 S 114 Ap 130	<u></u>
⁷⁵ Ca 304 375 Ca 434	7
76 5 303	S
17 au 153 N 317 to 114	5
The second se	
MIT DIGITAL COMPUTER LABORATO	
OCTAL PROGRAM FORM	
TITLE PREDICTION TY INDEX	
AUTHOR SIMPSON DATE	
TAPE NUMBER 2539 M2	

-

0L-481

SI	HEE'	T 2.

1 1001 110 201	· · · · · · · · · · · · · · · · · · ·		
+00 12 24 401 td 410	+	500 th 532 101 Ca 434	─── ──┤ ╞┥┤─┤
102 122	Â.		
403 72 42	3 D	02 to 435	
404 'n 43			
105 to 43	rte	504 T 440 505 CA 542	<u>Ç</u>
06 Ca 43	1		<u>0</u>
1/07 5 43		06 ta 543	P
, 10 C.1			<u> </u>
	<u> </u>		
111 5640			D
413 20 4	2 O		
14 14 41	24P	513 CA 543 514 /1C 514	}
.15 50.10			P
16 AC 41		515 cn 543	<u> </u>
417 110 /3			- Ø
120 a 10	1 8 -	117 ta 543 20 rc 520	T
121 70 42		121 111 545	S
+22 JA 13	R R R R R R	(22 Cp 5/5	ŭ
423 Ca	·	123 20 440	¥
· 24 Jf 4	S	524 10 440	
1425 81 42	ब ठ	25 min 547	<u> </u>
126 204		26 sh 12	<u> </u>
- 27 CA 40	A	27 41 600	
130 11 63	R	:30 in 542	E
131 14	E E	631 20 531	2
1,32 1-9	T	132 Ca	e R
133 210		33 sh /	<u>R</u>
134 -23	1	534 AC 534	Ô
135 460	1	1 35 20 532	¥
1/36 -10		36 as 435	B
437 1.7774		137 Cp 523	V
440 1.77774	/	540 si 500	<u> </u>
1 4 7 1 72 4 / 1		541-46	<u> </u>
442 st 22 43 st 13 44 cm 110		541 -46	S
43 2613	G2 R	43 1577777	Ă
- 44 Ca 110		43 1.57717 044 0.06315	
145 1044	S N	\$45 0.6000C	- Bung
446 20/3	T	546 0.200rc	5
1 4 4 1 (a 100		47 +.6667	V.
4 50 50 40	5	50 CA 1053	
1 1 31 00 110		551 1 170	
4 52 10-45	2 M		S
1 .53 /2.	5	52 ar 170 53 ar 1047 54 (b 563 55 fa 606 55 fa 257	<u> </u>
454 1046	2	154 66 563	Ť
4 54 4 10 46 + 55 La. 47	- 0	6 55 Cr. 606	
1 - 30 41 22			P
457 10/3		1.57 Tal 373	R
1.60 CA 43	έ Ε		R O
161 te 113		1 1d. 456	G-
1,62 to 114	<u> </u>	62 td 611	R
1,63 Ca 22	<u>រ ខ</u>	53 A0 1150	R G
464 td 46	7 <u> </u>	564 Cp 574 165 20 563 ,66 20574	M
165 CA 43	<i>z</i>	1.65 20 563	
166 5 43	- <u>S</u>	, 46 ar 514	C
467 CA		1 507 00 575	0
470 40 40	J J	570 at 5'11	<u> </u>
171 100 44	71 (**)	671 41 605	
472 00 42	12	572 Ch 563	Ř
473 6446	<u> </u>	573 4p 146	Ŏ
		174 Ca 601	L
414 Si 63	↓¥	573 dp 146 574 Ca 601 575 Ta 154	1
474 56 63		576 Let 6 4	
474 <u><i>si</i></u> 63 475 <u><i>sp</i></u> 476 7 , 54		71 1/62	
474 56 63	a 1 1 1		
474 Si 63 475 Jp 476 72 54 476 72 54 477 Ca 22	<u>a ini i</u>		
474 <u><i>si</i></u> 63 475 <u><i>sp</i></u> 476 7 , 54	<u>a (m) (</u>		
474 Si 63 475 Jp 476 72 54 476 72 54 477 Ca 22	<u>ar (m) (</u>		
474 Si 63 475 Jp 476 72 54 476 72 54 477 Ca 22			
474 Si 63 475 Jp 476 72 54 476 72 54 477 Ca 22			

		SHEET Z
400 16565		700 Ca. 11/ 701 E. 1004
401 de 153- 102 de 156		
103 14151		700 (2.100) 700 (2.100) 700 (2.10) 700 (2.10) 700 (2.10)
104 46		704 ad
(05 - 2		706 2
106 A. 136 107 A. 170		- 00 AN 702
		101 0r 104 R
(10 cp/5/		710 Cr 715 B
	8 - -	"III Cr 1004 0
(12 Ca 6/6 (13 AC 6/3	<u>_</u>	112 CA 712 B 713 CA 233 S 714 t. 1083
14 41 630	5	714 + 1013
15 16 0	D I	715 CA. 77/
(16 1.42000)	V I	716 to 1004 E
17 14.223		717 CA /012
120 7- 146		720 ta 1005
(21 CA.746		781 Ca
(22 Au 1001		1/22 mr 1/23 ad N
(23 ta 746 (24 da 625 (25 ta 1010	———— — —— — —— — —————————————————————	723 ad N
125 64.1010		128 an 721 B
1 20 13 1003	1 1	726 AN 722 E
1 27 Ca 760		1 /21 Ac /015
130 td 670	F L	130 Ch 721
(3) CA 761 (32 Td. 702.	Q	131 Ca 72/ S
132 td. 102.	- A	1 22 ad 772
1 33 A12 10/1	M	733 ta 72/
(34 du 1012 (35 ta 763	z	7 13 14 721 7 13 44 721 7 14 64 773 7 18 44 773 7 18 44 773 7 18 44 773 7 18 44 773
(36 Pa 7/7	Ę	130 du 113 S
(36 (A 767) (37 72 704)		137 at 722
(40 ta 705		140 RC 724 4
1 41 Ca 154	Ř	141 00 1004
1 42 241 1012	B S	742 CAD 7/17
143 to 764		743 EL 752
144 ca 155	i=2.0	1744 ta 624 T
1 45 Au 1012		145 40 1002
146 ta 765 . 47 ca 756		146 Ch R 147 CA 753
30 Sec 1012	¥	150 12.624
(5) t. 166	1=259	151 4/0 1/1 2
1 52 Ca 757		⁷⁵² 346666
+ 53 Au 1017	A	1/32-466251 .3
6.54 ta 761	N	754 Ca. 1023 7
	D	155 Ca 1033
1.56 si 0 1.57 cs 1012	i=260	756 Ca. 1043
1 60 L 772		757 Ca. 1052 760 Ca. 764
(01 CR 1012	_	761 Ca 1100
1 62 to 173		762 CA 1460
1 63 ar 773		763 si 0
184 ca 330	2=499	1.0
1 65 T 1002		165 Ai 0 766 Ai 0
(66 CA 763		700 110
167 td 121		707 41 0
170 CA 171 Tel 722 172 Ca 742		770 +./000° 771 - 239
6.72 CA 162	╶───┼─╢─	172 41 0
1619170 12.51		773 4:0
674 td 124 175 do 670		77 di 500
175 40 670		175 Ca 437
(16 ac 103		778 46 504
211 00 115		17 410
		MIT DIGITAL COMPUTER LABORATORY OCTAL PROGRAM FORM
		AUTHOR SIMPSON DATE
		TAPE NUMBER _ 2539 m 2

/ 00	sio				11 00			_
1-01	+2				110	L	l	1
1-02	CA 1007		4		11 02			
/ 03	11 707		<u> </u>		1/ 03		L	
04	CLIDIO		1	سملد	11 04			
05	to 1053 44 147 + 4016			Y	11 05			+
17.06	4/147		- i -	OPERATORS.	11 06		+	+
1007	+ 4096		- ē -	Т	/1 07			
1010	+291		<u> </u>	-0-1-2-3	11 10			
7611		- A2	<u> </u>	+K	11 11		4	
1012	12 107			+M ax 10-3	(1.12			
1013	CA 1074		T	d x 10-3	11 13			
014			R	a, x 10'	11 14			+
- 15			A	a.	1/ 15			+
1/16	gd 1024		Ç	45	11 16			+
117	ta 1025		ŝ	ay	11 17			
1/20	A01026		<u> </u>	43	1/ 20			¥
281	ap 1023		~	az	11 21		 	
1022			<u>0</u>	<i>a</i> ,	11 22			-
1024	20147 7500		<u>u</u>	A. × 107				+
1025	+ 500		<u> </u>	17	() 24			-+
1025			+	<u> </u>	11 25 11 26		+	+
1026	the second s		×	55	11 26	———	+	±
		- D	4	<u> </u>			+	1
1030	+:0100		Ť	<u> </u>	11 30		+	<u>w</u>
1031			<u>_</u>	<u> </u>	// 3/		+	0
16 32	(a.105#			<u><u> </u></u>	1/ 32			+
1033				6.×10-1	11 33		+	
1034			<u>t</u>	(1	// 34			+
			Ň	<u> </u>	35			
10 36		-	-	22	36			
	min 1030		<u> </u>	<u> </u>	/1 37		+	+
10 40			<u>-ï</u>	4	11 40			+
			Ē	<u>(</u> 2	11 41			
14 42			E A C	G Hard	11 42			+
1- 43			- -	Gx107	1/ 43			
10 44	AU 1031		<u> </u>	47	1 44	ļ		
1945			_	4.	1/ 45		+	-
1046	140/50		×	45	1/ 46			
10 47				44	1) 47			
10.50	1:0			d3				
1051	Aig			42	1/ 5/			
10 52				di	11 53	 		+
			不	d.x6	11 54	ł	+	+
1054			- T -		11 55	ł		+
10 55			-		11 35			
10 56					11 56		+	-+
10.57			-+-		11 60	t	+	-+
			-+-		11 60		+	+
1261			+		1/ 62		+	
1.062					1/ 62		+	+
/ 063	·				11 63	+	+	
/064	·		<u> </u>		11 64	+	+	*
10 65	·		P		65 66	+	+	X
1066			Ę		11 67	ł	+	<u> </u>
1067			R		11 70		+	F
1070			Ð		11 71	+	+	
1071			<u> </u>		11 72	+	+	<u> </u>
1 . 72			<u>_</u>		11 73	<u>+</u>		
1073			B		11 74	+	+	1
1074			ō		11 75		+	
1975					11 76		-+	
1.70			_ <u>N</u>		11 77	+		
1077		1	<u> </u>		I <u></u>	<u>.</u>		
TES								
							·	

						Dire			
	00			T	00				
	01			<u>├</u>	01				
	02				02				
	03				05				
					04				
	04			h					
	05				05				
	06				- 06				-
	07				07				
	10			T	10				
	11								
	12				12				
					-13				
	13			┝──┿	- 14				
	14			$ \rightarrow $					
	15				15				
	16				16				
	17				17				
	20			I I	20				
	21				21				
	22				22			,	
	23				23				
+-	24			<u>}</u> − − +	24				
 			······	┝──┤	25				
	25		· · · · · · · · · · · · · · · · · · ·	┡───╄					
	26			$ \rightarrow $	26				
	27				27				
	30				30				
1	31				31				
	32				32				
- +	33				33				
	34				34				
+	35				35				
	36			├ ───┤	36				
				┝ ── 	37				
	37			┢──┥					
	40				40				
	41				41				
	42				42				
	43				43				
	44				44				
	45				45				
	46				46	·			
	47				47				
	50				50				
	51				51				
				· · · · ·					
	52				52				
	53				53				
	- 54				54				
	55				55		1		
	56			II	56				
	57				57		I		
	60				60		r		
<u>⊦ </u> †	61				61		1		
┝──┼	62		+ ····· · · · · · · · · · · · · · · · ·	<u> </u>	62		t		
├┼	63		ł · ·	1	63		t	· · · · ·	_
├ ─── ↓							+		·
	64		 	l	64		↓		
	65		L	1	65		ļ		
	66				66		L		
	67				67				
	70				70				
	71			1	71		1		
	72		1	1	72	1	1		
⊢t	73		+	11	73		1		
├ ── 	74		t	11	74		t		
├ ───- ↓	75		1	+├───	75		1		
├↓							+		+
	76		_	╢───	76	I	ŧ		
	77	L			77	I	1		
			···		E PE	OCTAL	OMPUTER PROGRAN	FORM	TORY
<u> </u>				1 AUT	HOR	SIMPS		e	
<u> </u>				11 2.1			M DAT 539 M		
					E NU	MBFH	<u></u>		
				11					
		_							

APPENDIX C

7

APPENDIX C

ITERATION I (2615 m 2) - Description and Use Of

This program was written with the purpose of obtaining least squares fits for linear operators as described in Part IV. It computes essentially as described, but has provisions for changing its increment after cycling for a certain prescribed number of times.

The program was designed to be run in conjunction with the Prediction XV program described in Appendix B, and to illustrate the conveniences which programs can include. The data to which the linear operator is to be fitted is prepared in the same fashion as in Prediction XV. The information about the operators to be found (Iteration I solves up to eight operators one after the other) is prepared as a single tape. The operator coefficients once formed are printed out, and also are left in the machine in a form to be used directly with the prediction program.

The output of Iteration I was designed to eliminate identification problems. In addition to printing out the coefficients identified, it prints out the operator number, the operator parameters including which set of data is predicted, and the variance and minimum sums of square errors. These last two numbers allow a rapid computation of the percent reduction $R = 1 - I_{min} A_{var}$, which is a measure of the goodness of the least squares fit. A sample of the output appears below.

> Variance sum = 004953Minimum sum = 001840Operator No. -1010 N = 066n = 050k = 002M = 003T4 predicted a/1000 = +0292 $a_3/10 = -0000$ a2/10 = +0565a1/10 = -0000a0/10 = +0005a3/10 = -0341d2/10 = -0117d1/10 = -0410d0'/10 = +0708

The program may be used to print out all the values of I as they are computed. A plot of these values for a particular operator appears in Part IV.

One other feature in this program is a "roll back" procedure. This permits us to avoid having to start from scratch if the machine fails in the middle of the long computations. Every fifteen seconds during the computation, all of electrostatic storage is transferred to the magnetic drums which are very reliable. Then if electrostatic storage is destroyed, we can call back the program from the magnetic drums and start over where we left off not more than fifteen seconds ago.

Use of Iteration I

If the operators are prepared as described on the next page with a tape number X then the instructions for the operation of this program would be:

> Erase storage, Sil switch down Read in 2615 m 2 Read in 2615 P (control tape) Read in Y (data tape) Place X in photoelectric reader Start over at 145

The control tapes control the output and serve the following functions:

2615 P 0 Print out operator and identification (direct printer)
2615 P 1 Print out operator, identification, and all values of I (delayed printer).

Preparation of Operator Parameters

The information for each operator is prepared as a short separate tape and the tapes are then combined in any order. The form of each operator is identical.

Octal Address 1001 1002 1003 1004 1005 1006 1007 1010 1111 1112 1113	Contents +N +n +0, or -1 +0, or -1 +0, or -1 +0, or -1 +.XXXX -0,-1,-2, or -3 +k +M +.XXXX	Explanation First member op. interval Length of op. interval -1 if x_i not used -1 if y_i " " -1 if z_i " " -1 if u_i " " First operator no. -0 if x_i , -1 if y_i -2 if z_i , -3 if u_i = mean of pred. series $x \ 10^{-3}$
	Start at 147	

The first of the separate tapes must have one additional register, register 1000, which contains + no.

of operators on the combined tape.

Register 2123 contains +.0010 which is the first increment to be used for the a term. Register 2223 contains +.0100 which is the first increment to be used with the remaining constants. Register 3421 is the counter for the cycles at these increments. The second set of increments is 1/10 the first set, and appears in registers 2124 and 2224. The counter for this set is register 3433. These registers may be changed to adapt to the particular problem. The "roll back" procedure in case of electrostatic storage failure is

.

.

,

...

Erase storage Read in 2615 P 13 Start over at 145

,

00		100 0 16000
- ôi		101 0.26000
08		/08 0.46000
03		108 0.46000
		104 @ 56000
04		100 0.06000
05		
06		106 1.54000
07		107 @ 20000
10		110 1.22.000
1 11		111 + 3
1 12		112 410
13		113 260
		114 44 0
14		115 44 0
18		116 00 126
16		117 de 124
117		11/ 02.124
20		120 AC /20
21		121 44/35
22		
23		123 40 44
24		184 0.32000
25		184 0.32.000 183 0.72.000
26	t	126 Ca. 125
27		127 120
		130 72 154
30		
31		
32		132 ad 144
33		133 c/ /32
34		134 40
35		135 72 141
34		136 Ca 143
37		137 ad 144
	#. 7#	140 00 /37
1 41	54 64 54 72	
42	E 115	143 -128
43	40 116	144 + 7
44	<u>ta 112</u>	145 40 /46
45	cm 115	
46	mh 73	146 30 25
47	ad 74	147 432 32
50	14.53	150 40261
51	th. 53 sh 17	151 16 617
52	E 115	152 40 2614
53	ca	153 10 2100
54	rc 54	154 40 2160
55	100	155 4 2204
	40135	156 10227
56	AF IIL	156 2227 157 402252
57	C# 15	
60	Ca 107	160 00 3400
61	20 61	181 4/0 34/25
62	Ap /35	1 162 in /63
63	Ar /14	163 10 2670
64	CO	46 2737
65	ca 110	165 10 2376
	AC 66	100 410 2550
64	40/35	167 402560
		170 41 2570
67	1/2	171 40 2600
67 70	on 113	
67 70 71	0 113 ta 114	172 4 225
67 70 71 72	0 113 5 114 10	172 <u>6</u> 225
67 70 71 72 73	oie 113 ta 114 AP	173 4 600
67 70 71 72 73 74	0 113 12 114 40 +10 0.000 15	173 4 223 173 4 600 174 4 2 2.7
67 70 71 72 73 74 75	0: 113 f2-114 40 + 10 0:000 75 1.74000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74	0: 113 f2-114 40 + 10 0:000 75 1.74000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76	04 113 12 114 40 410 0.000 75 1.74000 0.52000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76 77	0: 113 f2-114 40 + 10 0:000 75 1.74000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76	04 113 12 114 40 410 0.000 75 1.74000 0.52000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76 77	04 113 12 114 40 410 0.000 75 1.74000 0.52000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76 77	04 113 12 114 40 410 0.000 75 1.74000 0.52000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76 77	04 113 12 114 40 410 0.000 75 1.74000 0.52000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
67 70 71 72 73 74 75 76 77	04 113 12 114 40 410 0.000 75 1.74000 0.52000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Sheel
200 00 215	300 40
201 ar 703 202 ad 202	301 40
208 12202	300 160
203 214	300 - 5 304 - 3
	106 + 500
206 JH 207 206 Li O	100 100
207 CA 2/5	107 200
210 si 707	310 1255
211 CA 214	311 74,320 312 74,325
218 AC 212	312 72.325
113 40 173	313 Ca 344 314 ta 343
214 <u>4:</u> 0 218 44096	316 CA 0
216 4076	316 22 34/
217 20	317 6.342
220 02 224	320 Qa 321 mad 345
221 AC 221	381 mal 345 388 ab. /7
282 4: 630	323 m/
223 <u>4</u> 0 324 1 42 000	384 m. 345
225 Ai 630	325 4/2 /7
226 Ce. 237	326 AR 342
227 si 707	387 t. 342 330 ca 341
230 Ca. 240	330 Ca. 34/ 331 to 34/
231 1007 232 32237	3 32 00 320
233 ad 240	333 0+323
234 2 237	334 0 343
235 10 200	335 C/0, 320
136 AL 0	334 4645/ 337 40
237 + 4097 740 + 37	340 420
240 + 37 241 160	341 10
242 10	342 ALO
243 02 256	343 44 0
244 5 257	344 12 0
245 Ca 255 246 Tel 250	
147 (2.10)3	346 A: O 347 7a, 424
250 t	350 Ca 74
251 01 250	351 td. 413
252 00 257	352 72 416
253 Cp 247	353 Ca. 404 354 td. 365
254 J 657 255 ca 1460	355 Ca. 402
255 ca.1460 256 a.c. 0	3 55 Car 4 62 3 56 tz 4 63
2 57 4:0	357 00 401
260 di 0	300 td 370
261 tai 277	361 Ca 34/
262 ca 301	362 te 407 363 ar 407
263 dí 703	364 Ca 407
264 Ca 200 265 - fr: 1054	365 444
266 Ca 301	346 CD 372
267 00.305	
270 2 30/	370 ao 371 40 344
271 40 303	372 00 345
272 (b 271) 273 ta 302	313 0 370
274 74 301	\$74 0.# 370
275 (a 304	375 Ar 370
278 t 303	370 40 403 377 cp 344
217 44	
	MIT DIGITAL COMPUTER LABORATORY OCTAL PROGRAM FORM
	TITLE ITERATION I INDEX
	AUTHOR SIMPSON DATE
	TAPE NUMBER 2615-AND O

	AD 411	500 1:0
401	Ea 413	501 20
902	-/	502 4:0
403	si O	503 <u>4(0</u> 594 4(0)
405	+10	
/06		
y07	tl sio	
410	si o	
411	4.225	
412	sp 130	511 34 516 512 4:0
413	En -	513 + 6145
# 14	NC 414	514 + 1857
415	46 135	515 40
416	ca	516 00/047
417	AC \$17	517 CL 535
4 20		520 46522
481	sp /35 Ca 342	520 46522 521 46.136
1/22	4040	522 Ge 521
4 23	sp 40 si 630	522 CL 521 523 TL 217 724 TL 411
4 24	J#	T24 Td. 411
- 25	<i>L</i> 0	525 th 234/
4 26	AL' Q	· 26 11 2376
4 27	4 427	527 td 2614
4 30	44 434	530 TA 2670
431	2 474	531 44535
432	Ca. 342	532 10
433	te 475	(33 M O
¥34	ca 476	534 sig
/35	ta 473	535 00 1050
436	A0 473	536 CL 540
437	Au 474	537 46 562
1.40	C/0 457	540 ca 567
441	Suc 406	(AI + 2114)
¥ 42	CB 444	542 CA 570
443	40465	542 (2, 570 543 t 2137
444	Ca 477	544 Ca 571
945	AU 475	544 Ca, 571 543 Ta 2147
y 46	CA 457	546 Ca 572
¥ 47	465	547 ta 2170
¥ 50	46465	530 Ca 573
451	Ca 341	551 2214
4 52	tz 474	532 Ca 574
4 53	Ca 342	1 (53 t 2237)
¥ 54	12.475	554 Ca 575
7 55	Ap 337	535 <u>74</u> 2262 236 <u>74</u> 276 557 <u>74</u> 2314
4 56	Ai O	356 Ca 576
¥ 57	Ca 462	557 ta 2314
/ 60	ta 500	500 Ca 577
461	16467	561 42337
#62	40	582 CA 604
463	10	503 ai 107
464	si 0	564 (a U
765	ca 470	585 110 565
4 66	ta 500	566 4.0
467	<u>sp</u>	507 442115
470		570 142144
47 1	+2 AL ^O	671 462150
472	di O	572 462171
473	40	5 73 262215
474	ai 0	14 141-240
475		1.75 102263
476	si o	576 J62315 577 162340
477		577 462340
5		

	SHEETZ
6.00 41 177	700 (9.771
1 01 04 141	701 4 6/4
6 03 <u>4</u> , 0 6 04 + 4096	
(05 di 0	704 ad
606 ALO	706 40- 702
607 + 10	707 45 104
610 - 3	710 40 705
611 + 2, 612 ALO	711 4 8 6/4 712 CA 702
613 41 0	712 CA 702 713 CA 607
KIA 11 0	713 Ce 407 714 ta 6/3
615 ALO	715 (24 77/)
61 ALO	710 E. 614
(17 7a 337) (20 7a 746	117 C4 1012
(20 ta, 746 (21) ca. 146	720 tz 615 721 Ca
(22 Ju 6/1	722 / 10/12
623 to 746	723 ad
· 24 10625	724 6
	725 64 721
622 <u>du (.11</u> 622 <u>du (.11</u> 622 <u>du (.146</u> 624 <u>du (.625</u> 623 <u>du (.010</u> 628 <u>du (.010</u> 628 <u>du (.013</u> 627 <u>du (.160</u>)	726 A0 72 2 727 A0 6 15
6 30 trd 670	/30 C 40 721
	731 Ca 72/
632 10 102	732 04 172
6 33 dec 1011 6 34 dec 1012	733 ta 721
- (<u>34 Au loi2</u>	734 Ca. 722 135 su. 773
$\frac{735}{100} \frac{1}{100} $	735 Au. 713 736 £ 722
437 fd 762	737 AA 723
(40 td. 705)	#0 as 124
6.41 Ca. 754	741 15614
642 ALL 1012	742 (4) 717 743 (2, 752) 744 72 (2) 4
643 <u>f. 764</u> 	743 Ca. 752 144 7d 624
(45) 111 /0/2	145 206/2
(45 Ju. 1012 1 46 t. 165 6 47 ra. 156	
6 47 1a 156	746 CA2 747 Ca. 753
6.50 AN 1.12	750 tal 624 751
4.51 ta 166 6 52 (a 151)	751 16 310
6 52 (A. 151 6 53 Ju 1012	732 Jules 733 J1,625
(54 ta 161	734 Ca 1023
655 11,243	735 Ca 1133
456 3.0	756 Ca 1043
	757 ca /053
660 t, 1/12 661 (a. 10.12	760 Ca 764 761 Ca 110C
662 12 773	102 Ca. 1460
1 63 at 11/3	163 1í0
464 Ca 610	764 10
<u>465 <u>f</u>, <u>612</u></u>	765 21'0
(66) CQ 7[63] C 67 FZ 7[2]	766 JL C 767 - 14 Q
170 Ca	770 1.1000
1. 71 ta 1/22	
(12 (A 162	712 110
(13 td. 723	773 4.0
674 td 124	774 <u>1.:0</u> 775 <u>4.:</u> 0
(75 ac 6/1) (76 as 6/3	775 <u>A</u> U
- (17 cg, 1/15	777 4.0
	MIT DIGITAL COMPUTER LABORATORY
	OCTAL PROGRAM FORM
	TITLE L'ERATION I INDEX
	AUTHOR SIMPSON DATE
	TAPE NUMBER 2615-MO

۰.

1 10001	ALC 0		3000	4/2251
1000	si o		1.00	N.225 CL2756
1002	AL O		13502	AC 3 50 2
1003	si 0		5503	40/35
1004	4:0		3504	4 2 2 7 7
1005	II O		3508	Cp 35 al
1006	si a		3506	Cp 3501 Ce 3513
1007	<u>.</u>		3507	1 3512
1010	4:0		15510	10150
	10.1025		3511	14:0
1012	Ca 1025 si 707		3712	
1013	Ca 1024		3 573	A
	6+1054		3514	1.0
	ca 1025		3515	
1016			3516	
1017	01.1024 te 1025		3517	
1020	1026		3520	
1021	84 1078		3521	A. 740
1422	CA 1023		3522	
1023	1027		11000	
1024	+500		3524	1 40 70
1025	+2049		3528	
1026	-3		3526	
1027			3527	
1030				Ca. 10/3
1431	+.0100		3330	Cat 10/3
1431	ta 2031 Ca 1054	· · · · · · · · · · · · · · · · · · ·	3532	<u>M2123</u>
1032	CA. 1057			
10.88	CA 1032 TA 1036 TA 1036		5,33	ca 2/26
1034	71.1036		5534	Ta 35 5/
1030	Tel. 1041		3530	a ca 476 ta 474
1036			35.36	14.974
1037			3537	Ca. 417
10 40			35'40	0 4 475
1041			3541	
1042			3542	4 40
1043			35743	
1044			35744	
/045			3545	5 ALO .
1046	1010		354	aio
1047			3547	1 1:0
1050	410		3(50	0 CA 2355 1 L 2333
1051			3531	4.2333
1062			3558	2 CA 0
1053	0 :4		8533	3 41, 2323
1054			355	120
1055	1		₹ \$55	5 CL 2326
1056			3550	6 \$ 3553
1057	1		3551	1 Ca 476
10 60	9			0 4 474
1061			356	(a 417
1062			3561	2 7 475
1063			356	3 AP 2347
1064			3574	1 a. 0 1 ta 3571
1065			356	1 1 3571
/066				6 71 2424
1067			350	6 ta 2334 7 ta 3552
1070			3570	0 72 3554
1071			357	
1072			357	
1073				3 40 3553
1073			357	4 10 161
		<u> </u>	357	4 <u>40/6/</u> 9 <u>4</u> 0
1075			3570	
1076			1-12	1 A: 0 1 TA 2155
1077	L	L		10-41-22
ES .				

	Uncero
3600 tol 35 31	00
3601 40 3357	01
3602 400	08
3403 A1 2355 3404 A1 3553	03
3604 12 355 3	04
x08 4 0 3355	06
3606 210	06
	10
3410 Ca. 2355 3411 Ta 355 3	
2411 74 353 3	
34,18 Ap 2300 3413 A1 0	
3614 4/ 0	
3614 11 0 3618 7a 3621	15
4 16 40 3572	
16 ar 3552. 3417 ar 3554	17
3/20 4- 22 77	20
3621 400	21
3622 400	22
3(21 40 0 3(22 4' 0 5(23 4' 0	23
24	8
25	
26	26 27
	30
30	30 31
32	32
	33
34	-1 34
35	35
36	36
37	37
40	2040 QD 3774 2041 V2 3452
41	2041 La 3452
42	20 42 10 2042
43	2043 410 135
44	1044 do 2041
45 46	2005 41 2040 2006 cp 2041 2007 14 3454
47	2/47 / 24/
50	2050 2 2040
51	2050 t 2040 2051 CA 2016
52	2002 td 2041
53	2053 Ca 10/0
54	2054 2 3451
55	2055 00 3451
56	2056 ad 74
57	2057 10.2060
60	2061 AC 2061
61	2001 10206/
62	2062 40 135
63	2063 04 3460
64	2043 02.3460 2044 10.2064 2048 40 13.4 2048 40 2043
65	2014 1 2012
67	2047 0 3475
70	2070 Ca 2063
71	2070 Cp 2063 2071 Ca 3476
72	
73	2013 Ca 2077
74	2014 62 20 63
75	2075 04 165
76	2013 6.2 077 2014 H 20 63 2014 H 20 65 2014 H 55 2016 6.4 3452
	MIT DIGITAL COMPUTER LABORATORY
	OCTAL PROGRAM FORM
	TITLE ITERATION I INDEX
	AUTHOR SIMPSON DATE
	TAPE NUMBER 2615-m0

١

SHEET 4

2100 ca 474	2200 10 3615
2101 84 476	2201 402170
2108 Ca. 475	1200 420
2103 21 477	2203 21 0
2104 102/05	2204 CA 1012
2105 Ca. 1013	2205 12 2202
2106 20 2123	1206 Ca 2226
2107 to 1013	2207 72 2305
2110 Ca. 2127	2210 72 2307
2111 12 2104	2211 762332
2118 0 261	2218 40 3565
2/13 20 6/9	2113 10 2277
2114 240 347	2214 442360
2/18 40 427	2215 Kr 2202
2118 20 500	216 Ce 2220
2117 66 2100	1117 Ap 156
2120 (2226	2720 20 2307
2181 174. 2/23	2221 21 2332
2122 402/5/	1222 40 2334
2122 <u>402/57</u> 2123 4.00 10	2223 01 2305
2124 +.000/	2284 44 36/5
2125 + 4	1225 20 22/4
21 26 Au 2123	1285 Se 2214 1286 Set O
2127 40 2152	
2130 410	230 2 202
2/31 46 0	1231 Ca 2251
24 32 Ca 10/3	1232 74, 2305
2133 ad 2123	2733 74 2307
2134 4 1013	4734 Tal 2332
	235 403565
	1236 Ja 2277
2136 46617	1137 462364
	1240 202
	1241 (2243
	7241 (1) 2243 1242 40 157
	1742 Jp 157 2743 da 2307 1244 da 232
	2 2 4 4 2 3 3 2 4 2 3 3 2 4 4 4 4 4 2 3 3 2 4 4 4 4
21 44 tol 2104	2244 dr 2332
2143 ca 2155	1245 Ad 2334 2246 Ad 2305
2146 12 2133	
2147 202360	
2150 403530	
2151 022155	
2152 2 3531	
2153 102100	
2134 2105	
2155 ad 2123	- 55 td 236 5
2156 10	
2157 SiO	2 57 td 2332
2160 CA 1012	1260 10 3565
21 61 12202	-261 10/277
2162 Ca 2203	2262 16236
2103 tol 2305	- 163 do 2212
2104 12.2307	-244 (12266
2165 72 2332	- 265 A.0/60
2166 20 3565	1186 10 2 3 CT
2107 40 2277	- 187 ar 2332
2470 2102560	1.70 ar 1334
2171 1 0 7 242	1.271 az 23 ds
2172 00 2174	1.72 16 3615
2172 CA 2174 2173 4A 155	
2174 00 2307	- 74 di u
	.75 1.1 0
2175 a. 2332 2176 ao 2334	1 276 J. U
2177 48 2305	1277 Ta 6347
OTES	

	SHEET 4
2300 (12 474	2400 (2421
-101 1/ 1/16	2401 70 2401
- 102 (2 4/2) - 103 ex 4/77	102 4p /35 24 03 4 2400
· 103 ex 11/17 2:00 11 2305	2400 272400
- 105 ra 0	. 405 64 2400
1306 4 d 1323	2406 Ca 2440
1 :07 2 0	2407 2 2437
2-10 (22227	2410 Ca 2441 1411 72 2400
27.12 34261	2412 CA.2442
4-13 24 (-11)	1913 2 113
2314 20347	1444 5 114
2319	2418 Ca. 10/3
2318 26 500 2317 C6 23 00	2416 Ab 40 417 Ce 2423
1.20 Ca 2326	2420 AC 2420
1 21 24 / 333 23 22 40 36 10	1421 140 135
2322 10 36 10	2422 10166 2423 1.22000
1323 4.0100 1124 + 0010	2423 1.22000
2<25 f . 0001	24 25 1.62000
1 26 44 232	2426 0.32000
1527 AK127.52	.127 1.72 000
2:30 110	2430 0.52000
	2431 1.74000
(32 (n 0) (33 (n / 23/3)	2433 1.740.00
. (34 ta.C	24340.20000
2-35 1626/	.435 0.22000
2336 41617	2436 0,76000
40 34 42 1	/140 - /1
1. 40 56427 1.41 de suc	2 441 Ca 2423
1:42 CL 2300	2442 -100
-43 Ca 2354	2443 21'0
= 44 th 2314	2444 Ca.2465
. 45 Jp 3550	2445 <u>1:225</u> 2446 (A 2465
2 - 46 72 - 23 2 3 - 4347	2447 AC 2447
1:50 mh 770	2450 10/35
1 151 A 13 1 52 m.h. 170	1451 de 2446
1.52 mh 770	2432 ac 2437
- :53 Ab /040	2453 C6 2442 2454 Ca 2440
1:55 41 2225	24 55 7. 7427
- 156	2456 (a L444 + 57 7d 2446
57 360	157 72 2946
60 /a 2273	2460 CA 0 1761 2146
.:62 (A 1) (1462 Ca 1423
363 70. 563	2×63 > c 2 ¥64
1.84 31.125	1464 41,2610
	1765 1 22000 1766 260
4:66 2C 2:366 2:67 JE 135	
2170 1, 6 30	1170/62000
12TI CA 114	1471 6 32600
- 72 <u>T</u> 113 73 J 0	1 17 72 1. 1/4000 17 73 0. 12000
	24 74 / 14/000
- 175 1 2	1475 C CCU
1.76 16 11	176 0.20ccc
11 11 11 13C	1917 0.2.000
	MIT DIGITAL COMPUTER LABORATORY
	OCTAL PROGRAM FORM
	AUTHOR SIMPSCA DATE
	TAPE NUMBER
· · · · · · · · · · · · · · · · ·	

-

SHEET 5

-

2300 62 20 00 2301 72 25 23 2308 24 2465 2308 24 2465	600 Ca 2541
2508 ca 2465 2503 Lac 2573	
2500 462503	2602 14 2545
	1.00 td 1507
	5404 AU / SAI
2108 64 0	14.05 de 172
2506 12.2422	106 Jill
2507 Ca. O	407 4 0
2510 # 2440	4410 Jp 125
2511 04 74	2611 402521
2511 CA 74 2518 Ad 1012	2112 210
2513 74 2516	. (13 4: 0
2514 04 1012	2414 21 225
2518 2 2535	2415 Ca 2644
2516 000	410 10 1616
2517 2 2467	2417 41. 135
2520 402445	2/20 1102615
2521 20-2535	2621 20 -641
2122 06 2524	1122 Cf. 14.15
2523 ALD 0	1423 Ca 2442
2524 202460	184 ta 2641
2525 Ca 25/4	1625 14 74110
2526 44.2546	1428 CA 2440 1428 FJ 7615
2527 625/6	1127 Ju 247
2530 4625/6	
2531 0.14000	2631 10.7/21
12531 0.74000	132 24 135
2538 1.44000	1433 Ch. 2464
2533 0.70000 2534 0.44000	1433 12 2662
1134 (0.94000	1434 74 113
2536 Ca 2531	(30) Cn / 144 (34) nC 7/3/ (32) 24/37 (32) 24/37 (43) 78 7442 (434) 74 74 (435) 74 1/4 (435) 74 1/4 (45) 74 1/4
2) 30 Ca 25 31	1 1.4 0.501
2537 Ca 2532	11.37 46 153
2540 Ca 2533	240 CA 2644
25 41 Ca 25 34	2(4) -17
25 41 CA 2534 25 41 CA 2534 25 42 CA 7/4	21,42 17
2543 Ca. 165 2544 CA. 166	2143 216
2544 CA 166	2/44 1.220(0
2545 CA. 767	2145 1.62000
2546 _/	2146 170000
2547 40	2147 1.72000
2530 CA 2536	*· 50 0.14000
2531 72 2505	-151 0-30000
2538 Ca 2542	2652 0.30000
1583 12 2507	2153 0.14000
2534 402501	2154 0.60000
2555 46/67	155 0.70000
2556 40	2156 0.04000
ALO I	26.57 0 20000
2500 CA 2537	2460 10.24000
2581 78 2505	2161 634000
2502 (A 2543	2682 160000
2583 72 2507	163 0. 200 cc
1584 112501	-164 0 221 cc
2085 Lo 17A	1165 0.2000
2586 41.0	1/ 66 9
2507 160	1467 41 9
2570 ca 2540	2470 41225
2571 21 2575	2471 (22711)
2572 Ca 2544	1672 10 2672
2573 14 2527	2673 1 135
2574 102501	2673 AD 135 1674 ac 2611
2574 102501 2573 1 w 171	2075 ar-2644
	2411 Con 244
5	
	·····

	5/1001 5
 1.700 7 LY	3:00 1:122
 - 101 / 4 - /	
 702 - 4 - 6'	1 1 1 L L
 03 44 347	3103 M Z+44
	104 20 201 Y
 2100 16 2105 2100 16 735 2100 16 735	· 06 21, 1: .
 2106 16 /35	100 CA 1144
 2710 72 114	1.10 44 /3:
 2711 46 164	~ U (1/.3030
 1718 1.22000	112 12 214
 1713 1.62 60CC	13 A1 135
27 14 160000	2014 at 3011
 2715 1.120CC	5215 21 2036
 2716 0 30000	(16 cf. 3x11
 2717 O Ciere 7120 0. 20000	(1) (a 3037)
 7721 1 4.0751	20 t 3.02 k
 1782 0-34000	V 22 1/ 2011
 1723 1.6 000	1/23 7. 001
 24 0.20000	3 24 11 450
2,25 0.24 (C O	25 J 2742 26 41 0
 126 7 24002	26 110
 . 121 1.7 00 00	27 .d(U)
 30,7 20000	~ 30 J.6: CCC
 131 250000 132 12700	31 04000 0 32/72000
 1 Bla circ	2 33 6 : CCCC
 34	1.340720cc
1735 14 114	1350,1000
1/30/41 225	136 -5
. 137 Ca 2956	/ 37 5-
 , 140 AC 2140	40 (a 3r 3r
 141 14/21	41
 	= 42 (a. 546)
 1944 (16 71/11)	43 m 43 44 sp 13
 	· 45 be 3042
2146 TJ 2247	46 ac "14,
1147 CA 3660	· 47 1 34 4 2
 - 50 ta 21:1	50 1 1046
	51 2 3045
 152 JA. 4C	52 (ra 206 1)
 153 dp 310 3 154 3	
 /55	21 55 44 2157
156 1.22.00	55 42 3/57 56 4 3/1/
157 1. LUC	56 4 p 31 1/1 57 41 C
1160 140000	50 1.2; CC
 161 17_000	61 6-CCC
 - 162 / 30000	627.2000x
 - 1983 0.94000	- 63 (12 mc
 : 165 C. 1405C	65 -4
 . 186 /. 0000	66 - 4
 . (66]. CC(() 167] 4('CC	66 -4 67 ca 206 c
2170 0 60000	70 si 0
 2171 1 44 ((()	11 CA 31C1
 172 1.6.2000	2. 72 10 3/12
 1713 J Gered	13 40 /35 14 br 30'll
 175 1/6× CC	75 00 000
 2176 24 2400	75 AF 265
 115 1.482 CC 1176 0.12000 1176 0.12000	76 CA X71
	MIT DIGITAL COMPUTER LABORATORY
	OCTAL PROGRAM FORM
	TITLE ITERATION I INDEX
	AUTHOR SIMPSON DATE
 	TAPE NUMBER ZEIS - JUL C

SHEET 6

	3200 40 3/65
3100 to 3065 31 01 CA 3114	1 14 01 26 3275
3108 72 3071	12 02 At 0
3103 Ca. 1011	1.03 .: 00075
3104 10 3150	:04 Ka-32/5
	:06 -2
105 463116 106 160 107 1,22300 107 1,22300	1206 41:0
107 1.22.300	107 CA 3210
3110 C.740CC 3111 C.2000C	10 + 100
3111 20000	211 4 10
51 12 0.22000	4.12 4 1 - 13 J.CO
3113 0-20000	
41 14 Ca. 3107	14 Je U 1218 (Se O
115 10	216 12 32/6
21 16 Ca. 3134	17 44 /35
17 NC 3117 180 36 135	20 4/4 0
5121 Ar 3116	S. 81 10: 322/
1/22 1 = 3/43	22 44 /35
123 00 3/16	3223 CR 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1:24 10.3224
1 25 6 3143	3285 44 /35
1 21 28 Ca 3/45	
1127 tol 31/6	32.27 20
3130 Ca 1012	30 1.0
3131 46 3150	1231 210
3131 JA 3150 132 JA 2041 5133 ALO	32 32 10 23
5133 ALO	-33 Pa 3241
3/34/22000	2234 si 701 2235 in 1000
135 1.62000	36 12 12 16
· 1 36 1.600CG	1237 40 3242
137 1.72000	12 37 40 3242 40 4
3140 0 20000	41 + 6/4 -
31410 22000	3242 Calert
2142 (7. 2000C 143 -6	12 48 7 11/14
44 -6	
31 45 1 × 3134	45 7 177
~146 AL O	. 46 ar 171
KIAT MO	3-47 Ca. 3252
3150 ta 3226	5250 tol 232
3151 2 32/3	. 51 26 - 252
~/52 2A 22/3	1 12 3Z at 25 3
153 cn 2203	.53 Ca 22 5
154 71 2215	. 54 al h Cl
1. 55 fd 3226	3255 44 1226
56 12 3223	. 56 t. 3/2
1157 in 3207	3257 12 361
1 60 Tol Not	so. 'a , / (i
1/61 2205	- 61 ad 2336 - 62 ts 366
-1 62 2 32 6	(183 v4 15 CZ
3/ 63 / 1 3204 3/64 72 3/71	.64 24.56
3/64 72 3/7/	-65 2: 344
5165 cn 3213	2:66 <u>7</u> ///
3/66 110 0	. 67 AL -SE
167 20 3173 31 70 53 32 13	3.70 ar 244
31 70 52 32 13	271 de 11/
111 ac 0 112 st. 2165	.72 ac 1613
-173 ur 3/66	1.73 Ch 3215
174 .2C 3171	5274 26 381
15 10 3111	75 4 332/
76 102171	76 7.1 154
11 11 3206	in adding
res	

		_
		SHEET 6
00 (4) 3/65	3300 71 166	3700 20 3421
200 (4) 3/65 201 (4) 32/5 202 (4) 0	1:01 20 1004	3401 Ce /53 1402 /ce 3422
03 C C C C 75	15 02 (7) 3504	31 v 1/2 3422 4/ 00 22 3421 3/ 04 22 34220
:04 Ca-32/5	(03 4/4 33/0 04 (26-3332)	34 04 cr 3420
	1.03 7/ /55	31 06 72 160 39 06 20 2106
206 _d.: 0 207 Ca 22 M	51 07 7d 167	3. 07 2126
. 10 + 100	10 de 1005	34 10 RF 2/33 34 11 RF 2/33
211 + 1C	5 11 CAU 52/3	34 12 10 2306
-13 10	13 /a 3333	74 13 45-2326
= 14 J (U = 15 (A Q	11 14 FL 156	74 14 Ar 2333 34 18 47 2355
216 AC 3216	16 tel 170	3 4 16 46 35 72 34 17 1/0
17 44 135	17 40 1006	39 17 27 0
20 fr 0 21 20 3221	3 20 (V 5322 4(2) 4(3)24	3 ⁴ 20 40/6/ 34 21 -2
1 22 4/ /35	4(21 4),3(24 -22 (m 2))24	1122 - <u>2</u>
1223 (20)	1 23 72 157	37 23 21 0
12 84 1C 32 24 32 85 -40 /35	24 ed 3330 25 th 171	(1922 -2. 3993 4. 0 9984 4. 0 1445 66 393
5280 LUO	26 Juni 43 27 Jul 0	27 28 Co /5 3 27 27 Ca 3/34
3227 <u>J.</u> U 30 J. U		7430 2 3433
1231 210	31 <u>41./55</u> 32 <u>46 /56</u>	3/31 10/62
33 Ca 2241	32 26/56	
2234 Ji 701	$\begin{array}{c} (33 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	3434 -/
235 in 1000	35 + 2049	3 y 33 +. 1000
30 10 32 36 32 37 40 3242	···36 + 2C/ ···37 U/ 0	39 37 -36
•0 4	40 ca 2123	34 40 Ca. 3437 31 41 2, 34 36
41 + 6/4 ~ 3242 Calord		35 *1 64.3736
1243 14 116	43 12 3341	34 43 to 0
19 10 111	44 td 2116 45 td 2126	14 44 0 7 34 43 34 45 0 8 34 36
- 45 11. /// . 46 ar ///	46 td 213 -	34 46 Cp 3442
3.47 Ca. 3252 3250 Th 132	47 40 3557	34 46 CA 3442 34 47 44 3500 14 50 C 3474
1250 th 132	50 da 3341	34 51 46 0
. 31 41, 202 72 52 40 22 53 . 33 Ca 20 5	152 td 2326	1. 52 Cm 2000
_53 (n 22 5	⁷ 53 trd 2353	34 53 ar 2000 4 54 Car O
- 54 1. (h. (] 1755 h. 227 (1:55 CA 154	14 55 0.2000
3235 40 224 - 36 7 322 7237 4 301	5 1 1 1 1 1 1 1 1 1 1	- 56 9 3774 27 57 0 4 0
3257 <u>ti 301</u>	• 57 <i>fd</i> 2203 60 (m 755	3400 0
-61 ad 2336	61 dec /c12	54 61 ar 0 2 ta 9
· 62 1 300	62 td 2224	/~ 62 72 0
1.63 vy 1.50	1 64 511 1/2	
-69 Zi 344	65 th 2251	
1: 66 Ty /// : 67 AC = 56	66 (a 1/1) . 67 due 10/2	
5.70 Ar 244	70 Tol. 2274	17 10 12 0 14 11 Tal 0
3271 de 1171	71 (a 55/1) 72 td 160	34 72 Cm 2000
.72 ar 1013	13 ca 3216	y 73 Con 2000
15474 JL 38 1	74 14 3442	1 774 460
-78 da 332/ 28 tl 154	- 75 ab 446	9 73 9 7 3766 9 78 2 3766 777 4 2 3766 777 4 2 0
11 ad 150	·· 17 4 3400	
		MIT DIGITAL COMPUTER LABORATORY
		OCTAL PROGRAM FORM
		AUTHOR SIMPSON DATE
		TAPE NUMBER 2615

APPENDIX D

.

APPENDIX D

AUTO CROSS-CORRELATION I 2559 mo, ml) - Description and Use Of

This program was written for the WWI Digital Computer to compute the unnormalized sample correlations

 $\begin{array}{ccc} \overset{N+n-1}{\Sigma} & & \\ \overset{\Sigma}{1+N} & \overset{j=0, l, 2 \dots m}{2} \end{array}$

The conventions for preparation of the data x_1 and y_1 are identical with those destribed for Prediction XV in Appendix B, with the exception that the data tapes need not be combined after preparation. A short tape is prepared containing the information N, n, and m as follows Register 1047 + N (First data point in block) (Octal) 1050 + n (No. data points in block) 1051 + m (No. lags)

2559 mo handles individual data tapes and is used as follows

Erase storage, put Sil down Read in 2559 mo Read in Z (tape for N, n, m) Read in X (x₁ data tape) Read in Y (y₁ data tape) Start at 770

If X and Y are not identical we get half of the cross-correlation curve (for j 0). To get the other half, we repeat the instructions interchanging the order of read-in

٢

for X and Y. If X and Y are the same tape, we get the entire auto-correlation curve, since since auto-correlations are symmetric about the zeroth lag.

The correlations are printed out by the direct printer as seven-place numbers, ten per line, the $0^{\frac{\text{th}}{\text{l}}}$ lag being the first no. on the first line, the $1^{\frac{\text{rst}}{\text{l}}}$ lag being the second no. on the first line, etc.

2559 ml performs the same functions as 2559 mo, but is adapted for handling the <u>combined</u> tapes used with Prediction XV. It assumes there are 3 real data sets plus a dummy set and forms the nine correlations representing the permutations of the 3 real sets. The correlations are over 380 values of the data, and are taken to 100 lags. The output is the delayed printer, and requires one minute for each 100 lag block. At this rate the program can perform 8 or 10 million multiplications in 4 hours of machine time. A sample of the output is shown on the next page. RECORD 12.4 T1. T3, T5

 $CORRELATIONS = n! Q'_{T_{-}T_{-}}(p)$

m = 100 N' = 120

 $p = 0, -1, \dots -m$ $n' = 37^{\circ}$

TITI

T1T1 0179270 0175549 0167943 0159926 0154392 0152791 0154375 0157500 0160762 0163416 0165321 0166495 0166739 0165643 0163303 0150623 0159622 0160566 0163452 0166588 0168334 0167537 0164736 0161344 0158929 0158675 015932 0161713 0162974 0163369 0163530 0164083 0164976 0165711 0165652 0164657 0163094 0161890 0161770 0162461 0163614 0163930 0162907 0161306 0160078 0160104 0161483 0163441 0164974 0165438 0165304 0165441 0166164 0166961 0166724 0164631 0161027 0157575 0156120 0157333 0160723 0164614 0167174 0167842 0166975 0165494 0164458 0163148 0162496 0161983 0161394 0162752 0164481 0166457 0167456 0166564 0163950 0160785 0158852 0158994 0161202 0164385 0166921 0167969 0167684 0166672 0165477 0164313 0163157 0164878 0160869 0160636 0161380 0162796 0164121 0164902 0164818 0164335 0164288 0165130 0166570

T1T3 0212315 0205051 0197189 019249 0191950 0195871 0201416 0206027 0208399 0208603 0207664 0206130 0204026 0201293 0198671 0197364 0198592 0202105 0206145 0208921 0209045 0206355 0202538 0199672 0198995 0200283 0202215 0203689 0204039 0203696 0203808 0204576 0205619 0206097 0205229 0203193 0200919 0199747 0200230 0201889 0203855 0204841 0204594 0203746 0203076 0203147 0203796 0204298 0204135 0203438 0203055 0204841 0204594 0203746 020376 020348 0199241 0196915 0197372 0200464 0204846 0208429 0209584 0208577 0205568 0203089 0201738 0201436 0201732 0202464 0204846 0208429 0209584 0208277 0205568 0203089 0201738 0201436 0201732 0202454 0205076 0208558 0209854 0208729 0206316 0204030 0202591 0202043 0202010 0205046 0202154 0202876 0204135 0205599 0206456 0206337 0205253 0204088 0203818 0204721 02061494 T1T3 0206194

T1T5

0209619 0202418 0194992 0190346 0189852 0192921 0197627 0202017 0204816 0205892 0205566 0203982 0201230 0197769 0194739 0193592 0195427 0199749 0204563 0207811 0208031 0205093 0200592 0196696 0195019 0195593 0197376 0199289 0200417 0200991 0201573 0202362 0202995 0202941 0202052 0200418 0198843 0198474 0199452 0200979 0202027 0201708 0200246 0198710 0198077 0198724 0200240 0201682 0202178 0201819 0201532 0202012 0202953 0203148 0201688 0198684 0195532 0194158 0195609 0199468 0203951 0206958 0207149 0204766 0201330 0198496 0197102 0197084 0197926 0199340 0201398 0204089 0206618 0207553 0205910 0201907 0197105 0193901 0193894 0197030 0201804 0205869 0207635 0206750 0204291 0201551 0199462 0198337 0198049 0198426 0199550 0201315 020328 0204797 0204898 0203555 0201258 0199341 0198886 0200234 0202612

T3T1 0212315 0214230 0211085 0204997 0198972 0195694 0195736 0198067 0201243 0204156 0206571 0208142 0208394 0206896 0203669 0199515 0196011 0195022 0197272 0201639 0206213 0208676 0208284 0205975 0203138 0201366 0201268 0202300 0203388 0203614 0203158 0202595 0202514 0202965 0203421 0203311 0202552 0201699 0201672 0202735 0204740 0206443 0206737 0205565 0203606 02022166 0201797 0202280 0202770 0202386 0201275 0200503 0201133 020342 0206422 0208297 0207773 0205107 020223 0200134 0200408 0202296 0204504 0205787 0205789 0204874 0203941 0203295 0202763 0201748 0200511 0200046 0201303 0204326 0207745 020951 0209440 0206467 0202834 0200394 0200202 0202080 0204417 0205863 0205834 0204829 0203754 0203166 0203132 0203255 020325 0203525 0204280 0205588 0206847 0207156 0205938 0203269 0200563 0199272 0200207 0200207

0269909 0265706 0256802 0247574 0241891 0241348 0244756 0249524 0253665 0256073 0257163 0257240 0256225 0253851 0250495 0247405 0246542 0248938 0253606 0258193 0260357 0258809 0254777 0250492 0247962 0248053 0249871 0251853 0252758 0252534 0252496 02553246 0255092 0256991 0257643 025624 0254305 0251877 0250896 0252183 0253248 0253246 0255018 0252728 0253066 0253749 0254090 0253453 0251917 0250751 0251120 0253476 0256785 0259049 0258778 0255780 0251473 0248717 0248300 0250421 0253577 0255923 0256450 0253513 0254166 025326 0253018 0252240 0251881 0252629 0254885 0257828 0259654 0259015 0255674 0251246 0248299 0248297 0251198 0255124 0257873 0258140 0256306 0254031 0252778 0252825 0253670 0254324 0254635 0254841 0255504 0256390 0256789 0255943 0253700 0250774 0248926 0249346 0252154

T3**T**5

 $\begin{array}{c} T_3 T_5 \\ 0261579 & 0258137 & 0251129 & 0244258 & 0249413 & 0240513 & 0243623 & 0247978 & 0252005 & 0254770 \\ 0256106 & 0255702 & 0253348 & 0249351 & 0244543 & 0240709 & 0239840 & 0242870 & 0248441 & 0254093 \\ 0257400 & 0256909 & 0253511 & 0249110 & 0245885 & 0245181 & 0246616 & 0248910 & 0250438 & 0250744 \\ 0250528 & 0250280 & 0250387 & 0250502 & 0250142 & 0249157 & 0247968 & 0247393 & 0249538 & 0248787 \\ 0257998 & 0248275 & 0250144 & 0252699 & 0254218 & 0253440 & 0250433 & 0247015 & 0245271 & 0246195 \\ 0247998 & 0248275 & 0250144 & 0252699 & 0254218 & 0253440 & 0250433 & 0247015 & 0245271 & 0246195 \\ 0249339 & 02582849 & 0254797 & 0254377 & 0252484 & 0249797 & 0248130 & 0247028 & 0247085 & 0246813 \\ 0247703 & 0249075 & 025263 & 0256210 & 0257999 & 0256650 & 0252239 & 0247033 & 0247045 & 0248028 \\ 0247747 & 0252038 & 0255261 & 0255942 & 0254281 & 0251630 & 0249399 & 0248130 & 0247942 & 0248625 \\ 0248955 & 0250277 & 0252326 & 0254405 & 0255303 & 0254251 & 0251263 & 0247568 & 0245103 & 0245277 \\ 0248127 \end{array}$

T5T6

0209619 0212038 0209335 0203211 0196693 0192461 0191581 0193231 0196093 0199052 0201607 0203523 0204436 0204000 0201893 0198661 0195687 0194688 0196313 0199712 0203166 0204746 0203810 0201116 0198049 0196123 0196040 0197551 0198966 0199887 0200298 0200580 0201113 0201808 0202130 0201613 0200460 0199281 0198848 0199346 0200502 0201601 0201728 0200788 0199293 0198161 0197832 0198239 0198926 0199360 0199702 0200359 0201613 0203350 0204737 0204639 0202457 0198811 0195347 0193572 0194388 0197391 0201058 0203921 0205094 0204666 0203355 0201642 0199916 0198151 0196876 0196723 0198201 0201054 0204070 0205587 0204639 0201459 0197718 0195364 0195317 0197459 0200387 0202653 0203503 0203103 0202116 0201188 0200492 0199752 0199000 0198644 0199082 0200357 0201726 0202234 0201376 0199169 0196832 0195679 0196311

T5T3

0261579 0258503 0251130 0243226 0238177 0237759 0241323 0246520 0251191 0253999 0255065 0254873 0253629 0251155 0247622 0243998 0241989 0242889 0246389 0250736 0253821 0254032 0251731 0248511 0246101 0245658 0246846 0248696 0249412 0249165 0248910 0249316 0250478 0251667 0251882 0250681 0248649 0246845 0246399 0247488 0249367 0250990 0251434 0250840 0249792 0249027 0248655 0248462 0248069 0247487 0247406 0248440 0250518 0252857 0253862 0252575 0249266 0245444 0243258 0243786 0246985 0251304 0254515 0253452 0254075 0251484 0249071 0247474 0246661 0246353 0246782 0248200 0250730 0253666 0255346 0254670 0251279 0246782 0243491 0243258 0246782 0250554 0253998 0254889 0253248 0250477 0248352 0247568 0247855 0248337 0248540 0248758 0249401 0250568 0251588 0251501 0249919 0247283 0245280 0245305 0246741

T5T5

T5T5 0260952 0257123 0248990 0240358 0234742 0233724 0236575 0241565 0246583 0250383 0252531 0252789 0251067 0247427 0242673 0238511 0236926 0239032 0243935 0249400 0253017 0253106 0249976 0245377 0241455 0239781 0240557 0243023 0245084 0246490 0247433 0248105 0248531 0248305 0247163 0245313 0243479 0242682 0243616 0245862 0248378 0249779 0249186 0247196 0244753 0243055 0242447 0242861 0243792 0244802 0246066 0247554 024918 0250780 0250442 0247878 0243718 0239863 0238360 0240883 0244495 0249677 0253109 0253525 0251174 0247528 0243718 0239863 0238360 0240883 0244295 0249681 0249543 0253041 0254352 0252348 0247416 0241658 0237715 0237649 0241224 0246595 0250978 0252717 0251670 0248923 0246000 0243937 0242980 0242918 0243585 0245071 0247265 0249468 0250540 0249533 0246532 0242624 0239773 0239506 0241958

Use of 2559 ml

The instructions for use are Erase storage, Sil switch down Read in 2559 ml Read in W (combined data) Start at 677

If the combined tape has 4 real data sets, and we want the 16 permutations of correlation, then an additional tape is used and the instructions are

Erase storage, Sil switch down Read in 2559 ml Read in 2559 p4 Read in W Start at 677

2559 ml is equipped with the same "roll back" procedure that Iteration I is (Appendix C). In case of machine failure

Erase storage

Read in 2559 pl3

Start at 677

Traveling Correlations

With the aid of tape 2559 pl0 we can use 2559 mo to obtain correlations from highly overlapping blocks of the data. The correlations are over blocks 50 in length and the number of lags is taken to be 20. The first reading in each block has an index (N) equal to k x 10 where $k = 3, 4, \ldots$ 44. The procedure for using 2559 mo in this way is Erase storage, put Sil down Read in 2559 mo Read in X Read in Y Read in 2559 pl0 leave in P.E.T.R. Start at 770 (21 lags are printed for N = 30) Read in Start at 770 (21 lags are printed for N = 40) Read in Start at 770 (21 lags are printed for N = 50) etc. Start at 770 (21 lags are printed for N = 440)

. .

00	CALOS!		П	100	0.46000	
10 01 -	6 1023			101	066000	
10 02	Ap 734	Y		102	156000	
1003	di 0	A		103	1.06000	
1004	· <u>Ai</u> U			104	1.54000	
10 06				105	0.2.000	
1007	si 0 Ji 0	(107	122000	
1010	1:0	<u>0</u>		110	\$1 0	
1011	Jici			111	-7	
1012	+ 500	N 5		112	-9	
1013	. 7 /	Ī		13	4:0	¥
1 ; 14	1:0	Λ		- 14		
1-15	sil	N		15		
1016	-110	Į		16 17		
10 20	ACC Dec	<u>></u>		20		
1021	a 2030			20		
1022	a 1054			22		
1023	si0'			23		
1024	110			24		
1025	I			25		
1026	20		·	26		
30	sic.			27	1.014	X
31				1030	+.circ t_2131	↑
32				1032	CA 1054	ά.
33				1033	CA 1054 SA 1032	ຸິດ ເ
34				1034	CA 1032 TA 1036 TA 1041	ň
35				/ 35	721041	1
36				10 36	La l	E
37	7			10 37		
40	ta 63 Ta 70	4		10 40 10 41	Aly 17 te	
42	10.10		ł			<u>Ś</u>
	41.225 to 113			10 42	ar 1076 1041 1041 1036 24.1036 24.1036	Ť
44	CA 107			10 44	1. 1021	6
45	Cs 107 ta 110			1045	CL 10.3L	Ř
46	cm. 113			10 46	41.560	¥
47	mh			10 47	,	N
50	ad 12			1050		# CRASS PRODUCTS
51	td, 54			10 51		# LAGS
53	als, 17 ta 113	P		53		
54	ca l	f f	·	54	· · · · · ·	
55	rc 55	Ň		55	1	1
56	Ar 110	T T		56		
57	CA 46			57		
60	CD 46 Ca 105			560	ra 1032	1
61	2661	0		561	td 566	M
62 63	ao 112	Ų.	II	562	Ca 603 ta 604	o V
	ch l			-64	54 566	Ě
64	Ch 106 NG 65	Ň		565	ar 567	F
66	CALILI	F		566	Ca	τ
67	ta 1/2	1		567	te 3014	Ř.
				5 70	10 566	L
71	410			571	100 604	<u> </u>
	0.000/3			572	CA 565	E E
73	1 74000			573	104 567	<u> </u>
74	0.52.000	L		1 574	16 605	↓
75	0.36000			1,75	CA 615	↓↓
+ <u>76</u>	0.36000 0.16000 0.2600			1077	11 606 Tal 567	<u>+</u> ↓
	.2.000			1571	a 367	1
5						
•						
-						

60	00	di C	<u>\</u>			700	Ce 1032	A	
((21	AL C				701	th 111 ca 0		
((2	si 0	<u>Ç</u>			702	CA ()		_
1.0)3 ·	-499	đ			703	ta 722	Ś	
10		110	N			~04	Ta 123 Ca 1050 Ta 124	U	
10	55	se (5			°05	C1 1050	M	-
((06 0	.06027	Ť			/06	Te 724		
60		410	Á			/07	at 724	P	
61		40	N				CA 723	ß	
6		41 Q 41 0	Ť					â	
6		1.0	<u></u>			712	10, t 123	ŭ	
		J10				113	cn 122		
	_	310					ta 122	č	
			······································		+	/15	ac 711	Ť	
		<u>** X +</u>	V V	—I-		716	10 124	5	
++÷	17 6	41 0 A1 0 A-650			+	717	a 110		
	2017	2613				720	10 117	1	
		1745			+	721	Sp 617		
F	. ť	1111				/22	si e si e		
		1.667 a 154				723			
		1 724				724			
H-++;;	17	1734			- +	725	410		
++#	24	4 612		—-{ -		1.26	110		
<u>}</u>	- 17	ts 652 a 651		i		727	(a 1015		
├──┼	<u>' (</u>	a 651		—					
├ ()	2017	1 637	0	I-	+	/ 50	te 1015		
F -+**	1	1 631 0 122 1 60	<u> </u>	∤┣	+	731	40 700		
++4	32 2	4 160	<u> </u>			130	a u		
6	33 (A. 467	Λ			733	sil	Y	
	34	su				734	CA 1050 F. 1024	^	
	35 /	660	k			7 35	ti 1024		
	36	6.660				7 36	1024		
	5/1	11- 1				/ 37	Calozz td 753		
6.	40	46:3				740	td 753	· · · · ·	
6	41	20634	P			741	CA. 101L	F	
6	42 0	10637	<u>B</u>			/ 42	tel 752	0	
0	43	10637				/ 43	Ce 1015-	8	
6	44	10637 10637 10637 10637	Ń			744	td 751	M	
6			T				16751		
6	46 '	11662			1	746	1:0	R	
6	47	sio			1	147	Ai O	A	
3	50	.000/3			1	750	AL O	0	
6		a 663				7 51	Ca	D	
4	52	-2.				52		Ū	
	53	-2. 1i U				753		ċ	
	54	Ca 655					CA 751		
		+100				/55	su 1013	Ś	
	56	100							
	57	±10	ł-			7 57	ta 751 Ca 752		
	60					7 60	AU 1013		
	61	40		—			ta 752		
		1:0				/	14 154		
		4,225		—			ao 153		
+-+	**	ca				763	11024		
	64	1664		 		/64	Cp 751	¥	
+ + - + -	60	ca	、			/03	40126		
	66	rc 666				7 66	in a		
	67	ca		l	74.8	767	14.0	x	
	70	rc 610 ca 723		F	IAAI		Ca 1021	<u>↓ </u>	
	71	ca 123		₽		771	1041 to 1014		
6	72	10 40 20 1023	l			172	Te 1014	<u>S</u>	
6	73	401023				_ 173	1054	<u> </u>	
	74	CO 734				774		ΤΤ	
4	75	sio	STOP			775	12/015	1	
6	76	Ji Q		[776	ad 1012		
6	77	Jug	V.			777	12.1016		
						EAU	OCTAL	OMPUTER LABORATO PROGRAM FORM ELITIONITNDEX	RY
								2559-ma	

1 01-401

300	Ca 3/3	500 44 507	
301	41 707		
308	CA 312	500 41. 176 500 41. 176 500 12. 510 504 12. 514 504 12. 514	
103	20/054	503 ca 510	
304	(a 3/3	504 nc 504	
3 05	ad 3/2	505 AL 134	
304	ta 313		
3 07	ao 314	507 -8	
310	ao 314 ch 677 46320 4500 +2049	507 -9 510 1.42000	
311	40320		
3 18	+500	18	
		13	
3 14	1-3	14	
1		15	
14		16	
17		17	
3 20	ca 334	20	
321	41703	21	
381	Ca 312 tr: 2030	22	
323	Tri 2030	23	
3 24	ar 335	24	
32	ar 335 cp 340 ca 334	25	
3 21	Ca 334	26	
		27	
330	L 334	30	
33	Ge 336	31	
3 34	12.335	32	
33	L 334 Q 336 t 335 40340 40340	33	
334	1+2044	34	
3 31	-2	35	
33	-2	36	
31		37	
34	ca 356 L 713	540 ca 111	
34	4 713	541 12/12	
34	ca 312	542 si 176	
34	Ti 3014 Ca 356	543 CA 106	
34	00.356	544 10.544	
34	ad 312	545 AT 554	
34	ta 356	545 Ar 554 546 (45543	
34	ar 360	547 CA 553	
33	0170	550 tr 554	
35		531 41/34 532 45500 533 44	
35	Ta 360	532 40500	
35		553 -4	
35	- Z. 356	S ⁻³⁴ - 4	
35	40170	55	
35		56	
35	1+2044	57	
36	9-2	60	
		61	
•		6.62 si 176	
•		63	
		64	
•		65	
		66	
		67	
31	o ca 376	70	
37	su 707	71	
31		72	
37	3 4 40	673 4 / 134 474 us 1023	
37	4 10 320 5 0.01054	674 46 1023	
- 37	0.01054	673 Cp 134 676 45540	
-137	14097	6 18 10540 677 Ap 32	
'	<u>'1</u>		
TES .			
	· · · · · · · · · · · · · · · · · · ·		

	8			00		
	01			01		
	02					
				08		
	03			03		
	2			04		
	05			06		
	06			06		
	07			07		
	10			10		
	- 11					
	12			12		
	13			13		
	- 14			14	1	
1 1	15			15		
	16			16		
	17			17		
1 1	20			20		
	21			21		
	22			22		L
	23			23		
	24			24		
\vdash	25			25		
	26			26		
	27			27		
	30		· · · · · · · · · · · · · · · · · · ·	30		
	31			31	1	
	32			32		
	33			33		
	34			34		
	35			35		
	36			36	t	
	37					
				37		
1 1	40			40		
	41			41	1 -	
				42		
	•2	sp 43				
	• 3			43		
1	44			44		
	45			45		
	1040	11.200				
	1040	1200 + 120		40	L	
	1041	¥ 160		47		
1				50		
L	1050	+ 370				
	/050	+ 370				
	/050	+ 370 + 100		51		
	52			51		
	52			51 52 53	1	
	52			51 52 53	1	
	52 53 54			5) 52 53 54		
	52 53 54 55			51 52 53 54 55		
	52 53 54 55 55			51 52 53 54 55 55		
	52 53 54 55 56 57			51 52 53 54 55 56 56 57		
	52 53 54 55 55			51 52 53 54 55 56 56 57 60		
	52 53 54 55 56 57 60			51 52 53 54 55 56 56 57 60		
	52 53 54 55 56 57 60 61			51 52 53 53 54 55 56 57 60 61		
	52 53 54 55 56 57 60 61 62			51 52 53 53 54 55 56 60 61 61 62		
	52 53 54 55 56 57 60 61			51 52 53 53 54 55 56 60 61 61 62		
	52 53 54 55 56 57 60 61 62 63			51 52 53 54 55 56 57 60 61 61 62 63		
	52 53 54 55 56 57 60 61 62 63 63			31 52 53 54 55 56 56 57 60 61 61 63 63 64		
	52 53 54 55 56 57 60 61 62 63 64 65			91 52 53 54 55 55 56 56 56 57 60 61 61 62 63 63 63 63 63 65 65		
	52 53 54 55 56 57 60 61 62 63 64 65 66			91 52 53 55 55 56 57 60 61 61 62 63 64 55 56 66		
	52 53 54 55 56 57 60 61 62 63 64 65			91 52 53 55 55 56 57 60 61 61 62 63 64 55 56 66		
	52 53 54 55 56 57 60 61 62 63 64 65 66 67			91 52 53 54 55 56 57 60 61 61 62 62 63 64 64 65 66 67		
	52 53 54 55 56 57 60 61 62 63 64 65 68 67 70			91 52 53 54 55 56 56 60 61 62 63 64 65 65 66 67 70		
	52 53 54 55 56 57 60 61 62 63 64 65 66 67 70 71			91 52 53 54 55 55 56 60 61 61 63 64 63 64 64 67 70 70 71		
	52 53 54 55 55 57 60 61 62 63 64 65 66 67 70 71 72			91 52 53 54 55 56 56 60 61 62 63 64 65 65 66 67 70		
	52 53 54 55 55 57 60 61 62 63 64 65 66 67 70 71 72			91 52 53 54 55 55 57 60 61 61 62 63 64 63 64 64 70 70 71 77		
	52 53 54 55 56 57 60 61 62 63 64 65 66 67 70 71 72 73			91 92 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95		
	52 53 54 55 56 60 61 62 63 64 65 66 67 70 71 72 73 74			51 52 53 54 55 56 67 77 70 77 77 77 73 73 74		
	52 53 54 55 55 60 61 62 63 64 65 66 67 70 71 72 73 74 75			51 52 53 54 55 55 55 60 61 61 62 63 64 66 66 67 70 77 77 73 73 74 75		
	52 53 54 55 56 60 61 62 63 64 65 66 67 70 71 72 73 74			51 52 53 54 55 55 55 60 61 61 62 63 64 66 66 67 70 77 77 73 73 74 75		
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			51 52 53 54 55 55 55 56 57 60 61 62 62 64 67 77 70 77 77 73 74 73 76 75 77 77		
	52 53 54 55 55 60 61 62 63 64 65 66 67 70 71 72 73 74 75			51 52 53 54 55 55 55 56 56 57 60 61 62 63 64 65 77 70 77 72 73 74 74 75 77 77 77 77		
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			51 52 53 54 55 55 55 56 56 57 60 61 62 63 64 65 77 70 77 72 73 74 74 75 77 77 77 77		OMPUTER LABORATORY
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			91 92 93 94 95 95 95 95 95 95 95 95 95 95	IGITAL C	PROGRAM FORM
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			91 92 93 94 95 95 95 95 95 95 95 95 95 95	IGITAL C	PROGRAM FORM
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			51 52 53 54 55 55 55 55 55 55 55 55 55 55 55 55	IGITAL C OCTAL	PROGRAM FORM
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			91 92 93 94 95 97 96 97 96 97 96 97 97 97 97 97 97 97 97 97 97	IGITAL C OCTAL DRIXS-CURI JAMESSOR	PROGRAM FORM ELAUANINDEX
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			91 92 93 94 95 97 96 97 96 97 96 97 97 97 97 97 97 97 97 97 97	IGITAL C OCTAL DRIXS-CURI JAMESSOR	PROGRAM FORM
	52 53 54 55 56 61 61 62 63 64 65 66 66 67 70 71 72 73 73 74 75 76			91 92 93 94 95 97 96 97 96 97 96 97 97 97 97 97 97 97 97 97 97	IGITAL C OCTAL DRIXS-CURI JAMESSOR	PROGRAM FORM ELAUANINDEX

APPENDIX E

APPENDIX E

BIOGRAPHICAL NOTE Stephen Milton Simpson, Jr.

Attended Yale University September 1946 - June 1950, receiving B.S. in Physics. Entered the Massachusetts Institute of Technology in the Department of Geology in September 1950. Member of Phi Beta Kappa and Sigma Xi.

Presently under appointment as Instructor in the Department of Geology and Geophysics at the Massachusetts Institute of Technology.