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ABSTRACT

STATISTICAL APPROACHES TO CERTAIN PROBLEM IN }EOPHYSICS
by

Stephen Milton Simpson, Jr.

Submitted to the Department of Geology and Geophysics
on August 14, 1953, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Several specific problems in seismic and gravi-
tational data interpretation are considered from the
statistical viewpoint. Least squares techniques are applied
to the two types of interpretation, and, for seismic records,
other approaches are discussed.

The fitting of an nth order polynomial in x and y
to ravity data by the method of least squares is investi-
gated as a method for approximating regional gravitational
anomalies. The normal equations for the general case are
derived and simplification considered. It is shown that,
with a symmetrical rectangular distribution of gravity
readings, each set of these equations breaks up into smaller
subsets. The resulting simplification brings fairly high
order polynomials into the range of practical computation.
For a particular gridwork the polynomial coefficients may be
expressed explicitly as linear combinations of the right hand
members of the normal equations. Once this is done, the
least squares fitting of any data taken over such a'idwork
may be effected relatively easily. The explicit expressions
for the coefficients are derived for a square gridwork of
121 points and for polynomials of order 2, 3, and 4. A set
of actual gravity readings is analysed in this fashion. The
gravity residuals are determined and contoured. The compar-
ison of these contours with each other (for various order poly-
nomials) and with contours derived by a standard, much more
involved process, is favorable. This consisteney, despite
certain detrimental features of the data used indioates that
the method may deserts to find practical application as a
routine, first step, Wavity reduction procedure. The
problem is pursued with regard to different gridworks, and
a table is derived which contains, in effect, the normal
equations for representative grids up to a size containing
2601 points, and for polynomials through order four.

As an approach to the understanding of linear
operators, as they apply to the analysis of seismic records,
a simple form of linear operator is studied. For this form
of operator, the so-called "cosine operator, oertain
properties are derived in the general case, and interpreted
geometrically. These include relationships between the exact



form of cosine operator chosen, the correlation properties of
the series which the cperator is to predict, the individual
errors of prediction, ead the si.ms of squared errors of
prediction. The results are applied to two classes of time
series in connection with spectrum analysis, and, for one
class, filter characteristics are computed for a specific
cosine operator.

An iterative method for determining least squares
fits of linear operators to multiple time series is discussed
geometrically. rn argument is presented, based on the
geometry of the two term operator, to show that, in the case
of near singularity where many solutions will almost satisfy
the least squares criterion, the exact solution is necessary
for the purposes under consideration.

Several interpretive procedures are devised for
finding information from seismic records. The first deals
with discriminating a unknown velocity in a two velocity
system. An adaption is made for detecting reflections, and
practical example are given of the two uses. The second
employs a form of testing phase, between seismic traces and
their predictions by linear operators, to determine reflection
times, and is illustrated with an example. The third combines
the concept of ensemble averages with linear operators to
determine step-out times of reflections. The last procedure
suggests a special experimental arrangement, coupled with a
certain type of correlation analysis, for detecting refleo-
tions.

Included as appendixes are desariptions of four
programs written by the author for the Whirlwind I Digital
Computer. These permit high speed computation of: two
dimensional polynomial residuals; linear operator prediction
errors and their running averages; least squares linear
operator coefficients (by an iterative method); and auto-
correlations, cross-correlations and "traveling" auto- or
cross-correlations.

Thesis Supervisor: Patrick M. Hurley
Title: Professor of Geology
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INTRODUCTION

It is well known that experimental data taken in

Geophysical studies surpasses in accuracy the interpretation

that must be made on the data. The reason is that the

problems are very complex. For one thing, it can be shown,

in the treatment of certain types of problems, that no

unique solution exists. An example is the infinity of

possible mass distribution corresponding to a given gravity

profile. In other problems the physical situation dealt

with is so inhomogeneous and anisotropic that exact solution

is impossible. It would be hopeless to attempt to explain

rigorously the presence of any particular oscillation on a

seismogram.

Data such as this, subject to a certain amount of

randomness, and on which "best" estimates must be made, is

well suited to svatistical evaluation. The numerical data

taken in gravity surveys does undergo evaluation of this

type. The least squares approach, however, is not being

utilized on a large scale. This is probably due to practical

limitations, and it is one of the problems of this paper to

see if these limitations may be minimized.

On the other hand, the raw data of seismology occurs

in analogue or ourve form. Standard procedures of inter-

pretation consist mainly of rules of thumb, learned by long

experience, and still largely dependent on the qualification

of the individual interpreter. There is a need to put these



procedures on a more rigorous basis, Tbis basis may be found

in the concepts of time series as developed in economics,

meteorology, and other fields. Huch work must be done to

determine the best means of applying these concepts to

seismic data, since, in certain ways, both the data and the

desired information are unique. Another purpose of this

paper, then, is to propose several special methods of

applioation, and to develop certain theory necessary for a

better understanding of time series concepts as they apply

to seismology.

Statistical methods, in general, require computation,

and often on a large scale. A "program" written for a

digital computer is a tool which will do this work auto-

matically. The author has written several programs for the

4hirlwind I Digital Computer to perform computations related

to the above discussed problems, and includes these programs

as appendixes, with the feeling that other investigators may

find them useful.

iii



PART I



LEAST SQUARES RESIDUAL GRAVITY

ILtroduction

Variations in the attraction of gravity over the

surface of the earth are due to many causes, but these

often fall into two general categories. Phenomena such as

the thickening or thinning of the crust cause relatively

slow, smooth and widespread gravity fluctuations. We call

these regional effects. On the other hand, such things as

ore body emplacements, caverns, and local density hetero-

geneities cause more rapid irregular changes, and these are

termed local effects.

The actual gravity values measured over an area

usually represent a combination of regional and local effects.

The separation of these effects is of primary importance in

interpretation, and many mathematical methods have been

devised to eliminate guesswork in the problem. Essentially,

most of the methods represent an averaging process which

gives at each point and approximate value of the regional

effect alone. The local effect is then found simply by

subtraction from the measured values.

Many of these methods possess two undesirable

aspects. First of all the averaging must be done at each

point individually. Secondly, the averaging includes only

gravity values in the vicinity of the point considered. It

is hard to say just how serious these drawbacks are, but it

seems worth-while to investigate a method which does not

I-1



encounter them. In a least squares approximation all values

are averaged simultaneously. Moreover, the resulting

approximation is not merely a set of discreet points but

a continuous surface of values over the area, a property

which is sometimes of value.

The purpose of Part I is to consider in some

detail how the method of least squares may be applied to

this problem, and how a simplified method of procedure may

be set up for practical application.

Part I represents an extension of the work done

by W.B. Agoes t . Agocs approximates the regional anomaly

by a plane surface derived from least squares criteria. He

shows that, in an artifical example, the residual anomaly

is better derived from least squares procedures than by the

use of the "arithmetic mean regional' procedure. For

higher order polynomials than a plane surface the algebra

rapidly becomes more involved.

Theory

It is easiest to illustrate the method for an

idealized geologic example in two dimensions. Fig. 1.1

shows a wave in the bottom of the crust and a single ore

body emplacement. The points on the graph would then be

the measured values of gravity across the area. Fitting

a fairly low order polynomial to these values by least

squares gives us the curve AB which best fits all the points.

4 Ref. 1
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This curve will approxitiate the regional effect more

closely than the local effect, and it is apparent that

the fit will be closest at some distance from the ore

body. Thus the dashed line of Fig. 1.1, representing the

difference between the polynomial and the observed values,

gives a good indication of the location of the anomalous

mass.

In the two-dimensional problem the approximating

polynomial is a surface, and interpretation is made from

contours of the residuals.

Let us approximate the regional gravity by a

polynomial of order n in x and y.

n n-i
G(xy) = E Z 1 7 1.1

i=0 j =0

Thus for n=2

G(xy) 000 + 010 x + c20X2 + o Xy + 0 1y + 00 2Y2

The c's are unknown coefficients to be determined in

accordance with the condition that the sum of the squares

of the residuals is to be minimized. Let g(xy) be the

measured values of gravity. Then the residuals are

R(xy) = g(xy) G(xy)

and R2(xy) = 2g(xy) G(xy)Y

Hence
n n-i n n-k

ER~ ~ ~ £x) E (0 4x y Z E z c 2Y")
xyy i=O J=O k=0 A=0

n n-i
-2 Eg(xy) E Z c x yJ + E g(xy)

xy i=O J=0 xy

I-3



or n n-i n n-k
E 2 k+i 4+j gZ R(xy) = Z [Z Z E Z ejk Y

XY xy 1=0 j=O k=0 1=0

n n-i a 2-2 E Cg(xy) E E o xy] + g (xy)
xy i=O j=0 XY

Differentiating this expression with respect to a,, and

setting each derivative equal to zero for minimization, we

obtain (n + 1)(n + 2)/ linear equations for the same

number of unknown coefficients

n n-k k+i I+y j2
Z Z: 0k-1 Z x y xyjj

k=O 4=0 xy xy

where j 0, 1, ...... (n-i)

I = 0, 1,....n

There are really three variables, or sets of

variables, in equations 1.2 - the order of the polynomial n,

the set of points xy, and the set of gravity values at

these points. The first two of these variables determine

the coefficient matrix of the ckJ's. Once these two are

chosen, a unique inverse matrix exists, which, if found,

may be used to compute the oki's for all sets of gravity

values taken over the same xy pattern. This alone would

be a major simplification if the method were to be used on

a production basis. But we shall also see that, using a

simple reasonable restriction, both the problem of finding

the inverse and the form of the inverse itself will be

greatly simplified.
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Sitm21ified Solutions

In many cases gravity readings are taken over a

square, or at least rectangular, network. When this is so

we may take the axes so that the rectangle is symmetrical

about them, and number our ordinates and absiscae in in-

tegers, as in Fig. 1.2 . It is then easy to see that over

such a network summations of the form z y will vanish

whenever i or j is odd. Thus many of the coefficients of

the ck6's in equations 1.2 will drop out. This leads to

considerable simplification, with the bigger systems

breaking up into several smaller ones. Furthermore, if

we take a definite network we may solve the equations

explicitly for the eki's in terms of the summations

Eg(xy)x iy j.
xy

To demonstrate how this is done we shall solve

the equations for n = 1, 2, 3, and 4, over a square network

of 121 points. The systems are positive definite and

symmetric, well adapted to solution by the matrix method

of P.D. Crout.

The non-vanishing summations over this network

are Exy = M = 121

Zx2 =Zy2 1210 Ex2Y2 12100

Ex4 = Ey4 = 21538 Exy24 = EX4Y2 y 215380

Ex6 = Ey6 = 451330 EX26 - Ex6y2 = 4513300

FIX 8 _EZy 8 = 10185538 Ex4y 4 3833764

4 Ref. 2
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CasTn h nm

The normal equations are

000M + c10 ox +

0 00 + 0 10Ex2 +

o0 0Ey + 010ZEy +

001EY
c01Z
00 1 y

Eg(xy)

z g(xy)x

F- g(XY) y

Reducing immediately to

000 X14 010
Ex2

01
y2

giving

L.Eg(xy)
121

+ -Zg(xy)x +
1210

-y-Eg(xy)y
1210

or, to six places

G(xy) 8.26448 10~4 10Eg(xy) + xEg(xy)x + yzg(xy)y]

Case n = 2

The normal equations are

00

Ey 2

001

Zy3

Exy 2

Exy

EX2

which reduce to

e01 = Eg12
1210

002

ZY 2

Zy 3

Exy2

020

= Eg (xy)

ZX7
3

Exy

EXY
2

22 2

Ex2

S2 2

ZX3y

EX2 y2 x3y

, = Izg(xy)xy
12100 010

F~g(xy)y

zg (xy) y2

Eg ( y )xy
= Eg (xy) X

= g(xy)X2

-.Jjg(xy)x
1210

and three equations for c00* 002, and e20

I-6
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121000 +

1210000 +

1210o00 +

1210o02 + 1210020 = zg(xy)

21538002

12100002

12100020

21538e2O

Sg (Xy)y 2

= g (ry) X2

The solutions are

00 -l 278zg(xy)-10(Eg(xy)x2

002 = .;ij'g(xy)y2

s20 29438'
Thus

G(xy)

+ Eg(xy)y 2 )3

~ 1Eg(xy)3

= [278Eg(xy) - 10(Eg(
94)38

xy)x 2 + Eg(xy)y 2 )]

+ yLxg(xy)y]
1210

+ Yy (2g(xy)y lO g(xy)))

+ xycj.jeg(xy)xy3
12100 -

+ x[. J.g(xy)x]
1210

+ X2 1 2

Or to six plaoes

G(xy) =

- 107g(Xy) I

[.0294554Eg(xy) - 1.05955 10-3 2 + Zg(xy)y 2 3

+ y[8.26448 10Z4Eg(xy)y]

+ y2 1.05955 10"4(Zg(xy)y2 - lOgxy)

+ xy[8.26448 10-5zg(xy)xy]

+ x[8.26448 10 4~Eg(xy)x]

+ x2c1.05955 10~4(Eg(xy)x 2 - iOEg(XY))3

1-7



The normal equations are

00 01 002 03 11 12 02n *10 20 '30

1) M y y2 3 17172 2 2 3

2) y y2 73 74 12 3 22 2 3

3) Y2 y3 y4 5 3 4 23 2 22 32 2

4) y3 74y 4 75 4 7 24 3 233 3 3

5) 2y 72 y3 4 2y2 1273 3Y2 zyx3y 4

6) 72 xY3 XY4 , 5 2 3 24 33 22 32 42 2

7) 2 2 2 2 2 z 24 3 2 33 4Y2 4 5 2

8) x xy XY2 3 2 22 3 12 13 x81

9) X2 2 22 2y3 3 3 2 4 3 4 5 2

10) x3 x3y x3y 2 3 Y3 4 x42 5I X4 X5 x6 X3

Summations are assumed for all these quantities and g is

written for g(xy). The equations reduce considerably.

Equation 5 gives us
011 121(4

1, 3, and 9, combine to give three equations for

o0 002, and o20, which have the same solutions as for

the case n = 2. 2$ 4, and 7, and 6, 8, and 10, combine to

give two independent systems which have identical coefficients.

Thus 2, 4, 7, are

1210001 + 21538003 + 12100c = gy

21538001 + 4513300 0 3 + 215380021 = 03

12100001 + 215380003 + 215380021 g z 7

L4-8



"With solutions

001 , 1 - 4450EigY - 178gy3 - 72Egx2
679536

021 = 2y - lEgy)
94380

S0 I f4450Egx -O178Egx3 72Egxy2

0 30 = 1 --10Egx3 -178Egx]
6?9536

012 =27 -X3 10x lEgx]

and. from the case n = 2

000 9 278Fg -10 (Egx2 + Eg]
.gr . .joyg~i

002 gy -4;19[g]00 2 .r

020 = C gx 2 - lO~g)

We also have

12 12100

'-9



To six places

+ £.0294554ESg - 1;05955 10'3 (Egx2 + Egy2 ) )

+ y[6.54859 10~3 gy - 2.61943 10~41gy3 - 1.05955 10~gx2y

+ y 1.05955 10* 4 (Egyz2 lozg)]

+ 731.4?159 10 5Sgy3 - 2.61943 10~4Egy]

+ xy[8.26445 10-5Egxy)

+ xy2 1l.05955 10-5 gxy2 - 1.05955 10~4Ex3

+ x2y[1.05955 10-5%gx 2y 1.05955 10'4Egy3

+ x[6.54859 10"3Sgz - 2.61943 10~4Egx3 - 1.05955 10~ 3ygxy2j

+ X2 [1.05955 i0~4 (Egx2 . losg)3

+ x3[1.47159 10-5 Egx3 - 2.61943 104gxj

1-10



Case 4c

The normal equations are

00 '01 )2 03 04 11 12 13 ' l '2 31 10 00 0

1) M y j 9 x xy xj X9 ly j 4x i2 13 g.

2) Yj 4 X X j xyf X' 23x y Xy y r gy

3) X; 9 x x xxy x xi x i g
4) y yx y x ) x f li x 2?9 2 y 49 g
5 ) | x xfi x Zf 4f x x lk x 4 # dg
6) xy xj x xyk y I : Z9 4 x xV Zy b fy ly y gxy
7) xl xy x Xy x i9 xi E xv xfv 0y21 x1 gxi
8) x9 xS xy x4 X/ 0 ?F x # 19 IV Iy#V gxy
9) Zy o Z9 Z Z3 2V x 9 x y 7 Py X y 4gly

10) Z Ifl F F xF 21V V y y F AF F = g
11) 4iVy xy xy x ff yy xy 4 y = gx
12) x x4y xj xyB x iy 9 4ly 2y P x x5 gx
13) ZIf Z4 0H X 2 x2 fy x = gZ
14) x 0 x 2 2 y x 9 y Y x g
15) P i xP x9 l4 y k 4 0 y kZ Ij = g

Equations 1, 3, 5, 10, 13, 15, reduce to give a

system of six equations for co 02$ 004s 022O zo. and

c4. 2, 4, 9, and 7, 12, 14, give two sets of equations

for 001s a03# 021 and c10, 0300 012, respectively, which

are equivalent to the corresponding equations for the

case n = 3.

I-11



The new equations to be solved are

000 002 04 022 020 040

N y2

y2 
4

y4 y6

x 22 24

y
4

Y6

2 2
K Y

2 4

2 4 22 4Y2

8 2 6 2 4 4 4

2 6 4 4 4 2 6 2

x2 22 2 4 4 2 4 6

x4

x2 2

x2 4

x4y2

2 4

2 6

4 4x y

4 2

S4 4

6 2

=SEg

= Sgy
2

Zgy4

2 2= Zgx2y2

2=Sgx4

= Sgx 4

= Sgxy

= Sgxy3

= Eg3y

The last set has solutions

0 11 = [689.84Egxy - 17.8(Sgxy3 + Sgx3y))

013 = LZgzY3 . 17.8gxy)

031 Cg 3 y - 17.8Zgxy]

1-12
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The solution of the first set to six places is

400 = 4.53280 10- 2 g + 1.58932 10~4 (Egy4 + EgX)

1.35839 10~44gx2y2 - 6.399122 10- 3 (Zgy2 + gX2

002 = 1.62141 l3E7gy2 - 2.81527 10-3Eg

-5.51847 10-5%gy4 1.35839 10-5 (gx 2Y2 . lO~gx2)

O04 = 2.20739

022 = 1.35839

10 Egy4 - 5.51847 10-5gy2 + 1.58932 10-5Zg

10 6 (Egx2y2 _ l(Zgx 2 + zgy2 ) + 1oOEg)

020 = 1.62141 10-"3zgx 2 - 2.81527 10-3Zg

-5.51847 10-5gx 2 - 1.35839 10 -5 (Egx 2 2 2

040 = 2.20739 10 6 gx 4 - 5.51847 10-5 gx2 + 1.58932 10-5zg

To simplify writing G(xy) we introduce the abbreviations

A = Eg H = Egx3 y

B = Egx I = Egxy 2

C = Egx2 2 2

D = Egx 3

F = Egxy

G = Egx2y

K = Egxy 3

L = Egy
2

M = Egy

N = Egy3

P = Egy4

I-13



Hence

x) C4.5328o 10 2 A + 1.58932 104(P + E)

+1.35839 10~*J - 6.39122 10- 3 (M + C)]

+ y[ 6 .54859 103L - 2.61943 10~4N - 1.05955 10~3]

+ y2[1.62141 10-3M- 2.81527 10-3A - 5.51847 10-5p

-1.35839 10- 5 (J - 1003)

+ Y3[1.47159 10-5N - 2.61943 10*4L]

+ y[2.20739 10-6P - 5.51847 10-5M + 1.58932 10-5A)

+ zy[1.01516 10-3F - 2.61943 10-5(K + H)]

+ xy2 [105955 10-5I - 1.05955 10~ 4 B]

+ xy 3 [1.47159 10 6 K - 2.61943 10-5F3

+ x 2Y[1.05955 10'5G - 1.05955 10~4B]

+ x 2 Y2 [1.35839 10- 6 (J - 10(C + M) + 1oA)]

+ x 3 y[l.47159 10-6H - 2.61943 10-5]

+ x[6.54859 10-3B - 2.61943 10~4 D - 1.05955 10-3I]

+ x2 [1.62141 10-3C - 2.81527 10- 3 A - 5.51847 10-5C

-1.35839 10" 5 (J - 10R)]

+ x3[1.47159 10 5D - 2.61943 10"34B

+ x4[2.20739 10~6 E - 5.51847 10-5C - 1.58932 10-*5A



Pisussioni

An interesting property which has developed in

these four oases makes the extension to higher order

approximations somewhat simplor4. If n is odd then all the

coefficients c whose subscripts add to an even number

are the same as the corresponding coefficients for the

(n - )rst ease. If n is even the coefficients with

subscripts adding to an odd number are the same as for

the preceding case. This property can be shomn directly

from equation 1.2.

Thus for the case n .5 we expect nine of the

coefficients (0 c02s 40' '40$ 020' 011, 013' 031) to

be the same as for the case n = 4,, and we need only write

the twelve remaining equations for i + j odd.

A polynomial of order equal to the number of

points taken will exactly fit the data. However it is

practically impossible to use polynomials even approaching

such a high order for reasonably-sized gridworks, and this

danger seems slight. There is still a real problem in the

choice of n. If the regional effect is in reality a fairly

low order effect, polynomials of high n will begin to

approximate the local anomalies too closely. Other systems,

however, run into the same problem, and this point would

be best settled by experience with the data.

Another important practical consideration is the

amount of work to be done, i.e., the determination of the
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summations Egxi 73, of the cu' s and the solution of G(xy)

at each point. We devote the next section to this problem.

To illustrate the work necessary we discuss a

convenient scheme for application to the case n = 3. The

use of a computing machine with cumulative multiplication is

desirable.

Assume that the grid has been determined and the

gravity values written at each intersection as shown. This

is done on tracing paper as shown in Fig. 1.3.

The numbers a and P above each vertical line and

to the left of each horizontal line represent the sums of

g(xy) along those lines. Then as we may easily compute the

sums Zg, Egx, Zgx2 Zgx 3 zgy, Egy 2 2gy3, from the relations

Zg = EQ Zgx3 = E (i)3  gy2 = (i) 2

Zg Ei(i) Zgy = pji(i) gy~ 3=ZPiti)3

2 2gx2 = Eai(i)

Each of these computations involves one machine

operation of eleven cumulative multiplications.

For the remaining summations Egxy, E gx y 2 it

is convenient to have a similar grid which can be placed

under the original one. This second grid has the values of
2 2xy, x y, xy , at each point as shown in Fig. 1.4 and can

be used for each application.
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The values of g(xy) then appear in the vacant

upper left hand corner of each point, making the multiplica-

tions apparent. Each of these three summations then in-

volves a cumulative addition of 100 multiplications.

The o 's are then found as ten cumulative additions

of two of three multiplications each.

G(xy) is now completely determined with the writing

down of less than 50 numbers and it remains to solve this

equation for each point. This involves ten cumulative

multiplications at each of the 121 points with a final

subtraction to determine the residuals. A second tracing

paper grid laid over both of the others would simplify this

and the residuals could be written down in a form ready to

be contoured.

A nice feature of this scheme is the absence of

any tabulation of data. It may be extended fairly simply

to higher degrees.

Examtle

As a test of this method residuals were computed

on gravity readings supplied by a mining company. This

data was not in a convenient form for use since the readings

were taken in mine tunnels and not over a grid. To get them

in grid form, the readings were first contoured as shown in

Fig. 1.5 and then values extrapolated to the grid. This

involves several inaccuracies. First of all, where readings

are sparse, the extrapolated values are bound to contain



considerable error. Secondly, the computations weight all

values equally so that the accurately extrapolated points,

in areas of dense readings, suffer from the inaccuracies in

the less dense areas.

Three sets of residuals were computed, one for

second, third, and fourth order polynomials. This was done

to test the effect of polynomial degree on the residuals.

The polynomials were fitted directly to the raw gravity,

without making the usual topographic corrections. The

justification for neglecting to do this is seen in Fig. 1.11.

This figure shows values of regional minus topographic

corrections computed by the mining company, and contours of

these values. The contours demonstrate that this correction

is a low order effect (in this particular situation) and

can obviously be easily absorbed into a polynomial as low

as degree two.

Figs. 1.6, 1.7, and 1.8 then show residuals for

second, third, and fourth order polynomials respectively,

and were computed as described previously. Once the reading

had been contoured and extrapolated, it took about a day

to compute each set of residuals. The computed polynomials

appear in the upper right-hand corner of Figs. 1.6, 1.7,

and 1.8. Fig. 1.10 shows the contours of the polynomials

themselves, and shows that the similarity of the residuals

is due to the similarity of the polynomials used.
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In Fig. 1.9 is contoured the residual gravity as

computed by the mining company which supplied the data.

Their computational procedure required several months to

produce this diagram, which, in important respects, is

quite similar to the contours of Figs. 1.6, 1.7, and 1.8.

Part of the difference is due to the fact that the least

squares residuals are forced to oscillate arouni a mean of

zero, so that many negative contours appear. Other differences

may well be attributable to the inaccuracies of contouring as

mentioned above. It seems clear however, that the similarity

is sufficiently great to justify the use of the least squares

procedure, at least for a first evaluation of gravity data.

This seems particularly true in view of the relative speed

with which this procedure may be carried out.

These results were encouraging enough so that a

program was written for the WWI Digital Computer to perform

the majority of the computations automatically. This program

finds the residuals for a polynomial up to the sixth order

over an arbitrary grid shape, once the polynomial is known.

A description of this program appears in Appendix A.

In the next section, we take up the problem of

setting up the normal equations for various sizes and shapes

of grids.
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Settin U) the Normal Eauations

We are concerned here with the problem of setting

up the normal equations for various grids and polynomial

degrees. If we limit ourselves to polynomials of degree 4

or less, we are then interested in finding the following

quantities:

Ex2 4 E6 E8 E4 ZY6  8

Ex2 2 22 4 2 6 4 2 24x 0 0 1.3

where the summations are to be taken over the particular

grid we are dealing with.

If the grid has the dimensions 2N by 2M as shown

in Fig. 1.2, we may set up a fairly simple procedure for

finding these summations.

First we note that Exk over the grid is equal to

the Exk on a single horizontal line, times the number of

lines. Thus

Zx = (2 +1) ik

but since in our case k is always even

N
Exk 2(2M + 1)(E ik) 1.4

iml

Likewise
kN k

Zyk 2(2N + 1)Z i
i=l
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For the cross terms Exkyl we have

xM N

grid J=-M i=-N

N MI
[EikJ CzJI
-N -m

ItN jk M j4

grid iml j=l

Hence the sums 1.3 are easily derivable from

equations 1.4 and 1.5 if we tabulate the quantities E 1 .

Table I gives values of i from which the sums

Lk
Z I are derived, and Table II tabulates these sums for

i=l

L up to 25 and k = 2, 4, 6, 8. The latter Table allows us

to compute the sums 1.3 for any grids measuring up to 50 by 50.

a grid this size would encompass 2601 gravity readings which

seems ample for most applications.

Table III contains the sums 1.3 computed for six

representative grids 10 by 10, 10 by 20, 20 by 20, 30 by 30,

40 by 40, and 50 by 50.
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PART II



SEISMIC RECORD ANALYSIS BY LINEAR OPERATORS

In the study of reflection seismio records, taken

in the exploration for oil, it is becoming increasingly

difficult to pick reflection times by the standard procedures.

The reason for this is that, as the simpler geologic areas

are being fully exploited, exploration is being forced into

the more complicated areas. seismic records taken in these

structurally complex areas contain much in the way of

unwanted information and much not-understood information.

Energy reflected from the strata of interest is largely masked

by this "noise*, At least two different approaches to

unscrambling these records are being developed at present.

The first of these approaches is largely instru-

mentational. Its principle is: take more and more information

(more traces on each record, etc.), filter it in different

ways and mix it up in a variety of combinations to see if a

procedure for averaging out the unwanted information can

be arrived at. This approach has led oil companies to

the use of 24-trace records, each trace representing the

responses from up to thirty geophones. The success of these

methods is not publicly available, but the oil industry is

expressing great interest in the approach described below, so

probably they are not completely satisfactory.

The second of these approaches is basioly analytic.

Rather than taking more information, we attempt to sharpen

up the interpretive procedure on the inforkation we have.
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The search for such procedure has been largely carried out

at MIT in the Mathematics Department, and subsequently in the

Mathematics and Geology Departments. The tools in this

analysis have been the statistics of time series.

Statistical Methods

After some experimentation it was found at MIT

that the use of the "linear operator" seemed most promising

in the determination of reflection times. The exact methods

used are described in Rcf's. 5 and 6. The linear operator

permits a measure of the change in dynamics as we proceed

down a seismic record. As these dymanics are amplitude,

frequency, and phase relationships, it was hoped that the

dynamical change at a reflection could be discriminated

even when the 9hanges due to aRnlitude were small. This was

hoped for since the usual interpretive procedures depend

heavily on "amplitude reflections". The results were very

encouraging and stimulated increased research.

One direction this study has taken is the empirical

one. We know the linear operator gives us added information.

But, since there is considerable freedom in the choice of

the exact mathematical forr of the operator we use, we try

many different forms and see which ones give us the Mjst

information. This is a trial and error procedure and involves

an immense amount of computation. For this reason a program

was written for the WWI Digital Computer which would compute

automatically the measure of dynamio change, for a great
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variety of forms of linear operators, at very high speed. A

copy of this program and a description of its functions is

contained in Appendix B. Case studies designed to test the

effects of individual parameters of the linear operator are

being run with this program, but the results are as yet

incomplete.

Along with this empirical approach an attempt is

being made to study the linear operator from theoretical

grounds. Although the form of the operator which is being

tested at present is relatively complicated, it is instr-

uctive to consider a simpler form, the so-called "cosine

operator". This operator is a mathematical expression which

generates a pure cosine wave of given frequency. We can

determine quite simply the effects of this type of operator

on various time series including those found on seismic records.

We hope to gain insight into the physical function of such

operators as well as correspondence between them and simple

filters.

We shall also consider two other more practical

problems connected with the statistical analysis of seis-

mograms by the use of linear operators. One concerns

certain iterative methods for approaching the values of the

linear operator coefficients for least squares fitting. The

other is a related problem, the necessity for accuracy in

finding these values.
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Single requency Cosine Overators

A cosine operator is a prediction mechanism which

exactly predicts equally spaced points on a cosine wave. It

has the general form t

±+2=o + ax+ + bxi 2.1

where a 2 oos 2nhf 2u

b = -

hI time between observation

o = (1-a-b)i = 2(l-u)i

t = mean of series

f = frequency of oosine wave

= predicted value of +

Suppose we use this operator to predict an arbit-

rary series x. Then the error of prediction xi+2

will be
i+ 2 = C+2 - [2(l-u)i + 2ux+1 ~ 2.2

= 1+2 - 2(1-u)i - 2xi+1 + xi

i+2 - x) + (x - ) - 2u(xi+l

For simplicity let us deal with a series X

measured around its equilibrium mean x, i.e. a = x - x

then 2.2 becomes

Ei+2 = 1+2 + X - 2uXi+1 2.3

Now if we sum the squares of these errors over

an interval of the series we get
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E +2  2+4u +1 + 2Xi+2X - Xi+1 2.4

If the series is stationary and the interval sufficiently

great we may write this in terms of the auto-correlations.

Let the series be normalized so that E = 1 then

EE2 22 u ~ o
SE1+2 = 0 + RO +u R +2u 2.5

where R, = iA lag auto-correlation and RO I

or

E 2 2(1 + R2 - 4uR + 2u2 2.6

This expression has a minimum value when

-.(-4R )
u X 2= R1 2.7

or

cos 2nhf = R

f= [I-Coos" R + 2n-n] 2.8

Hence we have the least squares fit for a cosine operator

predicting an aribtrary stationary series. We find that

f is determined only by the first lag of the auto-correlation

function of the series, and that f is only determined modulo

1/. This last fact is apparent if we refer back to equation

2.l where we see that cosine operators have identical forms

for angular frequencies d ffering by 1/h.
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Hence
2 2 + 2 2' .

Min E E +2 , 2(l + R2 - 2RJ) 2.9

If we want a perfect least squares fit we have

+ ( +R) 2.10

with the restriction cosine 21Thf = R

One way to meet this condition is to let the interval

h shrink toward zero so that R -+ 1 and R2-+ 1. This is

equivalent to saying that any small segment of the original

series approaches a straight line, in the case where the

function is continous and its first derivative exists.

The Geometry of Cosine O0erators

A. Error Sum as Function of W

Consider the sum of squared errors as a function

of u. We have

E E 2 = 2(1 + R2 - l + 2u2) 2.6

This is a parabola in u as shown in Fig. 2.1.

u = oos 2Trhf must lie in the range -l i u - 1-

We have shown that u = R , is the condition for a minimum

fit, and since -1 < Ri <. +1, Z E2 will always have its

minimum in this range.

This means that, for any series, we can always

get a minimum fit with some cosine operator of frequency f,

where f must be in the range
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0 < f 4 .L_
t 2h v

( u I ) ( U =- 2.11
2nhf = U 27Thf = n

We require E E2 to be non-negative. This means

the discriminant of 2.9 must be 0 or

16 R -8(1+R2) 0 2.12

Therefore the curve camnot aross the u axis, but

can be tangent to it at one point, when the equality sign

holds above. This is the condition for a perfect fit.

B. Error Sum as Funtion of f

The error sum as a function of frequency f is not

truly parabolic but has the general shape of a parabola.

It is periodic in f with a period 1/h. It appears as shown

in Fig. 2.2 .

C. Individual Errors as Functions of u and f

Equation 2.3 gives us an expression for the

individual errors

Ei+2 = 1+2 + X - 2uXi+1 2.3

If we fix attention on a single individual error

(i constant) and let u vary we see that E is sinusoidal

since u = cos 2nhf . Thus E1 varies sinusoidally about

a mean given by the sum of the 1;- and the (-2) value

of the series, with an amplitude of twice the (1-1)E value

of the series. The period is 1/h. There is no phase shift
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between these curves for different i values. Thus all

individual errors must increase or decrease simultaneously

with f.

Fig. 2.3 shows individual errors as functions of

f. This figure explains why the error sum of Fig. 2.2

is reflected across the line f = 1/2h. This line in Fig. 2.3

is the axis of symmetry for the individual errors, so that

it must also be the symmetry axis for the error sum.

Conclusions

From the above, we can draw certain conclusions.

1. If one limits himself to the general class of cosine

operators, there is a maximum error obtainable for the

particular data, using any frequency whatever. That is,

there is such a thing as a worst fi for cosine operators.

2. Since Z E2 is parabolic, determining 3 values of E E2

is sufficient to determine the complete shape of the error

curve for all other frequencies.

3. Moreover, since the individual errors are sinusoidual

in f, determining the individual errors for 3 values of

f determines the errors for all f.

Looking at the problem another way, much of the

information obtainable from any data series by a study of
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this type is contained in the first and second lags of the

auto-oorrelation function of the series, for these two

quantities determine the shape and position of the curve E E2

The prediction program described in Appendix B

provided a means for testing the conclusions reached about

cosine operators. Individual errors and sums of squared

errors were computed for cosine operators of frequencies

25, 30, ...- 75 ops. The data for which these were computed

were readings taken from a typical seismic trace at intervals

of 2 ms.

The sums of squared errors are plotted in Fig. 2.4

over two intervals of 240 readings each. Both curves exhibit

very good parabolic shapes. The average minimum for the two

curves occurs for u = .85 - This should equal the first lag

auto-correlation over the two intervals, which was computed

by the correlation program (Appendix D) to be -853 .

Fig. 2.4 shows several individual errors plotted

as functions of the frequency of the cosine operator used.

They appear to be sections of sinusoids as expected.

These curves, computed on an arbitrary time series,

seem to be in remarkable agreement with the theory.
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The CycOal Nature of Cosine Onerators

We have mentioned that cosine operators differing

in frequency by n/h have identical forms. It is interesting

to see what this means physically.

Suppose we are trying to represent a cosine wave

of 1 cycle/ second with a spacing of h = 1/4 second. The

points we would plot might appear as in Fig. 2.6 .

Now consider a cosine wave of frequency 1 + 1/h

5 cycles/see. If we try to plot this frequency with a

spacing of 1/4 see. we find that it can be exactly repre-

sented by the points we plotted for the one oyole wave. This

is illustrated in Fig. 2.7 . We would find the same would

be true for frequencies of 1 + n/h4= 1, 5, 9, 13, 17 .--

Thus, it is the fact that we cannot uniquely represent

frequencies differing by n/h that explains the identity of

form for cosine operators whose frequencies differ by this

amount.

This is also the explanation for the so-called

"condensed" power spectra met with in computational

procedures . The computed power at a frequency f must

represent the sum of the powers at frequencies f, f,+ 1/b,

f + 2/h .... Therefore power spectra can only have the

range 0 to 1/h cycles. In practice h must be chosen so

that 1/h is greater than the greatest frequency from which

significant contribution is expected.

Ref. 3
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Cosine O2erator Fredicting an Autoreressive Series

In order to examine the filter characteristics

of cosine operators it is convenient to consider their

effect on autoregressive-type series. The autoregressive

series has a known Cauchy-type distribution of its spectrumAt

It will be interesting to examine what the spectrum of the

error function will be when we predict such a series with a

cosine operator.

Referring back to equation 2.3 we have the error

function for cosine operators.

E1+2 = X+2 + X - 2uXi+1  2.3

To get the spectrum of this function we first find the

auto-correlation R .

R o E (X1+2 + X - 2uX,+1 , $1) +2- + X1  - Mi+1-

R = EX+2X+ 2-T + EX1+2X1iT + F-XX+2-T

+ SX, - 2u(EX1+1Xi+2-T + 1i+1i-T

+ Xi+1-TXi+2 + Xi+1-TXI) + 4u2,X+1 i+1-T

If the X series is properly normalized we may

write this in terms of the correlations r. of the X series.

R T rT + rT+ 2 + rT-2 + 4u2

+ rT - 2u(r + rT+l + r,+1 + r )

Ref. 7
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RT = rT-2 + r (-4 + rT(2+4u2)

+ r +1 (-4u) + rT+2 2.13

Since the series is taken to be autoregressive

r OScos2nf 0 Th e-th cosaT e-bT $ 0 2.14

Substituting equation 2.14 into 2.13 we have

R T cos[a(T-2)]e-b( -2)

4ucos[a(T-1)]e-b(T-1)

+ (2+4u2 )oaTe-bT

- 4ucos[a(T+1)]e-b(T+1)

+ cos[a(T+2)]e-b(T+2)

Using trigonometrio identities

R T e 2b[ cosatoos2a + sinaT sin2a)e"b

4ueb(cosaToosa + sinaTsinaje-bT

+ (2+4u 2 ) (cosaT )ebT

4ue'b[cosaToosa - sinaTsinale-bT

+ e-2broosaToos2a - sinaTsin2aJe-bT

or

R cosaTe-bT I,2boos2a - 4uebcosa + 2 + 4u2

T

-4ue-boosa + e-2bos2a]

Ref; 5
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+ sinaTe-bTe2bsin2a - 4ueb sina

+ 4ue-b sina - e-2bsin2a]

Hence

0A cosate-b + B sinaTe-bT

e-bT(A cosat + B sinIaT) 2.15

where

A = cos2a(e2b+e-2b) - 4uoosa(eb+e-b) + 2 + 4u2

B sin2a(e2b -e 2b) 4usina(eb eb) 2.16

R e-bT (A2+B2 1 + B srn
(A2+B ) (A2+B2,1A

e-bT(A2 if 2 )saosp + sinavsi4)

where P = tan 1 B

Thus

= ebT (A2+B 2 )iAoos(aT+P) 2.17

R. is now in a form similar to the rT for the

original series. The spectrum of this type is known to be

a Cauchy distribution. The specific shape will be controlled

by values of b, A, B, and P.
Rather than continuing with this example we shall

proceed to another type of series. The autoregressive series

is somewhat non-typioal. Its spectrum, the Cauchy distribution,

is very broad, in fact there is no mean value of frequency

for this spectrum.
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Cosine Oqerators on Series with gaussian Suectrum Distribution

A much more stringent series than the autoregress-

ive type is a series with a power spectrum composed of two

Gaussian curves. The spectrum has the form $

-(w+a) 2

+ e ]-2 .I$()F e ( 2.o18

where +a and -a are the respective means of the two

Gaussian curves, and T is their standard deviation in

radians. With such a series the normalized auto-correlation

function may be written as
-< 2

2
os a

If we predict such a series with a cosine

operator, we generate an error series whose auto-correlation

function is, as before

R = rTT-2 + r (-4u) + rT(2+4u 2) + rT+ (-4u)
2*13

+ rt+2

or substituting

R T

T-2)2
e

2 2

+ e 2

(2+ C 2 2

+ e 2
2 2

-r (T+2)
+ e 2

cos[a(T-2)]

cos[a(T-1)] (-4u)

cos[aT] (2+4u 2

oos[a(T+l)] (-4u)

cos[a(T+2)]

f Ref. 5
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This can be reduced, as before, to the form
2 2

S e 2 A(T)oos aT + B(T)sin aT) 2.21

where

A(T) =cos 2a [e 2 + e 2

22
(-2+1)T+1)

-4u cos a [e 2 + e 2

+ (2 + 4u2

2.22

B(T) sin 2a [e 2 + e 2

-2
-_(-2_+1) -a- (2r+1)

- 4u sin a [e 2 + e 2

If we are interested in the power spectrum of

this series we want
0;

$(w) 2 / R(T) cos wT dT 2.23
0

Probably this integral cannot be expressed in closed

form, and we shall have to resort to a computed example.

Comoutational Exemple

Here we illustrate the filter characteristics of

cosine operators in a particular case. We choose a series

with a Gaussian spectrum peaked at 50 cycles and with a

standard deviation of 22.36 cycles. The power spectrum of

such a series is shown in Fig. 2.8 , and was computed

from equation 2.18 . In general shape this is not unlike

power spectra dealt with on seismie traces. Fig. 2.9 shows
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the normalized auto-oorrelation function for this type of

series, as derived from equation 2.19 . The series has

essentially no correlation for lags greater than about .03

sec.

To examine the effectiveness of cosine operators

as frequencyfilteiing mechanisms, a cosine operator of

frequency 50 ops was taken. The spacing interval was

chosen to be 2.5 ms. The auto-correlation function of the

error series generated by this operator is shown in Fig. 2.9 ,

and is computed from equation 2.13 . In this case the

function is unnormalized so that the zeroth lag auto-

correlation is proportional to the total power contained

in the power spectrum of the error series. Thus we see

that less thtan 20 per cent of the power contained in the

original Gaussian series remains in the error series. More

than 80 per cent has been "filtered" out. However, since

some of this is due merely to curve continuity, the shape

of the spectrum of errors is more important than the total

Dower.

The unnormalized spectrum of the error series is

shown in Fig. 2.8 , and, as might be expected, is

definitely bimodal. This curve clearly indicates that the

operator is acting as a filter peaked at 50 ops, at which

frequency all power has been removed. Lower frequencies are

also well reduced but the higher ones are not so much affected.

In fact, the power at 100 cycles is slightly greater than
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in the original series. This is not a computational error.

As discussed below it seems to be a necessary characteristic.

A more convenient way of showing the filter

characteristics is to plot the quantity

Power removed at w
Initial power at w

This graph is shown in Fig. 2.10 . It shows how

frequencies lower than 50 cycles are much preferred to those

greater. It is possible that this curve would not represent

the filter characteristics of a 50 cyole oosine operator

used on another type of series. There is some reason, however,

to suspect that it does, and that, in fact, the curve of

Fig. 2.10 continues downward considerably below the axis

(thus representing amplification rather than filtration).

If we were to use a series containing mostly frequencies

between 100 and 200 cycles, the 50 cycle operator would

yield very high errors of prediction. The sum of squared

errors would be far from the minimum of Fig. 2.1. Hence

the power in the error series would probably be greater than

that in the original series. This could only come about

by an amplification of certain frequencies, which would

naturally occur for frequencies greatly different from

50 cycles. In this example 200 oycles is chosen as an upper

limit, because with a spacing of 2.5ms unique curves only

exist from 0 cycles to 1/2h or 200 cycles.
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Fig. 2.8

POWER SPECTRA

For series with Gaussian spectrum
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Fig. 2.9

AUTOCORRELATIONS (R(ih)
For series with Gaussian spectrum
withQr = 2etops a = 50 ops (normalized).

-----For error series generated by a
cosine operator of frequency 50 Ops
on above series (unnormalized).
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Fig. 2.10

FILTER CHARACTERISTICS

FOR 50 CYCLE COSINE OPERATOR
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A Nethod of FiUndi Linear O2erators for Least Sauares

Fitting Procedures

Described in this section is an iterative method

of approaching the values of coefficients for a least

squares fitting of linear operators to multiple time series.

The problem arose in connection with the determination of

linear operators to use in picking reflections from sels-

mograms. t The method is extremely inefficient and is

really only possible with the aid of very high speed comput-

ing machines, but it gives interesting insight into the

behaviour of matrices, which helps in constructing other

techniques.

We are trying to fit a linear operator of the form

xi+k -e + aOxi + a,,, .. + aM16i-M

+ boy, .......... + bMNyiM

2.24

+ iOz . + 0Nzi-M

+ du I.......... + dMui-M

to an interval of the sequences x., yi, Z., and ui so that

IE(zk ~ ik2 is a minimum. 2.25

The plan is to guess initial values of the constants

a, a., b5, c., and d. and compute 2.24 . Then adjust the

constants so that I is continually reduced. The initial

Ref. 5
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values chosen are a =i (mean of series) a b a

do = 0. These values are the values which the constants

would assume under least squares fitting procedures if the

xi series were truly random and had no predictability. With

these values of the constants I = I(i,0,0, .. ) becomes the

sample variance about the sample mean.

The computational procedure is:

1. Find I(i,0,0, ... )

2. Find I(x+ & a., o,o,..)

3. If 2 <1, continue adding &a until

I(i+naa, 0,0, ...)> I(i+(n-1) a, 0,0, ... ).

If 2> 1, subtract &a and continue to

subtract until I(i-n&a, 0,0, ... ) >

I(i-(n-l)aa, 0,0, ... )

4. Using i+(n-l)A a, 0,0, ... , as the new starting

point, find I("+(n-l)a,A a, 0,0, **

and repeat the steps under 3.

5. Work successively in this fashion with each

of the variables a, a0, a1 ...dM*

6. Start the process over again with the

variable a.

7. Continue recycling until the desired

accuracy is reached.

It is interesting to consider the geometry of

this process. If we substitute equation 2.24 into 2.25,



we find that I is parabolic in each of the coefficients

a, a., b., os, d. For 'simplicity consider the case where

we have only two coefficients a and b. Then I is a two

dimensional paraboloid in a and b whose minimum we wish to

find. I is positive or zero for all a, b and has one

minimum. Contours of I = o are ellipses in the a b plane

of constant major to minor axis ratios, and are centered at

the minimum. Figs. 2.11, 2.12, and 2.13 illustrate three

situations that might arise. In Fig. 2.11 the contours are

circular which is the case when the matrix of the normal

equations associated with the minimum fit is well-behaved.

Fig. 2.12 is the more usual situation where the contours

are definitely elliptial. Fig. 2.13 shows a very badly-

behaved situation corresponding to near singularity of the

associated matrix.

The solid line shows how the iterative method

described above would converge toward the minimum point

in the three situations. The dashed curve shows how

another iterative method, the steepest descent method,

would converge in these situations. The steepest descent

method runs into trouble in the near singular case because

with finite increments it cannot land on the long axis of

the ellipse. It is forced to wobble back and forth, much

as a small ball would wobble rolling in such a trough.

The method described above would also encounter trouble if

the increment were not fine enough, for if it got near the
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trough the next increment would carry it across the trough

to a greater value of I.

These figures illustrate a fundamental problem met

with in iterative methods. The fine increments necessary

in treating the near singular case are very inefficient when

used on well-behaved data, whereas the larger increments

applicable in Fig. 2.11 could never find the minimum of

Fig. 2.13 .

A program was written for the WWI Digital Computer

which would do this one-variable-at-a-time type of iteration.

It is described in Appendix C. The computations it carries

out take fifteen or twenty minutes of machine time, but

they represent nearly a year of hand computation. The

program can print out each successive value of I as it is

computed. Fig. 2.14 shows a plot of these values as the

program converges towards the solution of a particular

problem. This diagram shows how I is parabolic in each

coefficient. We also note that all the parabolas have

approximately the same shape. This indicates that if there

is a predominant long ellipse axis as in Fig. 2.13 , it

cannot be close to parallel to any of the axes a, a., ds,

for if it were, the parabolio section in the corresponding

direction would be quite flat. One surprising feature of

this diagram is the failure of the parabolas to tend to

flatten as I is diminished.
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This is a convenient point to consider the

problem of the importance of obtaining the exact solution.

If we look at Fig. 2.13 , we see that values of a and b at

the point A will reduce I almost as well as values at the

true minimum 0. Individual errors (xf.-xg ) will likewise

be practically identical. The effect of the displacement

OA will not be felt until the values at A are used to

predict outside the interval where the minimum fit is taken.

Suppose the series is

and the minimum fit is taken in the interval I of this

series. What happens when we predict the interval II with

coefficients chosen in I?

Consider Fig. 2.15 . The dark solid line represents

the long axis of the ellipses for interval I and the light

solid lines, the contours for this interval. The true

minimum of these contours is at 0. Likewise, we can draw a

similar contour picture for the interval II. If we assume

the dynamics are but slightly different in the two intervals,

the second contours will be slightly rotated with respect to

the first, and, there will be a small displacement of the

mininwm. The heavy and light dashed lines in Fig. 2.15
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represent these contours for interval II. Since we are

considering the near singular case, the deviation of the

sum of squared errors for the second interval from its value

on the heavy dashed line will vary as the square of the

distance from a point in the ab plane to the heavy dashed

line.

Now suppose in finding our minimum point for

interval I we had landed at the point A which satisfies

the least squares criterion almost as well as the true

point 0. The deviation of the sum of squared errors when

point A is used to predict interval II will be proportional

to (AD)2 which would be about sixteen times greater than

if the point 0 were used, since OE - 1/4 AD. On the

other hand, if we had landed at the point B for the first

interval we would get a sum of squared errors smaller than

if the point 0 were chosen. Again, if the point F were

taken, the sum of squared errors for interval 11 would not

be appreciably different than for the point 0.

These effects have been noted in computed data.

The indication is that the true minimum point 0 must be

chosen if we are to take the sum of squared errors as a

valid comparison of the changing dynamics in various intervals

of a series by this method.
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PART III



SOME INTERPRETIVE PROCEDURES

In this part we present several ideas which may

be applicable to answering certain questions involving

seismogram analysis. Two of the ideas have had some testing,

the others none. With one exception these ideas relate

specifically to reflection seismic records, and arious

possibilities in picking reflections therefrom. The questions

are:

1. In a two velocity system, e.g., shear and compress-

ional waves, can we set up a method for separating

these velocities and can we apply it to reflection

determination?

2. In the use of linear operators for seismogram

analysis, is there another measure of prediction error,

other than the "error curve", which will show reflections?

3. Can we obtain information on the step-out times of

reflections, by the use of linear operators and the

concept of ensemble averages?

4. Can a special seismometer set-up be used in con-

junction with correlation analysis to pick reflections?
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Velocity Senaration

The determination of velocities for compressional

waves in the earth at shallow depths is relatively simple

due to (1) the ease in generating such waves, and (2) the

fact that the first arrivals are the compressional waves.

Shear waves are more difficult to generate with sifficient

amplitude to separate from the earlier arriving types.

Although with the proper equipment this can be done by

visual inspection of the seismogram, t it seemed of
interest to consider if a statistical test could be devised

to help in this problem.

The approach was to set up a simple model approxi-

mating the physical situation.

Assuke we have two wave forms A and B traveling

horizontally at velocities VA and VB, where VA Vb' past

three geophones F, G, and H, equally spaced with separation

d. The wave shapes do not change with time. Traces F,

0, and H then represent composites of A and B with different

time lags. Assuming VA is known, the problem is to find "B
and, if possible, the wave forms A and B.

Divide the time scale into units such that the

no. of units per sec. is L. Since V and d are known we mayA
line up F, G, and H so t bat very nearly

t Ref. 8
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FNW AN+ BN 3.1

N A AN + B%-j 3.2

HN1i AN + -e23 3.3

where the time lag between traces is approximated by j units
j -dd

so that ..... * . +
L VA VB

or

IVA'
B 3 VA+IA3.

This is illustrated in Fig. 3.1 -

From equations 3.1, 3.2, and 3.3 we can get

AN AN~j GN - N-j 3.5

AN- AN-2j KHN ?N-2j 3.6

3.5 and 3.6 are recursion formulas giving AN-kj and

AN-2kj respectively (k = 1, 2, ...) once AN *.e * .j+1

are known. Now if j has its correct value then it is easy

to show that regardl.ss of how we choose the initial A's

both formulas give the same value for AN,-2kj # If 3 is

slightly wrong then the two series will differ slightly.

The difference will increase as j strays further from its

true value. We may now set up a procedure for finding this

value. Assume values for j and for A., AN., .. +

use equations 3.5 and 3.6 to calculate the two series (to
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a certain length), find the mean square difference between

the series, and plot this difference as a function of J.

In the ideal ease, this function will go to zero for the

correct value of J. In practice we can expect this

difference function to have a minimum at the correct value.

Thug in theory at least, j is determinable.

Equation 3.4 may be used to find VB . Although the exact

wave shapes are indeterminate in the general case, there

may be obtained some information about them. Assume the

first j values of AN are taken to be zero. If j is correct,

then the series from equation 3.5 represents the true AN

with the first j values subtracted suooessively. Thus the

series from equation 3.5 might be expeoted to have the

same frequency characteristics as the true AN'

In certain oases the assumption that AN ** -

0 will be fairly accurate. In these cases the wave forms

should be determinable. Examples would arise in the

separation of shear and compressional waves where it is

known that the shear waves arrive late, and in refleotion

picking.

Another possibility in this problem would be the

use of pure cross-oorrelation between two traces. We

should expect to get a peak in the correlation at a lag

corresponding to the velocity VB and the particular geo-

phone separation. However, if the wave form B were of small
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amplitude, the shape of the cross-correlation curve would

effectively be dominated by that of the auto-correlation of

wave form A, and the selection of the peak would be somewhat

arbitrary. On the other hand, the mean square difference

between equations 3.5 and 3.6 should still show a true

minimum at the correct lag.

We can adapt this idea to the selection of re-

flections on seismic records. Here we make the simplified

assumptions that the refleotion consists of a wave train

with zero amplitude between reflections as in Fig. 3.2 .

This is assumed to occur on two traces in the same form and

at the same time (i.e., there is no step out time of the

reflection which is assumed to be coming in vertically). In

this case equation 3.5 alone is applicable and we need only

two traces.

AN -j w N A ~ N- 3.5

3 is taken from the step-out time of the initial

breaks on the seismogram. We then select some interval j

units in length in which AN is zero (a non-reflection

interval), and use equation 3.5 to predict the remainder

of the reflected wave. For interpretation it is convenient

to plot the running variance of the predicted reflection.

Now the assumptions will certainly not be upheld

exactly on any real seismic record. A certain amount of

random energy will be in phase between any two traces and

would be picked out by this method as part of the predicted
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reflection. To alleviate this situation we can use three

traces and predict the reflected wave from the three

possible pairings of these traces. Adding the three predicted

waves would tend to accentuate components in phase between

all three, and to minimize the random, in-phase components

between any two traces. For three traces FN' N, and HN

we can express this sum as

3N+K * N +"N+ j + AN+ K-*j + ON+ K

+ 2HN+K - N - N+K 3  G

where j corresponds to the step-out between FN and GN and

K the step-out between F. *

Testp of the Nethod

l. Selection of Shear Velocity

An initial test was constructed which showed that,

when the assumptions were exactly upheld, the minimum of

the plot of the squared differences between equations 3.5

and 3.6 was quite sharp.

On this basis three adjacent traces of a seismo-

gram were converted to numerical form and the method applied

to these real series. The seismogram was taken at Revere

Beach, Mass., in unconsolidated sediments, by Peter Southwick.

Special generating apparatus was used so that the shear

arrivals were quite prominent. This record is now lost, but
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Fig. 33 shows a very similar seismogram taken with the

same apparatus. The first line of check marks on this

seismogram indicates the first arrivals, and the second line

of check marks was picked as the arrivals of the shear waves.

This second line permitted a direct com)utation of the shear

velocity.

The readings for the three traces were lined up

in accordance the firnt line of time breaks, and equations

3.5 and 3.6 were computed for a variety of values of J. In

each case the first j values of A. were assumed to be zero.

The sum of squared differences between these two series were

computed for each J, and normalized by the number of terms

in the series for each j. A plot of these quantities appears

in Fig. 3.4 .

This figure shows two distinct minima (at 3 13.3

and j a 16.0) rather than just one. Upon examination it

turned out that the value J = 13.3 corresponded to a shear

velocity which would have been computed by direct interpre-

tation of the first two traces chosen. The second minimum

corresponded to a eloci ty which would have been determined

directly from the second and third traces chosen. The value

of velocity computed by the entire second line of check marks

of Fig. 3.3 lay between these two values.

Fig. 3.5 shows a running average of the points in

Fig. 3.4 (by overlapping groups of three) which exhibits

a flat minimum between j = 13.3 and j = 16.0 . The
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oorresponding velocity was quite close to that computed

from the second line of check marks.

2. Predioting a Reflected Wave

To test whether or not a reflection could be

predicted by these methods, a seismogram showing a pro-

minent reflection was chosen (MIT Record No. 1 t). In this

record linear operators had been computed and error curves

derived. These error curves showed marked peaks at the

reflection so the ourves were taken as a basis of comparison.

From two traces on this record equation 3.5 was

computed. j was selected from the initial step-out between

the traces and the non-reflection interval ohosen to ocour

after the refleotion. The variance of the predicted wave

(in overlapping groups of ten) is plotted in Fig. 3.6 .

The dotted and dashed curves of this figure show error curves

for linear operators with different prediction distances k.

The variance curve does not reach a peak in the reflection

as rapidly as do the error curves, but it does compare

favorably with them in general shape during and after the

reflection. Before the reflection the discrepancy is more

noticeable. This may very well be attributable to the f act

that operator interval was chosen just before the 2fleotion.

In the operator interval, the least squares fitting procedure

forces the error curves to be as low as possible.

tfRef. 4
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Conolusions

The two tests discussed show that the expected

effects are noted. However, the data used are reasonably

ideal, in the sense that ordinary methods of interpretation

are adequate. Whether or not the statistical teobniques are

better can only be determined by many further trials.

Situations difficult to treat by the ordinary methods will

also fail to uphold the simple assumptions of the theory

presented here. On the other hand, only the simplest forms

of the theory were used in the mcamples. Refinements, such

as the use of three or more traces for reflootion picking

may give more valid results.

1II-9



The "error curve' , as used by the Geophysical

Analysis Group for picking reflections, is a running average

of the squared differences between a predicted and an actual

seismic trace. Fig. 3.? shows an actual trace (the solid

curves), and three predictions of this trace, from linear

operators with different values of prediction distance.

From this diagram we see that the error curve is a running

measure of the vertical differences between the predicted

and a etual traces.

At the reflection (shaded) these differences are

seen to become large, and hence the error curve rises to a

peak in this interval. The reason the differences become

large is not because there is a big discrepancy between the

average amptitudes of the predicted and actual traces. From

tie diagram it appears that the reason is that there is a

horizontal displacement of the oscillations of one trace

with respect to the other. In other words, there is a phase

shift between the predicted and actual traces during the

reflection, which disappears shortly after the reflection.

It seems then that a test of phase relationships

might well show the reflections as well as the error curve

does. A fairly rigorous way of testing this phase shift

would be the following:
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1. Select highly overlapping intervals of the record.

2. Compute the cross-spectrum between the predioted

and actual traces in each interval, thus obtaining the

phase relationships.

3. Plot the phase angle of the dominant frequency as

a function of the interval chosen.

Practically, this is an involved procedure. We

can use a simple but crude method to get approximately the

same results. Since phase shift is expressed by horizontal

displacement we can measure this displacement directly from

graphs such as in Fig. 3.7 . This requires that we be able

to follow corresponding waves in the two traces, which is

subject to personal interpretation.

The displacement was measured for the upper set

of curves in Fig. 3.7 . From equally spaced points (in time)

on the solid ourve the horizontal displacements to the

dashed curve were measured. Displacements to the right were

considered positive, those to the left negative. Where

such measurements could not logically be made (for example

on the peak ocourring at about .96 sec.) values were taken

midway between the last value that 2cQd logically be made

and the next such value. Once this series of displacements

was determined, its individual terms were summed in groups

of twenty overlapping by ten, in order to smooth the data.

These sums are plotted in Fig. 3.8 .
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This curve indicates a rapid change of phase

oours at the reflection, the phase rising to a peak in the

middle of the reflection, and falling off more gradually

thereafter. It seems surprising that the curve is almost

entirely positive. If this effect is characteristio,

perhaps we should consider as significant only those portions

of the curve above a certain mean (about 25 or 30 units in

Fig. 3.7). From the original record it appears that there

may be another reflection at about 1.23 seconds, which could

conceivably cause the rise at the end of the curve.

This is a purely empirical curve. Perhaps it

only holds for the particular ease treated. One would

suspect that the arrival of reflected energy would be

accompanied by a rapid change in phase relationships. How-

ever, it does not seem reasonable that these changes should

be in one direction since the times of arrival of reflected

energy are random. Possibly we should deal with the

original series only, and compute the rate of Qhanu of

phase angle (between two overlapping intervals) as a function

of interval.
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Snsemble Average

The step-out time of a reflection is a property

of several seismic traces rather than just a single trace.

The error ourve for linear operators, as defined elsewhere

in this paper, is a property of a single trace - a time

average of a single error time series.o To get information

on the step-out time we must consider operators chosen for

different traces. In this connection it is convenient to

use an "ensemble" average. This is an average across the

"ensemble" of error time series generated by the various

operators chosen.

Let us suppose that we have taken a series. of

operators on a record which consists of traces from equally

spaced seismometers. Suppose there are T traces, and on

the 4 th trace (4 = 1, 2, ...T) we have chosen N. operators.

For the kth operator on this trace (k = 1, ... N) there is

an associated error time series which we define as ei .

Then, for example, we may construct a single error time

series C to be associated with the 4th trace by the

expression

E4a E (e ]kA 3,7I zw

We may then average these error time series over

the various traces. Between traces we observe the effect of

step-out. Hence we construct the error time series

with an arbitrary lag or lead a

111-13



(a) T (A)
S = S E iamOtl, 2, .. 3.8

A=l

with the expectation that a peak on this error time series,

corresponding to a certain reflection, should be highest and

narrowest for that value of a most closely corresponding to

the true step-out of the given reflection.

No attempt has been made yet to compute 3.8 . It

would be a fairly simple task to program this equation for

the WWI Digital Computer as a follow-up of the Prediction XV

program described in Appendix B.
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Travelling- CgrreAtions

As an approach to the problem of using a special

geophone layout for reflection picking, consider the

following arrangement. Two geophones G1 and G2 are placed

in the ground, one vertically under the other at a distance

d. Assuming the ground homogeneous and non-dispersive

around the geophones, the responses of G and G2 may be

considered to be due to superpositions of many plane waves

travelling with a velocity V from many different directions.

In the absence of big refleotions, the major contribution

to the responses will come from waves having directions not

far from the horizontal.

Now consider the cross-oorrelation of the two

responses at G and G2 In particular consider the value

of the function for a time lag equal to d /V. It appears

that this value will be strongly influenced by the amount

of vertical wave contribution present in the responses, since

d/V is the time of direct travel from G2 to G. The

cross-correlation at the lag 4/V should rise rapidly at a

reflection and drop off afterward.

In practice we would have to compute this correlation

over highly overlapping time intervals of the response

functions in order to obtain the correlation as a function

of time. The correlation program described in Appendix D

is adaptable to this type of analysis. So far however, no

seismograms with the above geophone arrangement have been

available.
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CONCLUSIONS AND SUGGESTIONS $OR FUTURE WORK

It is difficult to make evaluations of validity on

methods which have undergone little testing. Nevertheless

we may draw certain conclusions from the work presented here.

Polynomial gravity approximation, as presented here,

seems of sufficient simplicity and validity to justify a

considerable amount of further study. If further trials

show more promise it would be well worth-while to find the

inverses of the matrices of Table III. In any event,

polynomial approximations of this type have applications in

many other fields, and the simplifications brought forward

here may be of real value in these other applications.

The properties of cosine operators are of mathe-

matical interest, but it is hoped that studies of this sort

will lead to more practical results. In particular, further

pursuit of the filter characteristics of linear operators

will lead to a better understanding of the extent of real-

izability of equivalent electronic filters, and or to

simplification in the determination of such operators.

The author is more hesitant about recommending the

various procedures iscussed in Part III. Seismograms

exhibit extreme variability in their characteristics and,

whereas the examples given here are encouraging, the pro-

cedures may fail on other types of records. However, the

problems they attempt to settle are of great practical oon-

cern and all promising techniques should be either proved



or disproved. Phase is a crucial variable in these problems,

and probably considerable effort should be spent studying

thi s parameter.

As for the Appendixes, the author feels that the:

programs described therein have genuine value. Anyone Con-

cerned with research depending largely on computation

appreciates the fact that obtaining errorless results is a

major problem. Programs such as these effectively eliminate

this type of problem, and are available for the use of

persons interested in the sort of computations they perform.
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APPENDIX A

POLYNOMIAL 1 (2492 m 1) - Desoritign and Use 0$f

This program was written for the WW1 Digital

Computer to eliminate the task of computing the residuals

from a least squares fitting of an n order polynomial to

data taken over an arbitrary-sized rectangle. A copy of

the program appears at the end of this Appendix.

Polynomial I does the following.

I. It solves the equation

g(xy) = 000 + C lx + C2 0 
2 + ..... + cn0

+ c 0 y + Cxy + *... + C xn~l

+ 00, (n-1)yn"' + Cl, (n-l)Xt

Ony

where the Ck !s are given, n, the order of

the polynomial is given, and the values of

x and y are to be taken over a rectangular

grid measuring 2N by 2M, and with axes centered

as in Fig. 1.2.

II. It then forms the differences g(xy) for

all values of g(xy) on the grid. These are

the residuals.



III. It prints out these residuals in the same

network fashion that the grid was chosen.

USe of Polnal I

There are certain conventions which must be

observed in the use of this program. The constants

defining the nature of the polynomial and grid must

appear as follows:

Eegister 440 +n order of polynomial (less than 7)

(Octal) 441 +N greatest value of x

442 +1 greatest value of y

The coefficients Ck of the polynomial must be scale

factored in a special way because they decrease in mag-

nitude rapidly as J+k increases. The scale factor is

10 (+k)-2, which in most instances will guarantee that

all are less than unity in absolute value, but not

greatly so. They must appear in the machine as follows.

Register .. 443 C "x 10-2 461 C 10

(Octal) 444 Clo x 10 462 022 x 102

445 C20 x 1 463 C32 3

446 030 x 10 464 C42 x 1O

447 040 x 102 465 0310

450 C50 x 103 466 C13 x 102

451 060 x 104 467 C23 1(3

452 001 x 10 1  470 033

453 011 x 1 471 C04 x 102

454 021 x 10 472 Cl4 x 103



455 C31 102 473 024 x 104

456 C41 x 103 474 c05 x 103

457 C51 x 10 475 x15 x 104

460 x02 0 476 C6 x 104

The data g(xy) which is presumed to be taken

over the gridwork, is scale factored by 10'2 and appears

in the machine as follows:

Register 540 g(-NN) x 10-2

541 g(-N+1,N) x 10

542 g(~N+2,M) x 10

. g(N,1) x 10 -2

. g(-N,M-1) x 102

. g(-N+1,-L) x 10" 2

. g(N,?-1) x 10- 2

. g(--N,M-2) x 10-2

. g(-N,-M) x 10-2

. g(-N+1,-N) x 10. 2



S g(N,--M) x 10-2

. g(-N+1,-M) x 10

. g(N,-M) x 102

Now suppose the information n, N, 1, and the

.4k I s are prepared on a tape with the tape number X, and

the date g(xy) is prepared on a tape with the tape number

Y. Then the instructions for the operation of this program

would be

Erase storage

Read in 2492 m 1

Read in X

Read in Y

Start at 127 (Octal)

The residuals are printed out by the direct

printer in about three minutes or so depending on the

size of the grid. They appear as four-digit numbers where

the decimal point is understood to occur after the second

digit.

As an example of the output we include a sample

of three sets of residuals. These were derived for the

three sets of coefficients used elsewhere in this paper.

The sample illustrates the convenience of this form of

answer for contouring purposes. In fact, with only slight

modification (inserting two extra carriage returns between



lines) these numbers would appear on a grid with square

unit cell, and could be contoured directly, on the result

sheet.

A Technical Feature in Polynomial I

We describe here a technical feature in this

program which might be of use to other programmers. The

problem is that we are multiplying numbers rapidly de-

creasing in magnitude with I+k (the Ck' s ) by numbers

rapidly increasing in magnitude with J+k (x1 y ) while the

product is of a relatively constant order of magnitude,

which must be in a form which we can add to other such

products.

What we want is the product CJkxiyk to be scale

factored finally by lo . To preserve accuracy during the

computation of the product we do the following:

1. Form x 215 ad yk 2-15 and then

scale factor to x 2-215+u ay yk 2-15+9

by use of the scale factor order.

2. Form C k0(1+k)-2x42-15+uy2-15+P

C x k2-30+u+% O(+k)-2 (1)

To get this product to the form CJk k10-2

we must multiply by

It appears that we merely need to store the

negative powers of 10, multiply the expression (1) by

10-(i+k) and then shift left 30-(a+p). However the negative

powers of 10 cannot be stored with any accuracy for high

A+k so we write 1 0 4+k)2 30-(a+p) in the form



2-( J+k )log210+30-(a+p)

2-3.32193(AI+k)+30-(a+p)

S2-32193(,t+k) [2-3($+k)+30-(a+p)3

(2.32193)(+k) [2-3(+k)+30-("+P)]

(. 8 0 0 )4+k [2-3(I+k)+30-(a+p)]

We can store the powers of (.800) with ample

accuracy. Thus we multiply by the appropriate power of

(.800) and follow this by a shift left or right according

to the exponent of 2. (The zeroth power of (.800) is put

in as +.9999.)
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APPENDIX B

PREDICTION XV (2539 m 2) - Desoriation gnd Use Of

This program was written to provide computational

facility for predicting a series xi(Y±,Z,. or u.) with a

linear operator of the general form

i+k i+k, zi+k or ui+k) a + a0 i a xi.. ax-,

+ bo01......+ bAvi-M

+ 0 z . .. .+ 0Mz i-N

+ doni. . dui-M

where the prediction distance k and the nutber of lags N

are arbitrary but have the restrictions that N 7 and

N+k 19. The four series which this program handles

contain $00 members each so that i ranges from o through

499. This first prediction computed is for i+k = 20 and

the last one for i+k = 499. After doing this computation

the program forms the running. average of squared errors

between the predicted and actual series

E (xI-xi)2  j = 25, 35, 45, 55, -.. 495
i=3-5

which is called the "Error Curve".

There is considerable choice of output. The

alternatives are any combination of or none of the following:

1. Print-out of the errors and sums of squares

2. Print-out of just the sums of squares of

errors.



3. Photographs of oscilloscope displays of

the sums of errors squares

An additional choice is the use of magnetic tape delayed

output for 1 and 2 above, which is about fifteen times

faster than direct print-out.

This program handles up to eight operators at a

time in the above fashion. When the magnetio tape output

is used, the error curves can be removed from the machine at

the rate of one every ten seconds whereas the individual

errors and error curves require fifty seconds for each

operator. Each curve would represent about a week of hand

computation. Once the computations are completed the individual

errors (xi-xi) for all operators are left in magnetic drum

storage so other programs can use them for different types

of averaging processes rather than just the Error Curve as

described above.

On the next three pages are illustrated the

various output forms. The first page is a reproduction of

the individual errors and error curves for two operators.

The results for each operator appear as a block of numbers

10 by 48 and a right-hand column of 48 numbers. The block

represents the 480 individual errors whereas the right-hand

column is the Error Curve, each member representing the sums

of the squares of the 10 individual errors in the corresponding

row to the left. The number appearing over the upper left

corner of each block is a number assigned to the particular

operator for identification purposes, and is printed by the



program. The number printed over the center of each blook

was inserted later.

The next page shows the output form for four

operators when just the Error Curve is desired. The +0000

identification number indicates that the operator was chosen

as theiarianoe operator which has the forn x (means

of series). The Error Curve for this type operator becomes

the sample variance curve and provides a basis for testing

the statistical significance of other operators predicting

the x series.

The third page is a photograph taken automatically

by the program of an oscilloscope display of one-half of

an Error Curve. A vertical and horizontal axis are also

displayed.



+1300 12.4 Second Half
+0027 +0052 +000 -0036 -0009 +0027 +0016 +0024 +0032 +0024
+0000 +0007 +0001 -0012 -ooo6 +0014 -0001 -nn41 -oooo -n0i
-0020 +0000 -0009 -0014 -0007 -0030 -0031 -000 +0054 +0073
+0058 +0053 +0009 -0025 +0032 +0014 +0003 -0016 -0066 -0024
+0006 +0019 +0062 +0013 -0021 -0015 +0003 -0002 +0034 +0050
+0010 +0005 +0013 +0011 -0016 -0007 +0008 +0031 +0040 +0055
+0057 +0030 +0043 +0012 -0067 -0032 -0019 -0028 +0009 +0003
-00±9 +000± -ooo8 -0064 -0021 -oo43 -0019 +0043 +0020 +0053
+0088 +0079 +0054 +0041 +0005 -oo4o -0046 -0036 -0034 -0049
-0059 +0043 +0093 -ooo6 +0034 -0025 -0078 -ooo9 -0042 -0091
-0021 -001± -0005 +0095 +0153 +0056 +0009 -0048 -0022 +0075
+0000 -0003 +0046 -0001 -0001 +0021 -0003 +0001 +0027 +0048
+0016 +0008 +0031 +0005 +0014 -0009 -0022 +0001 -0003 +0026
+0000 +0010 +0054 +0024 +0019 +0025 -0021 -0027 +0013 +0000
-0005 -oo6 +oo14 -0016 +0010 +0030 -0014 -0002 -0054 -oo41
-0049 -0073 -0022 -0050 -0042 +0019 +0045 +0042 +0035 +0028
-0013 +0002 +0018 -0013 -0027 -0018 -00±7 +0008 -00±9 +0019
+0047 +0032 +0040 +0020 +0025 +0002 -oo48 -0022 -0024 -0028
+0002 +0025 +0051 +0067 +0079 +0067 +0037 +0035 -oo47 -0058
-0048 -0092 -0036 -oo48 -0060 +0013 -0000 +0007 +0019 -0013
-0029 -0021 -0025 -0010 +0039 +0018 +0033 +oo44 -oo43 -0051
-0002 -0035 -0005 +0010 -0022 +0025 +0o40 +0054 +0086 +0031
+ooo9 -ooo -0060 -0053 -0025 -0049 -0032 +0042 +oo46 +0039
+0017 +0010 -0043 -0031 -0003 -0057 -0039 -0053 -0009 +0070
+0037 +0017 -0025 -0058 +0001 -0011 -0010 -0012 -oo4o -0005
+0028 +0021 -0001 +0008 +0014 -0014 -0004 +0021 -0002 +0017
+0050 +0036 +0017 -0007 -0060 -0052 -o41 -0086 -0023 -0010
+0021 +0060 -0002 +0003 +0000 -0052 -0052 -oo41 -0066 -oo6
-0028 -ooo8 +0013 +0035 +0029 +0034 +0062 +0082 +0067 +0029
+0005 -oo40 -oo69 -0059 -0038 -0040 -0025 -0007 -ooo4 +0025
+0043 +0028 -ooo4 -ooo4 -0014 -0028 -0036 -0027 -0025 -0017
-0010 -0002 -0002 -0021 +0008 +0026 -0001 +0005 +0022 -0013
-0021 -0003 -0009 -0011 -0047 -0039 -0051 -0072 -0001 +0010
+0023 +0036 +0002 -0002 +0014 +0003 -0031 -0010 -0001 -0017
-0009 +0012 -0234 -0242 +0186 -0140 -0191 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075
-0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075 -0075

+0007
+0001
+0009
+0012
+0007
+0005
+0011
+0011
+0026
+0031
+0043
+0005
+0001
+0005
+0004
+0017
+0001
+ooo8
+0025
+0017
+0010
+0014
+0015
+0015
+0006
+0001
+0019
+0018
+0018
+0013
+0005
+0001
+0011
+0002
+0220
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054

12.4 Second half

-0023 +0016 +0030 +0003 -0000 -0013 -0029 -0013 +0011 -0006
-0001 -0036 -0052 +0013 +0010 +0033 +0015 +0010 +0007 -0007
-0021 -0031 -0003 +0000 -0035 -0032 -0055 -0044 -0003 +0075
+0134 +0130 +0033 -0028 -0064 -0077 -0034 -0014 -0032 -0053
-0041 +0060 +0069 +0051 +0016 -0047 -0058 -0030 +ooo8 +0024
+0022 -0006 -0012 -0004 +0018 +0007 +000 +0020 +0035 +0073
+0069 +0035 +0024 -0024 -oo81 -0096 -0068 -oo46 -oo41 -0023
+0014 +0012 +0004 +0030 +0014 -0024 -0003 +ooo6 +ooo4 +0051±
+0071 +0057 +0046 +0007 -0023 -0061 -0083 -0052 -0052 -0063
-0054 +0058 +0112 +0128 +0120 -0023 -0149 -0158 -0123 -0086
-0068 -0018 +0029 +0105 +0190 +0209 +0132 +0000 -0096 -0139
-0084 +0018 +0004 -0015 +ooo4 -0018 +0021 -0007 +0017 +0079
+0033 +0001 +0002 -0023 -0012 +0001 +0041 +0015 -0023 +0003
-0027 -0019 +0019 +0037 +0050 -0011 -0068 -0052 -0023 +oo41
+0065 +0040 +0001 -0043 -0035 -0019 +0008 +0040 -0030 -0073
-0126 -0126 -0056 -0036 +0025 +0057 +0098 +0100 +0060 +0049
-0020 -0051 -0027 -0047 -0056 -0049 -0023 -0005 +0011 +0022
+0014 +0007 +0052 +0047 +0027 +0005 -0000 -0025 -0061 -0017
+0002 -0007 +0018 +0039 +0057 +0067 +0074 +0029 -0050 -0041
-0±10 -0146 -0082 -0063 -0008 +0029 +0049 +0032 +0003 +0014
-0037 -0052 -0037 -0029 -0000 +0039 +0078 +0068 +0021 -0020
-0038 -0050 -0071 -0057 -0003 -0027 -0006 +0085 +0087 +oo42
+oo8o -ooo6 -0083 -0077 -0110 -0095 -0017 +0025 +0061 +oo8o
+0086 +0013 -0079 -0083 -0102 -0039 -0016 -0063 -0003 +0018
+0081 +0135 +0052 +0002 -0090 -0±08 -0057 -0061 -0048 -0020
+0012 +0037 +0034 +0012 +0003 s0020 +0008 -0003 +0006 +0015
+0010 +0022 +0042 +0018 -oo41 -0084 -0120 -0100 -0028 -0002
+0077 +0090 +0042 +0000 -0060 -0035 -0074 -0075 -0045 -0071
-0023 +0013 +0046 +0073 +0032 +0021 +0027 +0030 +0055 +0068
+0007 -0065 -0078 -0088 -0066 -0029 -0030 -0016 -0001 +0019
+0015 +0012 +0009 -0027 -0023 -0003 -0010 -0011 -0018 -0011
-0004 +0009 -0010 -0016 +ooo6 +oo14 +0014 +0015 +0000 -0026
-0043 -0036 -0009 +0001 +0006 +0013 -o045 -0090 -0054 +0007
+0032 +0017 +0027 +0013 -oo4o -ooo8 -0003 -0025 -0018 -0031
-0015 +0010 -0219 -0222 -0215 -0213 -0219 -0209 -0201 -0175
-0255 -0235 -0180 -0180 -0±80 -0±80 -0±80 -0±80 -o18o -01±0
-0180 -0±80 -0180 -0±80 -0±80 -0±80 -0±80 -0180 -0180 -0±80
-0±80 -0180 -0±80 -0180 -0±80 -0±80 -0±80 -0180 -0180 -0180
-0180 -0180 -0±80 -0180 -0180 -0180 -0±80 -0±80 -0±80 -0±80
-0±80 -0180 -0±80 -0180 -0180 -0±80 -0180 -0±80 -0±80 -0±80
-0180 -0±80 -0±80 -0±80 -0±80 -0±80 -0±80 -0±80 -0±80 -0±80
-0180 -0180 -0180 -0180 -0180 -0±80 -0±80 -0±80 -0±80 -0±80
-0±80 -0180 -0180 -0±80 -0±80 -0180 -0±80 -0±80 -0±80 -0±80
-0±80 -0180 -0180 -0180 -0180 -0180 -0±80 -0180 -0±80 -0180
-o18o -0±80 -0±80 -0180 -0180 -0±80 -0±80 -0180 -0±80 -0±80
-0180 -0180 -0180 -0±80 -0180 -0±80 -0180 -0±80 -0±80 -0180
-o±8o -0180 -0±80 -0±80 -0±80 -0±80 -0180 -0180 -0±80 -0180
-0±80 -0180 -0±80 -0±80 -0±80 -0±80 -0180 -0±80 -0180 -0180

+0001
+ooo4
+0013
+0050
+0018
+0007
+0030
+0003
+0029
+0119
+0142
+0014
+0003
+0013
+0016
+0065
+0011
+0010
+0019
+oo48
+0018
+0028
+0050
+0036
+0055
+0002
+0035
+0037
+0018
+0023
+0001
+0000
+0015
+ooo4
+0352
+0379
+0323
+0323
+0323
+0323
+0323
+0323
+0323
+0323
+0323
+0323
+0323
+0323



+0000

+04-54 40375 +0437 +0366 +06G5 40253 +05-1 40435 -+23r--+0644&*0530-+0342 -
+0339 40569 +0354 +0465 +0418 40611 +0357 +0346 40422 +0288 +0674 +0390

+0396- 3 +04PP-L03 +0343 40466 *0112n +0512 +0332+0355+0775 *0256
+04b3 +0423 +0313 +0593 +0216 +0395 +0399 +0399 40399 +0399 +0399 +0399

40000
+0616 +1241 +0509 +1162 +0761 +0725 +0995 +07b4 +06$1 tob64 -90 -40743
+075 4072b +0834 +0761 +1013 40594 +1030 +0871 +0437 +1340 +0646 +0771
+940536- +0977 +0667 +099 0520 +0853 +15 +0532
+1091 +0550 +0848 +1040 +0384 0900oo0900 +0900 +0900 +0900 +0900 +0900

+0000
+0373 +0337
+0391- 40394
+0359 +0406
+03b8 +0506

40000
+0800 +0713
06914 -+0667

+0653 +0696
+0770 +0613

4509

+0510
+0279

40818

+0077
+0656

+0437

+0307
40451

+0484

+0372
+G424

-0316

40408
+0362

+0886 40927 +0833
+020i406903
+0663 +0758 +0905
+0755- 0855 -+0677

40519

+0413
+0399

+0680

+0747
4+07b4

40374
+0337
f0437
+0399

40949

+0802
+07b4

+0431

+0326
+0399

+0806

+0603
+0-764

+0507 +0351 40485
40395+:0539R :+0328
+0395 +0427 +0326
+0399 40399 +0399-

40643 40703 40846

+0802 +0952 +0696
+0784 +078[+OV4

-





Use of Prediction Xt

It is necessary to prepare a tape containing

the operators and a tape containing the traces x., y.,

zi, u1. These are prepared as described in the following

two pages. Assume these are given tape numbers X and Y

respectively. Then the operating instruction would be,:

Erase storage, put Sil switch off

Read in 2539 m 2

Read in 2539 P - (Control Tape)

Read in X

Place Y in Photoelectric Reader

Start at 145

The control tapes control the output and serve

the following functions.**

2539 - PO

2539

2539

2539

2539

2539

2539

2539

2539

2539

- P1

P2

- P3

-P4

-P5

- Pie

- Pl

- P12

- P13

Print errors and sums of squares
and scope display sums of squares
Print sums of squares and scope
display sums of squares
Scope display sums of squares

Print errors and sums of squares

Print sums of squares

Print nothing, display nothing

Print errors and sums of squares
and scope display sums of squares
Print sums of squares and scope
display sums of squares

Print errors and sums of squares

Print sums of squares

DIRECT
PRINTOUT

DEIATED
PRINTOUT
(MAGNETIC TAPE)



If one of the operators on X were badly prepared,

it might happen that machine overflow would occur causing

the machine to stop while computing for that operator. If

this does happen, starting the machine over at 166 will have

the effect of ignoring the bad operator and proceeding to

the remaining ones.

Preparation of Data Parameter

Each set of data x~t y , zi, and u is prepared as

a separate parameter and then the four parameters are com-

bined into one long one. The form of each is identical.

Octal Octal Octal Octal
Address Address Address 0 Address
1054 x 1054 y 1054 z 1054 u
1055 X 5 Y 1055 z 1054 u1
1056 1056 2 10 6 z 10 6

2037 X499 2037 Y499 2037 Z499 2037 u4 99
Start at 1033 Start at 1033 Start at 1033 Start at 1033

Notes:

It is not necessary that the series contain 499

members. However, there must be four traces. If less than

four are to be used, short dummy traces must be inserted.

For consistency with the operator tape, the order of

combination of the separate parameters must be x , yi,

Zi, u .

The data must appear as integers in the range

-99 through +99.



Pkrenration of 0perator Parameters

Up to 8 operators may be prepared on a single tape

in the following fashion.

Contents Explanation

+N
+.XXXX

-0,-1, -2 or -3
+k
+M

+.XXXX
t.XXXX
+_.x~XX

N &no. of oerators on tape
Ident. no. for first operator
-0 if xi,
-2 if zi,

a x 103
a-1a7 x1.l

b x 10

00 x 10 '-

0 f

a0 x 10.

d 0 x 10 .

7

d x 10 1

I~ent. no.

-1 if YA
-3 if U1

Constants
for x.

Constants
for yi

Constants
for z.

Constants
for u.

1055
1056
1057
1060
1061
1062

1070
1071

0

1100
1101

1110
1111

1120
1121

1165

Notes:

etc.

1 rst

0
P
E
R
A
T

2*
0
P,

etc.

It is not necessary to put anything into irrelevant

registers. For example, if the first operator had an M of

3 registers 1061-1064, 1071-1074, 1101-1104, and 1121-1124

would be considered irrelevant. Again, if this operator

did not use the u series in its prediction mechanism,

registers 1111-1120 would be irrelevant.

Octal
Address

for second operator
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1 0 '70 it 00
r-011 4d - i011

_j/ 02 _ _

- 03! 's.~ ___iI 03 _______
04 ___ n04

05 _ _051

- 06 - 061
C07 

11071

10 - 4.6 101
Olt + 11

13 /e/l.f,~ ! 3

o 1 / 21 ._ 16

26 a 4 _ 120

1 6 d 11211 A
tt 0 , il 2l

/-23 4~ x7- u 123
t _4 SPT | ____4_

1024 fL2; - 125
roo6 ... 1 126

2- iL 27,

10 2 i g r _ 30

1031 a 2d3r It .131.
(632 - 132

S63333 113 1

lu34 10 341
,_____ II 3510O35 /0 c 1l 351
to 36 cA, 1 361
io37 , d 6 37

a 0 / 401_ __I40 / i- iA
S4I ( C 1141

042 1C II42
43 O A QI ij 43

1o 44 /6 1144
i45 / . 1145

t &46 / ig 46
_ o47 *111 47,

1r) 50 ' da li501
10 51 -A ' li dz1511
1052 A4, 0 OIL, _ _521
1053 ' 11|| 531

I o 541 1541

1,) 551 1 551
1056 516 56

''57 |1571

"60 0 I 60

!3 61 d 62

162 1/62 ______

'U633 1)14
1 064 i 4

10 65 65
t,66 66

o167 i 7

1071 T 11171 r
,172 1 __721 _

(673 'R1731
074 17

1o75 175

76 N 1
1077 77 _
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IS.H EET 3|
1 001 00
0O1 01
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031 0 _

04 04
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06 06

07 07

10 10
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13 Is
14 14

17 17
20 20

21 21

22 22
23 23

24 24

25 - 29
26 g- .

27 27

30 30
31 31

32 32
33 33

34 34
35 35

36 36.

37 37 _

40 40
41 41

42 42
43 43
44 441

45 45
46 46
47 47
50 50
51 1511
52 521

53 531

54 54

55 55
56 56
57 57

60 60

61 61

62 62
63 63

64 64
65 65

66 _ 66
67 67

70 7____ 0
71 -r 71

72 72
73 73

75 75

77 7

MIT DIGITAL COMPUTER LABORATORY
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TITLE M iON E INDEX

AUTHOR SIMPSICIN DATE

TAPE NUMBER 2539 !1 M 2
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APPENIX C
ITEBATION I (2615 m 2) -Decriotion and Use Of

This program was written with the purpose

of obtaining least squares fits for linear operators

as described in Part IV. It computes essentially as

described, but has provisions for changing its in-

orement after cycling for a certain prescribed number

of times.

The program was designed to be run in con-

junction with the Prediction XV program described in

Appendix B, and to illustrate the conveniences which

programs can include. The data to which the linear

operator is to be fitted is prepared in the same fashion

as in Prediction XV. The information about the operators

to be found (Iteration I solves up to eight operators

one after the other) is prepared as a single tape. The

operator coefficients once fQrmed are printed out, and also

are left in the machine in a form to be used directly with

the prediction program.

The output of Iteration I was designed to

eliminate identification problems. In addition to

printing out the coefficients identified, it prints out

the operator number, the operator parameters including

which set of data is predicted, and the variance and

minimum sums of square errors. These last two numbers



allow a rapid computation of the percent reduction

R = 1 - min va, which is a measure of the goodness of

the least squares fit. A sample of the output appears below.

Variance sum = 004953
Minimum pum = 001840
Operator No. -1010
N 066
n = 050
k = 002
M = 003
T4 predicted
a4000 = +0292

a340 = -0000
a2 40 A +0565
a140 = -0000
aO 40 = +0005

d3/0 = -0341
d2 40 = -0117
dl40 = -0410
dO 40 = +0708

The Program may be used to print out all the

values of I as they are computed. A plot of these values

for a particular operator appears in Part IV.

One other feature in this program is a *roll

back" procedure. This permits us to avoid having to

start from scratch if the machine fails in the middle of

the long computations. Every fifteen seconds during the



computation, all of electrostatic storage is transferred

to the magnetic drums which are very reliable. Then if

electrostatic storage is destroyed, we can call back the

program from the magnetic drums and start over where we

left off not more than fifteen soonds ago.

Use of Iteration I

If the operators are prepared as described on

the next page with a tape number X then the instructions

for the operation of this program would be:

Erase storage, Sil switch down

Read in 2615 m 2

Read in 2615 P (control tape)

Read in Y (data tape)

Place X in photoelectric reader

Start over at 145

The control tapes control the output and serve

the following functions:

2615 P 0 Print out operator and identi-

fication (direct printer)

2615 P 1 Print out operator, identi-

fication, and all values of I

(delayed printer).



Prenaration of Onerator Parameters

The information for each operator is prepared

as a short separate tape and the tapes are then combined

in any order. The form of each operator is identical.

Octal
Address Contents Explanation
1001 +N First member op. interval
1002 +n Length of op. interval
1003 +0, or -1 -1 if X not used
100 +0, or -1 -1if y1005 +0, or -1 -1 if z a 1A1006 +0, or -1 -1 if u
1007 +.XXX First o4erator no.
1010 -~0,-1, -2,or -3 -0 if xj, -1 if yi12 +k -2 if zi, -3 if ui1112+X3
1113 +.XXXX mean of pred. series x 10-

Start at 147

The first of the separate tapes must have one

additional register, register 1000, which contains + no.

of operators on the combined tape.

Register 2123 contains +.0010 which is the

first increment to be used for the a term. Register 2223

contains +.0100 which is the first increment to be used with

the remaining constants. Register 3421 is the counter for

the cycles at these increments. The second set of increments

is 1/10 the first set, and appears in registers 2124 and 2224.

The counter for this set is register 3433. These registers

may be changed to adapt to the particular problem.



The "roll back" proced.ure in case of electrostatic

storage failure is

Erase storage

Read in 2615 P 13

Start over at 145
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APPENDIX P

AUTO CROSS-CORRELATION I 2559 mo, ml) - DescritijnQand UseOf

This program was written for the WWI Digital

Computer to compute the unnormalized sample correlations

N+n-1
: 3x 0, 1, 2 ....m

i+N

the conventions for preparation of the data

x and Y are identical with those desribed for Prediction

XV in Appendix B, with the exception that the data tapes

need not be combined after preparation. A short tape is

prepared containing the information N, n, and m as follows

Register 1047 + N (First data point in blook)

(Octal) 1050 + n (No. data points in block)

1051 + m (No. lags)

2559 mo handles individual data tapes and is used

as follows

Erase storage, put Sil down

Read in 2559 mo

Read in Z (tape for N, n, m)

Read in X (X data tape)

Read in Y (y data tape)

Start at 770

If X and Y are not identical we get half of the

cross-correlation curve (for j 0). To get the other half,

we repeat the instructions interchanging the order of read-in



for X and Y. If X and Y are the same tape, we get the

entire auto-correlation curve, since since auto-correlations

are symmetric about the zeroth lag.

The correlations are printed out by the direct

printer as seven-place numbers, ten per line, the 09 lag

being the first no. on the first line, the 1 leg being

the second no. on the first line, etc.

2559 ml performs the same functions as 2559 mo,

but is adapted for handling the combind tapes used with

Prediction XV. It assumes there are 3 real data sets plus

a dummy set and forms the nine correlations representing the

permutations of the 3 real sets. The correlatios are over

380 values of the data, and are taken to 100 lags. The

output is the delayed printer, and requires one minute for

each 100 lag: block. At this rate the program can perform

8 or 10 million multiplications in 4 hours of machine time.

A sample of the output is shown on the next page.
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Use of 2559 al

The instructions for use are

Erase storage, Sil switch down

Read in 2559 ml

Read in W (combined data)

Start at 677

If the combined tape has 4 real data sets, and we

want the 16 permutations of correlation, then an additional

tape is used and the instructions are

Erase storage, Sil switch down

Read in 2559 ml

Read in 2559 p4

Read in W

Start at 677

2559 ml is equipped with the same *roll back"

procedure that Iteration I is (Appendix C). In case of

machine failure

Erase storage

Read in 2559 p13

Start at 677

Traveinpg Correlations

With the aid of tape 2559 p1O we can use 2559 mo

to obtain correlations from highly overlapping blocks of the

data. The correlations are over blocks 50 in length and the

number of lags is taken to be 20. The first reading in each

block has an index (N) equal to k x 10 where k = 3, 4, .

44. The procedure for using 2559 mo in this way is



Erase storage, put Sil down

Read in 2559 mo

Read in X

Read in Y

Read in 2559 plO leave in

Start at 770 (21 lags are

Read in

Start at 770 (21 lags are

Read in

Start at 770 (21 lags are

etc.

Start at 770 (21 lags are

P.E.T .r .

printed for N = 30)

printed for N = 40)

printed for N =50)

printed for N = 440)
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APPENDIX E

BIOGRAPHICAL NOTE Stephen Milton Simpson, Jr.

Attended Yale University September 1946 - June 1950,

receiving B0S. in Physics. Entered the Massachusetts

Institute of Technology in the Department of Geology in

September 1950. Member of Phi Beta Kappa and 6igma Xi.

Presently under appointment as Instructor in the

Department of Geology and Geophysics at the Massachusetts

Institute of Technology.


