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ABSTRACT
STATISTICAL APPROACHES TO CERTAIN PROBLEMS IN GEOPHYSICS
by
Stephen lHilton Simpson, Jr.

Submitted to the Department of Geology and Geophysios
on August 1%, 1953, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Several specific problems in seismic and gravi-
tational date interpretation are considered from the
statistical viewpolnt. ILeast squares techniques are applied
to the two types of interpretation, and, for seismlc records,
other approaches are dlsoussed.

The fitting of an nth order polynomial in x and y
to gravity data by the method of least squares is investi-
gated as a method for approximating regional gravitational
anomalies. The normal equations for the genersl case are
derived and simplification considered. It 18 shown that,
with a symmetrical rectangular distribution of gravity
readings, each set of these equations breaks up into smaller
subsets. The resulting simplification brings feirly high
order polynomials intc the range of practical computation.
For a particular gridwork the polynomiasl coefflcients may be
expressed explicitly as linear combinations of the right hand
members of the normal equations. Once this is done, the
least squares fitting of any data taken over such agridwork
may be effected relatively easily. The explicit expressions
for the coefficients &re derived for a square gridwork of
121 points and for polynomials of order 2, 3, and 4. A set
of actual gravity readings is analysed in thls fashion. The
gravity residuals are determined and contoured. The compar-
ison of these contours with each other (for various order poly-
nomiels) and with contours derived by & standard, much more
involved process, is favorable. This consistency, desplte
certain detrimental features of the data used indlcates that
the method may deserve to find practical applioation as a
routine, first step, gavity reduction procedure. The
problem 1s pursued wiih regard to different gridworks, and
a table is derived which contains, in effect, the normal
equations for representative grids up to a size containing
2601 points, and for polynomisals through order four.

As en approsch to the understanding of linear
operators, as they apply to the snalysls of selsmic records,
a simple form of linear operator is studied. For this form
of operator, the so~called "cosine operabor®, certain
propertles are derived in the general case, and interpreted
geometrically. These include relationships between the exact



form of cosine operator chosen, the correlation properties of
the series which the cperator is to predict, the individual
errors of prediction, snd the sums of squared errors of
nrediction. The results are applied to two clesses of time
series in connection with spectrum analysis, and, for one
class, fllter characteristics are computed for a specific
cosine operator.

An iterative method for determining least squares
fits of linear operators to multiple time series is discussed
geometrically. 4n argument is presented, based on the
geometry of the two term operstor, to show that, in the case
of near singularlty where many solutions will almost satisfy
the least squares criterion, the exact solution ls necessary
for the purposes under cousideration.

Several interpretive procedures are devised for
finding information from seisulc records. The first deals
with discrimineting an unknown veloelity in a two velocity
system. An adaption is made for detecting reflections, and
practicel example ere given of the two uses. The second
employs a form of testing phase, between seismic traces and
thelr predictions by linear operators, to determine reflection
times, and is 1llustrated with an example. The third combines
the concept of ensemble aversges with linear operators to
determine step-~ocut times ef reflections. The last oprocedure
suggests a speclal experimental arrangement, coupled with a
certaln type of correlation analysis, for detecting reflec-
tions.

Included as appendixes are desoriptions of four
programs written by the suthor for the Whirlwind I Digital
Computer. These permlt high speed computation of: two
dimensional polynomial residusls; linear operator prediction
errors and their rumning aversges; least squares linear
operator coefficients (by an iterative method); and auto-
correlations, cross-correlations and “traveling" auto~ or
erogs~correlations,.

Theslis Supervisor: Patrick M. Hurley
Title: Professor of UGeology
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INTRODUCTION

It is well kmown that experimental date taken in
Geophysiocal studles surpasses in sccuracy the interpretation
that must be made on the date. The reason ig that the
problens are very coumplex. For one thing, it can be shown,
In the treatment of certain types of problems, that no
unique solution exists. An example is the infinity of
posslible mass dlstribution corresponding to a given gravity
profile. 4in other problems the physical situation dealt
with is so inhomogenecus and anisotrcplc that exact solution
is lmpossible. It would be hopeless to attempt to explain
rigorously the presence of any particular oscillation on &
seismogram.

Data such as this, subject to a certein amount of
randonness, and on which "best" estimates must be made, 1is
well sulted to svatistiocal evaluation. The numerical data
taken in gravity surveys doee undergo evalustion of this
type. The least squares approach, however, is not being
utllized on a large scale. This is probably due to practical
limitations, and it is one of the problems of this paper to
see 1f these llmitations may be minimized.

On the other hand, the rew data of selsmology occurs
in analogue or curve form. Standard procedures of inter-
pretation consist mainly of rules of thumb, learned by long
experience, and stlll largely dependent on the qualification
of the individual interpreter. There is a need to put these
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procedurses on @ more rigorous basis. This basis may be found
in the concepts of time serles as developed in economlcs,
meteorology, and other flelds. Huch work must be done to
determine the best means of avnlying these concepts to
selsmic data, since, in certain ways, both the data and the
degired information are'unique‘ Another purpose of this
naper, then, is to propose several special methods of
application, and to dGevelop certain theory necessary for a
hetter understanding of time series concepts as they apply
to selsmology.

Statistical methods, in general, require computation,
and often on a large scale. 4 “progran® written for a
digltal computer is a tool which will do this work auto-
metically. The author has written several programs for the
Whirlwind I Digital Computer to perform computations related
to the above discussed problems, and includes these programs
as appendixes, with the feeling thal other investigators may
find them useful.
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LEAST SQUARES RESIDUAL QORAVITY
tro tion

Varlations in the attraction of gravity over the
surface of the earth are due to many causes, but these
often fall into two general categories. Phenomena such as
the thickening or thinning of the crust cause relatively
slow, smooth and wldespread graevity fluctuations. We call
these regional effects. On the other hand, such things as
ore body emplacements, caverms, and local density hetero-
g&néities cause more rapid irregular changes, and these are
termed local effects.

The actusal gravity values measured over an area
usually represent a combination of regional and local effects.
The separation of these effects is of primary importance in
interpretation, and many mathematlical methods have been
devised to eliminate guesswork in the problem. Essentially,
most of the methods represent an averaging process which
gives at each point and approximate value of the regional
effect alone. The local effect is then found slimply by
subtraction from the measured values.

Many of these methods possess two undesirable
aspects. First of all the averaging must be done at each
point individually. Secondly, the averaging includes only
gravity values in the vicinity of the point considered. It
ig hard to say Just how serious these drawbacks are, but it

seems worth-while to investigate a method which does not
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encounter them., In a least squares approximation all values
are averaged simultaneously. DMNoreover, the resulting
approximation is not merely & set of discreet points but

a continuous surface of values over the area, a property
which i1s sometimes of value.

The purpose of Part I is to consider in some
detail how the method of least squares may be applied to
this problem, and how a simpliflied method of procedure may
be set up for practical application.

Part I represents an extension of the work done
by W.B. Agocs ¥ . Agocs approximates the regional anomaly
by & plane surface derived from least squares criteria. He
shows that, in an artifical example, the residual anomaly
i8 better derived from least squares procedures than by the
use of the "arithmetic mean regional® procedure. For
higher order polynomials than a plane surface the algebra
rapidly becomes more involved.

Theory

It is easiest to illustrate the method for an
idealized geologlc example in two dimensions. Fig. 1.1
shows a wave in the bottom of the crust and a single ore
body emplacement. The pointe on the graph would then be
the measured values of gravity across the area. Fitting
a fairly low order polynomial to these values by least
squares gives us the curve AB which best fits all the points.
¥ Ref. 1
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This curve will approximate the regional effect more
closely than the local effect, and it is apparent that
the fit will be closest at some distance from the ore
body. Thus the dashed line of Fig. 1.1, representing the
difference between the polynomizl and the observed values,
glves a good indication of the location of the amomalous
mass.

In the two~dimensional problem the approximating
polynomial is a surface, and interpretation ls made from
contours of the residuals.

Let us approximate the regional gravity by a
polynomial of order n in x and y.

n n-l 1.3

G{xy) = £ I cy XY
1=0 J =0

1.1

Thus for n=2

2 2
Gixy) = oo ¥ C10% * CpoX * C13XY + Coy¥ * Cqp¥

The c's are unknown coefficlents to be determined in
accordance with the condition that the sum of the squares
of the residuals 18 to be minimized. Let g(xy) be the
measured values of gravity. Then the residuals are
R(xy) = gl(xy) - G(xy)
R (xy) = [glxy) - 6(xy)I”

Hence N "
n n- n ne-
Zﬁz(xy) = [ £ = (eijxiy3 T = ek‘xky‘) ]
xy xy i=0 }=0 k=0 4=0

n n-li ‘
-2 sglxy) £ = cisx4y3 + T g°(xy)
Xy i=0 j=0 Xy
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or
n-1 n n-k Kk

n
tBRxy)= [z = I =% 0y Ops% +igd+]
xy Xy 1=0 j=0 k=0 4£=0
n n-i
-2 ¢ [glxy) z = ciaxiyJJ + T gz(xy)
Xy 1=0 J=0 xy

Differentlating this expression with respect to cij' and
setting each derivative equal to zero for minimization, we
obtain (n + 1)(n + 2) £ 1linear equations for the same

nunber of unknown coefflcients

n n-k

ZZ ey, I xk+1y1+3 = by g(xy)xiyj 1.2
k=0 4£4=0 Xy Xy
where J =0, 1, «eoess(n=1)

120’ l. I0.0.iOon

There are really three variables, or sets of
variables, in equations 1.2 - the order of the polynomial n,
the set of points xy, and the set of gravity values at
these points. The first two of these variables determine
the coefficient matrix of the cki's. Once these two are
chosen, a unique inverse matrix exists, which, if found,
may be used to compute the ckj's for all sets of gravity
values taken over the same xy pattern. This alone would
be & major simplification 1f the method were to be used on
a production basis. But we shall also see that, using =
simple reasonable restriction, both the problem of finding
the inverse and the form of the lnverse itself will be

greatly simplified.
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Sim ed S0 9}

In many cases gravity readings are taken over a
square, or at least rectangular, network. When this is so
we may bake the axes s0 that the rectangle 1s symmetrical
about them, and number our ordinates and abslscee in in-
tegers, as in Fig. 1.2 . It is then easy to see that over
such a network summations of the form xiy3 will vanish
whenever 1 or j is odd. Thus many of the coefficients of
the ckl’s in equations 1.2 will drop out. Thls leads to
considerable simplification, with the bigger systems
breaking up into several smaller ones. Furthermore, 1if
we take a definlte network we may solve the equations
explicitly for the ok"s in terms of the summations
Sg(xy)xiyj.

Xy

To demonstrate how this 18 done we shall solve
the equations for n = 1, 2, 3, and 4, over a square network
of 121 points. The systems are positive definite and
symmetric, well adapted to solution by the matrix method
of P.D. Crout* .

The non-vanishing summations over this network

are Ixy' E M= 121
$x° = Iy° = 1210 £x°y° = 12100
set = 5y¥ = 21538 sxly = zxty? = 215380
sxb = 5y6 = 451330 sx?y® = £x85% = 4513300
zx8 = £y® = 10185538 sxty” = 3833764
¥ Ref. 2
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Case n = 1
The normal equations are
CooM + 610EX + o4 Ey = Iglxy)
2
CooZE + ©08x" + ¢y Zxy = ZIglxylx

2
CooZ¥ *+ 010Xy + o4 Iy = Iglxyly

Reducing immediately to

Coo * ggéle 310 = gg&lil& 301 = 2&1&&11

sz Eyz
giving
Glxy) = _1Zglxy) + _x Zgixylx + _3y_Sglxyly
121 1210 1210

or, to slx places

G{xy) = 8.26448 "lﬁ“u[lOZg(xy) + xTgixylx + yigl(xy)yl

Cag = 2

The normal equations are

00 o1 o2 °1 °10 20

M Iy 2y2 xy Tx Ix° = Tz(xy)
Ly 2y2 2y3 Exyz oxy szy = Iglxy)y
Eyz Ey3 2y4 ny3 Exy2 Exzyz = Eg(xy)yz
Xy 2xy2 2xy3 Ex2y2 Exzy ijy = Tglxy)xy
Tx oxy 2xy2 Exzy £x° rx? = Lglxylx
£x? Exzy zxzyz ZxBy rx3 th = Xg(xy}xz

which reduce to

o1 = 1 reglxy)y 617 = _1 selxylxy G = 1 zelxy)x
1210 12100 1210

end three equations for c,,, ¢y,, and ¢,,
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12loy, + 1210c,, + 1210c,, = tglxy)

2
12100, + 215380y, + 12100c,, = sglxy)y

2
1210c,, + 12100c,, + 21538c,, = Zg{xy)x

The solutions are

2 2
o0 = gz%g_ﬁ2782g(xy)~10(2g(xy)x + 2glxy)y©)]
2
Cop = §E%§~£Zg(xy)y - 10zglxy)]

2
Cop = gz%g_IZg(xy)x - 10%g(xy)]
Thus
a(xy) = §E%§£2?8zg(xy) - 10(sg(xy)x® + 2glxy)y?)]

+ yl__1 rglxylyl
1210
2 2
+ y°[ (zglxy)y® - 10zg(xy))]
y §E%§ glxyly g\Xy
+ xyl__1_Sglxy)xyl
12100 -
+ x[ig%gzg(xy)xl

+ xzign%gxg(xy)xz - 10zg(xy)]
Or to six places
G(xy) = [.02945545g(xy) - 1.05955 1072 (2g(xy)x® + Zglxy)y’]

y[8.26448 10"uzg(xy)y]

v2[1.05955 10'4(2g(xy)y2 - 10zg(xy))]

xy[8.26448 10'52g(xy)xy]

x[8.26448 10"u2g(xy)x3

¥?(1.05955 10~ *(zg(xy)x® - 105g(xy))]

+ o+ o+ o+ o+
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Case n = 3

The normal equations are

%00 %01 %2z %3 %11 %2 %1 %0 %20 %30

1) K y yz v xy xyz xzy x ®? 2 = g

2) v ¥ ¥ ¥ m ox Hax fy Py =ay
IR R R A G L Al o & ol = G
w2 Y Y A a? AP -
5) xy xy° xy’ 't Py P OFF Py oy 'y = gxy
6) xy° xy° xyt oz xy) x2y4 oy £3° 2y xy2 = gxy”
7) xzy xzyz xzyB xzyb x3y2 x3y3 xuyz xBy Xuy 15? = 8K2y
8) x xy xyz xy3 xzy x2y2 xSy ¥ x xg = gX
9) x? xzy xzyz x?yB x3y x3y2 qu x3 x“ x = gxz
10) x2 x3y x3y2 x3y3 xuy x“yz x5y :x:4 x5 xé = ng

Summations are assumed for all these quantities and g 18
written for g{xy). The equations reduce considerably.

Equation 5 glves us

=

Qll b LEXY
12100
1, 3, and 9, ocombine to give three equations for
0o Cozs E0d Oy, Whioch have the same solutions as for
the cese n = 2. 2, 4, and 7, and 6, 8, and 10, combine to
glve two independent systems which have identiocal coefficlents.
Thus 2, 4, 7, are
1210@01 + 21538303 4+ 12100¢ = gy3
21538°bl + 451330003 + 215380021 = gy

2
12100cy, + 215380044 + 215380cy; = g% ¥

-8



¥With solutions
2
Opny = [4l50sgy - 1?82gy3 - 725gx"y]
01 7 g5

Crn = [10zgy’ - 178Zgy]
037 grsE o ¢

oyy = 1 [zgx’y - 10Zgyl

94380
also W4505gx - 178Zgx> - 725gxy’]
Cypy = gx - 178igx” - 72Igxy
10 379536
3
Crpy = [10zgx’ - 1782gx]
30 79538
2

Cn = Lgxy” - 10Zgx]

12 51386

and from the cagse n = 2
2 2
G = 278%2g - 10(zgx” + zgy")]
00~ 3r3E

2
Chro = 1 [rgy”™ - 10zgl
02 553

2
Cop = Tgx” - 102g]
20 5438

We also have
Cyq = o ZEXY

11~ 77360



To six places

a(xy) =

+ [.0294554Eg - 1:05955 1073(5gx? + zgy?)]
y[6.54859 10™J5gy - 2.61943 107 ¥y’ - 1.05955 10 J5gx’y
y?[1.05955 10™*(sgy? - 105g)]
yo[1.47159 10™7zgy” - 2.61943 10
xy[8.26445 10”5gxy]
xy°[1.05955 10™55gxy® - 1.05955 10™"5gx]
x°y(1.05955 10™72gx’y - 1.05955 10 *zgy]
x[6.54859 10 7Egx - 2.61943 10 *ggx? - 1.05955 10~ 3rgxy?]
x[1.05955 10~ *(zgx® - 10zg)]
+ xO[1.47159 10™72gx3 - 2.61943 10" ¥sgx]

+

'“igyl

+ + + o+ o+

+

.
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Cagse n = 4

The normal equations are

0 91 D2 B3 O 91 92 93 21 %2 91 90 20 30 B0
Y v Az £ 2 Y

1) u oy ¥ = g
E)yf?#fxxgxyax#figﬁ?ﬂéxy%gyé’y = gy
3N FP77 9 oo R FFFN - of
PP SIS - o
5) P PPV P oSS RS HIY - o
6) xyxf P A PR E S & & = exy
7) fo?x#x?xfffﬁffﬁfgﬁé?:@fﬁ%éf = gxf
8) ﬁﬁx?xﬁx;@gffﬁyﬂﬁ%f?ffﬁéf = gxy
9 W BRI BE S - of
10) FHEGEESISH ISR = oF
1) I XIS EBYIPFLSH L = oF
12) x DT H B FEE R AP =
13) fFHEHHSF IS HS2 22 = f
W 2 AR E LI FEL AP L = R
15 £ EHFE SISO L L2 - g

Equations 1, 3, 5, 10, 13, 15, reduce to give a
system of six equations for Coor g2+ Coy» C227 Cogs 8BA
Cuoe 25 4, 9, and 7, 12, 14, give two sets of equations

for Co1s C03s 210 and C10s ©30» C129 respectively, which
are equivaient to the corresponding equations for the

cagse n = 3.
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The new equations to be solved are

C0 %02 %4 %22 20 %o
2 N 22 2 4

M y y Xy X X = g
2 8 2y 2y &2 - Sy
y& yé y8 Xzyé x2y4 xuya = Zgy“
2y 22yt xzyé 2 xR x6y2 - sax’y?
2 xR B 2 A 6 L ?
g2 b 62 68 ok
and
°11 13 €31
Xzyz xzyu xhyz = Tgxy
xzyLp X2Y6 xaya = Sgxy>
xuyz X&yh x6y2 - ngBy

The last set has sclutions

Cqyq = [689.845gxy ~ 17.8(2gxy3 + ngBy)]
L 79536

013 = EzgxyB - 17.8zgxyl
7953

3
G, = [Lex’y - 17.82gxy]
3 79536

I-12



The solution of the first set to six places is

oo = L.53280 1o‘zzg + 1.58932 10‘“(zgy

1.35839 10~

N

b h)

+ Tgx

Sexoy? - 6.399122 10”2 (zgy® + fgx”)

Gop = 1.62141 1075g7% - 2.81527 10735g

-5.51847 10'52gyu - 1.35839 10“5(ng2y

Coy = 2.20739

10”5

2 _ 103gx%)

2gy4 - 5.51847 10”5zgy2 + 1.58932 16‘52g

¢y, = 1.35839 10"6(ng2y2 - IO(ng2 + Egyz) + 100zg)

00 = 1.62141 10 5gx® - 2.81527 10705g

-5.51847 10-J£gx® - 1.35839 1077 (Zgx°y* - 10Zgy?)

ouo = 220739 107°zgx" - 5.51847 1077sgx® + 1.58932 10775g
To simplify writing G(xy) we introduce the abbreviations

A= Zg H= ngBy

B= Igx I= ngyz

C = zgx° J = zgx’y’

D= ZgXB K= ngy3

E = ng“ L = Zgy

F = Zgxy M= Zgyz

G = Igx°y N = Igy’

P = zgy"

I-13



Hence

dixy) =

+ 4+ 4+ o+

+ + o+ o+

4

+

4

[4.53280 10724 + 1.58932 10‘”(? + E)

+1.35839 10~
y(6.54859 107°L - 2.61943 10™%N - 1.05955 1073a)
y°[1.62141 10770 - 2.81527 10734 - 5.51847 1077P
~1.35839 10™2(J - 10C)]
7 [1.47159 107°N - 2.61943 10™7L]

y“[2.20739 10

-6

H7 - 6.39122 1073(1 + ¢)]

P - 5.51847 10™7N + 1.58932 107A]

xy[1.01516 1079F - 2.61943 1077(K + H)]
xy°[1.05955 10™7T - 1.05955 10~B]

xy201.47159 10™

bk - 2.61943 10-5F]

x“y[1.05955 107G - 1.05955 10~ 8]

x°¥°[1.35839 1070(J - 10(C + m) + 1004)]

xy[1.47159 1070 - 2.61943 1075F]

x[6.54859 1077B ~ 2.61943 10™*D - 1.05955 10731]

x°[1.62141 1077¢ - 2.81527 10774 - 5.51847 1075C
-1.35839 1072(J - 108)] |

x°[1.47159 107D - 2.61943 107YB]

x”[2.20739 10

-6

E - 5.51847 1077C - 1.58932 107 2A]
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Piscussion

4n interesting property which has developed in
these four cases makes the extension to higher order
approximations somewhat simpler.. If n is odd then all the
coefficients cij whose subscripts add to an even number
are the same as the corresponding coefficients for the
(n - 1l)rst case., If n is even the coefficlents with
subscripts adding to an odd number are the same as for
the preceding case. This property can be shawn directly
from equation 1l.2.

Thus for the case n = 5 we expect nine of the
coefficlents (og5, Cup, Cous Cpugs Opps Cqp ©113s c}l) to
be the same as for the case n = 4, and we need only write
the twelve remaining equations for 1 + J odd.

A polynomial of order equal to the number of
points taken will exactly fit the data. However 1t is
practically impossible to use polynomlale even spproaching
such a high order for reasonably-sized gridworks, and this
danger seems slight. There is stlill a real problem in the
cholce of n. If the regional effect is in reality a falrly
low order effect, polynomials of high n will begin to
approximate the local anomalies too closely. Other systems,
however, run into the same problem, and this point would
be best settled by experience with the data.

Another importent practical consideration is the

amount of work to be done, i.e., the determination of the
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summations ngiyj, of the c,,'s and the solution of G(xy)

‘at each point. We devote the next section to this problem.

Applloations

To L1llustrate the work necessary we discuss a
convenlent scheme for application to the case n = 3. The
use of a computing machine with cumulative multiplication is
desirable.

Agsume that the grid has been determined and the
gravity values written at each intersection as shown. This
is done on tracing paper as shown in Fig. 1l.3.

The numbers oy and 51 above each vertical line and
to the left of each horizontal line represent the sums of
g{xy) along those lines. Then as we may easily compute the
sums Lg, Igx, ngz, ngg, gy, Egyz, ZgyB, from the relations

zg = & XgXB = Eai(i)B gyz = 251(1)2
1 1 1

sgx = Za, (1) Tgy = B, (1) gy’ = 28, (1)7
1 1 1

Sgx® = £a, (1)%
1

Each of these computations involves one machine
operation of eleven cumulative multiplications.

For the remaining summations Igxy, ngzy, ngyz it
1s convenlent to have a similar grid which can be placed
under the original one. Thls second grid has the values of
Xy, xzy, xyz, at each point as shown in Fig. 1.4 and can
be used for each application.
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The values of g(xy) then appear in the vacant
upper left hand corner of each point, making the multiplics-
tions apparent. Each of these three summations then in-
volves & cumulatlive addition of 100 multiplicetions.

The oij's are then found as ten cumulative additions
of two of three multiplications each.

G(xy) is now completely determined with the writing
down of less than 50 numbers and it remains to solve this
equation for each point. This involves ten cumulative
multiplications at each of the 121 points with a final
subtraction to determine the residuals. A second tracing
paper grid lald over both of the others would simplify this
and the residusls could be written down in a form ready to
be contoured.

4 nice feature of this scheme is the absence of
any tabulation of data. It may be extended fairly simply
to higher degrees.

Example

As a test of this method residuals were computed
on gravity resdings supplied by a mining company. This
data was not in a convenient form for use since the readings
were teken in mine tunnels and not over agrid. To get them
in grid form, the readings were first contoured as shown in
Fig. 1.5 and then values extrapolated to the grid. This
involves several insccuracies. First of all, where readings

are sparse, the extrapolated values are bound to contain
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considerable error. Secondly, the computations welight sll

values equally so that the accurately extrapolated points,

in areas of dense readings, suffer from the inasccuracies in
the less dense areas.

Three sets of residuals were computed, one for
second, third, and fourth order polynomials. This was done
to test the effect of polynomial degree on the residuals.
The polynomials were fitted directly to the raw gravity,
without meking the usual topographic corrections. The
Justification for neglecting to do this is seen in Fig. 1l.11.
This figure shows values of regional minus topographic
correotions computed by the mining company, and contours of
these values. The contours demonstrate that this correction
1s a low order effect (in this particular situation) and
can obviously be easily absorbed into a polynomial as low
as degree two. X

Figs. 1.6, 1.7, and 1.8 then show residuals for
second, third, and fourth order polynomials respectively,
and were computed as described previously. Once the reading
had been contoured and extrapolated, it took about a day
to compute each set of residuals. The computed polynomials
appear in the upper right-hand corner of Figs. 1.6, 1.7,
and l.8. Fig. 1.10 shows the contours of the polynomials
themselves, and shows that the simllarity of the residuals

1s due to the similarity of the polynomiels used.
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In Fig. 1.9 1s contoured the residual gravity ase
computed by the mining company which supplied the data.

Their computational procedure required several months to
produce this diagram, which, in important respects, is

quite similar to the contours of Figs. 1.6, 1.7, and 1.8.
Part of the difference is due to the fact that the least
squares residusls are forced to oscillate aroumi a mean of
zero, so that many negative contours appear. Other differences
may well be attributable to the inacouracies of contouring as
mentioned above. It seems olear however, that the simllarity
is sufficiently great to Justify the use of the least squares
procedure, at least for a first evaluation of gravity data.
This seems particularly true in view of the relative speed
with which this procedure may be carried out.

These results were encouraging enough so that a
program was written for the WWI Digitael Computer to perform
the majority of the computations automatiocally. Thig program
finds the residuals for a polynomial up to the sixth 6rder
over an arbitrary grid shape, once the polynomial is known,

A desoription of this program appears in Appendix A,

In the next section, we take up the problem of

setting up the normal equations for various sizes and shapes

of grids.
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We are concerned here with the problem of setting
up the normel equations for various grids and polynomial
degrees. If we limit ourselves to polynomlals of degree i
or less, we are then interested in finding the following
quentities:

2 ) 6

Sx°  £x 8 L 6 8

x Lx Ly zy zy

2.2 x2y4 2_6 L 2

Ix'y Xy ZIxvy sz'yu' IxyS X'y

where the summations are to be taken over the particular
grid we are dealing with.

If the grid has the dimensions 2N by 2M as shown
in Fig. 1.2, we may set up a fairly simple procedure for

finding these summatlions.

First we note that Zxk over the grid is equal to

the £x* on a single horizontal line, times the number of

lines. Thus

k N
£x” = (2M + 1) 1
i=-N

k

but since in our case k is always even

N
sxf = 2(28 + 1)(z 1K) ‘ 1.h
1=1
Likewise
M
gy¥ = 2(28 + 1)z 1K
i=1

I-20
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For the cross terms Exky‘ we have

M N
r £t = 3 P
grid J==b i=-N

N M
= 151 [z5%]
-] -1

N M
s 2yf = 4z 1BE H
grid 1=1 j=1

Hence the sums l.3 are easily derivable from
L
equations 1.4 and 1.5 if we tabulate the quantities £ 1F,
i=1
Table I gives values of ik from which the sums

L
1
1=1

Lup to 25 and k = 2, 4, 6, 8. The latter Table allows us

k are derived, and Table II tabulates these sums for

to compute the sums 1.3 for any grids messuring up to 50 by 50.
a grid this size would encompass 2601 gravity readings which
seems ample for most applications.

Table III contalns the sums 1.3 computed for six
representative grids 10 by 10, 10 by 20, 20 by 20, 30 by 30,
4O by 40, and 50 by 50.
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TABLE I -

fol‘kﬂ 2’ b" 6’ Sg

12

16
25
36
k9
6
81
100
121
144
169
196
225
256
289

324

361
400
b1
48l
529

576
625

at

1

16

81

256
625
1296
2401
4096
6561
10000
14641
20736
28561
38416
50625
65536
83521
104976
130321
160000

194481
234256
279841
331776
390625

1k

1=1,2,3 ...25

46

1

64

729

4096
15625
L6656
117649
262144
531441
1000000
1771561
2985984
4826809
7529536
113350625
16777216
24137569
34012224
L7704 5881
64000000

85766121
113379904
148035889
191102976
244140625

1

256

6561

65536
390625
1679616
5764801
16777216
43046721
100000000
214358881
529981696
815730721
1475789056
2562890625
4294967296
6975757441
11019960576
16983563041
25600000000

37822859361

54875873536
78310985281

110075314176
152587890625
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for kx =2, 4, 6, 8

k=2
1

5

14
30
55
91
140
204
285
385
506
650
819
1015
1240
1496
1785
2109
2470
2870

3311

3795
432k
4900
5525

TABLE I1I

k=4
1
17
98
354
979
2275
L676
8772
15333
25333
39974
60710
89271
127687
178312
243848
327369
432345
562666
722666

917147
1151403
1431244
1763020
2153645

L
z 1
i=1

k

L=1,2, 3, .

k=6
1
65
794
4890
20515
67171
184820
L6964
978405
1978405
3749966
6735950
11562759
19092295
30482920
47260136
71397705
105409929
152455810
216455810

302221931
415601835
563637724
754740700
998881325

. 25

k=8
1
257
6818
72354
462979
2142595
7907396
24684612
67731333
167731333
382090214
812071910
1627802631
3103591687
5666482312
9961449608
16937207049
27957167625
Ll 940730666
70540730666

108363590027
163239463563
24155044884k
351625763020
504213653645



N=5 M=5

Exoyo = 121
212 = 1210
sxt = 21538
Exé = 451330
£x3 = 10185538
£y? = 1210
zya = 21538
5y = us1330
zy® = 10185538
£x°y° = 12100
sxeyt = 215380
zx2y® = 14513300
214y2 = 215380
£x%y% = 4513300
sx'yt = 3833764

N=5 M=10

231

2310
41118
861630
19445118
8470
557326
43524910
3690089326
84700
5573260
435249100
1507660
31593100
99204028

N=10 M=10  N=15 M=15 N=20 M=20 N=25 N=25
441 961 1681 2601

16170 76880 235340 563550
1063986 11055344 59258612 219671790
83093010 1889941040 17749376420 101885895150
7044715986 351321903344 5784339914612 51429792671750
16170 76880 23534G 563550
1063986 11055344 59258612 219671790
83093010 1889941040 17749376420 101885895150
2044715986 351321903344 5784339914612 51429792671790
592900 6150400 32947600 122102500
39012820 884427520 8296205680 47595554500
3046743700 151195283200 2484912698800 22075277282500
39012820 884427520 8296205680 47595554500

3046743700 151195283200 2484912698800 22075277282500
2567043556 127180677376 2088984590224 18552747144100
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SEISHIC RECORD ANALYSIS BY LINEAR OPERATORS
Introduction

In the study of reflection seismic records, taken
in the exploration for oil, it is becoming lncreasingly
difficult to plck reflection times by the standard procedures,.
The reason for this is that, as the simpler geologlc areas
are being fully exploited, exploration is being foreed into
the more complicated areas. oSelsmlc records taken in these
structurally complex sreag contaln much in the way of
unwanted information and much not-underatood information.
Energy reflected from the strata of interest is largely masked
by this "noise®. Abv least two different approaches to
ungcrambling these records are belng developed at present.

The first of these approaches is largely instru=-
nmentational. Its princiosle is:! take more and more information
(more traces on each record, etc.), filter it in different
ways and mix it up in a varlety of combinations to see 1f a
procedure for averaging out the unwanted information can
be arrived at. This approach has led o0l1l companies to
the use of 24-trace records, each trace representing the
responses from up to thirty geophones. The success of these
metheds is not publicly available, but the olil industry is
expressing great interest in the approaéh described below, so
probably they are not completely satisfactory.

The second of these approsches is basiocly amalytic.
Rather than tasking more information, we attempt to sharpen
up the interpretive procedure on the inforhation we have.

II-1



The search for such procedure has been largely carried out
at MIT in the Mathematics Department, and subsequently in the
Mathematics and Geology Departments. The tools in this
analysis have been the statistics of time serles.
Statlstical Methods

After some experimentation it was found at MIT
that the use of the "linear operator® seemed most promising
in the determination of reflection times. The exact methods
used are described in Refs. 5 and 6. The linear operator
pernits a measure of the change in dynamics as we proceed
down a seismic record. As these dymanics are ampllitude,
frequency, and phase relationships, it was hoped that the
dynamical change at a reflection could be discriminsted

This was

hoped for since the usual interpretive procedures depend
heevily on "amplitude reflections®. The results were very
encouragling and stimulated increased research.

One direction this study has taken 1s the empirical
one. We know the linear operator gives us added information.
But, since there is conslderable freedom in the choice of
the exact mathematlcal form of the operator we use, we try
many different forms and see whioch ones give us the most
information. This is a trial and error procedure and involves
en immense amount of computation. For this reason a program
was written for the WWwl Digital Computer which would compute

automatically the measure of dynamic change, for a great
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variety of forms of linear operstors, at very high speed. A
copy of this program end a description of its functions is
contained in Appendix B. Case studies designed to test the
effects of individual parsmeters of the linear operator are
being run with this program, but the results are as yet
incomplete.

Along with this empirical approach an attempt 18
being made to study the linear operator from theoretical
grounds. Although the form of the operator which is being
tested at present is relatively compllicated, 1t 1s Instr-
uctive to consider & simpler form, the so-called "cosine
operator’. This operator is a mathematical expression which
generates a pure cosine wave of given frequency. We can
determine quite simply the effects of this type of operator
on various time series including those found on seismic records.
We hope to gain insight into the physicel functlon of such
operators as well as correspondence between them and simple
filters.

We shall also oconsider two other more practical
problems connected with the statistical anslysis of sels-
mogramns by the use of linear operators. One concerms
certain iterative methods for approaching the values of the
linear operator coefficients for least squares fitting. The
other is a related problem, the necessity for accuracy in

finding these values.
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A cosine operator is a prediction mechanism which
exactly predicts equally spaced points on a cosine wave. It

has the general form I

N

Xypp =+ axy 4 + bx, 2.1

where 2 ocos 2nhf = 2u

H

a
b = ~1
h = time beiween obhservation

(L-a=b)x = 2(1l-u)x

o
#

= mean of series

frequency of cosine wave

M) M
H

442 = predicted value of x

i+2
Suppose we use this operator to predioct an arbit-

rary series x. Then the error of prediction X4 = 31*2

will be
Eyyp = %y, - [2(2-u)x 4+ 2ux, 4 - X1 2.2
= Xy4p - 2(1-u)x - 2ux,, . + X
= (myyp - ) + (x - E) - 2u(xy; - ¥)
For simplicity let us deal with a series Xi
measured around its equilibrium mesn X, 1.e. & =x, - x
then 2.2 beconmes
Biya ™ Xyyp + Xy - 20Ky 2.3

Now if we sum the squares of these errors over
an interval of the series we get

T Rer. 6 II-4



2
§ 1+2 = z(x§+2 Xﬁ +BTX g+ 2K 0K - B X 2.4

If the series 1s stationary and the interval sufficliently
great we may write this in terms of the auto-correlations.

Let the series be normalized so that L Xi = 1 then
. i
2
142 = BO + RO + 4u RG + 232 - 8uRl 2.5

where Bi = 223 lag auto-correlation and BO = 1

LE
i

or
2
) E1+2 = 2(1 + B, - buB; + 2u") 2.6
This expression has a minimum value when
-(=4R,)
=--—-—-—~I—~:=
u 5% 3 Rl 2.7
or
cos 21thf = Rl
= -%r[cos'1 R, ¢ 2nn] 2.8

Hence we have the least squares fit for a cosine operator
predicting an aribtrary stationary series. We find that

f 18 determined only by the first lag of the auto-correlation
function of the serles, and that f is only determined modulo
1/h. This last fact is apparent if we refer back to equation
2.1, where we see that cosine operators have identlcal forms

for angular frequencies d!ffering by 1 /h.
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Hence
2

Min T Ei+2

i

= 2(1 + R, - zni) 2.9

2

If we want a perfect least squares fit we have

1
B, =+~ 3 (1+ &) 2.10

with the restriction cosine 2uhf = Rl

One way to meet this condition is to let the interval
h shrink toward zero so that Bl~+ 1 end B,—~ 1. This 1s
equivalent to saying that any small segment of the original
serles approaches a straighﬁ line, in the case where the

function is continous and its first derivative exlsts.

A, Error Sum as Function of W

Consider the sum of squared errors as a function

of u. We have

L E

= 2(1 + B, - huB, + 2u?) 2.6
1

2
i+2
This is a parabola in u as shown 1n Fig. 2.1.
u = cog 2nhf must lie in the range -1 € us 1.
We have shown that u = El is the condition for a minimum
fit, and since -1 < Rl < +1, 2 E2 will always have 1its
minimum in this range.
This means that, for any series, we can always
get a minimum fit with some cosine operator of frequency T,

where £ must be in the range
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Fig. 2.1
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0 < f < 1.

t eh x
u = 1 u = -1
( 2nhf = O ) | 2rpf = 1 ) 2.11

We require T EZ to be non~negative. This means

the discriminant of 2.9 must be £ 0 or
16 ai -8(1+B,) € O 2.12

Therefore the curve cannot cross the u axis, but
can be tangent to 1t at one point, when the equality sign
holds above. This is the conditlion for a perfect fit.

B. Error Sum as Function of f

The error sum as a function of frequency f 1s not
truly parasbolic but has the general shape of a parabola.
It is periodic in f with a period 1/h. It appears as shown
in Fig. 2.2 .

C. Individual Errors as Functions of u and f
Equation 2.3 gives us an expression for the

individual errors

E = X

142 yep T Xy - 2K

1+1 2.3
If we fix attention on a single individual error

(1 constant) and let u vary we see that E{f% i3 sinusoidal

since u = cos 2nhf . Thus Eiig varies sinusoidally about

a mean given by the sum of the 1 and the (1-2)2 value

of the series, with en amplitude of twice the (1-1)EEE vajye

of the series, The perilod is 1 /h. There is no phase shift
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between these curves for different 1 values. Thus all
individual errors must increase or deecrease simultaneously
with f.

FPig. 2.3 shows individusl errors as functions of
f. This figure explains why the error sum of Fig. 2.2
i1s reflected across the line f = 1/2h. This line in Fig. 2.3
is the axls of symmetry for the individual errors, so that

it must also be the symmetry axis for the error sum.

Conclusions

From the above, we can draw certain conclusions.
1. If one limits himself to the general class of cosine
operators, there is a maximum error obtainable for the
particular data, using any frequency whatever. That is,
there is such a thing as a worst fit for cosine operators.
2. Since T Ez is parsbolic, determining 3 values of T Ez
is sufficlent to determine the complete shape of the error

curve for all other frequencles.

3. HMoreover, since the individual errors are sinusoidual
in f, determining the indlvidual errors for 3 values of

f determines the errors for all f.

Looking at the problem another way, much of the

information obtainable from any data series by a study of
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this type 18 oconteined in the first and second lags of the
suto-correlation function of the series, for these to

quantities determine the shape and poslition of the curve I Ez.

Exemple

The prediction program described in Appendix B
provided & means for testing the conclusions reached about
cosine operators. Individual errors and sums of squared
errors were computed for cosine operators of frequencies
25, 30, +... 75 cps. The data for which these were computed
were readings taken from g typlcal selsmic trace at intervals
of 2 ms.

The sums of squared errors are plotted in Fig. 2.4
over two intervals of 240 readings each. Both curves exhibit
very good parsbollic shapes. The average minimum for the two
curves occurs for u = .85 . This should equal the first lag
auto-correlation over the two intervals, which was computed
by the correlation progrem (Appendix D) to be .853 .

Fig. 2.4 shows several individual errors plotted
a8 functions of the frequency of The cosine operator used.
They appear to be sections of sinusolds as expected.

These curves, computed on an arbitrary time series,

seem to be in remarkable agreement with the theory.
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We have mentioned that cosine operators differing
in frequency by n/h have identical forms. It 1s interesting
to see what this means physically.

Suppose we are trying to represent a coglne wave
of 1 cycle/ second with a spacing of h = 1/4 second. The
points we would plot might appear as in Fig. 2.6 .

Now consider a cosine wave of frequency 1 + 1/h=
5 cycles / sec. If we try to plot this frequency with a
spacing of 1 /4 sec. we find that it can be exactly repre-
gsented by the points we plotted for the one cycle wave. This
i8 1llustrated in Fig. 2.7 . We would find the same would
be true for frequencies of 1 + n/h=1, 5, 9, 13, 17 ....
Thus, it is the fact that we cannot uniquely represent
frequencies differing by n/h that explains the ldentity of
form for cosine operators whose frequencies differ by this
amount.

This 18 also the explanstion for the so=-called
"gondensed® power spectra met with in computational
proeeﬁures.t The computed power at a frequenoy f must
represent the sum of the powers at frequencles f, f,+ 1/n
f+2/h.... Therefore power speotra can only have the
renge O to 1/h oycles. In practice h must be chosen so
that 1/nh is greater than the greatest frequency from which
significant contribution is expected.

¥ Ref. 3 11-10
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In order to examine the filter characteristics
of cosine operators it is convenient to consider thelr
effect on autoregressive-type series. The autoregressive
gseries has a known Cauchy-type distribution of 1its speotrum.t
It will be interesting to examine what the spectrum of the
error function will be when we predict such a series with a
cosine operator.

Beferring back to equation 2.3 we have the error
function for cosine operators.

Eypo = Xyqp + Xy = 2uK 2.3

To get the spectrum of this function we firset find the

auto-correlation RT.

B, = EXypoXqaper ¥ By Xy o B K40,
¥ OEXX, o = 205X Xy, o+ B 0%, o

o 2
+ 2Xﬁ+1-TX1&2 + ZA1+1-TX1) + 4y 2Xﬁ+131+1-w

If the X series is properly normalized we may

write this in terms of the correlations rT of the X serles.
R = r +r 4+ r + huzr
T T T+2 T2 T
+orp - 2ulpy g 4 Ty b Tyt Te)

i Ref. 7

II-11



By = Tppt rp () 4o o02)

+r (=fu) + r

T+1 T+2

Since the series is taken ﬁo be autoregressive

r, = cos2nf,Th e %™ = sosar 6T T 130

Substituting equation 2.14 into 2.13 we have

R = cos{a(Twz)]e“b(T°2)

- #ucos[a(T—l)]a"b(T'l)

+ (2-!-imz Yeosate °T

- 4ueos[a(7+l)]e-b(v*l)

+ cos[a(1+2)]e'b(7+2)

Using trigonometric ldentities

B, = e?Ploosartcos2a + sinatsinZa]&‘bT
- hueb[cosarcosa + sinaTsina]e”bT
+ (2+bu?)(cosar)e™PT
- hue'b[cosavcosa - sin.a'ra,tna]e"bT
+ e ?Ploosarcos2a - ginatsin2ale” °7
or
BT = oosafe'b7[e2b00823 - 4uebccsa + 2 4+ 4u2
~bue~Poosa + e"Zboosza]
¥ Ref. &

I1-12

2.14



+ sinawe"bT[estinZa - uuebsina

+ bue~Psina - e"stinZal

Hence
R = A cosate T + B sinate~PT
= e"bT(A cosat + B sinat) | 2.15
where
A = cosza(azb+e°2b) - 4ucosa(eb+e"b) + 2+ 4y
B = sin2a(e?P - e7?Py . busina(e® - e~ P) 2.16
~bT,,2, 221 2 A B
B = e - (A®+B°)-7~[ = cosat + = sinat]
= e'bT(A2+Bz)l/2(cosaTCOsB + sinatseing)
where B = tan™t ~§
Thus
R = e‘bT(A2+Bz)l/eaos(aT+B) 2.17

Br is now in a form similar to the r. for the
original series. The spectrum of this type is known to be
a Cauchy distribution. The specific shape will be controlled
by values of b, 4, B, and B.

Bather than continuing with this example we shall

proceed to another type of series. The autoregressive serles

1s somewhat non-typloal. Its spectrum, the Cauchy distribution,
is very broad, in fact there 1s no mean value of frequency

for this spectrum.
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A much more stringent series than the autoregress—~

ive type is a series with a power spectrum composed of two
Gaussian ourves. The spectrum has the form }
2 2
-{(w-a) =
a kS
¢(0) = —de[e +e ° ] 2.8
202w
where +a and -& are the respeotive mesns of the two
Gausslan curves, and ¢ 1is their standard deviation in
radians. Wlth such a series the normalized suto-correlation
function may be written as 1
_62,'2

2
r o=e cos &

If we predict such a series with a cosine
operator, we generate an error series whose auto-correlation

funection is, as before

(=4u)

2
B = r.o_,*+ r7~1(-4u) + r7(2+uu )} + Pyl 2.13

T
* Tos2

or substltubting -62{7-222
R = e cos[a(r=2)]

+ e cosla(r~1)] (-&u)

+ e coslart] (2+hu2) 2.20

+ e cosla(r+1)] (-bu)

+ e cos[a(1+2)]

i Ref. 5
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This can be reduced, as before, to the form

_e2.2
B.= e 2 [i(r)cos ar + B(t)ein ar] 2,21

where

- r"’*’g»a-m-nz -«2141-»4:
A(T) = cos 2a [e “ + e 2 ]

~¢2(~21*12 ~a2§2?+;2
- bu cos a [e z + e 2 ]

+ (2 + auz)

~«2g~47+42 -czg&1+§2

B(t) = sin 2a [e 2 +e 2 ]

-o?(=2741) - (2141)
2 2

+ e ]

2.22

- 4y sin a [e

If we are interested in the power spectrum of

this serles we want
ae
P(w) = 2 df R(T) cos wt a7 2.23

Probably this integral cannot be expressed in closed
form, and we shall have to resort to & computed example.
Com o E

Here we illustrate the fllter characteristlcs of
cogine operastors in a particular oase, We choose a series
with a Geussian spectrum peaked at 50 cycles and with =a
standard deviation of 22.36 cycles. The power spectrum of
such a series is shown in Fig. 2.8 , and was computed
from equation 2.18 . In general shape this is not unlike

power spectra dealt with on seismic traces. Filg. 2.9 shliows
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the normalized auto~correlation function for this type of
series, as derived from equation 2.15 . The series has
essentlally no correlation for lags greater than about .03
sec.

To examine the effectiveness of cosine operators
as frequency filtering mechanlisms, a cosine operator of
frequency 50 cps was taken. The spacling interval was
chosen to be 2.5 ms. The auto-correlation function of the
error series generated by this operator is shown in Fig. 2.9 ,
and 1s computed from eguation 2.13 . In this case the
function ig unnormalized so that the zeroth lag auto-
correlation is proportional to the total power contalned
in the power spectrum of the error series. Thus we see
that less than 20 per cent of the power contained 1in the
orlginal Gaussien series remains in the error series. More
than 80 per cent has been "flltered" out. However, since
some of this is due merely to curve continuity, the shape
of the spectrum of errors is more important than the total
power.

The unnormalized spectrum of the error serles 1is
shown in Fig. 2.8 , and, as might be expected, is
definitely bimodal. This curve clearly indicates that the
operator is acting as a filter peaked at 50 cps, at which
frequenocy all power hes been removed. Lower frequencies are
also well reduced bubt the higher ones are not so much affected.

In faot, the power at 100 cycles is slightly greater than

II-16



in the original series. This 1s not a computational error.
As discussed below 1t seems to be a necessary charscteristic.

A more convenlent way of showing the filter
characteristics is to plot the quantity

This graph i1s shown in Filg. 2.10 . It shows how
frequenclies lower than 50 cycles are much preferred to those
greater., It is possible that this curve would not represent
the filter charescteristics of a 50 cycle cosine operator
used on another type of series. There is some reason, however,
to suspeot that 1t does, and that, in fact, the curve of
Fig. 2.10 continues downward considersbly below the axis
(thus representing amplification rather tham filtration).

If we were to use a serles containing mostly frequencies
between 100 and 200 cyecles, the 50 cycle operator would
yield very high errors of prediction. The sum of squared
errors would be far from the minimum of Fig. 2.1 . Hence
the power in the error serles would probably be greater than
that in the original series. Thls could only come about

by an amplification of certain frequencies, which would
naturally occur for frequencles greatly different from

50 cycles. In this example 200 eycles 18 chosen as an upper
limit, because with a spacing of 2.5ms unique curves only
exist from O cycles to 1/2h or 200 cycles.

II-17



Fig. 2.8

POWER SPECTRA

For series with Gaussian spectrum
with & = 2@4cps a = 50 cps (normalised).

----- For error serles generated by a
cosine operator of frecuency ge cps
on above series (unnormalized).
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Fig. 2.9

AUTOCORRELATIONS (R(ih)
For series with Gaussian spectrum
With o = 22%ops a = 50 ops (normalized).

----- For error series generated by a
cosine operator of frequency 50 cps
on above series (unnormalized).
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Fig. 2.10
FILTER CHARACTERISTICS

FOR 50 CYCLE COSINE OPERATOR
WITH h = 2.5 ms.
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Fitting Procedureg
Described in this section is an iterative method

of approaching the values of coefficients for a least
squares fitting of linear operators to multiple time serles.
The problem arose in connection with the determination of
linear operators to use in plcking reflections from sels-
mograns., ¥ The method is extremely inefficlent and is
really only possible with the aid of very high speed comput-
ing machines, but it givés interesting imnsight into the
behaviour of matrices, which helps in constructing other
techniques.

We are trying to fit a linear operator of the form
g8 =

+.b0y1 ...l....‘.+bﬁyi-ﬁ
2.24

+cOzi ."'...".'*eMZi‘M

+ dcui veetrnseseeas * dmui—ﬁ
to an interval of the sequences X,, Y;, Z, and u, so that

I = E(x1+k - §i+k)2 is & minimunm. 2.25
i

The plan i8 to guess initial values of the constants

a, a_, b and dg and compute 2.24 . Then adjust the

g Ogr Cgo
constants so that I is continually reduced. The initial

¥ ger. 5
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values chosen are a = x (mean of x, series) a

ﬁ.8=0.

sbaac

g 8

These values are the valueg which the constants

=

would assume under least squares fitting procedures 1if the

Xy serles were truly random and had no predictability.

With

these values of the constants I = I(%,0,0, .,.) becomes the

gsample variance sbout the sample mean.

2'
3‘

5

6.

The computational procedure is:

Find I(X,0,0, ...)

Find I(x+ A&, 0,0, ses)

If 2<1, continue adding aa until

I{(x+naa, 0,0, ...)> I(x+(n-1)aa, 0,0, ...).
If 2> 1, subtract saa =and ocontinue to

subtract until I(x-naa, 0,0, ...) >

I(i"‘(n“'l)ba’ 0’0, .o')

Using xt(n-l)aa, 0,0, ... , &as the new starting

point, find I(Xt(n-1)Ae,b 8, 0,0, ...}
and repeat the steps under 3.

Work successively in this fashion with each
of the variables a, a,, 8, eoslye

Start the process over again with the

variable a.
Continue recycling until the desired

accuracy 1ls reached.

It is interesting to consider the geometry of

this process. If we substitute equation 2.24 into 2.25,

II-19



we find that I is parabolic in each of the coefficlents

a, a bs, Cg»s ds. For simplicity consider the case where

g?
we have only two coefficlents & and b. Then I is a two
dimensional parabolold in a and b whose minimum we wish to
find. I is positive or zero for all a, b and has one
minimum. Contours of I = ¢ are ellipses in the a b plane
of constant major to minor axls ratios, and are centered at
the minimum. Figs. 2111, 2.12, and 2.13 illustrate three
gituations that might arise, In Fig. 2.11 the contours are
circular which 18 the case when the matrix of the normal
equations assoclated with the minimum fit is well-behaved.
Pig. 2.12 is the more usual situation where the contours
are definitely elliptial. Fig. 2.13 shows a very badly-
behaved situation corresponding to near singularity of the
assocliated matrix.

The solid line shows how the iterative method
described above would converge toward the minimum point
in the three situations. The dashed curve shows how
another iterative method, the steepest descent method,
would converge in these situations. The steepest descent
method runs into trouble in the near singuler case because
with finite inorements i1t cannot land on the long axis of
the ellipse. It is forced to wobble back and forth, much
a8 a small ball would wobble rolling in such a trough.
The method described above would also encounter trouble 1if

the increment were not fine enough, for if it got near the
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trough the next increment would carry 1t across the trough
to a greater velue of I.

These figures illustrate a fundamental problem met
with in iterative methods. The fine increments necessary
in treating the near singular case are very inefficlent when
used on well-behaved data, whereas the larger increments
applicable in Fig. 2.11 could never find the minimum of
Flg. 2.13 .

A program was written for the WWI Digitel Computer
which would do this one~-variable-at-a~time type of iteration.
It is described in Appendix C. The computations it carries
out take fifteen or twenty minutes of machine time, but
they represent nearly a year of hand computation. The
program cen print out each successive value of I as it is
computed. Fig. 2.14 shows a plot of these values as the
program converges towards the solution of a particular
problem. This diagram shows how I is parabolic in each
coefficient. We also note that all the parabolas have
epproximately the same shape. Thls indicates that 1f there
is a predominant long ellipse axis as in Fig. 2.13 , it

cannot be close to parallel to any of the axes a, a_, d

g' “s?
for if it were, the parabolic seotion in the corresponding
direction would be quite flat. One surprising feature of
this diagram is the failure of the parebolas to tend to

flatten as I is diminished.
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Agouragy
This 18 a convenient point to consider the

problem of the importance of obtaining the exact solution.
If we look at Fig. 2.13 , we see that values of & and b at
the point A will reduce I almost as well as values at the
true minimum O. Individual errors (xi—ﬁi) will likewise

be practically identical. The effect of the displacement
CA will not be felt until the velues at A are used to
predict outside the interval where the minimum fit 1s taken.

Suppose the series 1s

1 I

and the minimum fit is taken in the interval 1 of this
gseries. What happens when we predict the interval II with
coefficlents chosen in I?

Consider Fig. 2.15 . The dark solid line represeﬁts
the long axis of the ellipses for interval I and the light
solid lines, the contours for this interval. The true
minimum of these contours 1s at O. Likewise, we can draw a
gimilar contour picture for the interval Il. If we assume
the dynemics are but slightly different in the two intervals,
the second contours will be slightly rotated with respect to
the first, snd, there will be a small displacement of the
miniﬁum. The heavy and light dashed lines in Fig. 2.15

II-22



CONTOURS FOR
INTERVAL L
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represent these contours for interval II. Since we are
considering the near singular case, the devliation of the
sum of squared errors for the second interval from 1ts value
on the heavy dashed line will vary as the square of the
distance from a point in the ab plane to the heavy dashed
line.

Now suppoge in finding our minimum point for
interval I we had landed at the point A which satisfies
the least squares coriterion almost as well as the true
point 0. The deviation of the sum of squared errors when
point A 18 used Lo predict inmterval II will be proportional
to (AD)% which would be about sixteen times greater than
if the point O were used, since OE - 1/4 AD, On the
other hand, if we had landed at the point B for the first
interval we would get a sum of squared errors smaller than
if the point O were chosen. Again, if the point F were
taken, the sum of squared errors for interval Il would not
be apprecisbly different than for the point O.

These effects have been noted in computed data.
The indication is that the true minimum point O must be
chosen if we are to take the sum of squared errors as a
valid comparison of the changing dynamlics in various intervals
of a series by this method.
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SOME INTERPRETIVE PROCEDURES

Introduotion

In this part we present several ildeas which may

be applicable to answering certain questions involving
seismogram analysis. Two of the ldeas have had some testing,
the others none. With one exception these ideas Trelate
specifically to refleotion selsmic records, and wrious
possibilities in picking reflections therefrom. The questions
are:

1. In a two velocity system, e.g., shear and compress-

ionsl waves, cen we set up a method for separating

thege velocities and can we apply i1t to reflectlon

determination?

2. In the use of linear operators for seismogram

analysis, is there another measure of predliction error,

otier than the "error curve”, which will show reflectiona?

3. Can we obtain information on the step-out times of

reflections, by the use of linear operators and the

concept of ensemble averages?

I, Can a speclal seismometer set-up be used 1un con-

junction with correlation amalysis to pick reflections?
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Yeloglty Separation

The determination of velocities for compressional
waves in the earth at shallow depths is relatively simple
due to (1) the eaBe in generating such waves, snd (2) the
fact that the first arrivels are the compressional waves.
Shear waves are more difficult to generate with sifficient
emplitude to separate from the earlier arriving types.
Although with the proper equipment this cen be done by
visual imspection of the selsmogram, i it seemed of
interest to consider if s statistical test could be devised
to help in this problem.

The approach was to set up a simple model approxi-
mating the physicel sltuation.

Agsume we have two wave forms A snd B traveling
horizontally at velocities V, and V,, where V, Vﬁ, vast
three geophones F, G, and H, equally spaced with separation
d. The wave shapes do not change with time. Traces F,

G, and H then represent composites of A and B with different
time lags. Assuming VA is known, the problem is to find Vg
and, if possible, the wave forms A snd B,

Divi@e the time scale into units such that the
no. of units per egec. is L. Since VA and 4 are known we may
line up ¥, G, and H 80 that very nearly

1 Ref. 8

II1I-2



Fg = &y * By 3.1

GN = AH + BNnj 3.2

Hy = Ay + By oy 3.3
where the time lag between traces 1s approximated by J unlts
so that ~£~ - -4 + d

L ?A VB
or

v, = LAVh

B JVA+L§. 3.4

This is illustrated in Fig. 3.1 .
From equations 3.1, 3.2, and 3.3 we can get

Ay = BAyoy = Oy - Fyy 3.5
Ay - Ay oy = Hy = Fypy 3.6

3.5 and 3.6 are recursion formulas giving Aﬁ*kj and

A

N-2k § respectively (k = 1, 2, ...) once Ay eeee Aﬁ~3+l

are known. Now Af j has its correct value then 1t 1s easy

to show that regardless al Alg

both formulas give the same value for Aﬁazkj » If J is
g8lightly wrong then the two series will differ slightly.

The difference will incresse a8 J strays further from its
true value. We may now set up a procedure for findlng this

value. Assume values for J] and for Ay, Ap ., «.. %n-3+1'
use equations 3.5 and 3.6 to caloulate the two series (to
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a certain lemgth), find the mean square difference between
the series, and plot this difference as a function of J.
In the 1deal case, thls function will go to zero for the
correct value of j. In practice we can expect this
difference function to have & minimum at the correct value.
Thug in theory at least, J is determinable.
Equation 3.4 may be used to find V5 . Although the exact
wave shapes are indeterminate in the general case, there
may be obtailned some information about them. Assume the
first )} values of AN are teken to be zero. If J is correct,

then the seriles from equation 3.5 represents the true AN

with the first J values subtracted successively. Thus the
gseries from equation 3.5 might be ®xpected to have the
same frequency characteristics as the true An.

In certain cases the assumption that 4y ... Ay 341

= 0 will be fairly acourate. In these cases the wave forms
should be determinable. Examples would arise in the
gseparation of shear and compressional waves where it 1s
kmown that the shear waves arrive late, and in reflection
pilcking.

Another possibility in this problem would be the
use of pure oross-correlation between two traces. We
should expect to get a pesk in the correlation at a lag
corresponding to the velocity VB and the particular geo~

phone separation. However, if the wave form B were of smell

III-4



amplitude, the shape of the cross-correlation curve would
effectively be dominated by that of the suto-correlation of
wave form A, and the selection of the peak would be somewhat
arbitrery. On the other hand, the mean square difference
between equations 3.5 and 3.6 should still show a true
minimum at the correct lag.

We can adapt this idea to the selection of re-
flections on seismic records. Here we make the simplified
assunptions that the reflection consiste of & wave train
with zero smplitude between reflections as in Fig. 3.2 .
This is assumed to occur on two traces Iln the seme form and
' at the same time (i.e., there is no step out time of the
reflection which is assumed to be coming in vertieally). In
this case equation 3.5 alone is ppplicable and we need only

two traces.
Ay = Agoy = Oy - Fy 3.5

J is taken from the step-out time of the initial
breaks on the selismogram. We then select some interval |}
units in length in whieh Ay is zero (2 non-reflection
interval), emd use equation 3.5 to predict the remainder
of the reflected wave. JFor interpretation it is convenient
to plot the running variance of the predicted reflection.

Now the assumptions will certainly not be upheld
exactly on any real seismic record. A certain amount of
random energy will be in phase between any two traces and
would be picked out by this method as part of the predicted
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reflection. To alleviate this situation we can use three
traces and predict the reflected wave from the three

possible pairings of these traces. Adding the three predicted
waves would tend to accentuate components in phase between
all three, and vo minimize the random, in-phase components

between any two traces. For three traces Fy, Gy, and Hy

we can express this sum as
Ak = At Byt Apges Y Ok

+ 2H

wx - F

N -G

- F N+ 3 3.7

Nt K= }

where 3} corresponds to the step-~-out between FN and GN’ and
K the step~out between FN and Hﬁ.

T of © tho
1. Selection of Shear Velocity

An initial test was coustructed which showed that,
when the assumptionsg were exactly upheld, the minimum of
the plot of the squared differences between equations 3.5
and 3.6 was qulite sharp.

On this basis three adjacent traces of a selsmo-

gram were converted to numerical form and the method applled

%o these real series. The selsmogram was taken at Revere
Beach, Mase., in unconsolideted sediments, by Peter Southwiok.F
Special generating appesratus was used so that the shear

arrivals were quite prominent. This record is now lost, but

¥ Rer. 8 I1I~6



¥Fig. 3.3 shows a very similar selsmogram taken with the
same apparatus. The first line of check marks on this
seismogrem indicates the first arrivals, and the seecond line
of check marks was ploked as the arrivals of the shear waves.
This second line permitted a direct computation of the shear
veloclity.
The readings for the three traces were lined up

in accordance the first line of time breaks, and equations
3.5 and 3.6 were computed for a variety of values of j. In
each oase the first J values of AN were assumed to be zero.
The sum of squared differences between these two series were
computed for esch J, and normalized by the number of ternms
in the series for each J. 4 plot of these quantities appears
in Fig. 3.4 .

This figure shows two distinet minima (at ) = 13.3
and 3} = 16.0) rather than Just one. Upon examination 1%
turned out that the value J = 13.3 corresponded to a shear
velocity which would have been computed by direct interpre-
tation of the first two traces chosen. The second minimum
corresponded to awloclty which would have been dtermined
directly from the second and third traces chosen. The value
of velocity computed by the entire second line of ocheck marks
of Flg. 3.3 lsy between these two values.

Fig. 3.5 shows a running average of the points in
Fig. 3.4 (by overlapping groups of three) which exhibits
a flat minimum between } = 13.3 and J = 16.0 . The
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corresponding velocity was qulte close to that computed
from the second line of check marks.
2., Predicting a Reflected Wave

To test whether or not a reflection could be
predicted by these methods, a selsmogram showing s pro-
minent reflection was chosen (MIT Record No. 1 ¥). Inm this
record linear operators had been computed and error curves
derived. These error curves showed marked peaks at the
reflection so the ocurves were taken a8 a basis of comparison.

Prom two traces on this record equation 3.5 was
computed. J was selected from the initial step-out between
the trsces and the non-reflection interval chosen to occur
after the reflection. ¢The variance of the predicted wave
(in overlapping groups of ten) 1s plotted in Fig. 3.6 .
The dotted and dashed curves of this figure show error curves
for linear operators with different prediction distences k.
The variasnce curve does not reach & peak in the reflection
as rapldly as do the error ourves, but it does compare
favorably with them in general shape during and after the
reflection. Before the reflection the discrepancy is more
noticeable. This may very well be attributable to the f aect
that operator interval was chosen jJust before the mflectlion.
In the operator interval, the least squares fitting procedure

forcesg the error curves to be as low as possible.

t Rer. &
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Conclus

The two tests dlsocussed show that the expected
effects are noted. However, the data used are reasonably
ideal, in the sense that ordinary methods of interpretation
are edequate. Whether or not the statistical technlques are
better can only be determined by many further trials.
Situations difficult to treat by the ordinary methods will
also fall to uphold the simple assumptions of the theory
presented here. On the other hand, only the simplest forms
of the theory were used in the eamples. Reflnements, such
as the use of three or more traces for reflection picking

may glve more valld results.
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Phase Test

The "error curve', as used by the Geophysical
Anglysis Group for picking reflections, is a running aversge
of the squared differences between a predlcted and an actual
seismic trace. Fig. 3.7 shows an actual trace (the solild
curves), and three predictions of this trace, from linear
operators with different values of prediction distance.
Prom this diagram we see that the error curve isg a running
neasure of the vertical differences between the predicted
and e ctual traces.

At the reflection (shaded) these differences are
seen to become large, and hence the error curve rises to a
peak in this interval. The reason the differences become
large is not because there is a big discrepancy between the
aversge amptitudes of the predicted and actual traces. From
the diagram it appears thaet the reason 1s that there 1is a
norizontal displacement of the oscillations of one trace
with respect to the other. In other words, there 1s a phase
shift between the predicted and actual traces during the
reflection, which disappears shortly after the reflection.

It seems then that a test of phase relationshlips
might well show the reflectlons as well as the error curve
does. A fairly rigorous way of testing this phase shift
would be the following:

I1Ii-10
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1. Seleot highly overlapping intervals of the record.
2, €Compute the cross-spectrum between the predicted
and actual traces in each interval, thus obtalning the
phase relationships.

3. Plot the phase angle of the dominent frequency as
a function of the interval chosen.

Practiocally, this is an involved procedure. We
can use & simple but crude method to get approximately the
game results. Since phase shift is expressed by horizontal
displacement we can measure this displacement directly from
graphe such as in Mlg. 3.7 . This requires that we be able
to follow corresponding waves in the two traces, which 1s
subject to personal Interpretation.

The displacement was measured for the upper set
of curves in Fig. 3.7 . From equally spaced points (in time)
on the solid curve the horizontal displacements to the
dagshed curve were measured. Displacements to the right were
considered positive, those to the left negative. Where
such measurements could not logically be made (for example
on the peak occurring at about .96 sec.) values were taken
midway between the last value that gould loglcally be made
end the next such value. Once this series of displacements
was determined, 1ts individual terms were summed in groups
of twenty overlapping by ten, in order to smooth the data.
These sumg are plotted in Fig. 3.8 .

I1I-11
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This curve indicates a rapid change of phase
coours at the reflection, the phase rising to a peak in the
middle of the reflection, and falling off more graduslly
thereafter. It Beems surprising that the ocurve is almost
entirely positive. If this effeot 1s characteristic,
perhaps we should conslder as significant only those portions
of the curve above a certain mean (about 25 or 30 units in
Fig. 3.7). From the original record it appears that there
mey be another reflection at about 1.23 seconds, which could
conceivably cause the rise at the end of the curve.

This 18 a purely empirical curve. Perhaps it
only holds for the particular case treated. One would
suspect that the arrival of reflecbed energy would be
accompanied by a rapid change in phase relationships. How-
ever, 1t does not seem reasonable that these changes should
be in one direction since the times of arrival of reflected
energy are random. Possgibly we should deal with the
original series only, and compubte the rate of chanese of
phase angle (between two overlapping intervals) as a function

of interval.

IIi-1z2



The step~out time of a reflection is & property
of several selsmic traces rather than just a single trace.
The error ocurve for linear operators, as defined elsewhere
in thls paper, is a property of a single trace -~ a time
average of a single error time serles. To get information
on the step~out time we must consider operators chosen for
different traces. In this connection it is convenient to
use an "ensemble® average. This ig an aversge acrogs the
"ensemble" of error time series generated by the various
operators chosen.

Let us suppose that we have taken a serlies of
operators on a record which consists of traces from equally
spaced seismometers. Suppose there are T traces, and on
the 40
For the k

trace (4 = 1, 2, ...T) we have chosen N, operators.

th operator on this trace (k = 1, ...B}) there is

an assoclated error time serlies which we define as el(k‘).

Then, for example, we may construct a single error time

series e: to be associated with the 4°!' trace by the

expression x

‘ y
e =z [e, 7P 3.7
k=1
We may then averagge these error time series over

the various traces. Between traces we observe the effect of
step~out. Hence we construct the error time series 51(“)
with an arblitrary lag or lead &

III-13



T Y
S(a)az €()

i g=1 i-at G=0,%1,%+2, ..3.8

with the expeotation that a peak on this error time series,
corresponding to a certain reflection, should be highest and
narrowest for that value of a most closely corresponding to
the true step~out of the given reflection.

No attempt has been made yet to compute 3.8 . It
would be & falrly slimple task to program this equation for
the WWI Digital Computer as & follow-up of the Prediobion XV
progran described in Appendix B,

III-14



As an approach to the problem of using a speclal
geophone layout for reflection ploking, consider the
following arrangement. Two geophones Gl and Gz are placed
in the ground, one vertically under the other at a distance
d. Assuming the ground homogeneous and non-dispersive
around the geophones, the responses of Gl and &2 may be
considered to be due to superpositions of many plane waves
travelling with a velocity V from many different directions,
In the absence of big reflections, the major contribution
to the responses will come from wagves having directions not
far from the horizontal.

Now consider the cross-correlation of the two
responses at Gi sand G,. In particular consider the value
of the function for a time lag equal to 4 /V. It appears
that this value will be strongly influenced by the amount
of vertical wave contribution present in the responses, since
d/V 1is the time of direot travel from G, to G,. The
cross~correlation at the lag 4 /V should rise rapidly at a
reflection and drop off afterward.

In prectioce we would have to compubte this correlation
over highly overlapping time intervals of the response
funotions in order to obtaln the correlation as a functlion
of time. The correlation program described in Appendix D
is adaptable to this type of amalysis. So far however, no
seismograms with the above geophone arrangement have been

avallable.
III~15



CONCLUSIONS AND SUGCESTIONS FOR FUTURE WORK

It is d4ifficult to make evaluations of valldity on
methods which have undergone little testing. HNevertheless
we may drew certain conclusions from the work presented here.

Polynomial gravity approximetion, as presented here,
seems of sufficient simplicity and validity to Justify a
considerable amount of further study. If further trials
show more promise it would be well worth-while to find the
inverses of the matrices of Table III. In any event,
polynomial approximations of thls type have applications in
meny other fields, and the simplificatlons brought forward
here may be of real value in these other appllcations.

The properties of cosine operators are of mathe~
matical interest, but it is hoped that studles of this sort
will lead to more practical results. In particular, further
pursuit of the filter characteristics of linear operators
will lead to a better understanding of the extent of real-
1zability of equivalent electronic filters, and or to
simplification in the determination of such operators.

The author is more hesitent about recommending the
various procedures aiscussed in Part III. OSelsmograms
exhibit extreme variability in thelr oharacteristics and,
whereas the examples given here are encouraging, the pro-
cedures may fall on other types of records. However, the
problems they attempt to settle are of great praotiocal con-

cern and all promising techniques should be elther proved



or disproved. Phase is a cruclial variable in these problems,
snd probably considerable effort should be spent studying
this parameter.

As for the Appendixes, the author feels that the:
programs described therein have genuine valus. Anyone con=-
cerned with research depending largely on computation
appreciates the fact that obtalning errorless results is a
major problem. Programs such as these effectively elimlnate
this type of problem, and are avallable for the use of

persons interested in the sort of computations they perform.
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APPENDIX A



PENDI
POLYNOMIAL I (2492 m 1) - Descrl

X

Thie progrem was written for the WWL Digital
Computer to eliminate the task of computing the residusals
from a least squares fltting of an nﬁh order polynomlal to
data taken over an arbitrary-sized rectangle. A copy of
The program appears at the end of this Appendix.
Polynomial I does the following:
I. It solves the equation

2
g(xy) = Cog + Cppx + Coox™ + oouu. + Cngﬁn

-1
"t' COIy + Cllxy + s e v e + C(Il*l),l y

*s e s
(A X XN ]

-1 -1
+ cO,(nrl)yn * 0 (pe)

+ C 0
on?

where the C, 's are given, n, the order of

the polynomial is given, and the values of

x and y are to be taken over a rectangular
grld measuring 2N by 2M, and with axes centered
as in Fig. 1.2.

II. It then forms the differences g(xy) for
all values of g(xy) on the grid. These are
the residuals.



III. It prints out these residuals Ain the same
network fashion that the grid was chosen.
Use of Polvnomial I
There are certain conventions which must be
observed in the use of this program. The constants
defining the nature of the polynomisl and grid must
appear as follows:
Begister 440 +4n order of polynomial (less than 7)
(Octal) 441 4N greatest value of x
hh2  +M  greatest value of ¥y
Yhe coefficients C;k of the polynomial must be scale
factored in a speclal way because they decrease in mag-
nitude rapildly as J+k Increases. The scale factor is
10(£+k)”2, which in most instances will guarantee that
all are less than unity in ebsolute value, but not

greatly so. They must appear in the machine as follows:

Register. 43 Gy, 'x 1072 461 G, x 10
(Cctal)  Luh €10 g 1072 462 G,y 102
W5 C,y o x 1 463 C,p x 103
4
b6 Gy x 10 b6k Cp, x 10
W7 Gy x 10 465 Coy x 10
450  Cgy x 103 466 Cp, x 10°
451 Cgy x 10 467 Cpy x 107
-1 L
b52 001 x 10 L4720 333 b4 102
453 € x 1 W71 Gy x 103
45k Cpy x 10 k72 Cp x 10



455 €5y x 10% %73 ¢, x 107
456 Cyy x 103 b7l Cos x 103
b 4
457 Cgy x 10 475 Gy x 10
40 Co, x 1 476 Cyg x 10%

The data g(xy) which is presumed to be taken
over the gridwork, is scale factored by 10™° and appears

in the machine as follows:

Register 540  g(-N,H) x 10”2
541 g(-N+1,H) x 107%

542 g(~N+2,M) x 1072

. g(N,H) x 1072

. g(=N,#-1) x 1072

. g(-M1,m-1) x 107

. *

. »

. g(N,H-1) x 107°
. g(-N,H-2) x 1072
. g(-N,-M) x  107°

. gl-M1,-M) x 107?

L] -



. g(N,-H) x 1072
. gl-m+1l,-M) x 107¢

. glu,-n) x 107%

Now suppose the information n, N, M, and the

C,. '8 are prepared on a tape with the tape number X, and

4k
the date g(xy) 1s prepared on a tape with the tape number
Y. Then the instruetions for the operation of this program
would be

Erase storsage

Head in 2492 m 1

Bead in X

Read in X

Start at 127 (Octal)

The residuals are printed out by the direct
printer in about three minutes or so depending on the
size of the grid. They appear as four-digit numbers where
the decimal polnt 1s understood to occur after the second
digit.

As an example of the output we include a sample
of three sets of residuals. These were derived for the
three sets of coefficients used elsewhere ln this paper.
The sample illustrates the convenience of this form of

snswer for contouring purposes. In fact, with only slight
modification (inserting two extra carriage returns between



lines) these numbers would appear on a grid with square

unit cell, and could be contoured directly, on the result

sheet.

We describe here a technlcal feature in this
program which might be of use to other programmers. The
problem is that we are multiplying numbers rapldly de-
creasing in magnitude with Z+k (the cik'S) by numbers
rapidly incressing in magnitude with 4+k (x‘yk) while the
product ig of a relatively constant order of magnitude,
which must be in a form which we can add to other such

products.

k

What we want 1s the product Cﬁkxgy to be scale

factored finslly by 1072, To preserve accuracy during the

computation of the product we do the following:

1. Form ¥ 2710 amg yk 2715 ana then

scale factor to xX 2 +7T% ana y¥ o=15+p

by use of the scale factor order.
2. Form ijlo(£+k)-2X12~15+&yk2~15+ﬁ

- C‘kxzyk2-30+a*510(£+k)-2 (1)

To get this product to the form Czkx‘yklc'z
we must multiply by 10"(‘+k7230-(d*5)

It appears that we merely need to store the

negative powers of 10, multiply the expression (1) by
lo—(£+k)

powers of 10 cannot be stored with amy accuracy for high

~u+k)230~(a*ﬁ)

4+ so we write 10 in the form

and then shift left 30-(ca+f). However the negative



2~(£+k)log210+3ﬁ~(a*ﬁ)

2=3+32193 (4+1)+30~-(ap)

i 2° 3219%( £+k) [2“3 (4+k)+30 (W‘“ﬁ )]

(2.3%193)(£+k) [2-3 (44K )+30-(a+B )4

(.800)4%K [5~3(4+k)+30-(o+B);

i

We oan store the powers of (.800) with ample
accuracy. Thus we multiply by the appropriate power of
(.800) and follow this by a shift left or right according
to the exponent of 2. (%The zeroth power of (.800) is put
in a8 +.9999.)



+0385
+0163
+0086
+0039

+0372
- 40193
+0067
~-0057
-0333
-0363
-0249
" +0107
+0404
+0390
+C212

+0105
+0044
-0000
-0075
-0333
-0372
-0293
+0003
+0218
_+0102

-0195

-0302
+0004
-0132
‘0083

-0293
+008%
~-0087
~-0114
-0299
-0292
-0296
-0112
+0205
-0041
+0390

-0402
+0079
-0012
-0001
-0164
-0158
-0185
=0043
+0215
-0106
+0239

-0001
<0211
+C020
-0Q5%7
+0003
-0050
-0170
-D00B
+Q033
-Q0%65
~0700

=-0035
~0153
+0136
+0099
+0191
+0130
-0C01
+0134
+01383
-0039
-0698

-0147
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+0250

X
-0189
+0231

+0421 +

+0478
+0504
+0298
+0510
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-0309
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=-0415
Oth3

-0300

, =0166°

+0393
-0021
+0036
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" 40270
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-0115
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o e

-0217
+0043
731
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-0033
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~-0203
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-0033
+0030
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+0070
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-0000
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3. =0007
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~-0051
-0027
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-0100
+0014

+0133
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-0115
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-0065
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-0192
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+0002
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-0045
-0116
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~0115-

~0140
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=-0179
-0253
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-0030
+0012
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+0200
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-0165
-0039
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+0031
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-0003

-0007
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~0000
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+0070
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~0117

+0062
+0288
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-0009
-0115
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-0111
-0426
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+0391
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+00041
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+0017
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+0021
+0080
-0065
-0082
+0001
-0018
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+0297
+0085
+0041
-0134
-0192
-0131
-0152
-0056
+0007
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-0002-
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APPENDIX B
PREDICTION XV (2539 m 2) - Desorir

This program was wWritten to provide computational
facility for predioting a series x,(y,,z,, or u,) with &

linear operator of the general form

Xy o1l T4 ZFrax OF W) = etoagX ek, o et ogyx
DYy eeeeeeeenet bV .1
+ 0Zy ceceerecect CyZy y

+ doui .‘l‘..‘.‘.+ dmui"M

where the prediction distance k and the number of lags M
are arbitrary but have the restrictions that B 7 and
Mtk 19. The four series which this program handles
contain 500 members each so that i1 ranges from o through
499, This first prediction computed is for itk = 20 and
the last one for i+k = 499, After doing this computatlion
the program forms the rumning. averagec of squared errors
between the predieted‘and actual serles

b

z (x, -x
1=3-5 17

)2 3 =25, 35, 45, 55, ...495
which is ocalled the "Error Curve".
There is considerable choice of output. The
alternatives are any combination of or none of the following:
1. Print-out of the errors and sums of squares
2. Print-out of just the sums of squares of

errors.



3. Photographs of oscilloscope displays of
the sums of errors squares
An addltional cholce 1s the use of magnetlic tape delayed
output for 1 and 2 above, which 1s about fifteen times
faster than direct print-out.

This program handles up to eight operators at a
tine in the above fashion. When the magnetlc tape output
is used, the error curves can be removed from the machine at
the rate of one every ten seconds whereas the individual
errors .and error curves require fifty seconds for each
operator. Each curve would represent about a week of hand
computation. Once the computations are completed the individual
errors (xi~xi) for all operators are left in magnetlic drum
gtorsge so other programs can use them for different types
of averaging processes rather than just the Error Curve as
described above.

On the next three pages are lllustrated the
various output forms. The first page is & reproduction of
the individuél errors and error curves for two operators.
The results for each operator appear as a block of numbers
10 by 48 and a right-hand column of 48 numbers. The block
represents the 480 individual errors whereas the right-hand
column is the Error Curve, each member representing the sums
of the squares of the 10 individual errors in the corresponding
row to the left. The number appearing over the upper left
corner of each block is a number assigned to the particular

operator for identification purposes, and is printed by the



program. The number printed over the center of each block
was 1ﬁserted later.

The next page shows the output form for four
operators when just the Error Cﬁrve is desired. The +0000
identification number indicates that the operator was chosen
as the wriance operator which has the forn x, = % (means
of series). The Error €urve for this type operator becomes
the sample variance curve and provides a basls for testing
the statistical significance of other operators predicting
the Xy serles.

The third page is a photograph taken autometically
by the program of an oscilloscope display of one-half of
an Error Curve. A vertical and horizontal axis are also

dlisplayed.
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Use of Predlotion XV

It 18 necessary to prepare a tape contalining

the operators and a tape contalning the traces Xyp Ty

Zyy Uy These are prepared as described in the following

two pages.

respectively.

Aspume these are given tape numbers X end Y

Erase storage, put 511 switch off
Bead in 2539 m 2

Read in 2539 P — (Control Tape)
Read in X

Place Y in Photoelectric Beadér
Start at 145

the followlng functions:

2539 - PO
2539 - P1
2539 - P2
2539 - P3
2539 - Ph
2539 - P5
2539 - P16
2539 - P11
2539 - P12
2539 - P13

Print errors end sums of squares
and scope dlsplay sums of squares
Print sums of squares and scope
display sums of squares

Scope display sums of squares

Print errors and sums of squares
Print sume of squares

Print nothing, display nothing
Print errors and sums of squares
and scope display sums of squares
Print sums of squares and scope
dlsplay sums of squares

Print errors and sums of squares

Print sums of squares

Then the operating instruction would be:

The control tapes control the output and serve

DIRECT
PRINTOUT

DELAYED
PRINTOUT
(MAGNETIC TAPE)



If one of the operators on X were badly prepared,
it might happen that machine overflow would occur causing
the machine to stop while computing for that operator. If
this does happen, starting the machine over at 166 will have
the effect of ignoring the bad operator and proceeding to
the remaining ones.

anta Parasmeter

Each set of data x,, Ty 2y, and u, is prepared as
a separate parameter snd then the four parameters are com-

bined into one long one. The form of each 1s identical.

Cctal Octal Octal Octal

Address  ___ | Address - Address . |Address -
1054 x 1054 y 1054 z |1054 u
1055 Xy 1055 Yy 1055 zq 1054 uy
1056 Iz 1056 Tz 1056 z; |10 6 w
Start at 1033 | Start at 1033 Start at 1033 |Start at 1033

Notes:

It is not necessary that the series contain 499
members. However, there must be four traces. If less than
four are to be used, short dummy traces must be inserted.
For consistency with the operator tape, the order of
combination of the separate parameters must be X Yy
Zgs Uye

The data must appear as integers 1n the range
-99 through +99.



Preparation of Operator Parameters
Up to 8 operators may be prepared on a single tape

in the followlng fashlon.

2g§§i88 Contents Explanation
105 +N n0. Of = 8 g
105 + . XKXX Ident. no. for first operator
1055 -0,-1,~2 or -3 -0 if Xy -1 if Yy
1057 +M -3 rst
1020 + . 30KK a x 10 21 1l
1061 + , XAXX a, x 10
— . 7 -1 Constants ¢
1062 + . XXX aé x 10 for xi P
[ L - E
1070 : 8y x 1071 2
1071 . b, x 10 Constants
. . ? -1 for y, g
1100 . b, x 1073 R
1101 . 07 x 10 Congtants
. . O for =z
1110 . o, x 1077 i
11%1 : d? x 10 Constante
1120 . a. x 107t for u, P
1121 . Igent. no. for second operator 2
: : ote. b,
1165 .
; . ete.
Notes:

It is not necessary to put anything into irrelevant
registers. For example, if the first operator had an M of
3 reglsters 1061-1064, 1071-1074, 1101-1104, and 1121-1124
- would be considered irrelevant. Agailn, Af this operator
did not use the uy series in its prediction mechanism,
registers 1111-1120 would be irrelevant.
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APPENDIX C
ITEBATION I (2615 m 2) - Degeription snd Use Of

This program was written with the purpose
of obtalning least squares fits for linear operators
és described in Part IV. It computes essentially as
desceribed, but has provisions for changing its in-
crement after cycling for a certaln prescribed number
of times.

The program was designed to be run in con-
Junction with the Prediction XV program desoribed in
Appendix B, and to 1llustrate the conveniences which
programs can include. The data to which the linear
operator 1s to be fitted is prepared in the same fashion
as in Prediction XV. The information about the operators
to be found (Iteration I solves up to eight operators
one after the other) is prepared as a single tape. The
operator coefficients once fqormed are printed out, and also
are left in the machine in a form %o be used directly with
the prediction progrem.

The output of Iteration I was designed to
eliminate identification problems. In addition to
printing out the coefficients identified, 1t prints out
the operator number, the operator parameters including
which set of data 1s predicted, and the variance amnd

minimum sums of square errors. These last two numbers



allow a rapid computation of the percent reduction

the least squares fit. A sample of the output esppears below.

/ivar s Which is & measure of the goodness of

Variance sum = Q04953
Mininmum sum = OOL840
Operator No. -1010

N = 066

n = 050

k= 002

M= 003

T4 predicted

a8 A000 = +0292

a3 /40 = -0000
az A0 = +0565
al A0 = -0000
a0 A0 = +0005
A3 40 = =-0341
d2 A0 = -0117
Al A0 = -0410
a0 A0 = 40708

The Program may be used to print out all the
values of I as they are computed. A plot of these values
for a particular operator appears in Part 1V,

One other feature in this program is a "roll

back" procedure. This permits us to avoid having to

start from scratch if the maochine fails in the middle of

the long computations. Every fifteen seconds during the



computation, all of electrostatic storage is transferred
to the magnetic drums which are very reliable. Then if
electrostatic storage is destroyed, we ocan call back the
program from the magnetic drums end start over where we
left off not more than fifteen sconds ago.
Use of Iteration I
If the operators are prepared as described on
the next page with a tape number X then the instructions
for the operation of this program would be:i
Erase storage, Sil switch down
Read in 2615 m 2
Read in 2615 P (control tape)
Read in Y (data tape)
Place X in photoelectric reader
Start over at 145
The control tapes control the output and serve
the following functions!
2615 P 0 Print out operator and identi-
fication {(direct printer)
2615 P 1 Print out operator, identl-~
fication, and all values of I
(delayed printer).



The information for each operator 1s prepared
as 8 short separate tape and the tapes are then combined

in any order. The form of each operator is identical.

Octal

Address Contents Explanation

1001 +N First member op. interval
1002 4+n Length of op. interval

100 +0, or -1 -1 1f Xy not used

100 +0, or -1 -1 if yy .o

1005 +0, or -1 -1 if =z} * =

1006 +0, or -1 ~lifuy * "

1007 + . XX First oﬁerator no.

1010 -0,=-1,-2,0r =3 -0 if x,, =1 if y

1111 w 2 if 70 -3 1f w

1112 +M - Zg, =3 AT Wy _3
1113 +. 300X = mean of pred. series x 10

Start at 147

The first of the separate tapes must have one
additlionel register, reglster 1000, which contains + no.
of operators on the combined tape.

RBegister 2123 contains +.0010 which is the
first increment to be used for the a term. BReglster 2223
contains +,0100 which is the first inorement to be used with
the remalning constants. BReglster 3421 is the counter for
the cycles at these increments. The second set of increments
18 1 A0 the first set, and appears in registers 2124 and 2224,
The counter for this set is register 3433. These registers

may be changed to adapt to the particular problem.



The "roll back® procedure in case of electrostatic
storage fallure is
Erase storage
Read in 2615 P 13
Start over at 145
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PENDIX

AUTC CEOSS-CORRELATION I 2559 mo, ml) - Desoris

This progrem wag written for the WWI Digltal

Computer to compute the unnormalized sample correlations

NMn~1
z
1+N

X549y =0, 1, 2 ....m

®ne conventions for preparation of the date
Xy and y, are identical with those desdribed for Predioctlon
XV in Appendix B, with the exception that the data tapes
need not be combined after preparation. A short tape is
prepared containing the information N, n, and m as follows
Reglster 1047 + N (First date point in blook)
(Octal) 1050 +n (No. data points in block)
1051 +m (No. lags)
2559 mo handles individual data tapes and 1s used
as follows '
Erase storage, put Sil down
Bead in 2559 mo
Read in Z (tape for N, n, m)
Read in X (xl data tape)
Read in ¥ (y, data tape)
Start at 770
If X and Y are not identical we get half of the
erogs~correlation curve (for j 0)}. To g?t the other half,

we repeat the instructions interchenging the order of read~-in

5



for X and ¥. If X and Y are the same tape, we get the
entire auto~-correlation curve, sinoe since auto-correlations
are symmetric about the zeroth lag.

The correlations are printed out by the direct
printer as seven~place numbers, ten per line, the 0&& lag
being the first no. on the first line, the xzﬁi lag belng
the second no. on the first line, etc.

2559 ml performs the same functions as 2559 mo,
but is adapted for handling the gombined tapes used wlth
Prediction XV, It assumes there are 3 real data sets plus
g dummy set and forms the nine correlations representing the
permutations of the 3 real sets. The correlatioms are over
380 values of the data, and are taken to 100 lags. The
output is the delayed printer, and requires one minubte for
each 100 lag block. At this rate the program can perform
8 or 10 million multiplications in 4 hours of machine time.

A sample of the output is shown on the next page.



373
RECORD 12.4 T1, T3, T5 0269909 0265706 0256802 0247574 0241891 0241348 0244756 oeu 528 0253665 0256073

0257163 0257240 0256225 0253851 0250495 ozug 05 o2465k2 0248938 0253606 025819%
0260357 0258809 0254777 0250492 0247962 024 0249871 0251 53 0252758 02523
CORRELATIONS = n' Q' () 0252 86 0253346 0255092 0256991 025764 025662 0254305 0251877 0250637 025089
T--T-- 0252183 0253218 0253426 0253018 0252728 0253066 0253749 0254090 022 453 0251917
0250751 0251120 0253476 0256785 0259049 0258778 0255780 0251678 0248717 0248300
N' = 120 m = 100 0250421 0253577 0255923 0256450 0255513 0254166 0253326 0253018 0252810 0252240
0251881 0252629 0254885 0257828 0259654 0259015 0255674 0251246 0248299 0258297
‘= 370 p=20, -1, eeo -m 0251198 0255194 0257873 0258140 0256306 0254031 0252778 025282 3670 0254324
n'=3 s T 025;632 0251841 0255508 0256390 0256789 0255943 0253700 025077 926 0249346
025215
375
T1T1 0261579 0258137 0251123 0244258 0240413 0240513 0243623 0247978 0252005 0254770
0179270 1255u9 0167943 0159926 0154392 0152381 015M375 0157500 0160762 0163416 0256106 0255702 0253348 0249351 oznuggo 0240709 0239840 0242870 0258441 oesuozg
0162321 0166495 0166739 O E 0163303 0160803 0159622 0160656 0163452 0166588 0257400 0256909 0253511 0249110 0245885 0245181 02&6616 0248310 oasongs 02507
0168334 0167587 0164736 016134 015 992 0158675 0159932 0161 13 0162974 0163369 0250528 0250280 0250387 0250502 0250142 0249157 oeuggsa 0247496 021483 g 0250252
0163530 0164083 Ez3ou 0253160 0252282 0250366 0248668 0248153 0248641 0249393 024953 02487

0164976 0165711 0165652 0164657 0163034 0161890 0161770 0162461

0163614 0163930 0162507 0161306 0160078 0160104 0161483 0163441 0164974 0165438 257508 0288275 025014k 0252699 0254218 0253440 0250483 0247015 024525 024 195
5

0165304 0165481 0166164 0166961 0166724 0164631 0161027 0157575 0156120 0157333 0249339 0252849 0254797 0254377 0252184 0249797 0248130 0247402 0247085 0246813
0160 23 01646114 0167igk 0167842 0166975 0165494 0164158 0163148 0162496 0161983 0247203 0249075 0252563 0256210 0257999 0256650 0252239 0247033 0243746 0244026
016189% 0162752 0164481 0166457 0167456 0166564 0163950 0160785 0158852 0158994 oeug47u 0252038 0255261 0255942 0254281 0251630 0249399 0248193 0247942 0248265
0161202 0164385 0166921 0167969 0167684 0166672 016547g 0164313 0163155 0161878 0248955 0250277 0252326 0254405 0255303 0254251 0251263 0247568 0245103 0245277
8122869 0160636 0161380 0162796 0164121 0164902 0164818 0164335 0164288 0165130 0248127
166570
T5T6
T173 0209619 0212038 0209335 0203211 0196693 0192461 0191581 019323 0196093 0199052
0212212 0205051 0197189 0192194 0191950 04195871 0201416 0206027 0208339 0208603 0201607 0203523 0208436 0205000 0201893 0198661 0195687 0194688 0196313 0199712
0207664 0206130 0204026 0201293 0198671 0197364 0198592 0202105 0206145 0208921 0203166 0204746 0203810 0201116 0198049 0196123 0136040 0137551 0198966 0199887
oeogoug 0206355 0202538 0199672 0198995 0200283 0202215 0203689 0204039 0203696 0200298 0200580 0201113 0201808 0202130 0201613 0200460 0199281 0198848 0199346
0203808 0204576 0205619 0206097 0205229 0203193 0200919 01997ug 0200230 0201889 0200502 0201601 0201728 0200788 0199293 0198161 0197832 0198239 0198926 0199360
0203855 0204841 0203594 0203746 0203076 0203147 0203796 0204298 0204135 0203438 0199702 0200359 0201613 0203350 0204737 0204639 0202457 0198811 0195347 0193572
0202065 0203750 0205317 0206341 0205592 020283 0199241 0196915 0197372 0200464 0194388 0197391 0201058 0203921 0205094 0204666 0203335 0201642 0199916 0198151
020k846 0208429 0209584 0208257 0205568 0203089 0201738 0201436 0201732 0202350 0196876 0196723 0198201 0201054 0204070 0205587 0204639 0201438 0197718 0195364
0203410 0205086 0206897 0207946 0207196 0204530 0201016 0198505 0198493 0201004 0195317 0195439 0200387 0202653 0203503 0203103 0202116 0201188 0200492 0199752
0205076 0208558 0209854 0208729 0206316 0204030 0202591 0202043 0202011 0201972 0199000 01986H% 0199082 0200357 0201726 020223% 0201376 0199169 0196832 0195679
020215ﬁ 0202876 0204135 0205599 0206456 0206337 0205253 0204088 0203818 0204721 0196311
020619
T175 313
0261579 0258503 0251130 0243226 0238177 0237759 0241323 0246520 0251191 0253999
0209619 0202418 0194992 0190346 0189852 0192921 0197627 0202017 0204816 0205892 0255065 0254873 0253629 0251155 0247622 024399 024188 9 0242889 0246389 0250736
0205566 0203982 0201230 0197769 0194739 0193592 0195427 0199749 0204563 0207811 E 821 0254032 0251731 0248511 0246101 024563 0246846 0248696 0249412 0249165
0208031 0205093 0200592 0196696 0195019 0195553 0197376 0199289 0200417 0200991 910 0249316 0250478 0251667 0251882 0250681 0248649 0246845 02456399 0247486
0201573 0202362 0202995 0202941 0202052 0200418 0198843 019847H 0199452 0200979 0249367 0250990 0251434 0250840 0249792 0249027 0248655 0248462 0248063 0247487
0202027 0201708 0200246 0198710 01980gg 0198724 0200240 0201682 0202178 0201813 0247406 0248440 0250518 0252857 0253862 0252255 0249266 0245444 0243258 0243786
0201532 0202012 0202953 0203148 0201688 0198684 0195532 0194158 0195609 019946 0246985 0251304 0254515 0255452 0254075 0251484 0249071 0247474 0246661 0246353
0203951 0206958 0207149 0204766 0201330 0198496 0197102 0197084 0197926 0199340 0246782 0248200 0250730 0253666 0255346 0254600 0251279 0246782 0243491 0243226
0201398 0204089 0206618 0207553 0205910 0201907 0197105 0193901 0133024 0197030 0246072 0250554 0253998 0254889 0253248 0250477 0248352 0247568 02b7sgg 0248337
0201804 02058693 0207635 0206750 0204291 0201551 0199462 01983 7 0198426 0248540 0248758 0249401 0250568 0251588 0251501 0249919 0247283 0245280 0245305
8192250 0201315 0203328 0204797 0204898 0203555 0201258 0199341 0198886 0200234 0247641
202612
T5T5
T3T1 0260952 0257123 02489390 0240358 0224742 0233724 0236575 0241565 0246583 0250383
0212315 0214230 0211085 0204997 0198972 0195694 0195736 0198067 0201243 0204156 0252531 0252789 0251067 0247427 0242673 0238511 0236926 0239032 0243935 0249400
0206571 02081k2 0208334 0206896 0203662 0199515 0196011 0195022 0197252 0201639 0253017 0253106 0249976 0245377 0241455 0239781 0240557 0243023 0245084 0246490
0206213 0208676 0208284 0205975 0203138 0201366 0201268 0202300 0203388 0203614 0247433 0248105 0248536 0248305 0247163 0245313 0243479 0242682 0243616 0245862
0203158 0202595 0202514 0202965 0203421 0203311 0202552 0201699 0201672 0202735 0248378 0249779 0249186 0247196 0244753 0243052 0242447 0242861 oeug792 0244802
0204780 0206843 0206737 0205565 0203606 0202126 0201797 0202280 0202770 0202386 0246006 024755 0249418 0250780 0250442 0247878 024371 0239862 360 0240083
0201275 0200503 0201133 0203442 0206422 0208297 0207773 0205107 0202023 0200134 0244495 02“9657 0253109 0253525 0251174 0247524 0244207 0242064 0281157 0241370
0200408 0202296 0204504 0205787 0205749 0204874 0203941 0203295 0202563 0201748 0242851 0245681 0249543 0253041 0254352 0252348 0247416 0241608 0237715 O! 2764
0200511 0200046 0201303 0204326 0207785 0209951 0209440 0206467 0202834 0200394 0241224 0246595 025097 0252715 0251670 0248923 0246000 0243937 0242980 024291
0200202 0202080 0204%17 0205863 0205 Eu 0204829 0203754 0203166 0203122 0203255 0243588 0245071 0247265 0249468 0250540 0249533 0246532 0242624 0239773 0239506
0203320 0203525 0204280 0205588 0206847 0207156 0205938 0203269 0200563 0199272 024195

0200207



Use of 2
The instruetions for use are
Erase storsge, Sil switch down
Read in 2559 ml
Read in W (combined date)
Start at 677
If the combined tape has 4 real data sets, and we
want the 16 permutations of correlation, then an additlional
tape 18 used and the instructions are
Erase storage, S5il switch down
Read in 2559 ml
Read in 2559 ph
Read in W
Start at 677
2559 ml is equipped with the same *roll back"
procedure that Iteration I is (Appendix C). In case of
machine fallure
Erase storage
Read in 2559 pl3
Start at 677
g Correlations
With the ald of tape 2559 pl0 we can use 2559 mo

to obtain correlations from highly overlapping blocks of the
data. The correlations are over blocks 50 in length and the
number of lags is taken to be 20. The first reading in each
block has an index (N) equal to k x 10 where k = 3, 4, ....
Lly, The procedure for using 2559 mo in thlis way 1s



Erase storage, put Sil down

Read in 2559 mo

Read in X

Bead in ¥

Read in 2559 plO leave in

Start at 770 (21 lags are

Read in

Start at 770 (21 lags are

Read in

Start at 770 (21 lags are
ete.

Start at 770 (21 lage are

P.EOT.BO
printed for N = 30)

printed for N = 40)

printed for N = 50)

printed for N = 440)
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APPENDIX E

BIOGBAPHICAL NOTE  Stephen Milton Simpson, Jr.

Attended Yale University September 1946 - June 1950,
receilving B:5S. in Physics. Entered the Massachusetts
Instfitute of Technology in the Department of Geology in
September 1950. Member of Phi Beta Kappa and Sigme Xi.

Presently under sppointment as Instructor in the
Department of Geology and Geophysics at the Massachusetts
Institute of Technology.



