
C
ER

N
-T

H
ES

IS
-2

00
9-

11
9

08
/1

0/
20

09

FACOLTA’ DI INGEGNERIA

Corso di Laurea Specialistica in

INGEGNERIA DELLE TELECOMUNICAZIONI

TESI DI LAUREA

IN

MISURE ELETTRONICHE

Domain Specific Language for

Magnetic Measurements at CERN

Relatore: Candidato:
Ch.mo Prof. Pasquale Arpaia Carlo Petrone
 Matr. 392/69

Co-relatore:
Ing. Giuseppe La Commara

ANNO ACCADEMICO 2008/2009

 I

 To my Parents

II

Acknowledgments

 I would like to thank my supervisor Prof. Pasquale Arpaia for his enthusiasm

and for having encouraged me by providing a strong motivation to do well my

thesis work.

I would like to express also my gratitude to Marco Buzio, my CERN

supervisor, and Louis Walckiers section leader, for their help.

I would like to express my appreciation to my tutor, Ing. Giuseppe La

Commara. His guide, helpfulness, and patience were important to achieve this

final result.

My gratitude also goes to Christos Zamantzas for the trust he had in me,

from our first meeting at CERN.

I would like to thank Giancarlo Golluccio, Giuseppe Montenero, Lucio

Fiscarelli, Nicola Cardines and Vitaliano Inglese. We worked together since I

came in the TE department and we had a good time together and their works

were great contributions to my final thesis for the master degree.

A very special thanks also goes to Cosimo, Marianna, Nadia, Tiziana and

Vincenzo for their moral support and practical assistance for the realization of

this work; I cannot do a list of all my friends equally indispensable, because I am

afraid to forget someone.

I would like to say “grazie” to my father Vincenzo, my mother Antonietta,

my sisters Angela and Silvia, my brother-in-law Domenico and last but not least

my girlfriend Carla; they have supported me by showing their deep and

unconditioned affect, the most precious contribution for my work.

III

Domain Specific Language for

Magnetic Measurements at CERN

INTRODUCTION.. 1

PART I - STATE OF THE ART... 2

1 SUPERCONDUCTING MAGNETS FOR ACCELERATORS AT CERN 3

1.1 CERN ACCELLERATORS ... 4
1.2 LHC SUPERCONDUCTING MAGNETS ... 11
1.2.1 LHC Dipole Magnets ... 11
1.2.2 LHC Quadrupole Magnets... 15

2 MAGNETIC MEASUREMENTS AT CERN ... 18

2.1 METHODS FOR MAGNETIC MEASUREMENTS .. 19
2.1.1 Rotating coils ... 23
2.1.2 Hall probes... 28
2.1.3 Stretched wire... 32
2.2 INSTRUMENTATION FOR MAGNETIC MEASUREMENTS.. 33
2.2.1 Rotating Coil system at CERN... 33
2.2.2 Digital Integrators ... 38

3 FLEXIBLE FRAMEWORK FOR MAGNETIC MEASUREMENTS – FFMM 42

3.1 FFMM CONCEPTS.. 43
3.2 FFMM ARCHITECTURE ... 44
3.3 FFMM DESIGN.. 47
3.3.1 Portability: ... 47
3.3.2 Distribution:... 48
3.3.3 Reuse .. 48
3.3.4 External libraries and Off-the-shelf products ... 48
3.4 COMPONENTS .. 49
3.4.1 Logger .. 49
3.4.2 Virtual device ... 50
3.4.3 Event Handling... 50

IV

3.4.4 Fault Detector .. 51
3.4.5 Seynchronizer... 52

4 DSL – DOMAIN SPECIFIC LANGUAGES ... 53

4.1 WHAT IS A DOMAIN SPECIFIC LANGUAGE? .. 54
4.1.1 Advantages ... 56
4.1.2 Disadvantages .. 57
4.1.3 Development phases and patterns ... 58
4.1.4 Decision phase ... 58
4.1.5 Analysis phase.. 60
4.1.6 Design phase .. 63
4.2 MODEL DRIVEN ENGINEERING (MDE) ... 65
4.3 BASIC CONCEPTS... 66
4.3.1 Model.. 66
4.3.2 Meaning of a model.. 66
4.3.3 Language.. 67
4.3.4 Metamodel.. 68
4.3.5 Meta Metamodel .. 69
4.4 MDSD MODEL DRIVEN SOFTWARE DEVELOPMENT.. 69

PART II: PROPOSAL ... 72

5 DOMAIN SPECIFIC LANGUAGE FOR MAGNETIC MEASUREMENTS 73

5.1 MAGNETIC TEST DOMAIN AND FFMM ARCHITECTURE... 74
5.2 THE PROPOSED APPROACH... 76
5.3 DSL REQUIREMENTS... 77
5.4 THE ARCHITECTURE... 79
5.4.1 Semantic model .. 79
5.4.2 Parser ... 81
5.4.3 Builder .. 82
5.5 THE PROPOSED ARCHITECTURE ... 83

PART III: IMPLEMENTATION... 85

6 MDSL IMPLEMENTATION.. 86

6.1 ECLIPSE PLATFORM.. 87
6.1.1 oAW openArchitectureWare .. 88
6.1.2 xText project... 90

V

6.1.3 Defining the Grammar... 92
6.1.4 Generating the DSL Editor .. 93
6.1.5 Running the Editor ... 94
6.2 CODE GENERATION WITH XPAND .. 95
6.2.1 The Grammar Language.. 96
6.3 TYPE RULES... 97
6.3.1 Assignment tokens / Properties.. 97
6.3.2 Cross References.. 98
6.3.3 Metatype Inheritance ... 99
6.4 DEFINING THE MDSL.. 100

7 EXPERIMENTAL RESULTS... 104

7.1 SYSTEM ARCHITECTURE.. 105
7.2 OVERVIEW OF THE TEST BENCH AT SM18... 107
7.3 MEASUREMENT SETUP... 109
7.4 DC MEASUREMENTS ... 109
7.5 MEASUREMENT PROCEDURE... 111
7.6 DATA ANALYSIS.. 112
7.7 RELUSTS .. 113
7.8 STANDARD AC MEASUREMENT FOR FIELD QUALITY .. 127
7.8.1 LHC machine cycle .. 128
7.8.2 Measurement Procedure.. 130
7.8.3 Analysis decay and snapback .. 131
7.8.4 Results .. 131

CONCLUSIONS .. 137

APPENDIX .. 139

BIBLIOGRAPHY .. 152

VI

Index of figures
Figure 1.1: The accelerator chain at CERN 5

Figure 1.2: Overview of the Geneva area with a drawn of the two circular accelerators 5

Figure 1.3: ATLAS: A large Toroidal LHC ApparatuS 6

Figure 1.4: Alice: A Large Ion Collider Experiment at CERN LHC 6

Figure 1.5: CMS: The Compact Muon Solenoid an Experiment for the LH C at CERN 7

Figure 1.6: LHCb: Large Hadron Collider beauty experiment 7

Figure 1.7: Functional drawing of the Large Hadron Collider 8

Figure 1.8: The LHC superconducting dipole: a) Magnetic field; b) particu-lars 12

Figure 1.9: Scheme of the LHC cell 13

Figure 1.10: Cross section of a superconducting quadrupole magnet for the LHC project 16

Figure 1.11: Current distributions to generate a quadrupole induction field 16

Figure 1.12: Cross section of an LCH normal quadrupole 17

Figure 2.1: Magnetics flux through a cylindrical surface 24

Figure 2.2: The rotating coils shaft 28

Figure 2.3: Cross section of the shaft for rotating coil measurements 29

Figure 2.4: The dipole field B1 and the normal sextupole component b3 30

Figure 2.5: Examples are shown for a sextupole ring with 3 31

Figure 2.6: The TRU unit 35

Figure 2.7: Motor for rotating coil in a long dipole magnet in the SM18 laboratory 36

Figure 2.8: The MRU unit (a) is attached directly to the magnet anticryostat(b) 37

Figure 2.9: Connection scheme for absolute UA and compensated signals UA - UB (Left) 37

Figure 2.10: Principle of PDI based on Voltage to Frequency conversion 38

Figure 2.11: Principle of FDI (Fast Digital Integrator) 40

Figure 3.1: The FFMM Architecture 45

Figure 4.1: Simplified cost prediction for DSL-based methodologies [Devanbu, 1998] 57

Figure 4.2: Domain analysis, taken from [Prieto-Diaz, 1990] 61

Figure 4.3: History of software engineering 65

Figure 4.4: Semantic and Syntax mapping 67

Figure 4.5: Metamodel. 69

Figure 5.1: The multi-layered FFMM architecture 75

Figure 5.2: A typical FFMM configuration 76

Figure 5.3: Test Engineer and Developer Application User roles in measurement software DSL 78

Figure 5.4: MDSL transformation in code 80

Figure 5.5: List of events 81

Index of figures

VII

Figure 5.6: Proposed architecture 83

Figure 6.1: Wizard to start new Xtext project 91

Figure 6.2: DSL grammar 93

Figure 6.3: Generate Xtext artifacts 94

Figure 6.4: Deployment of the DSL plug-ins 95

Figure 6.5: Xpand template 96

Figure 6.6: Example of assignment operators in our project 98

Figure 6.7: Entity 98

Figure 6.8: Abstract type rule 99

Figure 6.9: Token rule expressed 100

Figure 6.10: Comments 100

Figure 6.11: DSL test engineer steps 101

Figure 6.12: Assistance to the measurement procedure 101

Figure 6.13: The part of the Script in C++ 103

Figure 6.14: The part of the Script in DSL 103

Figure 7.1: Architecture of the new measurement system 107

Figure 7.2: Test bench F1 at SM18: main bending dipole (left) and six clusters at SM18 (right) 107

Figure 7.3: Portable Power Supply Heinzinger PTN 135-20 at SM18 108

Figure 7.4: Digital Multimeter KEITHLEY 2000 108

Figure 7.5: Main field component of LHC 114

Figure 7.6: Standard deviation of the B1 mean versus angular speed 115

Figure 7.7: σ (B1) as a function of angular speed (N variable) and time interval (N=127) 116

Figure 7.8: σ (B1(k)) as a function of the angular speed over the same measurement time 116

Figure 7.9: Sextupole component of LHC dipole versus angular speed at fixed FDIs gain 117

Figure 7.10: Decapole component of LHC dipole versus angular speed at fixed gain 117

Figure 7.11: Standard deviation of the b3 mean versus angular speed 118

Figure 7.12: Standard deviation of the b5 mean versus angular speed 118

Figure 7.13: 8 11th component of LHC dipole measured 119

Figure 7.14: Normal components of the magnetic field 120

Figure 7.15: Skew components of the magnetic field 120

Figure 7.16: Main field component of LHC dipole 121

Figure 7.17: Main field component of LHC dipole measured versus several angular speed 122

Figure 7.18: Standard deviation of the b3 mean versus angular speed 122

Figure 7.19: Sextupole component of LHC dipole measured 123

Figure 7.20: σ (b3) as a function of angular speed and measurement condition 123

Index of figures

VIII

Figure 7.21: Decapole component of LHC dipole measured 124

Figure 7.22: 11th harmonic versus Angular Speed for different FDIs gain 124

Figure 7.23: Normal components of the magnetic field in the second aperture 125

Figure 7.24: Skew components of the magnetic field in the second aperture 126

Figure 7.25: Mean value of B1 over 30 measurements, a ± 3 σ bar is displayed 126

Figure 7.26: Mean values of the harmonic coefficients from b2 to b11 127

Figure 7.27: Mean values of the harmonic coefficients from a2 to a11 127

Figure 7.28: The standard reference machine cycl 129

Figure 7.29: Main dipole field in the second aperture of the MBBR 2427 132

Figure 7.30: Normal sextupole as a function of the supply current 133

Figure 7.31: Normal decapole as a function of the supply current 134

Figure 7.32: b3 base line (blue) and polynomial fitting curve (red) 134

Figure 7.33: b3 Normal Sextupole (blue) superposed to the fitted b3 base line 135

Figure 7.34: b3
dacay,sanpbach obtained by taking off the fitted base line curve 135

Figure 7.35: b3 snapback measured in the second aperture of the MBBR 2427 136

Figure 7.36: logarithm scale plot of the b3 snapback (blue) and the exponential fitting (red) 136

1

INTRODUCTION

 CERN, the European Organization for Nuclear Research, is one of the

world’s largest and most respected centres for scientific research. Founded in

1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva.

It was one of Europe’s first joint ventures and now has 20 Member States.

 Its main purpose is fundamental research in partcle physics, namely

investigating what the Universe is made of and how it works. At CERN, the

design and realization of the new particle accelerator, the Large Hadron Collider

(LHC), has required a remarkable technological effort in many areas of

engineering. In particular, the tests of LHC superconducting magnets disclosed

new horizons to magnetic measurements.

 At CERN, the objectively large R&D effort of the Technolgy

Department/Magnets, Superconductors and Cryostats (TE/MSC) group identified

areas where further work is required in order to assist the LHC commissioning

and start-up, to provide continuity in the instrumentation for the LHC magnets

maintenance, and to achieve more accurate magnet models for the LHC

exploitation.

In view of future projects, a wide range of software requirements has been

recently satisfied by the Flexible Framework for Magnetic Measurements

(FFMM), designed also for integrating more performing flexible hardware.

FFMM software applications control several devices, such as encoder boards,

digital integrators, motor controllers, transducers. In addition, they synchronize

and coordinate different measurement tasks and actions.

 FFMM has been developed with the aim of helping the user to write high

quality code, in terms of flexibility, reusability, portability and efficiency. The

test engineer needs to provide a formal description of the measurement

procedure (script), in order to automatically generate executable measurement

applications.

INTRODUCTION

1

 FFMM needs a formal description of the measurement procedure to be

provided in C++, and therefore requires knowledge of this programming

language and its rules. In this thesis, the proposed idea is the development of a

new easy Measurement Domain Specific Language (MDSL). Such a language

models the domain of interest and provides the user with easy programming

tools capable of describing the measurement application.

In this way, concise and bug free specific applications can be generated by

test engineers who do not have to be skilled programmers. At the SM18 CERN

magnet test facility the field experience with the current FFMM release 3.0,

highlights that a significant part of the ongoing operation costs is related to the

development and maintenance of test applications.

In contrast to a general-purpose programming language (GPL), a domain-

specific language (DSL) is designed to allow specific complete applications to

be built efficiently and quickly, yielding to programs easy to write, understand,

reuse, and maintain. These advantages are making DSLs very popular and their

design and implementation are becoming increasingly an intensive area of

research. Programming with a DSL also contributes to safety and reduces

software errors. Additionally, in practice, high-level constructs translate into the

reuse of validated components.

A Measurement Domain Specific Language (MDSL) for the definition of test

procedures, the synchronization of the measurement tasks and the configuration

of instruments is proposed. The design and the development were carried out in

the framework of cooperation between the TE/MSC department of CERN and

the Department of Engineering of the University of Sannio. In this thesis, the

design, implementation and experimental verification of the domain specific

language are presented.

In particular, in chapter 1÷4, the magnetic measurements and test domain of

the FFMM at CERN are highlighted. In chapter 5, the approach and the main

components of the proposed DSL are illustrated. In chapter 6 and 7, the MDSL

implementation for FFMM and experimental results are respectively described.

2

PART I - STATE OF THE ART

3

Chapter 1

1 Superconducting Magnets for Accelerators at CERN

 In this chapter, after an overview of the main research projects of the

European Organization for nuclear Research (CERN), the basic concepts of

linear and circular accelerators are described by highlighting the trade-off

among geometrical dimension, magnetic field intensity, and electrical field.

Then, the rationale for main LHC design choices is explained, by giving

details on the superconducting magnets.

CHAPTER 1

4

1.1 CERN Accellerators

The main issues of High Energy Particle (HEP) accelerators are:

• to explore matter at small scale, by means of radiations of

wavelength smaller than the the dimension to be resolved;

• to produce new, massive particles in high-energy collisions, thanks to

the mass-energy equivalence postulated by Einstein;

• to reproduce locally the very high temperatures occurring in stars or

in the early universe, and investigate nuclear matter in these extreme

conditions, by imparting energy to particles and nuclei;

• to exploit the electromagnetic radiation they emit when accelerated,

particularly when the beam trajectory is curved by a magnetic field

(centripetal acceleration).

 CERN, one of the most important HEP laboratories, is located at Geneva

in Switzerland, and it was founded in 1953, following a recommendation of

the United Nation Educational, Scientific and Cultural Organization

(UNESCO) Meeting in Florence 1950, with the motivation of providing a

deeper understanding of the matter and its contents.

 After the early stage of the Proton Synchrotron (PS), more advanced

accelerator have been developed (Fig. 1.1). The Super Proton Synchrotron

(SPS) machine provided the energy to discover the weak force particles W+,

W-, and Z0 earning the Nobel prize in 1984 to Carlo Rubbia and Simon Van

de Meer [Rubbia, 1985], [Van Der Meer, 1985]. On the way to higher

precision, the Large Electron Positron (LEP) collider was built, by providing

high accuracy feature values for the aforementioned particles already during

start up. In Fig. 1.1, further experiment area, such as the neutrino beam to

Gran Sasso (CNGS)1 and the Antiprotron Decelerator (AD) [Mauri,1997], the

first stage on the way to antihydrogen, are also depicted.

1 http://proj-cngs.web.cern.ch/proj-cngs.

CHAPTER 1

5

Figure 1.1: The accelerator chain at CERN

Figure 1.2: Overview of the Geneva area with a drawn of the two circular accelerators

 The last CERN project is the Large Hadron Collider (LHC): a circular

accelerator that will collide proton beams, but also heavier ions up to lead. It

is installed in a 27 km long underground tunnel (Fig. 1.2), that already housed

the previous accelerator, Large Electron-Positron Collider (LEP) [Fartoukh,

2001]. Four experiments (ATLAS, ALICE, CMS and LHCb) are currently being

built, and will be running on the collider; each of them will study particle

CHAPTER 1

6

collisions under a different point of view, and with different technologies. The

experimental detectors ATLAS (A Toroidal LHC Apparatus) Fig. 1.3, ALICE (A

Large Ion Collider Experiment) Fig. 1.4, CMS (Compact Muon Solenoid) Fig.

1.5 and LHCb (Large Handron Collider beauty) Fig. 1.6.

Figure 1.3: ATLAS: A large Toroidal LHC ApparatuS

Figure 1.4: Alice: A Large Ion Collider Experiment at CERN LHC

CHAPTER 1

7

Figure 1.5: CMS: The Compact Muon Solenoid an Experiment for the LH C at CERN

Figure 1.6: LHCb: Large Hadron Collider beauty experiment

 A structural drawing is shown in Fig. 1.7. Particles will collide in four points

on the ring, corresponding to the so-called insertion points (IP) 1, 2, 5 and 8 in

the picture. The injection systems are located at the insertion points 2 and 8.

 The radio frequency cavities (RF) can be found at insertion point 4, and the

beam dump is installed at insertion point 6.

The insertions 3 and 7 house facilities to clean the beam, namely its momentum

and orbit. The arcs house the superconducting magnets used to bend and focus

the beam.

CHAPTER 1

8

Figure 1.7: Functional drawing of the Large Hadron Collider

In a circular accelerator, high kinetic energies are imparted to particle beams by

applying electromagnetic fields. A particle of charge q moving trough an

electromagnetic field is submitted to the Coulomb and Lorentz’s forces

expressed by:

()dpF q E v B
dt

= = + ∧
rr r rr
r (1.1)

where F is the electromagnetic force exerted by the electric field E and the

induction field B on the particle with velocity v . Both the electric field and the

magnetic field affect the trajectory and the energy of the particle. Therefore, the

CHAPTER 1

9

main elements of a particle accelerator are the Radio Frequency (RF) cavities

accelerating the particles, the dipole magnets bending them to follow the circular

orbit, and the quadrupole magnets focusing them to maintain a proper intensity

and size.

 The LHC contains 1232 dipole magnets 360 quadrupole magnets, with two

magnetic apertures integrated into a common yoke, and 4 RF cavity modules per

beam. Although the LHC circumference is the same of the LEP, it will collide

two proton beams at nominal center of mass energy of 14 TeV, i.e. nearly two

orders of magnitude higher than in LEP. The use of superconducting magnets

and RF cavities permit higher electric and magnetic fields to be achieved, by

increasing the maximum beam energy:

rBkEbeam ⋅⋅= (1.2)

where beamE is the beam energy in GeV, B the magnetic induction field in T,

r the radius of curvature of the machine in m, and k adimensional constant. The

LHC beam energy is 108 times the Lawrence’s first cyclotron one, but with a

diameter only 105 times larger.

 Superconductivity is a powerful means to achieve high-energy particle

beams and keep compact the design of the machine. Making a machine compact

means not only saving capital cost, but also limiting the stored beam energy.

According to the equation 1.3

CIEU beambeam ⋅⋅⋅= 34.3 (1.3)

where U is the stored energy per beam in kJ, beamI is the current beam in A, and

C is the machine circumference in km, with a particle energy of 7 TeV , a beam

current of 0.58 A and a circumference of 26.7 km, the LHC will have an energy

CHAPTER 1

10

of 362 MJ stored in the beam. This is enough to melt half a ton of copper and

thus requires an elaborate and very reliable machine protection and beam dump

system [Schmidt, 2004]. In a larger machine, this problem would become even

more acute.

 Besides capital cost and compactness advantages, superconductivity reduces

electrical power consumption. High-energy, high-intensity machines produce

beams with MW power, so that conversion efficiency from the grid to the beam

must be maximized, by reducing ohmic losses in RF cavities and in

electromagnets [Gareyte, 1996]. In d.c. electromagnets, superconductivity

suppresses all ohmic losses, thus the only power consumption is related to the

associated cryogenic refrigeration.

 The rationale is similar for RF cavities, where superconductivity reduces

wall resistance and thus increases the Q factor of the resonator, i.e. the ratio

between the stored energy U and the power dissipated by the cavity Pd in one

cycle at the resonant angular frequency ω0 [Gareyte, 1996]. However, the wall

resistance of superconducting cavities subject to varying fields does not drop to

zero, but varies exponentially with the ratio of operating to critical temperature

Tc [Gareyte, 1996]. This imposes to operate at a temperature well below Tc, in

practice as the result of a trade-off between residual dissipation and

thermodynamic cost of refrigeration.

 Cryogenics plays another fundamental role in nuclear accelerators. In the

LHC, the first conducting wall seen by the circulating beams, i.e. the beam

screen is coated with 50 µm of copper and must operate below 20 K, by

achieving a resistivity value capable of reducing the beam transverse impedance

ZT, directly linked to the rise time of the beam instability [Padamsee, 2004].

Another direct application of cryogenics in accelerators is distributed cryop-

umping. The saturated vapour pressures of all gases, except helium, vanish at

low temperatures, so that the wall of a cold vacuum chamber can act as an

efficient cryopump. In fact, it traps gases and vapours by condensing them on a

cold surface. Therefore, cryogenics is required for this application independently

CHAPTER 1

11

of the use of superconductivity.

1.2 LHC superconducting Magnets

 The coils of the LHC superconducting magnets are wound with NbTi cables

(7000 km in total), working in superfluid helium either at 1.9 K or at 4.5 K. A

vertical dipole field B of 8.33 T is required to bend the proton beams, whereas

the LHC quadrupole magnets are designed for a gradient of 223 Tm−1 and a peak

field of about 7 T.

1.2.1 LHC Dipole Magnets

The LHC dipole is like a split pair of circular coils, stretched along the particle

trajectory in such a way that the dipole field is generated only along the beam

pipe, as shown in Fig. 1.8a. The LHC dipoles are based on a compact and cost-

saving two-in-one design, where two beam channels with separate coil systems

are incorporated within the same magnet [Rossi, 2004]. The main parts of an

LHC dipole are depicted in Fig. 1.8b. The superconducting cables of the coils

for the LHC magnets are made of NbTi hard superconductor multi-wires,

embedded in a copper stabilizer. Such wires are wrapped together to form the

so-called Rutherford type cable. The coils are surrounded by the collars which

limit the conductor movements [Rossi, 2003].

CHAPTER 1

12

Figure 1.8: The LHC superconducting dipole: a) Magnetic field; b) particu-lars

 The iron yoke shields the field so that no magnetic field leaves the magnet.

The so-called cold-mass is immersed in a bath of superfluid liquid helium acting

as a heat sink. The helium is at atmospheric pressure and is cooled to 1.9 K by

means of a heat exchanger tube. The cold mass is delimited by the inner wall of

the beam pipes on the beam side and by a cylinder on the outside. The iron yoke,

the collars, and the cylinder compress the coil by withstanding the Lorentz

forces during excitation. The cylinder case improves the structural rigidity and

longitudinal support and contains the superfluid helium.

CHAPTER 1

13

 Stability requirements for the beam motion impose stringent constraints to

the quality of the magnetic field in the LHC magnets. Owing to the magnets

non-ideality, the magnetic field presents multipoles that require correc-tions to

achieve the required beam performance. The major tolerances are specified in

[Fartoukh, 2001].

Figure 1.9: Scheme of the LHC cell

with main bending dipoles, main focusing quadrupoles, and a full correction scheme.

The LHC arc includes main bending dipoles, main focusing quadrupoles, and a

full correction scheme, featuring sextupoles, octupoles and decapoles (Fig. 1.9).

Each cell of the LHC arcs has two different types of correction circuits to deal

with the sextupole and decapole field errors:

• spool piece corrector magnets, built-in with the main dipole cold masses;

• lattice corrector magnets, mounted in the main arc quadrupole magnets

as part of the Short Straight Section (SSS) assembly [Fartoukh, 2001].

Its structure is based on a cost-saving ‘two-in-one’ design, where two beam

channels with separate coil systems are incorporated within the same magnet

structure. The two coils (physical length of 14.6 m) are fixed by a support

structure of laminated collars, which define the exact geometry and provide

mechanical stability. The collared coils are integrated into an iron yoke, which

serves to increase the central field by about 19 %, and to shield the magnetic

field, thus no magnetic field leaves the magnet. Bus bars accommodate the

cables to power the magnets of the arcs. They are located in grooves in the iron

yoke. The so-called ‘cold mass’ is immersed in a bath of superfluid helium at

atmospheric pressure and cooled to 1.9 K by means of a heat exchanger tube, in

CHAPTER 1

14

which two-phase low-pressure helium is circulated and acts as a heat sink. The

cold mass is delimited by the inner wall of the beam pipes on the beam side and

by a cylinder on the outside.

 In storage rings like the LHC, stable beams have to run as long as possible on

the circular orbit (for several hundreds of millions of turns), in order to increase

the number of collisions between the counter rotating beams.

This imposes strong constrains on the tolerable field perturbations along the

trajectory. Deviations from the dipole and quadrupole fields, even if short in

both space and time, can induce instabilities reducing the beam life-time.

Higher-order multipoles correctors are required to compensate the unavoidable

imperfections of dipole and quadrupole magnets. Ideally, a pure n-pole field

could be produced by a current flowing along an infinitely thin cylindrical shell,

with a cosine like distribution:

() 0 cos()I I nθ θ= (1.4)

where θ is the azimuthal angle.

The LHC dipoles are 15-meters long with a beam aperture of 50 mm in diameter,

giving the possibility to consider the coils as infinitely long, and to evaluate the

magnetic field in the x-y complex plane by neglecting the z component. In the

central part of the dipole taking into account the properties of the analytical

functions, it can be postulated that the magnetic field generated B can be

expanded in the complex plane in a power series [Arpaia, 2006].

() [] []
1n

1n ref
nn1

4
1n

1n ref
nnxy R

jyxjabB10
R

jyxABy)(x,jBy)(x,Bz
−

∞

=

−

−
∞

=
∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+=+= jB

 (1.5)

The reference radius Rref is defined to be 17 mm, i.e. approximately two thirds of

the magnet aperture radius of 28 mm. Bn and An are the so called normal and

CHAPTER 1

15

skew multipole coefficient, also referred to as field components or field

harmonics

()
()nnn

nnn

nαsinCA
nαcosCB

−=
=

 (1.6)

where αn is the angle between An and Bn, Cn is referred as the amplitude of the

component of the total field. bn and an are their normalized values, expressed

standard ‘UNITS’. If B1 is the main field, bn = Bn/(B110-4) and an = An/ (B110-4),

where the factor 10-4 is used for scaling the existence of non-zero bn and/or an

coefficients reflects the fact that the magnetic field generated by the

superconducting coil in a dipole is not a pure dipole and is affected by higher

order of multipoles (quadrupole, sextupole, etc.). The multipole components are

generated by the difference between the ideal current distribution of Equation

1.4 and the actual current distribution in the coil. Because of the approximation,

the field distribution inside de magnet bore is not a pure dipole field, higher

components are present (Eq.1.5). All undesired multipole components other than

the main field are referred to as “field errors”.

1.2.2 LHC Quadrupole Magnets

These magnets are used to focus the beam by squeezing it into a smaller cross-

section, a similar effect to a lens focusing light. However, each magnet only

focuses the beam in one direction so alternating magnet arrangements are

required to produce a fully focused beam [Nogiec, 2006].

CHAPTER 1

16

Figure 1.10: Cross section of a superconducting quadrupole magnet for the LHC project

Fig. 1.10 shows the Cross-section of short straight section with quadrupole cold

mass inside cryostat.

Two cylinders of elliptical cross section carrying equal and opposite current

densities are made to intersect at right angle to each other, I=I0cos(2θ). The

overlap region carries no current, and can be treated as the aperture of the

magnet. Any point inside this aperture is also inside both the cylinders.

Then a pure normal quadripole field presents, according to in equations 1.5 and

1.6, only the component B2, to produce a skew-quadrupole field, the shown

arrangement of Fig. 1.11 should be turned by 45°.

Figure 1.11: Current distributions to generate a quadrupole induction field

CHAPTER 1

17

The total complex field at any point (x,y) is given by:

() () (y)jB(x)BjyxG
R

jyxByx,B xy
ref

2quadrupole +=+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

 (1.7)

where G is referred as the field gradient (expressed in T/m). LHC

superconducting quadrupole uses the same cables as the LHC dipole. As the

current distribution is only an approximation of the ideal case, also the

quadrupole is affected by field errors. Fig. 1.12 shows the cross section of a

normal LHC quadrupole, and the field distribution at the current 1185 A.

Figure 1.12: Cross section of an LCH normal quadrupole

18

Chapter 2

2 Magnetic Measurements at CERN

 Accelerator magnets are designed and built with stringent specifications on

strength, orientation, homogeneity, and position of the null point for the gradient

of the magnetic fields. In spite of the great advances in computational techniques

for the optimization and performance analysis of a magnet, and given the

unavoidable manufacturing and assembly tolerances in the construction process,

the above target remains very demanding. Hence, the production of magnets

with high field quality has been invariably assisted by a spectrum of various

measurements, based on different methods depending on the goal and the

accuracy of the desired analysis. At CERN, the Research and Development

(R&D) program is based on the upgrade of the measurement techniques in order

to analyze dynamic features of the magnets and achieve more accurate magnet

CHAPTER 2

19

models for the exploitation of the LHC. Considered that the flux induction

measurement methods require the integration of the incoming signal, the

development of a new digital integrator was launched as a key factor of the

R&D program.

 In this Chapter, at first an overview of the main methods for magnetic

measurements is given by pointing out the instrumentation and the required

accuracy.

2.1 Methods for magnetic measurements

The most commonly used methods for magnetic measurement in beam-guidance

magnets for particle accelerators are:

1. Fluxmeter method.

2. Hall generator.

3. Magnetic resonance technique.

The choice of a measurement method depends on several factors. The field

strength, homogeneity and variation in time, as well as the required accuracy, all

need to be considered.

Fluxmeter method

 The fluxmeter method, based on the induction law, is the oldest of the

currently used methods for magnetic measurements, but it can be very precise. It

is also the most accurate method for measuring the direction the magnetic flux

lines; this being of particular importance in accelerator magnets. Measurements

are performed either by using fixed coils in a dynamic magnet field, or by

moving the coils in a static field. Very accuracy can be reached in differential

fluxmeter measurements by using a pair of search coils connected in opposition,

with one coil moving and the other fixed, thus compensating fluctuations in the

magnet excitation current and providing a much higher measurements, but with

both coils moving.

CHAPTER 2

20

 The coil method is particularly suited for measurements with long coils in

beam-guidance magnets, where the accurate measurement of the field integral

along the particle trajectory is the main concern. With the advent of modern

digital integrators and angular encoders, harmonic coil measurements have

improved considerably and are now considered as the best choice for most types

of accelerator magnets. The method provides the additional advantage of

simultaneous measurement of strength, quality, and geometry. A compensating

coil, connected to in series and rotated with the main coil, may be used to

suppress the main field component and thus increase the sensitivity of the

system for measurements of field quality.

 Dynamic fields are measured with static coil linking to selected harmonics.

Another induction measurement consists of moving a stretched wire in the

magnetic field, thus integrating the flux cut by wire. It also possible to measure

the flux change while varying the field and keeping the wire in a fixed position.

Tungsten is often selected, if the wire cannot be placed in a vertical position.

The accuracy is determined by mechanical positioning of the wire. Sensitivity is

limited, but can be improved by using a multi-wire array. This method is well

suited to geometry measurements, to absolute calibration of quadrupole fields

and in particular to measurements in strong magnets with very small aperture.

The choice of geometry and methods depends on the useful aperture magnet.

The sensitivity of the fluxmeter method depends on the coil surface and the

quality of integrator. The coil integrator assembly can be calibrated to an

accuracy of a few tens of ppm in a homogeneous magnetic field by reference to

a nuclear magnetic resonant probe, but care must be taken not to introduce

thermal voltages. The main advantage of search coil techniques is the possibility

of a very flexible design of coil. The high stability of the effective coil surface is

another asset. The linearity and the wide dynamic range also play an important

role. The technique can be easily adapted to measurements at cryogenic

temperatures. After calibration of the coils at liquid nitrogen temperature, only a

minor correction has to be applied for use at lower temperatures. One the other

CHAPTER 2

21

hand, the need for relatively large induction coils and their related mechanical

apparatus which is often complex, may be a disadvantage. Furthermore, the

measurements in static fields are relatively slow.

Hall generator method

 The Hall generator method is based on the Hall’s effect. A metal strip

immersed in a transverse magnetic field and carrying a current developed a

voltage mutually at right angles to the current and field that opposed the Lorentz

force on the electrons. The Hall-generator provides an instant measurement, uses

very simple electronic measurement equipment and offers a compact probe,

suitable for point measurements. The probes can be mounted on relatively light

positioning gear. Considerable measurement time may be gained by mounting

Hall generators in modular multi-probe arrays and applying multiplexed voltage

measurement. The wide dynamic range and the possibility of static cooperation

are other attractive features. However several factors set limits on the obtainable

accuracy. The most serious is the temperature coefficient of the Hall voltage.

 Temperature stabilization is usually employed in order to overcome this

problem, but increase the size of probe assembly. The temperature coefficient

may also be taken into account in the probe calibration by monitoring the

temperature during measurements. Last but not least is the problem of the non-

linearity of the calibration curve, since the Hall coefficient is a function of the

field level. The measurement of the Hall voltage sets a limit about 20 μT on the

sensitivity and resolution of the measurement, if conventional direct current

excitation is applied to the probe. The sensitivity can be improved considerably

by application of ac excitation. In the following, the main two measurement

techniques currently employed at CERN for field harmonic analysis, based on

rotating coils and Hall plate probes, are described.

CHAPTER 2

22

Magnetic resonance techniques

The nuclear magnetic resonance technique is considered as the primary

standard for calibration. It is frequently used, not only for calibration purposes,

but also for high accuracy field mapping. The method was first used in 1938 for

measurements of the nuclear magnetic moment in molecular beams [Kusch,

1939].

A few years later, the phenomenon was observed in solids by two

independent research teams [Purcell, 1946], [Bloch, 1946]. Based on an easy

and accurate frequency measurement, it is independent of temperature

variations. Commercially-available instruments measure fields in the range from

0.011 T up to 13 T with accuracy better than ±10 ppm.

In practice, a sample of water is placed inside an excitation coil, powered

from a radiofrequency oscillator. The precession frequency of the nuclei in the

sample is measured either as nuclear induction (coupling into a detecting coil) or

as resonance absorption [Bloembergen, 1948]. The measured frequency is

directly proportional to the strength of the magnetic field with coefficients of

42.57640 MHz/T for protons and 6.53569 MHz/T for deuterons. The advantages

of the method are its very high accuracy, its linearity, and the static operation of

the system. The main disadvantage is the need for a rather homogeneous field in

order to obtain a sufficiently coherent signal.

Pulsed NMR measurements have been practiced for various purposes even at

cryogenic temperatures [Putlitz, 1996]. Electron paramagnetic resonance (EPR)

and electron spin resonance (ESR) can be viewed as two alternative names in a

family of electron magnetic resonance (EMR) techniques. ESR is a related and

accurate method for measuring weak fields [Kernevez, 1992]. It is now

commercially available in the range from 0.55 mT to 3.2 mT, with a

reproducibility of ±1 ppm and is a promising tool in geology applications.

CHAPTER 2

23

2.1.1 Rotating coils

 The principle of the measurement is based on Lenz’s law: when a conductor

loop moves with respect to a magnetic field, a flux variation occurs and a

voltage is induced proportional to the time variation of the flux. In Fig. 2.1 a

cylindrical surface parallel to the axis of the magnet zm and uniform in the axial

direction is considered. Γ designates the arc at the intersection between Σ and

the xy plane z1 and z2 determine the positions of the ends in the complex plane.

The magnetic flux Φ through this surface is defined by:

 Bdφ σ
∑

= ∫∫
r r

 (2.1)

with dσr the surface element vector.

Since the surface is parallel to the axis of the magnet, and since B
r

and ∑ are

uniform along the magnet’s axis:

 ()mL B z dφ γ
Γ

= ×∫
r rr

 (2.2)

 with L the length of the surface along the zm axis and dγr the arc element

vector.

CHAPTER 2

24

Figure 2.1: Magnetics flux through a cylindrical surface

Now the coordinates of dγr are set to (dx, dy, 0). The coordinates of ()mz dγ×

rr

are (-dy, dx, 0). Using the two dimensional expression of the B
r

 the flux is given

by:

 Re[]y xl B dx B dyφ
Γ

= −∫ (2.3)

In complex notation it is expressed by:

2

1

Re ()
z

z

L B z dzφ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫ (2.4)

Introducing the definition of the complex potential [Devred, 1998] and using the

multipoles expansion series, the flux is expressed in terms of field harmonics as:

CHAPTER 2

25

 2 1
1

1 Re

1Re
n n

n
n f

z zL Cn
n R

φ
∞

−
=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ (2.5)

Now it is assumed that the surface Σ represents the surface for all turns of a pick

up coil rotating around the axis zm (i.e. the windings are infinitely thin). The

angle θ’ describes a rotation of the surface around the axis zm , z2 and z1 are the

positions of the extremities of the arc Γ at θ’=0. So for any angle θ’ the location

of the ends 1z θ and 2z θ is described by:

'
'

11
exp()z z i

θ
θ= and '

'
22

exp()z z i
θ

θ= (2.6)

Using the equation (2.5) and (2.6) the flux Φ seen by a rotating coil is:

1

(') Re exp(')
n

KnCn inφ θ θ
∞

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ (2.7)

with Kn the coil’s sensitivity to the nth multipole:

2 1

n n
z zNwLRrefKn

n Rref Rref

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.8)

In the equation (2.8) Nw represents the number of the coil turns, so that Kn only

depends on the coil geometry.

The voltage induced by a flux change is given by Faraday’s law:

 ,dV
dt
φ

= (2.9)

CHAPTER 2

26

A change of flux inside the coil is achieved either by varying the magnetic field

(i.e. varying the magnet current) or by rotating the coil inside the magnetic field.

Here the second method, called rotating coil method, is described. The angular

dependence of the flux on the angular position of the coil is shown in equation

(2.7). In the following the magnetic field is considered to be independent from

time, so that the field harmonics Cn are assumed constant. Faraday’s law gives

the voltage versus time. To calculate the multipoles Cn the flux versus angle is

needed. Therefore the measurement is performed in the following way:

• the coil is turned by a motor;

• the voltage induced in the coil is fed to an integrator;

• the integrator is read out by a controller;

• an angular encoder triggers this readout to ensure equidistant readouts.

This is needed by the standard analysis which is based on a Fourier transform.

In the following this procedure is described mathematically. It is assumed that

the Nw turn pick up coil is rotating around the z-axis with angular velocity ()tθ& .

Then the angle θ’ at a given time t equals θ(t) and the angular speed equals its

first derivative:

' ()tθ θ= and () ()d t t
dt
θ θ= & (2.10 a)

In the ideal case

' tθ ω= ⋅ and ()d t
dt
θ ω= (2.10 b)

with ω the ideal (i.e. constant) angular velocity. Faraday’s law (2.9) applied to

equation (2.7) gives:

1
() () Re exp(())

n
V t t nKnCn in tθ θ

∞

=

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑& (2.11)

The voltage is then integrated using an integrator:

CHAPTER 2

27

0

() (') ',
t

t V t dtφ = −∫ (2.12)

assuming that the integration starts at t = 0.

The angular encoder triggers the readout of the integrator to ensure equally

spaced angular steps. Since θ(t) gives the position of the coil versus time, its

inverse function 1(')t θ θ−= describes the time at which an angle was reached.

Thus the flux Φi given by the integrator for an angular interval ' '
i oθ θ− as:

1 '

1 '

()

()

()
i

o

i V t dt
θ θ

θ θ

φ
−

−

= − ∫ (2.13)

θ0 is the angle at which the integration started and θ’i

' 2 1....i i i P
P
πθ = = (2.14)

with P the number of readings per revolution. The flux Φi can be further written

as

'

'0

1() ()
i

o

ti

t

i V t dt V d
θ

θ

φ θ θ
θ

= − =∫ ∫ & (2.15)

Φi corresponds to the value of the integral at ti. Comparing the last term of the

above statement to Equation (2.12) it is evident that Φi is speed independent. A

discrete Fourier transform is applied to the total readout Φ={Φi | i = 1 . . . P} of

the integrator with ψ the spectrum of the flux and DFT the discrete Fourier

transform. It can be showed [Bottura, 1997] that the multipoles Cn are given by:

CHAPTER 2

28

1
nC n

Kn
ψ= (2.16)

2.1.2 Hall probes

 A Hall probe is a semiconductor-based detector which uses the Hall effect to

allow the strength of a magnetic field to be measured. The Hall Effect is seen

when a conductor is passed through a uniform magnetic field. The natural

electron drift of the charge carriers causes the magnetic field to apply a Lorentz

force (the force exerted on a charged particle in an electromagnetic field) to

these charge carriers. The result is what is seen as a charge separation, with a

build up of either positive or negative charges on the bottom or on the top of the

plate.

Figure 2.2: The rotating coils shaft

CHAPTER 2

29

Figure 2.3: Cross section of the shaft for rotating coil measurements

with pick-up coil in ‘tangential’ configuration.

Hall Plane Probes at CERN

 During long periods of constant current supplying, all components of the

magnetic field show decay behaviour. The decay is especially pronounced at the

low level of the magnetic field during injection (about 0.54 T), where the

persistent current magnetization is relatively large and has a significant impact

on the field. The field components return to the original hysteresis curve as soon

as the current ramp restarts, i.e. they ‘snapback’. An example for b3 during decay

and snapback for a dipole is shown in Fig. 2.4 a) and b), as a function of both

the time and the main field, respectively. The snapback during the acceleration

ramp after the end of injection only lasts a few of seconds, and rotating coils

used so far for measurements do not have the time resolution to accurately

measure its time dependence. For this main reason, a system based on the Hall

plates with a higher acquisition rate was developed [Bottura, 2000], [Berkes,

1998].

CHAPTER 2

30

Figure 2.4: The dipole field B1 and the normal sextupole component b3

 are shown as a function of time. The injection field is reached at a time t = 0. The sextupole
component decays during injection. After about 1000 s the magnet is ramped again. The

snapback is clearly visible a). The same measurement of b3 is shown as a function of the dipole
field along the up-ramp branch of the hysteresis curve.The decay and snapback are indicated b).

 An arrangement of m Hall plates, equally spaced on the circumference of a

ring and radially oriented, allows all the field components with an order lower

than m to be suppressed. The measured signal for the field component of order m

can be maximized if all the Hall plates are placed in the poles of the 2m-pole

field. Fig. 2.4 a) shows an arrangement of 3 Hall plates in a dipolar and a

sextupolar field. The projections of the field onto the normal vectors of the three

plates are measured. The sum signal of the three plates is compensated for the

dipole field and proportional to the sextupole component for the sextupole field.

An expression for the sum signal S of a group of m plates with equal sensitivities

in a magnetic field with normal and skew multipole components Bk and Ak,

respectively, is given by [Breschi, 2000] :

(2 1) 1 2

(2 1) 1
2

(2 1) 2
1 1
3 (1) (1)

k m km
k m

mk
m k km

k kref ref

R RS mB mA
R R

− −
− −∞ ∞

−
= =

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ (2.17)

R is the radial distance of the active area in the Hall plates from the center of the

ring.

CHAPTER 2

31

Figure 2.5: Examples are shown for a sextupole ring with 3

 and a decapole ring with 5 Hall plates.
 Also the field lines of the dipole, the sextupole and the decapole field are indicated.

 In an ideal case, where all the Hall plates are well aligned and have equal

sensitivities, the only multi-poles contributing to the total signal S are the normal

odd and the skew even multiples of order m.

 In an arrangement of three plates, the sum signal S is compensated for the

dipole, and only normal multipoles of order 3(2k-1) (i.e. B3, B9, B15,…) and

skew harmonics of order 6k (i.e. A6, A12, A18,…) contribute according to:

3(2 1) 1 6 1

3(2 1) 6
1 1
3 (1) 3

k k

k
k k

k kref ref

R RS B A
R R

− − −
∞ ∞

−
= =

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ (2.18)

In the case of a pure sextupole field, this yields:

2

33
ref

RS B
R

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.19)

The sum signal of a decapole arrangement with five plates (m = 5) is:

a) b)

CHAPTER 2

32

5(2 1) 1 10
(2 1)5 1

2
5(2 1) 10

1 1
5 (1) (1) 5

k k
k

k
k k

k kref ref

R RS B A
R R

− −
− −∞ ∞

−
= =

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ (2.20)

In the case of a pure decapole field, this yields:

4

5
1
5

k ref

RS B
R

∞

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (2.21)

Examples for decapole rings are sketched in Fig. 2.5.

2.1.3 Stretched wire

The stretched-wire technique is also based on the induction method

[DiMarco, 1996], [DiMarco, 2000]. A thin wire, with a diameter of 0.1 mm, is

stretched in the magnet bore between two precision stages. A motion results in a

voltage at the two ends of the wire, whose integral is the magnetic flux through

the area scanned by the motion. The method, a robust null technique with very

high resolution, provides a measurement of the integral field, of the field

direction, and of the magnetic axis. The uncertainty depends on the accuracy of

the precision stages driving the wire motion (±1 μm), on the effectiveness of the

sag correction, and on the alignment errors during installation. The overall

uncertainty on the integrated strength and on the angle measurement was

estimated at ±5 units and ±0.3 mrad, respectively [DiMarco, 2000]. The wire

used is thin and its handling is quite difficult. Further on, the wire must be free

of dirt because it often has magnetic properties, and the magnetic field acting on

it will deviate the wire from its ideal position by generating a fake result. In spite

of the practical difficulties, this is a very powerful technique.

CHAPTER 2

33

2.2 Instrumentation for Magnetic Measurements

 In the following sections, we give an overview about the principal devices

used for magnetic measurement at CERN.

2.2.1 Rotating Coil system at CERN

 Devised since 1954 [Elmore, 1954], [Dayton, 1954], the rotating coil method

is now widely used for magnets with cylindrical bore owing to its capability at

measuring all properties of the magnetic field (field strength, multipoles, angle,

direction) integrated over the coil length. An induction coil is placed on a

circular support and is rotated in the field to be mapped [Bottura, 1998]. The coil

angular position is measured by an angular encoder, rigidly connected to the

rotating support. The coil rotating in the field cuts the flux lines and a voltage is

induced at the terminals. The voltage is integrated between predefined angles

obtaining the flux change as a function of angular position. If the measured field

is 2-D in the cross section of the magnet, with negligible variation along the

magnet length, it can be shown [Jain, 1998] that a Fourier analysis of the angular

dependence of the measured flux leads naturally to coefficients directly

proportional to the so-called multipole coefficients of the field [Beth, 1966]. In

turn, the multipole coefficients of the field can be related directly to linear and

non-linear accelerator beam properties, thus explaining the wide acceptance of

the rotating coil method for mapping accelerator magnets.

 This method eliminates the time dependence [Bottura, 2004], and, in

particular, the influence of variations of the rotation speed, greatly relaxing

requirements for uniform rotation. Differential measurements are also beneficial

to increase the resolution of high-order multipoles, several orders of magnitude

smaller than the main field. This is realized by using a set of compensation coils

mounted on the rotation support [Bidon, 1995]. The signal from the

compensation coils is used to suppress analogically the strong contribution from

CHAPTER 2

34

the main field. The compensated signal is analyzed in Fourier series together

with the absolute signal of the outermost rotating coil in order to obtain the main

field, as well as the higher order multipoles. The overall uncertainty on the

integral field strength and on the harmonics depends on the shaft type so far used

at CERN, and is not grater than few units [Pérez, 2006], [Delsolaro, 2001],

[Billan, 2000]. The Twin Rotating Unit (TRU) and the new Micro Rotating Unit

Rotating coils (μRU) system have been developed continuously at CERN. In the

following, a description of the latest development, the Micro Rotating Unit

(μRU), compared to the system used for the series measurements of the LHC

magnets, the Twin Rotating Unit (TRU), is given. The rotating coil system

utilized at CERN for the dipoles is based on a Twin Rotating Unit (TRU)

[Billan, 2000].

 For the usual measurements on constant current dipoles and quadrupoles this

time duration is considered acceptable. However, to fully analyze fast field

transients [Bottura, 2000], a new Micro Rotating Unit (μRU) was designed to

turn faster and provide harmonic measurements at rates in the range from 1 to 10

Hz. Such a system was developed in the framework of the project Fast Magnetic

measurement Equipment (FAME). Fast measurements require that the coils

rotate continuously in one direction and at higher speeds [Brooks, 2007].

TRU

 The current rotating coil system utilized at CERN is based on a Twin

Rotating Unit (TRU). This system consists of a motor unit that rotates a 16 meter

long shaft composed of 13 coil-carrying hollow ceramic segments connected in

series using flexible titanium bellows. For measurements of dipole magnets,

each ceramic segment has 3 separate coils of wire mounted within it, 1 central

coil and 2 tangential coils. The central coil is located along the central axis of the

segment, while the tangential coils lie directly opposite of one another on the

circumference of the segment. These coils cover the length of the segment and

CHAPTER 2

35

lie parallel to one another. The nominal rotation speed is 1Hz with variations

smaller than 3%. The acquisition software remotely controls the operation of the

unit. An angular encoder gives the angular position of the shaft with 4096 counts

per revolution plus a “zero” pulse on a separate channel. The encoder housing is

rigidly connected to an electronic inclinometer, giving an absolute reference for

the orientation of the encoder “zero”. Furthermore the TRU side of the shaft is

provided with a reference surface, aligned with the reference surface on the coil

shaft. Each measurement cycle consists of three turns in alternating direction.

The first turn is for accelerating the shaft in order to get the right constant

rotation speed. The read-out is executed during the second turn with constant

rotation speed. The last turn is for decelerating the shaft so as to change the

rotation direction. This mode is called washing machine mode Fig. 2.6. The final

measurement results are obtained from the average of the forward and backward

revolutions.

Figure 2.6: The TRU unit

μRU

The μRU-system Fig. 2.7, based on a modified version of the long ceramic coil

shafts with 12 dipole-compensated coil sectors (1/4 of the turns of a standard

system), better mass balancing, and sturdier connectors, is capable to turn

CHAPTER 2

36

continuously in one direction up to 8 Hz thanks to 54-channel slip rings. The

μRU attaches directly to the anticryostat and replaces the previous bulky TRU

(Fig. 2.8). The available coils are connected in series arbitrarily by means of a

patch panel. This permits changes in the compensation schemes or combination

of several coils in virtual supersectors, used to measure the integral field.

Figure 2.7: Motor for rotating coil in a long dipole magnet in the SM18 laboratory

CHAPTER 2

37

Figure 2.8: The MRU unit (a) is attached directly to the magnet anticryostat(b)

 The signals induced into the rotating coil are split in an “absolute” and a

“compensated” signal. The dipole field is derived from the absolute voltage

signal UA of the coil A only. In order to measure higher multipole field

components and to compensate the signal for the disturbing contribution of the

dipole field, the two pick-up coils (A and B) are electrically connected with

opposite polarities (array of two coil).

Figure 2.9: Connection scheme for absolute UA and compensated signals UA - UB (Left)

The absolute and compensated pick-up coil signals (Right).

 In both, radial and tangential arrangements, the pick-up coils A and B are

parallel and, thus, always have the same angle with respect to the dipole field.

For this reason, the contribution of the dipolar field component B1 to the

compensated signal Ucomp = UA –UB vanishes, and only field components of

order n > 1 contribute to the signal.

CHAPTER 2

38

 Voltage signals from the rotating coils are first pre-amplified and then read-

out simultaneously by a set of digital integrators. A schematic drawing of the

circuit is shown in Fig.2.9. An angular encoder is connected to the shaft. Since

the time integration is triggered by pulses from the angular decoder, the signals

are after all sampled as a function of the rotation angle θk in a discrete series of k

points for a total of M points uniformly distributed over a full revolution. A

software on a workstation controls the integrators, the motor rotating the shaft

and the magnet power supply. For every angle θk, the magnetic flux Φk through

the pick-up coils is obtained as a cumulative sum over the flux increments ΔΦi

(∑
=

ΔΦ=Φ
k

i
ik

1
).

2.2.2 Digital Integrators

 A magnetic flux measurement by means of the rotating coils technique

requires the integration of the voltage induced on the coil; therefore digital

integrators are an important part of the instrumentation for magnetic

measurements. Digital integrators currently used in the most important research

centers are:

PDI (Portable Digital Integrator)

Figure 2.10: Principle of PDI based on Voltage to Frequency conversion

 Digital integrators have been the basic electronic tool for magnetic

measurements at CERN since the 80’s. The CERN Portable Digital Integrator

CHAPTER 2

39

(PDI) has been in use for over 20 years [Elmore, 1954]. In this integrator, the

voltage from the induction coil Vin is sent, after conditioning and amplification,

to a Voltage-to-Frequency Converter (VFC), whose output is a square signal

with frequency f proportional to the VFC input voltage Fig. 2.10. This signal is

then entered in a counter that accumulates the number n of square pulses during

a measurement period dt starting at tstart and ending at tend. The frequency f of

the square signal is equal to the time derivative of the number of pulses (dn/dt)

and the output of the counter is, apart for the amplifier gain g and a

proportionality constant KVFC, a digital measurement of the integral of the input

voltage. The digital integrator achieves high accuracy owing to the conversion to

frequency domain. The limiting elements in this concept are the stability and

linearity of the VFC, and the resolution of counting operation that depends on

the maximum operation frequency of the VFC. Hybrid technology VFC’s have

linearity and stability better than a few ppm over the whole range of input

voltage. The typical maximum frequency of operation is 1 MHz. In order to

make the circuit practical, some additional features are added to the basic

scheme described above: 1. Commercial VFC circuits work only with single

polarity voltage, e.g. 0 to 10 V, while the signal from an induction coil can have

both polarities. The dual polarity capability is restored by shifting the input

voltage by a precise and stable reference Vref whose effect is to place the input

zero exactly in the middle of the VFC range. This offset is then eliminated after

counting, subtracting the counts from a reference source fref oscillating at

exactly half of the maximum frequency of the VFC.

CHAPTER 2

40

FDI (Fast Digital Integrator)

Figure 2.11: Principle of FDI (Fast Digital Integrator)

 The Fast Digital Integrator (FDI) was developed to overcome the limitations

of the PDI, providing a more advanced and performing solution with respect to

the other integrators previously described; it represents the new state-of-art

solution. The block diagram of the FDI is shown in Fig. 2.11 [Dayton, 1954].

The basic principle consists in the immediate integration of the input signal Vin

in the digital domain, without previous analog processing, in order to reduce the

impact of analog uncertainty sources.

 The input stage is represented by a gain programmable amplifier (PGA), with

automatic gain and offset calibration and adjustment. The gain and the voltage

offset are controlled by a Field Programmable Gate Array (FPGA) performing

the calibration, storing the calibration coefficients and applying them in

measurements. The input signal is digitized by an Analog-to-Digital Converter

(ADC), with Nresolution numbers of bit and a sampling rate equal to fsampling.

 The signal just acquired and converted becomes the input of a Digital Signal

Processor (DSP) performing numerical integration when triggered from an

external digital signal (e.g. pulses coming from an angular encoder). The DSP

manages the analog and digital I/O of the instrument through the FPGA which

CHAPTER 2

41

plays as an I/O processor. At last the result of the integration F is made available

on a digital communication bus in order to be sent to an external device as a PC.

42

Chapter 3

3 Flexible Framework For Magnetic Measurements
– FFMM

 In this chapter FFMM basic principles are discussed with the architectural

solution and design choices made in order to achieve above mentioned goals.

The development of a software easily adaptable or extendable to include new

applications, and satisfying a wide range of measurement requirements, was the

aim of the design and implementation of the Flexible Framework For Magnetic

Measurements platform (FFMM), a new version of the CERN of acquisition and

control software [Arpaia, 2006].

CHAPTER 3

43

3.1 FFMM concepts

 The FFMM is a software framework for magnetic measurement applications

based on Object Oriented Programming (OOP), and Aspect-Oriented

Programming (AOP) [Lieberher, 1989]. In particular, FFMM aims at supporting

the user in developing software maximizing quality in terms of flexibility,

reusability, maintainability, and portability, without neglecting efficiency, vital

in test applications. Moreover, the requirements for a wide range of magnetic

measurement applications, as required for the test of superconductive magnets

for particle accelerators, have to be satisfied.

 FFMM can be regarded as a set of rules allowing the user to easily create

high-quality software in the field of magnet testing. On the other hand, the

produced measurement software is not flexible, since it can be only reconfigured

within the boundaries of a specific measurement application. The user defines to

which extent the measurement software has to be reconfigurable. The realization

of the framework goals is based on the following basic ideas:

1. A group of interfaces and abstract classes represents a white-box layer

defining the high-level structure of FFMM used to generate new parts of

the framework. This allows potentiality and flexibility of FFMM to be

extended. The flexibility is achieved by means of reusability of the code:

rapid variations of measurement requirements due to the frequent

occurrence of different small batches of tests are satisfied by redesigning

software by reusing modules.

2. A group of modules, already available to the test engineer (end user),

represents a black-box layer, allowing both module reusability and use

easiness to be achieved, even by test engineers without deep knowledge

of internal FFMM mechanisms. Reusability is achieved by object-

oriented approach and modularity: a suitable design of the code allows

modules to be reused.

CHAPTER 3

44

3. Aspect-Oriented Programming (AOP) improves the reusability and the

maintainability of FFMM: in large projects, several concepts are

transversal to many modules (cross-cutting concerns). They are

extrapolated from the native units and implemented in separated modules

(aspects), in order to improve the system modularity (maintainability

enhancement). Incremental building of module libraries: once modules

can be reused, a finite application domain will be saturated in a finite

time.

4. A suitable definition of the code structure (normalization of structures

and software modules) gives rise to standard modules, representing the

basic library for the realization of new components and the extension of

already existing ones. Standardization of software structure and modules:

a definition of code structure and patterns gives rise to the production of

standard modules to be reused easily.

5. A library of reusable modules is built incrementally during the start-up of

the framework up to a “saturation” condition inside an application

domain, allowing further requirements in the same domain to be satisfied

by a limited effort. Predefinition of a software structure of the test

program, organized in standard modules: such an organization provides

the user about templates to be filled for generating new codes.

3.2 FFMM Architecture

On the basis of the above ideas, in Fig. 3.1 is shown the FFMM architecture.

CHAPTER 3

45

Figure 3.1: The FFMM Architecture

 The test engineer (end user) produces a description of the measurement

application, User Script, whose semantic and syntactic correctness is verified by

the Script Checker. Then, from the User Script, the Builder assembles the

Measurement Program, according to the architecture of the Scheme, by picking

up suitable modules from the Software Module Library. If some modules are not

available in the library, a template is provided to the user (administrator user) in

order to implement them according to a suitable predisposed structure. Once

debugged and tested, the Measurement Program will be stored in the Database

in order to be reused. According to the analysis of typical use-case tests on

superconductive magnets, the generic User Script is organized into the following

phases:

• definition of the measurement components;

• specification of mechanical and electrical connections;

• definition of dynamic parameters, i.e. configurable during run-time of the

Measurement Program;

• component checking;

• configuration of measurement devices;

• description of the measurement procedure;

CHAPTER 3

46

• preliminary data analysis;

• data saving.

 The TestManager organizes the test by knowing the Unit Under Test, the

Quantity to be measured, the measurement configuration, and the measurement

procedure. TestManager has an association with the Devices (software

representation of the measurement devices). Among Devices, Virtual Devices

can be controlled remotely by PC through a Communication Bus [Arpaia, 2006].

The Synchronizer and the FaultDetector are units managing critical topics in a

measurement application. The Synchronizer manages the software temporization

in the measurement procedure, while the FaultDetector intercepts malfunctions

and errors. The Synchronizer manages the software temporization in the

measurement procedure, while the FaultDetector intercepts malfunctions and

errors. The Synchronizer and the FaultDetector can be considered cross-cutting

concerns, because they are transversal to many software modules. As a matter of

fact, the synchronization policy involves all the measurement devices and all the

test procedures. Furthermore, the fault detection is a fundamental part of all the

devices, as well as of the measurement system as a whole. Then, the

Synchronizer and the FaultDetector are encapsulated in Aspects according to

AOP approach. Therefore, the policy for managing synchronization actions and

faults can be extrapolated from the single modules and handled separately. In

this way, further modifications will affect only those two components, without

any need for code changes in all the modules related to the fault detection or to

the synchronization. The Logger class handles the stock up of configuration and

measurement data, as well as system warnings and exceptions (Appendix D).

.

CHAPTER 3

47

3.3 FFMM Design

 There are some key requirements and system constraints that have a

significant bearing on the architecture. The following kinds of constraints are

identified:

• Portability

• Distribution

• Reuse

• Use of off-the-shelf products

3.3.1 Portability:

 A key requirement for the FFMM system was the portability across the

following platform:

• GNU/Linux Kernel 2.4 and 2.6

• Microsoft Windows Win32 Platform

 The FFMM was hence designed from start with portability in mind; for this

reason an isolation layer abstracting the OS platform detail for basic services has

been defined and implemented with either ad-hoc solutions or third part cross-

platform libraries.

FFMM components need to access different communication media on all

platforms; in particular:

• RS232 and GPIB

• Ethernet 10/100 Mbit

• PLX

• WorldFIP

• FFMM needs multithreading support on all platforms.

• Platform-specific I/O functionalities should be used for each platform to

improve performances.

CHAPTER 3

48

To decouple communication needs of FFMM components a

forwarding/receiving design pattern has been implemented. In particular objects

of CommunicationBus hierarchy act as forwarder/receiver and can be

encapsulated by those components that need to communicate across process

boundary.

3.3.2 Distribution:

The FFMM framework has been designed to build measurement application that

are local to a measurement node connected with all virtualized measurement

devices that are involved in a test session. The measurement node, hosting the

FFMM application instance, is then responsible for the execution of the

measurement script and the coordination of all distributed hardware devices

directly or connected to the node itself. From this point of view, the FFMM itself

is not distributed on several nodes: it acts as a coordinator for the hardware

devices that are needed to carry on specified measurement sessions.

3.3.3 Reuse

In order to maximize reuse, a white-box layer that lets users and developers to

extend framework by means of inheritance. The user of framework can re-

define/extend behavior by adding new classes that inherits from the abstract

ones of FFMM.

FFMM also provide a black-box layer (made by using the white-box one) that

can be used directly without any internal knowledge of the framework.

3.3.4 External libraries and Off-the-shelf products

The following libraries were used to design and implement the FFMM system:

• WxCTB 0.9

CHAPTER 3

49

• GPIB Drivers (for both Linux and Windows)

• PLX API and Drivers (for both Linux and Windows)

• NIDAQmx

• Poco (thread, logging and event infrastructure)

All these components are available for multiple platforms and in particular for

Win32 and Linux (on both 2.4 and 2.6 kernels).

PLX and GPIB drivers are only available for Win32 and Linux platforms: this

puts a constraint on portability on other platforms other than those two.

3.4 Components

3.4.1 Logger

 In order to be effective, loggers need to be simple for programmers to use.

Programmers aren't going to frequently use something that is inconvenient. The

user should be able to emit a log message with something no complicated. On

the other hand the logger needs to gather all of this peripheral information

together, format it into a log message, and then add it to the growing list of

logged messages. Moreover another question the logger architecture must

answer is mainly: where should the logged messages be stored? Data could be

stored in a text or binary file or in a database table. The possibility to accumulate

it in RAM and that is constraints are satisfied might even take into account. The

choices are endless. However, the final destination of the logged messages has to

be kept decoupled with the format of the messages themselves. There are indeed

two different responsibilities: logged message formatting, and logged message

recording. These are both in the flow of logging a message, but both can vary

independently of each other. The formatter does not care where the message is

recorded, and the recorder does not care about the format of the message.

Whenever there are two connected but independent algorithms and the Strategy

pattern can be used to connect them.

CHAPTER 3

50

3.4.2 Virtual device

 Virtual Devices are software components modeling in FFMM the concrete

devices that can be orchestrated during measurement processes. While the

VirtualDevice interface defines a role, in FFMM a hierarchy of device has been

defined and evolved during the development iteration through feedbacks

gathered during several meetings with the measurement team.

 Virtual Devices implementations are designed as singletons with a strict

control on the number of instances. A single device registry is kept in the

MeasurementDevice abstract class in order to provide access to devices in every

context of the user script by using symbolic identifiers. VirtualDevice class is

involved in event handling and provides a basic interface to create/destroy

devices using named identifier. This functionality is very important since let

script developers to bind symbolic names to devices and, by means of such

names, obtain, in every context, a reference to specific devices.

3.4.3 Event Handling

 A common side-effect of partitioning a system into a collection of

cooperating classes is the need to maintain consistency between related objects.

Achieving consistency by making the classes tightly coupled reduces their

reusability.

 For example a logger can be interested to the end of an acquisition from a

FDI. Both classes can be reused separately, but can work together too. The

logger and FDI can depict the same data using different presentation. They don’t

know about each other, but when the data are changed both reflect the changes

immediately. This behavior implies that the logger and FDI are dependent on the

data object and therefore should be notified of any change in its state. And

there's no reason to limit the number of dependent objects to two; there may be

any number of different user interfaces to the same data. The Observer pattern

describes how to establish these relationships. For this reason, to increase the

CHAPTER 3

51

system flexibility the behaviors of devices are collected in homogeneous groups

representing behavioral interfaces modeling the devices functionalities. During

the analysis of instrumentation, if a characteristic behavior is detected, to

provide it to the user, the class instrument has to implement the relative

interfaces. So in a modular way, if studying a device the necessity of include a

new functionality emerges, the interfaces describing this behavior have to be

implemented. The benefit is that the interface of a device is modified modular

using existing interfaces and avoiding modification to the class hierarchy that

could involve the complete framework structure.

3.4.4 Fault Detector

 The AOP-based architecture for fault self-detection in measurement systems

is based on:

• a fault detection subsystem, designed for:

• monitoring the ‘health’ state of the measurement system's component

devices;

• catching software faults such as stack overflow, live-lock, deadlock,

and application-defined faults as they occur.

• a fault notification subsystem, responsible for:

• constantly receiving the sequence of faults occurring from all the

system components;

• storing the diagnostic history and providing means to other

components or to external humans to access it and adequately react to

faulty events.

 In the architecture, several kinds of classes of faults relevant in automatic

measurement systems are identified: faults in virtual device, faults in the

measurement environment and faults in software components.

The analysis of several state-of-the-art measurement systems highlighted that

fault detection is usually scattered all over different hierarchies, mainly with

CHAPTER 3

52

reference to devices hierarchy. This means that concrete virtual devices classes

contains code for fault detection resulting in code duplication that will be

difficult to comprehend and maintain [Arpaia, 2007].

3.4.5 Seynchronizer

 Tasks are synchronized by means of a Petri Net modeling an execution

graph, where each node represents a task and the arrows among nodes imply that

an arriving node can be executed after the starting node. This allows

synchronization to be abstracted above the code-level so that the Test Engineer

can work at a more intuitive level.

 The main basic idea is to have a software component capable of managing

the execution of generic tasks by modeling sequential and parallel task

executions, tracing the execution status of each task, and determining the task

available for the execution, step by step.

53

Chapter 4

4 DSL – Domain Specific Languages

 “Works of imagination should be written in very plain language; the more

purely imaginative they are the more necessary it is to be plain.” 1

This section describes what a domain specific language is, what kind of

advantages and disadvantages a DSL has and also what common DSL analysis,

design and implementation patterns exist.

1 Samuel Taylor Coleridge

CHAPTER 4

54

4.1 What is a domain specific language?

 To understand the meaning of the term domain specific language or more

precisely domain specific programming language the term programming

language is defined. One possibility is given by [Raphael A., 1995]:

“A programming language or computer language is a standardized

communication technique for expressing instructions to a computer. It is a set of

syntactic and semantic rules used to define computer programs. A language

enables a programmer to precisely specify what data a computer will act upon,

how these data will be stored/transmitted, and precisely what actions to take

under various circumstances.”

• However there exists no definition which all authors agree upon. Watts

therefore proposes [David A., 1990] some criteria which have to be fulfilled by a

programming language: Must be universal (every problem must have a solution

that can be programmed in the language, if that problem can be solved at all by

computer).

• Must be implementable on a computer.

• Should also be reasonably natural for solving problems, at least problems

within its intended application area.

 Programming languages in general can be grouped or classified by different

criteria. Possible criteria are the purpose (for example FORTRAN for scientific

programming versus C [Brian W. K, 1988] for system programming), the

paradigm (LISP as a functional language or small talk as a object oriented

language), the generation (1GL up to 5GL), whether it is imperative or

declarative and domain specific or general purpose. General purpose languages

(GPLs) are less specialized and are suited for a wide area of applications from

business processing up to scientific computing. Java1 is a prominent

representative.

1 http://java.sun.com

CHAPTER 4

55

 The term domain specific means that the language is explicitly tailored to a

target domain. Complex constructs and abstraction of the domain are offered

within the language increasing its expressiveness in comparison to GPLs. It is

possible to express solutions for domain problems with a lesser effort. The

higher abstraction and the compactness and therefore better readability and

writability enables a larger group of people with less programming knowledge to

be productive using the DSL. This leads to productivity gains in general and also

to decrease maintenance costs.

 Often a DSL does not fulfill all criteria given by Watts. Nevertheless, many

DSLs are regarded as special programming languages. Today there are many

well known DSLs like HTML, SQL, VHDL, make (software build process),

Latex (document preparation), BNF (context free grammars) or even Excel.

 The use of DSLs is not new. These languages had been named special-

purpose languages, end-user languages or as Bentley [Bentley, 1989] called

them “little languages” before the term domain specific language was coined.

Already in 1957 APT [Brown, 1963], a language for numeric controlled

machines was developed at the MIT, which can be considered as one of the first

available DSLs. The boarder between a DSL and a GPL is fuzzy, for example

COBOL was considered a GPL but also a DSL for business applications.

Another example is Prolog which can be understood as a DSL for applications

specified by the predicate calculus. One attempt to classify a language has been

done by Jones [Greenfield, 2003]. A higher level stands for more domains

specific whereas a lower level means more generality (table IV.1). As stated by

Mernik [Mernik, 2005] the domain-specificity of a language is a matter of

degree. In this thesis a definition by the former will serve as guidance:

“DSLs are languages tailored to a specific application domain. They offer

substantial gains in expressiveness and ease of use compared with GPLs in their

domain of application”

CHAPTER 4

56

DSL domain level
Java GPL 5

VHDL hardware design 17
HTML web pages markup 22
SQL database queries 25
Excel spreadsheets 57

Table IV.1: Well known DSLs [Capers, 2007].

4.1.1 Advantages

 A DSL offers different advantages. Productivity and maintainability [Van

Deursen, 1997] are increased due to an appropriated domain specific notation.

DSLs are more suitable for end-user programming. Domain experts are able to

understand, validate, modify and develop within the language (better readability,

writability and high abstraction). The gains can be measured quantitatively and

qualitatively. Most qualitative reasoning is backed up by practical observations.

According to [Mernik, 2005] the quantitative validation of DSL advantages is an

ongoing field of research, yet supporting results is reported. Fig. 4.1 shows the

advantage of DSLs regarding to long term cost. Because of the concise nature

and the domain fitting notation DSLs are up to a certain degree self-

documenting. This also facilitates the embodying of domain knowledge which

eases reuse [Duggan, 2000] and conservation.

 Another advantage is the possibility to validate at domain level [Consel,

2002]. While normal GPL compilers do not know about any domain concept

beyond the general language constructs, a DSL can be checked for any domain

specific constraint. An example may be real time properties: as long as for every

language construct a certain execution time is ensured, it is possible to

automatically proof the whole program. Just as verification, optimization can be

done more effectively at the domain level [Basu, 1997].

CHAPTER 4

57

4.1.2 Disadvantages

 A DSL has not only advantages, but also potential shortcomings. One

drawback is the high development effort which is needed for a new language.

The language developer needs at least experience in language design and

knowledge about the target domain. He has to find fitting abstractions, the right

scope and balance between GPL and DSL constructs. Furthermore the language

must be implemented and maintained.

Figure 4.1: Simplified cost prediction for DSL-based methodologies [Devanbu, 1998]

 Other problems are tooling, user training costs and performance. While

general purpose languages such as Java or C#2 have a strong tool support,

corresponding tools for a new DSL have to be created. IDEs like Eclipse or

Visual Studio offer deep integration with these languages like powerful editors

with syntax highlighting and checking, integrated compilers and advanced

debuggers.

 Creating a tool ecosystem for a DSL is a time consuming process which adds

to the total costs caused by language design and implementation.

2 http://www.ecmainternational.org/publications/standards/Ecma334.htm

CHAPTER 4

58

 Without a development methodology and suitable tools the risk is high that

the DSL development costs surpass the estimated saving by using a DSL.

The mentioned training costs originate from the fact that possible DSL users

have by definition never used the language before, however this is mitigated as

in most cases the new language should match the domain expert’s expectations.

 Often a DSL will suffer from a lower performance than a hand written

software. As long as performance is not critical the other DSL benefits will

make this a minor problem. Nevertheless are some cases performance can be

equal or faster because optimization is possible on a high abstraction level but in

most cases the potential is limited.

4.1.3 Development phases and patterns

 The development of a DSL can be divided into different phases. The design

and the implementation phase. A finer grained phase subdivision is possible.

Five stages can be distinguished: decision, analysis, design, implementation and

deployment. The development process of a DSL has not to follow these phases

sequentially. Different authors [Thibault, 1999] have identified numerous

patterns which are reoccurring in DSL development and can serve as guidance

for a developer without prior expertise in this field. Each pattern can be assigned

to one of the five phases. The patterns are divided into decision patterns,

analysis patterns, design patterns and implementation patterns each capturing

common approaches. In the following section phases and patterns will be

described according to the extensive analysis by Menrik et al. [Mernik, 2005].

4.1.4 Decision phase

 Before the development of a new DSL can begin, a decision has to be made.

Is it feasible or not? Economic considerations have to be taken into account. Do

the accumulated development, deployment and maintenance costs justify a new

DSL in comparison with other conventional approaches? Is there already a

CHAPTER 4

59

suited existing DSL? If so are documentation and maintenance good enough? If

not, is the risk developing a new DSL acceptable?

The following decision patterns have been identified. Most of them based on the

same general concerns such as allowing domain experts with less programming

experience [Thibault, 1999] to develop software or improving software

economics.

• Notation An improved new or existing domain specific notation can be a

definitive factor. Two common subpatterns are the transformation of a

visual to a textual notion and the creation of a user friendly notation for

an existing API. The first pattern for example enables easier composition

for large artifacts.

• AVOPT Domain-specific Analysis, Verification, Optimization,

Parallelization and Transformation for applications developed in a GPL

are in general time consuming and hard to automate due to for example

source code complexity. With a well defined DSL AVOPT is more

feasible.

• Task automation In some cases GPL programming suffers from

repetitive programming tasks. Automatic code generation driven by an

appropriated DSL can ease this [Smith, 2006].

• Product line Some software products do not exist as a single standalone

application but are part of a product line or software family, sharing

common parts. A DSL can facilitate the specification and support

automated assembly [Weiss, 1999].

• Data structure representation Representing structured data in an easy to

read, write and maintainable form assists in making complex structures

accessible. An appropriated DSL can help achieving these goals. YAML

[Ben-Kiki, 2004] and JSON [Crockford, 2006] are examples.

CHAPTER 4

60

• Data structure traversal Like representation, traversal of data structures

can often be expressed more effective with a fitting DSL (for example

SQL [Groff, 1999]).

• System front-end DSL based configuration and adaption for system front-

ends.

• Interaction Text, menu, dialog or voice based applications which interact

with the user can benefit from a DSL which specifies input and reaction

in a high level representation.

• GUI construction Often GUI design is done by using a DSL. For

example XUL and XAML are XML based DSL for GUI description

[Bishop, 2006].

4.1.5 Analysis phase

 After the decision in favor for a (new) DSL is made, the specific domain has

to be analyzed with the goal of gathering as much domain knowledge as

possible. It is important to ensure a high quality of the gathered material and to

have access to domain experts. The term domain analysis was introduced by

Neighbors [Neighbors, 1980] and defined as identifying similar objects and

operations in a particular domain. Different sources of information can be

examined for example already existing technical documents, APIs and GPL

code or knowledge from domain experts.

 After gathering the knowledge must be clustered to find meaningful

abstractions and must be consolidated. In most cases the results of the analysis

are a domain definition, the domain specific terminology and concepts, a domain

model, the domain scope and a description of the (operational) semantics. Fig.

4.2 summarizes different sources and possible results. Yet there is no widely

adopted notation to capture the results of the analysis phase.

Three different domain analysis patterns can be identified: informal, formal and

extraction from code.

CHAPTER 4

61

Figure 4.2: Domain analysis, taken from [Prieto-Diaz, 1990]

Informal pattern

 The informal pattern means that the domain analysis is done informally and

therefore no formal process is used. Most DSLs are developed without an

analysis methodology [Mernik, 2005].

This often leads to incomplete requirements and can complicate the development

process. While it is possible to get first results earlier the quality is not as high as

with formal patterns. For simple domains an informal process is often enough.

Formal pattern

 Domain analysis can also be done using a defined process/methodology.

Those which use a methodology can be counted to those that follow the formal

pattern. Using a formal pattern helps to avoid missing important parts of the

CHAPTER 4

62

domain and can lead to more appropriate requirements. A large number of

methodologies used, come from another field of research: domain engineering.

Domain engineering is derived from the area of software reuse and refers to the

systematic modeling of a target domain. This is strongly related to the notation

of program families [Van Der Linden, 1998] and software product lines

[Sugumaran, 2006].

 While domain engineering and analysis techniques focus mainly on

commonalities, family and product line analysis examine the variations inside a

domain. Several methodologies exist today: FAST (Family-Oriented

Abstractions, Specification and Translation) [Weiss, 1999], Sherlock [Valerio,

1997], DSSA (Domain-Specific Software Architectures) [165], DARE (Domain

Analysis and Reuse Environment) [Frakes, 1998], FODA (Feature-Oriented

Domain Analysis) [Kang, 1990], PROTEUS [CAP, 1994], ODE (Ontology-

based Domain Engineering) [De Almeida Falbo, 2002] or ODM (Organization

Domain Modeling) [Simos, 1998]. This list consists of the most well know

methods but is by no means complete.

 An example where FODA and FAST are applied can be found in [Mernik,

2005]. While most methodologies have a graphical feature diagram or domain

model as result, Deursen and Klint propose a formalized textual3 representation

which can be used to generate UML diagrams or other types of documentation

even code.

Semi formal

 A specific semi formal approach (domain driven design) covering analysis is

proposed in [Evans, 2003]. The creation of a fitting domain model is most

important in domain driven design. At first domain experts and software

architects try to find a domain model which serves as a base for a common

communication language (Ubiquitous Language). This language will be used

3 The Feature Description Language (FDL), which is a separate DSL again.

CHAPTER 4

63

later on in all aspects of the development process. It is advised that the notation

for the domain model is UML. Not only one large diagram, but several small

diagrams each describing a certain aspect or part should be used. The reason

behind this is avoiding cluttering and reducing complexity. The UML artifacts

should be accompanied by documents that contain information not captured by

UML like the meaning of concepts or what certain objects are supposed to do. In

comparison to other methodologies Evans gives extensive information how to

continue after the domain model is established or the feature analysis is done.

Extraction from code pattern

 The last identified pattern extraction from code derives a DSL directly from

an existing implementation. In most cases this implementation is done in a GPL

though it is also possible to derive from another DSL.

4.1.6 Design phase

 The design of a DSL and therefore the development of the language itself is

based on the results of the earlier phases. Two questions have to be answered

approaching the design:

1. How is the DSL related to existing languages and what kind of formal

description for the language is chosen? With each question different

possible design patterns are associated helping to find an appropriated

answer.

2. Creating a language based on an existing one can have different

advantages. Some users may be familiar with the base language resulting

in reduced training cost. Common operations such as arithmetic’s for the

family of C languages are well known to many developers. Furthermore

an existing implementation and/or eco system can be leveraged. Three

different approaches reusing existing language can be distinguished. The

fourth approach is the entirely new development of a language.

CHAPTER 4

64

Piggyback

 The new language can piggyback domain specifics feature on part of the

existing language. Examples are Hancock [Cortes, 2000], lava [Sirer, 1999] or

Facile [Schnarr, 2001] Hancock is a DSL for high performance signature

processing and it piggybacks on C by modifying language parts and adding

processing related constructs. From this DSL, C code is generated again. Similar

to that lava, a production grammar DSL to describe and generate test cases for a

JVM, piggybacks on the textual Java byte code representation. The byte code is

generated from the DSL. The Facile language helps developing high

performance processor simulation, also by augmenting C.

Extension

 A related pattern is extension. The base language is extended by features

corresponding to domain concept. In comparison to piggybacking the base

language is not modified or replaced. A problem of this approach is the

seamlessly integration of new features with existing ones. A DSL which follows

the extension pattern is SWUL [Bravenboer, 2004], SWUL supports the

development of Java SWING GUIs and is embedded into Java.

Specialization

 Developing a new DSL does not always mean to create something new. A

more uncommon pattern is specialization (not to confuse with specialization in

UML). An existing language is reduced to fit the needs of a special domain.

Examples are RPython [Rigo, 2006] or OWL-Lite [Van Harmelen, 2002].

RPython is a subset of the Python language used inside the PyPy project [Rigo,

2006]. The complexity of Python is reduced in order to make C code generation

from RPython easier.

CHAPTER 4

65

4.2 Model Driven Engineering (MDE)

 Model Driven Engineering (MDE) is the new trend in software engineering.

MDE is the collection of all approaches that use models as a core principle for

software engineering. The Model Driven Architecture (MDA) is the proposed

approach for the MDE given by the Object Management Group (OMG). The

aim of the MDA is to reach an abstraction level that is more focused on defining

the structure and behavior of the system disregarding the underlying

implementation technology.

 The core element of the MDA is the Model Object Facility (MOF), which

aim to enable the development and interoperability of model and metadata

driven systems, such as modeling and development tools, data warehouse

systems and metadata repositories. For realizing this, MOF provides a metadata

management framework, and a set of metadata services.

 If we look to the history of software engineering (Fig. 4.3), we can detect

that we are continuously searching for a technique that provides a better and

more natural approach for defining a system.

Figure 4.3: History of software engineering

CHAPTER 4

66

4.3 Basic Concepts

4.3.1 Model

 The term model is applicable in a broad area, which leads to many

definitions. For example, a definition of model according to Benyon is [Benyon,

1997], “A model is a representation of something, constructed and used for a

particular purpose.” The model is always the representation of something.

 A model on its own has no meaning. The meaning of the model is related to

the situation and context wherein the model is used. Like information and data

[Harel, 004], the data is the syntactic representation of information. Data on its

own has no meaning, but in combination with an interpretation, the information

behind it can be extracted and understood.

4.3.2 Meaning of a model

 The modeler as constructor of the model will define together with

constructing the model the meaning of the model. The modeler will construct the

model in such way that based on the representation the meaning can be

extracted. Therefore, the modeler is using already commonly understood

concepts. The role of the interpreter is to extract the meaning from the model.

The interpreter is only capable of extracting the correct meaning if the

interpreter has the same common understanding of the concepts used for the

model. The exchange of a model between a modeler and an interpreter is called

communication.

 We can assign communication with a degree of meaning. The degree of

meaning can be fuzzy, but we can at least define a minimum and maximum

degree of meaning. The minimum degree of meaning is called meaningless, and

maximum degree is called meaningful. If the modeler communicates with the

interpreter, the modeler has a purpose for communicating. The communication

CHAPTER 4

67

between the modeler and interpreter is meaningful if the purpose is obtained, if

the purpose is not obtained the communication is meaningless.

To enlarge the chance that the interpreter can understand the model, the modeler

can refer to a description of the notation of the model. This can be useful if the

notation of a truth table is new for the interpreter. Therefore, the interpreter

should be capable of interpreting the description of the truth table; otherwise we

need again a description of the description of a truth table.

4.3.3 Language

 For structurally describing something, we use a language. A language can be

compared with the common understanding as described in previous section. The

language is used for communication, and will at least need the following

concepts. A language needs a concrete notation, which can be stored or

transported. Furthermore, an interpretation is needed that will explain the

meaning of the language constructs. These definitions are the fundamental

concepts of a language, and are described as syntax and semantics [Harel, 2004].

The syntax of the language defines the notation, and the semantics describes the

meaning of the notation.

 Both syntax and semantics can be divided into aspects that are more specific.

For the syntax those aspects are concrete syntax, syntax mapping, and abstract

syntax, and for the semantics those aspects are semantic mapping and semantic

domain. Those aspects are related to each other in some way. The Fig. 4.4 shows

an overview of those aspects and the relation with each other.

Figure 4.4: Semantic and Syntax mapping

The syntax of the language is divided into concrete syntax and abstract syntax.

Where the concrete syntax defines the physical notation, the abstract syntax

CHAPTER 4

68

defines the structure of the notation. The structure of the notation is defined

independently of the physical notation. Both syntaxes are mapped to each other

by means of the syntax mapping, which provides the ability for defining a

program using the physical notation according the abstract syntax.

 For describing the meaning of the language the semantics are used, which

describes the meaning in terms of the concepts that are already well-defined and

well-understood. The well-defined and well-understood concepts are covered in

the semantic domain, which is part of the semantics. For the semantic domain,

we can use a variety of notations, like natural language or mathematical

definitions. The abstract syntax is mapped to the semantic domain. This provides

the abstract syntax with a well-defined and well-understood meaning.

As for everything we would like to describe, we need a language for describing

it. In the case of the defined language aspects, it is not necessary that the same

language is capable of describing each aspect. The language used for describing

models is called a modeling language. The relationship between the modeling

language and the model is that the model is expressed by using the modeling

language. The modeler and interpreter need an understanding of the modeling

language. The modeler can construct the model, based on this understanding.

For the interpreter, the understanding will provide the ability to extract the

correct meaning of the model.

4.3.4 Metamodel

 A model that represents a modeling language is called a metamodel

[Seidewitz, 2003]. Meta is Greek and is used for describing something. In the

case of a metamodel it describes the possible models that can be expressed using

the language, as shown in Fig. 4.5. The model is an instantiation based on the

metamodel. The relationship between a model and metamodel is called an

instance of relationship.

CHAPTER 4

69

Figure 4.5: Metamodel.

4.3.5 Meta Metamodel

 A meta metamodel is a specialized metamodel that describes other

metamodels. The position in the modeling hierarchy defines if a metamodel is a

meta metamodel.

4.4 MDSD Model driven software development

 The application of models to software development is a long-standing

tradition, and has become even more popular since the development of the

Unified Modeling Language (UML).

 Yet we are faced with ‘mere’ documentation, because the relationship

between model and software implementation is only intentional but not formal.

We call this flavor of model usage model-based when it is part of a development

process. However, it poses two serious disadvantages: on one hand, software

systems are not static and are liable to significant changes, particularly during

the first phases of their lifecycle. The documentation therefore needs to be

meticulously adapted, which can be a complex task – depending on how detailed

it is – or it will become inconsistent. On the other hand, such models only

indirectly foster progress, since it is the software developer’s interpretation that

eventually leads to implemented code. These are the reasons why many

programmers consider models to be an overhead and see them as intermediate

results at best.

 Model-Driven Software Development has an entirely different approach:

Models do not constitute documentation, but are considered equal to code, as

CHAPTER 4

70

their implementation is automated. MDSD [Stahl, 2006] therefore aims to find

domain-specific abstractions and make them accessible through formal

modeling. This procedure creates a great potential for automation of software

production, which in turn leads to increased productivity. Moreover, both the

quality and maintainability of software systems increase. Models can also be

understood by domain experts. This evolutionary step is comparable to the

introduction of the first high-level languages in the era of Assembler

programming. The adjective ‘driven’ in ‘Model-Driven Software Development’

– in contrast to ‘based’ – emphasizes that this paradigm assigns models a central

and active role: they are at least as important as source code.

To successfully apply the ‘domain-specific model concept, three requirements

must be met:

• Domain-specific languages are required to allow the actual

formulating of models.

• Languages that can express the necessary model-to-code

transformations are needed.

• Compilers, generators or transformers are required that can run the

transformations to generate code executable on available platforms

MDSD may sound a lot like MDA. This is correct to a certain extent. In

principle, MDA has a similar approach, but its details differ, partly due to

different motivations. MDA tends to be more restrictive, focusing on UML-

based modeling languages. In general, MDSD does not have these restrictions.

The primary goal of MDA is interoperability between tools and the long-term

standardization of models for popular application domains. In contrast, MDSD

aims at the provision of modules for software development processes that are

applicable in practice, and which can be used in the context of model-driven

approaches, independently of the selected tool or the OMG MDA standard’s

maturity.

 Basically Model-Driven Software Development consists of two major

aspects. The first one is processing models, i.e. checking their validity,

CHAPTER 4

71

transforming them into other models as well as generating code (and other

textual artifacts) from models. The other aspect addresses the creation of

models. Traditionally, the processing of models has received more attention

from the MDSD community. In particular, in Eclipse (open source) community,

whose projects are focused on building an open development platform

comprised of extensible frameworks, tools and runtimes for building, the

Graphical Modeling Framework is a tool that allows developers to easily define

graphical editors for EMF-based meta models. Graphical editors are not enough,

though. Many problems are better described with textual concrete syntaxes.

As part of the Eclipse Modeling Project, there’s a placeholder project called

TMF (for Textual Modeling Framework) which will address exactly this

challenge – defining “nice” textual syntaxes for EMF-based meta models.

72

PART II: PROPOSAL

73

Chapter 5

5 Domain Specific Language for Magnetic Measurements

A DSL can be regarded as a programming or specification language

dedicated to a particular domain or problem. The advantage of a domain-specific

language in contrast to a general purpose language is that the DSL provides

appropriate built-in abstractions and notations. In particular, DSL uses terms

derived from a model created for a particular problem domain and used for

defining components or complete solutions to be used in that domain. A domain

can be seen as a specific setting with an implicit set of artifacts, actors and

processes [Object Management Group, 2003].

CHAPTER 5

74

5.1 Magnetic Test Domain and FFMM Architecture

At CERN, measurement systems were developed under different conditions

and with variable requirements for the series tests, of the LHC superconducting

magnets. The result is a number of systems whose software has scarce

reusability, without the necessary separation between the generic and the

specific code, the main design criterion to ensure a good maintainability.

 Although a good base to develop a new control and/or measurement

application is provided, a strict collaboration between developers is still required

in order to fully integrate new applications.

The first step was to realize a new framework (FFMM presented in Chapter

3) was based on the following basic ideas [Arpaia, 2007]:

(i) The flexibility is achieved by means of the code reusability: rapid

variations of measurement requirements due to the frequent

occurrence of different small batches of tests are satisfied redesigning

software by reusing modules.

(ii) Reusability is achieved by object-oriented approach and modularity:

a suitable design of the code allows modules to be reused.

(iii) Incremental building of module libraries: once modules can be

reused, a finite application domain will be saturated in a finite time.

(iv) Standardization of software structure and modules: a definition of

code structure and patterns gives rise to the production of standard

modules to be reused easily.

(v) Predefinition of a software structure of the test program, organized in

standard modules: such an organization provides the user with

templates to be filled for generating new code.

CHAPTER 5

75

Base Service Layer
Communication

Service
Ansi C++ Standard
and external library

Basic
Functionality

WIN32 POSIX OTHERS

Core Service Layer

Device Driver

Logging Service Fault Detection Event Handling

Measurement Service Layer

Measurement Task

Synchronizer Test Manager

Figure 5.1: The multi-layered FFMM architecture

Correspondingly, the fundamental principle underlying the FFMM

architecture is the decoupling of software components through three main layers

(Fig. 5.1):

• Base service layer - Communication and service packages: This layer

implements the necessary foundations for communications, utilities (like

useful algorithms and class libraries), and an OS service abstraction package.

• Core servics layer – Virtual Devices and Event-handling, Logging/Fault

Detection: Virtual Devices are software components modeling in FFMM the

concrete devices to be orchestrated during measurement processes. Event

handling was implemented to let Virtual Device and other software

components obtain the needed information about the state of components of

their interest. Logging/Fault Detection are responsible for monitoring the

state of the component devices and catching software faults such as stack

overflow, live-lock, deadlock, and application-defined faults as they occur.

• Measurement service layer – Test management and acquisition

synchronization are able to create groups of tasks to be synchronized to well

defined events (e.g. start and stop or device events) as needed.

CHAPTER 5

76

In Fig. 5.2, a typical FFMM configuration is shown.

Figure 5.2: A typical FFMM configuration

5.2 The proposed approach

After developing FFMM (Chapter 3), it was necessary to provide the test

engineer with a easy and fast way to write a measuremet script. To achieve this

goal MDSL has been developed.

The final use of the Domain-Specific Language is in its domain. For our

purposes, a language is a set of terms and expressions which are bounded by a

set of syntax and semantic rules and used for communication within a domain.

Some features common to all languages should be understood in order to

develop a generic approach to language definition:

• Concrete Syntax: all languages provide a notation fostering the

presentation and construction of models and programs in the language.

This notation is known as its concrete syntax. There are two main types

of concrete syntax: textual and visual. A textual syntax enables models

and programs to be described in a structured textual form. A visual

syntax presents a model or program in a diagrammatical form. The

advantage of a textual syntax is that it is aimed at representing details,

while a visual syntax at communicating structure.

CHAPTER 5

77

• Abstract Syntax: the abstract syntax of a language describes the

vocabulary of concepts provided by the language and how they may be

combined to create models or programs. It consists of a definition of the

concepts, the relationships that exist between concepts and may also

include rules stating how the concepts may be legally combined. It is

important to emphasize that a language’s abstract syntax is independent

of its concrete syntax and semantics. Abstract syntax deals solely with

the form and structure of concepts in a language without any

consideration given to their presentation or meaning.

• Semantic: the semantics of a language describes what models or

programs in the language actually mean and do. In the context of

programming languages, execution semantics is essential in order to run

programs written in the language. Semantics are also important in the

context of modeling languages.

External and internal textual DSLs can be defined. An External DSL is a

domain specific language represented in a separate language to the main

programming language it's working with. This language may be a custom

syntax, or it may follow the syntax of another representation (like XML).

An Internal (or Embedded) DSL is DSL expressed within the syntax of a general

purpose language. It's a stylized use of that language for a domain specific

purpose.

5.3 DSL Requirements

 Test engineers are not skilled programmers and have to produce concise and

bug-free FFMM specific applications (Fig.5.3).

CHAPTER 5

78

Figure 5.3: Test Engineer and Developer Application User roles in measurement software DSL

 Thus, a new Measurements Domain Specific Language (MDSL) with

specialized constructs was designed in order to:

1. define logical, numeric, and temporal conditions;

2. perform conditional branching, immediate verification of conditions,

verification of conditions within a time period, and continuous

verification of conditions;

3. be able to define events based on measurement value and attribute

changes, time changes, external event notifications, and user inputs;

4. subscribe and unsubscribe to events, and respond to them with behaviors

that include sending text messages to users or commands and generate

measurements;

5. enable, configure and disable framework service;

6. be able to interact with the user through a command prompt;

7. compare measurement data against specified criteria within a specified

time period, and compute results that are numeric and Boolean functions.

CHAPTER 5

79

 To meet these requairements has been developed a domain-specific language

called MDSL. Before giving details on the architecture, the concept of Semantic

Model has to be introduced.

5.4 The architecture

5.4.1 Semantic model

 The Semantic Model of a DSL is a subset of the overall Domain Model for

an application. In the context of a DSL, a semantic model is an in-memory

representation, an object model, of the same subject that the DSL describes.

While the DSL describes a state machine, the Semantic Model is an object model

with classes for state, event, etc.

The semantic model was separated from the DSL in order to:

1. think about the semantics of this domain without getting tangled up in

the DSL syntax or parse

2. be able to test the semantic model by creating objects in the model and

manipulating them directly;

3. have an incremental approach, starting with simple internal DSL and

after add an external DSL; this is possible because having an explicit

semantic model we can support multiple DSLs, since both DSLs can

parse easily into the same Semantic Model;

4. be able to evolve the model and language separately; if the model is to be

changed, this can be explored without changing the DSL, by adding the

necessary constructs to the DSL; or new syntaxes for the DSL can be

experimented by just verifying the creation of the same objects in the

model; two syntaxes can be evaluated by comparing how they populate

the semantic model.

 This separation of semantic model and DSL syntax mirrors the separation of

domain model and presentation suggested in a DSL can be thought as another

form of user interface [Bosch, 1996].

CHAPTER 5

80

 The proposed MDSL is based on a Semantic Model, seen as a part of the

FFMM domain model. It captures the Measurement Test Procedure core

structure and behavior. Semantic Model is part of the difference between

working with DSLs and with general purpose languages. In Fig. 5.4, the

proposed approach for the transformation of the Measurement Domain-Specific

Description (MDSD) into the final code is shown.

 The external DSL, written by the Test Engineer, is parsed to create an

internal file treated by the semantic model (Fig.5.4). The external DSL, the DSL

scripts i.e. the MDSD, the parser and the Semantic Model is very clearly

separated. The MDSL scripts are written in a clearly separate language; the

parser then reads these scripts and populates the Semantic Model. Direct writing

in the internal DSL risks to mix up difficulties. An explicit layer of Expression

Builders providing the necessary fluent interfaces to act as the language were

conceived. MDSL scripts run by invoking methods on an Expression Builder

which then populates the Semantic Model. Thus, in an internal DSL, parsing the

DSL scripts are done by a combination of the host language parser and the

Expression Builders.

 Once a Semantic Model is defined, it is passed to Builder for code

generation, i.e. the code is separately compiled and run.

PARSER

Generated
Code

MDSD
Script BUILDER

Semantic Model

Figure 5.4: MDSL transformation in code

CHAPTER 5

81

 The code generator is decoupled from the parser: a code generator can be

written without having to understand anything about the parsing process, as well

as tested independently too. For our project, the code generated is a script in

C++ language to be compiled to obtain the executable code for the

measurement.

5.4.2 Parser

Parsing is a strongly hierarchical operation. When a text is parsed, the chunks

are arranged into a tree structure. Let’s consider the simple structure of a list of

events shown in Fig. 5.5.

Figure 5.5: List of events

 In this composite structure (Fig. 5.5), a list contains events, each one with a

name and a code. There is no explicit notion of an overall list, but each event is

still a hierarchy of events each containing a name symbol and a code string.

 The proposed MDSD can be represented as a hierarchy: in this way, such a

hierarchy is called a syntax tree (or parse tree). A syntax tree is a much more

useful representation of the MDSD than the words; it can be manipulated in

many ways by walking up and down in the tree. Basically, the parser reads the

CHAPTER 5

82

textual MDSD, builds syntax trees and translates them into the Semantic Model.

The syntax tree was built by means of a specific grammar, i.e. a set of rules

describing how a stream of text is turned into a syntax tree. Grammars consist of

a list of production rules, where each rule has term and a statement of how it

gets broken down.

5.4.3 Builder

 Code generators have been around for decades. They can trace their roots

back to the origin of compilers. One of recent developments in code generation

is Model-Driven Architecture (MDA) [Object Management Group, 2003]. It uses

basic models and domains represent specific situations and then create code

from that. A tool that implements the MDA concept allows developers to:

1. Produce models of the application and business logic.

2. Generate code for a target platform by means of transformations.

The major benefit of this approach is that it raises the level of abstraction in

software development.

 Model-Driven Architecture (MDA) is an approach to software development

produced and maintained by the Object Management Group (OMG)1. MDA is

not to be confused with Model-Driven Development (MDrD), also known as

Model-Driven Software Development. MDrD is an approach to software

development where extensive models are created before source code is written

or generated. MDA is the OMG implementation of MDrD. The MDA concept is

implemented by a set of tools and standards that can be used within an MDrD

approach to software development.

 The basis for automatic code generation is to read in project artifacts, such as

class diagrams, activity diagrams, and requirements documents and turn them

into meaningful and correct source code. The implementation of automatic code

generators relies on the fact that most artifacts are created in the early stages if

1 http://www.omg.org

CHAPTER 5

83

software development arises from UML notations and diagrams. UML (Unified

Modeling Language) is a standard in which object-oriented design patterns can

be easily recognized. Since these artifacts are repetitive and have design patterns

they can be automated. Most simple implementations of automatic code

generators use only the class diagram to create source code. Class diagrams have

been the easiest to implement because of the inherited design pattern to object-

oriented languages such as Java and C++.

5.5 The proposed architecture

 The proposed architecture, shown in Fig. 5.6, is organized through a 2-way

decomposition separating the developer view (FFMM Core) from test engineer

view (DSL script):

1. FFMM Core, the involved data structures and classes of the framework

2. DSL Script, Domain Specific Language (DSL) code.

Figure 5.6: Proposed architecture

Figure 5.6 shows two possible views of FFMM for two different classes of user.

On FFMM block, or on FFMM Classes, there are two way: the developer can

DSL Script

C++

FFMM Core

DSL
xPand
/Builder

FFMM Classes

EXE
MEASUREMENT
APPLICATION

C++
Script

FFMM

CHAPTER 5

84

operate with code C++ at any level in the system and can define a measurement

through a script in C++ code. On the other hand the test engineer, with limited

effort and programmation skills, can operate at script level by means of the DSL,

defining a procedure that the xPand / Builder will translate into C++. The

interaction between xPand / Builder and FFMM Classes allows the execution of

the measurement application described by the test engineer in the DSL script.

The link between DSL script and xPand / Builder is bidirectional because there

is a mechanism providing the programmer with suggestions about the code by

giving insight into the FFMM core class structure. The next chapter will show in

detail the new MDSL project.

85

PART III: IMPLEMENTATION

86

Chapter 6

6 MDSL Implementation

 The first part of this chapter will show how to create a new project in Eclipse

by using openArchitectureWare (oAW) plug-in in order to define a new DSL.

The second part, instead, will show how the new language, MDSL, was

implemented.

CHAPTER 6

87

6.1 Eclipse platform

 The Eclipse platform1 was used to develop the proposed DSL. Eclipse is a

multi-language software development platform comprising an IDE and a plug-in

system to extend it. It is written primarily in Java and is used to develop

applications in this language and, by means of the various plug-ins, in other

languages as well C, C++, COBOL, Python, Perl, PHP and more. The initial

codebase originated from VisualAge. In its default form it is meant for Java

developers, consisting of the Java Development Tools (JDT). Users can extend

its capabilities by installing plug-ins written for the Eclipse software framework,

such as development toolkits for other programming languages, and can write

and contribute their own plug-in modules. Language packs provide translations

into over a dozen natural languages Released under the terms of the Eclipse

Public License; Eclipse is free and open source software.

 Eclipse employs plug-ins in order to provide all of its functionality on top of

(and including) the runtime system, in contrast to some other applications where

functionality is typically hard coded. The runtime system of Eclipse is based on

Equinox, an OSGi standard compliant implementation. This plug-in mechanism

is a lightweight software componentry framework. In addition to allowing

Eclipse to be extended using other programming languages such as C and

Python, the plug-in framework allows Eclipse to work with typesetting

languages like LaTeX, networking applications such as telnet, and database

management systems. The plug-in architecture supports writing any desired

extension to the environment, such as for configuration management. Java and

CVS support is provided in the Eclipse SDK, with Subversion support provided

by third-party plugins.

 The key to the seamless integration (but not of seamless interoperability) of

tools with Eclipse is the plug-in. With the exception of a small run-time kernel,

1 http://en.wikipedia.org/wiki/Eclipse_%28software%29

CHAPTER 6

88

everything in Eclipse is a plugin. This means that every plugin developed

integrates with Eclipse in exactly the same way as other plugins; in this respect,

all features are created equal. Eclipse provides plugins for a wide variety of

features, some of which are through third parties using both free and commercial

models. Examples of plugins include UML plug-in for Sequence and other UML

diagrams, plug-in for Database explorer, and many others. The Eclipse SDK

includes the Eclipse Java Development Tools, offering an IDE with a built-in

incremental Java compiler and a full model of the Java source files. This allows

for advanced refactoring techniques and code analysis. The IDE also makes use

of a workspace, in this case a set of metadata over a flat filespace allowing

external file modifications as long as the corresponding workspace "resource" is

refreshed afterwards. The Visual Editor project (discontinued since June 30,

2006) allows interfaces to be created interactively, thus allowing Eclipse to be

used as a RAD tool. Eclipse's widgets are implemented by a widget toolkit for

Java called SWT, unlike most Java applications, which use the Java standard

Abstract Window Toolkit (AWT) or Swing. Eclipse's user interface also uses an

intermediate GUI layer called JFace, which simplifies the construction of

applications based on SWT.

6.1.1 oAW openArchitectureWare

 When starting a new project we must first create xText project in order to

define a new language. Our Xtext projects are based on the Eclipse plug-in

architecture (oAW). The purpose of this section is to illustrate the definition of

external DSLs using tools form the Eclipse Modeling Project (EMP).

 OpenArchitectureWare [oAW] is nowadays one of the most used MDDS

frameworks. Much of this success results from its flexibility: rather than

providing pre-made generator templates, oAW serves as a generator toolkit and

enables users to easily create tailored generator solutions that really fit their

needs. Besides this flexibility, openArchitectureWare users benefit from the

CHAPTER 6

89

tight integration with Eclipse: not only does oAW come with an array of editors

that make writing templates and workflows an easy task. oAW also delivers

refactoring support, easy navigation, an incremental project builder and a

debugger. It supports parsing of arbitrary models, and a language family to

check and transform models as well as generate code based on them. Supporting

editors are based on the Eclipse platform. oAW has strong support for EMF

(Eclipse Modelling Framework) based models but can work with other models,

too (e.g. UML2, XML or simple JavaBeans). At the core there is a workflow

engine allowing the definition of generator/transformation workflows. A number

of prebuilt workflow components can be used for reading and instantiating

models, checking them for constraint violations, transforming them into other

models and then finally, for generating code. In other words oAW helps with

meta modeling, constraint checking, code generation and model transformation.

More recently a framework has been developed that supports the creation of

textual domain-specifc languages (DSL): xText

 The main focus is on the xText framework. We will start by defining our own

DSL in an xText grammar. Then we will use the xText framework to generate a

parser, an Ecore-based metamodel and a textual editor for Eclipse. Afterwards

we will see how to refine the DSL and its editor by means of xTend extensions.

Finally, we will learn how one can generate code out of textual models using the

template language xPand. The actual content of this example is rather trivial our

DSL will describe entities with properties and references between them from

which we generate Java classes according to the JavaBean conventions a rather

typical data model. In a real setting, we might also generate persistence

mappings, etc. from the same models.

CHAPTER 6

90

6.1.2 xText project

 xText is part of the openArchitectureWare project (which is in turn part of

Eclipse GMT). Based on an EBNF like notation, xText generates the following

artifacts:

• A set of AST (Abstract Syntax Tree) classes represented as an EMF-

based metamodel.

• A parser that can read the textual syntax and returns an EMF-based AST

(model).

• A number of helper artifacts to embed the parser in an oAW workflow.

• An Eclipse editor that provides syntax highlighting, code completion,

code folding, a configurable outline view and static error checking for

the given syntax.

 xText starts from a description of a textual syntax (the grammar) and derives

an AST class model (the metamodel) from that concrete syntax definition. The

linking of cross references within the same model or through different models

can be done separately from the textual syntax description. Linking can be a

quite complicate process if you consider scopes, namespaces and visibility of

elements we think that it is crucial for a textual language framework to allow the

separation of parsing and linking.

 The separation of these two concerns (parsing and linking) helps to

implement more sophisticated linking logic independent of the concrete syntax.

Additionally we can check the AST before doing additional linking and

transformations. In some cases you even don't want to link references up-front,

but want them to be looked up dynamically.

Linking in xText can be done in several ways. The easiest way is to make use of

so called extensions. Extensions are operations that can be annotated to existing

meta classes. Another solution is to transform the AST to a “real” meta model.

This has the additional advantage that the concrete syntax can be changed, or

one can have several different concrete syntaxes for the same metamodel. The

CHAPTER 6

91

necessary transformation is relatively straight forward to define, because it is

basically a one to one mapping with some additional linking logic.

 To create a new textual DSL with xText, we need up to three files that

depend on each other (Appendix), according to the following steps:

• Start up Eclipse with oAW installed in a fresh workspace

• Select File > New... > Project... > openArchitectureWare > Xtext

Project

• Specify the project settings in the wizard dialog.

• Click Finish (Fig 6.1)

Figure 6.1: Wizard to start new Xtext project

The wizard creates three files, my.dsl, my.dsl.editor, and my.dsl.generator

(Appendix):

CHAPTER 6

92

• my.dsl is the language project, in which we will define the grammar for

our DSL. After running the Xtext generator, this model also contains a

parser for the DSL and a metamodel representing the language.

• my.dsl.editor will contain the DSL editor.

• my.dsl.generator contains an openArchitectureWare code generator

skeleton.

6.1.3 Defining the Grammar

 An xText grammar consists of a number of rules (Model, Message, Field and

Type). A rule is described using sequences of tokens. A token is either a

reference to another rule or one of the built-in tokens (STRING, ID, LINE,

INT). xText automatically derives the meta model from the grammar, instead,

the meta model is basically a data structure whose instances represent the

structure of sentences in the language.

 A rule results in a meta type, the tokens used in the rule are mapped to

properties of that type (comments, name, fields). Different assignment operators

are been used. The equals sign ('=') just assigns the value returned from the

token to the respective property (the property will have the type of the token)

and '+=' adds the value to the property.

So after creating our new xText project, we can define the grammar for our

MDSL (an example is show in Fig. 6.2).

CHAPTER 6

93

Figure 6.2: DSL grammar

 The grammar specifies the metamodel and the concrete syntax for our

Measurements Domain Specific Language (MDSL).

6.1.4 Generating the DSL Editor

 We will use the grammar language provided by xText. The following screen

shot shows how the syntax is described for the FFMM-DSL. In fact language

and tooling used for describing DSL syntax is bootstrapped, i.e. it is

implemented using the xText framework itself. Bootstrapping is a common

technique in the field of language and compiler development. If you can

bootstrap your language and tools, this proves a certain level of maturity of the

tools.

 Having specified the grammar, we can now generate the DSL editor:

• Right-click inside the xText grammar editor to open the context menu.

• Select Generate xText Artifacts to generate the DSL parser, the

corresonding metamodel and, last but not least, the DSL editor (Fig. 6.3).

CHAPTER 6

94

Figure 6.3: Generate Xtext artifacts

6.1.5 Running the Editor

 To see the generated editor in action, we must run the plug-ins in an Eclipse

installation. The most convenient way to do this is to start a new Eclipse

application from within the running Eclipse:

• Select the editor plug-in and choose Run As > Eclipse Application from

its context menu.

The generated editor can also be deployed into an existing Eclipse installation.

Note that you have to redeploy the editor on every change you apply to the plug-

ins. To install the editor into the Eclipse we are currently running, perform the

following steps:

• Choose Export... > Deployable plug-ins and fragments...

• The Export dialog appears. Select the three DSL plugins.

CHAPTER 6

95

• Enter the path to your Eclipse installation. Make sure the selected

directory contains the Eclipse executable and a folder named plugins.

Usually, the directory is called eclipse.

• Choose Finish (Fig.6.4).

• Restart Eclipse.

Figure 6.4: Deployment of the DSL plug-ins

6.2 Code generation with xPand

 The xText wizard already created a generator project for us. In this part we

must connect the FFMMs class with our new language DSL.

Part of xPand implemented is shown in Fig. 6.5.

CHAPTER 6

96

Figure 6.5: Xpand template

6.2.1 The Grammar Language

 At the heart of xText lies its grammar language. It is a lot like an extended

Backus-Naur-Form (BNF)2, but it doesn’t describe only the concrete syntax, but

can be also used to describe the abstract syntax (metamodel).

 As stated before, the grammar is not only used as input for the parser

generator, but it is also used to compute a metamodel for your DSL.

The analysis of text is divided in two separate tasks: the lexing and the parsing.

The lexer is responsible of creating a sequence of tokens from a character

stream. Such tokens are identifiers, keywords, whitespace, comments, operators,

2 http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

CHAPTER 6

97

etc. xText comes with a set of built-in lexer rules which can be extended or

overwritten if necessary.

The parser gets the stream of tokens and creates a parse tree out of them.

6.3 Type Rules

 The name of the rule is used as name for the metatype generated by Xtext.

6.3.1 Assignment tokens / Properties

 Each assignment token within an xText grammar is not only used to create a

corresponding assignment action in the parser but also to compute the properties

of the current metatype. Properties can refer to the simple types such as String,

Boolean or Integer as well as to other complex metatypes. It depends on the

assignment operator and the type of the token on the right, what the type actually

is. There are three different assignment operators:

• Standard assignment '=' : The type will be computed from the token on

the right.

• Boolean assignment '?=' : The type will be Boolean.

• Add assignment '+=' : The type will be List. The inner type of the list

depends on the type returned by the token on the right.

An example in our project of these assignment operators is show in Fig. 6.6.

CHAPTER 6

98

Figure 6.6: Example of assignment operators in our project

6.3.2 Cross References

 Parsers construct parse trees not graphs. In order to implement crosslinks in

the model, one usually has to add third task: the linking. However, xText

supports specifying the linking information in the grammar, so that the

metamodel contains cross references and the generated linker links the model

elements automatically. Linking semantic can be arbitrary complex. xText

generates a default semantic which can be selectively overwritten.

Figure 6.7: Entity

Have a look at the optional extends clause. The rule name Entity on the right is

urrounded by squared parenthesis (Fig. 6.6). By default, the parser expects an ID

to point to the referred element.

CHAPTER 6

99

6.3.3 Metatype Inheritance

 After to have define metatypes and its features we to have also define type

hierarchies using the grammar language of xText. We need to have more

different kinds of “Feature” (Fig 6.7) we did create it with an abstract type rule

like shown in Fig. 6.8.

Figure 6.8: Abstract type rule

The transformation creating the metamodel automatically normalizes the type

hierarchy. This means that properties defined in all subtypes will automatically

be moved to the common supertype.

CHAPTER 6

100

The ID Token

We also have seen the identifier token (ID). This is the token rule expressed in

AntLR grammar syntax how shown in Fig. 6.9.

Figure 6.9: Token rule expressed

The return value of the ID token is a String. So, we use the usual assignment

operator "=", the value is assigned to will be of type String.

Comments

There are two different kinds of comments automatically available (Fig. 6.10) in

any xText language.

Figure 6.10: Comments

Note that those comments are ignored by the language parser by default.

6.4 Defining the MDSL

 Our goal was to create a simple scripting language for the test engineer; this

problem has been addressed through the definition of a DSL. The test engineer

has to follow the steps shown in Fig. 6.11 to define, set and execute a

measurement task.

CHAPTER 6

101

Figure 6.11: DSL test engineer steps

To be more precise the test engineer should first define the object (or device)

that intends to use, than configure its setting and use it through appropriate

commands, defined in device interfaces, which should be known by the test

engineer. To make this task easier MDSL project provides one of the most

useful things: the assistance to the measurement procedure definition.

While he writes the script, the test engineer, can click on CTRL+SPACE to see

the menu where all the possibilities are shown in Fig. 6.12.

Figure 6.12: Assistance to the measurement procedure

CHAPTER 6

102

It is possible to appreciate the ease of writing and the flexibility of software. In

appendix A all the scripts for magnetic dipole measurement are shown.

In the following, for the sake of comparison two script fragments are shown.

The Fig. 6.23 refers to a C++ script for permeability measurements (Appendix

B). The Fig. 6.14 shows the same procedure written in DSL. The improvements

in clarity and conciseness are evident.

#include <ffmm.h>
#include <sstream>
#include <math.h>
using namespace ffmm::core::events;
using namespace ffmm::core::devices;
using namespace std;
_FFMM_INITIALIZE
#include "core/devices/FdiCluster.h"
#include "core/devices/EncoderBoard.h"
#include "core/devices/Keithley2k.h"
#include "core/devices/DAQmx.h"
#include "core/utils/FdiClusterDataConversion_byn2Ascii.h"
#include "core/events/IFdiClusterListener.h"

std::string Cluster="FDI_Cluster_1";
std::string Encoder="Encoder_Board";
std::string Multimeter="Keithley2k";
std::string DAQM="NI_DAQ";
const int Encoder_slot=13;
const int Encoder_bus=4;
const int Encoder_Channel=1;
const int Encoder_mode=1;
const double Encoder_freq=2048;
const int Multimeter_intfNum=0;
const int Multimeter_busAddress=16;
const int Multimeter_timeout=100;
const int numberOf_FDI = 3;
const int surceStop = 1;
int Cluster_slot[numberOf_FDI]={12,11,10};
int Cluster_bus[numberOf_FDI]={4,4,4};
double Cluster_abs_gain_= 1.0;
double Cluster_comp_gain_ = 10;
int SamplePerTurn = 1024;
int numberOfTurn = 4;
U32 AcquisitionBufferSize;
std::string Daq_channel_name = "AO_Ch";
std::string Daq_task_name = "Trap_G";
int Daq_channel = 0;
int Daq_timeOut = 200;
int Daq_generatioMode = 0;
const double Daq_sample_rate = 1000;
int Daq_minVolt = -10;
int Daq_maxVolt = 10;
std::string path_name;
double epsC = 0.1;
int measurementCycle;
double plateaux[38] = {0,-0.1,0.1,-0.2,0.2,-0.3,0.3,-0.4,0.4,-
0.5,0.5,-0.6,0.6,-0.7,0.7,-0.8,0.8,-0.9,0.9,-1,1,-1.2,1.2,-1.4,1.4,-
1.6,1.6,-1.8,1.8,-2,2,-3,3,-5,5,-10,10,0};

BEGINSCRIPT
 NI_Daq->setTimingTrigger(Daq_sample_rate, 0, numOfSamples);

CHAPTER 6

103

 NI_Daq->startVoltage(signal, numOfSamples);
 NI_Daq->waitGeneration();
 NI_Daq->setTimingTrigger(Daq_sample_rate, 0, numOfSamples);
 NI_Daq->startVoltage(signal, numOfSamples);
 NI_Daq->waitGeneration();
 Poco::DynamicAny plat;
 while(!demagnetized)
 {
 Poco::DynamicAny plat(plateau*4);
 environment->console->writeln(plat.convert<std::string>());
 if (plateau >= value1)
 {
 old_plateau = plateau;
 plateau = plateau/1.5;
 }
 else if (plateau >= value2)
 {
 old_plateau = plateau;
 plateau = plateau/1.2;
 }
 else
 {
 old_plateau = plateau;
 plateau = plateau/1.1;
 }
.
.
.
.

Figure 6.13: The part of the Script in C++

Figure 6.14: The part of the Script in DSL

104

Chapter 7

7 Experimental results

 This chapter will show how the new project reaches all the specifications

required for the magnetic measurements, instead, in the following, the results of

the qualification tests of the new system (MDSL and FAME) performed on an

LHC main dipole at cryogenic conditions, i.e. 1.9 K, with a DC supply current

(1500 A) and standard LHC cycle current. In the former case, the stability and the

repeatability of the measurements are determined by evaluating synthetic

parameters, i.e. such as the mean of the harmonic coefficients and its experimental

standard deviation. In the latter case, the aim of field quality inspection is to

understand the field changes in the main dipole in order to compensate undesired

effects during LHC operation. In particular, the “snapback” phenomenon and the

foremost field components will be detailed and explained, via the experimental

results.

CHAPTER 7

105

7.1 System Architecture

 At CERN, the facility for testing the LHC main dipoles is installed in the

SM18 hall [Mishra, 2005]. SM18 has six test clusters, each one consisting of

two benches. Only one bench in a cluster can be used at a time. In the following,

the main components of the bench for the tests of MDSL prototype are detailed,

for both warm and cold conditions.

Warm Conditions:

• Portable Power Supply 20 A;

• Portable DCCT 60 A.

Cold conditions:

• Main Power Converter (14 kA,15 V):

o Voltage Source;

o DCCT (DC Current Transducer);

o FGC1 (Function Generator Controller first generation);

• Worldfip Gateway ;

• Anti-cryostat (heated tube to give access to the magnet bore at room
temperature)

The architecture of the MDSL prototype is shown in Fig. 7.1. The following

components are common to both measurements condition:

• PC, with FFMM MDSL, managing the measurement station;

Fast Acquisition Measurement Equipment components follow:

• ADLINK PXIS-3320 chassis composed by:

o ADLINK PXI-8570;

o 6 FDI boards;

CHAPTER 7

106

o Encoder Board;

• Analog bucking (compensation of the dipole components);

• Micro Rotating Unit (μ RU), including:

o HEIDENHAIN Rotary Encoder ERN420;

o MAXON Angular Motor EC-40 ;

o MAXON Motor Encoder HEDL 5540;

• New rotating coils shaft;

• MAXON Motor Controller EPOS 24/5;

• Digital Multimeter KEITHLEY 2000.

 Only one of the two apertures of the magnet is under test (Fig. 7.1). The field

measurement is carried out by means of a maximum of 24 FDI, integrating the

signals produced by coils placed in the 12 sectors in which the shaft is divided.

 Two FDI are required to acquire the absolute and compensated fluxes of each

sector. At the moment, only 6 FDIs are used for the harmonic analysis of three

super sectors (4 sectors connected in series). The Next step will be to add the

remaining 18 FDIs, in order to acquire all the signals from the coils, and to

duplicate the same architecture on the other aperture.

CHAPTER 7

107

Figure 7.1: Architecture of the new measurement system

7.2 Overview of the test bench at SM18

 The first prototype of the new platform was integrated at SM18 (Fig. 7.2).

The measurements of the main bending dipole field were carried out at room

temperature.

Figure 7.2: Test bench F1 at SM18: main bending dipole (left) and six clusters at SM18 (right)

CHAPTER 7

108

 The dipole is connected directly to the Heinzinger PTN 135-20 20 A, 135 V,

DC Portable Power Supply (Fig. 7.3). This configuration permits only

measurement shorter than one hour, in order to avoid an excessive heating of the

magnet.

Figure 7.3: Portable Power Supply Heinzinger PTN 135-20 at SM18

 The high-accuracy portable Direct Current-Current Transformer (DCCT) is

connected directly to the Portable Power Supply and will be connected to the

Multimeter (Fig. 7.4) in order to perform the desired current measurement.

 For each measurement the coils shaft can turn with a fixed frequency. At the

start of rotation, the first turn is dedicated to reach the desired angular velocity,

then the 6 FDIs start acquiring and performing the integration of the 3 absolute

and 3 compensate signals, coming from the 3 shaft sections.

Figure 7.4: Digital Multimeter KEITHLEY 2000

CHAPTER 7

109

7.3 Measurement setup

 The measurement system is installed at the test facility hall for

superconducting magnets at CERN (SM18). The setup architecture of the

measurement station at SM18 is the same as in warm validation tests (Fig. 71).

At cold conditions, the main power supply of the test facility was used providing

a current up to 15 kA. The LHC dipole under test was the MBBR 2427; only one

aperture was considered. In the following, the DC measurements and the

measurements with standard LHC cycle are reported.

7.4 DC Measurements

 In order to define the repeatability purposes of the new station for magnetic

measurement at CERN, using MDSL, several measurement sessions were

defined, at a current plateau of 1500 A (the considered segment shaft has been

the 5th). Each session is specified by changing the setting parameters, i.e. angular

speed, signal gain, time measurement interval and number of samples per turn.

Table VII.1 reports the settings for each measurement session.

CHAPTER 7

110

 Samples

per turn
Angular
Speed
(rad/s)

FDI
absolute

gain

FDI
compensated

gain

Gain
Current

measurement

Time
interval

(s)

Number
of

repetition

Supply
current

(A)

Nb
FDIs

 Scan on the angular speed

1 128 6.28 2 100 5 127 1 1500 5

2 128 12.56 2 100 5 127 1 1500 5

3 128 18.84 2 100 5 127 1 1500 5

4 128 25.13 2 100 5 127 1 1500 5

5 128 31.41 2 100 5 127 1 1500 5

6 128 37.79 2 100 5 127 1 1500 5

7 128 43.98 2 100 5 127 1 1500 5

8 128 56.26 2 100 5 127 1 1500 5

 Cross-check between angular speed and gain

9 128 6.28 10 100 5 127 1 1500 5

10 128 12.56 5 100 5 127 1 1500 5

11 128 18.84 4 100 5 127 1 1500 5

12 128 25.13 4 100 5 127 1 1500 5

 Repeatability on single turn acquisition

13 128 56.26 0.2 100 1 0.125 30 1500 5

14 128 56.26 2 100 1 0.125 30 1500 5

Table VII.1: Setting parameters of measurement sessions.

The above table identifies three main measurement categories:

• Scan on the angular speed: the angular speed is increased from 6.28

rad/s (1 turn/s) up to 56.26 (8 turn/s), by fixing the FDIs gain and the

number of samples per turn, in order to highlight the only effect of the

rotation speed;

• Cross-check between angular speed and gain: gain and angular speed are

adjusted to feed up the FDIs with a full scale signal. The rationale of

such measurement is to investigate the performance using a trade-off

CHAPTER 7

111

between a speed value and electronic gain, both affecting the amplitude

of the FDIs input signal;

• Repeatability on single turn acquisition: a single turn for harmonic

analysis was acquired separately from the others, such as reported in the

table: the time interval of the measure is 0.125 s, 30 single turns were

carried out in order to check the repeatability of the system in temporally

decoupled acquisitions.

The direction of shaft rotation is the same for all the measurement sessions.

7.5 Measurement Procedure

 The common settings of each measurement, defined via the MDSL user

script is shown below:
 //*************************************/
 //Variable assignement
 //*************************************/
 AcquisitionBufferSize = numberOf_FDI*(SamplePerTurn/2)*4*2;
 //*************************************/
 // Device Definition
 //*************************************/
 DEF ENCODER_BOARD: Enc_B WITH ("1" , "1","CERN") ;
 DEF FDI_CLUSTER: Cluster_1 WITH (numberOf_FDI);
 DEF KEITHLEY2K: Mult_M WITH ("1", "2", "NI") ;

.

.

 //*************************************/
 // Device Configuration
 //*************************************/
 CFG ENCODER_BOARD: Enc_B WITH (Encoder_bus , Encoder_slot) ;
 CFG FDI_CLUSTER: Cluster_1 WITH (Cluster_bus , Cluster_slot) ;
 CFG KEITHLEY2K: Mult_M WITH (Multimeter_intfNum, .

.

.

.

 //*************************************/
 // Device Setting
 //*************************************/
 CMD FDI_CLUSTER: Reset (Cluster_1, 0);
 CMD FDI_CLUSTER: Reset (Cluster_1, 1);
 SET FDI_CLUSTER: Params2 (Cluster_1, spt1, SamplePerTurn, Cluster_abs_gain_,
Cluster_comp_gain_, CONT, 500000, spt2,10);
 SET FDI_CLUSTER: Stop_Source (Cluster_1, surceStop);
 CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 0, 1.0);
 CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 1, 1.0);

.

.

The complete script is in Appendix A.

CHAPTER 7

112

In order to handle continuous rotating coil measurements are [Animesh, 1997],

[Brooks, 2007]:

• Motor rotation speed and rotating direction.

• Time interval of the measurement.

• FDIs configuration (gain, samples to be acquired).

• Angular encoder resolution.

 The raw measurement results were processed by means of a harmonic

analysis, slightly differing from the standard one. The main steps are:

• Every shaft turn is considered like an elementary unit.

• The harmonic analysis is carried out on the points acquired in a

elementary unit.

• The synthetic parameters, mean and standard deviation, are computed on

the harmonics evaluated at each elementary unit.

In particular, the analysis results were focused on:

• Main Field normal component, B1 in Tesla;

• Sextupole normal component, b3 in UNITS;

• Decapole normal component, b5 in UNITS ;

• 11th harmonic, b11 in UNITS.

7.6 Data Analysis

 The rational to take into account the aforementioned harmonics B1, b3, and b5

is to highlight the behavior of the field components mainly affecting the LHC

operation. The b11 in a LHC dipole usually takes value about 0.6 UNITS

[Sammut, 4/2006], thus this value is used as a reference to check the

measurement results.

 The mean is assumed to be the estimation of the harmonic:

Normal main dipole field

CHAPTER 7

113

() ()∑
=

=
N

1j
j,11 kB

N
1kB (eq. 7.1)

Normal harmonic of order n

() ()∑
=

=
N

1j
nj,n kb

N
1kb

(eq. 7.2)

where k=1,..,14 is the measurement session defined by the row in Table VII.1,

j=1,…,N is the number of turn of the coil shaft, and n=1,3,5,11 is the harmonic

order taken into account. The experimental standard deviation is computed as:

Normal main dipole field

()() () () ()[] ()()
N

kBσkBkB
1-NN

1kBσ 1
N

1j

2
1j,11 =−= ∑

=

 (eq. 7.3)

Normal harmonic of order n

()() () () ()[] ()()
N

kbσ
kbkb

1-NN
1kbσ n

N

1j

2
njn,n =−= ∑

=
(eq. 7.4)

σ is the estimated standard deviation.

The repeatability of the measurement station is then assessed as 3-time the

standard experimental deviation σ of the harmonics through the single turn.

7.7 Relusts

 In this Section, the results from the three DC measurement categories defined

in Table 7.1 are reported. In particular

1. Scan on the angular speed.

2. Cross-check between angular speed and gain.

3. Repeatability on single turn acquisition is detailed.

CHAPTER 7

114

Scan on the angular speed

 The aim of the measurements at several angular speeds is to verify the

behaviour of the harmonics as a function of the rotation speed of the coil shaft.

The number of experiments used to compute the mean and repeatability value of

the harmonics depends on the angular speed. The number of turns of the shaft in

the measurement time interval is equal to the number of elementary units

employed in the analysis (e.g. angular speed 6.28 rad/s = 1 turn/s, measurement

interval 2.7 min, number of turn = 1 turn/s*127 s= 127 turn)

In Fig.7.5, the means of B1 component with a ± 3 σ bar versus angular speed is

shown; the mean value of the main field varies between the maximum value

1,0655188 T at 6.28 rad/s and the minimum one 1,0654698 T at 43.96 rad/s.

The difference between such values is about 49 μT, which is compatible with the

value of the uncertainty [3* σ (B1(k)] of the data from the overall session of

measurements, i.e. about 33 μT. Therefore, any specific trend on mean values is

highlighted.

Figure 7.5: Main field component of LHC

dipole measured versus several angular speed with fixed gain.

CHAPTER 7

115

 Fig. 7.6 shows the standard deviation of the mean, σ, versus angular speed.

Such values ensure a small dispersion of data, 2 μT, which is equivalent to a

variation on the voltage signal in input to the FDIs of few tens μV. Yet, σ (B1)

seems to improve for speed higher than 25.12 rad/s.

It is worth to note that the computed values of σ(B1) are normalized by the

number of turns, which grows with the angular speed, because σ is evaluated on

the same time interval. Thus, a plot Fig. 7.7 and Fig. 7.8, of σ(B1) versus the

same number of turn is needed (that means different measurement time) in order

to highlight the independency of the repeatability with respect to the number of

turns. Fig.7.7a shows σ(B1), evaluated on the basis of the same number of turns

(N=127). In this case, the measurement time decreases with the angular speed.

As a further comparison, Fig.7.8 reports the σ is not normalized by the number

of turns (eq. 7.2) of the same measurement time.

Figure 7.6: Standard deviation of the B1 mean versus angular speed

It is noted that σ slightly increases as a function of the angular speed. However

the increment is only 9 μT.

In Fig. 7.9 and Fig. 7.10, the mean sextupole and decapole normal components,

with a ± 3 σ bar, versus the angular speed are shown. The first evidence from the

CHAPTER 7

116

plots is a functional dependence of the two field components by the angular

speed.

 The difference between the maximum and minimum values is about 0.069

UNITS for b3 and 0.016. UNITS for b5. By increasing the angular speed, the

amplitude of the coil signal increases. This could affect the accuracy of B1, b3,

and b5 measurement. However, further investigations are needed.

Figure 7.7: σ (B1) as a function of angular speed (N variable) and time interval (N=127)

The plot shows same behavior of σ(B1) on both cases, the differences are due to variation of the
number of experiments carried out to compute the standard deviation of the mean.

Figure 7.8: σ (B1(k)) as a function of the angular speed over the same measurement time

CHAPTER 7

117

Figure 7.9: Sextupole component of LHC dipole versus angular speed at fixed FDIs gain

Figures 7.11 and 7.12 show the standard deviation of the mean values of b3 and

b5 turning out to be less than 0.0002 UNITS.

Figure 7.10: Decapole component of LHC dipole versus angular speed at fixed gain

CHAPTER 7

118

Figure 7.11: Standard deviation of the b3 mean versus angular speed

Figure 7.12: Standard deviation of the b5 mean versus angular speed

 In order to ensure proper results of the measurements, in Fig. 7.13 the

behavior of the 11th harmonic at the specified angular speed is shown. The 11th

harmonic is about 0.6 UNITS, in agreement to its typical value in an LHC

dipole.

 Fig. 7.14 and Fig.7.15 point out the normal and skew components of

harmonics - from b2 to b11 and from a2 to a11 – like a function of elementary

CHAPTER 7

119

units (acquisition on a single turn). A suitable level of stability and repeatability

of the measurement system is proved.

Figure 7.13: 8 11th component of LHC dipole measured

versus several angular speed at fixed gain.

(ii) Cross-check between angular speed and gain

 The optimal operating conditions of FDI can be achieved by feeding up its

Analog Digital Converter (ADC) with a fullscale signal. The parameters to be

adjusted in order to ensure this condition are the angular speed of the shaft

rotation and the gain of the FDIs. Only the gain of absolute signal was changed.

The compensated signal amplitude at the measurement current of 1500 A, cannot

reach the ADC full scale by applying the maximum gain and the maximum

speed. Then, the gain is kept at its maximum value (100).

CHAPTER 7

120

Figure 7.14: Normal components of the magnetic field

in the second aperture of the MBBR 2427, measured with continuous acquisition at angular
speed of 52.26 rad/s on the 5th segment of the new coil shaft, at 1500 A.

Figure 7.15: Skew components of the magnetic field

in the second aperture of the MBBR 242,7 measured with continuous acquisition at angular
speed of 52.26 rad/s on the 5th segment of the new coil shaft, at +1500 A.

 MDSL allows the above parameters to be easily changed in the user script.

To understand the effects of the trade-off between the mechanical (effect of the

speed increasing) and the electronic gain changing, four measurement tests were

carried out.

CHAPTER 7

121

 The angular speeds taken into account were 6.28, 12.56, 18.84, 25.13 rad/s,

and the FDI gains for the absolute signal were respectively 10, 5, 4, 4. In such

conditions the signal amplitude at ADC after the PGA is of Volts’ order.

Such as done for the measurements at several angular speeds, the field

components, B1, b3, b5, and b11, were depicted in the plots.

In Fig. 7.16, the main components of the induction field versus the angular speed

are shown, with a ± 3 σ bar.

Figure 7.16: Main field component of LHC dipole

 measured versus (Angular Speed, Gain) with fixed samples per turn and supply current.

 The behaviour of the main field B1 versus (Angular Speed, gain) show a

dispersion growing slightly according to the angular speed. In Fig. 7.17, the

values of B1 for the two case studies at: FDI fixed and variable gain are shown.

Their comparison highlights the compatibility among the two cases, and

independence of the average field on the parameters. A first consideration is that

the FDIs gain increasing at low speed can allow a better operation mode for the

system. Less mechanical disturbs assuring a better using of the low noise FDIs

amplifier. In Fig. 7.18, σ(B1) as a function of angular speed for fixed and

variable FDIs gain is depicted.

CHAPTER 7

122

Figure 7.17: Main field component of LHC dipole measured versus several angular speed

 with fixed and variable gain.

 In Fig. 7.19, the sextupole normal components of the magnetic induction

field for fixed and variable FDI gain conditions are depicted. The effect of the

electronic gain increasing is evident. In Fig. 7.20, the values of σ(b3), for fixed

and variable gain measurement experiments, are depicted. Gain variations do not

influence heavily the deviation of the mean, being 0.000019 UNITS the

maximum difference. The standard deviations of b3 are less than 0.00018

UNITS then, the average values show a good repeatability.

The decapole components (Fig. 7.21) show a similar behavior.

Figure 7.18: Standard deviation of the b3 mean versus angular speed

CHAPTER 7

123

Figure 7.19: Sextupole component of LHC dipole measured

, for fixed gain (red) and variable gain (black), versus Angular Speed; a ± 3 σ bar is displayed.

Figure 7.20: σ (b3) as a function of angular speed and measurement condition

CHAPTER 7

124

Figure 7.21: Decapole component of LHC dipole measured

 for fixed gain (red) and variable gain (black), Angular Speed; a ± 3 σ bar is displayed.

The 11th component confirms the system measurements (Fig. 7.22).

Figures 7.23 and 7.24 show the normal and skew components from 2nd to 11th

order of fourteen measurement carried out at 25.12 rad/s and gain 4. The

harmonics are characterised by high repeatability and stability.

Figure 7.22: 11th harmonic versus Angular Speed for different FDIs gain

a ± 3 σ bar is displayed.

(iii) Repeatability on single turn acquisition

CHAPTER 7

125

The other measurement procedure to check the repeatability is based on the

acquisition of 30 single turns at a constant speed of 50.24 rad/s. The time

interval between two sequential turns is about 5 s.

In Fig 7.25, the mean of B1 is plotted versus the two FDIs gain used to carry out

the 30 measurements of a single turn. The values are compatible and the

repeatability is hold is 2.2 μ T.

 In Figures 7.26 and 7.27, the normal and skew components versus the gain

up to 11th are shown with a ± 3 σ bar. Both the plots summaries that the

measurements at two different gains are compatible. The overall repeatability is

about 0.03 UNITS.

Figure 7.23: Normal components of the magnetic field in the second aperture

 of the MBBR 2427, measured with continuous acquisition at angular speed of 25.12 rad/s on
the 5th segment of the new coil shaft, at 1500 A.

CHAPTER 7

126

Figure 7.24: Skew components of the magnetic field in the second aperture

 of the MBBR 2427, measured with continuous acquisition at angular speed of 25.12 rad/s on
the 5th segment of the new coil shaft, at +1500.

Figure 7.25: Mean value of B1 over 30 measurements, a ± 3 σ bar is displayed

CHAPTER 7

127

Figure 7.26: Mean values of the harmonic coefficients from b2 to b11

(normal components) over 30 measurements at 1500 A, measured by the 5th segment of the shaft
for two different FDIs gain (with ± 3 σ bar).

Figure 7.27: Mean values of the harmonic coefficients from a2 to a11

(skew components) over 30 measurements at 1500 A, measured by the 5th segment of the shaft
for two different FDIs gain (with ± 3 σ bar).

7.8 Standard AC measurement for field quality

 The aim of the field quality measurements on a LHC dipole is to confirm the

empirical field model used in the main control system of the LHC operation

(FIDEL) [Sammut, 9/2006], with the new fast acquisition equipment. Such

empirical model can be validated by using the data from several measurements

CHAPTER 7

128

cycle, namely “Loadline” and “LHC cycle” (also known as the “standard

machine cycle”).

 The Loadline cycle is employed in order to compute the DC magnetization

terms of the field model. The LHC cycle aims at giving comprehensive data on

the long term dynamic effects in a superconducting magnet (“decay” and

“snapback”). The first measurement cycle taken into account was the standard

LHC cycle. In the following are presented:

1. The machine cycle.

2. A description of the measurement procedure.

3. Analysis and results of the decay and snapback.

7.8.1 LHC machine cycle

 Fig. 7.28 shows the standard LHC machine cycle. After a suitable pre-cycle

the injection phase at the current of Iinj.=760 A lasts 1000 s. The particles are

then accelerated and the magnet is ramped up to the nominal current of

Inominal=11850 A, achieving a nominal dipole field of 8.33 T. The ramp current

follows a Parabolic-Exponential-Linear-Parabolic (PELP) profile.

 In the standard cold test program [Sanfilippo, 2002], the above LHC cycle is

always preceded by a magnet training quench (a quench occurs when a part of

the magnet coil passes from the superconducting to the resistive state due to the

internal field; a training is a series of controlled provoked at several value of

current caused by warming the magnet) and a pre-cycle to put the magnet in a

well know magnetic state (such procedure aims to erase the magnetic powering

history). Table VII.2 reports the parameters of the pre-cycle applied in the

qualification of the MDSL prototype, where Imin.=350 A is the minimum value of

the supply current during the cycle.

CHAPTER 7

129

Figure 7.28: The standard reference machine cycl

Parameter: ram-up Value Unit
Final current Inominal A
Acceleration 2.5 A/s2
Linear ramp rate 50 A/s
Deceleration 2.5 A/s2

Exponential start time 0 s
Parameters: Plateau
Duration 300 s
Current level Inominal A
Parameter: ram-down
Final current Imin A
Acceleration 2.5 A/s2
Linear ramp rate 50 A/s
Deceleration 2.5 A/s2

Exponential start time 0 s

Table VII.2: Parameter for the power supply of the pre-cycle phase

Table VII.3 reports the setting parameters for the supply current during the

simulated machine cycle.

CHAPTER 7

130

Parameter: ram-up from Imin to Iinj Value Unit

Final current Iinjection A

Acceleration 2 A/s2

Linear ramp rate 10 A/s

Deceleration 2 A/s2

Exponential start time 0 s

Parameters: Plateau at injection

Duration 1000 s

Current level Iinjection A

Parameter: ram-up from Iinj to Inominal

Final current Inominal A

Acceleration 9*10-3 A/s2

Linear ramp rate 10 A/s

Deceleration 0.5 A/s2

Exponential start time 325 s

Parameters: Plateau at nominal

Duration 300 s

Current level Inominal A

Parameter: ram-down from Inominal to Imin

Final current Imin A

Acceleration 2 A/s2

Linear ramp rate 10 A/s

Deceleration 2 A/s2

Exponential start time 0 s

Table VII.3: Parameters for the power supply of the standard machine cycle

7.8.2 Measurement Procedure

 The measurement of the magnetic flux in the magnet bore during a LHC

cycle, namely from the injection plateau up to about Inominal, allows dynamic

features of the superconducting magnet, such decay and snapback to be

observed. In particular, the snapback is a fast phenomenon, thus the acquisition

system has to deliver data as soon as possible in order to evaluate it accurately.

CHAPTER 7

131

With this in mind, the qualification of the platform was set as following9:

• covered current cycle: from the last phase of the pre-cycle ramp down

(3000 A) to about the middle of the machine cycle ramp-up (6000 A);

• 4 FDIs were employed in order to acquire the signals absolute and

compensated from the coil segments 5th and 6th of the new shaft;

• a FDI was employed to measure the current;

• time interval of the measurement: 2000 s;

• the chosen speed is 50.24 rad/s (8 turn/s maxim value);

• samples per turn: 128.

It is important to remark that the above setting parameters define a new limit for

the rotating coil measurement with respect of the standard one.

7.8.3 Analysis decay and snapback

 As shown in the last years, the LHC superconducting magnets are

characterized, during the phase of particle injection and subsequent ramp-up for

the beam acceleration, by a drift and snapback of the sextupole (b3) and decapole

(b5) components of internal field [Ambrosio, 2005].

 The field model, used to describe the different contribution on the generated

field, associates the decay and snapback phenomena as a AC dynamic effect.The

behaviour of b3 and b5 depends on supply current, ramp rate, and powering

history of the superconducting magnet. These phenomena are highlighted by

emulating LHC machine cycle has to be carried out.

7.8.4 Results

 In Fig. 7.29, the results of the harmonic analysis of the data from the MDSL

qualification tests on the MBBR 2427 at SM18 are depicted: (1) main field

component B1 and current versus time, (2) b3 normal sextupole component

9 The user script to carry out the machine cycle measurement can be found in Appendix

CHAPTER 7

132

versus current, (3) b5 normal decapole component versus current. The decay and

snapback are highlighted in (2) an (3).

The analysis of snapback was focused on the b3 normal sextupole component. In

particular, the exponential model to fit the measured values of the snapback is:

ΔI
II

3
snapback
3

injection

eΔb(I)b
−

−
= (eq. 7.5)

The Δb3 and ΔI are the model parameters which have to be computed.

The decay and snapback were extrapolated by means of the measured harmonic,

a polynomial fitting of 6th order was employed to interpolate the named base line

b3 (b3
baseline), as would be measured with no plateau at injection phase. The

couple of current interval used to compute the base line are: [650,750],

[850,870]. In Figures 7.30, the base line extracted from the data and the

interpolating polynomial function is sown; while in Fig. 7.33, the b3 component

superposed to the base line is depicted.

Figure 7.29: Main dipole field in the second aperture of the MBBR 2427

 in the FFMM qualification test, LHC cycle (top); supply current measured by FDI (bottom).

In the current range considered, the base line fit does not show strong deviation

from the real base line get by the measured data (Fig. 7.31).

CHAPTER 7

133

Figure 7.30: Normal sextupole as a function of the supply current

 the decay and snapback phase are highlighted.

As the base line is available, the decay and snapback of b3 are isolated:

b3
dacay,sanpbach = b3 - b3

baseline (eq. 7.6)

The careful base line fitting enable to look only to the desired b3 behaviours,

b3
dacay,sanpbach , as showed in Fig. 7.33,

The b3
dacay,sanpbach is used to compute the parameters for the exponential model of

the snapback, by using the minimum square error method from about (>) 760 A

up to 870 A. Fig. 7.34 and Fig. 7.35 show respectively the snapback and the

exponential fitting in decimal and logarithm scale.

 In order to ensure the correctness of the analysis, the correlation β3 factor

between Δb3 and ΔI, defined as Δb3=β3ΔI, was computed. β3 results to be 0.1834

UNITS/A, which is a value in according to the previous measurements carried

out by the Hall-Plate based measurement system [Sammut, 4/2006],

[Sammut,9/2006].

CHAPTER 7

134

Figure 7.31: Normal decapole as a function of the supply current

 the decay and snapback phase are highlighted.

Figure 7.32: b3 base line (blue) and polynomial fitting curve (red)

CHAPTER 7

135

Figure 7.33: b3 Normal Sextupole (blue) superposed to the fitted b3 base line

Figure 7.34: b3

dacay,sanpbach obtained by taking off the fitted base line curve

CHAPTER 7

136

Figure 7.35: b3 snapback measured in the second aperture of the MBBR 2427

during a standard LHC cycle for FFMM qualification test (blue), exponential fitting model
computed from data (red).

Figure 7.36: logarithm scale plot of the b3 snapback (blue) and the exponential fitting (red)

CONCLUSIONS

137

Conclusions

 This thesis work has been devoted to introduce on the Measurement Domain

Specific Language (MDSL) in FFMM which provide easy and flexible way to

design software for magnetic measurement applications. The definition of test

procedures, for the synchronization of the measurement tasks, and for the

configuration of instruments is proposed.

 FFMM has been developed with the aim of helping the user to write high

quality code, in terms of flexibility, reusability, portability and efficiency. The

test engineer needs to provide a formal description of the measurement

procedure (script), in order to automatically generate executable measurement

applications.

 The formal description of the measurement procedure is to be provided in

C++, and therefore requires knowledge of this programming language and its

rules. In this thesis, a new easy Measurement Domain Specific Language

(MDSL) is proposed. Such a language models the domain of interest and

provides the user with easy programming tools capable of describing the

measurement application, including specialized constructs concerning the

automation of measurement procedures is proposed.

 It provides not skilled programmers with a means for producing concise and

bug free specific measurement applications.

The results have shown at the software level advantages in terms both of

accuracy and dynamic permormace, as well as ease of use, maintainability and

reusability.

Future work will be devoted to improve the existing software tools to cover

more application scenarios. Furthermore, an intensive plan of magnetic

measurements is planned in order to keep exploring the superconducting magnet

behaviour by means of the new platform. A new Graphical User Interface will

be also developed both for the test endineer and final user. Finelly, an intensive

CONCLUSIONS

138

improvement of the existing software tools to cover more application scenarios

will be carried out.

APPENDIX

139

APPENDIX

Appendix A
Script for magnetic bipole measurement in MDSL

BEGIN_SCRIPT main_Permeability_measurement:

 //*************************************/
 //Variable declaration
 //*************************************/
 DEF_VAR Encoder_slot AS int =13;
 DEF_VAR Encoder_bus AS int = 4;
 DEF_VAR Encoder_Channel AS int =1;
 DEF_VAR Encoder_mode AS int =1;
 DEF_VAR Encoder_freq AS float =2048;
 DEF_VAR Multimeter_intfNum AS int =0;
 DEF_VAR Multimeter_busAddress AS int =16;
 DEF_VAR Multimeter_timeout AS int =100;
 DEF_VAR numberOf_FDI AS int =2;
 DEF_VAR surceStop AS int =1;
 DEF_VAR Cluster_abs_gain_ AS float =1.0;
 DEF_VAR Cluster_comp_gain_ AS float =1.0;
 DEF_VAR SamplePerTurn AS int =1024;
 DEF_VAR numberOfTurn AS int =4;
 DEF_VAR AcquisitionBufferSize AS int ;
 DEF_VAR Daq_channel_name AS string = "AO_Ch";
 DEF_VAR Daq_task_name AS string ="Trap_G";
 DEF_VAR Daq_channel AS int =0;
 DEF_VAR Daq_timeOut AS int =200;
 DEF_VAR Daq_generatioMode AS int =0;
 DEF_VAR Daq_sample_rate AS float =1000;
 DEF_VAR Daq_minVolt AS int =-10;
 DEF_VAR Daq_maxVolt AS int =10;
 DEF_VAR epsC AS float =0.1;
 DEF_VAR measurementCycle AS int =0;
 DEF_VAR spt AS int =0;
 DEF_VAR spt2 AS int =0;
 DEF_ARRAY Cluster_bus OF int [2]={4,4};
 DEF_ARRAY Cluster_slot OF int [2]={11,12};
 DEF_ARRAY plateaux OF float [38]= {0, -0.1,0.1,-0.2,0.2,-0.3,0.3,-
0.4,0.4,-0.5,0.5,-0.6,0.6,-0.7,0.7,-0.8,0.8,-0.9,0.9,-1,1,-1.2,1.2,-1.4,1.4,-
1.6,1.6,-1.8,1.8,-2,2,-3,3,-5,5,-10,10,0};

 //*************************************/
 //Variable assignement
 //*************************************/
 AcquisitionBufferSize = numberOf_FDI*(SamplePerTurn/2)*4*2;
 //*************************************/
 // Device Definition
 //*************************************/
 DEF ENCODER_BOARD: Enc_B WITH ("1" , "1","CERN") ;
 DEF FDI_CLUSTER: Cluster_1 WITH (numberOf_FDI);
 DEF KEITHLEY2K: Mult_M WITH ("1", "2", "NI") ;
 DEF DAQMX: NI_Daq WITH ("1", "2", "NI") ;
 //*************************************/
 // Device Configuration
 //*************************************/
 CFG ENCODER_BOARD: Enc_B WITH (Encoder_bus , Encoder_slot) ;
 CFG FDI_CLUSTER: Cluster_1 WITH (Cluster_bus , Cluster_slot) ;
 CFG KEITHLEY2K: Mult_M WITH (Multimeter_intfNum,
Multimeter_busAddress, Multimeter_timeout);
 CFG DAQMX: NI_Daq WITH (Daq_channel_name, Daq_task_name,
Daq_channel, Daq_timeOut, Daq_generatioMode);

APPENDIX

140

 //*************************************/
 // Device Setting
 //*************************************/
 CMD FDI_CLUSTER: Reset (Cluster_1, 0);
 CMD FDI_CLUSTER: Reset (Cluster_1, 1);
 spt1 = (SamplePerTurn*numberOfTurn);
 spt2 = SamplePerTurn/2;
 SET FDI_CLUSTER: Params2 (Cluster_1, spt1, SamplePerTurn, Cluster_abs_gain_,
Cluster_comp_gain_, CONT, 500000, spt2,10);
 SET FDI_CLUSTER: Stop_Source (Cluster_1, surceStop);
 // SET ENCODER_BOARD: Synthetic_Trigger(Encoder_Channel , Encoder_mode,
Encoder_freq) ;
 SET DAQMX: VoltageRangeOutputChannel (NI_Daq, Daq_minVolt, Daq_maxVolt);
 CPP_CODE_START " Mult_M->setMeasurementFunction(Func::DCV); "
CPP_CODE_END
 CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 0, 1.0);
 CMD FDI_CLUSTER: Calibrate_Gain (Cluster_1, 1, 1.0);
 //*************************************/
 // Measurement Task Definition
 //*************************************/
 BEGIN_MTASK test_da_cancellare:
 FOR i = 1 TO 5 :
 spt = SamplePerTurn*numberOfTurn;
 ENDFOR
 END_MTASK
 //-----------------------------------
 BEGIN_MTASK Demagnetization_Procedure:
 //-----------------------------------
 // Task variable and array declaration
 DEF_VAR old_plateau AS float;
 DEF_VAR plateau AS float = 2.5;
 DEF_VAR timePlateau AS float = 4;
 DEF_VAR value1 AS float = 0.5;
 DEF_VAR value2 AS float = 0.021;
 DEF_VAR PS_resolution AS float;
 DEF_VAR demagnetized AS int = 0;
 DEF_VAR numOfSamples AS int;
 // Task actions
 PS_resolution = 20/65536;
 USE DAQMX: NI_Daq;
 //DAQmx* NI_Daq = DAQmx::getDeviceIstance(DAQM);
 CPP_CODE_START "
 double* signal;
 signal = NI_Daq->createPlat(0,0.01,Daq_sample_rate,&numOfSamples);
 " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);
 CPP_CODE_START " signal = NI_Daq-
>createPlat(0,timePlateau,Daq_sample_rate,&numOfSamples); " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);
 CPP_CODE_START " signal = NI_Daq->createRamp(0, plateau, 1.5,
Daq_sample_rate, &numOfSamples); " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);
 WHILE (demagnetized==0):
 CPP_CODE_START " signal = NI_Daq-
>createPlat(plateau,timePlateau,Daq_sample_rate,&numOfSamples); " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CPP_CODE_START " std::cout<<plateau*4<<endl; " CPP_CODE_END
 CMD DAQMX: Wait_Generation (NI_Daq);
 IF (plateau >= value1):
 old_plateau = plateau;
 plateau = plateau/1.5;

APPENDIX

141

 ELSEIF (plateau >= value2):
 old_plateau = plateau;
 plateau = plateau/1.2;
 ELSE:
 old_plateau = plateau;
 plateau = plateau/1.1;
 ENDIF
 CPP_CODE_START " signal = NI_Daq->createRamp(old_plateau, -plateau,
1.5, Daq_sample_rate, &numOfSamples); " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);

 CPP_CODE_START " signal = NI_Daq->createPlat(-
plateau,timePlateau,Daq_sample_rate,&numOfSamples); " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);
 CPP_CODE_START " signal = NI_Daq->createRamp(-plateau, plateau, 1.5,
Daq_sample_rate, &numOfSamples); " CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);
 IF (plateau <= 0.001):
 demagnetized = 1;
 ENDIF
 ENDWHILE

 CPP_CODE_START " signal = NI_Daq-
>createPlat(0,0.01,Daq_sample_rate,&numOfSamples); " CPP_CODE_END

SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
CMD DAQMX: Wait_Generation (NI_Daq);
PRINT "Demagnetization completed" ;

 END_MTASK
 //-----------------------------------
 BEGIN_MTASK Flux_Measurement:
 //-----------------------------------
 PRINT "Start Flux_Measurement" ;
 USE FDI_CLUSTER: Cluster_1;
 USE ENCODER_BOARD: Enc_B;
 CMD FDI_CLUSTER: Acquisition (Cluster_1,
path_name,AcquisitionBufferSize, 2);
 WAIT 3000 ms;
 CMD ENCODER_BOARD: Start_Syntetic_Trigger (Enc_B,Encoder_Channel);
 WAIT 3000 ms;
 TRIG_EVENT start_ramp ;
 CMD FDI_CLUSTER: Wait_Acquisition (Cluster_1);

 END_MTASK
 //-----------------------------------
 BEGIN_MTASK Begin_Measurement_Procedure:
 //-----------------------------------
 DEF_VAR numOfSamples AS int;
 CPP_CODE_START "double* signal;" CPP_CODE_END
 PRINT "Start Begin_Measurement_Procedure";
 USE DAQMX: NI_Daq;
 CPP_CODE_START "signal = NI_Daq-
>createRamp(plateaux[measurementCycle]/4, plateaux[measurementCycle+1]/4, 1.5,
Daq_sample_rate, &numOfSamples);" CPP_CODE_END
 SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
 CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
 CMD DAQMX: Wait_Generation (NI_Daq);
 WAIT 200 ms;
 END_MTASK
 //-----------------------------------
 BEGIN_MTASK Set_Next_Measurement:
 //-----------------------------------

APPENDIX

142

 DEF_VAR numOfSamples AS int;
 measurementCycle=measurementCycle+1;
 CPP_CODE_START "
 double* signal;
 std::cout<<std::endl;
 std::cout<<measurementCycle<<std::endl;
 " CPP_CODE_END
 WAIT 200 ms;
 IF (measurementCycle <= 37):

TRIG_EVENT start_ramp;
 ELSE:
 USE DAQMX: NI_Daq;
 USE FDI_CLUSTER: Cluster_1;
 USE ENCODER_BOARD: Enc_B;
 CMD DAQMX: ZeroOutput(NI_Daq);
 CPP_CODE_START "signal = NI_Daq-
>createRamp(plateaux[measurementCycle], 0, 1.5, Daq_sample_rate, &numOfSamples);"
CPP_CODE_END

SET DAQMX: Timing_Trigger (NI_Daq,Daq_sample_rate, 0, numOfSamples);
CMD DAQMX: Start_Voltage (NI_Daq, signal, numOfSamples);
CMD DAQMX: Wait_Generation (NI_Daq);
CMD FDI_CLUSTER: Stop_Acquisition (Cluster_1);
WAIT 3000 ms;
CMD ENCODER_BOARD: Stop_Syntetic_Trigger (Enc_B, Encoder_Channel) ;
PRINT "End Permeability measurement session";

 ENDIF
 END_MTASK
 //-----------------------------------
 BEGIN_MTASK Conversion:
 //-----------------------------------
 CPP_CODE_START " DataConversionByn2Ascii(path_name.c_str(),(int)
SamplePerTurn/2, numberOf_FDI, 0);" CPP_CODE_END
 END_MTASK
 ADD_TASK Demagnetization_Procedure ;
 ADD_TASK_AFTER_TASK Demagnetization_Procedure Flux_Measurement;
 ADD_TASK_AFTER_EVENT start_ramp Begin_Measurement_Procedure ;
 ADD_TASK_AFTER_TASK Begin_Measurement_Procedure Set_Next_Measurement;
 ADD_TASK_AFTER_TASK Flux_Measurement Conversion;
END_SCRIPT

Appendix B
xTxt

//
// Basic syntax (START)
//
Script:
"BEGIN_SCRIPT" scriptName=ID ":"
 (scriptDeclarations+=Declarations)*
 (scriptAssignements+=ScriptAssignement)*
 (scriptDeviceDefinitions+=Definition_Statement)*
 (scriptDeviceConfigurations+=ConfigurationStatement)*
 (scriptDeviceSettings+=DeviceSetting)*
 (mtasks+=MTask)*
 (taskExecutionStatements+=TaskExecutionStatement)*
 //(rts=RunTaskSequence_)
"END_SCRIPT";

ScriptAssignement:
 (ast=AssignStatement | cpp=CppCode);

DeviceSetting:
 cmds=CommandStatement | sets=SettingStatement | gets=GettingStatement |
uses=Use_Statement |
 cppCode=CppCode | ast=AssignStatement;

APPENDIX

143

MTask:
"BEGIN_MTASK" mtaskName=ID (mtaskDesc=STRING)? ":"
 (taskDeclarations+=Declarations)*
 (taskAction+=GenericStatement)*
"END_MTASK";

GenericStatement:
 cmds=CommandStatement | sets=SettingStatement | gets=GettingStatement |
uses=Use_Statement|
 cpp=CppCode | ast=AssignStatement |
 fst=ForStatement | wst=WhileStatement | ist=IfStatement |
ust=Util_Statement;
Util_Statement:
print=Print_ | delay=Delay_ | trigEvent=TrigEvent_;

TrigEvent_:
"TRIG_EVENT" eventName=ID ";";

TaskExecutionStatement:
at=AddTask_ | atat=AddTaskAfterTask_ | atae=AddTaskAfterEvent_;

AddTask_:
"ADD_TASK" taskName=ID ";";

AddTaskAfterTask_:
"ADD_TASK_AFTER_TASK" task1Name=ID task2Name=ID";";
AddTaskAfterEvent_:
"ADD_TASK_AFTER_EVENT" eventName=ID taskName=ID";";
Print_:
"PRINT" text=STRING ";";
Delay_:
"WAIT" time=T_INT "ms" ";";
ForStatement:
"FOR" varName=ID"="startValue=T_INT "TO" finalValue=T_INT ":"
 (forStatements+=GenericStatement)*
"ENDFOR";
WhileStatement:
"WHILE" cond=Expression ":"
 (whileStatements+=GenericStatement)*
"ENDWHILE";
IfStatement:
"IF" cond=Expression ":"
 (ifStatements+=GenericStatement)*
("ELSEIF" elseIfCond=Expression ":" (elseIfStatements+=GenericStatement)*)*
("ELSE:" (elseStatements+=GenericStatement)*)?
"ENDIF";
CppCode:
"CPP_CODE_START"
 code=STRING
"CPP_CODE_END";
//
/// Assignment ///////////////////////////////////////
//
AssignStatement:
varName=ID "=" (singAss=SingleAssignStatement | arrAss=ArrayAssignStatement |
funcAss=FuncAssignStatement);
FuncAssignStatement:
value=GettingStatement;
SingleAssignStatement:
value=Expression ";";
ArrayAssignStatement:
"{" value1=Expression ("," value+=Expression)* "}" ";";
//
/// End Assignment ///////////////////////////////////////
//
/// Declarations ///////////////////////////////////////
//
Declarations:

APPENDIX

144

(vd=VarDeclarations | ad=ArrayDeclarations);
VarDeclarations:
"DEF_VAR" name=ID "AS" type=DataType ("="value=Literal)?";";
ArrayDeclarations:
"DEF_ARRAY" name=ID "OF" type=DataType "[" (size=T_INT)? "]" ("=" "{"
Value=Expression ("," Value2+=Expression)* "}")?";";
//
/// End Declarations ///////////////////////////////////////
//
Expression:
exprval= EqualityExpr;
EqualityExpr:
left=CondORExpr (op=EqualityOp right=CondORExpr)?;
CondORExpr:
left=CondANDExpr (rights+=CondORRights)*;
CondORRights:
op=OrOp right=CondANDExpr;
CondANDExpr:
left=AtomicBoolExpr (rights+=CondANDRights)*;
CondANDRights:
op=AndOp right=AtomicBoolExpr;
AtomicBoolExpr:
rex=RelationalExpr;
RelationalExpr:
left=AdditiveExpr (op=RelationalOp right=AdditiveExpr)?;
AdditiveExpr:
left=MultiplicativeExpr (rights+=AdditiveRights)*;
AdditiveRights:
op=AdditiveOp right=MultiplicativeExpr;
MultiplicativeExpr:
left=AtomicExpr (rights+=MultiplicativeRights)*;
MultiplicativeRights:
op=MultiplicativeOp right=AtomicExpr;
AtomicExpr:
var=Variable_ | lit=Literal | parexp= ParenExpr;
Variable_:
name=ID | arrayElement=ID"["index=T_INT"]";
ParenExpr:
"(" expr=EqualityExpr ")";
Param:
var=ID | value=Literal;
Literal:
intl=Integer_ | fltl=Float_ | strl=String_;
Native INT:
"";
Native T_INT:
"('-')?('0'..'9')+('.' ('0'..'9')+)?";
Float_:
number=T_INT;
Integer_:
number=T_INT;
String_:
value=STRING;
Enum MultiplicativeOp: //Lvl3
TIMES = "*" |
DIVIDE = "/" |
MOD = "%";
Enum AdditiveOp: //Lvl2
PLUS = "+" | MINUS = "-";
Enum RelationalOp:
LT = "<" |
LE = "<=" |
GT = ">" |
GE = ">=";
Enum EqualityOp:
EQ = "==" |
NE = "!=";
Enum OrOp:

APPENDIX

145

OR = "||";
Enum AndOp:
AND = "&&";
Enum DataType:
int="int"| short="short"| long="long"| float="float"| string="string";
//
// Basic syntax (END)
//
// Devices syntax (START)
//
//
Definition_Statement:
 "DEF" (
 eb_defs = Def_EncoderBoard_
 | fdic_defs = Def_FdiCluster_
 | key2_defs = Def_Keithley2k_
 | daq_defs = Def_DAQmx_
 | lvp_defs = Def_LVPowerSupply_
 | max_defs = Def_Maxon_Epos_
 | mmc_defs = Def_MidiMotorController_
 | omrk_defs = Def_OrientalMotorRK_
 | pcu_defs = Def_PCU2000_
 | powco_defs = Def_Power_Controller_
) ";";
ConfigurationStatement:
 "CFG" (
 eb_confs = Cfg_EncoderBoard_
 | fdic_confs = Cfg_FdiCluster_
 | hey2_confs = Cfg_Keithley2k_
 | daq_confs = Cfg_DAQmx_
 | lvp_confs = Cfg_LVPowerSupply_
 | max_confs = Cfg_Maxon_Epos_
 | mmc_confs = Cfg_MidiMotorController_
 | omrk_confs = Cfg_OrientalMotorRK_
 | pcu_confs = Cfg_PCU2000_
 | powco_confs = Cfg_Power_Controller_
) ";";
CommandStatement:
 "CMD" (
 eb_cmds=Cmd_EncoderBoard_
 | fdic_cmds=Cmd_FdiCluster_
 | key2_cmds = Cmd_Keithley2k_
 | daq_cmds = Cmd_DAQmx_
 | lvp_cmds = Cmd_LVPowerSupply_
 | max_cmds = Cmd_Maxon_Epos_
 | mmc_cmds = Cmd_MidiMotorController_
 | omrk_cmds = Cmd_OrientalMotorRK_
 | pcu_cmds = Cmd_PCU2000_
 | powco_cmds = Cmd_Power_Controller_
) ";";
SettingStatement:
 "SET" (
 eb_sets = Set_EncoderBoard_
 | fdic_sets = Set_FdiCluster_
 | key2_sets = Set_Keithley2k_
 | daq_sets = Set_DAQmx_
 | lvp_sets = Set_LVPowerSupply_
 | max_sets = Set_Maxon_Epos_
 | mmc_sets = Set_MidiMotorController_
 | omrk_sets = Set_OrientalMotorRK_
 | pcu_sets = Set_PCU2000_
 | powco_sets = Set_Power_Controller_
) ";";
GettingStatement:
 "GET"
 (
 eb_gets = Get_EncoderBoard_
 | fdic_Gets = Get_FdiCluster_

APPENDIX

146

 | key2_Gets = Get_Keithley2k_
 | daq_Gets = Get_DAQmx_
 | lvp_Gets = Get_LVPowerSupply_
 | max_Gets = Get_Maxon_Epos_
 | mmc_Gets = Get_MidiMotorController_
 | omrk_Gets = Get_OrientalMotorRK_
 | pcu_Gets = Get_PCU2000_
 | powco_Gets = Get_Power_Controller_
) ";";
Use_Statement:
 "USE" (
 eb_uses = Use_EncoderBoard_
 | fdic_uses = Use_FdiCluster_
 | key2_uses = Use_Keithley2k_
 | daq_uses = Use_DAQmx_
 | lvp_uses = Use_LVPowerSupply_
 | max_uses = Use_Maxon_Epos_
 | mmc_uses = Use_MidiMotorController_
 | omrk_uses = Use_OrientalMotorRK_
 | pcu_uses = Use_PCU2000_
 | powco_uses = Use_Power_Controller_
) ";";

Method_Signature_:
 cmd=ID "(" name=ID ("," params+=Param)* ")";

//
// Devices syntax(END)
//
// EncoderBoard syntax (START)
//
//EncoderBoard Definition
Def_EncoderBoard_:
 "ENCODER_BOARD:" name=ID
("WITH""("mod=Param","ser_num=Param","man=Param")")?;
 // static EncoderBoard* createDevice(std::string name);
 // static EncoderBoard* createDevice(std::string name, std::string mod,
std::string ser_num, std::string man);
//EncoderBoard Using
Use_EncoderBoard_:
 "ENCODER_BOARD:" name=ID;
 // "DAQmx* NI_Daq = DAQmx::getDeviceIstance(DAQM);"
//EncoderBoard Configuration
Cfg_EncoderBoard_:
 "ENCODER_BOARD:" name=ID"WITH""("bus=Param","slot=Param
(","(sp=Param)?(","(remap=Param)?(","(ac=Param)?)?)?)?")";
//EncoderBoard Command
Cmd_EncoderBoard_:
 "ENCODER_BOARD:" sig=Method_Signature_;
//EncoderBoard Command
Set_EncoderBoard_:
 "ENCODER_BOARD:" sig=Method_Signature_;
//EncoderBoard Command
Get_EncoderBoard_:
 "ENCODER_BOARD:" sig=Method_Signature_;
//
// EncoderBoard syntax (END)
//
//
.
.
.
.

APPENDIX

147

Appendix C
xPand

«IMPORT mydsl»
«DEFINE main FOR Script»
«FILE scriptName + ".cpp"»
//Script name: «scriptName».cpp
#include "core/utils/DynamicParameter.h"
«FOREACH scriptDeviceDefinitions AS e-»
«EXPAND DevicesIncludeArea FOR e-»
«ENDFOREACH-»
//
// DECLARATION
//
// Script devices name
«FOREACH scriptDeviceDefinitions AS e-»
«EXPAND DevicesNameArea FOR e-»
«ENDFOREACH-»
// Script variable and array
«FOREACH scriptDeclarations AS var-»
«IF var.vd != null-»«EXPAND VarDeclarationArea FOR var.vd-»
«ELSEIF var.ad != null-»«EXPAND ArrayDeclarationArea FOR var.ad-»«ENDIF-»
«ENDFOREACH-»
//
// ASSIGNMENT
//
«FOREACH scriptAssignements AS e-»
«IF e.ast != null-»«EXPAND AssignStatArea FOR e.ast-»
«ELSEIF e.cpp != null-»«EXPAND CppCodeArea FOR e.cpp-»«ENDIF-»
«ENDFOREACH-»
BEGINSCRIPT
//*************************************/
//Dynamic parameters */
//*************************************/
//Create the devices */
//*************************************/
DEVICE_CREATION
«FOREACH scriptDeviceDefinitions AS e-»
«EXPAND DevicesCreationArea FOR e-»
«ENDFOREACH-»
END_DEVICE_CREATION
//*************************************/
//Configure the devices */
//*************************************/
DEVICE_CONFIGURATION
«FOREACH scriptDeviceConfigurations AS e-»
«EXPAND DevicesConfigurationArea FOR e-»
«ENDFOREACH-»
END_DEVICE_CONFIGURATION
//*************************************/
//Set the devices */
//*************************************/
SET_DEVICE
«FOREACH scriptDeviceSettings AS e-»
«EXPAND DeviceSettingArea FOR e-»
«ENDFOREACH-»
END_DEVICE_SETTING
//*************************************/
//Define tasks */
//*************************************/
«FOREACH mtasks AS mtask -»
«EXPAND MTaskDefinitionArea FOR mtask -»
«ENDFOREACH-»
//*************************************/
//Define execution graph */
//*************************************/

APPENDIX

148

«FOREACH taskExecutionStatements AS es -»
«EXPAND TaskExecutionStatementArea FOR es -»
«ENDFOREACH-»
RUN_TASK_SEQUENCE
//Delete Devices
«FOREACH scriptDeviceDefinitions AS e-»
«EXPAND DevicesDeleteArea FOR e-»
«ENDFOREACH-»
ENDSCRIPT
«ENDFILE»
«ENDDEFINE»
«REM» --- «ENDREM»
«REM» ------------------------ MTASKS ------------------------- «ENDREM»
«REM» --- «ENDREM»
«REM» MTask Definition Area «ENDREM»
«DEFINE MTaskDefinitionArea FOR MTask»
/*«mtaskDesc»*/
BEGIN_TASK(«mtaskName»)
// Task variable and array
«FOREACH taskDeclarations AS var-»
«IF var.vd != null-»«EXPAND VarDeclarationArea FOR var.vd-»
«ELSEIF var.ad != null-»«EXPAND ArrayDeclarationArea FOR var.ad-»«ENDIF-»
«ENDFOREACH-»
// Task actions
«FOREACH taskAction AS e -»
«EXPAND GenericStatementArea FOR e-»
«ENDFOREACH-»
END_TASK
«ENDDEFINE»

«REM» Generic Statement Area «ENDREM»
«DEFINE GenericStatementArea FOR GenericStatement-»
«IF (fst != null) -»«EXPAND ForStatementArea FOR fst -»
«ELSEIF (wst != null) -»«EXPAND WhileStatementArea FOR wst-»
«ELSEIF (ast != null) -»«EXPAND AssignStatArea FOR ast-»
«ELSEIF (ist != null) -»«EXPAND IfStatementArea FOR ist-»
«ELSEIF (cmds != null)-»«EXPAND CommandStatementArea FOR cmds-»
«ELSEIF (sets != null)-»«EXPAND SettingStatementArea FOR sets-»
«ELSEIF (gets != null)-»«EXPAND GettingStatementArea FOR gets-»
«ELSEIF (uses != null)-»«EXPAND Use_StatementArea FOR uses-»
«ELSEIF (cpp != null)-»«EXPAND CppCodeArea FOR cpp-»
«ELSEIF (ust != null)-»«EXPAND Util_StatementArea FOR ust-»
«ENDIF-»
«ENDDEFINE»
«REM» Util Statement Area «ENDREM»
«DEFINE Util_StatementArea FOR Util_Statement-»
«IF (print != null) -»«EXPAND Print_Area FOR print -»
«ELSEIF (delay != null) -»«EXPAND Delay_Area FOR delay-»
«ELSEIF (trigEvent != null) -»«EXPAND TrigEvent_Area FOR trigEvent-»
«ENDIF-»
«ENDDEFINE»
«REM» Print Area «ENDREM»
«DEFINE Print_Area FOR Print_-»
environment->console->writeln("«text»");
«ENDDEFINE»
«REM» Delay Area «ENDREM»
«DEFINE Delay_Area FOR Delay_-»
delay(«time»);
«ENDDEFINE»
«REM» TrigEvent Area «ENDREM»
«DEFINE TrigEvent_Area FOR TrigEvent_-»
TRIG_EVENT(«eventName»);
«ENDDEFINE»
«REM» For Statement Area «ENDREM»
«DEFINE ForStatementArea FOR ForStatement-»for (int «varName» = «startValue»;
«varName» <= «finalValue»; «varName»++)
{
«EXPAND GenericStatementArea FOREACH forStatements-»

APPENDIX

149

}
«ENDDEFINE»
«REM» While Statement Area «ENDREM»
«DEFINE WhileStatementArea FOR WhileStatement-»
while «EXPAND ExpressionArea FOR cond»
{
«EXPAND GenericStatementArea FOREACH whileStatements-»
}
«ENDDEFINE»
«REM» If Statement Area «ENDREM»
«DEFINE IfStatementArea FOR IfStatement-»
if «EXPAND ExpressionArea FOR cond»
{
«EXPAND GenericStatementArea FOREACH ifStatements-»
}
«IF elseIfCond!=null-»
else if «EXPAND ExpressionArea FOR elseIfCond»
{
«EXPAND GenericStatementArea FOREACH elseIfStatements-»
}
«ENDIF-»
«IF elseStatements.isEmpty!=true-»
else
{
«EXPAND GenericStatementArea FOREACH elseStatements-»
}
«ENDIF-»
«ENDDEFINE»
«REM» Cpp Code Area «ENDREM»
«DEFINE CppCodeArea FOR CppCode-»«code»
«ENDDEFINE»

«REM» Add Task Area «ENDREM»
«DEFINE AddTask_Area FOR AddTask_-»
ADD_TASK(«taskName»)
«ENDDEFINE»

«REM» Add Task After Task Area «ENDREM»
«DEFINE AddTaskAfterTask_Area FOR AddTaskAfterTask_-»
ADD_TASK_AFTER_TASK(«task1Name»,«task2Name»)
«ENDDEFINE»

«REM» Add Task After Event Area «ENDREM»
«DEFINE AddTaskAfterEvent_Area FOR AddTaskAfterEvent_-»
ADD_TASK_AFTER_EVENT(«eventName»,«taskName»)
«ENDDEFINE»
.
.
.
.
«REM» --- «ENDREM»
«REM» --- «ENDREM»
«REM» ------------------------ DEVICES ------------------------ «ENDREM»
«REM» --- «ENDREM»

«REM» Devices Include Area «ENDREM»
«DEFINE DevicesIncludeArea FOR Definition_Statement-»
«IF eb_defs!=null-»«EXPAND EncoderBoard_IncludeDirective FOR eb_defs-»
«ELSEIF daq_defs!=null-»«EXPAND DAQ_IncludeDirective FOR daq_defs-»
«ELSEIF fdic_defs!=null-»«EXPAND FdiCluster_IncludeDirective FOR fdic_defs-»
«ELSEIF key2_defs!=null-»«EXPAND Keithley2k_IncludeDirective FOR key2_defs-»
«ELSEIF lvp_defs!=null-»«EXPAND LVPowerSupply_IncludeDirective FOR lvp_defs-»
«ELSEIF max_defs!=null-»«EXPAND Maxon_Epos_IncludeDirective FOR max_defs-»
«ELSEIF mmc_defs!=null-»«EXPAND MidiMotorController_IncludeDirective FOR
mmc_defs-»
«ELSEIF omrk_defs!=null-»«EXPAND OrientalMotorRK_IncludeDirective FOR omrk_defs-»
«ELSEIF powco_defs!=null-»«EXPAND Power_Controller_IncludeDirective FOR
powco_defs-»

APPENDIX

150

«ENDIF -»
«ENDDEFINE»

«REM» Devices Name Area «ENDREM»
«DEFINE DevicesNameArea FOR Definition_Statement-»
«IF eb_defs!=null-»«EXPAND EncoderBoard_NameDeclaration FOR eb_defs-»
«ELSEIF daq_defs!=null-»«EXPAND DAQ_NameDeclaration FOR daq_defs-»
«ELSEIF fdic_defs!=null-»«EXPAND FdiCluster_NameDeclaration FOR fdic_defs-»
«ELSEIF key2_defs!=null-»«EXPAND Keithley2k_NameDeclaration FOR key2_defs-»
«ELSEIF lvp_defs!=null-»«EXPAND LVPowerSupply_NameDeclaration FOR lvp_defs-»
«ELSEIF max_defs!=null-»«EXPAND Maxon_Epos_NameDeclaration FOR max_defs-»
«ELSEIF mmc_defs!=null-»«EXPAND MidiMotorController_NameDeclaration FOR mmc_defs-
»
«ELSEIF omrk_defs!=null-»«EXPAND OrientalMotorRK_NameDeclaration FOR omrk_defs-»
«ELSEIF pcu_defs!=null-»«EXPAND PCU2000_NameDeclaration FOR pcu_defs-»
«ELSEIF powco_defs!=null-»«EXPAND Power_Controller_NameDeclaration FOR
powco_defs-»
«ENDIF -»
«ENDDEFINE»
.
.
.

«REM» --- «ENDREM»
«REM» --- «ENDREM»
«REM» --------------------- ENCODER BOARD --------------------- «ENDREM»
«REM» --- «ENDREM»
«DEFINE EncoderBoard_IncludeDirective FOR Def_EncoderBoard_-»
#include "core/devices/EncoderBoard.h"
«ENDDEFINE»
«REM» ENCODER BOARD: Name declaration «ENDREM»
«DEFINE EncoderBoard_NameDeclaration FOR Def_EncoderBoard_-»
std::string EncoderBoardName_«name» = "«name»";
«ENDDEFINE»
«REM» ENCODER BOARD: Creation methods «ENDREM»
«DEFINE EncoderBoard_CreationMethods FOR Def_EncoderBoard_-»
«IF mod==null-»
EncoderBoard* EncoderBoardObject_«name» =
EncoderBoard::createDevice(EncoderBoardName_«name»);
«ELSE-»
EncoderBoard* EncoderBoardObject_«name» =
EncoderBoard::createDevice(EncoderBoardName_«name», «EXPAND ParamArea FOR mod-»,
«EXPAND ParamArea FOR ser_num-», «EXPAND ParamArea FOR man-»);
«ENDIF-»
«ENDDEFINE»
.
.
.
.

APPENDIX

151

Appendix D
Architecture of FFMM

BIBLIOGRAFY

152

Bibliography

[Ambrosio, 2005] G. Ambrosio at all, “A Scaling Law for the Snapback in

Superconducting Accelerator Magnets”, IEEE TRANSACTIONS ON APPLIED

SUPERCONDUCTIVITY, VOL. 15, NO. 2, JUNE 2005.

[Amet, 2002] S. Amet L. Bottura L. Deniau L. Walckiers. ”The multipoles factory:

an element of the LHC control”. IEEE Transactions on Applied Su-

perconductivity, 12:1417–1421, 2002.

[Animesh, 1997] Animesh K. Jain, “HARMONIC COILS”, Proc. CERN

Accelerator School on Measurement and Alignment of Accelerator and Detector

Magnets, April 11-17, 1997, Anacapri, Italy, CERN-98-05, pp. 175-217.

[Arpaia, 2006] P. Arpaia, J. Garcia Perez, A. Masi, G. Spiezia, “Metrological

Characterization of a Fast Digital Integrator for Magnetic Measurements at

CERN”, Proc. of XVIII IMEKO World Conf., Rio de Janeiro, Brazil, September

17–22, 2006.

[Arpaia, 2006] P. Arpaia, L. Bottura, D. Della Ratta, J. G. Perez, V. Inglese, G.

Spiezia, S. Tiso, L. Walckiers, “A Flexble framework for generating magnetic

measurement system at CERN”. IMTC 2006 – Instrumentation and Measurement

Technology Conference Sorrento, Italy 24-27 April 2006.

[Arpaia, 2007] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L. Deniau, V.

Inglese, G. Spiezia, S. Tiso, L.Walckiers, “A software framework for flexible

magnetic measurements at CERN”, in Proc. of IEEE IMTC 07, Warsaw, Poland,

May 2007.

[Arpaia, 2007] P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, G. Spiezia,

“Fault Self-Detection of Automatic Testing Systems by means of Aspect-Oriented

Programming”, Proc. of 15th IMEKO TC4 Symposium, Iasi, Romania, Sept. 19-21

2007.

BIBLIOGRAFY

153

[Basu, 1997] A. Basu, M. Hayden, G. Morrisett, and T. von Eicken. A Language-

Based Approach to Protocol Construction. In Proc. ACM SIGPLAN Workshop

on Domain Specific Languages, January 1997.

[Ben-Kiki, 2004] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t

Markup Language, Version 1.1. 2004.

[Bentley ,1989] Bentley. J. L. Programming Pearls. Addison-Wesley, 1989.

[Benyon 1997] Benyon, D., Information and Data Modelling, second edition,

McGraw-Hill, Wokingham, 1997

[Berkes, 1998] B. Berkes, “Hall Generators”, CAS – CERN Accelerator School:

Measurement and Alignment of Accelerator and Detector Magnets, Anacapri,

Italy, 11 - 17 Apr 1997 - CERN, Geneva, 1998.

[Beth, 1966] R.A. Beth. ”Complex representation and computation of

twodimensional magnetic fields”. J. Appl. Phys., 37:2568–2571, 1966.

[Bidon, 1995] S. Bidon J. Billan F. Fischer C. Sanz. ”New technique of

fabrication of search coil for magnetic field measurement by harmonic analysis”.

CERN Internal Note AT-MA 95-117, 1995.

[Billan, 2000] J. Billan et al.”Twin rotating coils for cold magnetic measurements

of 15 m long LHC dipoles”. IEEE Transactions on the appl. Superc., 10(1):1422–

1426, 2000.

[Bishop, 2006] Judith Bishop. Multi-platform user interface construction: a

challenge for software engineering-in-the-small. In ICSE ’06: Proceeding of the

28th international conference on Software engineering, pages 751–760, New York,

NY, USA, 2006. ACM Press. ISBN 1-59593-375-1.

[Bloch, 1946] F. Bloch W.W. Hansen M. Packard. ”The nuclear induction

experiment”.Physical Review, 70, 1946.

[Bloembergen, 1948] N. Bloembergen E.M. Purcell R.V. Pound. ”Relaxation

effects in nuclear magnetic resonance absorption”. Physical Review, 73, 1948.

[Bosch, 1996] J. Bosch and G. Hedin. Editors’s Introduction. In Proceedings

ALEL’96 Workshop on Compiler Techniques for Application Domain Languages

BIBLIOGRAFY

154

and Extensible Language Models, Technical Report LU-CS-TR:96-173. Lund

University, April 1996.

[Bottura, 1997] L. Bottura, “Standard Analysis Procedures for Field Quality

Measurement of the LHC Magnets - Part I: Harmonics”, Internal Note, LHC-

MTA-IN-97-007 1997-07-21.

[Bottura, 1998] L. Bottura, “Field Dynamics in Superconducting Magnets for

Particle Accelerators”, CAS – CERN Accelerator School: Measurement and

Alignment of Accelerator and Detector Magnets, Anacapri, Italy, 11 - 17 Apr

1997 - CERN, Geneva, 1998.

[Bottura, 2000] L. Bottura et al., “A Fast Sextupole Probe for Snapback

Measurement in the LHC Dipoles”, IEEE Trans. Appl. Supercond.: 10 (2000), p.

1435-8.

[Bottura, 2000] L. Bottura L. Larsson S. Schloss M. Schneider N. Smirnov. ”A fast

sextupole probe for snapback measurement in the LHC dipoles”. IEEE

Transactions Appl. Supercond., 10(1):1435–1438, 2000.

[Bottura, 2004] L. Bottura K. Henrichsen. ”Field measurements”. CERN

Accelerator School on Superconductivity and Cryogenics for Accelerators and

Detectors, CERN-2004-008:118–148, 2004.

[Bravenboer, 2004] Martin Bravenboer and Eelco Visser. Concrete syntax for

objects: domain-specific language embedding and assimilation without

restrictions. In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications, pages 365–383, New York, NY, USA, 2004. ACM Press. ISBN 1-

58113-831-9.

[Breschi, 2000] M. Breschi et al., “Fast measurement of field harmonics through a

set of Hall probes”, CERN Internal Note LHC-MTA-IN-2000-103.

[Brian W. K., 1998] Brian W. Kernighan. The C Programming Language.

Prentice Hall Professional Technical Reference, 1988. ISBN 0131103709.

[Brooks, 2007] Brooks, N.R., “Design & Realization of an Improved Rotating

Coil Measurement System”, FAME 2005-06 Project Report, National Science

BIBLIOGRAFY

155

Foundation International Research Fellowship Program, Grant# OSIE -0502410,

CERN AT-MTM, 2007.

[Brooks, 2007] N.R. Brooks L. Bottura J.G. Perez O. Dunkel. ”Estimation of

mechanical vibrations of LHC fast magnetic measurement system”. Proceedings

of 20th Biennial Conf. on Mag. Tech. (MT-20), August 2007. Philadelphia, PE.

[Brown, 1963] S. A. Brown, C. E. Drayton, and B. Mittman. A description of the

APT language. Commun. ACM, 6(11):649–658, 1963. ISSN 0001-0782.

[CAP, 1994] CAP Gemini Innovation Hewlett Packard, Matra Marconi Space.

Domain Analysis Method. Deliveable D3.2B, PROTEUS ESPRIT project 6086,

1994.

[Capers, 2007] Capers Jones. Programming Languages Table, 1996.

[Carcagno, 2007] R. Carcagno et Al.”Superconducting solenoid magnet test

results”. IEEE Transactions on Applied Superconductivity, (2), June 2007.

[Consel, 2002] C. Consel, H. Hamdi, L. Réveillère, L. Singaravelu, H. Yu, and C.

Pu. Spidle: A DSL approach to specifying streaming applications. Technical

Report RR1282-02, LaBRI, Bordeaux, France, October 2002.

[Cortes, 2000] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, and Anne

Rogers. Hancock: a language for extracting signatures from data streams. In KDD

’00: Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 9–17, New York, NY, USA, 2000.

ACM Press. ISBN 1-8113-233-6.

[Crockford, 2006] Douglas Crockford. JSON: The Fat-Free Alternative to XML,

2006. URL http: //www.json.org/xml.html. [Online; accessed 19-December-

2006].

[David A.,1990] David A. Watt. Programming language concepts and paradigms.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990. ISBN 0-13-728874-3.

[Dayton, 1954] I.E. Dayton F.C. Shoemaker R.F. Mozley. ”Measurement of

twodimensional fields, Part II: Study of a quadrupole magnet”. Review of

Scientific Instrument, 1954.

BIBLIOGRAFY

156

[Dayton, 1954] I.E. Dayton F.C. Shoemaker R.F. Mozley. ”Measurement of

twodimensional fields, Part II: Study of a quadrupole magnet”. Review of

Scientific Instrument, 1954.

[De Almeida Falbo, 2002] Ricardo De Almeida Falbo, Giancarlo Guizzardi, and

Katia Cristina Duarte. An ontological approach to domain engineering. In SEKE

’02: Proceedings of the 14th international conference on Software engineering and

knowledge engineering, pages 351–358, New York, NY, USA, 2002. ACM Press.

ISBN 1-58113-556-4.

[Delsolaro, 2001] W. Venturini Delsolaro A. Arn L. Bottura C. Giloux R. Mompo

A. Siemko L. Walckiers. ”The test facility for the short prototypes of the LHC

superconducting magnets”. Proceedings 2001 Cryo. Eng. Conf., 2001. Madison,

Wisconsin, USA.

[Devanbu, 1998] P. Devanbu and J. Poulin, editors. Modular Domain Specific

Languages and Tools, 1998. IEEE Computer Society Press.

[Devred, 1998] A. Devred and M. Traveria, “Magnetic field and flux of particle

accelerator magnets in complex formalism”, 1998.

[DiMarco, 1996] J. DiMarco J. Krzywinski. ”MTF single streched wire system”.

Technical report, Fermi National Accelerator Laberatory, March 1996.

[DiMarco, 2000] J. DiMarco H. Glass M. J. Lamm P. Schlabach C. Sylvester J.

C. Tompkins J. Krzywinski. ”Field alignment of quadrupole magnets for the LHC

interaction regions”. IEEE Transactions Appl. Supercond., 10(1):127–130, 2000.

[Duggan, 2000] Dominic Duggan. A Mixin-Based, Semantics-Based Approach to

Reusing Domain-Specific Programming Languages. In ECOOP ’00: Proceedings

of the 14th European Conference on Object-Oriented Programming, pages 179–

200, London, UK, 2000. Springer-Verlag. ISBN 3-540-67660-0.

[Elmore, 1954] W.C. Elmore M.W. Garrett. ”Measurement of two-dimensional

fields, Part I: theory”. Rev. Sci. Instr., 1954.

[Evans, 2003] Eric Evans. Domain-Driven Design: Tacking Complexity In the

Heart of Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2003. ISBN 0321125215.

BIBLIOGRAFY

157

[Evesque, 1999] C. Evesque. ”A new challenge in magnet axis transfer”.

Proceedings of International Magnetic Measurement Workshop IMMW11,

September 1999. Brookhaven National Laboratory (USA).

[Fartoukh, 2001] S. Fartoukh O. Bruning. ”Field quality specification for the LHC

main dipole magnets”. CERN LHC-Project-Report 501, 2001.

[Frakes, 1998] William Frakes, Ruben Prieto-Diaz, and Christopher Fox. DARE:

Domain analysis and reuse environment. Ann. Softw. Eng., 5:125–141, 1998.

ISSN 1022-7091.

[Gareyte, 1996] J. Gareyte. ”Impact of superconductors on LHC design”. CERN

96-03, pages 335–346, 1996. CERN, Geneva, Switzerland.

[Greenfield, 2003] Jack Greenfield and Keith Short. Software factories:

assembling applications with patterns, models, frameworks and tools. In

OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages 16–27,

New York, NY, USA, 2003. ACM Press. ISBN 1-58113-751-6.

[Groff, 1999] James R. Groff and Paul N. Weinberg. SQL, the complete

reference. Osborne / McGraw-Hill, 1999. ISBN 0-07-211845-8.

[Haverkamp, 2002] M. Haverkamp L. Bottura E. Benedico S. Sanfilippo B. ten

Haken H.H.J. ten Kate. ”Field decay and snap-back measurements using a fast

Hall plate detector”. IEEE Transactions Appl. Supercond., 12(1):86–89, 2002.

[Jain, 1998] A.K. Jain. ”Harmonic coils”. CERN Accelerator School on

Measurement and Alignment of Accelerator and Detector Magnets, CERN-98-

05:175–217, 1998.

[Jain, 2005] A. Jain J. Escallier G. Ganetis W. Louie A. Marone R. Thomas

P.Wanderer. ”Measurements of the field quality in superconducting dipoles at

high ramp rates”. Proceedings of International Magnetic Measurement Workshop

IMMW14, September 2005. Geneva, Switzerland.

[Kang, 1990] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson.

Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report

CMUSEI-90-TR-21, Software Engineering Institute, CMU, November 1990.

BIBLIOGRAFY

158

[Kernevez, 1992] N. Kernevez D. Duret M. Moussavi J.-M. Leger. ”Weak field

NMR and ESR spectrometers and magnetometers”. IEEE Transactions on Magn.,

28, 1992.

[Kusch, 1939] P. Kusch J.R. Zacharias J.J. Rabi, S. Millman. ”The molecular

beam resonance method for measuring nuclear magnetic moments”. Physical

Review, 55, 1939.

[Lieberher, 1989] Lieberherr KJ, Holland IM. “Assuring good style for object

oriented programs” IEEE Software 1989; 6(5):38–48.

[Mauri, 1997] S. Mauri. ” The Antiproton Deceleration: AD”. Springer

Netherlands, 109:43–52, August 1997.

[Mernik, 2005] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and

how to develop domain-specific languages. ACM Comput. Surv., 37(4):316–344,

December 2005. ISSN 0360-0300. URL http://portal.acm.org/citation.cfm? Id

=1118890.1118892.

[Mernik, 2005] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and

how to develop domain-specific languages. ACM Comput. Surv., 37(4):316–344,

December 2005. ISSN 0360-0300. URL http://portal.acm.org/citation.cfm?

id=1118890.1118892.

[Mishra, 2005] Jitendra Kumar Mishra, Paresh Dinesh Motiwala, Naushad Ali,

Shyam Venkatesulu Thota, “BASICS OF SM18 OPERATION AN

INTRODUCTORY GUIDE”, CERN, Geneva, June 2005

[Neighbors, 1980] James Neighbors. Software Construction Using Components.

PhD thesis, University of California Irvine, 1980.

[Nogiec, 2006] J. M. Nogiec, J. Di Marco, S. Kotelnikov, K. Trombly-Freytag, D.

Walbridge, M. Tartaglia, “Configurable component-based software system for

magnetic field measurements”, IEEE Trans. on Applied Superconductivity, Vol.

16, N. 2, Jun. 2006, pp. 1382-1385.

[oAW] http://eclipse.org/gmt/oaw

[Object Management Group, 2003] Object Management Group. MDA Guide

Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf, June 2003.

BIBLIOGRAFY

159

[OMG 2004] OMG, Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-

10-15, 2004

[Padamsee , 2004] H. Padamsee. ”Designing superconducting cavities for

accelerators”. CERN 2004-08, pages 233–252, 2004. CERN, Geneva,

Switzerland.

[Pérez, 2006] J. García Pérez J. Billan M. Buzio P. Galbraith D. Giloteaux V.

Remondino. ”Performance of the room temperature system for magnetic field

measurements of the LHC magnets”. IEEE Transactions on the appl. Superc.,

16(2):269–272, 2006.

[Prieto-Diaz, 1990] Ruben Prieto-Diaz. Domain analysis: an introduction.

SIGSOFT Softw. Eng. Notes, 15(2):47–54, 1990. ISSN 0163-5948.

[Purcell, 1946] E.M. Purcell H.C. Torrey R.V. Pound. ”Resonance absorption by

nuclear magnetic moments in a solid”. Physical Review, 69, 1946.

[Putlitz, 1996] G. zu Putlitz P. von Walter R. Prigl U. Haeberlen K. Jungmann.

”A high precision magnetometer based on pulsed NMR”. Nucl. Instr. And Meth.,

A 374, 1996.

[Raphael A.,1995] Raphael A. Finkel. Advanced Programming Language Design.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN

0805311912.

[Rigo, 2006] Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual

machine construction. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN

conference on Objectoriented programming systems, languages, and applications,

pages 944–953, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-491-X.

[Rossi , 2004] L. Rossi. ”Superconducting magnets for the LHC main lattice”.

IEEE Transactions Appl. Superconductivity, pages 153–158, 2004.

[Rossi, 2003] L. Rossi. ”The lhc main dipoles and quadrupoles toward series

production”. IEEE Transactions on Applied Superconductivity, 13(2):1221–1228,

2003.

[Rubbia, 1985] C. Rubbia. ”Experimental observation of the intermediate vector

bosons w+,w-, and z0”. Almqvist and Wiksell, pages 51–101, 1985.

BIBLIOGRAFY

160

[Sammut, 4/2006] Nicholas J. Sammut at all, “A Hall Plate Based Instrument to

Measure the Snapback in the Large Hadron Collider Superconducting Dipole

Magnets”, IMTC 2006 – Instrumentation and Measurement Technology

Conference Sorrento, Italy 24-27 April 2006.

[Sammut, 6/2006] Nicholas J. Sammut, “The Field Description for The Large

Hadron Collider”, PhD Thesis, University of Malta Faculty of Engineering

Department of Electronic Systems Engineering, July 2006.

[Sammut, 9/2006] Nicholas J. Sammut, Luca Buttara, “FIDEL The Field

Description for LHC”, LHC Project Seminar, 14 September 2006.

[Sanfilippo, 2002] S. Sanfilippo, L. Bottura, M. Buzio, E. Effinger / LHC-MTA,

“Magnetic Measurements for 15-m Long Dipoles -Extended Program of Tests”,

Internal notes LHC-MTA-IN-2002-183.

[Schmidt, 2004] R. Schmidt J. Wenninger. ”Machine protection issues and

strategies for the LHC”. Proceedings European Particle Accelerator Conference

EPAC 2004, August 2004. Lucerne, Switzerland.

[Schnarr, 2001] Eric C. Schnarr, Mark D. Hill, and James R. Larus. Facile: a

language and compiler for high-performance processor simulators. In PLDI ’01:

Proceedings of the ACM SIGPLAN 2001 conference on Programming language

design and implementation, pages 321–331, New York, NY, USA, 2001. ACM

Press. ISBN 1-58113-414-2.

[Seidewitz 2003] Seidewitz, E., What Models Mean, IEEE Computer Society,

2003

[Sievers, 1994] P. Sievers. ”Towards series measurements of LHC magnets”.

CERN AT/94/11 (MA), 1994. LHC Note 267.

[Simos, 1998] M. Simos and J. Anthony. Weaving the Model Web: A Multi-

Modeling Approach to Concepts and Features in Domain Engineering. In ICSR

’98: Proceedings of the 5th International Conference on Software Reuse, page 94,

Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8377-5.

[Sirer, 1999] Emin Gün Sirer and Brian N. Bershad. Using production grammars

in software testing. In PLAN ’99: Proceedings of the 2nd conference on Domain-

BIBLIOGRAFY

161

specific languages, pages 1–13, New York, NY, USA, 1999. ACM Press. ISBN 1-

58113-255-7.

[Smith, 2006] Eric J. Smith. Codesmith: Template based code generation, 2006.

URL http: //www.codesmithtools.com. [Online; accessed 19-December-2006].

[Stahl 2006] Stahl, Voelter, Model-Driven Software Development, Wiley, 2006

[Sugumaran, 2006] Vijayan Sugumaran, Sooyong Park, and Kyo C. Kang.

Software product line engineering: Introduction. Commun. ACM, 49(12):28–32,

2006. ISSN 0001-0782.

[Thibault, 1999] Scott Thibault, Renaud Marlet, and Charles Consel. Domain-

Specific Languages: From Design to Implementation Application to Video Device

Drivers Generation. Software Engineering, 25(3):363–377, 1999.

[Valerio, 1997] Andrea Valerio, Giancarlo Succi, and Massimo Fenaroli. Domain

analysis and framework-based software development. SIGAPP Appl. Comput.

Rev., 5(2):4–15, 1997. ISSN 1559-6915.

[Van Der Linden, 1998] Frank Van Der Linden, editor. Proceedings of the Second

International ESPRIT ARES Workshop on Development and Evolution of

Software Architectures for Product Families, London, UK, 1998. Springer-Verlag.

ISBN 3-540-64916-6.

[Van Der Meer, 1985] S. Van Der Meer. ” Stochastic cooling and the

accumulation of antiprotons ”. Almqvist and Wiksell, pages 103–122, 1985.

[Van Deursen,1997] Arie Van Deursen and Paul Klint. Little languages: little

maintenance? In 62, page 17. Centrum voorWiskunde en Informatica (CWI),

ISSN 1386-369X, 30 1997.

[Van Harmelen, 2002] Frank Van Harmelen and Deborah L. McGuinness.

Feature Synopsis for OWL Lite and OWL, July 2002. URL

http://www.w3.org/TR/2002/ WD-owl-features-20020729/. W3C Working Draft.

[Walckiers, 1997] L. Walckiers. ”Towards series measurements of the LHC

superconducting dipole magnets”. Proceedings of 1997 Particle Accelerator

Conference, pages 3377–3379, 1997.

BIBLIOGRAFY

162

[Walckiers, 2000] L. Walckiers L. Bottura M. Buzio P. Schnizer N. Smirnov.

”Sensitivity and accuracy of the systems for the magnetic measurements of the

LHC magnets at CERN”. Proceedings of European Particle Accelerator

Conference, pages 2181–2183, 2000.

[Weiss, 1999] David M. Weiss and Chi Tau Robert Lai. Software product-line

engineering: a family-based software development process. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-69438-7.

