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INTRODUCTION 

 CERN, the European Organization for Nuclear Research, is one of the 

world’s largest and most respected centres for scientific research. Founded in 

1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva.  

It was one of Europe’s first joint ventures and now has 20 Member States. 

 Its main purpose is fundamental research in partcle physics, namely 

investigating what the Universe is made of and how it works. At CERN, the 

design and realization of the new particle accelerator, the Large Hadron Collider 

(LHC), has required a remarkable technological effort in many areas of 

engineering. In particular, the tests of LHC superconducting magnets disclosed 

new horizons to magnetic measurements. 

 At CERN, the objectively large R&D effort of the Technolgy 

Department/Magnets, Superconductors and Cryostats (TE/MSC) group identified 

areas where further work is required in order to assist the LHC commissioning 

and start-up, to provide continuity in the instrumentation for the LHC magnets 

maintenance, and to achieve more accurate magnet models for the LHC 

exploitation. 

In view of future projects, a wide range of software requirements has been 

recently satisfied by the Flexible Framework for Magnetic Measurements 

(FFMM), designed also for integrating more performing flexible hardware. 

FFMM software applications control several devices, such as encoder boards, 

digital integrators, motor controllers, transducers. In addition, they synchronize 

and coordinate different measurement tasks and actions. 

 FFMM has been developed with the aim of helping the user to write high 

quality code, in terms of flexibility, reusability, portability and efficiency. The 

test engineer needs to provide a formal description of the measurement 

procedure (script), in order to automatically generate executable measurement 

applications. 
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 FFMM needs a formal description of the measurement procedure to be 

provided in C++, and therefore requires knowledge of this programming 

language and its rules. In this thesis, the proposed idea is the development of a 

new easy Measurement Domain Specific Language (MDSL). Such a language 

models the domain of interest and provides the user with easy programming 

tools capable of describing the measurement application. 

In this way, concise and bug free specific applications can be generated by 

test engineers who do not have to be skilled programmers. At the SM18 CERN 

magnet test facility the field experience with the current FFMM release 3.0, 

highlights that a significant part of the ongoing operation costs is related to the 

development and maintenance of test applications. 

In contrast to a general-purpose programming language (GPL), a domain-

specific language (DSL) is designed to allow specific complete applications to 

be built efficiently and quickly, yielding to programs easy to write, understand, 

reuse, and maintain. These advantages are making DSLs very popular and their 

design and implementation are becoming increasingly an intensive area of 

research. Programming with a DSL also contributes to safety and reduces 

software errors. Additionally, in practice, high-level constructs translate into the 

reuse of validated components. 

A Measurement Domain Specific Language (MDSL) for the definition of test 

procedures, the synchronization of the measurement tasks and the configuration 

of instruments is proposed. The design and the development were carried out in 

the framework of cooperation between the TE/MSC department of CERN and 

the Department of Engineering of the University of Sannio. In this thesis, the 

design, implementation and experimental verification of the domain specific 

language are presented. 

In particular, in chapter 1÷4, the magnetic measurements and test domain of 

the FFMM at CERN are highlighted. In chapter 5, the approach and the main 

components of the proposed DSL are illustrated. In chapter 6 and 7, the MDSL 

implementation for FFMM and experimental results are respectively described. 
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Chapter 1 
 
 
 
 
1 Superconducting Magnets for Accelerators at CERN 
 
 In this chapter, after an overview of the main research projects of the 

European Organization for nuclear Research (CERN), the basic concepts of 

linear and circular accelerators are described by highlighting the trade-off 

among geometrical dimension, magnetic field intensity, and electrical field. 

Then, the rationale for main LHC design choices is explained, by giving 

details on the superconducting magnets. 
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1.1 CERN Accellerators 

The main issues of High Energy Particle (HEP) accelerators are: 

• to explore matter at small scale, by means of radiations of 

wavelength smaller than the the dimension to be resolved; 

• to produce new, massive particles in high-energy collisions, thanks  to 

the mass-energy equivalence postulated by Einstein;  

• to reproduce locally the very high temperatures occurring in stars or 

in the early universe, and investigate nuclear matter in these extreme 

conditions, by imparting energy to particles and nuclei;  

• to exploit the electromagnetic radiation they emit when accelerated, 

particularly when the beam trajectory is curved by a magnetic field 

(centripetal acceleration). 

 CERN, one of the most important HEP laboratories, is located at Geneva 

in Switzerland, and it was founded in 1953, following a recommendation of 

the United Nation Educational, Scientific and Cultural Organization 

(UNESCO) Meeting in Florence 1950, with the motivation of providing a 

deeper understanding of the matter and its contents. 

 After the early stage of the Proton Synchrotron (PS), more advanced 

accelerator have been developed (Fig. 1.1). The Super Proton Synchrotron 

(SPS) machine provided the energy to discover the weak force particles W+, 

W-, and Z0 earning the Nobel prize in 1984 to Carlo Rubbia and Simon Van 

de Meer [Rubbia, 1985], [Van Der Meer, 1985]. On the way to higher 

precision, the Large Electron Positron (LEP) collider was built, by providing 

high accuracy feature values for the aforementioned particles already during 

start up. In Fig. 1.1, further experiment area, such as the neutrino beam to 

Gran Sasso (CNGS)1 and the Antiprotron Decelerator (AD) [Mauri,1997], the 

first stage on the way to antihydrogen, are also depicted. 

                                                 
1 http://proj-cngs.web.cern.ch/proj-cngs. 
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Figure 1.1: The accelerator chain at CERN 

 
Figure 1.2: Overview of the Geneva area with a drawn of the two circular accelerators 

 The last CERN project is the Large Hadron Collider (LHC): a circular 

accelerator that will collide proton beams, but also heavier ions up to lead. It 

is installed in a 27 km long underground tunnel (Fig. 1.2), that already housed 

the previous accelerator, Large Electron-Positron Collider (LEP) [Fartoukh, 

2001]. Four experiments (ATLAS, ALICE, CMS and LHCb) are currently being 

built, and will be running on the collider; each of them will study particle 
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collisions under a different point of view, and with different technologies. The 

experimental detectors ATLAS (A Toroidal LHC Apparatus) Fig. 1.3, ALICE (A 

Large Ion Collider Experiment) Fig. 1.4, CMS (Compact Muon Solenoid ) Fig. 

1.5 and LHCb (Large Handron Collider beauty) Fig. 1.6. 

 
Figure 1.3: ATLAS: A large Toroidal LHC ApparatuS 

 
Figure 1.4: Alice: A Large Ion Collider Experiment at CERN LHC 
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Figure 1.5: CMS: The Compact Muon Solenoid an Experiment for the LH C at CERN 

 
Figure 1.6: LHCb: Large Hadron Collider beauty experiment 

   

 A structural drawing is shown in Fig. 1.7. Particles will collide in four points 

on the ring, corresponding to the so-called insertion points (IP) 1, 2, 5 and 8 in 

the picture. The injection systems are located at the insertion points 2 and 8. 

 The radio frequency cavities (RF) can be found at insertion point 4, and the 

beam dump is installed at insertion point 6. 

The insertions 3 and 7 house facilities to clean the beam, namely its momentum 

and orbit. The arcs house the superconducting magnets used to bend and focus 

the beam. 
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Figure 1.7: Functional drawing of the Large Hadron Collider 

  

In a circular accelerator, high kinetic energies are imparted to particle beams by 

applying electromagnetic fields. A particle of charge q moving trough an 

electromagnetic field is submitted to the Coulomb and Lorentz’s forces 

expressed by: 

 

( )dpF q E v B
dt

= = + ∧
rr r rr
r                 (1.1) 

 
where F  is the electromagnetic force exerted by the electric field E  and the 

induction field B on the particle with velocity v . Both the electric field and the 

magnetic field affect the trajectory and the energy of the particle. Therefore, the 
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main elements of a particle accelerator are the Radio Frequency (RF) cavities 

accelerating the particles, the dipole magnets bending them to follow the circular 

orbit, and the quadrupole magnets focusing them to maintain a proper intensity 

and size. 
 
 The LHC contains 1232 dipole magnets 360 quadrupole magnets, with two 

magnetic apertures integrated into a common yoke, and 4 RF cavity modules per 

beam. Although the LHC circumference is the same of the LEP, it will collide 

two proton beams at nominal center of mass energy of 14 TeV, i.e. nearly two 

orders of magnitude higher than in LEP. The use of superconducting magnets 

and RF cavities permit higher electric and magnetic fields to be achieved, by 

increasing the maximum beam energy: 

 

rBkEbeam ⋅⋅=                                               (1.2) 

 
where beamE  is the beam energy in GeV, B  the magnetic induction field in T, 

r the radius of curvature of the machine in m, and k  adimensional constant. The 

LHC beam energy is 108 times the Lawrence’s first cyclotron one, but with a 

diameter only 105 times larger. 

 Superconductivity is a powerful means to achieve high-energy particle 

beams and keep compact the design of the machine. Making a machine compact 

means not only saving capital cost, but also limiting the stored beam energy. 

According to the equation 1.3 

 

CIEU beambeam ⋅⋅⋅= 34.3                                           (1.3) 

where U is the stored energy per beam in kJ, beamI is the current beam in A, and 

C  is the machine circumference in km, with a particle energy of 7 TeV , a beam 

current of 0.58 A and a circumference of 26.7 km, the LHC will have an energy 
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of 362 MJ stored in the beam. This is enough to melt half a ton of copper and 

thus requires an elaborate and very reliable machine protection and beam dump 

system [Schmidt, 2004]. In a larger machine, this problem would become even 

more acute. 

 Besides capital cost and compactness advantages, superconductivity reduces 

electrical power consumption. High-energy, high-intensity machines produce 

beams with MW power, so that conversion efficiency from the grid to the beam 

must be maximized, by reducing ohmic losses in RF cavities and in 

electromagnets [Gareyte, 1996]. In d.c. electromagnets, superconductivity 

suppresses all ohmic losses, thus the only power consumption is related to the 

associated cryogenic refrigeration. 

 The rationale is similar for RF cavities, where superconductivity reduces 

wall resistance and thus increases the Q factor of the resonator, i.e. the ratio 

between the stored energy U and the power dissipated by the cavity Pd in one 

cycle at the resonant angular frequency ω0 [Gareyte, 1996]. However, the wall 

resistance of superconducting cavities subject to varying fields does not drop to 

zero, but varies exponentially with the ratio of operating to critical temperature 

Tc [Gareyte, 1996]. This imposes to operate at a temperature well below Tc, in 

practice as the result of a trade-off between residual dissipation and 

thermodynamic cost of refrigeration. 

 Cryogenics plays another fundamental role in nuclear accelerators. In the 

LHC, the first conducting wall seen by the circulating beams, i.e. the beam 

screen is coated with 50 µm of copper and must operate below 20 K, by 

achieving a resistivity value capable of reducing the beam transverse impedance 

ZT, directly linked to the rise time of the beam instability [Padamsee, 2004]. 

Another direct application of cryogenics in accelerators is distributed cryop-

umping. The saturated vapour pressures of all gases, except helium, vanish at 

low temperatures, so that the wall of a cold vacuum chamber can act as an 

efficient cryopump. In fact, it traps gases and vapours by condensing them on a 

cold surface. Therefore, cryogenics is required for this application independently 
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of the use of superconductivity. 

1.2 LHC superconducting Magnets 

 The coils of the LHC superconducting magnets are wound with NbTi cables 

(7000 km in total), working in superfluid helium either at 1.9 K or at 4.5 K. A 

vertical dipole field B of 8.33 T is required to bend the proton beams, whereas 

the LHC quadrupole magnets are designed for a gradient of 223 Tm−1 and a peak 

field of about 7 T. 

1.2.1 LHC Dipole Magnets 

The LHC dipole is like a split pair of circular coils, stretched along the particle 

trajectory in such a way that the dipole field is generated only along the beam 

pipe, as shown in Fig. 1.8a. The LHC dipoles are based on a compact and cost-

saving two-in-one design, where two beam channels with separate coil systems 

are incorporated within the same magnet [Rossi, 2004]. The main parts of an 

LHC dipole are depicted in Fig. 1.8b. The superconducting cables of the coils 

for the LHC magnets are made of NbTi hard superconductor multi-wires, 

embedded in a copper stabilizer. Such wires are wrapped together to form the 

so-called Rutherford type cable. The coils are surrounded by the collars which 

limit the conductor movements [Rossi, 2003]. 
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Figure 1.8: The LHC superconducting dipole: a) Magnetic field; b) particu-lars 

 The iron yoke shields the field so that no magnetic field leaves the magnet. 

The so-called cold-mass is immersed in a bath of superfluid liquid helium acting 

as a heat sink. The helium is at atmospheric pressure and is cooled to 1.9 K by 

means of a heat exchanger tube. The cold mass is delimited by the inner wall of 

the beam pipes on the beam side and by a cylinder on the outside. The iron yoke, 

the collars, and the cylinder compress the coil by withstanding the Lorentz 

forces during excitation. The cylinder case improves the structural rigidity and 

longitudinal support and contains the superfluid helium. 
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 Stability requirements for the beam motion impose stringent constraints to 

the quality of the magnetic field in the LHC magnets. Owing to the magnets 

non-ideality, the magnetic field presents multipoles that require correc-tions to 

achieve the required beam performance. The major tolerances are specified in 

[Fartoukh, 2001]. 

 
Figure 1.9: Scheme of the LHC cell  

with main bending dipoles, main focusing quadrupoles, and a full correction scheme. 

The LHC arc includes main bending dipoles, main focusing quadrupoles, and a 

full correction scheme, featuring sextupoles, octupoles and decapoles (Fig. 1.9). 

Each cell of the LHC arcs has two different types of correction circuits to deal 

with the sextupole and decapole field errors:  

• spool piece corrector magnets, built-in with the main dipole cold masses; 

• lattice corrector magnets, mounted in the main arc quadrupole magnets 

as part of the Short Straight Section (SSS) assembly [Fartoukh, 2001]. 

Its structure is based on a cost-saving ‘two-in-one’ design, where two beam 

channels with separate coil systems are incorporated within the same magnet 

structure. The two coils (physical length of 14.6 m) are fixed by a support 

structure of laminated collars, which define the exact geometry and provide 

mechanical stability. The collared coils are integrated into an iron yoke, which 

serves to increase the central field by about 19 %, and to shield the magnetic 

field, thus no magnetic field leaves the magnet. Bus bars accommodate the 

cables to power the magnets of the arcs. They are located in grooves in the iron 

yoke. The so-called ‘cold mass’ is immersed in a bath of superfluid helium at 

atmospheric pressure and cooled to 1.9 K by means of a heat exchanger tube, in 
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which two-phase low-pressure helium is circulated and acts as a heat sink. The 

cold mass is delimited by the inner wall of the beam pipes on the beam side and 

by a cylinder on the outside. 

 In storage rings like the LHC, stable beams have to run as long as possible on 

the circular orbit (for several hundreds of millions of turns), in order to increase 

the number of collisions between the counter rotating beams. 

This imposes strong constrains on the tolerable field perturbations along the 

trajectory. Deviations from the dipole and quadrupole fields, even if short in 

both space and time, can induce instabilities reducing the beam life-time. 

Higher-order multipoles correctors are required to compensate the unavoidable 

imperfections of dipole and quadrupole magnets. Ideally, a pure n-pole field 

could be produced by a current flowing along an infinitely thin cylindrical shell, 

with a cosine like distribution: 

 

( ) 0 cos( )I I nθ θ=                              (1.4) 

 

where θ  is the azimuthal angle. 

The LHC dipoles are 15-meters long with a beam aperture of 50 mm in diameter, 

giving the possibility to consider the coils as infinitely long, and to evaluate the 

magnetic field in the x-y complex plane by neglecting the z component. In the 

central part of the dipole taking into account the properties of the analytical 

functions, it can be postulated that the magnetic field generated B can be 

expanded in the complex plane in a power series [Arpaia, 2006]. 
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       (1.5)
 

 
The reference radius Rref is defined to be 17 mm, i.e. approximately two thirds of 

the magnet aperture radius of 28 mm. Bn and An are the so called normal and 
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skew multipole coefficient, also referred to as field components or field 

harmonics 

 

 

( )
( )nnn

nnn

nαsinCA
nαcosCB

−=
=

                         (1.6) 

 

where αn is the angle between An and Bn, Cn is referred as the amplitude of the 

component of the total field. bn and an are their normalized values, expressed 

standard ‘UNITS’. If B1 is the main field, bn = Bn/(B110-4) and an = An/ (B110-4), 

where the factor 10-4 is used for scaling the existence of non-zero bn and/or an 

coefficients reflects the fact that the magnetic field generated by the 

superconducting coil in a dipole is not a pure dipole and is affected by higher 

order of multipoles (quadrupole, sextupole, etc.). The multipole components are 

generated by the difference between the ideal current distribution of Equation 

1.4 and the actual current distribution in the coil. Because of the approximation, 

the field distribution inside de magnet bore is not a pure dipole field, higher 

components are present (Eq.1.5). All undesired multipole components other than 

the main field are referred to as “field errors”. 

1.2.2 LHC Quadrupole Magnets 

These magnets are used to focus the beam by squeezing it into a smaller cross-

section, a similar effect to a lens focusing light. However, each magnet only 

focuses the beam in one direction so alternating magnet arrangements are 

required to produce a fully focused beam [Nogiec, 2006]. 
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Figure 1.10: Cross section of a superconducting quadrupole magnet for the LHC project 

Fig. 1.10 shows the Cross-section of short straight section with quadrupole cold 

mass inside cryostat. 

Two cylinders of elliptical cross section carrying equal and opposite current 

densities are made to intersect at right angle to each other, I=I0cos(2θ). The 

overlap region carries no current, and can be treated as the aperture of the 

magnet. Any point inside this aperture is also inside both the cylinders.  

Then a pure normal quadripole field presents, according to in equations 1.5 and 

1.6, only the component B2, to produce a skew-quadrupole field, the shown 

arrangement of Fig. 1.11 should be turned by 45°. 

 

 
Figure 1.11: Current distributions to generate a quadrupole induction field 
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The total complex field at any point (x,y) is given by: 

 

( ) ( ) (y)jB(x)BjyxG
R

jyxByx,B xy
ref

2quadrupole +=+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

  (1.7) 

 

where G is referred as the field gradient (expressed in T/m). LHC 

superconducting quadrupole uses the same cables as the LHC dipole. As the 

current distribution is only an approximation of the ideal case, also the 

quadrupole is affected by field errors. Fig. 1.12 shows the cross section of a 

normal LHC quadrupole, and the field distribution at the current 1185 A. 
 

 
Figure 1.12: Cross section of an LCH normal quadrupole 
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2 Magnetic Measurements at CERN 

 
 Accelerator magnets are designed and built with stringent specifications on 

strength, orientation, homogeneity, and position of the null point for the gradient 

of the magnetic fields. In spite of the great advances in computational techniques 

for the optimization and performance analysis of a magnet, and given the 

unavoidable manufacturing and assembly tolerances in the construction process, 

the above target remains very demanding. Hence, the production of magnets 

with high field quality has been invariably assisted by a spectrum of various 

measurements, based on different methods depending on the goal and the 

accuracy of the desired analysis. At CERN, the Research and Development 

(R&D) program is based on the upgrade of the measurement techniques in order 

to analyze dynamic features of the magnets and achieve more accurate magnet 



 
 

CHAPTER 2                      

 

 
 
 
 

19

models for the exploitation of the LHC. Considered that the flux induction 

measurement methods require the integration of the incoming signal, the 

development of a new digital integrator was launched as a key factor of the 

R&D program.  

 In this Chapter, at first an overview of the main methods for magnetic 

measurements is given by pointing out the instrumentation and the required 

accuracy.  

2.1 Methods for magnetic measurements 

The most commonly used methods for magnetic measurement in beam-guidance 

magnets for particle accelerators are:  

1. Fluxmeter method. 

2. Hall generator. 

3. Magnetic resonance technique. 

The choice of a measurement method depends on several factors. The field 

strength, homogeneity and variation in time, as well as the required accuracy, all 

need to be considered.  

Fluxmeter method 

 The fluxmeter method, based on the induction law, is the oldest of the 

currently used methods for magnetic measurements, but it can be very precise. It 

is also the most accurate method for measuring the direction the magnetic flux 

lines; this being of particular importance in accelerator magnets. Measurements 

are performed either by using fixed coils in a dynamic magnet field, or by 

moving the coils in a static field. Very accuracy can be reached in differential 

fluxmeter measurements by using a pair of search coils connected in opposition, 

with one coil moving and the other fixed, thus compensating fluctuations in the 

magnet excitation current and providing a much higher measurements, but with 

both coils moving.  
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 The coil method is particularly suited for measurements with long coils in 

beam-guidance magnets, where the accurate measurement of the field integral 

along the particle trajectory is the main concern. With the advent of modern 

digital integrators and angular encoders, harmonic coil measurements have 

improved considerably and are now considered as the best choice for most types 

of accelerator magnets. The method provides the additional advantage of 

simultaneous measurement of strength, quality, and geometry. A compensating 

coil, connected to in series and rotated with the main coil, may be used to 

suppress the main field component and thus increase the sensitivity of the 

system for measurements of field quality. 

 Dynamic fields are measured with static coil linking to selected harmonics. 

Another induction measurement consists of moving a stretched wire in the 

magnetic field, thus integrating the flux cut by wire. It also possible to measure 

the flux change while varying the field and keeping the wire in a fixed position. 

Tungsten is often selected, if the wire cannot be placed in a vertical position. 

The accuracy is determined by mechanical positioning of the wire. Sensitivity is 

limited, but can be improved by using a multi-wire array. This method is well 

suited to geometry measurements, to absolute calibration of quadrupole fields 

and in particular to measurements in strong magnets with very small aperture. 

The choice of geometry and methods depends on the useful aperture magnet. 

The sensitivity of the fluxmeter method depends on the coil surface and the 

quality of integrator. The coil integrator assembly can be calibrated to an 

accuracy of a few tens of ppm in a homogeneous magnetic field by reference to 

a nuclear magnetic resonant probe, but care must be taken not to introduce 

thermal voltages. The main advantage of search coil techniques is the possibility 

of a very flexible design of coil. The high stability of the effective coil surface is 

another asset. The linearity and the wide dynamic range also play an important 

role. The technique can be easily adapted to measurements at cryogenic 

temperatures. After calibration of the coils at liquid nitrogen temperature, only a 

minor correction has to be applied for use at lower temperatures. One the other 
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hand, the need for relatively large induction coils and their related mechanical 

apparatus which is often complex, may be a disadvantage. Furthermore, the 

measurements in static fields are relatively slow.  

Hall generator method 

 The Hall generator method is based on the Hall’s effect. A metal strip 

immersed in a transverse magnetic field and carrying a current developed a 

voltage mutually at right angles to the current and field that opposed the Lorentz 

force on the electrons. The Hall-generator provides an instant measurement, uses 

very simple electronic measurement equipment and offers a compact probe, 

suitable for point measurements. The probes can be mounted on relatively light 

positioning gear. Considerable measurement time may be gained by mounting 

Hall generators in modular multi-probe arrays and applying multiplexed voltage 

measurement. The wide dynamic range and the possibility of static cooperation 

are other attractive features. However several factors set limits on the obtainable 

accuracy. The most serious is the temperature coefficient of the Hall voltage.  

 Temperature stabilization is usually employed in order to overcome this 

problem, but increase the size of probe assembly. The temperature coefficient 

may also be taken into account in the probe calibration by monitoring the 

temperature during measurements. Last but not least is the problem of the non-

linearity of the calibration curve, since the Hall coefficient is a function of the 

field level. The measurement of the Hall voltage sets a limit about 20 μT on the 

sensitivity and resolution of the measurement, if conventional direct current 

excitation is applied to the probe. The sensitivity can be improved considerably 

by application of ac excitation. In the following, the main two measurement 

techniques currently employed at CERN for field harmonic analysis, based on 

rotating coils and Hall plate probes, are described. 
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Magnetic resonance techniques 

The nuclear magnetic resonance technique is considered as the primary 

standard for calibration. It is frequently used, not only for calibration purposes, 

but also for high accuracy field mapping. The method was first used in 1938 for 

measurements of the nuclear magnetic moment in molecular beams [Kusch, 

1939]. 

A few years later, the phenomenon was observed in solids by two 

independent research teams [Purcell, 1946], [Bloch, 1946]. Based on an easy 

and accurate frequency measurement, it is independent of temperature 

variations. Commercially-available instruments measure fields in the range from 

0.011 T up to 13 T with accuracy better than ±10 ppm. 

In practice, a sample of water is placed inside an excitation coil, powered 

from a radiofrequency oscillator. The precession frequency of the nuclei in the 

sample is measured either as nuclear induction (coupling into a detecting coil) or 

as resonance absorption [Bloembergen, 1948]. The measured frequency is 

directly proportional to the strength of the magnetic field with coefficients of 

42.57640 MHz/T for protons and 6.53569 MHz/T for deuterons. The advantages 

of the method are its very high accuracy, its linearity, and the static operation of 

the system. The main disadvantage is the need for a rather homogeneous field in 

order to obtain a sufficiently coherent signal.  

Pulsed NMR measurements have been practiced for various purposes even at 

cryogenic temperatures [Putlitz, 1996]. Electron paramagnetic resonance (EPR) 

and electron spin resonance (ESR) can be viewed as two alternative names in a 

family of electron magnetic resonance (EMR) techniques. ESR is a related and 

accurate method for measuring weak fields [Kernevez, 1992]. It is now 

commercially available in the range from 0.55 mT to 3.2 mT, with a 

reproducibility of ±1 ppm and is a promising tool in geology applications. 
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2.1.1 Rotating coils 

 The principle of the measurement is based on Lenz’s law: when a conductor 

loop moves with respect to a magnetic field, a flux variation occurs and a 

voltage is induced proportional to the time variation of the flux. In Fig. 2.1 a 

cylindrical surface parallel to the axis of the magnet zm and uniform in the axial 

direction is considered. Γ designates the arc at the intersection between Σ and 

the xy plane z1 and z2 determine the positions of the ends in the complex plane.  

The magnetic flux Φ through this surface is defined by: 

                 Bdφ σ
∑

= ∫∫
r r

               (2.1) 

with dσr  the surface element vector. 

Since the surface is parallel to the axis of the magnet, and since B
r

and ∑ are 

uniform along the magnet’s axis: 

  ( )mL B z dφ γ
Γ

= ×∫
r rr

                      (2.2) 

 with L the length of the surface along the  zm axis and dγr the arc element 

vector. 
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Figure 2.1: Magnetics flux through a cylindrical surface 

 
Now the coordinates of dγr  are set to (dx, dy, 0). The coordinates of ( )mz dγ×

rr  

are (-dy, dx, 0). Using the two dimensional expression of the B
r

 the flux is given 

by: 

     Re[ ]y xl B dx B dyφ
Γ

= −∫          (2.3) 

 

In complex notation it is expressed by: 

 

2

1

Re ( )
z

z

L B z dzφ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫      (2.4) 

 

Introducing the definition of the complex potential [Devred, 1998] and using the 

multipoles expansion series, the flux is expressed in terms of field harmonics as: 
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1
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1Re
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n f

z zL Cn
n R

φ
∞

−
=
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⎢ ⎥⎣ ⎦
∑                      (2.5) 

 

Now it is assumed that the surface Σ represents the surface for all turns of a pick 

up coil rotating around the axis zm (i.e. the windings are infinitely thin). The 

angle θ’ describes a rotation of the surface around the axis zm , z2 and z1 are the 

positions of the extremities of the arc Γ at θ’=0. So for any angle θ’ the location 

of the ends 1z θ  and 2z θ is described by: 

 

'
'

11
exp( )z z i

θ
θ=  and    '

'
22

exp( )z z i
θ

θ=       (2.6) 

 

Using the equation (2.5) and (2.6) the flux Φ seen by a rotating coil is: 

 

  
1

( ') Re exp( ')
n

KnCn inφ θ θ
∞

−

⎡ ⎤
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⎣ ⎦
∑                  (2.7) 

 

with Kn the coil’s sensitivity to the nth multipole: 

 

2 1

n n
z zNwLRrefKn

n Rref Rref

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                    (2.8) 

 

In the equation (2.8) Nw represents the number of the coil turns, so that Kn only 

depends on the coil geometry. 

The voltage induced by a flux change is given by Faraday’s law: 

 

                                                ,dV
dt
φ

=                       (2.9) 
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A change of flux inside the coil is achieved either by varying the magnetic field 

(i.e. varying the magnet current) or by rotating the coil inside the magnetic field. 

Here the second method, called rotating coil method, is described. The angular 

dependence of the flux on the angular position of the coil is shown in equation 

(2.7). In the following the magnetic field is considered to be independent from 

time, so that the field harmonics Cn are assumed constant. Faraday’s law gives 

the voltage versus time. To calculate the multipoles Cn the flux versus angle is 

needed. Therefore the measurement is performed in the following way: 

• the coil is turned by a motor; 

• the voltage induced in the coil is fed to an integrator; 

• the integrator is read out by a controller; 

• an angular encoder triggers this readout to ensure equidistant  readouts.  

This is needed by the standard analysis which is based on a Fourier transform. 

In the following this procedure is described mathematically. It is assumed that 

the Nw turn pick up coil is rotating around the z-axis with angular velocity ( )tθ& . 

Then the angle θ’ at a given time t equals θ(t) and the angular speed equals its 

first derivative: 

' ( )tθ θ=  and ( ) ( )d t t
dt
θ θ= &    (2.10 a) 

In the ideal case 

' tθ ω= ⋅  and ( )d t
dt
θ ω=    (2.10 b)  

 

with ω the ideal (i.e. constant) angular velocity. Faraday’s law (2.9) applied to 

equation (2.7) gives: 

 

1
( ) ( ) Re exp( ( ))

n
V t t nKnCn in tθ θ

∞

=

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑&    (2.11) 

 

The voltage is then integrated using an integrator: 
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0

( ) ( ') ',
t

t V t dtφ = −∫    (2.12) 

 

assuming that the integration starts at t = 0. 

The angular encoder triggers the readout of the integrator to ensure equally 

spaced angular steps. Since θ(t) gives the position of the coil versus time, its 

inverse function 1( ')t θ θ−= describes the time at which an angle was reached. 

Thus the flux Φi given by the integrator for an angular interval ' '
i oθ θ−  as: 

 
1 '

1 '

( )

( )

( )
i

o

i V t dt
θ θ

θ θ

φ
−

−

= − ∫      (2.13) 

 

θ0 is the angle at which the integration started and θ’i 

 

' 2 1....i i i P
P
πθ = =    (2.14) 

 

with P the number of readings per revolution. The flux Φi can be further written 

as 

 
'

'0

1( ) ( )
i

o

ti

t

i V t dt V d
θ

θ

φ θ θ
θ

= − =∫ ∫ &    (2.15) 

 

Φi corresponds to the value of the integral at ti. Comparing the last term of the 

above statement to Equation (2.12) it is evident that Φi is speed independent. A 

discrete Fourier transform is applied to the total readout Φ={Φi | i = 1 . . . P} of 

the integrator with ψ the spectrum of the flux and DFT the discrete Fourier 

transform. It can be showed [Bottura, 1997] that the multipoles Cn are given by: 
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1
nC n

Kn
ψ=     (2.16) 

2.1.2 Hall probes 

 A Hall probe is a semiconductor-based detector which uses the Hall effect to 

allow the strength of a magnetic field to be measured. The Hall Effect is seen 

when a conductor is passed through a uniform magnetic field. The natural 

electron drift of the charge carriers causes the magnetic field to apply a Lorentz 

force (the force exerted on a charged particle in an electromagnetic field) to 

these charge carriers. The result is what is seen as a charge separation, with a 

build up of either positive or negative charges on the bottom or on the top of the 

plate. 

 
Figure 2.2: The rotating coils shaft 
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Figure 2.3: Cross section of the shaft for rotating coil measurements  

with pick-up coil in ‘tangential’ configuration. 

Hall Plane Probes at CERN 

 During long periods of constant current supplying, all components of the 

magnetic field show decay behaviour. The decay is especially pronounced at the 

low level of the magnetic field during injection (about 0.54 T), where the 

persistent current magnetization is relatively large and has a significant impact 

on the field. The field components return to the original hysteresis curve as soon 

as the current ramp restarts, i.e. they ‘snapback’. An example for b3 during decay 

and snapback for a dipole is shown in Fig. 2.4 a) and b), as a function of both 

the time and the main field, respectively. The snapback during the acceleration 

ramp after the end of injection only lasts a few of seconds, and rotating coils 

used so far for measurements do not have the time resolution to accurately 

measure its time dependence. For this main reason, a system based on the Hall 

plates with a higher acquisition rate was developed [Bottura, 2000], [Berkes, 

1998]. 

 



 
 

CHAPTER 2                      

 

 
 
 
 

30

 
Figure 2.4: The dipole field B1 and the normal sextupole component b3 

 are shown as a function of time. The injection field is reached at a time t = 0. The sextupole 
component decays during injection. After about 1000 s the magnet is ramped again. The 

snapback is clearly visible a). The same measurement of b3 is shown as a function of the dipole 
field along the up-ramp branch of the hysteresis curve.The decay and snapback are indicated b). 
 
 An arrangement of m Hall plates, equally spaced on the circumference of a 

ring and radially oriented, allows all the field components with an order lower 

than m to be suppressed. The measured signal for the field component of order m 

can be maximized if all the Hall plates are placed in the poles of the 2m-pole 

field. Fig. 2.4 a) shows an arrangement of 3 Hall plates in a dipolar and a 

sextupolar field. The projections of the field onto the normal vectors of the three 

plates are measured. The sum signal of the three plates is compensated for the 

dipole field and proportional to the sextupole component for the sextupole field. 

An expression for the sum signal S of a group of m plates with equal sensitivities 

in a magnetic field with normal and skew multipole components Bk and Ak, 

respectively, is given by [Breschi, 2000] : 
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(2 1) 1
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(2 1) 2
1 1
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− −
− −∞ ∞

−
= =

⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠
∑ ∑  (2.17) 

 
R is the radial distance of the active area in the Hall plates from the center of the 

ring. 
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Figure 2.5: Examples are shown for a sextupole ring with 3 

 and a decapole ring with 5 Hall plates. 
 Also the field lines of the dipole, the sextupole and the decapole field are indicated. 

 
 In an ideal case, where all the Hall plates are well aligned and have equal 

sensitivities, the only multi-poles contributing to the total signal S are the normal 

odd and the skew even multiples of order m. 

 In an arrangement of three plates, the sum signal S is compensated for the 

dipole, and only normal multipoles of order 3(2k-1) (i.e. B3, B9, B15,…) and 

skew harmonics of order 6k (i.e. A6, A12, A18,…) contribute according to: 
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In the case of a pure sextupole field, this yields: 
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The sum signal of a decapole arrangement with five plates (m = 5) is: 

 

 

a) b) 
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In the case of a pure decapole field, this yields: 
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Examples for decapole rings are sketched in Fig. 2.5. 

2.1.3 Stretched wire 

 
The stretched-wire technique is also based on the induction method 

[DiMarco, 1996], [DiMarco, 2000]. A thin wire, with a diameter of 0.1 mm, is 

stretched in the magnet bore between two precision stages. A motion results in a 

voltage at the two ends of the wire, whose integral is the magnetic flux through 

the area scanned by the motion. The method, a robust null technique with very 

high resolution, provides a measurement of the integral field, of the field 

direction, and of the magnetic axis. The uncertainty depends on the accuracy of 

the precision stages driving the wire motion (±1 μm), on the effectiveness of the 

sag correction, and on the alignment errors during installation. The overall 

uncertainty on the integrated strength and on the angle measurement was 

estimated at ±5 units and ±0.3 mrad, respectively [DiMarco, 2000]. The wire 

used is thin and its handling is quite difficult. Further on, the wire must be free 

of dirt because it often has magnetic properties, and the magnetic field acting on 

it will deviate the wire from its ideal position by generating a fake result. In spite 

of the practical difficulties, this is a very powerful technique. 
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2.2 Instrumentation for Magnetic Measurements 

 In the following sections, we give an overview about the principal devices 

used for magnetic measurement at CERN. 

2.2.1 Rotating Coil system at CERN 

 Devised since 1954 [Elmore, 1954], [Dayton, 1954], the rotating coil method 

is now widely used for magnets with cylindrical bore owing to its capability at 

measuring all properties of the magnetic field (field strength, multipoles, angle, 

direction) integrated over the coil length. An induction coil is placed on a 

circular support and is rotated in the field to be mapped [Bottura, 1998]. The coil 

angular position is measured by an angular encoder, rigidly connected to the 

rotating support. The coil rotating in the field cuts the flux lines and a voltage is 

induced at the terminals. The voltage is integrated between predefined angles 

obtaining the flux change as a function of angular position. If the measured field 

is 2-D in the cross section of the magnet, with negligible variation along the 

magnet length, it can be shown [Jain, 1998] that a Fourier analysis of the angular 

dependence of the measured flux leads naturally to coefficients directly 

proportional to the so-called multipole coefficients of the field [Beth, 1966]. In 

turn, the multipole coefficients of the field can be related directly to linear and 

non-linear accelerator beam properties, thus explaining the wide acceptance of 

the rotating coil method for mapping accelerator magnets.  

 This method eliminates the time dependence [Bottura, 2004], and, in 

particular, the influence of variations of the rotation speed, greatly relaxing 

requirements for uniform rotation. Differential measurements are also beneficial 

to increase the resolution of high-order multipoles, several orders of magnitude 

smaller than the main field. This is realized by using a set of compensation coils 

mounted on the rotation support [Bidon, 1995]. The signal from the 

compensation coils is used to suppress analogically the strong contribution from 
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the main field. The compensated signal is analyzed in Fourier series together 

with the absolute signal of the outermost rotating coil in order to obtain the main 

field, as well as the higher order multipoles. The overall uncertainty on the 

integral field strength and on the harmonics depends on the shaft type so far used 

at CERN, and is not grater than few units [Pérez, 2006], [Delsolaro, 2001], 

[Billan, 2000]. The Twin Rotating Unit (TRU) and the new Micro Rotating Unit 

Rotating coils (μRU) system have been developed continuously at CERN. In the 

following, a description of the latest development, the Micro Rotating Unit 

(μRU), compared to the system used for the series measurements of the LHC 

magnets, the Twin Rotating Unit (TRU), is given. The rotating coil system 

utilized at CERN for the dipoles is based on a Twin Rotating Unit (TRU) 

[Billan, 2000].  

 For the usual measurements on constant current dipoles and quadrupoles this 

time duration is considered acceptable. However, to fully analyze fast field 

transients [Bottura, 2000], a new Micro Rotating Unit (μRU) was designed to 

turn faster and provide harmonic measurements at rates in the range from 1 to 10 

Hz. Such a system was developed in the framework of the project Fast Magnetic 

measurement Equipment (FAME). Fast measurements require that the coils 

rotate continuously in one direction and at higher speeds [Brooks, 2007]. 

 

TRU 
 

 The current rotating coil system utilized at CERN is based on a Twin 

Rotating Unit (TRU). This system consists of a motor unit that rotates a 16 meter 

long shaft composed of 13 coil-carrying hollow ceramic segments connected in 

series using flexible titanium bellows. For measurements of dipole magnets, 

each ceramic segment has 3 separate coils of wire mounted within it, 1 central 

coil and 2 tangential coils. The central coil is located along the central axis of the 

segment, while the tangential coils lie directly opposite of one another on the 

circumference of the segment. These coils cover the length of the segment and 
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lie parallel to one another. The nominal rotation speed is 1Hz with variations 

smaller than 3%. The acquisition software remotely controls the operation of the 

unit. An angular encoder gives the angular position of the shaft with 4096 counts 

per revolution plus a “zero” pulse on a separate channel. The encoder housing is 

rigidly connected to an electronic inclinometer, giving an absolute reference for 

the orientation of the encoder “zero”. Furthermore the TRU side of the shaft is 

provided with a reference surface, aligned with the reference surface on the coil 

shaft. Each measurement cycle consists of three turns in alternating direction. 

The first turn is for accelerating the shaft in order to get the right constant 

rotation speed. The read-out is executed during the second turn with constant 

rotation speed. The last turn is for decelerating the shaft so as to change the 

rotation direction. This mode is called washing machine mode Fig. 2.6. The final 

measurement results are obtained from the average of the forward and backward 

revolutions. 

 

 
Figure 2.6: The TRU unit 

 

μRU 
 

The μRU-system Fig. 2.7, based on a modified version of the long ceramic coil 

shafts with 12 dipole-compensated coil sectors (1/4 of the turns of a standard 

system), better mass balancing, and sturdier connectors, is capable to turn 
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continuously in one direction up to 8 Hz thanks to 54-channel slip rings. The 

μRU attaches directly to the anticryostat and replaces the previous bulky TRU 

(Fig. 2.8). The available coils are connected in series arbitrarily by means of a 

patch panel. This permits changes in the compensation schemes or combination 

of several coils in virtual supersectors, used to measure the integral field. 

 

 

 
Figure 2.7: Motor for rotating coil in a long dipole magnet in the SM18 laboratory 
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Figure 2.8: The MRU unit (a) is attached directly to the magnet anticryostat(b) 

 The signals induced into the rotating coil are split in an “absolute” and a 

“compensated” signal. The dipole field is derived from the absolute voltage 

signal UA of the coil A only. In order to measure higher multipole field 

components and to compensate the signal for the disturbing contribution of the 

dipole field, the two pick-up coils (A and B) are electrically connected with 

opposite polarities (array of two coil).  

 
Figure 2.9: Connection scheme for absolute UA and compensated signals UA - UB (Left)  

The absolute and compensated pick-up coil signals (Right). 

 In both, radial and tangential arrangements, the pick-up coils A and B are 

parallel and, thus, always have the same angle with respect to the dipole field. 

For this reason, the contribution of the dipolar field component B1 to the 

compensated signal Ucomp = UA –UB vanishes, and only field components of 

order n > 1 contribute to the signal.  
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 Voltage signals from the rotating coils are first pre-amplified and then read-

out simultaneously by a set of digital integrators. A schematic drawing of the 

circuit is shown in Fig.2.9. An angular encoder is connected to the shaft. Since 

the time integration is triggered by pulses from the angular decoder, the signals 

are after all sampled as a function of the rotation angle θk in a discrete series of k 

points for a total of M points uniformly distributed over a full revolution. A 

software on a workstation controls the integrators, the motor rotating the shaft 

and the magnet power supply. For every angle θk, the magnetic flux Φk through 

the pick-up coils is obtained as a cumulative sum over the flux increments ΔΦi  

( ∑
=

ΔΦ=Φ
k

i
ik

1
). 

2.2.2 Digital Integrators 

 A magnetic flux measurement by means of the rotating coils technique 

requires the integration of the voltage induced on the coil; therefore digital 

integrators are an important part of the instrumentation for magnetic 

measurements. Digital integrators currently used in the most important research 

centers are: 

 

PDI (Portable Digital Integrator) 
 

 
Figure 2.10: Principle of PDI based on Voltage to Frequency conversion 

 Digital integrators have been the basic electronic tool for magnetic 

measurements at CERN since the 80’s. The CERN Portable Digital Integrator 
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(PDI) has been in use for over 20 years [Elmore, 1954]. In this integrator, the 

voltage from the induction coil Vin is sent, after conditioning and amplification, 

to a Voltage-to-Frequency Converter (VFC), whose output is a square signal 

with frequency f proportional to the VFC input voltage Fig. 2.10. This signal is 

then entered in a counter that accumulates the number n of square pulses during 

a measurement period dt starting at tstart and ending at tend. The frequency f of 

the square signal is equal to the time derivative of the number of pulses (dn/dt) 

and the output of the counter is, apart for the amplifier gain g and a 

proportionality constant KVFC, a digital measurement of the integral of the input 

voltage. The digital integrator achieves high accuracy owing to the conversion to 

frequency domain. The limiting elements in this concept are the stability and 

linearity of the VFC, and the resolution of counting operation that depends on 

the maximum operation frequency of the VFC. Hybrid technology VFC’s have 

linearity and stability better than a few ppm over the whole range of input 

voltage. The typical maximum frequency of operation is 1 MHz. In order to 

make the circuit practical, some additional features are added to the basic 

scheme described above: 1. Commercial VFC circuits work only with single 

polarity voltage, e.g. 0 to 10 V, while the signal from an induction coil can have 

both polarities. The dual polarity capability is restored by shifting the input 

voltage by a precise and stable reference Vref whose effect is to place the input 

zero exactly in the middle of the VFC range. This offset is then eliminated after 

counting, subtracting the counts from a reference source fref oscillating at 

exactly half of the maximum frequency of the VFC. 
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FDI (Fast Digital Integrator) 

 
Figure 2.11: Principle of FDI (Fast Digital Integrator) 

 The Fast Digital Integrator (FDI) was developed to overcome the limitations 

of the PDI, providing a more advanced and performing solution with respect to 

the other integrators previously described; it represents the new state-of-art 

solution. The block diagram of the FDI is shown in Fig. 2.11 [Dayton, 1954]. 

The basic principle consists in the immediate integration of the input signal Vin 

in the digital domain, without previous analog processing, in order to reduce the 

impact of analog uncertainty sources.  

 The input stage is represented by a gain programmable amplifier (PGA), with 

automatic gain and offset calibration and adjustment. The gain and the voltage 

offset are controlled by a Field Programmable Gate Array (FPGA) performing 

the calibration, storing the calibration coefficients and applying them in 

measurements. The input signal is digitized by an Analog-to-Digital Converter 

(ADC), with Nresolution numbers of bit and a sampling rate equal to fsampling. 

 The signal just acquired and converted becomes the input of a Digital Signal 

Processor (DSP) performing numerical integration when triggered from an 

external digital signal (e.g. pulses coming from an angular encoder). The DSP 

manages the analog and digital I/O of the instrument through the FPGA which 
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plays as an I/O processor. At last the result of the integration F is made available 

on a digital communication bus in order to be sent to an external device as a PC. 
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Chapter 3 
 
 
 
 
3 Flexible Framework For Magnetic Measurements 
– FFMM 
 
 In this chapter FFMM basic principles are discussed with the architectural 

solution and design choices made in order to achieve above mentioned goals. 

The development of a software easily adaptable or extendable to include new 

applications, and satisfying a wide range of measurement requirements, was the 

aim of the design and implementation of the Flexible Framework For Magnetic 

Measurements platform (FFMM), a new version of the CERN of acquisition and 

control software [Arpaia, 2006]. 
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3.1  FFMM concepts 

 The FFMM is a software framework for magnetic measurement applications 

based on Object Oriented Programming (OOP), and Aspect-Oriented 

Programming (AOP) [Lieberher, 1989]. In particular, FFMM aims at supporting 

the user in developing software maximizing quality in terms of flexibility, 

reusability, maintainability, and portability, without neglecting efficiency, vital 

in test applications. Moreover, the requirements for a wide range of magnetic 

measurement applications, as required for the test of superconductive magnets 

for particle accelerators, have to be satisfied.  

 FFMM can be regarded as a set of rules allowing the user to easily create 

high-quality software in the field of magnet testing. On the other hand, the 

produced measurement software is not flexible, since it can be only reconfigured 

within the boundaries of a specific measurement application. The user defines to 

which extent the measurement software has to be reconfigurable. The realization 

of the framework goals is based on the following basic ideas:  

1. A group of interfaces and abstract classes represents a white-box layer 

defining the high-level structure of FFMM used to generate new parts of 

the framework. This allows potentiality and flexibility of FFMM to be 

extended. The flexibility is achieved by means of reusability of the code: 

rapid variations of measurement requirements due to the frequent 

occurrence of different small batches of tests are satisfied by redesigning 

software by reusing modules. 

2. A group of modules, already available to the test engineer (end user), 

represents a black-box layer, allowing both module reusability and use 

easiness to be achieved, even by test engineers without deep knowledge 

of internal FFMM mechanisms. Reusability is achieved by object-

oriented approach and modularity: a suitable design of the code allows 

modules to be reused. 
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3. Aspect-Oriented Programming (AOP) improves the reusability and the 

maintainability of FFMM: in large projects, several concepts are 

transversal to many modules (cross-cutting concerns). They are 

extrapolated from the native units and implemented in separated modules 

(aspects), in order to improve the system modularity (maintainability 

enhancement). Incremental building of module libraries: once modules 

can be reused, a finite application domain will be saturated in a finite 

time. 

4. A suitable definition of the code structure (normalization of structures 

and software modules) gives rise to standard modules, representing the 

basic library for the realization of new components and the extension of 

already existing ones. Standardization of software structure and modules: 

a definition of code structure and patterns gives rise to the production of 

standard modules to be reused easily. 

5. A library of reusable modules is built incrementally during the start-up of 

the framework up to a “saturation” condition inside an application 

domain, allowing further requirements in the same domain to be satisfied 

by a limited effort. Predefinition of a software structure of the test 

program, organized in standard modules: such an organization provides 

the user about templates to be filled for generating new codes. 

3.2 FFMM Architecture 

On the basis of the above ideas, in Fig. 3.1 is shown the FFMM architecture.  
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Figure 3.1: The FFMM Architecture 

 The test engineer (end user) produces a description of the measurement 

application, User Script, whose semantic and syntactic correctness is verified by 

the Script Checker. Then, from the User Script, the Builder assembles the 

Measurement Program, according to the architecture of the Scheme, by picking 

up suitable modules from the Software Module Library. If some modules are not 

available in the library, a template is provided to the user (administrator user) in 

order to implement them according to a suitable predisposed structure. Once 

debugged and tested, the Measurement Program will be stored in the Database 

in order to be reused. According to the analysis of typical use-case tests on 

superconductive magnets, the generic User Script is organized into the following 

phases: 

• definition of the measurement components; 

• specification of mechanical and electrical connections;  

• definition of dynamic parameters, i.e. configurable during run-time of the 

Measurement Program; 

• component checking;  

• configuration of measurement devices;  

• description of the measurement procedure;  
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• preliminary data analysis; 

• data saving. 

 The TestManager organizes the test by knowing the Unit Under Test, the 

Quantity to be measured, the measurement configuration, and the measurement 

procedure. TestManager has an association with the Devices (software 

representation of the measurement devices). Among Devices, Virtual Devices 

can be controlled remotely by PC through a Communication Bus [Arpaia, 2006]. 

The Synchronizer and the FaultDetector are units managing critical topics in a 

measurement application. The Synchronizer manages the software temporization 

in the measurement procedure, while the FaultDetector intercepts malfunctions 

and errors. The Synchronizer manages the software temporization in the 

measurement procedure, while the FaultDetector intercepts malfunctions and 

errors. The Synchronizer and the FaultDetector can be considered cross-cutting 

concerns, because they are transversal to many software modules. As a matter of 

fact, the synchronization policy involves all the measurement devices and all the 

test procedures. Furthermore, the fault detection is a fundamental part of all the 

devices, as well as of the measurement system as a whole. Then, the 

Synchronizer and the FaultDetector are encapsulated in Aspects according to 

AOP approach. Therefore, the policy for managing synchronization actions and 

faults can be extrapolated from the single modules and handled separately. In 

this way, further modifications will affect only those two components, without 

any need for code changes in all the modules related to the fault detection or to 

the synchronization. The Logger class handles the stock up of configuration and 

measurement data, as well as system warnings and exceptions (Appendix D). 
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3.3 FFMM Design 

 There are some key requirements and system constraints that have a 

significant bearing on the architecture. The following kinds of constraints are 

identified: 

 

• Portability 

• Distribution 

• Reuse 

• Use of off-the-shelf products 

3.3.1 Portability: 

 A key requirement for the FFMM system was the portability across the 

following platform: 

• GNU/Linux  Kernel 2.4 and 2.6  

• Microsoft Windows Win32 Platform  

 The FFMM was hence designed from start with portability in mind; for this 

reason an isolation layer abstracting the OS platform detail for basic services has 

been defined and implemented with either ad-hoc solutions or third part cross-

platform libraries. 

FFMM components need to access different communication media on all 

platforms; in particular: 

• RS232 and GPIB 

• Ethernet 10/100 Mbit  

• PLX 

• WorldFIP 

• FFMM needs multithreading support on all platforms. 

• Platform-specific I/O functionalities should be used for each platform to 

improve performances. 
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To decouple communication needs of FFMM components a 

forwarding/receiving design pattern has been implemented. In particular objects 

of CommunicationBus hierarchy act as forwarder/receiver and can be 

encapsulated by those components that need to communicate across process 

boundary. 

 

3.3.2 Distribution: 

The FFMM framework has been designed to build measurement application that 

are local to a measurement node connected with all virtualized measurement 

devices that are involved in a test session. The measurement node, hosting the 

FFMM application instance, is then responsible for the execution of the 

measurement script and the coordination of all distributed hardware devices 

directly or connected to the node itself. From this point of view, the FFMM itself 

is not distributed on several nodes: it acts as a coordinator for the hardware 

devices that are needed to carry on specified measurement sessions. 

3.3.3 Reuse 

In order to maximize reuse, a white-box layer that lets users and developers to 

extend framework by means of inheritance. The user of framework can re-

define/extend behavior by adding new classes that inherits from the abstract 

ones of FFMM. 

FFMM also provide a black-box layer (made by using the white-box one) that 

can be used directly without any internal knowledge of the framework. 

3.3.4 External libraries and Off-the-shelf products  

The following libraries were used to design and implement the FFMM system: 

• WxCTB 0.9  



 
 

CHAPTER 3                      

 
 

 
 
 
 

49

• GPIB Drivers (for both Linux and Windows) 

• PLX API and Drivers (for both Linux and Windows) 

• NIDAQmx 

• Poco (thread, logging and event infrastructure) 

All these components are available for multiple platforms and in particular for 

Win32 and Linux (on both 2.4 and 2.6 kernels). 

PLX and GPIB drivers are only available for Win32 and Linux platforms: this 

puts a constraint on portability on other platforms other than those two. 

 

3.4 Components 

3.4.1 Logger 

 In order to be effective, loggers need to be simple for programmers to use. 

Programmers aren't going to frequently use something that is inconvenient. The 

user should be able to emit a log message with something no complicated. On 

the other hand the logger needs to gather all of this peripheral information 

together, format it into a log message, and then add it to the growing list of 

logged messages. Moreover another question the logger architecture must 

answer is mainly: where should the logged messages be stored? Data could be 

stored in a text or binary file or in a database table. The possibility to accumulate 

it in RAM and that is constraints are satisfied might even take into account. The 

choices are endless. However, the final destination of the logged messages has to 

be kept decoupled with the format of the messages themselves. There are indeed 

two different responsibilities: logged message formatting, and logged message 

recording. These are both in the flow of logging a message, but both can vary 

independently of each other. The formatter does not care where the message is 

recorded, and the recorder does not care about the format of the message. 

Whenever there are two connected but independent algorithms and the Strategy 

pattern can be used to connect them. 
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3.4.2 Virtual device 

 Virtual Devices are software components modeling in FFMM the concrete 

devices that can be orchestrated during measurement processes. While the 

VirtualDevice interface defines a role, in FFMM a hierarchy of device has been 

defined and evolved during the development iteration through feedbacks 

gathered during several meetings with the measurement team. 

 Virtual Devices implementations are designed as singletons with a strict 

control on the number of instances. A single device registry is kept in the 

MeasurementDevice abstract class in order to provide access to devices in every 

context of the user script by using symbolic identifiers. VirtualDevice class is 

involved in event handling and provides a basic interface to create/destroy 

devices using named identifier. This functionality is very important since let 

script developers to bind symbolic names to devices and, by means of such 

names, obtain, in every context, a reference to specific devices.  

3.4.3 Event Handling 

 A common side-effect of partitioning a system into a collection of 

cooperating classes is the need to maintain consistency between related objects. 

Achieving consistency by making the classes tightly coupled reduces their 

reusability. 

 For example a logger can be interested to the end of an acquisition from a 

FDI. Both classes can be reused separately, but can work together too. The 

logger and FDI can depict the same data using different presentation. They don’t 

know about each other, but when the data are changed both reflect the changes 

immediately. This behavior implies that the logger and FDI are dependent on the 

data object and therefore should be notified of any change in its state. And 

there's no reason to limit the number of dependent objects to two; there may be 

any number of different user interfaces to the same data. The Observer pattern 

describes how to establish these relationships. For this reason, to increase the 
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system flexibility the behaviors of devices are collected in homogeneous groups 

representing behavioral interfaces modeling the devices functionalities. During 

the analysis of instrumentation, if a characteristic behavior is detected, to 

provide it to the user, the class instrument has to implement the relative 

interfaces. So in a modular way, if studying a device the necessity of include a 

new functionality emerges, the interfaces describing this behavior have to be 

implemented. The benefit is that the interface of a device is modified modular 

using existing interfaces and avoiding modification to the class hierarchy that 

could involve the complete framework structure. 

3.4.4 Fault Detector 

 The AOP-based architecture for fault self-detection in measurement systems 

is based on: 

• a fault detection subsystem, designed for: 

• monitoring the ‘health’ state of the measurement system's component 

devices; 

• catching software faults such as stack overflow, live-lock, deadlock, 

and application-defined faults as they occur. 

• a fault notification subsystem, responsible for:  

• constantly receiving the sequence of faults occurring from all the 

system components;  

• storing the diagnostic history and providing means to other 

components or to external humans to access it and adequately react to 

faulty events. 

 In the architecture, several kinds of classes of faults relevant in automatic 

measurement systems are identified: faults in virtual device, faults in the 

measurement environment and faults in software components. 

The analysis of several state-of-the-art measurement systems highlighted that 

fault detection is usually scattered all over different hierarchies, mainly with 
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reference to devices hierarchy. This means that concrete virtual devices classes 

contains code for fault detection resulting in code duplication that will be 

difficult to comprehend and maintain [Arpaia, 2007]. 

 

3.4.5 Seynchronizer 

 Tasks are synchronized by means of a Petri Net modeling an execution 

graph, where each node represents a task and the arrows among nodes imply that 

an arriving node can be executed after the starting node. This allows 

synchronization to be abstracted above the code-level so that the Test Engineer 

can work at a more intuitive level.  

 The main basic idea is to have a software component capable of managing 

the execution of generic tasks by modeling sequential and parallel task 

executions, tracing the execution status of each task, and determining the task 

available for the execution, step by step. 
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Chapter 4 
 
 
 
 
4 DSL – Domain Specific Languages 

 “Works of imagination should be written in very plain language; the more 

purely imaginative they are the more necessary it is to be plain.” 1 

This section describes what a domain specific language is, what kind of 

advantages and disadvantages a DSL has and also what common DSL analysis, 

design and implementation patterns exist. 

                                                 
1 Samuel Taylor Coleridge 
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4.1 What is a domain specific language? 

 To understand the meaning of the term domain specific language or more 

precisely domain specific programming language the term programming 

language is defined. One possibility is given by [Raphael A., 1995]: 

“A programming language or computer language is a standardized 

communication technique for expressing instructions to a computer. It is a set of 

syntactic and semantic rules used to define computer programs. A language 

enables a programmer to precisely specify what data a computer will act upon, 

how these data will be stored/transmitted, and precisely what actions to take 

under various circumstances.” 

• However there exists no definition which all authors agree upon. Watts 

therefore proposes [David A., 1990] some criteria which have to be fulfilled by a 

programming language: Must be universal (every problem must have a solution 

that can be programmed in the language, if that problem can be solved at all by 

computer). 

• Must be implementable on a computer. 

• Should also be reasonably natural for solving problems, at least problems 

within its intended application area. 

 Programming languages in general can be grouped or classified by different 

criteria. Possible criteria are the purpose (for example FORTRAN for scientific 

programming versus C [Brian W. K, 1988] for system programming), the 

paradigm (LISP as a functional language or small talk as a object oriented 

language), the generation (1GL up to 5GL), whether it is imperative or 

declarative and domain specific or general purpose. General purpose languages 

(GPLs) are less specialized and are suited for a wide area of applications from 

business processing up to scientific computing. Java1 is a prominent 

representative. 

                                                 
1 http://java.sun.com 
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 The term domain specific means that the language is explicitly tailored to a 

target domain. Complex constructs and abstraction of the domain are offered 

within the language increasing its expressiveness in comparison to GPLs. It is 

possible to express solutions for domain problems with a lesser effort. The 

higher abstraction and the compactness and therefore better readability and 

writability enables a larger group of people with less programming knowledge to 

be productive using the DSL. This leads to productivity gains in general and also 

to decrease maintenance costs. 

 Often a DSL does not fulfill all criteria given by Watts. Nevertheless, many 

DSLs are regarded as special programming languages. Today there are many 

well known DSLs like HTML, SQL, VHDL, make (software build process), 

Latex (document preparation), BNF (context free grammars) or even Excel. 

 The use of DSLs is not new. These languages had been named special-

purpose languages, end-user languages or as Bentley [Bentley, 1989] called 

them “little languages” before the term domain specific language was coined. 

Already in 1957 APT [Brown, 1963], a language for numeric controlled 

machines was developed at the MIT, which can be considered as one of the first 

available DSLs. The boarder between a DSL and a GPL is fuzzy, for example 

COBOL was considered a GPL but also a DSL for business applications. 

Another example is Prolog which can be understood as a DSL for applications 

specified by the predicate calculus. One attempt to classify a language has been 

done by Jones [Greenfield, 2003]. A higher level stands for more domains 

specific whereas a lower level means more generality (table IV.1). As stated by 

Mernik [Mernik, 2005] the domain-specificity of a language is a matter of 

degree. In this thesis a definition by the former will serve as guidance: 

“DSLs are languages tailored to a specific application domain. They offer 

substantial gains in expressiveness and ease of use compared with GPLs in their 

domain of application”  
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DSL domain level 
Java GPL 5 

VHDL hardware design 17 
HTML web pages markup 22 
SQL database queries 25 
Excel spreadsheets 57 

 
Table IV.1: Well known DSLs [Capers, 2007]. 

 

4.1.1 Advantages 

 A DSL offers different advantages. Productivity and maintainability [Van 

Deursen, 1997] are increased due to an appropriated domain specific notation. 

DSLs are more suitable for end-user programming. Domain experts are able to 

understand, validate, modify and develop within the language (better readability, 

writability and high abstraction). The gains can be measured quantitatively and 

qualitatively. Most qualitative reasoning is backed up by practical observations. 

According to [Mernik, 2005] the quantitative validation of DSL advantages is an 

ongoing field of research, yet supporting results is reported. Fig. 4.1 shows the 

advantage of DSLs regarding to long term cost. Because of the concise nature 

and the domain fitting notation DSLs are up to a certain degree self-

documenting. This also facilitates the embodying of domain knowledge which 

eases reuse [Duggan, 2000] and conservation. 

 Another advantage is the possibility to validate at domain level [Consel, 

2002]. While normal GPL compilers do not know about any domain concept 

beyond the general language constructs, a DSL can be checked for any domain 

specific constraint. An example may be real time properties: as long as for every 

language construct a certain execution time is ensured, it is possible to 

automatically proof the whole program. Just as verification, optimization can be 

done more effectively at the domain level [Basu, 1997]. 
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4.1.2 Disadvantages 

 A DSL has not only advantages, but also potential shortcomings. One 

drawback is the high development effort which is needed for a new language. 

The language developer needs at least experience in language design and 

knowledge about the target domain. He has to find fitting abstractions, the right 

scope and balance between GPL and DSL constructs. Furthermore the language 

must be implemented and maintained. 

 

 
Figure 4.1: Simplified cost prediction for DSL-based methodologies [Devanbu, 1998] 

 Other problems are tooling, user training costs and performance. While 

general purpose languages such as Java or C#2 have a strong tool support, 

corresponding tools for a new DSL have to be created. IDEs like Eclipse or 

Visual Studio offer deep integration with these languages like powerful editors 

with syntax highlighting and checking, integrated compilers and advanced 

debuggers.  

 Creating a tool ecosystem for a DSL is a time consuming process which adds 

to the total costs caused by language design and implementation. 

                                                 
2 http://www.ecmainternational.org/publications/standards/Ecma334.htm 
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 Without a development methodology and suitable tools the risk is high that 

the DSL development costs surpass the estimated saving by using a DSL. 

The mentioned training costs originate from the fact that possible DSL users 

have by definition never used the language before, however this is mitigated as 

in most cases the new language should match the domain expert’s expectations. 

 Often a DSL will suffer from a lower performance than a hand written 

software. As long as performance is not critical the other DSL benefits will 

make this a minor problem. Nevertheless are some cases performance can be 

equal or faster because optimization is possible on a high abstraction level but in 

most cases the potential is limited. 

4.1.3 Development phases and patterns 

 The development of a DSL can be divided into different phases. The design 

and the implementation phase. A finer grained phase subdivision is possible. 

Five stages can be distinguished: decision, analysis, design, implementation and 

deployment. The development process of a DSL has not to follow these phases 

sequentially. Different authors [Thibault, 1999] have identified numerous 

patterns which are reoccurring in DSL development and can serve as guidance 

for a developer without prior expertise in this field. Each pattern can be assigned 

to one of the five phases. The patterns are divided into decision patterns, 

analysis patterns, design patterns and implementation patterns each capturing 

common approaches. In the following section phases and patterns will be 

described according to the extensive analysis by Menrik et al. [Mernik, 2005]. 

4.1.4 Decision phase 

 Before the development of a new DSL can begin, a decision has to be made. 

Is it feasible or not? Economic considerations have to be taken into account. Do 

the accumulated development, deployment and maintenance costs justify a new 

DSL in comparison with other conventional approaches? Is there already a 
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suited existing DSL? If so are documentation and maintenance good enough? If 

not, is the risk developing a new DSL acceptable? 

The following decision patterns have been identified. Most of them based on the 

same general concerns such as allowing domain experts with less programming 

experience [Thibault, 1999] to develop software or improving software 

economics. 

• Notation An improved new or existing domain specific notation can be a 

definitive factor. Two common subpatterns are the transformation of a 

visual to a textual notion and the creation of a user friendly notation for 

an existing API. The first pattern for example enables easier composition 

for large artifacts. 

• AVOPT Domain-specific Analysis, Verification, Optimization, 

Parallelization and Transformation for applications developed in a GPL 

are in general time consuming and hard to automate due to for example 

source code complexity. With a well defined DSL AVOPT is more 

feasible. 

• Task automation In some cases GPL programming suffers from 

repetitive programming tasks. Automatic code generation driven by an 

appropriated DSL can ease this [Smith, 2006].  

• Product line Some software products do not exist as a single standalone 

application but are part of a product line or software family, sharing 

common parts. A DSL can facilitate the specification and support 

automated assembly [Weiss, 1999]. 

• Data structure representation Representing structured data in an easy to 

read, write and maintainable form assists in making complex structures 

accessible. An appropriated DSL can help achieving these goals. YAML 

[Ben-Kiki, 2004] and JSON [Crockford, 2006] are examples. 
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• Data structure traversal Like representation, traversal of data structures 

can often be expressed more effective with a fitting DSL (for example 

SQL [Groff, 1999]). 

• System front-end DSL based configuration and adaption for system front-

ends. 

• Interaction Text, menu, dialog or voice based applications which interact 

with the user can benefit from a DSL which specifies input and reaction 

in a high level representation. 

• GUI construction Often GUI design is done by using a DSL. For 

example XUL and XAML are XML based DSL for GUI description 

[Bishop, 2006]. 

4.1.5 Analysis phase 

 After the decision in favor for a (new) DSL is made, the specific domain has 

to be analyzed with the goal of gathering as much domain knowledge as 

possible. It is important to ensure a high quality of the gathered material and to 

have access to domain experts. The term domain analysis was introduced by 

Neighbors [Neighbors, 1980] and defined as identifying similar objects and 

operations in a particular domain. Different sources of information can be 

examined for example already existing technical documents, APIs and GPL 

code or knowledge from domain experts. 

 After gathering the knowledge must be clustered to find meaningful 

abstractions and must be consolidated. In most cases the results of the analysis 

are a domain definition, the domain specific terminology and concepts, a domain 

model, the domain scope and a description of the (operational) semantics. Fig. 

4.2 summarizes different sources and possible results. Yet there is no widely 

adopted notation to capture the results of the analysis phase. 

Three different domain analysis patterns can be identified: informal, formal and 

extraction from code. 
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Figure 4.2: Domain analysis, taken from [Prieto-Diaz, 1990] 

Informal pattern 

 The informal pattern means that the domain analysis is done informally and 

therefore no formal process is used. Most DSLs are developed without an 

analysis methodology [Mernik, 2005]. 

This often leads to incomplete requirements and can complicate the development 

process. While it is possible to get first results earlier the quality is not as high as 

with formal patterns. For simple domains an informal process is often enough. 

Formal pattern  

 Domain analysis can also be done using a defined process/methodology. 

Those which use a methodology can be counted to those that follow the formal 

pattern. Using a formal pattern helps to avoid missing important parts of the 
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domain and can lead to more appropriate requirements. A large number of 

methodologies used, come from another field of research: domain engineering.  

Domain engineering is derived from the area of software reuse and refers to the 

systematic modeling of a target domain. This is strongly related to the notation 

of program families [Van Der Linden, 1998] and software product lines 

[Sugumaran, 2006]. 

 While domain engineering and analysis techniques focus mainly on 

commonalities, family and product line analysis examine the variations inside a 

domain. Several methodologies exist today: FAST (Family-Oriented 

Abstractions, Specification and Translation) [Weiss, 1999], Sherlock [Valerio, 

1997], DSSA (Domain-Specific Software Architectures) [165], DARE (Domain 

Analysis and Reuse Environment) [Frakes, 1998], FODA (Feature-Oriented 

Domain Analysis) [Kang, 1990], PROTEUS [CAP, 1994], ODE (Ontology-

based Domain Engineering) [De Almeida Falbo, 2002] or ODM (Organization 

Domain Modeling) [Simos, 1998]. This list consists of the most well know 

methods but is by no means complete. 

 An example where FODA and FAST are applied can be found in [Mernik, 

2005]. While most methodologies have a graphical feature diagram or domain 

model as result, Deursen and Klint propose a formalized textual3 representation 

which can be used to generate UML diagrams or other types of documentation 

even code. 

Semi formal  

 A specific semi formal approach (domain driven design) covering analysis is 

proposed in [Evans, 2003]. The creation of a fitting domain model is most 

important in domain driven design. At first domain experts and software 

architects try to find a domain model which serves as a base for a common 

communication language (Ubiquitous Language). This language will be used 

                                                 
3 The Feature Description Language (FDL), which is a separate DSL again. 



 
 

CHAPTER 4                      

 
 
 
 

63

later on in all aspects of the development process. It is advised that the notation 

for the domain model is UML. Not only one large diagram, but several small 

diagrams each describing a certain aspect or part should be used. The reason 

behind this is avoiding cluttering and reducing complexity. The UML artifacts 

should be accompanied by documents that contain information not captured by 

UML like the meaning of concepts or what certain objects are supposed to do. In 

comparison to other methodologies Evans gives extensive information how to 

continue after the domain model is established or the feature analysis is done. 

Extraction from code pattern 

 The last identified pattern extraction from code derives a DSL directly from 

an existing implementation. In most cases this implementation is done in a GPL 

though it is also possible to derive from another DSL. 

4.1.6 Design phase 

 The design of a DSL and therefore the development of the language itself is 

based on the results of the earlier phases. Two questions have to be answered 

approaching the design:  

1. How is the DSL related to existing languages and what kind of formal 

description for the language is chosen? With each question different 

possible design patterns are associated helping to find an appropriated 

answer. 

2. Creating a language based on an existing one can have different 

advantages. Some users may be familiar with the base language resulting 

in reduced training cost. Common operations such as arithmetic’s for the 

family of C languages are well known to many developers. Furthermore 

an existing implementation and/or eco system can be leveraged. Three 

different approaches reusing existing language can be distinguished. The 

fourth approach is the entirely new development of a language. 
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Piggyback 

 The new language can piggyback domain specifics feature on part of the 

existing language. Examples are Hancock [Cortes, 2000], lava [Sirer, 1999] or 

Facile [Schnarr, 2001] Hancock is a DSL for high performance signature 

processing and it piggybacks on C by modifying language parts and adding 

processing related constructs. From this DSL, C code is generated again. Similar 

to that lava, a production grammar DSL to describe and generate test cases for a 

JVM, piggybacks on the textual Java byte code representation. The byte code is 

generated from the DSL. The Facile language helps developing high 

performance processor simulation, also by augmenting C. 

Extension 

 A related pattern is extension. The base language is extended by features 

corresponding to domain concept. In comparison to piggybacking the base 

language is not modified or replaced. A problem of this approach is the 

seamlessly integration of new features with existing ones. A DSL which follows 

the extension pattern is SWUL [Bravenboer, 2004], SWUL supports the 

development of Java SWING GUIs and is embedded into Java. 

Specialization 

 Developing a new DSL does not always mean to create something new. A 

more uncommon pattern is specialization (not to confuse with specialization in 

UML). An existing language is reduced to fit the needs of a special domain. 

Examples are RPython [Rigo, 2006] or OWL-Lite [Van Harmelen, 2002]. 

RPython is a subset of the Python language used inside the PyPy project [Rigo, 

2006]. The complexity of Python is reduced in order to make C code generation 

from RPython easier. 
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4.2 Model Driven Engineering (MDE) 

 Model Driven Engineering (MDE) is the new trend in software engineering. 

MDE is the collection of all approaches that use models as a core principle for 

software engineering. The Model Driven Architecture (MDA) is the proposed 

approach for the MDE given by the Object Management Group (OMG). The 

aim of the MDA is to reach an abstraction level that is more focused on defining 

the structure and behavior of the system disregarding the underlying 

implementation technology. 

 The core element of the MDA is the Model Object Facility (MOF), which 

aim to enable the development and interoperability of model and metadata 

driven systems, such as modeling and development tools, data warehouse 

systems and metadata repositories. For realizing this, MOF provides a metadata 

management framework, and a set of metadata services. 

 If we look to the history of software engineering (Fig. 4.3), we can detect 

that we are continuously searching for a technique that provides a better and 

more natural approach for defining a system. 
 

 

Figure 4.3: History of software engineering 
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4.3 Basic Concepts 

4.3.1 Model 

 The term model is applicable in a broad area, which leads to many 

definitions. For example, a definition of model according to Benyon is [Benyon, 

1997], “A model is a representation of something, constructed and used for a 

particular purpose.” The model is always the representation of something.  

 A model on its own has no meaning. The meaning of the model is related to 

the situation and context wherein the model is used. Like information and data 

[Harel, 004], the data is the syntactic representation of information. Data on its 

own has no meaning, but in combination with an interpretation, the information 

behind it can be extracted and understood. 

4.3.2 Meaning of a model 

 The modeler as constructor of the model will define together with 

constructing the model the meaning of the model. The modeler will construct the 

model in such way that based on the representation the meaning can be 

extracted. Therefore, the modeler is using already commonly understood 

concepts. The role of the interpreter is to extract the meaning from the model. 

The interpreter is only capable of extracting the correct meaning if the 

interpreter has the same common understanding of the concepts used for the 

model. The exchange of a model between a modeler and an interpreter is called 

communication. 

 We can assign communication with a degree of meaning. The degree of 

meaning can be fuzzy, but we can at least define a minimum and maximum 

degree of meaning. The minimum degree of meaning is called meaningless, and 

maximum degree is called meaningful. If the modeler communicates with the 

interpreter, the modeler has a purpose for communicating. The communication 
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between the modeler and interpreter is meaningful if the purpose is obtained, if 

the purpose is not obtained the communication is meaningless. 

To enlarge the chance that the interpreter can understand the model, the modeler 

can refer to a description of the notation of the model. This can be useful if the 

notation of a truth table is new for the interpreter. Therefore, the interpreter 

should be capable of interpreting the description of the truth table; otherwise we 

need again a description of the description of a truth table. 

4.3.3 Language 

 For structurally describing something, we use a language. A language can be 

compared with the common understanding as described in previous section. The 

language is used for communication, and will at least need the following 

concepts. A language needs a concrete notation, which can be stored or 

transported. Furthermore, an interpretation is needed that will explain the 

meaning of the language constructs. These definitions are the fundamental 

concepts of a language, and are described as syntax and semantics [Harel, 2004]. 

The syntax of the language defines the notation, and the semantics describes the 

meaning of the notation. 

 Both syntax and semantics can be divided into aspects that are more specific. 

For the syntax those aspects are concrete syntax, syntax mapping, and abstract 

syntax, and for the semantics those aspects are semantic mapping and semantic 

domain. Those aspects are related to each other in some way. The Fig. 4.4 shows 

an overview of those aspects and the relation with each other. 

 

 
Figure 4.4: Semantic and Syntax mapping 

The syntax of the language is divided into concrete syntax and abstract syntax. 

Where the concrete syntax defines the physical notation, the abstract syntax 
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defines the structure of the notation. The structure of the notation is defined 

independently of the physical notation. Both syntaxes are mapped to each other 

by means of the syntax mapping, which provides the ability for defining a 

program using the physical notation according the abstract syntax. 

 For describing the meaning of the language the semantics are used, which 

describes the meaning in terms of the concepts that are already well-defined and 

well-understood. The well-defined and well-understood concepts are covered in 

the semantic domain, which is part of the semantics. For the semantic domain, 

we can use a variety of notations, like natural language or mathematical 

definitions. The abstract syntax is mapped to the semantic domain. This provides 

the abstract syntax with a well-defined and well-understood meaning. 

As for everything we would like to describe, we need a language for describing 

it. In the case of the defined language aspects, it is not necessary that the same 

language is capable of describing each aspect. The language used for describing 

models is called a modeling language. The relationship between the modeling 

language and the model is that the model is expressed by using the modeling 

language. The modeler and interpreter need an understanding of the modeling 

language. The modeler can construct the model, based on this understanding. 

For the interpreter, the understanding will provide the ability to extract the 

correct meaning of the model.  

4.3.4 Metamodel 

 A model that represents a modeling language is called a metamodel 

[Seidewitz, 2003]. Meta is Greek and is used for describing something. In the 

case of a metamodel it describes the possible models that can be expressed using 

the language, as shown in Fig. 4.5. The model is an instantiation based on the 

metamodel. The relationship between a model and metamodel is called an 

instance of relationship.  
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Figure 4.5: Metamodel. 

4.3.5 Meta Metamodel 

 A meta metamodel is a specialized metamodel that describes other 

metamodels. The position in the modeling hierarchy defines if a metamodel is a 

meta metamodel.  

4.4 MDSD Model driven software development 

 The application of models to software development is a long-standing 

tradition, and has become even more popular since the development of the 

Unified Modeling Language (UML). 

 Yet we are faced with ‘mere’ documentation, because the relationship 

between model and software implementation is only intentional but not formal. 

We call this flavor of model usage model-based when it is part of a development 

process. However, it poses two serious disadvantages: on one hand, software 

systems are not static and are liable to significant changes, particularly during 

the first phases of their lifecycle. The documentation therefore needs to be 

meticulously adapted, which can be a complex task – depending on how detailed 

it is – or it will become inconsistent. On the other hand, such models only 

indirectly foster progress, since it is the software developer’s interpretation that 

eventually leads to implemented code. These are the reasons why many 

programmers consider models to be an overhead and see them as intermediate 

results at best. 

 Model-Driven Software Development has an entirely different approach: 

Models do not constitute documentation, but are considered equal to code, as 
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their implementation is automated. MDSD [Stahl, 2006] therefore aims to find 

domain-specific abstractions and make them accessible through formal 

modeling. This procedure creates a great potential for automation of software 

production, which in turn leads to increased productivity. Moreover, both the 

quality and maintainability of software systems increase. Models can also be 

understood by domain experts. This evolutionary step is comparable to the 

introduction of the first high-level languages in the era of Assembler 

programming. The adjective ‘driven’ in ‘Model-Driven Software Development’ 

– in contrast to ‘based’ – emphasizes that this paradigm assigns models a central 

and active role: they are at least as important as source code.  

To successfully apply the ‘domain-specific model concept, three requirements 

must be met: 

• Domain-specific languages are required to allow the actual 

formulating of models.  

• Languages that can express the necessary model-to-code 

transformations are needed.  

• Compilers, generators or transformers are required that can run the 

transformations to generate code executable on available platforms 

MDSD may sound a lot like MDA. This is correct to a certain extent. In 

principle, MDA has a similar approach, but its details differ, partly due to 

different motivations. MDA tends to be more restrictive, focusing on UML-

based modeling languages. In general, MDSD does not have these restrictions. 

The primary goal of MDA is interoperability between tools and the long-term 

standardization of models for popular application domains. In contrast, MDSD 

aims at the provision of modules for software development processes that are 

applicable in practice, and which can be used in the context of model-driven 

approaches, independently of the selected tool or the OMG MDA standard’s 

maturity. 

 Basically Model-Driven Software Development consists of two major 

aspects. The first one is processing models, i.e. checking their validity, 
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transforming them into other models as well as generating code (and other 

textual artifacts) from models. The other aspect addresses the creation of 

models. Traditionally, the processing of models has received more attention 

from the MDSD community. In particular, in Eclipse (open source) community, 

whose projects are focused on building an open development platform 

comprised of extensible frameworks, tools and runtimes for building, the 

Graphical Modeling Framework is a tool that allows developers to easily define 

graphical editors for EMF-based meta models. Graphical editors are not enough, 

though. Many problems are better described with textual concrete syntaxes. 

As part of the Eclipse Modeling Project, there’s a placeholder project called 

TMF (for Textual Modeling Framework) which will address exactly this 

challenge – defining “nice” textual syntaxes for EMF-based meta models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

 
 
 
 

72

 

 

 

 

 

 

 

PART II: PROPOSAL 

 

 

 

 

 

 

 



 

 
 
 
 

73

 
 
 
 
Chapter 5 
 
 
 
 
5 Domain Specific Language for Magnetic Measurements 

A DSL can be regarded as a programming or specification language 

dedicated to a particular domain or problem. The advantage of a domain-specific 

language in contrast to a general purpose language is that the DSL provides 

appropriate built-in abstractions and notations. In particular, DSL uses terms 

derived from a model created for a particular problem domain and used for 

defining components or complete solutions to be used in that domain. A domain 

can be seen as a specific setting with an implicit set of artifacts, actors and 

processes [Object Management Group, 2003]. 
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5.1 Magnetic Test Domain and FFMM Architecture 
 
 

At CERN, measurement systems were developed under different conditions 

and with variable requirements for the series tests, of the LHC superconducting 

magnets. The result is a number of systems whose software has scarce 

reusability, without the necessary separation between the generic and the 

specific code, the main design criterion to ensure a good maintainability. 

 Although a good base to develop a new control and/or measurement 

application is provided, a strict collaboration between developers is still required 

in order to fully integrate new applications.  

The first step was to realize a new framework (FFMM presented in Chapter 

3) was based on the following basic ideas [Arpaia, 2007]:  

(i) The flexibility is achieved by means of the code reusability: rapid 

variations of measurement requirements due to the frequent 

occurrence of different small batches of tests are satisfied redesigning 

software by reusing modules. 

(ii) Reusability is achieved by object-oriented approach and modularity: 

a suitable design of the code allows modules to be reused. 

(iii) Incremental building of module libraries: once modules can be 

reused, a finite application domain will be saturated in a finite time.  

(iv) Standardization of software structure and modules: a definition of 

code structure and patterns gives rise to the production of standard 

modules to be reused easily. 

(v) Predefinition of a software structure of the test program, organized in 

standard modules: such an organization provides the user with 

templates to be filled for generating new code. 
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Figure 5.1: The multi-layered FFMM architecture 

Correspondingly, the fundamental principle underlying the FFMM 

architecture is the decoupling of software components through three main layers 

(Fig. 5.1): 

• Base service layer - Communication and service packages: This layer 

implements the necessary foundations for communications, utilities (like 

useful algorithms and class libraries), and an OS service abstraction package. 

• Core servics layer – Virtual Devices and Event-handling, Logging/Fault 

Detection: Virtual Devices are software components modeling in FFMM the 

concrete devices to be orchestrated during measurement processes. Event 

handling was implemented to let Virtual Device and other software 

components obtain the needed information about the state of components of 

their interest. Logging/Fault Detection are responsible for monitoring the 

state of the component devices and catching software faults such as stack 

overflow, live-lock, deadlock, and application-defined faults as they occur. 

• Measurement service layer – Test management and acquisition 

synchronization are able to create groups of tasks to be synchronized to well 

defined events (e.g. start and stop or device events) as needed. 
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In Fig. 5.2, a typical FFMM configuration is shown.  

 

 

Figure 5.2: A typical FFMM configuration 

 

5.2 The proposed approach 

After developing FFMM (Chapter 3), it was necessary to provide the test 

engineer with a easy and fast way to write a measuremet script. To achieve this 

goal MDSL has been developed. 

The final use of the Domain-Specific Language is in its domain. For our 

purposes, a language is a set of terms and expressions which are bounded by a 

set of syntax and semantic rules and used for communication within a domain. 

Some features common to all languages should be understood in order to 

develop a generic approach to language definition: 

• Concrete Syntax: all languages provide a notation fostering the 

presentation and construction of models and programs in the language. 

This notation is known as its concrete syntax. There are two main types 

of concrete syntax: textual and visual. A textual syntax enables models 

and programs to be described in a structured textual form. A visual 

syntax presents a model or program in a diagrammatical form. The 

advantage of a textual syntax is that it is aimed at representing details, 

while a visual syntax at communicating structure. 
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• Abstract Syntax: the abstract syntax of a language describes the 

vocabulary of concepts provided by the language and how they may be 

combined to create models or programs. It consists of a definition of the 

concepts, the relationships that exist between concepts and may also 

include rules stating how the concepts may be legally combined. It is 

important to emphasize that a language’s abstract syntax is independent 

of its concrete syntax and semantics. Abstract syntax deals solely with 

the form and structure of concepts in a language without any 

consideration given to their presentation or meaning. 

• Semantic: the semantics of a language describes what models or 

programs in the language actually mean and do. In the context of 

programming languages, execution semantics is essential in order to run 

programs written in the language. Semantics are also important in the 

context of modeling languages. 

External and internal textual DSLs can be defined. An External DSL is a 

domain specific language represented in a separate language to the main 

programming language it's working with. This language may be a custom 

syntax, or it may follow the syntax of another representation (like XML). 

An Internal (or Embedded) DSL is DSL expressed within the syntax of a general 

purpose language. It's a stylized use of that language for a domain specific 

purpose. 

5.3 DSL Requirements  

 Test engineers are not skilled programmers and have to produce concise and 

bug-free FFMM specific applications (Fig.5.3).  
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Figure 5.3: Test Engineer and Developer Application User roles in measurement software DSL 

 

 Thus, a new Measurements Domain Specific Language (MDSL) with 

specialized constructs was designed in order to: 

1. define logical, numeric, and temporal conditions; 

2. perform conditional branching, immediate verification of conditions, 

verification of conditions within a time period, and continuous 

verification of conditions; 

3. be able to define events based on measurement value and attribute 

changes, time changes, external event notifications, and user inputs; 

4. subscribe and unsubscribe to events, and respond to them with behaviors 

that include sending text messages to users or commands and generate 

measurements; 

5. enable, configure and disable framework service;  

6. be able to interact with the user through a command prompt; 

7. compare measurement data against specified criteria within a specified 

time period, and compute results that are numeric and Boolean functions. 
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 To meet these requairements has been developed a domain-specific language 

called MDSL. Before giving details on the architecture, the concept of Semantic 

Model has to be introduced. 

5.4 The architecture 

5.4.1 Semantic model 

 The Semantic Model of a DSL is a subset of the overall Domain Model for 

an application. In the context of a DSL, a semantic model is an in-memory 

representation, an object model, of the same subject that the DSL describes. 

While the DSL describes a state machine, the Semantic Model is an object model 

with classes for state, event, etc.  

The semantic model was separated from the DSL in order to: 

1. think about the semantics of this domain without getting tangled up in 

the DSL syntax or parse  

2. be able to test the semantic model by creating objects in the model and 

manipulating them directly;  

3. have an incremental approach, starting with simple internal DSL and 

after add an external DSL; this is possible because having an explicit 

semantic model we can support multiple DSLs, since both DSLs can 

parse easily into the same Semantic Model;  

4. be able to evolve the model and language separately; if the model is to be 

changed, this can be explored without changing the DSL, by adding the 

necessary constructs to the DSL; or new syntaxes for the DSL can be 

experimented by just verifying the creation of the same objects in the 

model; two syntaxes can be evaluated by comparing how they populate 

the semantic model. 

 This separation of semantic model and DSL syntax mirrors the separation of 

domain model and presentation suggested in a DSL can be thought as another 

form of user interface [Bosch, 1996]. 
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 The proposed MDSL is based on a Semantic Model, seen as a part of the 

FFMM domain model. It captures the Measurement Test Procedure core 

structure and behavior. Semantic Model is part of the difference between 

working with DSLs and with general purpose languages. In Fig. 5.4, the 

proposed approach for the transformation of the Measurement Domain-Specific 

Description (MDSD) into the final code is shown. 

 The external DSL, written by the Test Engineer, is parsed to create an 

internal file treated by the semantic model (Fig.5.4). The external DSL, the DSL 

scripts i.e. the MDSD, the parser and the Semantic Model is very clearly 

separated. The MDSL scripts are written in a clearly separate language; the 

parser then reads these scripts and populates the Semantic Model. Direct writing 

in the internal DSL risks to mix up difficulties. An explicit layer of Expression 

Builders providing the necessary fluent interfaces to act as the language were 

conceived. MDSL scripts run by invoking methods on an Expression Builder 

which then populates the Semantic Model. Thus, in an internal DSL, parsing the 

DSL scripts are done by a combination of the host language parser and the 

Expression Builders. 

 Once a Semantic Model is defined, it is passed to Builder for code 

generation, i.e. the code is separately compiled and run. 

 

PARSER

Generated 
Code

MDSD
Script BUILDER

Semantic Model

 

Figure 5.4: MDSL transformation in code 
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 The code generator is decoupled from the parser: a code generator can be 

written without having to understand anything about the parsing process, as well 

as tested independently too. For our project, the code generated is a script in 

C++ language to be compiled to obtain the executable code for the 

measurement. 

5.4.2 Parser 

Parsing is a strongly hierarchical operation. When a text is parsed, the chunks 

are arranged into a tree structure. Let’s consider the simple structure of a list of 

events shown in Fig. 5.5. 

 

Figure 5.5: List of events 

 In this composite structure (Fig. 5.5), a list contains events, each one with a 

name and a code. There is no explicit notion of an overall list, but each event is 

still a hierarchy of events each containing a name symbol and a code string. 

 The proposed MDSD can be represented as a hierarchy: in this way, such a 

hierarchy is called a syntax tree (or parse tree). A syntax tree is a much more 

useful representation of the MDSD than the words; it can be manipulated in 

many ways by walking up and down in the tree. Basically, the parser reads the 
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textual MDSD, builds syntax trees and translates them into the Semantic Model. 

The syntax tree was built by means of a specific grammar, i.e. a set of rules 

describing how a stream of text is turned into a syntax tree. Grammars consist of 

a list of production rules, where each rule has term and a statement of how it 

gets broken down. 

5.4.3 Builder 

 Code generators have been around for decades. They can trace their roots 

back to the origin of compilers. One of recent developments in code generation 

is Model-Driven Architecture (MDA) [Object Management Group, 2003]. It uses 

basic models and domains represent specific situations and then create code 

from that. A tool that implements the MDA concept allows developers to: 

1. Produce models of the application and business logic. 

2. Generate code for a target platform by means of transformations.  

The major benefit of this approach is that it raises the level of abstraction in 

software development. 

 Model-Driven Architecture (MDA) is an approach to software development 

produced and maintained by the Object Management Group (OMG)1. MDA is 

not to be confused with Model-Driven Development (MDrD), also known as 

Model-Driven Software Development. MDrD is an approach to software 

development where extensive models are created before source code is written 

or generated. MDA is the OMG implementation of MDrD. The MDA concept is 

implemented by a set of tools and standards that can be used within an MDrD 

approach to software development.  

 The basis for automatic code generation is to read in project artifacts, such as 

class diagrams, activity diagrams, and requirements documents and turn them 

into meaningful and correct source code. The implementation of automatic code 

generators relies on the fact that most artifacts are created in the early stages if 

                                                 
1 http://www.omg.org 
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software development arises from UML notations and diagrams. UML (Unified 

Modeling Language) is a standard in which object-oriented design patterns can 

be easily recognized. Since these artifacts are repetitive and have design patterns 

they can be automated. Most simple implementations of automatic code 

generators use only the class diagram to create source code. Class diagrams have 

been the easiest to implement because of the inherited design pattern to object-

oriented languages such as Java and C++. 

5.5 The proposed architecture 

 The proposed architecture, shown in Fig. 5.6, is organized through a 2-way 

decomposition separating the developer view (FFMM Core) from test engineer 

view (DSL script):  

1. FFMM Core, the involved data structures and classes of the framework 

2. DSL Script, Domain Specific Language (DSL) code. 

 

Figure 5.6: Proposed architecture 

Figure 5.6 shows two possible views of FFMM for two different classes of user. 

On FFMM block, or on FFMM Classes, there are two way: the developer can 
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operate with code C++ at any level in the system and can define a measurement 

through a script in C++ code. On the other hand the test engineer, with limited 

effort and programmation skills, can operate at script level by means of the DSL, 

defining a procedure that the xPand / Builder will translate into C++. The 

interaction between xPand / Builder and FFMM Classes allows the execution of 

the measurement application described by the test engineer in the DSL script. 

The link between DSL script and xPand / Builder is bidirectional because there 

is a mechanism providing the programmer with suggestions about the code by 

giving insight into the FFMM core class structure. The next chapter will show in 

detail the new MDSL project. 
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6 MDSL Implementation 

 The first part of this chapter will show how to create a new project in Eclipse 

by using openArchitectureWare (oAW) plug-in in order to define a new DSL. 

The second part, instead, will show how the new language, MDSL, was 

implemented. 
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6.1 Eclipse platform 

 The Eclipse platform1 was used to develop the proposed DSL. Eclipse is a 

multi-language software development platform comprising an IDE and a plug-in 

system to extend it. It is written primarily in Java and is used to develop 

applications in this language and, by means of the various plug-ins, in other 

languages as well C, C++, COBOL, Python, Perl, PHP and more. The initial 

codebase originated from VisualAge. In its default form it is meant for Java 

developers, consisting of the Java Development Tools (JDT). Users can extend 

its capabilities by installing plug-ins written for the Eclipse software framework, 

such as development toolkits for other programming languages, and can write 

and contribute their own plug-in modules. Language packs provide translations 

into over a dozen natural languages Released under the terms of the Eclipse 

Public License; Eclipse is free and open source software. 

 Eclipse employs plug-ins in order to provide all of its functionality on top of 

(and including) the runtime system, in contrast to some other applications where 

functionality is typically hard coded. The runtime system of Eclipse is based on 

Equinox, an OSGi standard compliant implementation. This plug-in mechanism 

is a lightweight software componentry framework. In addition to allowing 

Eclipse to be extended using other programming languages such as C and 

Python, the plug-in framework allows Eclipse to work with typesetting 

languages like LaTeX, networking applications such as telnet, and database 

management systems. The plug-in architecture supports writing any desired 

extension to the environment, such as for configuration management. Java and 

CVS support is provided in the Eclipse SDK, with Subversion support provided 

by third-party plugins. 

 The key to the seamless integration (but not of seamless interoperability) of 

tools with Eclipse is the plug-in. With the exception of a small run-time kernel, 

                                                 
1 http://en.wikipedia.org/wiki/Eclipse_%28software%29 
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everything in Eclipse is a plugin. This means that every plugin developed 

integrates with Eclipse in exactly the same way as other plugins; in this respect, 

all features are created equal. Eclipse provides plugins for a wide variety of 

features, some of which are through third parties using both free and commercial 

models. Examples of plugins include UML plug-in for Sequence and other UML 

diagrams, plug-in for Database explorer, and many others. The Eclipse SDK 

includes the Eclipse Java Development Tools, offering an IDE with a built-in 

incremental Java compiler and a full model of the Java source files. This allows 

for advanced refactoring techniques and code analysis. The IDE also makes use 

of a workspace, in this case a set of metadata over a flat filespace allowing 

external file modifications as long as the corresponding workspace "resource" is 

refreshed afterwards. The Visual Editor project (discontinued since June 30, 

2006) allows interfaces to be created interactively, thus allowing Eclipse to be 

used as a RAD tool. Eclipse's widgets are implemented by a widget toolkit for 

Java called SWT, unlike most Java applications, which use the Java standard 

Abstract Window Toolkit (AWT) or Swing. Eclipse's user interface also uses an 

intermediate GUI layer called JFace, which simplifies the construction of 

applications based on SWT. 

6.1.1 oAW openArchitectureWare 

 When starting a new project we must first create xText project in order to 

define a new language. Our Xtext projects are based on the Eclipse plug-in 

architecture (oAW). The purpose of this section is to illustrate the definition of 

external DSLs using tools form the Eclipse Modeling Project (EMP).  

 OpenArchitectureWare [oAW] is nowadays one of the most used MDDS 

frameworks. Much of this success results from its flexibility: rather than 

providing pre-made generator templates, oAW serves as a generator toolkit and 

enables users to easily create tailored generator solutions that really fit their 

needs. Besides this flexibility, openArchitectureWare users benefit from the 
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tight integration with Eclipse: not only does oAW come with an array of editors 

that make writing templates and workflows an easy task. oAW also delivers 

refactoring support, easy navigation, an incremental project builder and a 

debugger. It supports parsing of arbitrary models, and a language family to 

check and transform models as well as generate code based on them. Supporting 

editors are based on the Eclipse platform. oAW has strong support for EMF 

(Eclipse Modelling Framework) based models but can work with other models, 

too (e.g. UML2, XML or simple JavaBeans). At the core there is a workflow 

engine allowing the definition of generator/transformation workflows. A number 

of prebuilt workflow components can be used for reading and instantiating 

models, checking them for constraint violations, transforming them into other 

models and then finally, for generating code. In other words oAW helps with 

meta modeling, constraint checking, code generation and model transformation. 

More recently a framework has been developed that supports the creation of 

textual domain-specifc languages (DSL): xText 

 The main focus is on the xText framework. We will start by defining our own 

DSL in an xText grammar. Then we will use the xText framework to generate a 

parser, an Ecore-based metamodel and a textual editor for Eclipse. Afterwards 

we will see how to refine the DSL and its editor by means of xTend extensions. 

Finally, we will learn how one can generate code out of textual models using the 

template language xPand. The actual content of this example is rather trivial our 

DSL will describe entities with properties and references between them from 

which we generate Java classes according to the JavaBean conventions a rather 

typical data model. In a real setting, we might also generate persistence 

mappings, etc. from the same models.  
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6.1.2 xText project 

 xText is part of the openArchitectureWare project (which is in turn part of 

Eclipse GMT). Based on an EBNF like notation, xText generates the following 

artifacts: 

• A set of AST (Abstract Syntax Tree) classes represented as an EMF-

based metamodel. 

• A parser that can read the textual syntax and returns an EMF-based AST 

(model). 

• A number of helper artifacts to embed the parser in an oAW workflow. 

• An Eclipse editor that provides syntax highlighting, code completion, 

code folding, a configurable outline view and static error checking for 

the given syntax. 

 xText starts from a description of a textual syntax (the grammar) and derives 

an AST class model (the metamodel) from that concrete syntax definition. The 

linking of cross references within the same model or through different models 

can be done separately from the textual syntax description. Linking can be a 

quite complicate process if you consider scopes, namespaces and visibility of 

elements we think that it is crucial for a textual language framework to allow the 

separation of parsing and linking. 

 The separation of these two concerns (parsing and linking) helps to 

implement more sophisticated linking logic independent of the concrete syntax. 

Additionally we can check the AST before doing additional linking and 

transformations. In some cases you even don't want to link references up-front, 

but want them to be looked up dynamically. 

Linking in xText can be done in several ways. The easiest way is to make use of 

so called extensions. Extensions are operations that can be annotated to existing 

meta classes. Another solution is to transform the AST to a “real” meta model. 

This has the additional advantage that the concrete syntax can be changed, or 

one can have several different concrete syntaxes for the same metamodel. The 
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necessary transformation is relatively straight forward to define, because it is 

basically a one to one mapping with some additional linking logic.  

 

 To create a new textual DSL with xText, we need up to three files that 

depend on each other (Appendix), according to the following steps: 

• Start up Eclipse with oAW installed in a fresh workspace  

• Select File > New... > Project... > openArchitectureWare > Xtext 

Project 

• Specify the project settings in the wizard dialog. 

• Click Finish (Fig 6.1) 

 

 
Figure 6.1: Wizard to start new Xtext project  

 

The wizard creates three files, my.dsl, my.dsl.editor, and my.dsl.generator 

(Appendix): 
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• my.dsl is the language project, in which we will define the grammar for 

our DSL. After running the Xtext generator, this model also contains a 

parser for the DSL and a metamodel representing the language. 

• my.dsl.editor will contain the DSL editor.  

• my.dsl.generator contains an openArchitectureWare code generator 

skeleton. 

6.1.3 Defining the Grammar 

 An xText grammar consists of a number of rules (Model, Message, Field and 

Type). A rule is described using sequences of tokens. A token is either a 

reference to another rule or one of the built-in tokens (STRING, ID, LINE, 

INT). xText automatically derives the meta model from the grammar, instead, 

the meta model is basically a data structure whose instances represent the 

structure of sentences in the language.  

 A rule results in a meta type, the tokens used in the rule are mapped to 

properties of that type (comments, name, fields). Different assignment operators 

are been used. The equals sign ('=') just assigns the value returned from the 

token to the respective property (the property will have the type of the token) 

and '+=' adds the value to the property. 

So after creating our new xText project, we can define the grammar for our 

MDSL (an example is show in Fig. 6.2). 
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Figure 6.2: DSL grammar 

 

 The grammar specifies the metamodel and the concrete syntax for our 

Measurements Domain Specific Language (MDSL). 

 

6.1.4 Generating the DSL Editor 

 We will use the grammar language provided by xText. The following screen 

shot shows how the syntax is described for the FFMM-DSL. In fact language 

and tooling used for describing DSL syntax is bootstrapped, i.e. it is 

implemented using the xText framework itself. Bootstrapping is a common 

technique in the field of language and compiler development. If you can 

bootstrap your language and tools, this proves a certain level of maturity of the 

tools. 

 Having specified the grammar, we can now generate the DSL editor: 

• Right-click inside the xText grammar editor to open the context menu. 

• Select Generate xText Artifacts to generate the DSL parser, the 

corresonding metamodel and, last but not least, the DSL editor (Fig. 6.3). 
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Figure 6.3: Generate Xtext artifacts 

 

6.1.5 Running the Editor 

 To see the generated editor in action, we must run the plug-ins in an Eclipse 

installation. The most convenient way to do this is to start a new Eclipse 

application from within the running Eclipse: 

• Select the editor plug-in and choose Run As > Eclipse Application from 

its context menu. 

The generated editor can also be deployed into an existing Eclipse installation. 

Note that you have to redeploy the editor on every change you apply to the plug-

ins. To install the editor into the Eclipse we are currently running, perform the 

following steps:  

• Choose Export... > Deployable plug-ins and fragments... 

• The Export dialog appears. Select the three DSL plugins. 
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• Enter the path to your Eclipse installation. Make sure the selected 

directory contains the Eclipse executable and a folder named plugins. 

Usually, the directory is called eclipse. 

• Choose Finish (Fig.6.4). 

• Restart Eclipse. 

 

 
Figure 6.4: Deployment of the DSL plug-ins 

6.2 Code generation with xPand 

 The xText wizard already created a generator project for us. In this part we 

must connect the FFMMs class with our new language DSL. 

Part of xPand implemented is shown in Fig. 6.5. 
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Figure 6.5: Xpand template 

6.2.1 The Grammar Language 

 At the heart of xText lies its grammar language. It is a lot like an extended 

Backus-Naur-Form (BNF)2, but it doesn’t describe only the concrete syntax, but 

can be also used to describe the abstract syntax (metamodel). 

 As stated before, the grammar is not only used as input for the parser 

generator, but it is also used to compute a metamodel for your DSL.  

The analysis of text is divided in two separate tasks: the lexing and the parsing. 

The lexer is responsible of creating a sequence of tokens from a character 

stream. Such tokens are identifiers, keywords, whitespace, comments, operators, 

                                                 
2 http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form 
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etc. xText comes with a set of built-in lexer rules which can be extended or 

overwritten if necessary. 

The parser gets the stream of tokens and creates a parse tree out of them.  

6.3 Type Rules 

 The name of the rule is used as name for the metatype generated by Xtext. 

6.3.1 Assignment tokens / Properties 

 Each assignment token within an xText grammar is not only used to create a 

corresponding assignment action in the parser but also to compute the properties 

of the current metatype. Properties can refer to the simple types such as String, 

Boolean or Integer as well as to other complex metatypes. It depends on the 

assignment operator and the type of the token on the right, what the type actually 

is. There are three different assignment operators: 

• Standard assignment '=' : The type will be computed from the token on 

the right. 

• Boolean assignment '?=' : The type will be Boolean. 

• Add assignment '+=' : The type will be List. The inner type of the list 

depends on the type returned by the token on the right. 

 

An example in our project of these assignment operators is show in Fig. 6.6. 
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Figure 6.6: Example of assignment operators in our project 

6.3.2 Cross References 

 Parsers construct parse trees not graphs. In order to implement crosslinks in 

the model, one usually has to add third task: the linking. However, xText 

supports specifying the linking information in the grammar, so that the 

metamodel contains cross references and the generated linker links the model 

elements automatically. Linking semantic can be arbitrary complex. xText 

generates a default semantic which can be selectively overwritten. 

 

 
Figure 6.7: Entity 

 

Have a look at the optional extends clause. The rule name Entity on the right is 

urrounded by squared parenthesis (Fig. 6.6). By default, the parser expects an ID 

to point to the referred element. 



 
 

CHAPTER 6                      

 
 
 
 

99

6.3.3 Metatype Inheritance 

 After to have define metatypes and its features we to have also define type 

hierarchies using the grammar language of xText. We need to have more 

different kinds of “Feature” (Fig 6.7) we did create it with an abstract type rule 

like shown in Fig. 6.8.  

 

 
Figure 6.8: Abstract type rule 

The transformation creating the metamodel automatically normalizes the type 

hierarchy. This means that properties defined in all subtypes will automatically 

be moved to the common supertype. 
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The ID Token 

We also have seen the identifier token (ID). This is the token rule expressed in 

AntLR grammar syntax how shown in Fig. 6.9.  

 
Figure 6.9: Token rule expressed 

The return value of the ID token is a String. So, we use the usual assignment 

operator "=", the value is assigned to will be of type String.  

 
Comments 
 
There are two different kinds of comments automatically available (Fig. 6.10) in 

any xText language. 

 
Figure 6.10: Comments 

Note that those comments are ignored by the language parser by default. 

6.4 Defining the MDSL 

 Our goal was to create a simple scripting language for the test engineer; this 

problem has been addressed through the definition of a DSL. The test engineer 

has to follow the steps shown in Fig. 6.11 to define, set and execute a 

measurement task.  
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Figure 6.11: DSL test engineer steps 

To be more precise the test engineer should first define the object (or device) 

that intends to use, than configure its setting and use it through appropriate 

commands, defined in device interfaces, which should be known by the test 

engineer. To make this task easier MDSL project provides one of the most 

useful things: the assistance to the measurement procedure definition. 

While he writes the script, the test engineer, can click on CTRL+SPACE to see 

the menu where all the possibilities are shown in Fig. 6.12. 

 
Figure 6.12: Assistance to the measurement procedure 
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It is possible to appreciate the ease of writing and the flexibility of software. In 

appendix A all the scripts for magnetic dipole measurement are shown. 

In the following, for the sake of comparison two script fragments are shown. 

The Fig. 6.23 refers to a C++ script for permeability measurements (Appendix 

B). The Fig. 6.14 shows the same procedure written in DSL. The improvements 

in clarity and conciseness are evident. 

 
#include <ffmm.h> 
#include <sstream> 
#include <math.h> 
using namespace ffmm::core::events; 
using namespace ffmm::core::devices; 
using namespace std; 
_FFMM_INITIALIZE 
#include "core/devices/FdiCluster.h" 
#include "core/devices/EncoderBoard.h" 
#include "core/devices/Keithley2k.h"  
#include "core/devices/DAQmx.h" 
#include "core/utils/FdiClusterDataConversion_byn2Ascii.h" 
#include "core/events/IFdiClusterListener.h" 
 
std::string Cluster="FDI_Cluster_1"; 
std::string Encoder="Encoder_Board"; 
std::string Multimeter="Keithley2k"; 
std::string DAQM="NI_DAQ"; 
const int Encoder_slot=13; 
const int Encoder_bus=4; 
const int Encoder_Channel=1; 
const int Encoder_mode=1; 
const double Encoder_freq=2048; 
const int Multimeter_intfNum=0; 
const int Multimeter_busAddress=16; 
const int Multimeter_timeout=100; 
const int numberOf_FDI = 3; 
const int surceStop = 1; 
int Cluster_slot[numberOf_FDI]={12,11,10}; 
int Cluster_bus[numberOf_FDI]={4,4,4}; 
double Cluster_abs_gain_= 1.0; 
double Cluster_comp_gain_ = 10; 
int SamplePerTurn = 1024; 
int numberOfTurn = 4; 
U32 AcquisitionBufferSize; 
std::string Daq_channel_name = "AO_Ch"; 
std::string Daq_task_name = "Trap_G"; 
int Daq_channel = 0; 
int Daq_timeOut = 200; 
int Daq_generatioMode = 0;  
const double Daq_sample_rate = 1000; 
int Daq_minVolt = -10; 
int Daq_maxVolt = 10; 
std::string path_name; 
double epsC = 0.1; 
int measurementCycle; 
double plateaux[38] = {0,-0.1,0.1,-0.2,0.2,-0.3,0.3,-0.4,0.4,-
0.5,0.5,-0.6,0.6,-0.7,0.7,-0.8,0.8,-0.9,0.9,-1,1,-1.2,1.2,-1.4,1.4,-
1.6,1.6,-1.8,1.8,-2,2,-3,3,-5,5,-10,10,0};  
 
BEGINSCRIPT 
 NI_Daq->setTimingTrigger(Daq_sample_rate, 0, numOfSamples); 
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 NI_Daq->startVoltage(signal, numOfSamples ); 
 NI_Daq->waitGeneration(); 
 NI_Daq->setTimingTrigger(Daq_sample_rate, 0, numOfSamples); 
 NI_Daq->startVoltage(signal, numOfSamples ); 
 NI_Daq->waitGeneration(); 
 Poco::DynamicAny plat; 
 while(!demagnetized) 
 { 
  Poco::DynamicAny plat(plateau*4); 
  environment->console->writeln(plat.convert<std::string>()); 
  if (plateau >= value1) 
  { 
   old_plateau = plateau; 
   plateau = plateau/1.5; 
  } 
  else if (plateau >= value2) 
  { 
   old_plateau = plateau; 
   plateau = plateau/1.2; 
  } 
  else 
  { 
   old_plateau = plateau; 
   plateau = plateau/1.1; 
  } 
. 
. 
. 
. 
 

 
Figure 6.13: The part of the Script in C++ 

 

 

 
 

Figure 6.14: The part of the Script in DSL 
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Chapter 7 
 
 
 
 
7 Experimental results 

 This chapter will show how the new project reaches all the specifications 

required for the magnetic measurements, instead, in the following, the results of 

the qualification tests of the new system (MDSL and FAME) performed on an 

LHC main dipole at cryogenic conditions, i.e. 1.9 K, with a DC supply current 

(1500 A) and standard LHC cycle current. In the former case, the stability and the 

repeatability of the measurements are determined by evaluating synthetic 

parameters, i.e. such as the mean of the harmonic coefficients and its experimental 

standard deviation. In the latter case, the aim of field quality inspection is to 

understand the field changes in the main dipole in order to compensate undesired 

effects during LHC operation. In particular, the “snapback” phenomenon and the 

foremost field components will be detailed and explained, via the experimental 

results. 
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7.1 System Architecture 

 At CERN, the facility for testing the LHC main dipoles is installed in the 

SM18 hall [Mishra, 2005]. SM18 has six test clusters, each one consisting of 

two benches. Only one bench in a cluster can be used at a time. In the following, 

the main components of the bench for the tests of MDSL prototype are detailed, 

for both warm and cold conditions. 

Warm Conditions: 

• Portable Power Supply 20 A; 

• Portable DCCT 60 A. 

Cold conditions:  

• Main Power Converter (14 kA,15 V): 

o Voltage Source; 

o DCCT (DC Current Transducer); 

o FGC1 (Function Generator Controller first generation); 

• Worldfip Gateway ; 

• Anti-cryostat (heated tube to give access to the magnet bore at room 
temperature) 

The architecture of the MDSL prototype is shown in Fig. 7.1. The following 

components are common to both measurements condition: 

• PC, with FFMM MDSL, managing the measurement station; 

Fast Acquisition Measurement Equipment components follow:  

• ADLINK PXIS-3320 chassis composed by: 

o ADLINK PXI-8570; 

o 6 FDI boards;  
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o Encoder Board; 

• Analog bucking (compensation of the dipole components); 

• Micro Rotating Unit ( μ RU), including:  

o HEIDENHAIN Rotary Encoder ERN420; 

o MAXON Angular Motor EC-40 ; 

o MAXON Motor Encoder HEDL 5540; 

• New rotating coils shaft;  

• MAXON Motor Controller EPOS 24/5;  

• Digital Multimeter KEITHLEY 2000. 

 Only one of the two apertures of the magnet is under test (Fig. 7.1). The field 

measurement is carried out by means of a maximum of 24 FDI, integrating the 

signals produced by coils placed in the 12 sectors in which the shaft is divided. 

 Two FDI are required to acquire the absolute and compensated fluxes of each 

sector. At the moment, only 6 FDIs are used for the harmonic analysis of three 

super sectors (4 sectors connected in series). The Next step will be to add the 

remaining 18 FDIs, in order to acquire all the signals from the coils, and to 

duplicate the same architecture on the other aperture. 
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Figure 7.1: Architecture of the new measurement system 

 

7.2 Overview of the test bench at SM18 

 The first prototype of the new platform was integrated at SM18 (Fig. 7.2). 

The measurements of the main bending dipole field were carried out at room 

temperature. 

 
Figure 7.2: Test bench F1 at SM18: main bending dipole (left) and six clusters at SM18 (right) 
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 The dipole is connected directly to the Heinzinger PTN 135-20 20 A, 135 V, 

DC Portable Power Supply (Fig. 7.3). This configuration permits only 

measurement shorter than one hour, in order to avoid an excessive heating of the 

magnet. 

 
Figure 7.3: Portable Power Supply Heinzinger PTN 135-20 at SM18 

 The high-accuracy portable Direct Current-Current Transformer (DCCT) is 

connected directly to the Portable Power Supply and will be connected to the 

Multimeter (Fig. 7.4) in order to perform the desired current measurement. 

 For each measurement the coils shaft can turn with a fixed frequency. At the 

start of rotation, the first turn is dedicated to reach the desired angular velocity, 

then the 6 FDIs start acquiring and performing the integration of the 3 absolute 

and 3 compensate signals, coming from the 3 shaft sections. 

 
Figure 7.4: Digital Multimeter KEITHLEY 2000 
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7.3 Measurement setup 

 The measurement system is installed at the test facility hall for 

superconducting magnets at CERN (SM18). The setup architecture of the 

measurement station at SM18 is the same as in warm validation tests (Fig. 71). 

At cold conditions, the main power supply of the test facility was used providing 

a current up to 15 kA. The LHC dipole under test was the MBBR 2427; only one 

aperture was considered. In the following, the DC measurements and the 

measurements with standard LHC cycle are reported. 

7.4 DC Measurements 

 In order to define the repeatability purposes of the new station for magnetic 

measurement at CERN, using MDSL, several measurement sessions were 

defined, at a current plateau of 1500 A (the considered segment shaft has been 

the 5th). Each session is specified by changing the setting parameters, i.e. angular 

speed, signal gain, time measurement interval and number of samples per turn. 

Table VII.1 reports the settings for each measurement session. 
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 Samples  

per turn 
Angular 
Speed 
(rad/s) 

FDI  
absolute 

gain 

FDI 
compensated 

gain 

Gain  
Current 

measurement 

Time 
interval 

(s) 

Number  
of 

repetition  

Supply 
current 

(A) 

Nb 
FDIs 

 Scan on the angular speed 

1 128 6.28 2 100 5 127 1 1500 5 

2 128 12.56 2 100 5 127 1 1500 5 

3 128 18.84 2 100 5 127 1 1500 5 

4 128 25.13 2 100 5 127 1 1500 5 

5 128 31.41 2 100 5 127 1 1500 5 

6 128 37.79 2 100 5 127 1 1500 5 

7 128 43.98 2 100 5 127 1 1500 5 

8 128 56.26 2 100 5 127 1 1500 5 

 Cross-check between angular speed and gain 

9 128 6.28 10 100 5 127 1 1500 5 

10 128 12.56 5 100 5 127 1 1500 5 

11 128 18.84 4 100 5 127 1 1500 5 

12 128 25.13 4 100 5 127 1 1500 5 

 Repeatability on single turn acquisition 

13 128 56.26 0.2 100 1 0.125 30 1500 5 

14 128 56.26 2 100 1 0.125 30 1500 5 

 
Table VII.1: Setting parameters of measurement sessions. 

 
The above table identifies three main measurement categories: 

• Scan on the angular speed: the angular speed is increased from 6.28 

rad/s (1 turn/s) up to 56.26 (8 turn/s), by fixing the FDIs gain and the 

number of samples per turn, in order to highlight the only effect of the 

rotation speed; 

• Cross-check between angular speed and gain: gain and angular speed are 

adjusted to feed up the FDIs with a full scale signal. The rationale of 

such measurement is to investigate the performance using a trade-off 
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between a speed value and electronic gain, both affecting the amplitude 

of the FDIs input signal; 

• Repeatability on single turn acquisition: a single turn for harmonic 

analysis was acquired separately from the others, such as reported in the 

table: the time interval of the measure is 0.125 s, 30 single turns were 

carried out in order to check the repeatability of the system in temporally 

decoupled acquisitions. 

The direction of shaft rotation is the same for all the measurement sessions. 

7.5 Measurement Procedure  

 The common settings of each measurement, defined via the MDSL user 

script is shown below: 
 //*************************************/ 
    //Variable assignement 
    //*************************************/ 
    AcquisitionBufferSize = numberOf_FDI*( SamplePerTurn/2)*4*2; 
    //*************************************/ 
    // Device Definition 
    //*************************************/ 
    DEF ENCODER_BOARD:  Enc_B      WITH ( "1" , "1","CERN" ) ; 
    DEF FDI_CLUSTER:    Cluster_1  WITH (numberOf_FDI  );  
    DEF KEITHLEY2K:     Mult_M     WITH ( "1", "2", "NI") ; 

. 

. 
 
    //*************************************/ 
    // Device Configuration 
    //*************************************/ 
    CFG ENCODER_BOARD: Enc_B       WITH ( Encoder_bus , Encoder_slot ) ; 
    CFG FDI_CLUSTER:   Cluster_1   WITH ( Cluster_bus , Cluster_slot ) ; 
    CFG KEITHLEY2K:    Mult_M      WITH ( Multimeter_intfNum, . 

. 

. 

. 
 
    //*************************************/ 
    // Device Setting 
    //*************************************/ 
    CMD FDI_CLUSTER: Reset ( Cluster_1, 0); 
    CMD FDI_CLUSTER: Reset ( Cluster_1, 1);  
    SET FDI_CLUSTER: Params2 ( Cluster_1, spt1, SamplePerTurn, Cluster_abs_gain_, 
Cluster_comp_gain_, CONT, 500000, spt2,10); 
    SET FDI_CLUSTER: Stop_Source ( Cluster_1, surceStop); 
    CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 0, 1.0);     
    CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 1, 1.0); 

. 

. 

The complete script is in Appendix A. 
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In order to handle continuous rotating coil measurements are [Animesh, 1997], 

[Brooks, 2007]: 

• Motor rotation speed and rotating direction. 

• Time interval of the measurement. 

• FDIs configuration (gain, samples to be acquired ). 

• Angular encoder resolution. 

 The raw measurement results were processed by means of a harmonic 

analysis, slightly differing from the standard one. The main steps are: 

• Every shaft turn is considered like an elementary unit. 

• The harmonic analysis is carried out on the points acquired in a 

elementary unit. 

• The synthetic parameters, mean and standard deviation, are computed on 

the harmonics evaluated at each elementary unit. 

In particular, the analysis results were focused on: 

• Main Field normal component, B1 in Tesla; 

• Sextupole normal component, b3 in UNITS; 

• Decapole normal component, b5 in UNITS ; 

• 11th harmonic, b11 in UNITS. 

7.6 Data Analysis 

 The rational to take into account the aforementioned harmonics B1, b3, and b5 

is to highlight the behavior of the field components mainly affecting the LHC 

operation. The b11 in a LHC dipole usually takes value about 0.6 UNITS 

[Sammut, 4/2006], thus this value is used as a reference to check the 

measurement results. 

 The mean is assumed to be the estimation of the harmonic: 

Normal main dipole field 
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where k=1,..,14 is the measurement session defined by the row in Table VII.1, 

j=1,…,N is the number of turn of the coil shaft, and n=1,3,5,11 is the harmonic 

order taken into account. The experimental standard deviation is computed as: 

Normal main dipole field 
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σ  is the estimated standard deviation.  

The repeatability of the measurement station is then assessed as 3-time the 

standard experimental deviation σ of the harmonics through the single turn. 

7.7 Relusts 

 In this Section, the results from the three DC measurement categories defined 

in Table 7.1 are reported. In particular  

1. Scan on the angular speed. 

2. Cross-check between angular speed and gain. 

3. Repeatability on single turn acquisition is detailed. 



 
 

CHAPTER 7 

 
 
 
 

114

 

Scan on the angular speed 

 

 The aim of the measurements at several angular speeds is to verify the 

behaviour of the harmonics as a function of the rotation speed of the coil shaft. 

The number of experiments used to compute the mean and repeatability value of 

the harmonics depends on the angular speed. The number of turns of the shaft in 

the measurement time interval is equal to the number of elementary units 

employed in the analysis (e.g. angular speed 6.28 rad/s = 1 turn/s, measurement 

interval 2.7 min, number of turn = 1 turn/s*127 s= 127 turn)  

In Fig.7.5, the means of B1 component with a ± 3 σ  bar versus angular speed is 

shown; the mean value of the main field varies between the maximum value 

1,0655188 T at 6.28 rad/s and the minimum one 1,0654698 T at 43.96 rad/s. 

The difference between such values is about 49 μT, which is compatible with the 

value of the uncertainty [3* σ (B1(k)] of the data from the overall session of 

measurements, i.e. about 33 μT. Therefore, any specific trend on mean values is 

highlighted. 

 

 
Figure 7.5: Main field component of LHC  

dipole measured versus several angular speed with fixed gain. 



 
 

CHAPTER 7 

 
 
 
 

115

 

 Fig. 7.6 shows the standard deviation of the mean, σ, versus angular speed. 

Such values ensure a small dispersion of data, 2 μT, which is equivalent to a 

variation on the voltage signal in input to the FDIs of few tens μV. Yet, σ (B1) 

seems to improve for speed higher than 25.12 rad/s.  

It is worth to note that the computed values of σ(B1) are normalized by the 

number of turns, which grows with the angular speed, because σ is evaluated on 

the same time interval. Thus, a plot Fig. 7.7 and Fig. 7.8, of σ(B1) versus the 

same number of turn is needed (that means different measurement time) in order 

to highlight the independency of the repeatability with respect to the number of 

turns. Fig.7.7a shows σ(B1), evaluated on the basis of the same number of turns 

(N=127). In this case, the measurement time decreases with the angular speed. 

As a further comparison, Fig.7.8 reports the σ  is not normalized by the number 

of turns (eq. 7.2) of the same measurement time. 

 
Figure 7.6: Standard deviation of the B1 mean versus angular speed 

It is noted that σ slightly increases as a function of the angular speed. However 

the increment is only 9 μT.  

In Fig. 7.9 and Fig. 7.10, the mean sextupole and decapole normal components, 

with a ± 3 σ bar, versus the angular speed are shown. The first evidence from the 
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plots is a functional dependence of the two field components by the angular 

speed.  

 The difference between the maximum and minimum values is about 0.069 

UNITS for b3 and 0.016. UNITS for b5. By increasing the angular speed, the 

amplitude of the coil signal increases. This could affect the accuracy of B1, b3, 

and b5 measurement. However, further investigations are needed. 

 
Figure 7.7: σ  (B1) as a function of angular speed (N variable) and time interval (N=127)  

The plot shows same behavior of σ(B1) on both cases, the differences are due to variation of the 
number of experiments carried out to compute the standard deviation of the mean. 

 

 
Figure 7.8: σ (B1(k)) as a function of the angular speed over the same measurement time 
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Figure 7.9: Sextupole component of LHC dipole versus angular speed at fixed FDIs gain 

Figures 7.11 and 7.12 show the standard deviation of the mean values of b3 and 

b5 turning out to be less than 0.0002 UNITS. 

 

 
Figure 7.10: Decapole component of LHC dipole versus angular speed at fixed gain 
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Figure 7.11: Standard deviation of the b3 mean versus angular speed 

 
Figure 7.12: Standard deviation of the b5 mean versus angular speed 

 In order to ensure proper results of the measurements, in Fig. 7.13 the 

behavior of the 11th harmonic at the specified angular speed is shown. The 11th 

harmonic is about 0.6 UNITS, in agreement to its typical value in an LHC 

dipole. 

 Fig. 7.14 and Fig.7.15 point out the normal and skew components of 

harmonics - from b2 to b11 and from a2 to a11 – like a function of elementary 
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units (acquisition on a single turn). A suitable level of stability and repeatability 

of the measurement system is proved. 

 

 
Figure 7.13: 8 11th component of LHC dipole measured  

versus several angular speed at fixed gain. 

(ii) Cross-check between angular speed and gain 

 

 The optimal operating conditions of FDI can be achieved by feeding up its 

Analog Digital Converter (ADC) with a fullscale signal. The parameters to be 

adjusted in order to ensure this condition are the angular speed of the shaft 

rotation and the gain of the FDIs. Only the gain of absolute signal was changed. 

The compensated signal amplitude at the measurement current of 1500 A, cannot 

reach the ADC full scale by applying the maximum gain and the maximum 

speed. Then, the gain is kept at its maximum value (100).  
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Figure 7.14: Normal components of the magnetic field  

in the second aperture of the MBBR 2427, measured with continuous acquisition at angular 
speed of 52.26 rad/s on the 5th segment of the new coil shaft, at 1500 A. 

 

 
Figure 7.15: Skew components of the magnetic field  

in the second aperture of the MBBR 242,7 measured with continuous acquisition at angular 
speed of 52.26 rad/s on the 5th segment of the new coil shaft, at +1500 A. 

 

 MDSL allows the above parameters to be easily changed in the user script. 

To understand the effects of the trade-off between the mechanical (effect of the 

speed increasing) and the electronic gain changing, four measurement tests were 

carried out. 
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 The angular speeds taken into account were 6.28, 12.56, 18.84, 25.13 rad/s, 

and the FDI gains for the absolute signal were respectively 10, 5, 4, 4. In such 

conditions the signal amplitude at ADC after the PGA is of Volts’ order. 

Such as done for the measurements at several angular speeds, the field 

components, B1, b3, b5, and b11, were depicted in the plots. 

In Fig. 7.16, the main components of the induction field versus the angular speed 

are shown, with a ± 3 σ bar. 

 

 
Figure 7.16: Main field component of LHC dipole 

 measured versus (Angular Speed, Gain) with fixed samples per turn and supply current. 

 The behaviour of the main field B1 versus (Angular Speed, gain) show a 

dispersion growing slightly according to the angular speed. In Fig. 7.17, the 

values of B1 for the two case studies at: FDI fixed and variable gain are shown. 

Their comparison highlights the compatibility among the two cases, and 

independence of the average field on the parameters. A first consideration is that 

the FDIs gain increasing at low speed can allow a better operation mode for the 

system. Less mechanical disturbs assuring a better using of the low noise FDIs 

amplifier. In Fig. 7.18, σ(B1) as a function of angular speed for fixed and 

variable FDIs gain is depicted. 
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Figure 7.17: Main field component of LHC dipole measured versus several angular speed 

 with fixed and variable gain. 
 

 In Fig. 7.19, the sextupole normal components of the magnetic induction 

field for fixed and variable FDI gain conditions are depicted. The effect of the 

electronic gain increasing is evident. In Fig. 7.20, the values of σ(b3), for fixed 

and variable gain measurement experiments, are depicted. Gain variations do not 

influence heavily the deviation of the mean, being 0.000019 UNITS the 

maximum difference. The standard deviations of b3 are less than 0.00018 

UNITS then, the average values show a good repeatability. 

The decapole components (Fig. 7.21) show a similar behavior. 

 

 
Figure 7.18: Standard deviation of the b3 mean versus angular speed 
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Figure 7.19: Sextupole component of LHC dipole measured 

, for fixed gain (red) and variable gain (black), versus Angular Speed; a ± 3 σ bar is displayed. 

 

 
Figure 7.20: σ  (b3) as a function of angular speed and measurement condition 
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Figure 7.21: Decapole component of LHC dipole measured 

 for fixed gain (red) and variable gain (black), Angular Speed; a ± 3 σ bar is displayed. 
 

The 11th component confirms the system measurements (Fig. 7.22). 

Figures 7.23 and 7.24 show the normal and skew components from 2nd to 11th 

order of fourteen measurement carried out at 25.12 rad/s and gain 4. The 

harmonics are characterised by high repeatability and stability. 

 

 
Figure 7.22: 11th harmonic versus Angular Speed for different FDIs gain  

a ± 3 σ bar is displayed. 

 

(iii) Repeatability on single turn acquisition 
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The other measurement procedure to check the repeatability is based on the 

acquisition of 30 single turns at a constant speed of 50.24 rad/s. The time 

interval between two sequential turns is about 5 s. 

In Fig 7.25, the mean of B1 is plotted versus the two FDIs gain used to carry out 

the 30 measurements of a single turn. The values are compatible and the 

repeatability is hold is 2.2 μ T. 

 In Figures 7.26 and 7.27, the normal and skew components versus the gain 

up to 11th are shown with a ± 3 σ bar. Both the plots summaries that the 

measurements at two different gains are compatible. The overall repeatability is 

about 0.03 UNITS. 

 
Figure 7.23: Normal components of the magnetic field in the second aperture 

 of the MBBR 2427,  measured with continuous acquisition at angular speed of 25.12 rad/s on 
the 5th segment of the new coil shaft, at 1500 A. 
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Figure 7.24: Skew components of the magnetic field in the second aperture 

 of the MBBR 2427,  measured with continuous acquisition at angular speed of 25.12 rad/s on 
the 5th segment of the new coil shaft, at +1500. 

 

 
Figure 7.25: Mean value of B1 over 30 measurements, a ± 3 σ bar is displayed 
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Figure 7.26: Mean values of the harmonic coefficients from b2 to b11  

(normal components) over 30 measurements at 1500 A, measured by the 5th segment of the shaft 
for two different FDIs gain (with ± 3 σ bar). 

 

 
Figure 7.27: Mean values of the harmonic coefficients from a2 to a11 

(skew components) over 30 measurements at 1500 A, measured by the 5th segment of the shaft 
for two different FDIs gain ( with ± 3 σ bar). 

 
7.8 Standard AC measurement for field quality  

 The aim of the field quality measurements on a LHC dipole is to confirm the 

empirical field model used in the main control system of the LHC operation 

(FIDEL) [Sammut, 9/2006], with the new fast acquisition equipment. Such 

empirical model can be validated by using the data from several measurements 
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cycle, namely “Loadline” and “LHC cycle” (also known as the “standard 

machine cycle”). 

 The Loadline cycle is employed in order to compute the DC magnetization 

terms of the field model. The LHC cycle aims at giving comprehensive data on 

the long term dynamic effects in a superconducting magnet (“decay” and 

“snapback”). The first measurement cycle taken into account was the standard 

LHC cycle. In the following are presented: 

1. The machine cycle. 

2. A description of the measurement procedure. 

3. Analysis and results of the decay and snapback. 

7.8.1 LHC machine cycle 

 Fig. 7.28 shows the standard LHC machine cycle. After a suitable pre-cycle 

the injection phase at the current of Iinj.=760 A lasts 1000 s. The particles are 

then accelerated and the magnet is ramped up to the nominal current of 

Inominal=11850 A, achieving a nominal dipole field of 8.33 T. The ramp current 

follows a Parabolic-Exponential-Linear-Parabolic (PELP) profile. 

 In the standard cold test program [Sanfilippo, 2002], the above LHC cycle is 

always preceded by a magnet training quench (a quench occurs when a part of 

the magnet coil passes from the superconducting to the resistive state due to the 

internal field; a training is a series of controlled provoked at several value of 

current caused by warming the magnet) and a pre-cycle to put the magnet in a 

well know magnetic state (such procedure aims to erase the magnetic powering 

history). Table VII.2 reports the parameters of the pre-cycle applied in the 

qualification of the MDSL prototype, where Imin.=350 A is the minimum value of 

the supply current during the cycle. 
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Figure 7.28: The standard reference machine cycl 

 

Parameter: ram-up Value Unit 
Final current Inominal A 
Acceleration 2.5 A/s2 
Linear ramp rate  50 A/s 
Deceleration 2.5 A/s2 

Exponential start time 0 s 
Parameters: Plateau   
Duration 300 s 
Current level Inominal A 
Parameter: ram-down   
Final current Imin A 
Acceleration 2.5 A/s2 
Linear ramp rate  50 A/s 
Deceleration 2.5 A/s2 

Exponential start time 0 s 
 

Table VII.2: Parameter for the power supply of the pre-cycle phase 

 

Table VII.3 reports the setting parameters for the supply current during the 

simulated machine cycle. 
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Parameter: ram-up from Imin to Iinj Value Unit 

Final current Iinjection A 

Acceleration 2 A/s2 

Linear ramp rate  10 A/s 

Deceleration 2 A/s2 

Exponential start time 0 s 

Parameters: Plateau at injection   

Duration 1000 s 

Current level Iinjection A 

Parameter: ram-up from Iinj to Inominal   

Final current Inominal A 

Acceleration 9*10-3 A/s2 

Linear ramp rate  10 A/s 

Deceleration 0.5 A/s2 

Exponential start time 325 s 

Parameters: Plateau at nominal    

Duration 300 s 

Current level Inominal A 

Parameter: ram-down from Inominal to Imin   

Final current Imin A 

Acceleration 2 A/s2 

Linear ramp rate  10 A/s 

Deceleration 2 A/s2 

Exponential start time 0 s 

 

Table VII.3: Parameters for the power supply of the standard machine cycle 

7.8.2 Measurement Procedure 

 The measurement of the magnetic flux in the magnet bore during a LHC 

cycle, namely from the injection plateau up to about Inominal, allows dynamic 

features of the superconducting magnet, such decay and snapback to be 

observed. In particular, the snapback is a fast phenomenon, thus the acquisition 

system has to deliver data as soon as possible in order to evaluate it accurately. 
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With this in mind, the qualification of the platform was set as following9: 

• covered current cycle: from the last phase of the pre-cycle ramp down 

(3000 A) to about the middle of the machine cycle ramp-up (6000 A); 

• 4 FDIs were employed in order to acquire the signals absolute and 

compensated from the coil segments 5th and 6th of the new shaft; 

• a FDI was employed to measure the current; 

• time interval of the measurement: 2000 s; 

• the chosen speed is 50.24 rad/s ( 8 turn/s maxim value); 

• samples per turn: 128. 

 

It is important to remark that the above setting parameters define a new limit for 

the rotating coil measurement with respect of the standard one. 

7.8.3 Analysis decay and snapback 

 As shown in the last years, the LHC superconducting magnets are 

characterized, during the phase of particle injection and subsequent ramp-up for 

the beam acceleration, by a drift and snapback of the sextupole (b3) and decapole 

(b5) components of internal field [Ambrosio, 2005]. 

 The field model, used to describe the different contribution on the generated 

field, associates the decay and snapback phenomena as a AC dynamic effect.The 

behaviour of b3 and b5 depends on supply current, ramp rate, and powering 

history of the superconducting magnet. These phenomena are highlighted by 

emulating LHC machine cycle has to be carried out. 

7.8.4 Results 

 In Fig. 7.29, the results of the harmonic analysis of the data from the MDSL 

qualification tests on the MBBR 2427 at SM18 are depicted: (1) main field 

component B1 and current versus time, (2) b3 normal sextupole component 

                                                 
9 The user script to carry out the machine cycle measurement can be found in Appendix 
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versus current, (3) b5 normal decapole component versus current. The decay and 

snapback are highlighted in (2) an (3). 

The analysis of snapback was focused on the b3 normal sextupole component. In 

particular, the exponential model to fit the measured values of the snapback is: 

ΔI
II

3
snapback
3

injection

eΔb(I)b
−

−
=    (eq. 7.5) 

The Δb3 and ΔI are the model parameters which have to be computed. 

The decay and snapback were extrapolated by means of the measured harmonic, 

a polynomial fitting of 6th order was employed to interpolate the named base line 

b3 (b3
baseline), as would be measured with no plateau at injection phase. The 

couple of current interval used to compute the base line are: [650,750], 

[850,870]. In Figures 7.30, the base line extracted from the data and the 

interpolating polynomial function is sown; while in Fig. 7.33, the b3 component 

superposed to the base line is depicted. 

 

 
Figure 7.29: Main dipole field in the second aperture of the MBBR 2427 

 in the FFMM qualification test, LHC cycle (top); supply current measured by FDI (bottom). 
 

In the current range considered, the base line fit does not show strong deviation 

from the real base line get by the measured data (Fig. 7.31). 
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Figure 7.30: Normal sextupole as a function of the supply current 

 the decay and snapback phase are highlighted. 
 

As the base line is available, the decay and snapback of b3 are isolated: 

 

b3
dacay,sanpbach = b3 - b3

baseline   (eq. 7.6) 

 

The careful base line fitting enable to look only to the desired b3 behaviours, 

b3
dacay,sanpbach , as showed in Fig. 7.33, 

The b3
dacay,sanpbach is used to compute the parameters for the exponential model of 

the snapback, by using the minimum square error method from about (>) 760 A 

up to 870 A. Fig. 7.34 and Fig. 7.35 show respectively the snapback and the 

exponential fitting in decimal and logarithm scale. 

 In order to ensure the correctness of the analysis, the correlation β3 factor 

between Δb3 and ΔI, defined as Δb3=β3ΔI, was computed. β3 results to be 0.1834 

UNITS/A, which is a value in according to the previous measurements carried 

out by the Hall-Plate based measurement system [Sammut, 4/2006], 

[Sammut,9/2006]. 
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Figure 7.31: Normal decapole as a function of the supply current 

 the decay and snapback phase are highlighted. 
 

 
Figure 7.32: b3 base line (blue) and polynomial fitting curve (red) 
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Figure 7.33: b3 Normal Sextupole (blue) superposed to the fitted b3 base line 

 

 
Figure 7.34: b3

dacay,sanpbach obtained by taking off the fitted base line curve 
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Figure 7.35: b3 snapback measured in the second aperture of the MBBR 2427  

during a standard LHC cycle for FFMM qualification test (blue), exponential fitting model 
computed from data (red). 

 
Figure 7.36: logarithm scale plot of the b3 snapback (blue) and the exponential fitting (red) 
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Conclusions  

 This thesis work has been devoted to introduce on the Measurement Domain 

Specific Language (MDSL) in FFMM which provide easy and flexible way to 

design software for magnetic measurement applications. The definition of test 

procedures, for the synchronization of the measurement tasks, and for the 

configuration of instruments is proposed. 

 FFMM has been developed with the aim of helping the user to write high 

quality code, in terms of flexibility, reusability, portability and efficiency. The 

test engineer needs to provide a formal description of the measurement 

procedure (script), in order to automatically generate executable measurement 

applications.  

 The formal description of the measurement procedure is to be provided in 

C++, and therefore requires knowledge of this programming language and its 

rules. In this thesis, a new easy Measurement Domain Specific Language 

(MDSL) is proposed. Such a language models the domain of interest and 

provides the user with easy programming tools capable of describing the 

measurement application, including specialized constructs concerning the 

automation of measurement procedures is proposed.  

 It provides not skilled programmers with a means for producing concise and 

bug free specific measurement applications. 

The results have shown at the software level advantages in terms both of 

accuracy and dynamic permormace, as well as ease of use, maintainability and 

reusability.  

Future work will be devoted to improve the existing software tools to cover 

more application scenarios. Furthermore, an intensive plan of magnetic 

measurements is planned in order to keep exploring the superconducting magnet 

behaviour by means of the new platform. A new Graphical User Interface will 

be also developed both for the test endineer and final user. Finelly, an intensive 
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improvement of the existing software tools to cover more application scenarios 

will be carried out. 
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APPENDIX 
 
Appendix A 
Script for magnetic bipole measurement in MDSL 
  
BEGIN_SCRIPT main_Permeability_measurement: 
 
    //*************************************/ 
    //Variable declaration 
    //*************************************/ 
    DEF_VAR Encoder_slot                AS int =13; 
    DEF_VAR Encoder_bus                 AS int = 4; 
    DEF_VAR Encoder_Channel             AS int =1; 
    DEF_VAR Encoder_mode                AS int =1; 
    DEF_VAR Encoder_freq                AS float =2048; 
    DEF_VAR Multimeter_intfNum          AS int =0; 
    DEF_VAR Multimeter_busAddress       AS int =16; 
    DEF_VAR Multimeter_timeout          AS int =100; 
    DEF_VAR numberOf_FDI                AS int =2; 
    DEF_VAR surceStop                   AS int =1;    
    DEF_VAR Cluster_abs_gain_           AS float =1.0; 
    DEF_VAR Cluster_comp_gain_          AS float =1.0; 
    DEF_VAR SamplePerTurn               AS int =1024; 
    DEF_VAR numberOfTurn                AS int =4; 
    DEF_VAR AcquisitionBufferSize       AS int ; 
    DEF_VAR Daq_channel_name            AS string = "AO_Ch"; 
    DEF_VAR Daq_task_name               AS string ="Trap_G"; 
    DEF_VAR Daq_channel                 AS int =0; 
    DEF_VAR Daq_timeOut                 AS int =200; 
    DEF_VAR Daq_generatioMode           AS int =0; 
    DEF_VAR Daq_sample_rate             AS float =1000; 
    DEF_VAR Daq_minVolt                 AS int =-10; 
    DEF_VAR Daq_maxVolt                 AS int =10; 
    DEF_VAR epsC                        AS float =0.1; 
    DEF_VAR measurementCycle            AS int =0;        
    DEF_VAR spt                         AS int =0; 
    DEF_VAR spt2                        AS int =0;    
    DEF_ARRAY Cluster_bus     OF int   [2]={4,4};  
    DEF_ARRAY Cluster_slot    OF int   [2]={11,12};           
    DEF_ARRAY plateaux        OF float [38]= {0, -0.1,0.1,-0.2,0.2,-0.3,0.3,-
0.4,0.4,-0.5,0.5,-0.6,0.6,-0.7,0.7,-0.8,0.8,-0.9,0.9,-1,1,-1.2,1.2,-1.4,1.4,-
1.6,1.6,-1.8,1.8,-2,2,-3,3,-5,5,-10,10,0};    
  
   
 //*************************************/ 
    //Variable assignement 
    //*************************************/ 
    AcquisitionBufferSize = numberOf_FDI*( SamplePerTurn/2)*4*2; 
    //*************************************/ 
    // Device Definition 
    //*************************************/ 
    DEF ENCODER_BOARD:  Enc_B      WITH ( "1" , "1","CERN" ) ; 
    DEF FDI_CLUSTER:    Cluster_1  WITH (numberOf_FDI  );  
    DEF KEITHLEY2K:     Mult_M     WITH ( "1", "2", "NI") ; 
    DEF DAQMX:          NI_Daq     WITH ( "1", "2", "NI") ; 
    //*************************************/ 
    // Device Configuration 
    //*************************************/ 
    CFG ENCODER_BOARD: Enc_B       WITH ( Encoder_bus , Encoder_slot ) ; 
    CFG FDI_CLUSTER:   Cluster_1   WITH ( Cluster_bus , Cluster_slot ) ; 
    CFG KEITHLEY2K:    Mult_M      WITH ( Multimeter_intfNum, 
Multimeter_busAddress, Multimeter_timeout ); 
    CFG DAQMX:         NI_Daq      WITH ( Daq_channel_name, Daq_task_name, 
Daq_channel,  Daq_timeOut, Daq_generatioMode  ); 
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    //*************************************/ 
    // Device Setting 
    //*************************************/ 
    CMD FDI_CLUSTER: Reset ( Cluster_1, 0); 
    CMD FDI_CLUSTER: Reset ( Cluster_1, 1);  
    spt1 = (SamplePerTurn*numberOfTurn); 
    spt2 = SamplePerTurn/2; 
    SET FDI_CLUSTER: Params2 ( Cluster_1, spt1, SamplePerTurn, Cluster_abs_gain_, 
Cluster_comp_gain_, CONT, 500000, spt2,10); 
    SET FDI_CLUSTER: Stop_Source ( Cluster_1, surceStop); 
   // SET ENCODER_BOARD: Synthetic_Trigger( Encoder_Channel , Encoder_mode, 
Encoder_freq ) ;  
    SET DAQMX:   VoltageRangeOutputChannel ( NI_Daq, Daq_minVolt, Daq_maxVolt); 
    CPP_CODE_START   " Mult_M->setMeasurementFunction(Func::DCV); "     
CPP_CODE_END 
    CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 0, 1.0);     
    CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 1, 1.0); 
    //*************************************/ 
    // Measurement Task Definition 
    //*************************************/ 
    BEGIN_MTASK test_da_cancellare: 
    FOR i = 1 TO 5 : 
     spt = SamplePerTurn*numberOfTurn; 
    ENDFOR 
    END_MTASK 
    //-----------------------------------     
    BEGIN_MTASK Demagnetization_Procedure: 
    //----------------------------------- 
         // Task variable and array declaration 
         DEF_VAR old_plateau         AS float; 
         DEF_VAR plateau             AS float = 2.5; 
         DEF_VAR timePlateau         AS float = 4; 
         DEF_VAR value1              AS float = 0.5; 
         DEF_VAR value2              AS float = 0.021; 
         DEF_VAR PS_resolution       AS float; 
         DEF_VAR demagnetized        AS int   = 0; 
         DEF_VAR numOfSamples        AS int; 
         // Task actions 
      PS_resolution = 20/65536;  
      USE DAQMX: NI_Daq;  
      //DAQmx* NI_Daq = DAQmx::getDeviceIstance(DAQM); 
      CPP_CODE_START " 
         double*  signal; 
         signal = NI_Daq->createPlat(0,0.01,Daq_sample_rate,&numOfSamples); 
         " CPP_CODE_END 
      SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
      CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
      CMD DAQMX: Wait_Generation (NI_Daq); 
         CPP_CODE_START " signal = NI_Daq-
>createPlat(0,timePlateau,Daq_sample_rate,&numOfSamples); " CPP_CODE_END 
         SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
      CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
      CMD DAQMX: Wait_Generation (NI_Daq); 
         CPP_CODE_START " signal = NI_Daq->createRamp(0, plateau, 1.5, 
Daq_sample_rate, &numOfSamples); " CPP_CODE_END 
         SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
      CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
      CMD DAQMX: Wait_Generation (NI_Daq); 
         WHILE (demagnetized==0): 
         CPP_CODE_START " signal = NI_Daq-
>createPlat(plateau,timePlateau,Daq_sample_rate,&numOfSamples); " CPP_CODE_END  
            SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
         CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples );         
         CPP_CODE_START " std::cout<<plateau*4<<endl; "  CPP_CODE_END                 
            CMD DAQMX: Wait_Generation (NI_Daq); 
            IF (plateau >= value1): 
        old_plateau = plateau; 
        plateau = plateau/1.5; 
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       ELSEIF  (plateau >= value2): 
            old_plateau = plateau; 
            plateau = plateau/1.2; 
           ELSE: 
            old_plateau = plateau; 
            plateau = plateau/1.1; 
       ENDIF 
         CPP_CODE_START  " signal = NI_Daq->createRamp(old_plateau, -plateau, 
1.5, Daq_sample_rate, &numOfSamples); "  CPP_CODE_END          
            SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
          CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
           CMD DAQMX: Wait_Generation (NI_Daq);  
          
         CPP_CODE_START " signal = NI_Daq->createPlat(-
plateau,timePlateau,Daq_sample_rate,&numOfSamples); " CPP_CODE_END         
            SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
          CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
           CMD DAQMX: Wait_Generation (NI_Daq);  
         CPP_CODE_START " signal = NI_Daq->createRamp(-plateau, plateau, 1.5, 
Daq_sample_rate, &numOfSamples); " CPP_CODE_END         
            SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
          CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
           CMD DAQMX: Wait_Generation (NI_Daq);  
       IF (plateau <= 0.001): 
           demagnetized = 1; 
       ENDIF 
      ENDWHILE 
          
         CPP_CODE_START " signal = NI_Daq-
>createPlat(0,0.01,Daq_sample_rate,&numOfSamples); " CPP_CODE_END             

SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
CMD DAQMX: Wait_Generation (NI_Daq);  
PRINT "Demagnetization completed"  ;       

    END_MTASK 
    //-----------------------------------     
    BEGIN_MTASK Flux_Measurement: 
    //-----------------------------------     
         PRINT "Start Flux_Measurement" ;       
         USE FDI_CLUSTER:    Cluster_1; 
         USE ENCODER_BOARD:  Enc_B; 
      CMD FDI_CLUSTER: Acquisition (Cluster_1, 
path_name,AcquisitionBufferSize, 2);  
      WAIT 3000 ms; 
      CMD ENCODER_BOARD: Start_Syntetic_Trigger (Enc_B,Encoder_Channel ); 
         WAIT 3000 ms; 
         TRIG_EVENT start_ramp ;   
      CMD FDI_CLUSTER: Wait_Acquisition (Cluster_1); 
     
    END_MTASK 
    //-----------------------------------         
    BEGIN_MTASK Begin_Measurement_Procedure: 
    //-----------------------------------     
         DEF_VAR numOfSamples AS int; 
         CPP_CODE_START "double*  signal;" CPP_CODE_END  
         PRINT "Start Begin_Measurement_Procedure";    
      USE DAQMX: NI_Daq; 
         CPP_CODE_START "signal = NI_Daq-
>createRamp(plateaux[measurementCycle]/4, plateaux[measurementCycle+1]/4, 1.5, 
Daq_sample_rate, &numOfSamples);" CPP_CODE_END  
         SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
         CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
         CMD DAQMX: Wait_Generation (NI_Daq);                                       
      WAIT 200 ms; 
    END_MTASK  
    //-----------------------------------         
    BEGIN_MTASK Set_Next_Measurement: 
    //-----------------------------------     
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         DEF_VAR numOfSamples AS int; 
      measurementCycle=measurementCycle+1; 
      CPP_CODE_START "    
         double*  signal; 
      std::cout<<std::endl; 
      std::cout<<measurementCycle<<std::endl; 
         " CPP_CODE_END 
         WAIT 200 ms;     
      IF (measurementCycle <= 37): 

TRIG_EVENT start_ramp; 
      ELSE: 
       USE DAQMX:         NI_Daq; 
       USE FDI_CLUSTER:   Cluster_1; 
       USE ENCODER_BOARD: Enc_B;  
  CMD DAQMX: ZeroOutput(NI_Daq);  
          CPP_CODE_START "signal = NI_Daq-
>createRamp(plateaux[measurementCycle], 0, 1.5, Daq_sample_rate, &numOfSamples);" 
CPP_CODE_END             

SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples); 
CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples ); 
CMD DAQMX: Wait_Generation (NI_Daq);                                       
CMD FDI_CLUSTER: Stop_Acquisition (Cluster_1); 
WAIT 3000 ms; 
CMD ENCODER_BOARD: Stop_Syntetic_Trigger (Enc_B, Encoder_Channel) ; 
PRINT "End Permeability measurement session";  

      ENDIF  
    END_MTASK     
    //-----------------------------------         
    BEGIN_MTASK Conversion: 
    //-----------------------------------     
         CPP_CODE_START " DataConversionByn2Ascii(path_name.c_str(),(int) 
SamplePerTurn/2, numberOf_FDI, 0);" CPP_CODE_END 
    END_MTASK 
    ADD_TASK Demagnetization_Procedure ; 
    ADD_TASK_AFTER_TASK Demagnetization_Procedure Flux_Measurement; 
    ADD_TASK_AFTER_EVENT start_ramp Begin_Measurement_Procedure    ; 
    ADD_TASK_AFTER_TASK Begin_Measurement_Procedure Set_Next_Measurement; 
    ADD_TASK_AFTER_TASK Flux_Measurement Conversion; 
END_SCRIPT 

 
Appendix B  
xTxt  
 
//////////////////////////////////////////////////////////////////// 
// Basic syntax (START) 
//////////////////////////////////////////////////////////////////// 
Script: 
"BEGIN_SCRIPT" scriptName=ID ":" 
 (scriptDeclarations+=Declarations)* 
 (scriptAssignements+=ScriptAssignement)* 
 (scriptDeviceDefinitions+=Definition_Statement)* 
 (scriptDeviceConfigurations+=ConfigurationStatement)* 
 (scriptDeviceSettings+=DeviceSetting)* 
 (mtasks+=MTask)* 
 (taskExecutionStatements+=TaskExecutionStatement)* 
 //(rts=RunTaskSequence_) 
"END_SCRIPT"; 
 
ScriptAssignement: 
 (ast=AssignStatement | cpp=CppCode); 
 
DeviceSetting: 
 cmds=CommandStatement  | sets=SettingStatement | gets=GettingStatement | 
uses=Use_Statement | 
 cppCode=CppCode   | ast=AssignStatement; 
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MTask: 
"BEGIN_MTASK" mtaskName=ID (mtaskDesc=STRING)? ":" 
 (taskDeclarations+=Declarations)* 
 (taskAction+=GenericStatement)* 
"END_MTASK"; 
 
GenericStatement: 
 cmds=CommandStatement  | sets=SettingStatement | gets=GettingStatement | 
uses=Use_Statement|  
 cpp=CppCode    | ast=AssignStatement | 
 fst=ForStatement   | wst=WhileStatement  | ist=IfStatement  | 
ust=Util_Statement; 
Util_Statement: 
print=Print_ | delay=Delay_ | trigEvent=TrigEvent_; 
 
TrigEvent_: 
"TRIG_EVENT" eventName=ID ";"; 
 
TaskExecutionStatement: 
at=AddTask_ | atat=AddTaskAfterTask_ | atae=AddTaskAfterEvent_; 
 
AddTask_: 
"ADD_TASK" taskName=ID ";"; 
 
AddTaskAfterTask_: 
"ADD_TASK_AFTER_TASK" task1Name=ID task2Name=ID";"; 
AddTaskAfterEvent_: 
"ADD_TASK_AFTER_EVENT" eventName=ID taskName=ID";"; 
Print_: 
"PRINT" text=STRING ";"; 
Delay_: 
"WAIT" time=T_INT "ms" ";"; 
ForStatement: 
"FOR" varName=ID"="startValue=T_INT "TO" finalValue=T_INT ":" 
    (forStatements+=GenericStatement)* 
"ENDFOR";  
WhileStatement: 
"WHILE" cond=Expression ":" 
    (whileStatements+=GenericStatement)* 
"ENDWHILE"; 
IfStatement: 
"IF" cond=Expression ":" 
    (ifStatements+=GenericStatement)* 
("ELSEIF" elseIfCond=Expression ":" (elseIfStatements+=GenericStatement)*)*  
("ELSE:" (elseStatements+=GenericStatement)*)? 
"ENDIF"; 
CppCode: 
"CPP_CODE_START" 
 code=STRING 
"CPP_CODE_END"; 
//////////////////////////////////////////////////////////// 
///     Assignment   /////////////////////////////////////// 
//////////////////////////////////////////////////////////// 
AssignStatement: 
varName=ID "=" (singAss=SingleAssignStatement | arrAss=ArrayAssignStatement | 
funcAss=FuncAssignStatement); 
FuncAssignStatement: 
value=GettingStatement; 
SingleAssignStatement: 
value=Expression ";"; 
ArrayAssignStatement: 
"{" value1=Expression ("," value+=Expression)* "}" ";"; 
//////////////////////////////////////////////////////////// 
/// End Assignment   /////////////////////////////////////// 
//////////////////////////////////////////////////////////// 
///     Declarations /////////////////////////////////////// 
//////////////////////////////////////////////////////////// 
Declarations: 
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(vd=VarDeclarations | ad=ArrayDeclarations); 
VarDeclarations: 
"DEF_VAR" name=ID "AS" type=DataType ("="value=Literal)?";"; 
ArrayDeclarations: 
"DEF_ARRAY" name=ID "OF" type=DataType  "[" (size=T_INT)? "]" ("=" "{" 
Value=Expression ("," Value2+=Expression)* "}" )?";"; 
//////////////////////////////////////////////////////////// 
/// End Declarations /////////////////////////////////////// 
//////////////////////////////////////////////////////////// 
Expression: 
exprval=  EqualityExpr; 
EqualityExpr: 
left=CondORExpr (op=EqualityOp right=CondORExpr)?; 
CondORExpr: 
left=CondANDExpr ( rights+=CondORRights)*; 
CondORRights: 
op=OrOp right=CondANDExpr; 
CondANDExpr: 
left=AtomicBoolExpr ( rights+=CondANDRights)*; 
CondANDRights: 
op=AndOp right=AtomicBoolExpr; 
AtomicBoolExpr: 
rex=RelationalExpr; 
RelationalExpr: 
left=AdditiveExpr (op=RelationalOp right=AdditiveExpr)?; 
AdditiveExpr: 
left=MultiplicativeExpr ( rights+=AdditiveRights)*; 
AdditiveRights: 
op=AdditiveOp right=MultiplicativeExpr; 
MultiplicativeExpr: 
left=AtomicExpr ( rights+=MultiplicativeRights)*; 
MultiplicativeRights: 
op=MultiplicativeOp right=AtomicExpr; 
AtomicExpr: 
var=Variable_ | lit=Literal | parexp= ParenExpr; 
Variable_: 
name=ID | arrayElement=ID"["index=T_INT"]"; 
ParenExpr: 
"(" expr=EqualityExpr ")"; 
Param: 
var=ID | value=Literal; 
Literal: 
intl=Integer_ | fltl=Float_ | strl=String_; 
Native INT:  
""; 
Native T_INT:  
"('-')?('0'..'9')+('.' ('0'..'9')+)?"; 
Float_: 
number=T_INT; 
Integer_: 
number=T_INT; 
String_: 
value=STRING; 
Enum MultiplicativeOp: //Lvl3 
TIMES = "*" | 
DIVIDE = "/" | 
MOD = "%"; 
Enum AdditiveOp: //Lvl2 
PLUS = "+" | MINUS = "-"; 
Enum RelationalOp: 
LT = "<" | 
LE = "<=" | 
GT = ">" | 
GE = ">="; 
Enum EqualityOp: 
EQ = "==" | 
NE = "!="; 
Enum OrOp: 
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OR = "||"; 
Enum AndOp: 
AND = "&&"; 
Enum DataType: 
int="int"| short="short"| long="long"| float="float"| string="string"; 
//////////////////////////////////////////////////////////////////// 
// Basic syntax (END) 
//////////////////////////////////////////////////////////////////// 
// Devices syntax (START) 
//////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////// 
Definition_Statement: 
 "DEF" (   
  eb_defs = Def_EncoderBoard_  
 |  fdic_defs = Def_FdiCluster_ 
 |  key2_defs = Def_Keithley2k_  
 |  daq_defs = Def_DAQmx_  
 |  lvp_defs = Def_LVPowerSupply_  
 | max_defs = Def_Maxon_Epos_ 
 | mmc_defs = Def_MidiMotorController_  
 | omrk_defs = Def_OrientalMotorRK_ 
 | pcu_defs = Def_PCU2000_ 
 | powco_defs = Def_Power_Controller_ 
 ) ";"; 
ConfigurationStatement: 
 "CFG" (   
  eb_confs = Cfg_EncoderBoard_  
 |  fdic_confs = Cfg_FdiCluster_ 
 |  hey2_confs = Cfg_Keithley2k_   
 |  daq_confs = Cfg_DAQmx_     
 |  lvp_confs = Cfg_LVPowerSupply_  
 | max_confs = Cfg_Maxon_Epos_ 
 | mmc_confs = Cfg_MidiMotorController_  
 | omrk_confs = Cfg_OrientalMotorRK_ 
 | pcu_confs = Cfg_PCU2000_ 
 |  powco_confs = Cfg_Power_Controller_ 
 ) ";"; 
CommandStatement: 
 "CMD" (   
  eb_cmds=Cmd_EncoderBoard_ 
 |  fdic_cmds=Cmd_FdiCluster_ 
 |  key2_cmds = Cmd_Keithley2k_  
 |  daq_cmds = Cmd_DAQmx_ 
 |  lvp_cmds = Cmd_LVPowerSupply_ 
 | max_cmds = Cmd_Maxon_Epos_ 
 | mmc_cmds = Cmd_MidiMotorController_ 
 | omrk_cmds = Cmd_OrientalMotorRK_ 
 | pcu_cmds = Cmd_PCU2000_ 
 | powco_cmds = Cmd_Power_Controller_ 
 ) ";"; 
SettingStatement: 
 "SET" (   
  eb_sets = Set_EncoderBoard_ 
 |  fdic_sets = Set_FdiCluster_ 
 |  key2_sets = Set_Keithley2k_ 
 |  daq_sets = Set_DAQmx_ 
 |  lvp_sets = Set_LVPowerSupply_  
 | max_sets = Set_Maxon_Epos_ 
 | mmc_sets = Set_MidiMotorController_  
 | omrk_sets = Set_OrientalMotorRK_ 
 | pcu_sets = Set_PCU2000_ 
 | powco_sets = Set_Power_Controller_ 
 ) ";"; 
GettingStatement: 
 "GET"  
 (   
  eb_gets = Get_EncoderBoard_ 
 |  fdic_Gets = Get_FdiCluster_  
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 | key2_Gets = Get_Keithley2k_ 
 |  daq_Gets = Get_DAQmx_  
 | lvp_Gets = Get_LVPowerSupply_  
 | max_Gets = Get_Maxon_Epos_ 
 | mmc_Gets = Get_MidiMotorController_  
 | omrk_Gets = Get_OrientalMotorRK_ 
 | pcu_Gets = Get_PCU2000_ 
 | powco_Gets = Get_Power_Controller_ 
 ) ";";  
Use_Statement: 
 "USE" (   
  eb_uses = Use_EncoderBoard_  
 |  fdic_uses = Use_FdiCluster_ 
 |  key2_uses = Use_Keithley2k_  
 |  daq_uses = Use_DAQmx_  
 |  lvp_uses = Use_LVPowerSupply_  
 | max_uses = Use_Maxon_Epos_ 
 | mmc_uses = Use_MidiMotorController_  
 | omrk_uses = Use_OrientalMotorRK_ 
 | pcu_uses = Use_PCU2000_ 
 | powco_uses = Use_Power_Controller_ 
 ) ";";  
  
Method_Signature_: 
  cmd=ID "(" name=ID ("," params+=Param)* ")"; 
    
//////////////////////////////////////////////////////////////////// 
// Devices syntax(END) 
//////////////////////////////////////////////////////////////////// 
// EncoderBoard syntax (START) 
//////////////////////////////////////////////////////////////////// 
//EncoderBoard Definition  
Def_EncoderBoard_: 
 "ENCODER_BOARD:" name=ID  
("WITH""("mod=Param","ser_num=Param","man=Param")")?; 
 // static EncoderBoard* createDevice( std::string name ); 
 // static EncoderBoard* createDevice( std::string name, std::string mod, 
std::string ser_num, std::string man); 
//EncoderBoard Using  
Use_EncoderBoard_: 
 "ENCODER_BOARD:" name=ID; 
 // "DAQmx* NI_Daq = DAQmx::getDeviceIstance(DAQM);" 
//EncoderBoard Configuration  
Cfg_EncoderBoard_: 
 "ENCODER_BOARD:" name=ID"WITH""("bus=Param","slot=Param 
(","(sp=Param)?(","(remap=Param)?(","(ac=Param)?)?)?)?")"; 
//EncoderBoard Command  
Cmd_EncoderBoard_: 
 "ENCODER_BOARD:" sig=Method_Signature_; 
//EncoderBoard Command  
Set_EncoderBoard_: 
 "ENCODER_BOARD:" sig=Method_Signature_; 
//EncoderBoard Command  
Get_EncoderBoard_: 
 "ENCODER_BOARD:" sig=Method_Signature_; 
//////////////////////////////////////////////////////////////////// 
// EncoderBoard syntax (END) 
//////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////// 
. 
. 
. 
. 
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Appendix C 
xPand  

 
«IMPORT mydsl» 
«DEFINE main FOR Script» 
«FILE scriptName + ".cpp"» 
//Script name: «scriptName».cpp 
#include "core/utils/DynamicParameter.h" 
«FOREACH scriptDeviceDefinitions AS e-» 
«EXPAND DevicesIncludeArea FOR e-»  
«ENDFOREACH-» 
//////////////////////////////////////////// 
// DECLARATION 
//////////////////////////////////////////// 
// Script devices name 
«FOREACH scriptDeviceDefinitions AS e-» 
«EXPAND DevicesNameArea FOR e-»  
«ENDFOREACH-» 
// Script variable and array 
«FOREACH scriptDeclarations AS var-» 
«IF var.vd != null-»«EXPAND VarDeclarationArea FOR var.vd-» 
«ELSEIF var.ad != null-»«EXPAND ArrayDeclarationArea FOR var.ad-»«ENDIF-» 
«ENDFOREACH-» 
//////////////////////////////////////////// 
// ASSIGNMENT 
//////////////////////////////////////////// 
«FOREACH scriptAssignements AS e-» 
«IF e.ast != null-»«EXPAND AssignStatArea FOR e.ast-» 
«ELSEIF e.cpp != null-»«EXPAND CppCodeArea FOR e.cpp-»«ENDIF-» 
«ENDFOREACH-» 
BEGINSCRIPT 
//*************************************/ 
//Dynamic parameters                  */ 
//*************************************/ 
//Create the devices                  */ 
//*************************************/ 
DEVICE_CREATION 
«FOREACH scriptDeviceDefinitions AS e-» 
«EXPAND DevicesCreationArea FOR e-»  
«ENDFOREACH-» 
END_DEVICE_CREATION 
//*************************************/ 
//Configure the devices               */ 
//*************************************/ 
DEVICE_CONFIGURATION 
«FOREACH scriptDeviceConfigurations AS e-» 
«EXPAND DevicesConfigurationArea FOR e-»  
«ENDFOREACH-» 
END_DEVICE_CONFIGURATION 
//*************************************/ 
//Set the devices                     */ 
//*************************************/ 
SET_DEVICE 
«FOREACH scriptDeviceSettings AS e-» 
«EXPAND DeviceSettingArea FOR e-»  
«ENDFOREACH-» 
END_DEVICE_SETTING 
//*************************************/ 
//Define tasks                        */ 
//*************************************/ 
«FOREACH mtasks AS mtask -» 
«EXPAND MTaskDefinitionArea FOR mtask -» 
«ENDFOREACH-» 
//*************************************/ 
//Define execution graph              */ 
//*************************************/ 
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«FOREACH taskExecutionStatements AS es -» 
«EXPAND TaskExecutionStatementArea FOR es -» 
«ENDFOREACH-» 
RUN_TASK_SEQUENCE 
//Delete Devices 
«FOREACH scriptDeviceDefinitions AS e-» 
«EXPAND DevicesDeleteArea FOR e-»  
«ENDFOREACH-» 
ENDSCRIPT 
«ENDFILE» 
«ENDDEFINE» 
«REM» ---------------------------------------------------------  «ENDREM» 
«REM» ------------------------ MTASKS -------------------------  «ENDREM» 
«REM» ---------------------------------------------------------  «ENDREM» 
«REM» MTask Definition Area «ENDREM» 
«DEFINE MTaskDefinitionArea FOR MTask» 
/*«mtaskDesc»*/ 
BEGIN_TASK(«mtaskName») 
// Task variable and array 
«FOREACH taskDeclarations AS var-» 
«IF var.vd != null-»«EXPAND VarDeclarationArea FOR var.vd-» 
«ELSEIF var.ad != null-»«EXPAND ArrayDeclarationArea FOR var.ad-»«ENDIF-» 
«ENDFOREACH-» 
// Task actions 
«FOREACH taskAction AS e -» 
«EXPAND GenericStatementArea FOR e-» 
«ENDFOREACH-» 
END_TASK 
«ENDDEFINE» 
 
«REM» Generic Statement Area «ENDREM» 
«DEFINE GenericStatementArea FOR GenericStatement-» 
«IF (fst != null) -»«EXPAND ForStatementArea FOR fst -» 
«ELSEIF (wst != null) -»«EXPAND WhileStatementArea FOR wst-» 
«ELSEIF (ast != null) -»«EXPAND AssignStatArea FOR ast-» 
«ELSEIF (ist != null) -»«EXPAND IfStatementArea FOR ist-» 
«ELSEIF (cmds != null)-»«EXPAND CommandStatementArea FOR cmds-» 
«ELSEIF (sets != null)-»«EXPAND SettingStatementArea FOR sets-» 
«ELSEIF (gets != null)-»«EXPAND GettingStatementArea FOR gets-» 
«ELSEIF (uses != null)-»«EXPAND Use_StatementArea FOR uses-» 
«ELSEIF (cpp  != null)-»«EXPAND CppCodeArea FOR cpp-» 
«ELSEIF (ust  != null)-»«EXPAND Util_StatementArea FOR ust-» 
«ENDIF-» 
«ENDDEFINE» 
«REM» Util Statement Area «ENDREM» 
«DEFINE Util_StatementArea FOR Util_Statement-» 
«IF  (print != null) -»«EXPAND Print_Area FOR print -» 
«ELSEIF (delay != null) -»«EXPAND Delay_Area FOR delay-» 
«ELSEIF (trigEvent != null) -»«EXPAND TrigEvent_Area FOR trigEvent-» 
«ENDIF-» 
«ENDDEFINE» 
«REM» Print Area «ENDREM» 
«DEFINE Print_Area FOR Print_-» 
environment->console->writeln("«text»"); 
«ENDDEFINE» 
«REM» Delay Area «ENDREM» 
«DEFINE Delay_Area FOR Delay_-» 
delay(«time»); 
«ENDDEFINE» 
«REM» TrigEvent Area «ENDREM» 
«DEFINE TrigEvent_Area FOR TrigEvent_-» 
TRIG_EVENT(«eventName»); 
«ENDDEFINE» 
«REM» For Statement Area «ENDREM» 
«DEFINE ForStatementArea FOR ForStatement-»for ( int «varName» = «startValue»; 
«varName» <= «finalValue»; «varName»++) 
{ 
«EXPAND GenericStatementArea FOREACH  forStatements-»  
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} 
«ENDDEFINE» 
«REM» While Statement Area «ENDREM» 
«DEFINE WhileStatementArea FOR WhileStatement-» 
while «EXPAND ExpressionArea FOR cond»  
{ 
«EXPAND GenericStatementArea FOREACH whileStatements-» 
} 
«ENDDEFINE» 
«REM» If Statement Area «ENDREM» 
«DEFINE IfStatementArea FOR IfStatement-» 
if «EXPAND ExpressionArea FOR cond»  
{ 
«EXPAND GenericStatementArea FOREACH  ifStatements-» 
} 
«IF elseIfCond!=null-» 
else if «EXPAND ExpressionArea FOR elseIfCond» 
{ 
«EXPAND GenericStatementArea FOREACH  elseIfStatements-» 
} 
«ENDIF-» 
«IF elseStatements.isEmpty!=true-» 
else  
{ 
«EXPAND GenericStatementArea FOREACH  elseStatements-» 
} 
«ENDIF-» 
«ENDDEFINE» 
«REM» Cpp Code Area «ENDREM» 
«DEFINE CppCodeArea FOR CppCode-»«code» 
«ENDDEFINE» 
 
«REM» Add Task Area «ENDREM» 
«DEFINE AddTask_Area FOR AddTask_-» 
ADD_TASK(«taskName») 
«ENDDEFINE» 
 
«REM» Add Task After Task Area «ENDREM» 
«DEFINE AddTaskAfterTask_Area FOR AddTaskAfterTask_-» 
ADD_TASK_AFTER_TASK(«task1Name»,«task2Name») 
«ENDDEFINE» 
 
«REM» Add Task After Event Area «ENDREM» 
«DEFINE AddTaskAfterEvent_Area FOR AddTaskAfterEvent_-» 
ADD_TASK_AFTER_EVENT(«eventName»,«taskName») 
«ENDDEFINE» 
. 
. 
. 
. 
«REM» ---------------------------------------------------------  «ENDREM» 
«REM» ---------------------------------------------------------  «ENDREM» 
«REM» ------------------------ DEVICES ------------------------  «ENDREM» 
«REM» ---------------------------------------------------------  «ENDREM» 
 
«REM» Devices Include Area «ENDREM» 
«DEFINE DevicesIncludeArea FOR Definition_Statement-» 
«IF eb_defs!=null-»«EXPAND EncoderBoard_IncludeDirective FOR eb_defs-» 
«ELSEIF daq_defs!=null-»«EXPAND DAQ_IncludeDirective FOR daq_defs-» 
«ELSEIF fdic_defs!=null-»«EXPAND FdiCluster_IncludeDirective FOR fdic_defs-» 
«ELSEIF key2_defs!=null-»«EXPAND Keithley2k_IncludeDirective FOR key2_defs-» 
«ELSEIF lvp_defs!=null-»«EXPAND LVPowerSupply_IncludeDirective FOR lvp_defs-» 
«ELSEIF max_defs!=null-»«EXPAND Maxon_Epos_IncludeDirective FOR max_defs-» 
«ELSEIF mmc_defs!=null-»«EXPAND MidiMotorController_IncludeDirective FOR 
mmc_defs-» 
«ELSEIF omrk_defs!=null-»«EXPAND OrientalMotorRK_IncludeDirective FOR omrk_defs-» 
«ELSEIF powco_defs!=null-»«EXPAND Power_Controller_IncludeDirective FOR 
powco_defs-» 
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«ENDIF -» 
«ENDDEFINE» 
 
«REM» Devices Name Area «ENDREM» 
«DEFINE DevicesNameArea FOR Definition_Statement-» 
«IF eb_defs!=null-»«EXPAND EncoderBoard_NameDeclaration FOR eb_defs-» 
«ELSEIF daq_defs!=null-»«EXPAND DAQ_NameDeclaration FOR daq_defs-» 
«ELSEIF fdic_defs!=null-»«EXPAND FdiCluster_NameDeclaration FOR fdic_defs-» 
«ELSEIF key2_defs!=null-»«EXPAND Keithley2k_NameDeclaration FOR key2_defs-» 
«ELSEIF lvp_defs!=null-»«EXPAND LVPowerSupply_NameDeclaration FOR lvp_defs-» 
«ELSEIF max_defs!=null-»«EXPAND Maxon_Epos_NameDeclaration FOR max_defs-» 
«ELSEIF mmc_defs!=null-»«EXPAND MidiMotorController_NameDeclaration FOR mmc_defs-
» 
«ELSEIF omrk_defs!=null-»«EXPAND OrientalMotorRK_NameDeclaration FOR omrk_defs-» 
«ELSEIF pcu_defs!=null-»«EXPAND PCU2000_NameDeclaration FOR pcu_defs-» 
«ELSEIF powco_defs!=null-»«EXPAND Power_Controller_NameDeclaration FOR 
powco_defs-» 
«ENDIF -» 
«ENDDEFINE» 
. 
. 
. 
 
«REM» ---------------------------------------------------------  «ENDREM» 
«REM» ---------------------------------------------------------  «ENDREM» 
«REM» --------------------- ENCODER BOARD ---------------------  «ENDREM» 
«REM» ---------------------------------------------------------  «ENDREM» 
«DEFINE EncoderBoard_IncludeDirective FOR Def_EncoderBoard_-» 
#include "core/devices/EncoderBoard.h" 
«ENDDEFINE» 
«REM» ENCODER BOARD: Name declaration «ENDREM» 
«DEFINE EncoderBoard_NameDeclaration FOR Def_EncoderBoard_-» 
std::string EncoderBoardName_«name» = "«name»"; 
«ENDDEFINE» 
«REM» ENCODER BOARD: Creation methods «ENDREM» 
«DEFINE EncoderBoard_CreationMethods FOR Def_EncoderBoard_-» 
«IF mod==null-» 
EncoderBoard* EncoderBoardObject_«name» = 
EncoderBoard::createDevice(EncoderBoardName_«name»); 
«ELSE-» 
EncoderBoard* EncoderBoardObject_«name» = 
EncoderBoard::createDevice(EncoderBoardName_«name», «EXPAND ParamArea FOR mod-», 
«EXPAND ParamArea FOR ser_num-», «EXPAND ParamArea FOR man-»); 
«ENDIF-» 
«ENDDEFINE» 
. 
. 
. 
. 
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Architecture of FFMM 
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