by

STEPHEN MILTON SIMPSON, JR:

B.S., YALE UNIVERSITY
(1950)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(1953)

Signature of Author . . Department of Geology and Geophysics August 14, 1953

Certified by w why mine sis Supervisor Chairman, Departmental Committee on Graduate Students

ABSTRACT

STATISTICAL APPROACHES TO CERTAIN PROBLEMS IN GEOPHYSICS by
Stephen Milton Simpson, Jr.
Subaitted to the Department of Geology and Geophysics on August 14, 1953, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Several specific problems in seismic and gravitational data interpretation are considered from the statistical viewpoint. Least squares techniques are applied to the two types of interpretation, and, for seismic records, other approaches are disoussed.

The fitting of an nth order polynomial in x and y to gavity data by the method of least squares is investigated as a method for approximating regional gravitational anomalies. The nozmal equations for the general case are derived and simplification considered. It is shown that, with a symetrical rectangular distribution of gravity readings, each set of these equations breaks up into smaller subsets. The resulting simplification brings fairly high order polynomials into the range of practical computation. For a particular gridwork the polynomial coefficients may be expressed explicitiy as linear combinations of the right hand members of the normal equations. Once this is done, the least squares fitting of any data taken over such agridwork may be effeoted relatively easily. The explicit expressions for the coefficients are derived for a square gridwork of 121 points and for polynomials of orter 2, 3, and 4. A set of actual gravity readings is analysed in this fashion. The gravity residuals are determined and contoured. The comparison of these contours with each other (for various order polynomials) and with contours derived by a standard, much more involved process, is favorable. This consistenoy, despite certain detrimental features of the data used indicates that the method may deserte to find practical applioation as a routine, first step, geavity reduction prooedure. The problem is pursued with regard to different gridworks, and a table is dexived whioh contains, in effect, the normal equations for representative grids up to a size containing 2601 points, and for polynomials through order four.

As an approach to the understanding of linear operators, as they apply to the analysis of selsmic records, a simple form of linear operator is studied. For this form of operator, the so-called "cosine operator", certain properties are derived in the general case, and interpreted geometrically. These include relationships between the exact
form of cosine operator chosen, the correlation properties of the series which the qperator is to predict, the individual errors of prediction, and the sums of squared errors of prediction. The results are applied to two classes of time series in connection with spectrum analysis, and, for one class, filter characteristics are computed for a specifio cosine operator.

An iterative method for determining least squares fits of linear operators to multiple time series is discussed geometrically. in argument is presented, based on the geometry of the two term operator, to show that, in the case of near singularity where many solutions will almost satisfy the least squares criterion, the exact solution is necessary for the purposes under consideration.

Several interpretive procedures are devised for finding information from seismic records. The first deals with discriminating an unknown velocity in a two velocity system. An adaption is made for detecting reflections, and practical example ere given of the two uses. The second employs a form of testing phase, between seismic traces and their predictions by linear operators, to determine reflection times, and is illustrated with an example. The third combines the concept of ensemble aversges with linear operators to determine step-out times of reflections. The last procedure suggests a special experimental arrangement, coupled with a certain type of correlation analysis, for detecting reflections.

Included as appendixes are desoriptions of four programs written by the author for the Whirlwind I Digital Computer. These permit high speed computation of: two dimensional polynomial residuals; linear operator prediction errors and their running averages; least squares linear operator coefficients (by an iterative method); and autocorrelations, aross-correlations and "traveling" auto- or cross-correlations.
Thesis Supervisor: Patrick M. Hurley
Title:

TABLE OF CONTENTS
Acknowledgments 1
Introduction 11
PART I LEAST SQUARES BESIDUAL GRAVITY
Introduction I-I
Theory I-2
Simplified Solutions I-5
Case $n=1$ I-6
Case $n=2$ I-7
Case $n=3$ I-8
Case $n=4$ I-11
D1scuseion I-15
Applications I-16
Example I-17
Setting up the Normal Equations I-20
PART II SEISMIC RECORD ANALYSIS BY IINEAR OPERATORS
IntroduotionII-I
Statistioal Methods II-2
Single Frequenoy Cosine Operators II-4
Geometry of Cosine Operators II-6
Conclusions II-8
Example II-9
Cyolical Nature of Cosine Operators II-10
Cosine Operator Predioting an Autoregressive Series II-11
Cosine Operators on Series with Gaussian Spectrum Distribution II-14
Computational Example II-15
A Hethod of Finding Linear Operators
for Least Squares Fitting Procedures II-18
Accuracy II-22
PART III SOME INTERPRETIVE PROCEDURES
Introduction III-I
Velocity Separation III-2
Tests of the Method III-6
Conclusions III-9
Phase Test III-10
Ensemble Average III-13
Travelling Correlations III-15
Conclusions and Suggestions for Further Work References
APPENDIX A Polynomial I Description and Use Of APPENDIX B Prediction XV Description and Use of APPENDIX C Iteration I Description and Use Of APPENDIX D Auto Cross-Correlation I Desoription and Use Of APPENDIX E Biographical Note

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professor P. M. Hurley, thesis supervisor, for his encouragement of and confidence in the work of this thesis.

Among his many co-workers, the author must acknowledge the help of the following persons: Enders A. Robinson for his stimulation, advice, and training in the fundamentals and practice of time series analysis, and in the programing for digital oomputers; Theodore R. Medden for his interest and assistance, especially in developing the concept of velocity separation and suggesting the problem of least squares residual anomalies; Markwiok Smith for many helpful discussions and comments on the various subjects treated here; Howard Briscoe for assistance with programing difficulties; Whirlwind tape room personnel Margaret Mackey and Katherine Campbell, and machine operator Robert Gilday, for their invaluable cooperation.

Finally, the author is deeply indebted to his wife Pauli, on whom fell the task of preparing the manuscript with its very involved mathematical notations.

INIRODUCTION

It is well known that experimental data taken in Geophysical studies surpasses in accuraoy the interpretation that must be made on the data. The reason is that the problems are very conplex. For one thing, it can be shown, in the treatment of certain types of problens, that no unique solution exists. An example is the infinfty of possible mass aistribution corresponaing to a given gravity profile. In other problems the physical oituation dealt With is so inhomogeneous and anisotropic that exact soluiton is impossible. It would be hopeless to attempt to explain rigorously the presence of any particular oscillation on a sel smogram.

Data such as this, subject to a certein amount of randomess, and on which "best" estimates must be made, is well suited to statistical eveluation. The numerical data taken in gravity surveys does undergo evalusition of this type. The least squares approach, however, is not being utilized on a large scale. This is probably due to practical limitations, and it is one of the problems of this paper to see if these limitations may be minimized.

On the other hand, the rew data of seismology occurs in analogue or ourve form. Standard procedures of interpretation consist mainly of rules of thumb, learned by long experience, and still largely dependent on the qualification of the individual interpreter. There is a need to put these
procedures on a more rigorous besis. This basis may be found in the concepts of time series as developed in economics, meteorology, and other fields. Wuch work must be done to determine the best means of apolying these concepts to seismic data, since, in oertain ways, both the data and the desired information are unique. Another purpose of this paper, then, is to propose several spealal methods of application, and to develop certain theory necessary for a better understanding of time series concepts as they apply to seismology.

Statiatioal methods, in general, require computation, and often on a large scale. A "program" written for a digital computer is a tool which will do this work autometioally. The author has written several programs for the inirlwind I Digital Computer to perform computations related to the above discussed problems, and includes these programs as appendixes, with the feeling that other inveatigators may find them userul.

PART I

LEAST SQUARES RESIDUAL GRAVITY

Introduction

Variations in the attraction of gravity over the surface of the earth are due to many causes, but these often fall into two general categories. Phenomena such as the thickening or thinning of the crust cause relatively slow, smooth and widespread grevity fluctuations. We call these regional effects. On the other hand, such things as ore body emplacements, caverns, and local density heterogeneities cause more rapid irregular changes, and these are termed local effects.

The actual gravity values measured over an area usually represent a combination of regional and local effects. The separation of these effects is of primary importance in interpretation, and many mathematioal methods have been devised to eliminate guesswork in the problem. Essentially, most of the methods represent an averaging process which gives at each point and approximate value of the regional effect alone. The local effect is then found simply by subtraction from the measured values.

Many of these methods possess two undesirable aspects. First of all the averaging must be done at each point individually. Secondly, the averaging includes only gravity values in the vicinity of the point considered. It is hard to say just how serious these drawbacks are, but it seems worth-while to investigate a method which does not
encounter them. In a least squares approximation all values are averaged simultaneously. Moreover, the resulting approximation is not merely a set of discreet points but a continuous surface of values over the area, a property which is sometimes of value.

The purpose of Part I is to consider in some detail how the method of least squares may be applied to this problem, and how a simplified method of procedure may be set up for practical application.

Part I represents an extension of the work done by W.B. Agocs \ddagger. Agocs approximates the regional anomaly by a plane surface derived from least squares oriteria. He shows that, in an artifical example, the residual anomaly is better derived from least squares procedures than by the use of the "arithmetic mean regional" procedure. For higher order polynomials than a plane surface the algebra rapidly becomes more involved.

Theory
It is easiest to illustrate the method for an idealized geologic example in two dimensions. Fig. I.I shows a wave in the bottom of the orust and a single ore body emplacement. The points on the graph would then be the measured values of gravity across the area. Fitting a fairly low order polynomial to these values by least squares gives us the curve $A B$ which best fits all the points. \ddagger Ref. 1

This curve will approximate the regional effect more closely than the local effect, and it is apparent that the fit will be closest at some distance from the ore body. Thus the dashed line of Fig. I.I, representing the difference between the polynomial and the observed values, gives a good indication of the location of the anomalous mass.

In the two-dimensional problem the approximating polynomial is a surface, and interpretation is made from contours of the residuals.

Let us approximate the regional gravity by a polynomial of order n in x and y.

$$
G(x y)=\sum_{i=0}^{n} \sum_{j=0}^{n-i} c_{i j} x^{i} y^{j}
$$

Thus for $n=2$

$$
G(x y)=c_{00}+c_{10} x+c_{20} x^{2}+c_{11} x y+c_{01} y+c_{02} y^{2}
$$

The c's are unknown coefficients to be determined in accordance with the condition that the sum of the squares of the residuals is to be minimized. Let $g(x y)$ be the measured values of gravity. Then the residuals are
and

$$
R(x y)=g(x y)-G(x y)
$$

$$
R^{2}(x y)=[g(x y)-G(x y)]^{2}
$$

Hence

$$
\begin{gathered}
\sum_{x y} \mathrm{R}^{2}(x y)= \\
\sum_{x y}\left[\sum_{i=0}^{n} \sum_{j=0}^{n-1}\left(c_{i j} x^{i} y^{j} \sum_{k=0}^{n} \sum_{k=0}^{n-k} c_{k l^{\prime}} x^{k} y^{\ell}\right)\right] \\
-2 \sum_{x y} g(x y) \sum_{i=0}^{n} \sum_{j=0}^{n-i} c_{1 j^{\prime}} x^{i} y^{j}+\sum_{x y} g^{2}(x y) \\
I-3
\end{gathered}
$$

or

$$
\begin{aligned}
\sum_{x y} B^{2}(x y)= & \sum_{x y}\left[\sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{n} \sum_{i=0}^{n-k} o_{1 j} c_{k} \ell^{k+1} y^{\ell+j}\right] \\
& -2 \sum_{x y}\left[g(x y) \sum_{i=0}^{n} \sum_{j=0}^{n-1} c_{i j} x^{i} y^{j}\right]+\sum_{x y} g^{2}(x y)
\end{aligned}
$$

Differentiating this expression with respect to $c_{1 j}$, and setting each derivative equal to zero for minimization, we obtain $(n+1)(n+2) / 2$ linear equations for the same number of unknown coefficients

$$
\begin{gathered}
\sum_{k=0}^{n} \sum_{\ell=0}^{n-k} c_{k \ell} \sum_{x y} x^{k+1} y^{\ell+j}=\sum_{x y} g(x y) x^{i} y^{j} \\
\text { where } \quad \begin{array}{c}
j=0,1, \ldots \ldots(n-1) \\
1=0,1, \ldots \ldots . n
\end{array}
\end{gathered}
$$

There are really three variables, or sets of variables, in equations 1.2 - the order of the polynomial n, the set of points $x y$, and the set of gravity values at these points. The first two of these variables determine the coefficient matrix of the $c_{k b}$'s. Once these two are chosen, a unique inverse matrix exists, which, if found, may be used to compute the $c_{k \ell}$'s for all sets of gravity values taken over the same xy patterm. This alone would be a major simplification if the method were to be used on a production basis. But we shall also see that, using a simple reasonable restriction, both the problem of finding the inverse and the form of the inverse itself will be greatly simplified.

Fig. 1.2

Simplified Solutions

In many cases gravity readings are taken over a square, or at least rectangular, network. When this is so we may take the axes so that the rectangle is symmetrical about them, and number our ordinates and absiscae in integers, as in Fig . 1.2. It is then easy to see that over such a network summations of the form $x^{i} y^{j}$ will vanish whenever i or $j 1 s$ odd. Thus many of the coefficients of the $c_{k \ell}$'s in equations 1.2 will drop out. This leads to considerable simplification, with the bigger systems breaking up into several smaller ones. Furthermore, if we take a definite network we may solve the equations explicitly for the $c_{k \ell}$'s in terms of the summations $\Sigma g(x y) x^{i} y^{j}$.
xy
To demonstrate how this is done we shall solve the equations for $n=1,2,3$, and 4 , over a square network of 121 points. The systems are positive definite and symmetric, well adapted to solution by the matrix method of P.D. Crout \ddagger.

The non-vanishing summations over this network are $\Sigma x^{0} y^{0} \equiv M=121$

$$
\begin{array}{lrl}
\Sigma x^{2}=\Sigma y^{2}= & 1210 & \Sigma x^{2} y^{2} \\
\Sigma x^{4}=\Sigma y^{4}= & 21538 & \Sigma x^{2} y^{4}=\Sigma x^{4} y^{2}=12100 \\
\Sigma x^{6}=\Sigma y^{6}= & 451330 & \Sigma x^{2} y^{6}=\Sigma x^{6} y^{2}=45380 \\
\Sigma x^{8}=\Sigma y^{8}=10185538 & \Sigma x^{4} y^{4} & =383300
\end{array}
$$

\ddagger Bef. 2

Case $n=1$
The normal equations are

$$
\begin{aligned}
& c_{00} M+c_{10} \Sigma x+c_{01} \Sigma y=\Sigma g(x y) \\
& c_{00} \Sigma x+c_{10} \Sigma x^{2}+c_{01} \Sigma x y=\Sigma g(x y) x \\
& c_{00} \Sigma y+c_{10^{\Sigma x y}}+c_{01} \Sigma y^{2}=\Sigma g(x y)_{y}
\end{aligned}
$$

Reducing immediately to

$$
c_{00}=\frac{\sum g(x y)}{m} \quad c_{10}=\frac{\sum g(x y) x}{\Sigma x^{2}} \quad c_{01}=\frac{\sum g(x y) y}{\Sigma y^{2}}
$$

giving

$$
G(x y)=\frac{1}{121} \Sigma g(x y)+\frac{x}{1210} \Sigma^{\Sigma g}(x y) x+\frac{y}{1210} \Sigma g(x y) y
$$

or, to six places

$$
G(x y)=8.26448 \cdot 10^{-4}[10 \Sigma g(x y)+x \Sigma g(x y) x+y \Sigma g(x y) y]
$$

Case $n=2$
The normal equations are

c_{00}	c_{01}	c_{02}	c_{11}	c_{10}	c_{20}
M	Σy	Σy^{2}	$\Sigma x y$	Σx	$\Sigma x^{2}=\Sigma g(x y)$
Σy	Σy^{2}	Σy^{3}	$\Sigma x y^{2}$	$\Sigma x y$	$\Sigma x^{2} y=\Sigma g(x y) y$
Σy^{2}	Σy^{3}	Σy^{4}	$\Sigma x y^{3}$	$\Sigma x y^{2}$	$\Sigma x^{2} y^{2}=\Sigma g(x y) y^{2}$
$\Sigma x y$	$\Sigma x y^{2}$	$\Sigma x y^{3}$	$\Sigma x^{2} y^{2}$	$\Sigma x^{2} y$	$\Sigma x^{3} y=\Sigma g(x y) x y$
Σx	$\Sigma x y$	$\Sigma x y^{2}$	$\Sigma x^{2} y$	Σx^{2}	$\Sigma x^{3}=\Sigma g(x y) x$
Σx^{2}	$\Sigma x^{2} y$	$\Sigma x^{2} y^{2}$	$\Sigma x^{3} y$	Σx^{3}	$\Sigma x^{4}=\Sigma g(x y) x^{2}$

which reduce to

$$
c_{01}=\frac{1}{1210} \sum g(x y) y \quad c_{11}=\frac{1}{12100} \sum g(x y) x y \quad c_{10}=\frac{1}{1210} \Sigma g(x y) x
$$

and three equations for c_{00}, c_{02}, and c_{20}

$$
\begin{aligned}
& 121 c_{00}+1210 c_{02}+1210 c_{20}=\Sigma g(x y) \\
& 1210 c_{00}+21538 c_{02}+12100 c_{20}=\Sigma g(x y) y^{2} \\
& 1210 c_{00}+12100 c_{02}+21538 c_{20}=\Sigma g(x y) x^{2}
\end{aligned}
$$

The solutions are

$$
\begin{aligned}
& c_{00}=\frac{1}{9438}\left[278 \Sigma g(x y)-10\left(\Sigma g(x y) x^{2}+\Sigma g(x y) y^{2}\right)\right] \\
& c_{02}=\frac{1}{9438}\left[\Sigma g(x y) y^{2}-10 \Sigma g(x y)\right] \\
& c_{20}=\frac{1}{9438}\left[\Sigma g(x y) x^{2}-10 \Sigma g(x y)\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
G(x y)= & \frac{1}{9438}\left[278 \Sigma g(x y)-10\left(\Sigma g(x y) x^{2}+\Sigma g(x y) y^{2}\right)\right] \\
& +y\left[\frac{1}{1210} \mathrm{Lg}(x y) y\right] \\
& +y^{2}\left[\frac{1}{9438}\left(\Sigma g(x y) y^{2}-10 \Sigma g(x y)\right)\right] \\
& +x y\left[\frac{1}{12100} \operatorname{Lg}(x y) x y\right] \\
& +x\left[\frac{1}{1210} \Sigma g(x y) x\right] \\
& +x^{2}\left[\frac{1}{9438} \Sigma g(x y) x^{2}-10 \Sigma g(x y)\right]
\end{aligned}
$$

Or to six places

$$
\begin{aligned}
G(x y)= & {\left[.0294554 \Sigma g(x y)-1.0595510^{-3}\left(\Sigma g(x y) x^{2}+\Sigma g(x y) y^{2}\right]\right.} \\
& +y\left[8.2644810^{-4} \Sigma g(x y) y\right] \\
& +y^{2}\left[1.0595510^{-4}\left(\Sigma g(x y) y^{2}-10 \Sigma g(x y)\right)\right] \\
& +x y\left[8.2644810^{-5} \Sigma g(x y) x y\right] \\
& +x\left[8.2644810^{-4} \Sigma g(x y) x\right] \\
& +x^{2}\left[1.0595510^{-4}\left(\Sigma g(x y) x^{2}-10 \Sigma g(x y)\right)\right]
\end{aligned}
$$

Case $n=3$

The normal equations are

$$
\begin{array}{llllllllll}
c_{00} & c_{01} & c_{02} & c_{03} & c_{11} & a_{12} & o_{21} & c_{10} & c_{20} & c_{30}
\end{array}
$$

1) $\mathrm{M} \mathrm{y}^{2} \mathrm{y}^{3} \mathrm{xy} \mathrm{xy}^{2} \mathrm{x}^{2} \mathrm{y} x \quad \mathrm{x}^{2} \mathrm{x}^{3}=g$
2) $y y^{2} y^{3} \quad y^{4} \quad x y^{2} \quad x y^{3} \quad x^{2} y^{2} x y \quad x^{2} y \quad x^{3} y=g y$
3) $y^{2} y^{3} y^{4} y^{5} \quad x y^{3} x y^{4} x^{2} y^{3} x y^{2} x^{2} y^{2} x^{3} y^{2}=g y^{2}$
4) $y^{3} y^{4} y^{5} y^{6} \quad x y^{4} \quad x y^{5} \quad x^{2} y^{4} x y^{3} \quad x^{2} y^{3} x^{3} y^{3}=g y^{3}$
5) $x y \quad x y^{2} \quad x y^{3} \quad x y^{4} x^{2} y^{2} x^{2} y^{3} x^{3} y^{2} x^{2} y \quad x^{3} y \quad x^{4} y=g x y$
6) $x y^{2} \quad x y^{3} x y^{4} x y^{5} x^{2} y^{3} x^{2} y^{4} x^{3} y^{3} x^{2} y^{2} x^{3} y^{2} x^{4} y^{2}=g x y^{2}$
7) $x^{2} y x^{2} y^{2} x^{2} y^{3} x^{2} y^{4} x^{3} y^{2} x^{3} y^{3} x^{4} y^{2} x^{3} y \quad x^{4} y \quad x^{5} y=g x^{2} y$
8) x $x y y^{2} x y^{3} x^{2} y x^{2} y^{2} x^{3} y x^{2} x^{3} x^{4}=g x$
9) $x^{2} x^{2} y x^{2} y^{2} x^{2} y^{3} x^{3} y x^{3} y^{2} x^{4} y x^{3} x^{4} x^{5}=g x^{2}$
10) $x^{3} \quad x^{3} y x^{3} y^{2} x^{3} y^{3} x^{4} y \quad x^{4} y^{2} x^{5} y \quad x^{4} \quad x^{5} x^{6}=g x^{3}$

Summations are assumed for all these quantities and g is written for $g(x y)$. The equations reduce considerably.

Equation 5 gives us

$$
c_{11}=\frac{1}{12100}{ }^{\text {gey }}
$$

1, 3, and 9, combine to give three equations for c_{00}, c_{02}, and c_{20}, which have the same solutions as for the case $n=2,2,4$, and 7 , and 6,8 , and 10 , combine to give two independent systems which have identical coefficients. Thus 2, 4, 7, are

$$
\begin{aligned}
& 1210 c_{\mathrm{Ol}}+21538 c_{03}+12100 c=\mathrm{gy} \\
& 21538 c_{\mathrm{OX}}+451330 c_{03}+215380 c_{21}=g y^{3} \\
& 12100 c_{\mathrm{Ol}}+215380 c_{03}+215380 c_{21}=g x^{2} y
\end{aligned}
$$

With solutions

$$
\begin{aligned}
& c_{01}=\frac{1}{679536}\left[4450 \Sigma \mathrm{gy}-178 \Sigma \mathrm{gy}{ }^{3}-72 \Sigma \mathrm{gx}^{2} \mathrm{y}\right] \\
& \mathrm{c}_{03}=\frac{1}{679536}[10 \Sigma \mathrm{gy} 3-178 \Sigma \mathrm{\Sigma g}] \\
& c_{21}=\frac{1}{94380}\left[\Sigma \mathrm{gx}^{2} \mathrm{y}-10 \Sigma \mathrm{gy}\right]
\end{aligned}
$$

also

$$
\begin{aligned}
& c_{10}=\frac{1}{679536}\left[4450 \Sigma \mathrm{gx}-178 \Sigma \mathrm{gx}{ }^{3}-72 \Sigma \mathrm{gxy}^{2}\right] \\
& \mathrm{c}_{30}=\frac{1}{679536}\left[10 \Sigma \mathrm{gx}{ }^{3}-178 \Sigma \mathrm{gx}\right] \\
& c_{12}=\frac{1}{94380}\left[\Sigma \mathrm{gxy}{ }^{2}-10 \Sigma \mathrm{gx}\right]
\end{aligned}
$$

and from the case $n=2$

$$
\begin{aligned}
& { }^{o_{00}}=\frac{1}{9438}\left[278 \Sigma g-10\left(\Sigma g x^{2}+\Sigma g y^{2}\right)\right] \\
& c_{02}=\frac{1}{9438}\left[\Sigma g y^{2}-10 \Sigma g\right] \\
& c_{20}=\frac{1}{9438}\left[\Sigma g x^{2}-10 \Sigma g\right]
\end{aligned}
$$

We also have

$$
c_{11}=\frac{1}{12100}^{\Sigma g x y}
$$

To six places

$$
\begin{aligned}
& G(x y)= \\
& \quad+\left[.0294554 \Sigma g-1.0595510^{-3}\left(\Sigma g x^{2}+\Sigma g y^{2}\right)\right] \\
& \quad+y\left[6.5485910^{-3} \Sigma g y-2.6194310^{-4} \Sigma g y^{3}-1.0595510^{-3} \Sigma g x^{2} y\right. \\
& +y^{2}\left[1.0595510^{-4}\left(\Sigma g y^{2}-10 \Sigma g\right)\right] \\
& +y^{3}\left[1.4715910^{-5} \Sigma g y^{3}-2.6194310^{-4} \Sigma g y\right] \\
& +x y\left[8.2644510^{-5} \Sigma g x y\right] \\
& +x y^{2}\left[1.0595510^{-5} \Sigma g x y^{2}-1.0595510^{-4} \Sigma \varepsilon x\right] \\
& +x^{2} y\left[1.0595510^{-5} \Sigma g x^{2} y-1.0595510^{-4} \Sigma g y\right] \\
& +x\left[6.5485910^{-3} \Sigma g x-2.6194310^{-4} \Sigma g x^{3}-1.0595510^{-3} \Sigma g_{g x} y^{2}\right] \\
& +x^{2}\left[1.0595510^{-4}\left(\Sigma g x^{2}-10 \Sigma g\right)\right] \\
& +x^{3}\left[1.4715910^{-5} \Sigma g x^{3}-2.6194310^{-4} \Sigma g x\right]
\end{aligned}
$$

Case $n=4$

The normal equations are

$80 g_{1} \delta_{2} 8_{3} 8_{4} q_{1} q_{2} q_{3} q_{1} q_{2} g_{1} q_{10} g_{0} g_{30} q_{0}$

Equations 1, 3, 5, 10, 13, 15, reduce to give a system of six equations for $c_{00}, c_{02}, c_{04}, c_{22}, c_{20}$, and $c_{40} \cdot 2,4,9$, and $7,12,14$, give two sets of equations for c_{01}, c_{03}, c_{21}, and c_{10}, c_{30}, c_{12}, respectively, which are equivalent to the corresponding equations for the case $n=3$.

The new equations to be solved are

$$
\begin{array}{lllllll}
{ }_{000} & c_{02} & c_{04} & { }^{0} 22 & c_{20} & c_{40} \\
M & y^{2} & y^{4} & x^{2} y^{2} & x^{2} & x^{4} & =\Sigma g \\
y^{2} & y^{4} & y^{6} & x^{2} y^{4} & x^{2} y^{2} & x^{4} y^{2} & =\Sigma g y^{2} \\
y^{4} & y^{6} & y^{8} & x^{2} y^{6} & x^{2} y^{4} & x^{4} y^{4} & =\sum g y^{4} \\
x^{2} y^{2} & x^{2} y^{4} & x^{2} y^{6} & x^{4} y^{4} & x^{4} y^{2} & x^{6} y^{2} & =\sum g x^{2} y^{2} \\
x^{2} & x^{2} y^{2} & x^{2} y^{4} & x^{4} y^{2} & x^{4} & x^{6} & =\sum g x^{2} \\
x^{4} & x^{4} y^{2} & x^{4} y^{4} & x^{6} y^{2} & x^{6} & x^{8} & =\sum g x^{4}
\end{array}
$$

and

$$
\begin{array}{llll}
c_{11} & c_{13} & c_{31} & \\
x^{2} y^{2} & x^{2} y^{4} & x^{4} y^{2} & =\sum g x y \\
x^{2} y^{4} & x^{2} y^{6} & x^{4} y^{4} & =\sum g x y^{3} \\
x^{4} y^{2} & x^{4} y^{4} & x^{6} y^{2} & =\sum g x^{3} y
\end{array}
$$

The last set has solutions

$$
\begin{aligned}
& c_{11}=\frac{1}{679536}\left[689.84 \Sigma g x y-17.8\left(\Sigma g x y^{3}+\Sigma g x^{3} y\right)\right] \\
& c_{13}=\frac{1}{679536}\left[\Sigma g x y^{3}-17.8 \Sigma g x y\right] \\
& c_{31}=\frac{1}{679536}\left[\Sigma g x^{3} y-17.8 \Sigma g x y\right]
\end{aligned}
$$

The solution of the first set to six places is

$$
\begin{aligned}
c_{00}= & 4.5328010^{-2} \Sigma g+1.5893210^{-4}\left(\Sigma g y^{4}+\Sigma g x^{4}\right) \\
& 1.3583910^{-4} \Sigma g^{2} y^{2}-6.39912210^{-3}\left(\Sigma g y^{2}+\Sigma g x^{2}\right) \\
c_{02}= & 1.6214110^{-3} \Sigma g y^{2}-2.8152710^{-3} \Sigma g \\
& -5.5184710^{-5} \Sigma g y^{4}-1.3583910^{-5}\left(\Sigma g x^{2} y^{2}-10 \Sigma g x^{2}\right) \\
c_{04}= & 2.2073910^{-6} \Sigma g y^{4}-5.5184710^{-5} \Sigma g y^{2}+1.5893210^{-5} \Sigma g \\
c_{22}= & 1.3583910^{-6}\left(\Sigma g x^{2} y^{2}-10\left(\Sigma g x^{2}+\Sigma g y^{2}\right)+100 \Sigma g\right) \\
c_{20}= & 1.6214110^{-3} \Sigma g x^{2}-2.8152710^{-3} \Sigma g \\
& -5.51847100^{5} \Sigma g x^{2}-1.3583910^{-5}\left(\Sigma g x^{2} y^{2}-10 \Sigma \mathrm{gy}^{2}\right) \\
c_{40}= & 2.2073910^{-6} \Sigma g x^{4}-5.5184710^{-5} \Sigma \mathrm{gx}^{2}+1.5893210^{-5} \Sigma g
\end{aligned}
$$

To simplify writing $G(x y)$ we introduce the abbreviations

$$
\begin{array}{ll}
A=\Sigma g & H=\Sigma g x^{3} y \\
B=\Sigma g x & I=\Sigma g x y^{2} \\
C=\Sigma g x^{2} & J=\Sigma g x^{2} y^{2} \\
D=\Sigma g x^{3} & K=\Sigma g x y^{3} \\
E=\Sigma g x^{4} & L=\Sigma g y \\
F=\Sigma g x y & M=\Sigma g y^{2} \\
G=\Sigma g x^{2} y & N=\Sigma g y^{3} \\
& P=\Sigma g y^{4}
\end{array}
$$

Hence

$$
\begin{aligned}
G(x y)= & {\left[4.5328010^{-2} A+1.5893210^{-4}(P+E)\right.} \\
& \left.+1.3583910^{-4} J-6.3912210^{-3}(\mathrm{~N}+\mathrm{C})\right] \\
+ & y\left[6.5485910^{-3} \mathrm{~L}-2.6194310^{-4} \mathrm{~N}-1.0595510^{-3} \mathrm{G}\right] \\
+ & y^{2}\left[1.6214110^{-3} \mathrm{H}-2.8152710^{-3} \mathrm{~A}-5.5184710^{-5} \mathrm{P}\right. \\
& \left.-1.3583910^{-5}(\mathrm{~J}-10 \mathrm{C})\right] \\
+ & y^{3}\left[1.4715910^{-5} \mathrm{~N}-2.6194310^{-4} \mathrm{~L}\right] \\
+ & y^{4}\left[2.2073910^{-6} \mathrm{P}-5.5184710^{-5} \mathrm{~N}+1.5893210^{-5} \mathrm{~A}\right] \\
+ & x y\left[1.0151610^{-3} \mathrm{~F}-2.6194310^{-5}(\mathrm{~K}+\mathrm{H})\right] \\
+ & x y^{2}\left[1.0595510^{-5} \mathrm{I}-1.0595510^{-4} \mathrm{~B}\right] \\
+ & x y^{3}\left[1.4715910^{-6} \mathrm{~K}-2.6194310^{-5} \mathrm{~F}\right] \\
+ & x^{2} y\left[1.0595510^{-5} \mathrm{G}-1.0595510^{-4} \mathrm{~B}\right] \\
+ & x^{2} y^{2}\left[1.3583910^{-6}(\mathrm{~J}-10(\mathrm{C}+\mathrm{M})+100 \mathrm{~A})\right] \\
+ & x^{3} y\left[1.4715910^{-6} \mathrm{H}-2.6194310^{-5} \mathrm{~F}\right] \\
+ & x\left[6.5485910^{-3} \mathrm{~B}-2.6194310^{-4} \mathrm{D}-1.0595510^{-3} \mathrm{I}\right] \\
+ & x^{2}\left[1.6214110^{-3} \mathrm{C}-2.8152710^{-3} \mathrm{~A}-5.5184710^{-5} \mathrm{C}\right. \\
& \left.-1.3583910^{-5}(\mathrm{~J}-10 \mathrm{M})\right] \\
+ & x^{3}\left[1.4715910^{-5} \mathrm{D}-2.6194310^{-4} \mathrm{~B}\right] \\
+ & x^{4}\left[2.2073910^{-6} \mathrm{E}-5.5184710^{-5} \mathrm{C}-1.5893210^{-5} \mathrm{~A}\right]
\end{aligned}
$$

Discussion

An interesting property which has developed in these four cases makes the extension to higher order approximations somewhat simpler. If n is odd then all the coefficients $c_{1 j}$ whose subscripts add to an even number are the same as the corresponding coefficients for the (n-1)rst case. If $n 1 s$ even the coefficients with subsoripts adding to an odd number are the same as for the preceding case. This property can be shown direotly from equation 1.2.

Thus for the case $n=5$ we expect nine of the coeffioients ($c_{00}, c_{02}, c_{04}, c_{40}, c_{20}, c_{11}, c_{13}, c_{31}$) to be the same as for the case $n=4$, and we need only write the twelve remaining equations for $1+j$ odd.

A polynomial of order equal to the number of points taken will exactly fit the data. However it is practioally impossible to use polynomials even approaching such a high order for reasonably-sized gridworks, and this danger seems slight. There is still a real problem in the choice of n. If the regional effect is in reality a fairly low order effect, polynomials of high n will begin to approximate the local anomalies too closely. Other systems, however, mun into the same problem, and this point would be best settled by experience with the data.

Another important practical consideration is the amount of work to be done, 1.e., the determination of the
summations $\Sigma \operatorname{gx}^{i} y^{j}$, of the $c_{1 j}$'s and the solution of $G(x y)$ at each point. We devote the next section to this problem.

Applioations

To 111ustrate the work necessary we discuss a convenient scheme for application to the case $n=3$. The use of a computing machine with cumulative multiplication is desirable.

Assume that the grid has been determined and the gravity values written at each intersection as shown. This is done on tracing paper as shown in Fig. 1.3.

The numbers α_{i} and β_{i} above each vertical line and to the left of each horizontal line represent the sums of $g(x y)$ along those lines. Then as we may easily compute the sums $\Sigma g, \Sigma g x, \Sigma g x^{2}, \Sigma g x^{3}, \Sigma g y, \Sigma g y^{2}, \Sigma g y^{3}$, from the relations $\Sigma g=\sum_{1} \alpha_{1} \quad \operatorname{\sum gx} 3^{3}=\sum_{i} \alpha_{i}(i)^{3} \quad g y^{2}=\sum_{i} \beta_{i}(i)^{2}$
$\Sigma g x=\sum_{1} \alpha_{i}(1)$
$\Sigma g y=\sum_{1} \beta_{1}(1)$
$g y^{3}=\sum_{1} \beta_{1}(1)^{3}$
$\Sigma g x^{2}=\sum_{i} \alpha_{i}(i)^{2}$

Each of these computations involves one machine operation of eleven cumulative multiplications.

For the remaining summations $\Sigma g x y, \Sigma g x^{2} y, \Sigma g x y^{2}$ it
is convenient to have a similar grid which can be placed under the original one. This second grid has the values of $x y, x^{2} y, x^{2}$, at each point as shown in Fig. 1.4 and can be used for each application.

Fig. 1.3

Fig. 1.4

The values of $g(x y)$ then appear in the vacant upper left hand corner of each point, making the multiplications apparent. Each of these three summations then involves a cumulative addition of 100 multiplications.

The $c_{i j}$'s are then found as ten cumulative additions of two of three multiplications each.
$G(x y)$ is now completely determined with the writing down of less than 50 numbers and it remains to solve this equation for each point. This involves ten cumulative multiplications at each of the 121 points with a final subtraction to determine the residuals. A second tracing paper grid laid over both of the others would simplify this and the residuels could be written down in a form ready to be contoured.

A nice feature of this scheme is the absence of any tabulation of data. It may be extended fairly simply to higher degrees.

Example

As a test of this method residuals were computed on gravity readings supplied by a mining company. This data was not in a convenient form for use since the readings were taken in mine tunnels and not over agrid. To get them in grid form, the readings were first contoured as shown in Fig. 1.5 and then values extrapolated to the grid. This involves several inaccuracies. First of all, where readings are sparse, the extrapolated values are bound to contain
considerable error. Secondly, the computations weight all values equally so that the accurately extrapolated points, in areas of dense readings, suffer from the inacouracies in the less dense areas.

Three sets of residuals were computed, one for second, third, and fourth order polynomials. This was done to test the effect of polynomial degree on the residuals. The polynomials were fitted directly to the raw gravity, without making the usual topographic corrections. The justification for neglecting to do this is seen in Fig. 1.11. This figure shows values of regional minus topographic corrections computed by the mining company, and contours of these values. The contours demonstrate that this correction is a low order effect (in this particular situation) and can obviously be easily absorbed into a polynomial as low as degree two.

Figs. 1.6, 1.7, and 1.8 then show residuals for second, third, and fourth order polynomials respectively, and were computed as described previously. Once the reading had been contoured and extrapolated, it took about a day to compute each set of residuals. The computed polynomials appear in the upper right-hand corner of Figs. 1.6, 1.7, and 1.8. Fig. 1. 10 shows the contours of the polynomials themselves, and shows that the similarity of the residuals is due to the similarity of the polynomials used.

In Fig. 1.9 is contoured the residual gravity as computed by the mining compeny which supplied the data. Their computational procedure required several months to produce this diagram, which, in important respects, is quite similar to the contours of Figs. 1.6, 1.7, and 1.8. Part of the difference is due to the fact that the least squares residuals are foroed to oscillate arouna mean of zero, so that many negative contours appear. Other aifferences may well be attributable to the inaccuracies of contouring as mentioned above. It seems olear however, that the similarity is sufficiently great to justify the use of the least squares procedure, at least for a first evaluation of gravity data. This seems particularly true in view of the relative speed with which this procedure may be carried out.

These results were encouraging enough so that a program was written for the whI Digital Computer to perform the majority of the computations automatioally. This program finds the residuals for a polynomial up to the sixth order over an arbitrary grid shape, once the polynomial is known. A desoription of this program appears in Appendix A.

In the next seotion, we take up the problem of setting up the normal equations for various sizes and shapes of grids.

RAW GRAVITY-1300.0 CONTOURED

Fig. 1.5

RESIDUAL GRAVITY WITH SECOND ORDER POLYNOMIAL

Fig. 1.6

Fig. 1.7

RESIDUAL GRAVITY WITH

FOURTH ORDER POLYNOMIAL

Fig. 1.8

Fig. 1.9

CONTOURS OF G(xy)

Fig. 1.10

REGIONAL CORRECTION MINUS TOPOGRAPHIC CORRECTION

Fig. 1.11

Setting Up the Normal Equations

We are concerned here with the problem of setting up the normal equations for various grids and polynomial degrees. If we limit ourselves to polynomials of degree 4 or less, we are then interested in finding the following quantities:

$$
\begin{aligned}
& \Sigma x^{2} \Sigma x^{4} \Sigma x^{6} \Sigma x^{8} \Sigma y^{4} \Sigma y^{6} \Sigma y^{8} \\
& \Sigma x^{2} y^{2} \Sigma x^{2} y^{4} \Sigma x^{2} y^{6} \Sigma x^{4} y^{2} \Sigma x^{4} y^{4} \Sigma x^{6} y^{2} \Sigma x^{0} y^{0}
\end{aligned}
$$

Where the sumations are to be taken over the particular grid we are dealing with.

If the grid has the dimensions 2 N by 2 M as shown in Fig. l.2, we may set up a fairly simple procedure for finding these summations.

First we note that Σx^{k} over the grid is equal to the Σx^{k} on a single horizontal line, times the number of lines. Thus

$$
\Sigma x^{k}=(2 M+1) \sum_{i=-N}^{N} i^{k}
$$

but since in our case k is always even

$$
\Sigma x^{k}=2(2 M+1)\left(\sum_{i}^{N} i^{k}\right) \quad 1.4
$$

Likewise

$$
\Sigma y^{k}=2(2 N+1) \sum_{1}^{M} i^{k}
$$

For the cross terms $\Sigma x^{k} y^{\ell}$ we have

$$
\begin{aligned}
\sum_{g r i d} x^{k} y^{\ell} & =\sum_{j=-M}^{N} \sum_{i=-N}^{N} i^{k} j^{\ell} \\
& \left.=\sum_{-N}^{N} 1^{N}\right]\left[\sum_{-M}^{N} j^{\ell}\right] \\
\sum_{\operatorname{grid}} x^{k} y^{\ell} & =4\left(\sum_{i=1}^{N} 1^{k}\right)\left(\sum_{j=1}^{M} j^{\ell}\right)
\end{aligned}
$$

Hence the sums 1.3 are easily derivable from equations 1.4 and 1.5 if we tabulate the quantities $\sum_{i=1}^{L} 1^{k}$. Table I gives values of 1^{k} from which the sums L $\Sigma 1^{k}$ are derived, and Table II tabulates these sums for $1=1$
L up to 25 and $k=2,4,6,8$. The latter Table allows us to compute the sums 1.3 for any grids measuring up to 50 by 50 . a grid this size would encompass 2601 gravity readings which seems ample for most applications.

Table III contains the sums 1.3 computed for six representative grids 10 by 10,10 by 20,20 by 20,30 by 30 , 40 by 40 , and 50 by 50.

1	$\begin{array}{r} \text { for } \\ i^{2} \end{array}$	$\begin{gathered} 4,6, \\ 1^{4} \end{gathered}$	$\begin{gathered} 1=1,2 \\ 1_{1} 6 \end{gathered}$	25 1^{8}
1	1	1	1	1
2	4	16	64	256
3	9	81	729	6561
4	16	256	4096	65536
5	25	625	15625	390625
6	36	1296	46656	1679616
7	49	2401	117649	5764801
8	64	4096	262144	16777216
9	81	6561	531441	43046721
10	100	10000	1000000	100000000
11	121	14641	1771561	214358881
12	144	20736	2985984	429981696
13	169	28561	4826809	815730721
14	196	38416	7529536	1475789056
15	225	50625	11390625	2562890625
16	256	65536	16777216	4294967296
17	289	83521	24137569	6975757441
18	324	104976	34012224	11019960576
19	36.2	130321	47045881	16983563041
20	400	160000	64000000	25600000000
21	441	194481	85766121	37822859361
22	484	234256	113379904	54875873536
23	529	279841	148035889	78310985281
24	576	331776	191102976	110075314176
25	625	390625	244140625	152587890625

	$\sum_{i=1}^{L} i^{k}$			
	for k	4, 6, 8	$=1,2,3$,	
L	$\mathrm{k}=2$	$\mathrm{k}=4$	$\mathrm{k}=6$	$k=8$
1	1	1	1	1
2	5	17	65	257
3	14	98	794	6818
4	30	354	4890	72354
5	55	979	20515	462979
6	91	2275	67171	2142595
7	140	4676	184820	7907396
8	204	8772	446964	24684612
9	285	15333	978405	67731333
10	385	25333	1978405	167731333
11	506	39974	3749966	382090214
12	650	60710	6735950	812071910
13	819	89271	11562759	1627802631
14	1015	127687	19092295	3103591687
15	1240	178312	30482920	5666482312
16	1496	243848	47260136	996:449608
17	1785	327369	71397705	16937207049
18	2109	432345	105409929	27957167625
19	2470	562666	152455810	44940730666
20	2870	722666	216455810	70540730666
21	3311	917147	302221931	108363590027
22	3795	1151403	415601835	163239463563
23	4324	1431244	563637724	241550448844
24	4900	1763020	754740700	351625763020
25	5525	2153645	998881325	504213653645

	$N=5 M=5$	$N=5 M=10$	$N=10$	$M=10$	$N=15 M=15$	$N=20 M=20$	$N=25 M=25$
$\Sigma x^{0} y^{0}=$	121	231	441	961	1681	2601	
$\Sigma x^{2}=$	1210	2310	16170	76880	235340	563550	
$\Sigma x^{4}=$	21538	41118	1063986	11055344	59258612	219671730	
$\Sigma x^{6}=$	451330	861630	83093010	1889941040	17749376420	101885895150	
$\Sigma x^{8}=$	10185538	19445118	7044715936	351321903344	5784339914612	51429792671790	
$\Sigma y^{2}=$	1210	8470	16170	76880	235340	563550	
$\Sigma y^{4}=$	21538	557326	1063986	11055344	59258612	219671790	
$\Sigma y^{6}=$	451330	43524910	83093010	1889941040	17749376420	101885895150	
$\Sigma y^{8}=$	10185538	3690089326	7044715986	351321903344	5784339914612	51429792671790	
$\Sigma x^{2} y^{2}=$	12100	84700	592900	6150400	32947600	122102500	
$\Sigma x^{2} y^{4}=$	215380	5573260	39012820	884427520	8296205680	47595554500	
$\Sigma x^{2} y^{6}=$	4513300	435249100	3046743700	151195283200	2484912698800	22075277282500	
$\Sigma x^{4} y^{2}=$	215380	1507660	39012920	884427520	8296205680	47595554500	
$\Sigma x^{6} y^{2}=$	4513300	31593100	3046743700	151195283200	2484912698800	22075277282500	
$\Sigma x^{4} y^{4}=$	3833764	99204028	2567043556	127180677376	2088984590224	18552747144100	

PART II

SEISMIC RECORD ANALYSIS BY LINEAR OPERAIORS

Introduction

In the study of refiection seismic records, taken in the exploration for oil, it is becoming increasingly difficult to pick reflection times by the standard procedures. The reason for this is that, as the simpler geologic areas are being fully exploited, exploration is being forced into the more complicated areas. Seismic records taken in these structurally complex areas contain much in the way of unvanted information and much not-understood information. Energy reflected from the strata of interest is largely masked. by this "noise". At least two difierent approaches to unscrambling these records are being developed at present.

The first of these approaches is largely instrumentational. Its principle is: take more and more information (more traces on each record, etc.), filter it in different ways and mix it up in a variety of combinations to see if a procedure for averaging out the unwanted information can be arrived at. IMis approach has led oll companies to the use of 24 -trace records, each trace representing the responses from up to thirty geophones. The success of these methods is not publicly available, but the oil industry is expressing great interest in the approach described below, so probably they are not completely satisfactory.

The second of these approaches is basioly analytic. Rather than taking more information, we attempt to sharpen up the interpretive procedure on the inforiation we have.

The search for such procedure has been largely carried out at MIT in the Mathematics Department, and subsequently in the Mathematics and Geology Departments. The tools in this analysis have been the statistics of time series.

Statistical Methods

After some experimentation it was found at MIT that the use of the "Inear operator" seemed most promising in the determination of reflection times. The exact methods used are described in Ref's. 5 and 6. The linear operator permits a measure of the change in dynamics as we proceed down a selsmic record. As these dymanics are amplitude, frequency, and phase relationships, it was hoped that the dynamical change at a reflection could be disoriminated even when the changes due to amplitude were small. This was hoped for since the usual interpretive procedures depend heavily on "amplitude reflections". The results were very encouraging and stimulated increased researoh.

One direction this study has taken is the empirical one. We know the linear operator gives us added information. But, since there is considerable freedom in the choice of the exact mathematical form of the operator we use, we try many different forms and see which ones give us the most information. This is a trial and error procedure and involves an immense amount of computation. For this reason a program was written for the WhI Digital Computer which would compute automatically the measure of dynamio change, for a great
variety of forms of linear operators, at very high speed. A copy of this program and a description of its functions is contained in Appendix B. Case studies designed to test the effects of individual parameters of the linear operator are being run with this program, but the results are as yet incomplete.

Along with this empirical approach an attempt is being made to study the linear operator from theoretical grounds. Although the form of the operator which is being tested at present is relatively complicated, it is instruotive to consider a simpler form, the so-called cosine operator". This operator is a mathematioal expression which generates a pure cosine wave of given frequency. We can determine quite simply the effects of this type of operator on various time series including those found on seismic records. We hope to gain insight into the physical funotion of such operators as well as correspondence between them and simple filters.

We shall also consider two other more practical problems conneoted with the statistical analysis of seismograms by the use of linear operators. One concerns certain iterative methods for approaching the values of the linear operator coefficients for least squares fitting. The other is a related problem, the necessity for accuracy in finding these values.

Single Frequency Cosine Operators

A cosine operator is a prediction mechanism which exactly predicts equally spaced points on a cosine wave. It has the general form \ddagger

$$
\begin{align*}
\hat{x}_{1+2}= & c+a x_{1+1}+b x_{1} \\
\text { where } & a=2 \text { cos } 2 \pi h f \equiv 2 u \\
b & =-1 \\
h & =\text { time between observation } \\
& c=(1-a-b) \bar{x}=2(1-u) \bar{x} \\
\bar{z} & =\text { mean of series } \\
f & =\text { frequency of cosine wave } \\
& \hat{x}_{i+2}=\text { preaicted value of } x_{i+2}
\end{align*}
$$

Suppose we use this operator to prediot an arbitrary series x. Then the error of prediction $x_{1+2}-\hat{x}_{1+2}$ will be

$$
\begin{aligned}
E_{1+2} & =x_{i+2}-\left[2(1-u) \bar{x}+2 u x_{1+1}-x_{1}\right] \\
& =x_{1+2}-2(1-u) \bar{x}-2 u x_{1+1}+x_{1} \\
& =\left(x_{1+2}-\bar{x}\right)+\left(x_{i}-\bar{x}\right)-2 u\left(x_{1+1}-\bar{x}\right)
\end{aligned}
$$

For simplicity let us deal with a series X_{1} measured around its equilibrium mean $\bar{x}, i \cdot e . \bar{x}_{1}=x_{1}-\bar{x}$ then 2.2 becomes

$$
E_{1+2}=x_{1+2}+x_{1}-2 u x_{1+1}
$$

Now if we sum the squares of these errors over an interval of the series we get
$+$
Ref. 6
II-4

$$
\begin{aligned}
\sum_{1} E_{1+2}^{2}= & \Sigma\left(x_{i+2}^{2}+x_{1}^{2}+4 u^{2} x_{1+1}^{2}+2 x_{1+2} x_{1}-4 u x_{1+2} x_{1+1} \quad 2.4\right. \\
& -4 u x_{1} x_{1+1}
\end{aligned}
$$

If the series is stationary and the interval sufficiently great we may write this in terms of the auto-correlations. Let the series be normalized so that $\sum_{1} X_{1}^{2}=1$ then

$$
\sum_{1} E_{1+2}^{2}=B_{0}+B_{0}+4 u^{2} R_{0}+2 R_{2}-8 u R_{1}
$$

where $H_{1}=1^{\text {th }}$ lag auto-correlation and $R_{0}=1$ or

$$
\Sigma E_{i+2}^{2}=2\left(1+B_{2}-4 u R_{1}+2 u^{2}\right)
$$

This expression has a minimum value when

$$
u=\frac{-\left(-4 \mathrm{R}_{I}\right)}{2 \times 2}=\mathrm{B}_{1}
$$

or

$$
\begin{align*}
& \cos 2 \pi h f=R_{1} \\
& f=\frac{1}{2 \pi h}\left[\cos ^{-1} R_{1} \pm 2 n \pi\right]
\end{align*}
$$

Hence we have the least squares fit for a cosine operator predicting an aribtrary stationary series. We find that f is determined only by the first lag of the auto-correlation function of the series, and that f is only determined modulo $1 / h$ This last fact is apparent if we refer back to equation 2.1; where we see that cosine operators have identical forms for angular frequencies differing by $1 / \mathrm{h}$.

Hence

$$
\operatorname{Min} \sum_{1} E_{1+2}^{2}=2\left(1+R_{2}-2 R_{1}^{2}\right)
$$

If we want a perfect least squares fit we have

$$
B_{1}= \pm \sqrt{\frac{1}{2}\left(1+B_{2}\right)}
$$

With the restriction cosine $2 \pi h f=R_{1}$
One way to meet this condition is to let the interval h shrink toward zero so that $\mathrm{R}_{1} \rightarrow 1$ and $\mathrm{R}_{2} \rightarrow 1$. This is equivalent to saying that any small segment of the original series approaches a straight line, in the case where the function is continous and 1 ts first derivative exists.

The Geometry of Cosine Operators

A. Error Sum as Function of W

Consider the sum of squared errors as a funotion
of u. We have

$$
\sum_{1} E_{1+2}^{2}=2\left(1+E_{2}-4 u B_{1}+2 u^{2}\right)
$$

This is a parabola in u as shown in Fig. 2.1. $u=\cos 2 \pi h f$ must lie in the range $-1 \leq u \leq 1$. We have shown that $u=B_{1}$, is the condition for a minimum fit, and since $-1<R_{1}<+1, \Sigma E^{2}$ will always have its minimum in this range.

This means that, for any series, we can always get a minimum fit with some cosine operator of frequency f, where f must be in the range

Fig. 2.1

$$
\begin{gathered}
0<f<\frac{1}{2 h} \eta \\
\uparrow \\
\binom{u=1}{2 \pi h f=0} \quad\binom{u=-1}{2 \pi h f=\pi}
\end{gathered}
$$

We require ΣE^{2} to be non-negative. This means the discriminant of 2.9 must be ≤ 0 or

$$
16 \mathrm{~B}_{1}^{2}-8\left(1+\mathrm{R}_{2}\right) \leq 0
$$

Therefore the curve cannot cross the u axis, but can be tangent to it at one point, when the equality sign holds above. This is the condition for a perfect fit.
B. Error Sum as Function of f

The error sum as a function of frequency f is not truly parabolic but has the general shape of a parabola. It is periodic in f with a period $1 / h$. It appears as shown in Fig. 2.2 .
C. Individual Errors as Functions of u and f

Equation 2.3 gives us an expression for the
individual errors

$$
E_{i+2}=x_{i+2}+x_{1}-2 u x_{1+1}
$$

If we fix attention on a single individual error (i constant) and let u vary we see that $E \neq \neq 2$ is sinusoidal since $u=\cos 2 \pi h f$. Thus $E\left\{\begin{array}{l}\text { 车 } 2\end{array}\right.$ varies sinusoidally about a mean given by the sum of the $i^{\text {th }}$ and the $(i-2)^{n d}$ value of the series, with an amplitude of twice the (1-1)rst value of the series. The period is $1 / \mathrm{h}$. There is no phase shift
between these curves for different i values. Thus all individual errors must increase or decrease simultaneously with f.

Fig. 2.3 shows individual errors as functions of f. This figure explains why the error sum of Fig. 2.2
is reflected across the line $f=1 / 2 h$. This line in Fig. 2.3
is the axis of symmetry for the individual errors, so that 1t must also be the symmetry axis for the error sum.

Conclusions

From the above, we can draw certain conclusions. 1. If one limits himself to the general class of cosine operators, there is a maximum error obtainable for the particular data, using any frequency whatever. That is, there is such a thing as a worst fit for cosine operators.
2. Since $\Sigma \mathrm{E}^{2}$ is parabolic, determining 3 values of $\Sigma \mathrm{E}^{2}$ is sufficient to determine the complete shape of the error curve for all other frequencies.
3. Moreover, since the individual errors are sinusoidual in f, determining the individual errors for 3 values of f determines the errors for all f.

Looking at the problem another way, much of the information obtainable from any data series by a study of
this type is contained in the first and second lags of the auto-correlation function of the series, for these bo quantities determine the shape and position of the curve ΣE^{2}.

Example

The prediction program described in Appendix B provided a means for testing the conclusions reached about cosine operators. Individual errors and sums of squared errors were computed for cosine operators of frequencies 25, $30, \ldots .75 \mathrm{cps}$. The data for which these were computed were readings taken from a typical seismic trace at intervals of 2 ms .

The sums of squared errors are plotted in Fig. 2.4 over two intervals of 240 readings each. Both curves exhibit very good parabolic shapes. The average minimum for the two curves occurs for $u=.85$. This should equal the first lag auto-correlation over the two intervals, which was computed by the correlation program (Appendix D) to be . 853 .

Fig. 2.4 shows several individual errors plotted as functions of the frequency of the cosine operator used. They appear to be sections of sinusoids as expected.

These curves, computed on an arbitrary time series, seem to be in remarkable agreement with the theory.

The Cyclical Nature of Cosine Operators

We have mentioned that cosine operators differing in frequency by n / h have identical forms. It is interesting to see what this means physically.

Suppose we are trying to represent a cosine wave of 1 cycle/second with a spacing of $h=1 / 4$ second. The points we would plot might appear as in Fig. 2.6 .

Now consider a cosine wave of frequency $1+1 / h=$ 5 cycles/sec. If we try to plot this frequency with a spacing of $1 / 4 \mathrm{sec}$. We find that it can be exactly represented by the points we plotted for the one cycle wave. This is illustrated in Fig. 2.7 . We would find the same would be true for frequencies of $1+n / h=1,5,9,13,17 \ldots$ Thus, it is the fact that we cannot uniquely represent frequencies differing by n / h that explains the identity of form for cosine operators whose frequencies differ by this amount.

This is also the explanation for the so-called "condensed" power spectra met with in computational procedures. \ddagger The computed power at a frequenoy f must represent the sum of the powers at frequencies $f, f,+1 / h$, $f+2 / h \ldots$ Therefore power spectra can only have the range 0 to $1 / h$ oycles. In practice h must be chosen so that $1 / \mathrm{h}$ is greater than the greatest frequenoy from which significant contribution is expected.
\ddagger Bef. 3

$$
\text { Fig. } 2.6
$$

COSINE WAVE 1 CYCLE/SEC.

 PLOTTING INTERVAL $h=\frac{1}{4}$ aEC.

Fig. 2.7
COSINE WAVES 1 AND 5 CYCLES/SEC.

Cosine Opergtor predicting on Autoregressive Series

In order to examine the filter characteristics of cosine operators it is convenient to consider their effect on autoregressive-type series. The autoregressive series has a known Cauchy-type distribution of its spectrum. \ddagger It will be interesting to examine what the spectrum of the error function will be when we predict suon a series with a cosine operator.

Referring back to equation 2.3 we have the error function for cosine operators.

$$
E_{1+2}=x_{1+2}+x_{1}-2 u x_{1+1}
$$

To get the spectrum of this function we first find the auto-correlation R_{τ}.

$$
\begin{aligned}
& B_{T}=\quad \Sigma\left(x_{i+2}+x_{i}-2 u x_{i+1}\right)\left(x_{i+2-T}+x_{1-T}-2 u x_{i+1-T}\right. \\
& R_{T}=\quad \Sigma X_{1+2} X_{1+2-\tau}+\Sigma X_{1+2} X_{1-\tau}+\Sigma X_{1} X_{1+2-\tau} \\
& +\Sigma X_{1} X_{1-T}-2 u\left(\Sigma X_{1+1} X_{i+2-T}+\Sigma X_{i+1} X_{1-T}\right. \\
& \left.+\Sigma X_{1+1-\tau} X_{i+2}+\Sigma X_{i+1-\tau} X_{1}\right)+4 u^{2} \Sigma X_{1+1} X_{i+1-\tau}
\end{aligned}
$$

If the X series is properly normalized we may write this in terms of the correlations r_{T} of the X series.

$$
\begin{aligned}
B_{\tau}= & r_{\tau}+r_{\tau+2}+r_{\tau-2}+4 u^{2} r_{\tau} \\
& +r_{\tau}-2 u\left(r_{\tau-1}+r_{\tau+1}+r_{\tau+1}+r_{\tau-1}\right)
\end{aligned}
$$

\ddagger Ref. ?

$$
\begin{gather*}
B_{T}=r_{T-2}+r_{\tau-1}(-4 u)+r_{T\left(2+4 u^{2}\right)} \\
+r_{T+1}(-4 u)+r_{T+2}
\end{gather*}
$$

Since the series is taken to be autoregressive

$$
r_{T}=\cos 2 \pi f_{0} T h e^{-\alpha T h} \equiv \operatorname{cosat} e^{-b T} \ddagger T \geq 0 \quad 2.14
$$

Substituting equation 2.14 into 2.13 we have

$$
\begin{aligned}
B_{T} & =\cos [a(\tau-2)] e^{-b(\tau-2)} \\
& -4 u \cos [a(\tau-1)] e^{-b(\tau-1)} \\
& +\left(2+4 u^{2}\right) \operatorname{cosat} e^{-b \tau} \\
& -4 u \cos [a(\tau+1)] e^{-b(\tau+1)} \\
& +\cos [a(\tau+2)] e^{-b(\tau+2)}
\end{aligned}
$$

Using trigonometric identities

$$
\begin{aligned}
R_{T}= & e^{2 b}[\cos a t \cos 2 a+\sin a t \sin 2 a] e^{-b T} \\
& -4 u e^{b}[\cos a t \cos a+\sin a \tau \sin a] e^{-b T} \\
& +\left(2+4 u^{2}\right)(\cos a \tau) e^{-b T} \\
& -4 u e^{-b}[\operatorname{cosatcosa}-\sin a t \sin a] e^{-b T} \\
& +e^{-2 b}[\cos a \tau \cos 2 a-\sin a t \sin 2 a] e^{-b T}
\end{aligned}
$$

or

$$
\begin{array}{r}
R_{T}=\quad \cos a t e^{-b T}\left[e^{2 b} \cos 2 a-4 u e^{b} \cos a+2+4 u^{2}\right. \\
\left.-4 u e^{-b} \cos a+e^{-2 b} \cos 2 a\right]
\end{array}
$$

\ddagger Ref: 5
II-12

$$
\begin{aligned}
+\sin a t e^{-b T}\left[e^{2 b}\right. & \sin 2 a-4 u e^{b} \sin a \\
& \left.+4 u e^{-b} \sin a-e^{-2 b} \sin 2 a\right]
\end{aligned}
$$

Hence

$$
\begin{align*}
B_{\tau} & =A \operatorname{cosat} e^{-b T}+B \operatorname{sinat} e^{-b T} \\
& =e^{-b T}(A \operatorname{cosat}+B \text { sinar })
\end{align*}
$$

where

$$
\begin{aligned}
& A=\cos 2 a\left(e^{2 b}+e^{-2 b}\right)-4 u \cos a\left(e^{b}+e^{-b}\right)+2+4 u^{2} \\
& B=\sin 2 a\left(e^{2 b}-e^{-2 b}\right)-4 u \sin a\left(e^{b}-e^{-b}\right) \\
& B_{T}=e^{-b T}\left(A^{2}+B^{2}\right)^{1 / 2}\left[\frac{A}{\left(A^{2}+B^{2}\right)^{1 /}} \cos a t+\frac{B}{\left(A^{2}+B^{2}\right)^{1 / 2}} \sin a T\right] \\
&= e^{-b T}\left(A^{2}+B^{2}\right)^{1 / 2}(\operatorname{cosatcos} \beta+\operatorname{sinatsin} \beta) \\
& \text { where } \beta=\tan ^{-1} \frac{B}{A}
\end{aligned}
$$

Thus

$$
B_{T}=e^{-b T}\left(A^{2}+B^{2}\right)^{1 / 2} \cos (a \tau+\beta)
$$

R_{T} is now in a form similar to the r_{T} for the
original series. The spectrum of this type is known to be a Cauchy distribution. The specific shape will be controlled by values of b, A, B, and β.

Rather than continuing with this example we shall proceed to another type of series. The autoregressive series is somewhat non-typioal. Its spectrum, the Cauchy distribution, is very broad, in fact there is no mean value of frequency for this spectrum.

Cosine Operators on Series with Gaussian Spectrum Distribution

A much more stringent series than the autoregresslive type is a series with a power spectrum composed of two Gaussian curves. The spectrum has the form \ddagger

$$
\phi(\omega)=\frac{1}{2 \sigma \sqrt{2 \pi}}\left[e^{\frac{-(\omega-a)^{2}}{\sigma^{2}}}+e^{\frac{-(\omega+a)^{2}}{\sigma^{2}}}\right] \quad 2.18
$$

where $+a$ and $-a$ are the respective means of the two Gaussian curves, and σ is their standard deviation in radians. With such a series the normalized autocorrelation function may be written as \ddagger

$$
r_{\tau}=e^{\frac{-\sigma^{2} \tau^{2}}{2}} \cos a
$$

If we predict such a series with a cosine operator, we generate an error series whose auto-correlation function is, as before

$$
\begin{align*}
B_{\tau}= & r_{\tau-2}+r_{\tau-1}(-4 u)+r_{\tau}\left(2+4 u^{2}\right)+r_{\tau+1}(-4 u) \\
& +r_{\tau+2}
\end{align*}
$$

or substituting

$$
\begin{align*}
& \quad e^{\frac{-\sigma^{2}(\tau-2)^{2}}{2}} \cos [a(\tau-2)] \\
& +e^{\frac{-\sigma^{2}(\tau-1)^{2}}{2}} \cos [a(\tau-1)](-4 u) \\
& +e^{\frac{-\sigma^{2}(\tau)^{2}}{2}} \cos [a \tau]\left(2+4 u^{2}\right) \\
& + \\
& +e^{-\frac{\sigma^{2}(\tau+1)^{2}}{2}} \cos [a(\tau+1)](-4 u) \\
& +e^{-\frac{\sigma^{2}(\tau+2)^{2}}{2}} \cos [a(\tau+2)]
\end{align*}
$$

\ddagger Ref. 5

This can be reduced, as before, to the form

$$
B_{T}=e^{\frac{-\sigma^{2} \tau^{2}}{2}}[A(\tau) \cos a \tau+B(\tau) \sin a \tau] \quad 2.21
$$

where

$$
\begin{aligned}
A(T)= & \cos 2 a\left[e^{\frac{-\sigma^{2}(-4 T+4)}{2}}+e^{\frac{-\sigma^{2}(4 \tau+4)}{2}}\right] \\
& -4 u \cos a\left[e^{\frac{-\sigma^{2}(-2 \tau+1)}{2}}+e^{\left.\frac{-\sigma^{2}(2 \tau+1)}{2}\right]}\right. \\
& +\left(2+4 u^{2}\right)
\end{aligned}
$$

$$
B(T)=\sin 2 a\left[e^{\frac{-\sigma^{2}(-4 T+4)}{2}}+e^{\frac{-\sigma^{2}(4 T+4)}{2}}\right] \quad 2.22
$$

$$
-4 u \sin a\left[e^{\frac{-\sigma^{2}(-2 T+1)}{2}}+e^{\frac{-\sigma^{2}(2 T+1)}{2}}\right]
$$

If we are interested in the power spectrum of
this series we want

$$
\phi(\omega)=2 \int_{0}^{\infty} B(T) \cos \omega T d T
$$

Probably this integral cannot be expressed in closed form, and we shall have to resort to a computed example. Computational Example

Here we illustrate the filter characteristios of cosine operators in a particular oase. We ohoose a series with a Gaussian spectrum peaked at 50 oycles and with a standard deviation of 22.36 cycles. The power spectrum of such a series is shown in Fig. 2.8, and was computed from equation 2.18. In general shape this is not unlike power spectra dealt with on seismic traces. Fig. 2.9 shows
the normalized auto-correlation function for this type of series, as derived from equation 2.19 . The series has essentially no correlation for lags greater than about .03 sec.

To examine the effectiveness of cosine operators as frequency filtexing mechanisms, a cosine operator of frequency 50 cps was taken. The spacing interval was chosen to be 2.5 ms . The auto-correlation function of the error series generated by this operator is shown in Fig. 2.9 , and is computed from equation 2.13. In this case the function is unnormalized so that the zeroth lag autocorrelation is proportional to the total power contained in the power spectrum of the error series. Thus we see that less than 20 per cent of the power contained in the original Gaussian series remains in the error series. More than 80 per cent has been "filtered" out. However, since some of this is due merely to curve continuity, the shape of the spectrum of errors is more important than the total power.

The unnormalized spectrum of the error series is shown in Fig. 2.8 , and, as might be expected, is definitely bimodal. This curve clearly indicates that the operator is acting as a filter peaked at 50 ops , at which frequency all power has been removed. Lower frequencies are also well reduced but the higher ones are not so much affected. In fact, the power at 100 cycles is slightly greater than
in the original series. This is not a computational error. As discussed below it seems to be a necessary characteristic.

A more convenient way of showing the filter characteristios is to plot the quantity

Power removed at ω

Initial power at w
This graph is shown in Fig. 2.10. It shows how frequencies lower than 50 cycles are much preferred to those greater. It is possible that this curve would not represent the filter characteristics of a 50 cycle cosine operator used on another type of series. There is some reason, however, to suspect that it does, and that, in fact, the curve of Fig. 2.10 continues downward considerably below the axis (thus representing amplification rather than filtration). If we were to use a series containing mostly frequencies between 100 and 200 cycles, the 50 cycle operator would yield very high errors of prediction. The sum of squared errors would be far from the minimum of Fig. 2.1. Hence the power in the error series would probably be greater than that in the original series. This could only come about by an amplification of certain frequencies, which would naturally occur for frequencies greatly different from 50 cycles. In this example 200 oycles is chosen as an upper limit, because with a spacing of 2.5 ms unique ourves only exist from 0 cycles to $1 / 2 h$ or 200 cycles.

Fig. 2.10

FILTER CHARACTERISTICS

FOR 50 CYCLE COSINE OPERATOR WITH $\mathrm{h}=2.5 \mathrm{~ms}$.
\% Power removed / 100

A Method of Pinding Linear Operators for Least Squaref

Fitting Procedures

Described in this section is an iterative method of approaching the values of coefficients for a least squares fitting of linear operators to multiple time series. The problem arose in connection with the determination of linear operators to use in picking reflections from seismograns. \ddagger The method is extremely inefficient and is really only possible with the aid of very high speed computing machines, but it gives interesting insight into the behaviour of matrices, which helps in constructing other techniques.

We are trying to fit a linear operator of the form

$$
\hat{x}_{1+k}=c+a_{0} x_{1}+a_{1} x_{1-1} \cdots+a_{M} x_{1-M}
$$

$$
+b_{0} y_{1} \quad \cdots \cdots \cdots+b_{M} y_{1-M}
$$

$$
+c_{0} z_{i} \quad \cdots \cdots \cdots+c_{M} z_{1-M}
$$

$$
+a_{0} u_{i} \quad \cdots \cdots \cdots+d_{M} u_{i-M}
$$

to an interval of the sequences x_{i}, y_{i}, z_{i}, and u_{i} so that

$$
I=\sum_{1}\left(x_{1+k}-\hat{x}_{1+k}\right)^{2} \quad \text { is a minimum }
$$

The plan is to guess initial values of the constants a, a_{s}, b_{s}, c_{s}, and d_{s} and compute 2.24 . Then adjust the constants so that I is continually reduced. The initial \ddagger Ref. 5
values chosen are $a=\bar{x}$ (mean of x_{1} series) $a_{s}=b_{s}=c_{s}=$ $d_{s}=0$. These values are the values which the constants would assume under least squares fitting procedures if the x_{1} series were truly random and had no prediotability. With these values of the constants $I=I(\bar{x}, 0,0, \ldots)$ becomes the sample variance about the sample mean.

The computational procedure is:

1. Find $I(\bar{x}, 0,0, \ldots)$
2. Find $I(\bar{x}+\Delta a, 0,0, \ldots)$
3. If $2<1$, continue adding Δa until
$I(\bar{x}+n \Delta a, 0,0, \ldots)>I(\bar{x}+(n-1) \Delta a, 0,0, \ldots)$.
If $2>1$, subtraat Δa and continue to
subtract until $I(\bar{x}-n \Delta a, 0,0, \ldots)>$
$I(\bar{x}-(n-1) \Delta a, 0,0, \ldots)$
4. Using $\bar{x} \pm(n-1) \Delta a, 0,0, \ldots$, as the new starting point, find $I\left(\bar{x} \pm(n-1) \Delta a, \Delta a_{0}, 0,0, \ldots\right)$
and repeat the steps under 3 .
5. Work successively in this fashion with each
of the variables $a, a_{0}, a_{1} \ldots a_{M}$.
6. Start the process over again with the variable a.
7. Continue recycilng until the desired accuracy is reached.

It is interesting to consider the geometry of this process. If we substitute equation 2.24 into 2.25 ,
we find that I is parabolic in each of the coefficients $a, a_{s}, b_{s}, c_{s}, d_{s}$. For simplicity consider the case where we have only two coefficients a and b. Then I is a two dimensional paraboloid in a and b whose minimum we wish to find. I is positive or zero for $a l l a, b$ and has one minimum. Contours of $I=c$ are ellipses in the $a b$ plane of constant major to minor axis ratios, and are centered at the minimum. Figs. 2.11, 2.12, and 2.13 illustrate three situations that might arise. In Fig. 2.11 the contours are circular which is the case when the matrix of the normal equations associated with the minimum fit is well-behaved. Fig. 2.12 is the more usual si tuation where the contours are definitely elliptial. Fig. 2.13 shows a very badlybehaved situation corresponding to near singularity of the associated matrix.

The solid line shows how the iterative method described above would converge toward the minimum point in the three situations. The dashed curve shows how another iterative method, the steepest descent method, would converge in these situations. The steepest descent method runs into trouble in the near singular case because with finite inorements it cannot land on the long axis of the ellipse. It is forced to wobble back and forth, much as a small ball would wobble rolling in such a trough. The method described above would also encounter trouble if the increment were not fine enough, for if it got near the

trough the next increment would carry it across the trough to a greater value of I.

These figures illustrate a fundamental problem met with in iterative methods. The fine increments necessary in treating the near singular case are very inefficient when used on well-behaved data, whereas the larger increments applicable in Fig. 2.11 could never find the minimum of F1g. 2.13 .

A program was written for the WWI Digital Computer which would do this one-variable-at-a-time type of iteration. It is described in Appendix C. The computations it carries out take fifteen or twenty minutes of machine time, but they represent nearly a year of hand computation. The program can print out each successive value of I as it is computed. Fig. 2.14 shows a plot of these values as the program converges towards the solution of a particular problem. This diagram shows how I is parabolic in each coefficient. We also note that all the parabolas have approximately the same shape. This indioates that if there is a predominent long ellipse axis as in Fig. 2.13, it cannot be close to parallel to any of the axes a, a_{s}, d_{s}, for if it were, the parabolio section in the corresponding direction would be quite flat. One surprising feature of this diagram is the failure of the parabolas to tend to flatten as I is diminished.

Acouracy

This is a convenient point to consider the problem of the importance of obtaining the exact solution. If we look at Fig. 2.13, we see that values of a and b at the point A will reduce I almost as well as values at the true minimum 0. Individual errors ($x_{1}-\hat{x}_{1}$) will likewise be practically identical. The effect of the displacement OA will not be felt until the values at A are used to predict outside the interval where the minimum fit is taken. Suppose the series is

and the minimum fit is taken in the interval I of this series. What happens when we predict the interval II with coefficients chosen in I?

Consider Fig. 2.15 . The dark solid line represents the long axis of the ellipses for interval I and the light solid lines, the contours for this interval. The true minimum of these contours is at 0 . Likewise, we can draw a similar contour picture for the interval II. If we assume the dynamics are but slightly different in the two intervals, the second contours will be slightly rotated with respect to the first, and, there will be a small displacement of the minirrm. The heavy and light dashed lines in Fig. 2.15

Fig. 2.15
represent these contours for interval II. Since we are considering the near singular case, the deviation of the sum of squared errors for the second interval from its value on the heavy dashed Ine will vary as the square of the distance from a point in the $a b$ plane to the heavy dashed ine.

Now suppose in finding our minimum point for interval I we had landed at the point A which satisfies the least squares ariterion almost as well as the true point 0 . The deviation of the sum of squared errors when point A is used to predict interval II will be proportional to $(A D)^{2}$ which would be about sixteen times greater than If the point 0 were used, since $O E-1 / 4 \mathrm{AD}$. On the other hand, if we had landed at the point B for the first interval we would get a sum of squared errors smaller than if the point 0 were chosen. Again, if the point F were taken, the sum of squared errors for interval II would not be appreciably different than for the point 0 .

These effects have been noted in computed data. The indication is that the true minimum point 0 must be chosen if we are to take the sum of squared errors as a valid comparison of the changing dynamics in various intervals of a series by this method.

PABI III

Introduction

In this part we present several ideas which may be applicable to answering certain questions involving seismogram analysis. Two of the ideas have had some testing, the others none. With one exception these ideas relate specifically to refleotion seismic records, and verious possibilities in pickins reflections therefrom. The questions are:

1. In a two velocity systern, e.g., shear and compressional waves, can we set up a method for separating these velocities and can we apply it to reflection detemination?
2. In the use of Inear operators for seismogram analysis, is there another measure of prediction error, otiler than the "error curve", which will show reflections?
3. Can we obtain information on the step-out times of reflections, by the use of linear operators and the concept of ensemble averages?
4. Can a special seismometer set-up be used in confunction with correlation analysis to pick reflections?

Velocity Separation

The determination of velooities for compressional waves in the earth at shallow depths is relatively simple due to (1) the ease in generating such waves, and (2) the fact that the first arrivals are the compressional waves. Shear waves are more difilcult to generate with sifficient amplitude to separate from the earlier arriving types. Although with the proper equipment this can be done by Visual inspection of the seismogram, \ddagger it seemed of interest to consider if a statistical test could be devised to help in this problem.

The approach was to set up a simple model approximating the physical situation.

Assume we have two wave forms A and B traveling horizontally at velocities V_{A} and V_{B}, where $V_{A} V_{b}$, past three geophones F, G, and H, equally spaced with separation a. The wave shapes do not change with time. Traces F, G, and H then represent composites of A and B with different time lags. Assuming V_{A} is known, the problem is to find V_{B} and, if possible, the wave forms A and B.

Divide the time scale into units such that the no. of units per sec. is L. Since V_{A} and d are known we may line up F, G, and H so that very nearly
\ddagger Hef. 8

$$
\begin{array}{ll}
F_{N}=A_{N}+B_{N} & 3.1 \\
G_{N}=A_{N}+B_{N-j} & 3.2 \\
H_{N}=A_{N}+B_{N-2 J} & 3.3
\end{array}
$$

where the time lag between traces is approximated by j units so that $\frac{j}{L}=\frac{-d}{V_{A}}+\frac{d}{V_{B}}$
or

$$
\nabla_{B}=\frac{L A V A}{\int V_{A}+I d}
$$

This is illustrated in Fig. 3.1.
From equations 3.1, 3.2, and 3.3 we can get

$$
\begin{align*}
& A_{N}-A_{N-j}=G_{N}-F_{N-j} \\
& A_{N}-A_{N-2 j}=H_{N}-F_{N-2 j}
\end{align*}
$$

3.5 and 3.6 are recursion formulas giving $A_{N-k j}$ and
$A_{N-2 k j}$ respectively $(k=1,2, \ldots)$ once $A_{N} \ldots A_{N-j+1}$
are known. Now if j has its correot value then it is easy to show that regerdiess of how we choose the initial A's both formulas give the same value for $A_{\mathrm{N}-2 \mathrm{kj}}$. If j is slightly wrong then the two series will differ slightly. The difference will inorease as 1 strays further from its true value. We may now set up a procedure for finding this value. Assume values for j and for $A_{N}, A_{N-1}, \ldots A_{n-j+1}$, use equations 3.5 and 3.6 to caloulate the two series (to

Fig. 3.1

Assumed Reflection Pattern

Fig 3.2
a certain length), find the mean square difference between the series, end plot this difference as a function of j . In the ldeal case, this function will go to zero for the correct value of j . In practice we can expect this difference function to have a minimum at the correct value. Thus in theory at least, I is determinable. Equation 3.4 may be used to find V_{B}. Although the exact wave shapes are indeterminate in the general oase, there may be obtained some information about them. Assume the first J values of A_{N} are taken to be zero. If j is correct, then the series from equation 3.5 represents the true A_{N} with the first g values subtracted suocessively. Thus the series from equation 3.5 might be expected to have the same frequency characteristics as the true ${ }^{A_{N}}$.

In certain cases the assumption that $A_{N} \cdots A_{N-j+1}$ $=0$ will be fairly accurate. In these cases the wave forms should be determinable. Examples would arise in the separation of shear and compressional waves where it is known that the shear waves arrive late, and in reflection picking.

Another possibility in this problem would be the use of pure cross-correlation between two traces. We should expect to get a peak in the correlation at a lag corresponding to the velocity V_{B} and the particular geophone separation. However, if the wave form B were of small
amplitude, the shape of the cross-correlation curve would effectively be dominated by that of the automorrelation of wave form A, and the selection of the peak would be somewhat arbitrary. On the other hand, the mean square difference between equations 3.5 and 3.6 should still show a true minimum at the correct lag.

We can adapt this idea to the selection of reflections on seismic records. Here we make the simplified assumptions that the reflection consists of a wave train With zero mplitude between reflections as in Fig. 3.2. This is assumed to occur on two traces in the same form and at the same time (i.e., there is no step out time of the reflection which is assumed to be coming in vertically). In this case equation 3.5 alone is applicable and we need only two traces.

$$
A_{N}-A_{N-j}=G_{N}-F_{N-j}
$$

j is taken from the step-out time of the initial breaks on the seismogram. We then select some interval J units in length in which A_{N} is zero (a non-reflection interval), and use equation 3.5 to predict the remainder of the reflected wave. For interpretation it is convenient to plot the running variance of the predicted reflection.

Now the assumptions will certainly not be upheld exactly on any real seismic record. A certain omount of random energy will be in phase between any two traces and would be picked out by this method as part of the predicted
reflection. To alleviate this situation we can use three traces and predict the refleoted wave from the three possible pairings of these traces. Adaing the three predioted. waves would tend to accentuate components in phase between all three, and to minimize the random, in-phase oomponents between any two traces. For three traces F_{N}, G_{N}, and H_{N} we can express this sum as

$$
\begin{align*}
{ }^{3 A_{N+K}}= & A_{N}+A_{N+j}+A_{N+K-j}+G_{N+K} \\
& +2 H_{N+K}-F_{N}-F_{N+K-j}-G_{N+j}
\end{align*}
$$

where j corresponds to the step-out between F_{N} and G_{N}, and K the step-out between F_{N} and H_{N}.

Sests of the Method

1. Selection of Shear Velocity

An initial test was constructed which showed that, when the assumptions were exactiy upheld, the minimum of the plot of the squared differences between equations 3.5 and 3.6 was quite sharp.

On this basis three adjacent traces of a seismogram were converted to numerical form and the method applied to these real series. The selsmogram was taken at Revere Beach, Mass., in unconsolidated sediments, by Peter Southwick. \ddagger Special generating apparatus was used so that the shear arrivals were quite prominent. This record is now lost, but \ddagger Ref. 8 III-6

Fig. 3.3 shows a very similar seismogram taken with the same apparatus. The first line of cheok marks on this seismogram indiaates the first arrivals, and the second line of cheok marks was pioked as the arrivals of the shear waves. This second line permitted a direct computation of the shear velocity.

The readings for the three traces were ilned up In accordance the first line of time breaks, and equations 3.5 and 3.6 were computed for a variety of values of j. In each oase the first j values of A_{N} were assumed to be zero. The sum of squared differences between these two series were computed for each j, and normalized by the number of terms in the series for aach j. A plot of these quantities appears in Eig. 3.4 .

This figure shows two distinct minima (at $J=13.3$ and $1=16.0$) rather than just one. Upon examination it turned out that the value $\mathrm{j}=13.3$ corresponded to a shear velocity which would have been computed by direct interpretation of the first two traces chosen. The second minimum corresponded to arelocity which would have been determined directly from the second and third traces chosen. The value of velocity computed by the entire second line of check marks of Pig. 3.3 lay between these two values.

Fig. 3.5 shows a muning average of the points in Fig. 3.4 (by overlapping groups of three) which exhibits
a flat minimum between $j=13.3$ and $j=16.0$. The

LEXington $\mathrm{S}+9$
Shear test -med. sand
Geophones in line

corresponding velocity was quite close to that computed from the second line of check marks.
2. Predicting a Reflected Wave

To test whether or not a reflection could be predicted by these methods, a seismogram showing a prominent reflection was chosen (NIT Record No. 1 \ddagger). In this record linear operators had been computed and error curves derived. These error curves showed marked peaks at the reflection so the ourves were taken as a basis of comparison.

From two traces on this record equation 3.5 was computed. J was selected from the initial step-out between the traces and the non-reflection interval chosen to occur after the reflection. The variance of the predicted wave (in overlapping groups of ten) is plotted in Fig. 3.6. The dotted and dashed curves of this figure show error ourves for ilnear operators with different prediction distences k. The variance curve does not reach a peak in the reflection as rapidly as do the error curves, but it does compare favorably with them in general shape during and after the reflection. Before the reflection the discrepancy is more noticeable. This may very well be attributable to the fact that operator interval was chosen just before the reflection. In the operator interval, the least squares fitting procedure forces the error curves to be as low as possible.
\ddagger Ref. 4

Conclusions

The two tests disoussed show that the expected effects are noted. However, the data used are reasonably ideal, in the sense that ordinary methods of interpretation are adequate. Whether or not the statistical teobniques are better can only be determined by many further trials. Situations difficult to treat by the ordinary methods will also fail to uphold the simple assumptions of the theory presented here. On the other hand, only the simplest forms of the theory were used in the examples. Refinements, such as the use of three or more traces for reflection picking may give more valid results.

Phase Test

The "error curve", as used by the Geophysical finalysis Group for picking reflections, is a muning average of the squared differences between a predicted and an actual seismic trace. Fig. 3.7 shows an actual trace (the solid curves), and three predictions of this trace, from linear operators with different values of prediction distance. Brom this diagram we see that the error curve is a running measure of the vertical differences between the predicted and a ctual traces.

At the reflection (shaded) these differences are seen to become large, and hence the error curve rises to a peak in this interval. The reason the differences become large is not because there is a big discrepancy between the average amptitudes of the predicted and actual traces. From tine diagram it appears that the reason is that there is a horizontal displacenent of the oscillations of one trace With respect to the other. In other words, there is a phase shift between the predicted and actual traces during the reflection, which disappears shortly after the reflection. It seems then that a test of phase relationships might well show the reflections as well as the error curve does. A fairly rigorous way of testing this phase shift would be the following:

M.I.T. RECORD NO. I SHEET B

1. Select highly overlapping intervals of the record. 2. Compute the cross-spectrum between the predicted and actual traces in each interval, thus obtaining the phase relationships.
2. Plot the phase angle of the dominant frequency as a function of the interval chosen.

Practically, this is an involved procedure. We can use a simple but orude method to get approximately the same results. Since phase shift is expressed by horizontal displacement we can measure this displacement directly from graphs such as in H 1 g . 3.7. This requires that we be able to follow corresponding waves in the two traces, which is subject to personal interpretation.

The displacement was measured for the upper set of curves in Fig. 3.7. From equally spaced points (in time) on the solld curve the horizontal displacements to the dashed curve were measured. Displacements to the right were considered positive, those to the left negative. Where such measurements could not logically be made (for example on the peak occurring at about . 96 sec.) values were taken midway between the last value that gould logically be made and the next such value. Once this series of displacements was determined, its individual terms were summed in groups of twenty overlapping by ten, in order to smooth the data. These sums are plotted in Fig. 3.8 .

This curve indicates a rapid change of phase ocours at the reflection, the phase rising to a peak in the middle of the reflection, and falling off more gradually thereafter. It seems surprising that the curve is almost entirely positive. If this effect is characteristic, perhaps we should consider as significant only those portions of the curve above a certain mean (about 25 or 30 units in Fig. 3.7). From the original record it appears that there may be another reflection at about 1.23 seconds, which could conceivably cause the rise at the end of the curve.

This is a purely empirical curve. Perhaps it only holds for the particular case treated. One would suspect that the arrival of reflected energy would be acoompanied by a rapid change in phase relationships. However, it does not seem reasonable that these changes should be in one direction since the times of arrival of reflected energy are random. Possibly we should deal with the original series only, and compute the pate of change of phase angle (between two overlapping intervals) as a function of interval.

Ensemble Average

The step-out time of a reflection is a property of several seismio traces rather than just a single traoe. The error curve for innear operators, as defined elsewhere in this paper, is a property of a single traoe - a time average of a single error time series. To get information on the step-out time we must consider operators chosen for different traces. In this conneotion it is convenient to use an "ensemble" average. This is an average aoross the "ensemble" of error time series generated by the various operators chosen.

Let us suppose that we have taken a series of operators on a record which consists of traces from equally spaced seismometers. Suppose there are T traces, and on the $l^{\text {th }}$ trace $(l=1,2, \ldots T)$ we have chosen N_{l} operators. For the $k^{\text {th }}$ operator on this trace $\left(k=1, \ldots N_{\ell}\right)$ there is an associated error time series which we define as $e_{1}^{(k i)}$. Then, for example, we may construct a single error time series ϵ_{1}^{ℓ} to be associated with the $4^{\text {th }}$ trace by the expression

$$
\epsilon_{1}^{\ell}=\sum_{k=1}^{N_{l}}\left[e_{1}^{(k t)}\right]^{2}
$$

We may then average these error time series over the various tracas. Between traces we observe the effect of step-out. Hence we construct the error time series $\delta_{i}(\alpha)$ with an arbitrary lag or lead a

$$
\delta_{1}^{(\alpha)}=\sum_{\ell=1}^{T} \epsilon_{1-\alpha \ell}^{(\ell)}
$$

$$
\alpha=0, \pm 1, \pm 2, \ldots 3.8
$$

With the expeotation that a peak on this erfor time series, corresponding to a certain reflection, should be highest and narrowest for that value of α most closely corresponding to the true step-out of the given reflection.

No attempt has been made yet to compute 3.8 . It would be a fairly simple task to program this equation for the WWI Digital Computer as a follow-up of the Prediction XV progrem desoribed in Appendix B.

Travelling Correlations

As an approach to the problem of using a speoial geophone layout for reflection pioking, consider the following arrangement. Two geophones G_{1} and G_{2} are placed in the ground, one vertically under the other at a distance d. Assuming the ground homogeneous and non-dispersive around the geophones, the responses of G_{1} and G_{2} may be considered to be due to superpositions of many plane waves travelling with a velocity V from many different directions. In the absence of big reflections, the major contribution to the responses will come from waves having direotions not far from the horizontal.

Now consider the cross-correlation of the two responses at G_{1} and G_{2}. In particular consider the value of the function for a time lag equal to d / N. It appears that this value will be strongly influenced by the amount of vertical wave contribution present in the responses, since d/V is the time of direot travel from G_{2} to G_{1}. The cross-correlation at the lag d / V should rise rapidly at a reflection and drop off afterward.

In practioe we would have to compute this correlation over highly overlapping time intervals of the response funotions in order to obtain the correlation as a function of time. The correlation program described in Appendix D is adaptable to this type of analysis. So far however, no seismograms with the above geophone arrangement have been available.

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

It is difficult to make evaluations of validity on methods which have undergone little testing. Nevertheless We may draw certain conclusions from the work presented here.

Polynomial gravity approximation, as presented here, seems of sufficient simplioity and validity to justify a considerable amount of further study. If further trials show more promise it would be well worth-while to find the inverses of the matrices of Table III. In any event, polynomial approximations of this type have applications in many other fields, and the simplifications brought forward here may be of real value in these other applications.

The properties of cosine operators are of mathematical interest, but it is hoped that studies of this sort will lead to more practical results. In particular, further pursuit of the filter characteristios of linear operators will lead to a better understanding of the extent of realizability of equivalent electronic filters, and or to simplification in the determination of such operators.

The author is more hesitant about recomending the various procedures aiscussed in Part III. Seismograms exhibit extreme variability in their characteristios and, whereas the examples given here are encouraging, the procedures may fall on other types of records. However, the problems they attempt to settle are of great practioal concern and all promising techniques should be either proved
or disproved. Phase is a crucial variable in these problems, and probably considerable effort should be spent studying this parameter.

As for the Appendixes, the author feels that the: programs described therein have genuine value. Anyone concerned with researon depending largely on computation appreciates the fact that obtaining errorless results is a major problem. Programs such as these effectively eliminate this type of problem, and are available for the use of persons interested in the sort of computations they perform.

REPERENCES

1. Agocs, W.B. "Least Squares Hesidual Anomaly Determination," Geophysics XVI, 4, October, 1951
2. Crout, P:D., "A Short Method for Evaluating Determinants and Solving Systems of Linear Equations with Real or Complex Coeffioients," Trans. Am. Inst. of Elect. Eng., Vol. 60, 1941
3. Tukey, J:W, "The Sampling Theory of Power Spectrum Estimates," Woods Hole Symp. Autocorr. Applio. to Phys. Prob. : pp. $46-67$ D.N.R. NAVEXOS - $\mathrm{P}-735,1949$
4. Wadsworth, G.P., and Robinson, E.A., Direotors, M.I.T. G.A.G. Report No. 1, "Results of an Auto-Correlation and CrossmCorrelation Analysis of Seismio Records, Presented at M.I.T. Industrial Liason Conference of August 6, 1952," October 1, 1952
5. Wadsworth, G.P., and Robinson, E.A., Directors, M.I.T. G.A.G. Report No. 2, "A Prospectus on the Application of Innear Operators to Selsmology, November, 1952
6. Wadsworth, Robinson, Hurley, Detection of Reflections on Selsmio Records, Geophysics XVIII, 3, July, 1953
7. Kendall, Maurice G. The Ad yanced Theory of Statistics Vol. II, Charles Griffin and Compnay Limited, London, 1947
8. Southrick, Peter, Yelocity of Shear Wares Through Unconsolidated Materials, M.I.T. Ph.D. Thesis, 1952

APPENDIX A

APPENDIX A

POLYNOMIAL I (2492 m 1) - Descrintion and Use of
This program was written for the WWI Digital
Computer to eliminate the task of computing the residuals from a least squares fitting of an $n^{\text {th }}$ order polynomial to data taken over an arbitrary-sized rectangle. A copy of the program appears at the end of this Appendix.

Polynomial I does the following:
I. It solves the equation
$g(x y)=c_{00}+c_{10^{x}}+c_{20^{x^{2}}}+\ldots . .+c_{n 0} x^{n}$
$+c_{01} y+c_{11} x y+\cdots . .+c_{(n-1), 1^{x^{n-1}} y}$ $\vdots \quad \vdots$
$\left.\left.+c_{0,(n-1}\right)^{y^{n-1}}+c_{1,(n-1}\right)^{x y^{n-1}}$

Where the $C_{t k}$ is are given, n, the order of the polynomial is given, and the values of x and y are to be taken over a reotangular grid measuring 2 N by 2 M , and with axes centered as in Fig. 1.2.
II. It then forms the differences $g(x y)$ for all values of $g(x y)$ on the grid. These are the residuals.
III. It prints out these residuals in the same network fashion that the grid was chosen.

Use of Polrnomial I

There are certain conventions which must be observed in the use of this program. The constants defining the nature of the polynomial and grid must appear as follows:

Register $440 \quad+n$ order of polynomial (less than 7)
(Octal) $441+N$ greatest value of x
$442+\mathrm{H}$ greatest value of y
The coefficients $C_{B k}$ of the polynomial must be scale factored in a special way because they decrease in magnitude rapialy as $\ell+k$ inoreases. The soale factor is $10^{(\ell+k)-2}$, which in most instances will guarantee that all are less than unity in absolute value, but not greatly so. They must appear in the machine as follows:
Register: $443 \quad c_{00} \times 10^{-2} \quad 461 \quad c_{12} \times 10$ (octal) $444 \quad 0_{10} \times 10^{-2}$
$462 \quad C_{22} \times 10^{2}$
$445 \quad c_{20} \times \quad 1 \quad 463 \quad c_{32} \times 10^{3}$
$446 \quad c_{30} \times 10 \quad 464 \quad c_{42} \times 10^{4}$
$447 c_{40} \times 10^{2} \quad 465 c_{03} \times 10$
$450 \quad C_{50} \times 10^{3} \quad 466 \quad c_{13} \times 10^{2}$
$451 \quad C_{60} \times 10^{4} \quad 467 \quad C_{23} \times 10^{3}$
$452 \mathrm{C}_{01} \times 10^{-1} \quad 470 \quad c_{33} \times 10^{4}$
$453 \quad C_{11} \times \quad 1 \quad 471 \quad C_{04} \times 10^{2}$
$\begin{array}{llllllll}454 & C_{21} & \times 10 & 472 & C_{14} \times & 10^{3}\end{array}$

The data $g(x y)$ which is presumed to be taken over the gridwork, is scale factored by 10^{-2} and appears in the machine as follows:
$\begin{array}{lllll}\text { Register } & 540 & g(-N, M) & x & 10^{-2} \\ & 541 & g(-N+I, M) & x & 10^{-2} \\ & 542 & g(-N+2, H) & x & 10^{-2}\end{array}$

- $g(N, M) \quad x \quad 10^{-2}$
- $g(-N, M-1) \quad x \quad 10^{-2}$
- $g(-N+1, M-1) \times 10^{-2}$
- $g(N, M-1) \quad x \quad 10^{-2}$
- $\mathrm{g}(-\mathrm{N}, \mathrm{M}-2) \times 10^{-2}$
- $g(-N,-M) \quad x \quad 10^{-2}$
- $\mathrm{g}(-\mathrm{N}+1,-\mathrm{M}) \quad \times \quad 10^{-2}$

$$
\begin{array}{llll}
\text { • } & g(N,-M) & x & 10^{-2} \\
\text { • } & g(-N+1,-M) & \times & 10^{-2} \\
\text { • } & \cdot & & \\
\text { • } & \cdot & & \\
\text { - } & g(N,-M) & \times & 10^{-2}
\end{array}
$$

Now suppose the information n, N, M, and the $C_{\ell k}$'s are prepared on a tape with the tape number X, and the date $g(x y)$ is prepared on a tape with the tape number Y. Then the instructions for the operation of this program would be

Erase storage
Read in 2492 m I
Read in X
Bead in Y
Start at 127 (Octal)
The residuals are printed out by the direct printer in about three minutes or so depending on the size of the grid. They appear as four-digit numbers where the decimal point is understood to occur after the seoond digit.

As an example of the output we include a sample of three sets of residuals. These were derived for the three sets of coefficients used elsewhere in this paper. The sample illuatrates the convenience of this form of answer for contouring purposes. In fact, with only slight modification (inserting two extra carriage returns between

Ines) these numbers would appear on a grid with square unit cell, and could be contoured directly, on the result sheet.

A Technical Feature in Polynomial I

We describe here a technical feature in this program which might be of use to other programmers. The problem is that we are multiplying numbers rapidly decreasing in magnitude with $l+k$ (the $C_{l k}$'s) by numbers rapidiy increasing in magnitude with $4+k\left(x^{\ell} y^{k}\right)$ while the product is of a relatively constant order of magnitude, which must be in a form which we can add to other such products.

What we want is the product $C_{\ell k} x^{\ell} y^{k}$ to be scale factored finaliy by 10^{-2}. To preserve accuracy during the computation of the product we do the following:

1. Form $x^{\&} \quad 2^{-15}$ and $y^{k} \quad 2^{-15}$ and then scale factor to $x^{\ell} \quad 2^{-15+\alpha}$ and $y^{k} \quad 2^{-15+\beta}$ by use of the scale factor order.
2. Form $C_{\& x} 10^{(i+k)-2} x^{i} 2^{-15+\alpha_{y}} k_{2}-15+\beta$
$=C_{\ell k} x^{\ell} y^{k_{2}-30+\alpha+\beta_{10}}(\ell+k)-2$
To get this product to the form $c_{i k x^{k} y^{k} 10^{-2}}$ we must multiply by $10^{-(\beta+k)} 2_{2}^{30-(\alpha+\beta)}$

It appears that we merely need to store the negative powers of 10 , multiply the expression (1) by $10^{-(\alpha+k)}$ and then shift left $30-(\alpha+\beta)$. However the negative powers of 10 cannot be stored with any accuraoy for high $\ell+k$ so we write $10^{-(b+k)} 2^{30-(\alpha+\beta)}$ in the form

$$
\begin{aligned}
& 2^{-(\ell+k) \log _{2} 10+30-(\alpha+\beta)} \\
= & 2^{-3.32193(\ell+k)+30-(\alpha+\beta)} \\
= & 2^{-32193(\ell+k)}\left[2^{-3(\ell+k)+30-(\alpha+\beta)}\right] \\
= & \frac{1}{\left(2^{.32193}\right)^{(b+k)}\left[2^{-3(\ell+k)+30-(\alpha+\beta)}\right]} \\
= & (.800)^{6+k}\left[2^{-3(t+k)+30-(\alpha+\beta)}\right]
\end{aligned}
$$

We can store the powers of (.800) with ample accuracy. Thus we multiply by the appropriate power of (.800) and follow this by a shift left or right according to the exponent of 2. (The zeroth power of (.800) is put in as +.9999.)

$$
\begin{aligned}
& m=4 y \\
& +0385-0302-0008-0147-0094-0136+0082+0153+0209+0173-0146 \\
& +0163+0004-0325+0062-0049-0193-0007-0045+0031+0001-0120 \\
& +0086-0132-0082+0133+0553+0301-0056-0116+0063+0069-0078 \\
& +0039-0083-0097+0250+0199-0115-0176-0122-0003+0017-0030 \\
& -0180-0195+0032+0311-0058-0043-0014-0158-0018+0049-0021 \\
& -0203-0151+0025-0141+0050-0907-0247-0250-0145-014-0141+0074 \\
& +0099-0028+0070+0071+0138+0175-0222-0124-0158+00.37+0165 \\
& +0249+0225+0093-0149-0151-0045-0231-0123-0041+0030+0098 \\
& +0095-0060-0004-0097-0264-0141-0070-0010+0173+0104+0044 \\
& -0157+0417-0482-0112+0106+0997+0220+0224+0350+0125-0583 \\
& m=3 \\
& \text { +0372-0293-0001-0172-0181-0300-0154-0115-0007+0146 +0223 } \\
& +0193+0085-0211+0179+0035-0166-0051-0140-0058+0021+0175 \\
& +0067-0087+0020+0318+0684+0393-0027-0150-0000+0050+0073 \\
& -0057-0114-0057+0343+0313-0021-0132-0145-0081-0065-0021 \\
& -0333-0299+0003+0350+0019+0036+0027-0179-0108-0082-0124 \\
& -0363-0292-0050+0138+0100+0063-0196-0253+0070+0001-0034 \\
& -0249-0296-0170+0355+0605+0259-0108-0169-0248-0018-0002 \\
& +0107-0112-0008+0047+0181+0270-0108-0030-0117+0056+0070 \\
& +0404+0205+0033-0184-0122+0046-0100+0012+0062+0075+0079 \\
& +0390-0041-0095-0193-0309-0115+0014+0106+0288+0186+0076 \\
& +0212+0390-0700-0382-0131-0067+0133+0200+0358+0134-0595 \\
& +0044+0079-0153+0231+0043-0203-0138-0240-0115+0085+0464 \\
& -0000-0019+0136+0421+0731+0369-0115-0273-0104+0041+0264 \\
& -0075-0001+0099+0478+0383-0033-0224-0288-0224-0134+0032 \\
& -0333-0164+0181+0504+0104+0030-0065-0334-0277-0192-0030 \\
& -0372-0158+0130+0298+0192+0063-0288-0413-0111-0131-0075 \\
& -0293-0185-0001+0510+0699+0264-0192-0323-0426-0152-0002 \\
& +0003-0043+0134+0190+0273+0283-0179-0165-0274-0056+0088 \\
& +0218+0215+0133-0061-0033+0070-0148-0039-0054+0007+0147 \\
& +0102-0106-0039-0093-0222-0073+0002+0054+0234+0191+0225 \\
& -0195+0239-0698-0309-0042-0000+0169+0217+0391+0243-0328
\end{aligned}
$$

○i

APPENDIX B

APPENDIX B

PREDICTION XV (2539 m 2) - Description and Use of
This program was written to provide computational facility for predioting a series $x_{1}\left(y_{1}, z_{1}\right.$, or $\left.u_{1}\right)$ with a Innear operator of the general form
$x_{1+k}\left(y_{i+k}, z_{1+k}\right.$ or $\left.u_{i+k}\right)=a+a_{0} x_{1}+a_{1} x_{1-1} \ldots+a_{M} x_{1-n}$
$+b_{0} y_{1} \ldots \ldots . .+b_{M_{1-M}}{ }_{1}$
$+c_{0} Z_{1} \ldots \ldots . .+c_{M} z_{i-M}$
$+d_{0} u_{1} \ldots \ldots \ldots+a_{M} u_{i-M}$
where the prediction distance k and the number of lags M are arbitrary but have the restrictions that M and M+k 19. The four series which this program handles contain 500 members each so that i ranges from o through 499. This first prediction computed is for $i+k=20$ and the last one for $1+k=$ 499. After doing this computation the program forms the running average of squared errors between the predicted and actual series

$$
\sum_{i=j-5}^{j+4}\left(x_{1}-x_{1}\right)^{2} \quad j=25,35,45,55, \ldots 495
$$

which is called the "Error Curve".
There is considerable choice of output. The
alternatives are any combination of or none of the following:

1. Print-out of the errors and sums of squares
2. Print-out of just the sums of squares of errors.
3. Photographs of oscilloscope displays of the sums of errors squares

An additional choice is the use of magnetic tape delayed output for 1 and 2 above, which is about fifteen times faster than direct print-out.

This program handles up to eight operators at a time in the above fashion. When the magnetio tape output is used, the error curves can be removed from the machine at the rate of one every ten seconds whereas the individual errors and error curves require fifty seconds for each operator. Each curve would represent about a week of hand computation. Once the computations are completed the individual errors $\left(x_{1}-x_{1}\right)$ for all operators are left in magnetic drum storage so other programs can use them for different types of averaging processes rather than just the Error Curve as described above.

On the next three pages are illustrated the various output forms. The first page is a reproduction of the individual errors and error curves for two operators. The results for each operator appear as a block of numbers 10 by 48 and a right-hand column of 48 numbers. The block represents the 480 individual errors whereas the right-hand column is the Error Curve, each member representing the sums of the squares of the 10 individual errors in the corresponding row to the left. The number appearing over the upper left cormer of each block is a number assigned to the particular operator for identification purposes, and is printed by the
program. The number printed over the center of each block was inserted later.

The next page shows the output form for four operators when just the Error Curve is desired. The +0000 identification number indicates that the operator was chosen as the variance operator which has the forn $x_{1}=\frac{5}{x}$ (means of series). The Error Gurve for this type operator becomes the sample variance curve and provides a basis for testing the statistical significance of other operators predicting the x_{1} series.

The third page is a photograph taken automatically by the program of an oscilloscope display of one-half of an Error Curve. A vertical and horizontal axis are also displayed.

+0007
+0001
+0009
+0012
+0007
+0005
+0011
+0011
+0026
+0031
+0043
+0005
+0001
+0005
+0004
+0017
+0001
+0008
+0025
+0017
+0010
+0014
+0015
+0015
+0006
+0001
+0019
+0018
+0018
+0013
+0005
+0001
+0011
+0002
+0220
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+0054
+1401
$-0023+0016+0030+0003-0000-0013-0029-0013+0011-0006$ $-0001-0036-0052+0013+0010+0033+0015+0010+0007-0007$ $-0021-0031-0003+0000-0035-0032-0055-0044-0003+0075$ $+0134+0150+0069+0051+0016-0047-0058-0030+0008+0024$ $-0041+0060+0069+0051+0016-0047-0058-0030+0008+0024$
$+0022-0006-0012-0004+0018+0007+0005+0020+0035+0073$ $+0022-0006-0012-0004+0018+0007+0005+0020+0035+0073$
$+0069+0035+0024-0024-0081-0096-0068-0046-0041-0023$ $+0014+0012+0004+0030+0014-0024-0003+0006+0004+0051$ $+0071+0057+0046+0007-0023-0061-0083-0052-0052-0053$ $-0054+0058+0112+0128+0120-0023-0149-0158-0123-0086$ $-0068-0018+0029+0105+0190+0209+0132+0000-0096-0139$ $-0084+0018+0004-0015+0004-0018+0021-0007+0017+0079$ $+0033+0001+0002-0023-0012+0001+0041+0015-0023+0003$ $-0027-0019+0019+0037+0050-0011-0068-0052-0023+0041$ $+0065+0040+0001-0043-0035-0019+0008+0040-0030-0073$ $-0126-0126-0056-0036+0025+0057+0098+0100+0060+0049$ $-0020-0051-0027-0047-0056-0049-0023-0005+0011+0022$ $+0014+0007+0052+0047+0027+0005-0000-0025-0061-0017$ $+0002-0007+0018+0039+0057+0067+0074+0029-0050-0041$ $-0110-0146-0082-0063-0008+0029+0049+0032+0003+0014$ $-0037-0052-0037-0029-0000+0039+0078+0068+0021-0020$ $-0038-0050-0071-0057-0003-0027-0006+0085+0087+0042$ $+0080-0006-0083-0077-0110-0095-0017+0025+0061+0080$ $+0086+0013-0079-0083-0102-0039-0016-0063-0003+0018$ $+0081+0135+0052+0002-0090-0108-0057-0061-0048-0020$ $+0012+0037+0034+0012+0003+0020+0008-0003+0006+0015$ $+0077+0090+0042+0000-0060-0035-0074-0075-0045-0071$ $+0077+0090+0042+0073+0032+0021+0027+0075-0045-0071$ $+0007-0065-0078-0088-0066-0029-0030-0016-0001+0019$ $+0015+0012+0009-0027-0023-0003-0010-0011-0018-0011$ $+0004+0009-0010-0016+0006+0014-0014+0015+0000-0026$ $-0043-0036-001-0016+0006+0014+0014+0015+0000-0026$ $-0043-0036-0009+0001+0006+0013-0045-0090-0054+0007$ $+0032+0017+0027+0013-0040-0008-0003-0025-0018-0031$ $-0015+0010-0219-0222-0215-0213-0219-0209-0201-0175$ $-0255-0235-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ -0180-0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 -0180 $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$ $-0180-0180-0180-0180-0180-0180-0180-0180-0180-0180$
$+0001$
$+0004$
$+0013$
$+0050$
$+0018$
$+0007$
$+0030$
$+0003$
+0029
+0119
$+0142$
$+0014$
$+0003$
$+0013$
+0016
$+0065$
$+0011$
+0010
$+0019$
+0048
+0018
+0028
+0028
+0050
+0050
+0036
+0036
+0055
+0055
+0002
$+0035$
+0037
+0018
$+0018$
$+0023$
+0001
+0000
$+0015$
$+0304$
+0352
+0379
$+0323$
+0323
+0323
+0323
+0323
$+0323$
+032
+032
$+0323$
$+0323$
+0323
+032

```
+0000
+0454 +0375 +0437 +0366 +0605 +0253 +0518 +0435 +0273-+0648 +0530 +0342
+0339 +0569 +0354 +0465 +0418 +0611 +0357 +0348 +0422 +0288 +0674 +0390
    +0396 +0383+0422+0384+0343+0468+0429+0512 +0332+0355 +0775 +0256
+0483 +0423 +0313 +0593 +0216 +0395 +0399 +0399 +0399 +0399 +0399 +0399
+0000
+0616 +1241 +0509 +1102 +0701 +0725 +0995 +0704 +0681 +0864 +0902 +0783
+0%75 +0728 +0<34 +0761 +1013 +0594 +1030 +0871 +0437 +1340 +0646 +0771
+1129+0536+0977+0607+0949 +0520+0853-1589+0155 +1276 +0878 +0532
+1091 +0550 +0048 +1040 +0384 tog00 tog00 +0900 +0900 tog00 tog00 +0900
+0000
+0373 +0337 +0589 +0437 +0484 +031% +0519 +0374 +0431 +0507 +0351 +0485
+0391+0394-+0468 +0431+0386 +0442+0423-0337+0442+0395 +0539-0328
+0359 +0406 +0510 +0307 +0372 +0408 +0413 +0437 +0326 +0395 +0427 +0326
+0308 +0506 +0279 +0451 +0424-0362 +0399 +0399 +0399 +0399 +0399 +0399
+0000
+0800 +0713 +0818 +0886 +0927 +0833 +0680 +0949 +0806 +0843 +0703 +0846
*0691 +0887+0893 +0804 +0659 +0938-0780 +0797 +0695-0823-1077 +0800
+0653 +069c +0077 +0663 +0758 +0905 +0747 +0802 +0603 +0802 +0952 +0696
+0770 +0613 +0856 +0755 +085% +0677 +0784 +0784 +0784 +0784 +0784 +0784
```


Use of Prediction XV

It is necessary to prepare a tape containing the operators and a tape containing the traces x_{1}, y_{1}, z_{1}, u_{1}. These are prepared as described in the following two pages. Assume these are given tape numbers X and Y respectively. Then the operating instruction would be:

Erase storage, put S11 switch off
Head in 2539 m 2
Head in 2539 P - (Control Tape)
Read in X
Place Y in Photoelectric Reader
Start at 145
The control tapes control the output and serve the following functions:

2539 - PO Print errors and sums of squares 2539 - Pl and soope display sums of squares 2539 - P1 Print sums of squares and scope display sums of squares
2539 - P2 Scope display sums of squares DIRECT
2539 - P3 Print exrors and sums of squares
2539-P4 Print sums of squares
2539 - P5 Print nothing, display nothing

2539 - P10 Print errors and sums of squares and scope display sums of squares DELAYED
2539 - P11 Print sums of squares and scope display sums of squares

2539-P12 Print errors and sums of squares
2539 - P13 Print sums of squares

If one of the operators on X were badly prepared, it might happen that machine overflow would occur causing the machine to stop while computing for that operator. If this does happen, starting the machine over at 166 will have the effect of lgnoring the bad operator and proceeding to the remaining ones.

Preparation of Data Parameter

Each set of data x_{1}, y_{1}, z_{1}, and u_{1} is prepared as a separate parameter and then the four parameters are combined into one long one. The form of each is identical.

Notes:
It is not necessary that the series contain 499
members. However, there must be four traces. If less than four are to be used, short dummy traces must be inserted. For consistency with the operator tape, the order of combination of the separate parameters must be x_{1}, y_{1}, z_{i}, u_{1}.

The data must appear as integers in the range
-99 through +99 .

Preparation of Operator Parameters

Up to 8 operators may be prepared on a single tape
in the following fashion.

Notes:
It is not necessary to put anything into irrelevant registers. For example, if the first operator had an in of 3 registers 1061-1064, 1071-1074, 1101-1104, and 1121-1124 would be considered irrelevant. Again, if this operator did not use the u_{1} series in its prediction mechanism, registers lill-1120 would be irrelevent.

SHEET

SHEET 2

SHEET 3

	100	Aic				1,00]			
	1.01	+2				1101			
	17.02	Cal 1001				1102			
	03	4i 707	A			1103			
	04	cr 1010				1104			
	03	te 1053				1105			
	06	44147		cespamen		1106			
	11007	+4e96		T		1107			
	150	+217		-0-1-2:3		, ${ }^{10}$			
	7on	Ca 1023	A5ㅜ	+K		111			
	1012	- 1707	12	+M		(112			
	$1{ }^{1 / 3}$	calo74	T	$a \times 10^{-3}$		113			
	4.14	601054	R	$a_{7} \times 10^{1}$		1114			
	15	Ca 1025	A	a_{6}		1115			
	116	ad 1024	C	a_{5}		1116			
	17	E. 1025	6	a_{4}		117			
	120	201026	S	${ }^{1}$		1120			
	21	colo23		a_{2}		${ }^{1121}$			A
	1022	+6151	0	a_{1}		${ }^{11} 22$			
	${ }^{1123}$	3p147	4	$a_{0} \times 10^{-1}$		1123			
	1.24	+50	T	l_{7}		$1{ }^{24}$			
	1123	+2049	1	${ }_{6} 6$		1129			
	1026	-3	\pm			${ }^{1126}$			
	${ }^{1024}$	- 4025	\rightarrow -	${ }_{4}$		1127			T
	1030	t.016	D +	t_{3}		1130		W	V
	1031	$t_{4} 2037$	R	l_{2}		${ }^{113}$		0	0
	${ }^{16} 32$	calost	5	1.		1132			
	1633	Calo32		$\mathrm{ba}^{\times 10^{-1}}$		1133			
	1034	721036		Cl_{1}		1134			
	1033	tc1041	${ }_{\mathrm{N}}$	C_{6}		1135			
	1036	ca	5	${ }_{5}$		1136			
	1037	m<1030	C	${ }_{4}$		$1{ }^{37}$			
	1040	st 17	1	C_{3}		1140			
	15.1		ε	C_{2}		114			
	1042	$\operatorname{arc} 1036$	F	C_{1}		1142			
	43	a01041	A	6×10^{-11}		1143			
	1.044	414/031	$\stackrel{\square}{1}$	d_{7}		114			
	1945	colo36	\%	26		1145			
	1046	48,150	*	d 5		146			
	1047	Lic		d_{1}		114			
	1, 50	AiO		${ }^{1} 3$		1150			
	1051	sio		dz		1131			
	1052	Aio		d_{1}		${ }_{14}{ }^{52}$			
	1033	Sic		d. $\times 10$		1153			
	1034		年			1154			
	1055					${ }^{15} 5$			
	1756					1156			
	1.35					1157			
	1.60					1160			
	1,61					1161			
	1,62					1162			
	1063					1163			
	${ }^{164}$		0			1164			
	1065		P			116			\checkmark
	${ }^{\circ} 66$		ϵ			${ }^{11} 66$			A
	1067		R			1167			
	1070		A			$1{ }^{17} 9$			E
	1071		T			117			T
	1472		0			1172			c
	1073		R			${ }^{1173}$			
	1774					1174			
	1075		0			1175			
	1.76		$\stackrel{N}{N}$			${ }^{1178}$			
	1077		ϵ			1177			
notes									

APPENDIX C

APPENDIX C

ITEBATION I (2615 m 2) - Descriation mad Use of
This program was written with the purpose of obtaining least squares fits for linear operators as described in Part IV. It computes essentially as described, but has provisions for changing its increment after cycling for a certain prescribed number of times.

The program was designed to be run in conJunction with the Prediction XV program desoribed in Appendix B, and to illustrate the conveniences which programs oan include. The data to which the linear operator is to be fitted is prepared in the same fashion as in Prediction XV. The information about the operators to be found (Iteration I solves up to eight operators one after the other) is prepared as a single tape. The operator coefficients once formed are printed out, and also are left in the machine in a form to be used direotly with the prediction program.

The output of Iteration I was designed to eliminate identification problems. In addition to printing out the coefficients identified, it prints out the operator number, the operator parameters including which set of data is predicted, and the variance and minimum sums of square errors. These last two numbers
allow a rapid computation of the percent reduction
$B=1-I_{\text {min }} I_{\text {var }}$ which is a measure of the goodness of the least squares fit. A sample of the output appears below.

$$
\begin{aligned}
& \text { Variance sum }=004953 \\
& \text { Minimum sum }=001840 \\
& \text { Operator No. }-1010 \\
& N=066 \\
& n=050 \\
& k=002 \\
& M=003 \\
& T 4 \text { predicted } \\
& \text { a } \Lambda 000=+0292 \\
& \text { a3 } 10=-0000 \\
& \text { a } \Lambda 0=+0565 \\
& \text { a1 } \Lambda 0=-0000 \\
& \text { a0 } 10=+0005 \\
& \text { d } 10=-0341 \\
& d 2 \Lambda 0=-0117 \\
& d 1 \Lambda 0=-0410 \\
& d 0 \Lambda 0=+0708
\end{aligned}
$$

The program may be used to print out all the values of I as they are computed. A plot of these values for a particular operator appears in Part IV.

One other feature in this program is a "roll back" procedure. This permits us to avoid having to start from scratch if the maohine fails in the middle of the long computations. Every fifteen seconds during the
computation, all of electrostatic storage is transferred to the magnetic arums which are very reliable. Then if electrostatic storage is destroyed, we can call back the program from the magnetic drums and start over where we left off not more then fifteen seconds ago. Use of Iteration I

If the operators are prepared as described on the next page with a tape number X then the instructions for the operation of this program would be:

Erase storage, Sil switoh down
Read in 2615 m 2
Bead in 2615 P (control tape)
Read in Y (data tape)
Place X in photoeleotric reader
Start over at 145
The control tapes control the output and serve the following functions:

2615 P $0 \quad$ Print out operator and 1dentification (direct printer)

2615 P 1 Print out operator, identification, and all values of I (delayed printer).

Preparation of Operator Parameters

The information for each operator is prepared
as a short separate tape and the tapes are then combined in any order. The form of each operator is identical.

Octal Address
1001
1002
1003
1004
1005
1006
1007
1010
1111
1112
1113
Contents
+N
+n
+0, or -1
+0, or -1
+0, or -1
+0, or -1
$\pm . X X X X$
$-0,-1,-2$, or -3
+k
+M
$\pm . \mathrm{XXXX}$

Explanation
First member op. interval
Length of op. interval

- 1 if x_{1} not $_{n}$ used
-1 if y_{i}
$\begin{array}{lll}-1 & \text { if } z_{1}^{1}, \\ -1 & \text { if } \\ u_{1}\end{array}$
First operator no.
-0 if $x_{i},-1$ if y_{i}
-2 if $z_{i},-3$ if u_{i}
$=$ mean of pred. series $\times 10^{-3}$
Start at 147
The first of the separate tapes must have one additional register, register 1000 , which contains + no. of operators on the combined tape.

Register 2123 contains +.0010 which is the first increment to be used for the a term. Register 2223 contains +.0100 which is the first increment to be used with the remaining constants. Register 3421 is the counter for the cycles at these increments. The second set of increments is $1 / 10$ the first set, and appears in registers 2124 and 2224. The counter for this set is register 3433. These registers may be changed to adapt to the particular problem.

The "roll back" procedure in case of electrostatic storage failure is

Erase storage
Read in 2615 P 13
Start over at 145

SHEET I

SHEET2

		$4{ }^{411}$			500	Ric	
		6， 413			501	SiO	
	402				502	$\underline{10}$	
	403	sio			503	－ 10	
	409	ca405			504	Nio	
	408	＋10			\％os	Ca 513	
	100	＋1			506	ci 707	
	yor	2io			\％or	Cas 14	
	410				510	lo 40	
	411	Li 225			511	44516	
	412	4p 130			512	aio	
	413	ba			513	＋6145	
	414	re4／4			514	＋1857	
	4.5	44．135			515	Aio	
	$\frac{410}{1 / 17}$	Ca			516	arlo47	
		ac 417			517	c\％ 53.5	
	$4{ }^{4}$	1p／35			520	44522	
	${ }_{\text {21 }}$	$\frac{C 1342}{1040}$			581	M 136	
	423	年 630			522	Ct 5217	
	424	＋6			－ 24	72 411	
	． 23	Lio			525	723361	
	428				： 26	t， 2376	
	427	$7{ }^{4} 46$			：27	tc 2614	
	430	－4．434			530	722670	
	431	2．474			［31	4x＝3i－	
	438	c－342			532	de 0	
	433	$t 475$			33	－0	
	434	ce 476			534	dic	
	130	ta 473			535	arlose	
	438	de 473			538	Cd 542	
	437	1m474			${ }_{5} / 37$	46562	
	4.0	cp 457			540	Ca 567	
	441	du 406			541	L， 2114	
	Y 42	co 444			542	Ca 570	
	$\frac{443}{44}$	＋4465			543	t 2137	
	444	－ 4775			54	$\frac{\operatorname{ca~} 571}{4}$	
	445	c． 457				（ 5 － 5142	
	447	120465			54	$t-470^{\circ}$	
	${ }^{50}$	2io			530	ca 573	
	431	ca 341			551	有 2214	
	458	车 474			592	ca 574	
	433	Ca 342			$\stackrel{53}{5}$	t．2237	
	454	＋2475			554	ce． 75	
	${ }^{195}$	Le 337			535	退 1262	
	457	$\frac{\sin 0}{\operatorname{cas} 462}$			${ }^{5156}$	Ca 576	
	100	ter 500			560	ca^{577}	
	401	－4p467			581	左2337	
	452	＋0			582	ca 604	
	403	－ 40			53	2i 70%	－－－．－－－．－
	469	cat 470			－ 5	ca	
	46	左500			506	410	
	487	－			59	142115	
	470	－1			570	$4{ }^{4149}$	
	$4{ }_{4} 4$	＋2			¢ 71	402150	
	4	dio			${ }^{-14}$	4－240	
	475	－			： 75	4．2263	
	476	sio 0			376	－ 52315	
	477	dio			17	－p．34d	
notes							

	6.00	ar 177				cat 71	
		cN 146				5614	
	${ }^{62}$	14．174					
	603	${ }_{4}{ }^{\circ} \mathrm{O}$			703	ms 770	
		＋4096			104		
	${ }^{6} 05$	1io			109	L_{2}	
	608	AiO			709	20 702	
	607	＋10			707	ar 104	
	6	－3			710	10705	
	611	＋2，			711	ar 614	
	612	dio			712	ep 702	
	613	－${ }^{\circ}$			713	460\％	
	619	MO			719	L2613	
	${ }^{6} 15$	\cdots			715	ea 771	
	619	4 co			19	$t_{4} 614$	
	${ }^{6} 17$	2． 337			117	$\mathrm{Ca}^{4} 12$	
	620	ta． 746			720	$t 615$	
	${ }^{2} 81$	ca 146			721	ca	
	${ }^{22}$	stu 611					
	$\begin{array}{r}623 \\ .84 \\ \hline\end{array}$	$\frac{4}{4025}$			73	$\stackrel{a}{4}$	
	6，25	la 1010			723	Cs 721	
		$z_{1} 613$			726	as 722	
	${ }^{6} 27$	Ca 760			127	ash15	
	630	te 670			130	cp721	
	${ }^{31}$	ca 761			731	62721	
	${ }^{632}$	ta 102			${ }^{132}$	al＇172	
	${ }^{633}$	su 1011			733	ta 721	
	634	Ta 1012			134	Ca 722	
	${ }_{-}^{6} 35$				735	2u．723	
	$\left\lvert\, \begin{aligned} & 6.36 \\ & 637 \end{aligned}\right.$	72 762			$\xrightarrow{736}$	$\frac{\square}{\text { a }} 122$	
	${ }^{4} 8$	te $710{ }^{\circ}$			mo	ar 724	
	6.1	ca 754			74	$1{ }^{614}$	
		Auct2			74	ca 717	
	643	$\mathrm{t}_{\mathrm{L}} 164$			743	Ca 752	
	${ }^{4} 4$	calis			24	72 624	
	4.45	Luler2			145	erki2	
		$t_{1} 165$			${ }_{7} 74$	cp^{2}	
	${ }^{1} 47$				${ }_{7} 74$	ck 753	
		2ur．12			75	＋2．62y	
		俍 766			${ }^{7} 1$	－ 20318	
	cs3	2101／2			73	46625	
	654	\＃167			\＄	coloz3	
	65	＋4，243			ns	Ca 11.33	
	656		－．．－．－－－－．．．－		76	Cal^{1043}	
	657	＋ 4.412			787	${ }^{\text {ca } 1053}$	
	461	ca $11 / 2$	－．－－－			ca Ul	
	6.62	z 773			${ }^{2} 2$	ca 1440	
	：63	10 1713	－－－－－－		${ }^{163}$	sio	
	6.64	ca lic			764	dio	
	${ }_{6} 665$	$t^{\frac{1}{4} 6^{1 / 2}}$	－－－－－－－－		776	－10	
	667	寿 121			77	$\underline{120}$	
	$\times 70$				77	1.1000	
	： 7	7a 122			7^{71}	上io	
	6	（1） 162	－．．－．－．		$7{ }^{72}$	dic	
	${ }_{6} 7$	$\frac{t+}{t c h} 1 \leq 4$			${ }_{774}$	－1．0	
	475	as b／1			775		
	$\begin{array}{\|cc} 476 \\ i n 7 \end{array}$	$a 6 \frac{613}{1 / 15^{-}}$	－－－－		776	$\frac{30}{3}$	
－				MIT DIGITAL COMPUTER LABORATORY OCTAL PROGRAM FORM title d \qquad ERATION I \qquad \qquad author SIMPSON date \qquad tape number \qquad $5-m 0$ \qquad			

SHEETT

SHEET 4

[SHEET 5]

SHEET 6

	33007	$7{ }^{2} 166$		3×00	263421	
	\cdots	181004		${ }^{34} 101$	C0153	
	1．08	C 3 304		3 y 02	Coc 3422	
	${ }^{1} 031$	4． 31310		403	t 3×21	
	040	生3．332			ca ${ }^{3420}$	
	： 03.17	\＃der		${ }^{31} 080$	72160	
	－ 080	7．${ }^{\text {a }}{ }^{\circ}$		－${ }^{34} \times 8$	$\frac{a \sigma 2106}{\text { ar } 2126}$	
		7 t ＋7		${ }^{307}$	dr 2／26	
	10	a，incr			ar 2133	
	1	5－3213			20， 2135	
	12	－ 0^{3517}		$\frac{3412}{38131}$	202366	
	13	2atic			ar 2326	
	315	12， 1730			－ 35572	
	$1{ }^{10}$			$3{ }_{34} 17$	－105	
	7120	\％ 3 \％ 32		${ }^{34} 20$	40^{161}	
	＜21	星 $3: 4$		$3 y^{21}$	－2	
	22	为：$=34$		2422	－2	
	${ }^{2}$	71.157		3423	40	
	84	Cd3330		34%		
	23	7t 111		348	ar 3433	
		－4，		$\frac{788}{34}$	Co／53	
	30	10		${ }^{2} 430$	左3433	
	3	1／15：		$3{ }^{31}$	4 p 162	
	32	pp／5：		$\times 32$	， $\mathrm{n}^{\circ} \mathrm{O}$	
	${ }_{3} 3$	41515		233	－1	
	［1． 34	－1．16r		3434	－1	
	33	$\underline{-C 47}$		3433	＋． 1000	
	－36	＋2e		－ 438	－36	
	$\stackrel{137}{4}$	（1）${ }^{1 / 23}$				
	40	（ $\pi=2,23$		3141	2， 3436	
	42	郎		3442	ca 0	
	43	n 334		1443	to 0	
	44	tce 2106		544	COT343	
	45	7d 126		3445	$\operatorname{ar3436}$	
	46	td 2135		3468	CP 3442	
		403557				
	so	Ca $: 341$			－3474	
	31	try 231		34 3	a 0	
	52			－． 32	cm 2000	
	53	to 2333		${ }_{7} 545$	ca 0	
	55	Cि 154		${ }^{4} 55$	el2000	
	56			46	\％p3724	
	57	＋2\％23		－ 97	¢， LiO°	
	6	ca 755		3420	7o 0	
	61	－＂lı12		14	7 Co	
	62	tic． 2224		${ }^{6} 6$	24 8	
	${ }_{6} 6$	colıl2		${ }^{-6}$	720	
	65	72， 25		${ }^{6} 5$	2ho	
	66	ce 11		${ }^{4} \mathrm{C}$	cepo	
	${ }^{6} 7$	Le 12.2			ck 0	
	71	ita ssif		47	720	
	${ }^{72}$	Td 166		$\frac{342}{}$	cm 2000	
	． 73	chem		－473	Com， 200 O	
	7	［17．242		419	de	
	－ 76	$6{ }^{1}$		$\frac{4}{4}$	88	
	\cdots	$7{ }^{2}+3+2{ }^{\text {a }}$		$1{ }^{17}$	UR：00	
				mIT DIGITAL COMPUTER LABORATORY octal program form title LTEKATICA I index \qquad author SIMPSSON date \qquad tape number \qquad $26 / 5 \cdots a n c$		
$\square-\square-\square$				\qquad		

O

APPENDIX D

APPENDIX D

AUTO CEOSS-CORRELATION I $2559 \mathrm{mo}, \mathrm{ml}$) - Description and Use of
This program was written for the WWI Digital
Computer to compute the unnormalized sample correlations

$$
\sum_{i+\mathbb{N}}^{\mathbb{N}+n-1} x_{i-j} y_{i} \quad j=0,1,2 \ldots m
$$

The conventions for preparation of the data x_{1} and y_{1} are identical with those destribed for Prediotion XV in Appendix B, with the exception that the data tapes need not be combined after preparation. A short tape is prepared containing the information N, n, and mas follows Hegister $1047+N$ (First data point in blook) (Octal) $1050+n$ (No. data points in block)
$1051+m$ (No. lags)
2559 mo handes individual data tapes and is used
as follows
Erase storage, put Sil down
Read in 2559 mo
Bead in Z (tape for N, n, m)
Bead in $X \quad\left(x_{1}\right.$ data tape)
Bead in $Y \quad\left(y_{i}\right.$ data tape $)$
Start at 770
If X and Y are not identical we get half of the cross-correlation curve (for j). To get the other half, we repeat the instructions interchanging the order of read-in
for X and Y. If X and Y are the same tape, we get the entire auto-correlation curve, since since auto-correlations are symmetric about the zeroth lag.

The correlations are printed out by the direct printer as seven-place numbers, ten per line, the $o^{\text {th }}$ lag being the first no. on the first line, the rist lag being the second no. on the first line, etc.

2559 ml performs the same functions as 2559 mo , but is adapted for handling the combined tapes used with Prediction XV. It assumes there are 3 real data sets plus a dummy set and forms the nine correlations representing the permutations of the 3 real sets. The correlations are over 380 values of the data, and are taken to 100 laga. The output is the delayed printer, and requires one minute for each 100 lag block. At this rate the program can perform 8 or 10 million multiplications in 4 hours of machine time. A sample of the output is shown on the next page.

T3T3

RECORD $12.4 \mathrm{Tl}, \mathrm{T} 3, \mathrm{~T} 5$

CORRELATIONS $=n^{\prime}$	
$Q^{\prime} T \ldots T-(p)$	
$N^{\prime}=120$	$m=100$
$n^{\prime}=370$	$p=0,-1, \ldots-m$

T1T1
$\begin{array}{lllllllllll}0179270 & 0175549 & 0167943 & 0159926 & 0154392 & 0152791 & 0154375 & 0157500 & 01607620163416\end{array}$
 $\begin{array}{llllllllll}0163530 & 0164083 & 0164976 & 0165711 & 0165652 & 0164657 & 0163094 & 0161890 & 0161770 & 0162461 \\ 0163614 & 0163930 & 0162907 & 0161306 & 0160078 & 0160104 & 0161483 & 0163441 & 0164974 & 0165438\end{array}$ $\begin{array}{lllllllllllll}0165304 & 0165441 & 0166164 & 0166961 & 0166724 & 0164631 & 0161027 & 0157575 & 0156120 & 0157333\end{array}$ $\begin{array}{lllllllllllll}0160723 & 0164614 & 0167174 & 0167842 & 0166975 & 0165494 & 0164158 & 0163148 & 0162496 & 0161983 \\ 0161894 & 0162752 & 0164481 & 0166457 & 0167456 & 0166564 & 0163950 & 0160785 & 0158852 & 0158994\end{array}$ 0161202016438501669210167969016768401666720165477016431301631570161878 0160869016063601613800162796016412101649020164818016433501642880165130 0166570

T1T3

0212315020505101971890192194019195001958710201416020602702083990208603 0207664020613002040260201293019867101973640198592020210502061450208921 0209045020635502025380199672019899502002830202215020368902040390203696
 $\begin{array}{lllllllllllllllllll}0203855 & 0204841 & 02045944 & 0203746 & 0203076 & 0203147 & 0203796 & 0204298 & 0204135 & 0203438 \\ 020203065 & 0203750 & 0205317 & 0206341 & 0205592 & 0202834 & 0199241 & 0196915 & 0197372 & 0200464\end{array}$
 $\begin{array}{llllllllll}0203410 & 0205086 & 0206897 & 0207946 & 0207196 & 0204530 & 0201016 & 0198505 & 0198493 & 0201004 \\ 02020 & 020\end{array}$ 0202154020287602041350205599020645602063370205253020408802038180204721 0206194

T1T5

0209619020241801949920190346018985201929210197627020201702048160205892 0209619020241801949920190346018985201929210197627020201702048160205892 0208031020509302005920196696019501901955930197376019928902004170200991 0201573020236202029950202941020205202004180198843019847401994520200979 0202027020170802002460198710019807701987240200240020168202021780201819 $\begin{array}{llllllllllllll}0201532 & 0202012 & 0202953 & 0203148 & 0201688 & 0198684 & 0195532 & 0194158 & 0195609 & 0199468 \\ 0203951 & 0206958 & 0207149 & 0204766 & 0201330 & 0198496 & 0197102 & 0197084 & 0197926 & 0199340\end{array}$ 0203951020695802071490204766020133001984960197102019708401979260199340 $\begin{array}{lllllllllll}0201398 & 0204089 & 0206618 & 0207553 & 0205910 & 0201907 & 0197105 & 0193901 & 0193894 & 0197030 \\ 0201804 & 0205869 & 0207635 & 0206750 & 0204291 & 0201551 & 0199462 & 0198337 & 0198049 & 0198426\end{array}$ 0199550020131502033280204797020489802035550201258019934101988860200234 0202612

T3T1
0212315021423002110850204997019897201956940195736019806702012430204156 0206571020814202083940206896020366901995150196011019502201972720201639 0206213020867602082840205975020313802013660201268020230002033880203614 $\begin{array}{llllllllllllllll}0203158 & 0202595 & 0202514 & 0202965 & 0203421 & 0203311 & 0202552 & 0201699 & 0201672 & 0202735\end{array}$ 0204740020644302067370205565020360602021260201797020228002027700202386 $\begin{array}{llllllllllll}0201275 & 0200503 & 0201133 & 0203442 & 0206422 & 0208297 & 0207773 & 0205107 & 0202023 & 0200134\end{array}$ $\begin{array}{lllllllllllll}02012408 & 0202296 & 02045044 & 0205787 & 0205749 & 0204874 & 0203941 & 0203295 & 0202763 & 0201748 \\ 0200511 & 0200046 & 0201303 & 0204326 & 0207785 & 0209951 & 0209440 & 0206467 & 0202834 & 0200394\end{array}$ $\begin{array}{llllllllllllllllll}0200511 \\ 0200202 & 0202080 & 0204417 & 0205863 & 0205834 & 0204829 & 0203754 & 0203166 & 0203132 & 0203255\end{array}$ 0200207

0269909026570602568020247574024189102413480244756024952402536650256073 02571630257240 0260357 0252496 0250751 0250421 0251881
0251198 0251198 0252154
\qquad 0256225 0247574 0250495
0247962
0257643 0247405
024805
025662

T3T

0261579025813702511290244258024041302405130243623024797802520050254770 0256106025570202533480249351024453002407090239840024287002484410254093 025740002569090253511024911002458850245181024661602489100250438025074

 $\begin{array}{lllllllllllll}0247998 & 0248275 & 0250144 & 0252699 & 0254218 & 0253440 & 0250483 & 0247015 & 0245271 & 0246195 \\ 0249339 & 0252849 & 0254797 & 0254377 & 0252184 & 0249797 & 0248130 & 0247402 & 0247085 & 0246813\end{array}$ 0247203024907502525630256210025799902566500252239024703302437460244026
 0248127

T5T6

0209619021203802093350203211019669301924610191581019323101960930199052 020160702035230204436020400002018930198661019568701946880196313019971 020316602047460203810020111601980490196123019604001975510198966019988 0200298020058002011130201808020213002016130200460019928101988480199346 $\begin{array}{lllllllll}0200502 & 0201601 & 0201728 & 0200788 & 0199293 & 0198161 & 01978320198239 & 0198926 & 0199360 \\ 0199702 & 0200359 & 0201613 & 0203350 & 0204737 & 0204639 & 0202457 & 0198811 & 0195347 \\ 0192572\end{array}$ 0199702020035902016130203350020473702046390202435019816420199347019357 0196876019672301982010201054020407002055870204639020145901977180195364 019531701974590200387020265302035030203103020211602011880200492019975 0199000019864401990820200357020172602022340201376019916901968320195679 0196311

T5T3
0261579025850302511300243226023817702377590241323024652002511910253999 0255065025487302536290251155024762202439980241989024288902463890250736 025382102540320251731024851102461010245658024684602486960249412024916 02489100249316025047802516670251882025068102486490246845024643900247486

 0246072025055402539980254889025324802504770248352024756802478550248337 0247641

151

0260952025712302489900240358023474202337240236575024156502465830250383 0252531025278902510670247427024267302385110236926023903202439350249400 253517025310602499760245377024145502397810240557024302302450340246490 024433024810502485310248305024716302453130243479024268202436160245862 246378024977902491860247196024475302430550242447024286102437920244802
 02428510245681024954302530410254352025223480244416024160802377150237649 2243585024507102472650249468025054002495330246532024262402397730239506 0241958

Use of 2559 m 1

The instructions for use are
Erase storage, Sil switch down
Head in 2559 ml
Read in W (combined data)
Start at 677
If the combined tape has 4 real data sets, and we want the 16 permutations of correlation, then an additional tape is used and the instructions are

Erase storage, Sil switch down
Read in 2559 ml
Bead in 2559 p4
Read in W
Start at 677
2559 ml is equipped with the same "roll back" procedure that Iteration I is (Appenaix C). In case of machine failure

Erase storage
Read in 2559 pl3
Start at 677

Arevelins Correlations

With the aid of tape 2559 plo we can use 2559 mo to obtain correlations from highly overlapping blocks of the data. The correlations are over blocks 50 in length and the number of lags is taken to be 20. The first reading in each block has an index (N) equal to $k \times 10$ where $k=3,4, \ldots$ 44. The procedure for using 2559 mo in this way is

Erase storage, put Sil down
Bead in 2559 mo
Read in X
Read in Y
Read in 2559 plo leave in P.E.T.R.
Start at 770 (21 lags are printed for $N=30$)
Read in
Start at 770 (21 lags are printed for $\mathrm{N}=40$)
Head in
Start at 770 (21 lags are printed for $N=50$)
etc.
Start at 770 (21 lags are printed for $N=440$)
[SHEET 1]

SHEET2

APPENDIX E

APPENDIX E

BIOGRAPHICAL NOTE Stephen Milton Simpson, Jr.

Attended Yale University September 1946 - June 1950, receiving B:S. in Physics. Entered the Massachusetts Insiitute of fechnology in the Department of Geology in September 1950. Member of Phi Beta Kappa and Sigma Xi.

Presently under appointment as Instructor in the Department of Geology and Geophysics at the Massachusetts $\perp_{\text {nstitute }}$ of Technology.

