

TRE CRYSTAL STRUCTURE OF RHODIZITE
by

Karlheing Jlirgen Taxer
ULpiomminaraloge, University of Frankfurt an Main (1965)

SUBMITTED IN PARTIAL FULFILIMENT OE THE REQULREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1966

Signature of Author Department of ceology and Geophysics May 20, 1966 Certified by .

Accepted by

THE CRYSTAL STRUCTURE OF RHODIZITE
Karlheinz J. Taxer

Submitted to the Departmenc of Geology and Geophysics on May 20, 1966, in partial fulfillment of the requirements for che degree of Master of Science

Abstract

The space group of rhodizite has been confirmed to be p43n with the cail conatant $a=7.319 \pm 0.001$ A. A new analysis and determination of the density of the Manjaka (Madagascar) materiai by Frondei and rto suggested to them the formula $\mathrm{CsB}_{11} \mathrm{Al}_{4} \mathrm{Be}_{4}(\mathrm{OH})_{4} \mathrm{O}_{25^{3}}$

Intensities of 504 of the 760 reflections of the asymaetric Friedel unit were measured using filtered MoKo radiation and a scintillation detector. After these were corrected for Lorentz, polerization and absorption factors, a threedimensional Patterson function was computed. The structure deduced irom this and chree-dinensional electron-density and electron-density difference maps was refined toR=12 $\frac{1}{2} \%$. This scructure has an ideal composition $\mathrm{CSB}_{12}{ }^{\mathrm{Be}} 4_{4} \mathrm{Al}_{4} \mathrm{O} 28$. The nonalkali paxt, $\mathrm{B}_{12} \mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{O}_{28}$, consiats of close-packed oxygen atoms held together by Be and B atoms in tetrahedral coordination and Al in octahedral coordination, all forming a connected network. The omission of 4 oxygens from the closepacked set provides a hole which houses the alkali. The sum of the valences of the atoms of the network suggests that it is formally neutral; if so, the alkali would appear to be un-ionized. Alternatively, the alkail may contribute one electron to possible metallic bond between the Al atons. suck a metallic bond is suggested by the short Al-Al distance, which is 2.95 A.

Thesis Supervisor: Martin J. Buerger
Title: Professor of Mineralogy and Crystallography

Table of Contents

page
Abstract i
Table of Contents $1 i$
List of Tables iii
List of Figures iv
Acknowledgements v
Chapcer I Tntroduction 1
Chapter II Literature and Previous Work on Rhodizite 3
Chapter III Unit Cell and Spaca Guous 10
Chapter IV Intensity Measurements of Rhodizite 15
a. Selection of the material for intensity measurements
b. Measurements
c. Computation of the intensities and the data reduction
Chaptex V The Patterson Function 19
Chapter VI The First Trial Structure 28
a. General procedureb. The structure factor calculationc. The early stages of refinementd. The deduction of the models I
Chapter VII The Second Trial Structure 42
Chapter VIII The Final Stage of Refinement 59
Chapter IX The Final Structure 76
Bibliography 86

List of Tables

page
Table 1 Chemical analyses of rhodizite 7
Table 2 Chemical analysis of the Manjaka rhodizite and its interpretation in terms of content of cells 8
Table 3 Coordinates of the points in the sets of equivalent position 13
Table 4 Calculation of the scale factor and of the peak heights based on Frondel's idealized formula $\mathrm{CsBlil}^{(\mathrm{OH})_{4} \mathrm{Al}_{4} \mathrm{Be}_{4} \mathrm{O}_{25} \text {, assuming }{ }^{\text {a }} \text {, }}$ atoms not at all ionized 21
Table 5 Calculation of the scale factor and of the peak heights based on Frondel's idealized formula $\mathrm{CsB}_{11}{ }^{(\mathrm{OH})} 4^{\mathrm{Al}_{4}} \mathrm{Be}_{4} \mathrm{O}_{25}$: assuming atoms half Lonized 23
Table 6 Possible distribution of the atoms in rhod- izite on equivalent positions of space group ㄹ̈ㅍm for formula $\mathrm{CsB}_{11} \mathrm{Be}_{4} \mathrm{Al}_{4}(\mathrm{OH})_{4} \mathrm{O}_{25}$ 25
Table 7 Series of models I, listing the idealized space parameters 35
Table 8 Series of models I, listing the actual parameters 36
Table 9 Series of models II (PLi, $i=1,2, \ldots 9$), listing the idealized parameters 53
Table 10 Series of models II (PLi, $i=1,2, \ldots 9$), listing the actual parameters 55
Table 11 The two non-equivalent groups of reflections due to anomalous dispersion 64
Table 12 Coordinates and temperature factors of the rhodizite structure 67
Table 13 Structure factors 68
Table 14 Interatomic distances 82
Table 15 Bond angles 83

List of Figures

page
Figure 1 Projection of the maxima of the Patterson function onto the xy0 plane 26
Figure 2 The Al, O_{26} group 43
Figur 3 Plot of pert of the reciprocml Lattice showing $F_{\text {obs }}$ as weight of a reciprocal lattice gis 45
Figure 4 Atom location in the lower half of the ideal structure 79
Figure 5 Network in the upper half of the cell reprasentec as coordination polyhedra 80

Acknowledgments

The suthor is especially indebted to Professor M.J. Buerger, who suggested the thesis topic and supervised the entire structure determination. The specimens were kindly provided by Professor Clifford Frondel of Harvard University. The author is also indebted to Dr. C.T. Prewitt for preparing several spheres in his diamondimpregnated grinder. The suggestions offered by the graduate students in crystallography, including Wayne Dollase and Felix Trojer, are gratefully acknowledged. Their help in the use of the facilities of the M.I.T. Computation Center was especially appreciated.

This work was supported by a grant from the National Science Foundation.

CHAPTER I

Introduction

Rhodizite contains both very large and very small ions, and its crystal chemistry is therefore of special interest. Its composition, moreover, has been problematical ever since variety of it from the Ural Mountains was first described by Rose (27) In 1834. Strumz (30) tried to solve the structure in 1943. In 1938 he determined the unit cell and space group (29) and computed the cell content from an analysis done by Pisani (24) in 1911. Very recently Frondel et al. (11) analysed rhoiizite from a new locality, namely Manjaka, Madagascar. He found a composition quite different from that given by Strumz, and computed a new cell content based on a new determination of the density. The number of boron atoms per cell, eleven, seemed unusual, since this would require at least three kinds of boron atoms on very special positions.

Also, the presence of hydroxyls and the total of 29 oxygen
atoms seemed improbable. A determination of the crystal scructure, therefore, appeared to be quite a new problem; it seened certain that Strunz's analysis was not right and could be disregarded. It was also obvious that, because of the unusual number of atom requixed by Frondel's analysis, some corrections in the published composition were necessary.

Since rhodizite contains heavy alkali aton, it was treated as heavy atom problem. It was also expected that the image of the atructure from the heavy atom would stand out mong all the peaks in the patterson map, since the other atoms in rhodizite are weak acatterers.

CHAPTER II

Previous Work on Rhodizite

Rhodizite was first found in the Ural Mountains and was described by Rose in 1834. It has since been found aparingly in pegmatite at five other localities in Madagascar (Lacroix, 16 and Behier; 1). The chemical analysis of the mineral by older methods presented difficulties, especially in view of the small size of the samples hitherto available, and its composition has remained problemm atical. The first analysis of rhodizite from the Ural Mountains was made by Damour (9) In 1882. Dana's System of Minerglogy (23) reports that the beryllium content was incorrectly determined as $\mathrm{Al}_{2} \mathrm{O}_{3}$; the analysis is also otherwise unreliable, and is therefore not listed in Table 1.

All the other analyses have been made on samples from Madagascar. In 1910 Pisani (24) anslysed rhodizite from Antandrokomby, Madagascar; this analysis was used by Strunz (19) in 1938 in the first x-ray work on rhodizite,
in which he determined the unit cell and computed the cell content. Pisani stated that there was an admixture of spodumene in his sample. The density of the Antandrokomby material was determined as $3.38 \mathrm{~g} / \mathrm{cm}^{3}$. Strunz presented the formula NaKCi $i_{4} \mathrm{Al}_{4} \mathrm{Be}_{3} \mathrm{~B}_{10} \mathrm{O}_{27}$ based on these data. He determined the space group as $p 43 m$, and the measurement of the cell dimension gave the value of $23.3 .318 \pm 0.00$ i. The 1951 edition of Dana's System of Mineralogy (23) says that rhodizite is a complex borate of beryllium, aluminum and alkeli and quotes Strunz's formula. Strunz himself, in the third edition of Mineralogische Tabellen (31), listed rhodizite a member of the rhodizite-boracite group, belonging to the class of borates without water. The third analysis was made by Duparo, Wunder and Sabot (10) in 1911; they stated that rhodizite contained an admixture of albite.

Numerous well-crystallized specimens of rhodizite were collected by Frondel in 1963 in Manjaka, Madagascar. In this locality the mineral rhodizite is associated with

5.

rubellite, pink spodunene, albite, microcline and quartz as the chief mincrale nd with pinis beryl, manganapatite, behierite and lithium mica as accessory minerals. Frondel and Ito (11) examined the sample and performed new chemical onalysis, the results of which are given in sidele 2. They describe thei. material as atrongly piezoelectric and pyroelectric, density $3.44 \pm 0.0 \mathrm{~g} / \mathrm{cm}^{3}$, isometric, space group P43M with g $\quad 7.31$ A. Aided by knowledge of the space group, Frondel and Ito gave different interpretmition of the composition than did Strunz, as indicated by the following comparison of the content of one cell:

Strunz: ,

$$
\mathrm{NaKLi}_{4} \mathrm{AL}_{4} \mathrm{Be}_{3} \mathrm{~B}_{10} \mathrm{O}_{27}
$$

Frondel and Ito:

$$
\left(\mathrm{Cs} \cdot 44^{\mathrm{K}} \cdot 31^{\mathrm{Rb}} \cdot 16^{\mathrm{Na}} \cdot 03\right)^{\mathrm{AL}_{4} \mathrm{Be}_{4} \mathrm{~B}} 11^{\mathrm{O}} 5^{(\mathrm{OH})_{4}}
$$

Frondel and Ito (alternative): $\quad\left(\mathrm{Cs} .44^{\mathrm{K}} \cdot 31^{\mathrm{Rb}} \cdot 16^{\mathrm{Na}} .03\right)_{\mathrm{Al}_{4} \mathrm{Be}_{4} \mathrm{~B}_{12} \mathrm{O}_{27}(\mathrm{OH})_{3}}$

The alternative formula was discounted by Frondel and Ito on the basis of density. The measured density was $3.44 \mathrm{~g} / \mathrm{cm}^{3}$,
which compares well with 3.47 , the density calculated for the preferred formula, but poorly with that calculated for the alternative formula, which is 3.59 .

The structure of rhodizite was investigated by Strunz (30) in 1943, who based his study on the cell content he had computed in 1938. His results showed the following distribution of atoms in the cell:

$0(1)$	in	$12 i$	$x=1 / 4$	$z=0$
$0(2)$	in	$12 i$	$x=1 / 4$	$2=1 / 2$
B	in	$12 i$	$x=1 / 8$	$z=3 / 8$

(3 Be replace 2 B ?)

Li	in	$4 e$	$x=1 / 4$
Al	in	$4 e$	$x=3 / 4$
(Na,K) in la and 16	000 and $\frac{1}{2} \frac{1}{2} \frac{1}{2}$		

The ggreement between the calculated and observed structure factors was said to be good.

Strunz's results could not be used as a start in finding the structure of rhodizite because his information on

TABLE 1
Chemical analyses of rhodizite (23)

Antandrokomby material (Madagascar)	Sahatany Valley material (Madagascar)	Manjaka material (Madagascar)
Analyst: Pisani (1910)	Analysts: Duparo, Wunder and Sabot (1911)	Analysts: Ito and

$\mathrm{Li}_{2} \mathrm{O}$	7.30	0.68	-
$\mathrm{Na}_{2} \mathrm{O}$	3.30	1.78	0.12
$\mathrm{R}_{2} \mathrm{O}$		1.41	1.79
$\mathrm{Rb}_{2} \mathrm{O}$	5.90	2.29	1.83
$\mathrm{Cs}_{2} \mathrm{O}$		3.47	7.54
BeO^{2}	10.10	14.93	12.20
$\mathrm{Al}_{2} \mathrm{O}_{3}$	30.50	27.40	24.41
$\mathrm{Fe}_{2} \mathrm{O}_{3}$			0.12
$\mathrm{~B}_{2} \mathrm{O}_{3}$	40.60	43.33	46.82
SiO_{2}	1.36	3.18	0.45
Ign.	0.45	1.42	4.10
Rem_{8}	-	0.11	0.53
Total	99.51	100.00	99.92
		3.344	3.44

Remarks The sample had spodumene ad mixed.

Remainder is Mgo. The sample had albite admixed.

Remainder is Li, O_{4} $0.00 \mathrm{x}, \mathrm{SnO}_{2}, 0.1, \mathrm{H}_{2} \mathrm{O}$, 0.43 . Also $\mathrm{Ga}, \mathrm{Pb}, \mathrm{Cu}$ in range 0.0 x ; Mri 0.00 x ; traces of $\mathrm{Mg}, \mathrm{Ag}, \mathrm{Tl}, \mathrm{Yb}$ 。 Alkalis determined by high-temperature flame photometry

TABLE 2
Chemical analysis of the Manjaka rhodizite
and its interpretation in terms of content of cell (11)

	Weight percent		upon 29 atoins cell	38	upon s of mic
$\mathrm{Na}_{2} \mathrm{O}$	0.12	Na	$0.03)$	0.94	0.93
$\mathrm{K}_{2} \mathrm{O}$	1.79	K	0.31		
$\mathrm{Rb}_{2} \mathrm{O}$	1.83	Rb	0.16		
$\mathrm{Cs}_{2} \mathrm{O}$	7.54	Cs	0.44		
BeO	12.20	Be	4.03		3.9
$\mathrm{Al}_{2} \mathrm{O}_{3}$	24.41	A1	3.96		3.9
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.12	Fe	0.01		
$\mathrm{B}_{2} \mathrm{O}_{3}$	46.82	B	11.1		10.9
SiO_{2}	0.45				
Ign.	4.10	H	3.8		3.7
Rem.	0.53	0	29		28.5

Total: 99.92
9.
its composition was probably wrong. His results should not prejudice the interpretation of the Patterson map and electron-density maps and the recognition in them of the image of the structure.

CHAPTER III

Unit Cell and Space Group

The lattice constants, the cell constant and the space group determined by Frondel and Stranz were checked by taking precession photographs and conewaxis pictures with MoK radiation. The selection of the material for x"ray work is no: easy because of its great hardness, but it is possible to cause fractures by taking advantage of the incomplete claavage parallel to (111), Therafore one usually gets little plates instead of cubes as specfmens for mounting on the gonioneter head. A crysual plate (dismeter 0.2 mm and thickness 0.08 mm) was chosen for the work described here. Provious investigation with the polaxizing microscope proved the symmetry to be isometric. A rough detemination of the refractive index $(n=1.694 \pm 0,009)$ confirmed former results. The crystal was mounted so that its $[110]$ direction was parallel to the dial of the precession camera. The shortest translation period noted on the films (representing
the zeroth, fixst and second level of the reciprocal lattice) was parallel to the four-fold axis as judged by the intensity distribution of the reflections on the film. This translation was taken as a_{1}^{*}. The vectors a_{2}^{*} and a_{3}^{*} were perpendicular to a_{1}^{*} and to each other, had the same length as a_{I}^{*}, and were also parallel to other four-fold axes. Cone-axis photographs taken along the four-fold axes confirmed the cell and symmetry found from precession photographs.

As there was no aystematically extinct group of reflections, the cell was proven to be a primitive cell. The symmetry of the intensity distribution of the reflections on the films shows that the diffraction symbol of rhodizite is m 3 mP ---. This, together with the positive piezoelectric and pyroelectric response and the presence of tetrahedral faces on the crystal, establishes the space group as P 43 m . Table lists some characteristics of the equipoints of this space group.

The refinement of the lattice constant was based upon a back-reflection Weissenberg photograph taken with the original back-reflection camera developed by Buerger (4). The separations of the resolved $\alpha_{1}-\alpha_{2}$ doublets for few reflections were measured. The measurements were treated by a method developed by Main and Woolfson(18);in order to use this method, the program ALP for the IBM 7090/94 computer, written by Lippard (17), was employed. The values of $\sin \theta$ for the reflections were determined from these measurements. The determination depends only upon the wavelength of the x-radiation; CuK radiation was used. The reciprocal-lattice parameters, the indices of the reflection, and $\sin \theta$ are related in the following way:

$$
\begin{aligned}
h^{2} a *^{2} & +k^{2} b *^{2}+l^{2} c *^{2}+2 k l b * c * \cos \alpha *+2 l h c * a * \cos \beta * \\
& +2 h k a * b * \cos \gamma *=4 \sin ^{2} \theta / \lambda^{2} \equiv s^{2}
\end{aligned}
$$

Differentiation of this formula gives the deviations in the lattice parameters as function of changes in $s \equiv 2 \sin v / \lambda$; s was estimated using approximate lattice parameters

TABLE 3
Coordinates of the points in the sets of equivalent position（13）

Symbol of the set of equivalent position	24j	12 I	12h	6 g	$6 \pm$	4e	3d	3c	1b	1a
Symmetry	1	m	2	mm	mm	3 m	42 m	42m	43a	43 m
	xyz	200\％	x ${ }^{\frac{1}{2} 0}$	x $\frac{1}{2} \frac{1}{2}$	$\times 00$	xxx	$\frac{1}{2} 00$	02 $\frac{1}{2}$	굴살	000
	2xy	2xx	Ox $\frac{1}{2}$	敵 $\times \frac{3}{2}$	0x0	x ${ }^{\text {ax }}$	010	$\frac{1}{2} 0 \frac{1}{2}$		
	yzx		$\frac{10 x}{8}$	，$\frac{1}{2}$ 2 x	00x	xix	00를	2 $1 \frac{1}{2} 0$		
	xzy	$\overline{\mathbf{x} \times \mathbf{z}}$	x $\frac{1}{2} 0$	$\times \frac{1}{2} \frac{1}{2}$	x00	xxx				
	yxz	Exix	$0 \times \frac{1}{2}$	$\frac{1}{2} \times \frac{3}{2}$	0×0					
	zyx		$\frac{1}{2} 0 \mathrm{x}$	$\frac{1}{2} \frac{1}{2}$ ¢	00x					
	xȳz	x82	$\mathrm{x} 0 \frac{1}{2}$							
	289	2x＇	$\frac{1}{2} \times 0$							
	yż	x $\bar{z} \bar{\chi}$	$0 \frac{1}{2} x$							
	xży	嘌z	¢0 ${ }^{\frac{1}{2}}$							
	yxiz	żxx	$\frac{1}{2} \overline{\mathrm{x}} 0$							
	z \bar{y} x̄	¢žx	$0{ }^{2} \mathrm{x}$							
	xyz									
	zxy									
	yzx									
	xzy									
	y®x									
	$\bar{z} \mathbf{y} \bar{x}$									
	8 8 2									
	zxy									
	¢̄x									
	斌y									
	yixz									
	シัyx									

obtained from the precession photographs. Thus, for each reflection, an equation was set up, and the whole set solved simultaneously by the least-squares technique. The results were

$$
\begin{aligned}
& a=7.319 \pm 0.001 \AA \\
& a *=1 / a=0.13662 \pm 0.00003 \AA^{-1} \\
& V=392.1 \pm 0.5 \AA^{3}
\end{aligned}
$$

This determination of the space group and cell thus confirmed the data of Strunz as well as those of Frondel and Ito.

CHAPTER IV

Intensity Measurements for Rhodizite

a. Selection of the material for intensity measure. ments

As rhodizite does not show good polyhedra or wellformed faces, it seemed desirable to prepare a sphere. This was done by C.T. Prewitt of the Du Pont Research Laboratory using diamond-impregnated sphere grinder. The radius of the sphere used for the intensity measurements was $0.097 \pm 0.002 \mathrm{~mm}$.
b. Measurements

The intensities were measured using a single-crystal diffractometer employing equi-inclination geometry. MoK α radiation filtered through Zr and a scintillation detector were used. The crystal settings, P, and the settings of the scintillation counter, Γ, were computed for each reflection by the program DIFSEX 4 written by Prewitt (26). The rotation axis was parallel to the $[110]$ axis, so that tetragonal lattice geometry had to be applied. The asym-
metric Friedel unit in the Mogx sphere contains about 760 reciprocal lattice points; of these, 504 reflections had measurable intensities.

The sphere was initially adjusted using precession photographs (5). The final, highly refined adjustment was accomplished by the Fankuchen method (12). The voltage on the x-ray tube was set at 34.5 kV and the current at 15 mA . The detector voltage and the pulse height analyzer were adjusted to appropriate settings described in the Norelco Radiation Detector Instruction Manual published by Philips Electronic Instruments.

Filtered MoK radiation was used for three reasons:

1. Due to the small inear absorption coefficient of molybdenum radiation, errors in the absorption correction due to deviations of the radius of the sphere and errors in the determination of the composition are minimized.
2. The number of independent reflections in the MoX α sphere was sufficiently large to allow accurate refinement of the structural parameters.
3. The anomalous dispersion correction for MoK α radiation is relatively small compared with that for cuk α radiation.
c. Computation of the intensities and the data reduction

The intensities were computed from the diffractometer measurements by means of the program FINTE 2 written by Onken (20,22). The Lorentz-polarization-correction factor, $1 / \underline{L} p_{\text {, }}$ and the relative error, σ_{r}, in the structure factor were also calculated with this program.

The spherical absorption correction ($\mu \mathrm{I}=0.2$) was calculated using another program, GAMP, written by Onken (21), and with the subroutines ABSRP1 and ABSRP2 written by prewitt. The intensities were corrected by multiplying them by the Lorentz-polarization-correction factor, and the structure factors were obtained by computing the square root of the corrected intensities.

The output was a deck of IBM computer cards containing the indices, the structure factors and their computed
18.
standard deviations. All reflections hk were transformed into one sector with $\mathrm{h}>\mathrm{k}>1$. This sector has $1 / 48$ the size of all reciprocal space.

CHAPTER V

The patcerson Function
The initial step in finding the structure was to prepare a three-dimensional Patterson function \underline{P} (xyz) from the $\mathrm{F}_{\mathrm{obs}}^{2}$ 'a. This was done with the IBM 7094 computer with the progran MIFR 2 written by Sly and Shommaker (31). This program required a data deck in which all reflections hkl in the positive quadrant would appear, since the program was prepared for all symmetry groups lower than or equal to the orthorhombic ones. This meant that reflection cards had to be produced which contained all symmetrically equivalent reflections in the Eive other equally-sized sections of the positive quadrant. Thus the deck contained six asymetric unit: and was called the six-fold deck. Since Prom is subgroup of Pm3̄, the Patterson function was computed for the symmetry group Prwm, thas obtaining the desired symmetry of pront. The interval for which the Patterson function was sampled was $1 / 30$ of the cell edge in every direction. The asymmetric unit was contoured.

Before the patterson synthesis could be interpreted and a structure proposed, some preliminary work was still necessary. This involved:

1. The calculation of the scale factor which brings the patterson map onto an absolute scale. $\underline{P}(000)$ is the maximum of a peak, and can be determined by the sum \underline{S} of the squared number of the electrons of all the atoms in the cell (i.e., $S=\sum M_{i} Z_{i}{ }^{2}$, where M_{i} is the number of atoms i and Z_{i} is the number of electrons of atom i). The scale factor is found by dividing the calculated $\underline{P}(000)$ in the patcerson map by the sum \underline{S}. The patterson map must be referred to the true zero level. To find this, the highest negative number in the computed patterson map was added to every value of the patterson function (see Tables $4 a$ and 5a).
2. The calculation of the expected peak heights. A vector between two atoms in crystal space is represented by one maximum in the Patterson map, the magnitude of which is equal to the product of the numbers of the electrons of the two atoms (6) (see Tables $4 b$ and 5b).

21.

TABLE 4a

Calculation of the scale factor and of the peak heights based on Frondel's idealized formula
$\mathrm{Cs}_{11}(\mathrm{OH})_{4} \mathrm{Al}_{4} \mathrm{Be}_{4} \mathrm{O}_{25}$, assuming atoms not ${ }^{\text {alall }}$ ionized

atom	M (number of atoms per unit cell)	$\begin{gathered} 2 \\ \text { (number of } \\ \text { electrons) } \end{gathered}$	z^{2}	$M Z^{2}$
Cs	1	36	1296	1296
A1	4	13	169	696
Be	4	4	16	64
B	11	5	25	275
0	25	8	64	1600
OH	4	9	SM	$\begin{array}{r} 324 \\ 4235 \end{array}$
	$\begin{aligned} & P(000)_{c o m p}=1005 \\ & P(\mathrm{~min})_{\text {comp }}=-74 \end{aligned}$			
	$\text { Scale factox }=\frac{1079}{4235}=0.255$			

TABLE 4b
Calculation of the expected peak height
(single peaks onzy)

vec from a	or to b	$2 a$	Z_{b}	absolute peak height $z_{a} \cdot z_{b}=z(a, b)$	$\begin{aligned} & \text { weight } \\ & k \circ 2(a, b) \end{aligned}$	expected weight in the computed patterson map $k \cdot Z(a, b)=P(\min)$
C8	Cs	36	36	1296	330.5	256.5
Cs	A1	36	13	468	119.3	45.3
Cs	B	36	5	180	45.9	-28.1
Cs	Be	36	4	144	36.7	-37.3
C8	0	36	8	288	73.4	-0.6
Cs	H	36	1	36	1.2	-72.8
A1	A1	13	13	169	43.1	-30.9
A1	B	13	5	65	16.6	-57.4
A1	Be	13	4	52	13.3	-63.7
A1	0	13	8	104	26.5	-47.5
A1	H	13	1	13	3.3	-70.7
B	B	5	5	25	6.4	-67.6
B	Be	5	4	20	5.1	-68.9
B	0	5	8	40	10.2	-63.8
B	H	5	1	5	1.3	-72.7
Be	Be	4	4	16	4.1	-69.9
Be	0	4	8	32	8.2	-65.8
Be	H	4	1	4	1.0	-73.0
0	0	8	8	64	16.3	-57.7
0	H	8	1	8	2.0	-72.0
H	H	9	9	1	0.255	-73.7
C8	Ofi	36	9	324	82.6	8.6
A1	OH	13	9	117	29.8	-44.2
Be	OH	5	9	45	11.5	-62.5
B	OH	4	9	36	9.2	-64.8
0	OH	8	9	72	18.4	-55.6
OH	OH	9	9	81	20.7	-53.3

$$
25
$$

TABLE 5a

Calculation of the scale factor and of the peak helghts based on Frondel ${ }^{\prime}$ idealized formula
$\mathrm{Cs}_{11} \mathrm{OH}_{4} \mathrm{Al}_{4} \mathrm{Be}_{4} \mathrm{O}_{25}{ }^{2}$ assuming atoms half ionized

atom	*	2	z^{2}	$M Z^{2}$
Cs	1	35.5	1260.25	1260.25
A1	4	11.5	132.25	529.00
B8	4	3	9.00	27.00
B	11	3.5	12.25	134.75
0	25	9.0	81.00	2025.00
OH	4	8.5	72.25	289.00
$\Sigma \mathrm{ZZ}^{2}=4265.00$				
$k=\frac{1079}{4265.00}=0.253$				

TABLE Sb
Calculation of the expected peak height
(single peaks only)

25.

TABLE 6
Possible distribution of the atoms in rhodizite on equivalent positions of space group 843 m for formula CsAl ${ }_{4} \mathrm{Be}_{4} \mathrm{~B}_{11} \mathrm{O}_{25}(\mathrm{OH})_{4}$

The atoms can be distributed on

to face page 26

Figure 1
Projection of the maxima of the patterson function onto the xy0 plane

Legend: The first number is the 2 coordinate in 30ths of the cell edge. The second number (underneath the first) is the height of the maximum.

$$
26
$$

3. Making a plot on which the maxima of the Pattersom function are projected onto the plane xyo (see Figure 1).
4. Finding all possible distributions of the stoms on the atonic positions of the space group (see table 6).

CHAPTER VT
The Fixst Trial Steucture

a. General procedure

The composition of the Manjaka rhodizite deduced by Frondel and Ito implies that there is one atom of alkali, of average atcmic number 36 and average atomic weight 90.5 , per cell. Because of the large size of this alkali, it is apparently not involved in substitution for the salier non-alkaji acoms, so it is natural to asign the one alkali atom to an equipoint of mulciplicity one. Iwo of these are available in space group g43m, naraely la at 000 and Ib at $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ The steps in solving the structure are unaffected by which is chosen; we chose la. In this case we are dealing with heavymatom problem with the heavy atom at the oxigin. The peaks of the pacterson function might then be expected to be dominated by an image of the structure as seen from the origin.

The most reasonable procedure seemed to be first to find peaks in the zatterson function which correaponded to
the oxygen atoms which immediately coordinated with the alkali at the origin, to calculate a trial electron density whose phases were based upon the alkali and these surrounding oxygen atoms, to seek to interpret new peaks appearing in the electron-density function, and then to continue this iterative process until all atoms were located (3).

The trial density function was computed from the observed structure factors, to which were assigned signs which were taken from the calculated structure factors based upon a proposed structure called the model.
b. Calculation of the structure factor

The structure factors were computed using the program SFLSQ 3 written, partly in FORTRAN and partly in FAP, by C.T. Prewitt (25) for the IBM $7090 / 94$ computer. The scattering curves for the atoms were taken from International Tables for X-Ray Crystallography (13). At first all atoms were considered to be half-ionized, since no direct infore mation was available about the status of the electronic shell. The atomic parameters came from a proposed model;
the isotropic temperature factors for each atom were assumed to be $0.5 \AA^{2}$. The scale factor, which puts $F_{\text {cal }}$ on the same scale as $\mathrm{F}_{\text {obs }}$, was first assumed to be 1.
c. Early stages of refinement

The SFLSQ 3 programs made it possible to refine the positional space parameters, the temperature factors, the scale factor and the occupancy by the least-squares technique. Successive refinement computations were made partly at the same time as the preparation of successive Fourier maps (3). Changes in some subroutines (SPGRP, TEST) were necessary because of the crystal system to which rhodizite belongs. Subroutine WEIGHT was prepared so that each structure factor had a weight of 1 while the structure was being analyzed. This is the safest weighting scheme for the initial stage of a structure analysis, because nothing is known about the correct weighting scheme.

The contributions from the several atoms to the calculated structure factors for weak reflections are nearly in balance, and a small change in coordinates of even one
atom could cause a change of sign in the calculated structure factors. Furthermore, the inclusion of ank observed structure factor of incorrect sign can give rise to twice the electron-density error that would have occurred had the doubtful term been entirely omitted. Accordingly, the deck containing the structure factors was reduced to approximately 400 reflections in the early stages of refinement by excluding the weak reflections.

An electron-density and electron-density difference function were also computed with the Fourier program MIFR 2 written by W.G. Sly and D.P. Shoemaker (32). After the structure factors were caiculated with the program SFLSQ 3 the output data were written on tape which became the input to the program ADIAG (33). In the program ADIAG a tape deck was then prepared which contained all symnetricaily equivalent reflections in the positive quadrant. This tape was used to give the required input data to the program MIFR 2 by which the electron-density, the electron-density difference function, was computed. The
interval for which the electron-density function was sampled was $1 / 30$ of the cell edge in every direction. The asymmetric unit was contoured.
d. Derivation of model I

The first model, labeled model zero, contained only the alkali atom at the origin which dominated the phases. The trial electron density was therefore computed with positive signs for all structure factors. The imaginary part was zero. This map showed the heavy atom at 000 , as well as other peaks which helped to locate the oxygen atoms surrounding the alkali.

Patterson peaks of fairly great weight at a reasonable distance from the origin were sought which could be interpreted as oxygen locations. These were found at $x x z, x=1 / 4$ and $\underline{z}=0$. Accordingly, the next model, model A, had, in addition to one alkali atom at the origin, an oxygen, $O(1)$, in $12 \underline{i}$ at $\frac{1}{4} \frac{1}{4} 0$. The electron-density function for model A was still centrosymmetrical; i.e., the imaginary part of the structure factor was zero because the model contained only atoms which were centrosymmetrical.

The Patterson map agreed with the Fourier density map. It suggested that, in addition to Cs (which hereinafter stands for the averaged alkali, $C s, R b, K$ and $N a$) and $O(1)$, there were four aluminum atoms at position te. It also suggested that, since O (1) and $O(2)$ formed an octahedron with Al in the center, 12 atoms $O(2)$ were in equipoint 121 with $x=1 / 4$ and $\underline{2}=1 / 2$. The distance from the corner to the center $\left(\mathcal{C}_{A 1-0(2)}=1.83 \mathrm{~A}\right)$ agreed fairly well with the distances found for an Al-O bond. The exact values were obtained by finding the position of the maximum from the two preceding electron-density maps.

From the electron-density function of models A, B and (see Table 7) C, it seemed very likely that an oxygen atom O (3) should be placed in $1 b$ at $\frac{1}{2} \frac{1}{2} \frac{1}{2}$. A heavy peak in 4 e with $x=$ $3 / 4$ suggested that 4 oxygens 0 (4) were at the position complementary to that of $A 1$. The electron-density map based on this model made it seem very likely that four beryllium atoms were in position $4 \underline{e}$ with $x=5 / 8$. All the previous electron-density maps and the Patterson function
supported this hypothesis. Beryllium would then form tetrahedron with a Be wo distance of $\mathrm{d}_{\mathrm{Be}=0} \approx 2.65 \hat{A}_{0}$ This hes been found in bis-acetylacetonemery 11 um where $\mathbb{d}_{B e m}=$
 1.70 A (Ito and West, 14) and in euclase, where $\mathrm{A}_{\mathrm{Be} \cdot \mathrm{O}}=1.37$ * 1.91 A (8iscoe Warren. 2).

The model now represented che formula presented by Fronde fairly well. It was especially encouraging in that It contained 29 oxygen atoms, a feature which had at first made the analytical result appear dubious.

Now only the boron atoms needed to be accounted for. The electron-density and electron-density difference maps suggested that they were located at 6 , x00 with x. $/ 4$ and $6 \mathrm{~g}, \times \frac{1}{2} \frac{1}{2}$ with $\mathrm{x}=1 / 4$. Mf this were the case, however, they would be twelve boron atoms instead of eleven. This would mean either that Frondel's formula contains too few boron or that it was necessary to use, in the last stage of refinement, an occupancy differing slightly from unity. The Fourier maps showed all expected

MABLE 7

Series of models i, listing the idealized space parameters

TABLE 8
Series of models I, listing the actual parameters

atom	Cs	O(1)	O(2)	O(3)	A1.	O(4)	Be	B(1)	B(2)	
equipoint	1a	121	12i	1 b	4 e	4 e	4 e	$6 \underline{1}$	6 g	R (\%)
parameters x	0	0.25								41.0
of model $A \quad y$	0	x								
${ }^{2}$	0	0.0								
$B\left(A^{2}\right)$	0.5	0.5								
parameters x	0	0.264			0.25					38.5
of model B y	0	x			x					
	0	-0.009			x					
$B\left(\AA^{2}\right)$	0.5	0.5			0.5					
parameters x	0	0.270	0.261	$\frac{1}{2}$	0.274		0.632			36.0
of model C y	0	x	\times	$\frac{1}{2}$	x		x			
	0	0.009	0.509	$\frac{3}{2}$	x		x			
$B\left(A^{2}\right)$	0.5	0.5	0.5	0.5	0.5		0.5			
parameters x	0	0.261	0.253	$\frac{2}{2}$	0.284	0.775	0.626			32.0
of model $D \quad y$	0	x	x	$\frac{1}{2}$	8	x	x			
	0	0.002	0.471	$\frac{\frac{1}{2}}{}$	x	x	X			
$B\left(\AA^{2}\right)$	0.44	2.1	3.7	0.01	4.12	1.80	0.01			
parameters \quad \%	0	0.264	0.252	$\frac{1}{2}$	0.272	0.774	0.626	0.256	0.099	30.5
of model $E \quad y$	0	\times	\times	$\frac{1}{2}$	x	8	x	0	$\frac{1}{2}$	
(first $8^{\text {2 }}$	${ }_{0}^{0}$	-0.001	0.526	$0^{\frac{1}{2}}$	${ }^{\text {x }}$	${ }^{x}$		0		
cycle) $B\left(A^{2}\right)$	0.30	2.0	2.1	0.2	2.1	0.6	0.01	2.8	5.0	

TABLE 8 (continued)

atom	Cs	O(1)	O(2)	O(3)	A1	O(4)	Be	B(1)	B(2)	
equipoint	1 1a	121	12i	1b	4 e	4 e	4 e	$6 \pm$	6 g	R(\%)
parameters x	0	0.261	0.258	$\frac{1}{4}$	0.278	0.776	0.626	0.259	0.071	30.0
of model E y	0	x	x	$\frac{1}{5}$	x	x	x	x	*	
(second	0	0.003	0.472	$\frac{1}{2}$	x	x	x	${ }^{\text {x }}$	x	
cycle) $\mathrm{B}\left(\mathrm{A}^{2}\right)$	0.49	1.7	5.9	0.01	5.7	1.3	0.01	2.5	28	

peaks with volumes which were proportional to the number of electrons of the atoms, and it therefore appeared that the model did indeed represent the structure of rhodizite. When attempt was made to refine this model by the leastsquares technique, however, it failed.

After computation of the scale factor k in order to adjust the average magnitude of ${\underset{F}{c a l}}^{\text {to }} \mathrm{F}_{\mathrm{obs}}$ by the formula

$$
\underline{k}=\frac{\sum F_{o b s}}{F_{c a l}}
$$

the disagreement between $F_{o b s}$ and $F_{c a l}$ was measured by means of the residual,

$$
R=\frac{\sum\left\|F_{\mathrm{cal}}|-| F_{\mathrm{obs}}\right\|}{\sum ⿷_{\mathrm{obs}} \mid}
$$

The value of this for model A was 0.41 . R for model D was only 0.30 . Table 7 shows the models and Table 8 contains the results after their refinement. The improvement in R from $\underline{R}=41.0 \%$ to $\underline{R}=32 \%$ and later to 30% is not enough
to suggest that the structure is correct. Furthermore, the temperature factor for the boron atoms $B(2)$ increased to $28 \AA^{2}$, showing that $B(2)$ had been placed in the wrong position. The temperature factors for $A 1$ and $O(2)$ were also too high (see mable 8); their magnitudes did not compare well with those usually found in inorganic structures.

These facts required the conclusion that this model was wrong. Since it had looked reasonable from the electrondensity maps, however, perhaps these maps could be interpreted in other ways. The oxygen atoms $O(1)$ and $O(2)$ appeared to occupy the right sites. Therefore several attempts were made at exchanging the positions of $O(4), O(3)$ and various cations. The following models (here idealized) were considered:

Model 1
Cs at la
O(1) at 121 with $x=1 / 4, z=0$
O (2) at $12 \underline{i}$ with $x=1 / 4, z=1 / 2$
$0(3)$ at 1 b
Al at $4 e$ with $x=3 / 4$
$D(4)$ at Le with $x=5 / 8$
their former position
$\mathrm{R}=31.1 \%$
the former O (4) position
the former Be position

Model 2

Cs at la
O(1) at 121 with $x=1 / 4, z=0$
0 (2) at 121 with $x=1 / 4, z=1 / 2$
$B(3)$ at $1 \underline{b}$
Be at 4e with $x=3 / 8$

Al at $4 \underline{e}$ with $x=3 / 4$
$O(4)$ at 4e with $x=5 / 8$
$B(1)$ at $4 e$ with $x=1 / 4$
$B(2)$ at $6 \underline{\text { E }}$ with $x=1 / 4$
$R=26.2 \%$
their former positions the former $0(3)$ position complementary to the former Be position complementary to the former Al position the former Be position the former Al position the former position

This model contains 28 oxygen atoms and 11 boron atoms; the former position of the $B(2)$ ato mas discarded as being Incorrect.

Model 3
Cs at la
$O(1)$ at $12 i$ with $x=1 / 4, z=0 \quad$ their former position 0 (2) at 121 with $x=1 / 4, z=1 / 2$
$O(3)$ at 1 b
$0(4)$ at $4 e$ with $x=5 / 8$
the formex Be position
A1 at 4 e with $x=3 / 4$
Be at 4e with $x=1 / 4$
the former $O(4)$ position complementary to the former $0(4)$ position
$B(1)$ at 4e with $x=1 / 4$
$B(2)$ at $6 \underline{I}$ with $x=1 / 4$ $R=25.5 \%$

A11 these sesults show that, while the proposed models may have some properties of the actual structure, they do not represent the correct structure.

CHAPTER VII

The Second Trial Structure

A new approach to discovering the right structure was made by taking sued account the following points:

1. The relation with phamacosicicrite
2. Interpretation of an apparent abstructurt
3. A clue to the true structure should be indicated in the results of the computations for the first trial structure.
phamacosiderite has the same space group as rhodizite. The cell parameter, $\underset{a}{ }=7.91 \AA_{i}$ is very close co that of shodizite. It has four iron atoms in octahedral coordination (34); this coordination was also found for the aluminum atoms in model 1 for rhodizite, although the arrangement of the four octahedra was different. In pharmacosiderite the four octahedra of oxygen atoms around the four iron atoms form a group in the center of the cell; four oxygens in $4 e$ with x $5 / 8$ occupy the tetrahedral position complementary to Fe. The other twelve oxygen atoms are located in equipoint 121
to face page 43

Figure 2
The $\mathrm{Al}_{4} \mathrm{O}_{16}$ group
Legend: small blacik circles: A1 at $z=3 / 8$ small white circles: Al at $2=5 / 8$ medium white circles: 0 at $z=3 / 8$ medium striped circles: 0 at $z=5 / 8$
large white circles: 0 at $2=1 / 8 \%$ large black circles: 0 at $z=7 / 8^{*}$
*appearing as ringa
43.

with $x \times z$, $x=3 / 8$ and $z=1 / 8$. Each octahedron shares an edge with the three other octahedra, thus forming a tight cluster axrangemont-in the center of the cell.

It seemed very likely that similar group of octahedra, but in this case around aluminum atoms, might replace the other arrangement of octahedra around the four aluminum atoms in rhodizite. In the first trial structure of roodizite each octahedron around an Al atom shared only a vertex with each of three other octahedra.

By Looking at precession photograph of rhodizite in which the four-fold symmetry axis is normal to the picture, one may observe an arrangement of intensities which may be assumed to be substructure in rhodizite. From the weights of the recipxocal-lattice points (Figure 3) one can derive a law relating the subcell to the true cell in the reciprocal lattice. This is:
$I=4 n \quad$ Reflections with $h=4 n, k=4 n$ only contribute to the reciprocal lattice which is related to the substructure

Figure 3

Plot of part of the reciprocal lattice showing $F_{\text {obs }}$ as weight of reciprocel lattice point
(a) page 45: 0th Level
(b) page 46: 1at leve1
(c) page 47: 2nd level
(d) page 48: 3rd 1eve1

- 51 - 52 . 37 • 30 • . 30 . 25 . 21 . 16 . 14 •

$$
\text { . } 108 \text { • } 6.30 \text { • } 75 \text {. } 21 \text {. } 17 \text {. } 34 \text {. } 36
$$

$$
\bullet 137 \bullet 80 \bullet \quad \bullet 21.184 . \quad \text {. } 72 \quad .49 \quad 23.15 \quad .22
$$

$$
\text { - } 77.42 .30 \text { • } 17 \text { • } 8 \text {. } 22 \text { • . } 28 \text {. . } 13
$$

$$
\text { - } 54.16 \cdot 25 \cdot 34 \cdot 12 \cdot 22 . \quad \text { • } 15.16 .15
$$

$$
\text { - } 32 \text { • } 38 \text {. } 21 \text { • } 36 \text { • } 49 \text { • • } 54 \text { • • • } 17
$$

$$
\text { . } 118 \text {. } 14 \text {. } 16 \text { • } 46 \text {. } 23 \text {. } 28.15 \text {. . } 65 \text {. } 10 \text {. }
$$

$$
\text { - } 40.11 .17 \text { • } 14 \text { • } 18.15 .16 \text {. }{ }^{10} .^{21} \text { • }
$$

$$
\bullet 34 \bullet 17 \bullet \quad \bullet \quad \bullet 22.13,15 \quad 17 . \quad \bullet \quad .16
$$

46

$$
\begin{aligned}
& 001 \longrightarrow a_{2}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 52 \text { • } 88 \text { • } 38 \text { • } 54 \text { • } 38 \text { • } 36 \text { • } 27 \text { • } 34 \text { • } 28 \text { • } 22 \text { • } 11 \\
& \text { • • . } 54 \text {. } 11 \text { • } 46 \text { • } 13 \text { • } 47 \text {. } 38 \text {. } 23 \text {. } 22 \text {. } 15 \\
& \text { • } 80 \text { • • } 38 \text { - } 46 \text { • } 9 \text { • } 2 \overline{0} \text { • } 29 \text { • } 8 \text { • } 33 \text { • } 19 \text { • } \\
& \text {. } 42 \text {. } 48 \text { • } 36 \text {. } 13 \text { • } 26 \text { • } 17 \text { • } 40 \text { • } 21 \text { • } 30 \text {. } 23 \text {. } 15 \\
& \text { • } 16 \text {. } 39 \text {. } 27 \text {. } 47 \text { • } 29 \text { • } 40 \text { • . } 13 \text { • } 12 \text {. } 12 \text {. } 15 \\
& \text { • } 38 \text { • • } 34 \text { • } 38 \text { • } 8 \text { • } 21 \text { • } 13 \text { • . } 20 \text {. } 10 \text {. } 20 \\
& \text { - } 14 \text { • } 35 \text { • } 28 \text { • } 23 \text { • } 33 \text { • } 30 \text { • } 12 \text { • } 20 \text { • • } 20 \text { • } 12 \\
& \text { • } 11 \text { • } 13 \text { • } 22 \text {. } 22 \text { • } 19 \text { • } 23 \text { • } 12 \text {. } 10 \text {. } 20 \text {. . } 15 \\
& \text { • } 17 \text { • } 31 \text { • } 11 \text { • } 15 \text { • • } 15 \text { • } 15 \text { • } 20 \text { • } 12 \text { • } 15 \text { • }
\end{aligned}
$$

$$
\begin{aligned}
& 002 \longrightarrow a_{2}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& .38-38 \quad .148 \quad .23 \quad . \quad .32 \quad .48 \quad .20 \quad .21 \quad . \quad .23 \\
& .30 \quad 54 \quad .23 \quad .54 \quad .32 \quad .47 \quad 20 \quad .26 \quad .16 \quad .22 \quad .12 \\
& .38 \quad .31 \quad . \quad 32 \quad .25 \quad .28 \quad .20 \quad .10 \quad .21 \quad .19 \quad .11 \\
& .30 \text { • . } 32 \quad 47 \quad .28 \quad .30 \quad .22 \quad .20 \quad .18 \quad .23 \quad \text { • } \\
& .25 \quad .27 \quad .48 \quad .20 \quad .20 \quad .22 \quad .32 \quad .17 \quad .20 \quad .12 \quad .20 \\
& .21 . \quad .20 \quad .26 \quad .10 \quad .20 \quad .17 \quad .11 \quad .12 \quad .10 \quad .8 \\
& .16 \quad .28 \quad .21 \quad .16 \quad 21 \quad .18 \quad .20 \quad .12 \quad .19 \quad .20 \quad . \\
& .17 \quad 22 \quad .22 \quad .19 \quad .23 \quad 12.10 \quad .20 \quad . \quad 8 \\
& .8 \quad .11 \quad .23 \quad .12 \quad .11 \quad . \quad .20 \quad 8 \quad .10 \quad .8 \quad .
\end{aligned}
$$

$$
\begin{aligned}
& 003 \longrightarrow a_{2}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \text { • } 30 \text { • • • } 54 \text { • } 32 \text { • } 47 \text { • } 20 \text { • } 26 \text { • } 16 \text { • } 18 \text { • } 12 \\
& \text { • } 75 \text { • } 11 \text {. } 54 \text {. } 66 \text {. } 29 \text {. } 35 \text {. } 30 \text {. } 12 \text {. } 30 \text {. } 21 \text { 。 } 22 \\
& \text { • } 21 \text { • } 46 \text { • } 32 \text { • } 29 \text { • } 58 \text { • } 23 \text { • } 11 \text { • } 46 \text { • } 6 \text { • } 13 \text { • } 18 \\
& \text { • } 17 \text { • } 13 \text { • } 47 \text { • } 35 \text { • } 23 \text { • } 31 \text { • } 21 \text { • } 9 \text { • } 26 \text { • } 8 \text { • } 26 \\
& \text { • } 34 \text { • } 47 \text { • } 20 \text { • } 30 \text { • } 11 \text { • } 21 \text { • } 21 \text { • } 22 \text { • } 15 \text { • } 23 \text { • } \\
& \text { • } 36 \text { • } 38 \text { • } 26 \text {. } 12 \text {. } 46 \text { • } 9 \text {. } 22 \text {. } 18 \text {. } 17 \text {. . } 10 \\
& \text { • } 46 \text { • } 23 \text {. } 16 \text { • } 30 \text { • } 6 \text { • } 26 \text {. } 15 \text {. } 17 \text {. } 21 \text {. } 15 \text {. } \\
& \text { • } 14 \text { • } 22 \text { • } 18 \text { • } 21 \text { • } 13 \text { • } 8 \text { • } 23 \text { • • } 15 \text { • } 15 \text { • } \\
& \text { - • } 15 \text { • } 12 \text { • } 22 \text { • } 18 \text { • } 26 \text { • • } 10 \text { • • • } 8
\end{aligned}
$$

That is, the lattice of the substructuxe is face-centered and has the period $\frac{1}{4}$ a; its reciprocal is bodyocentered and has the geometrical lattice period of 4a*. The substructure can be interpreted as latcice array of oxygen atoms in rhodizite in a cubicclose packing.

Actually, a crue substructure must have a reciprocal Lattice with points whose weight is very strong for the substructure reflections only, and very weak for all the others. As this requirement is not fulfilled, only a large part of the cubic close packing exists, the missing part being occus pied by other atoms in a different arrangement.

A key to the correct $t r u c t u r e$ was found in the incorrect one. In that structure the odd oxygen at $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ in
lib had been surrounded tetrahedrally by Be atoms in 4e at approximately $\frac{5}{8} \frac{5}{8} \frac{5}{8}$. All Fourier maps, however, showed an additional peak in the complementary tetrahedral position at about $\frac{3}{8} \frac{3}{8} \frac{3}{8}$. This required a set of eight atoms at the vertices of a cube surrounding the center of the cell; the edge of this cube is approximately $1 / 4 \mathrm{a} \approx 1.8 \AA$. Since this is an acceptable Al-O distance, the set of eight atoms could be interpreted as parts of four octahedra of oxygens surrounding the four Al atoms in equipoint 4 e at $\frac{3}{8} \frac{3}{8} \frac{3}{8}$. If this interpretation was correct, there should be 12 oxygen atoms in equipoint $12 \underline{i}$ at about $\frac{3}{8} \frac{3}{8} \frac{1}{8}$. This central cluster would comprise four octahedra about the four Al atoms, each sharing three edges with its neighboring octahedra and thus forming a tight cluster whose composition would be $\mathrm{Al}_{4} \mathrm{O}_{15^{\circ}}$ Since this provides the correct number of Al atoms for the Strunz as well as for the Frondel and Ito formulae, a new beginning was made by assuming this cluster at the center of the cell, with the alkali at the origin. The expected substructure of cubic closeopacked oxygen atoms would become
more complete if another oxygen atom at 12 i, $x=1 / 8$ and $z=5 / 8$ were added. The position of this atom is consistent with the distribution of the maxima of the Ratterson function and would have to be consistent also with the electron-density maps based upon models containing only Cs in la and the cluster at the center of the cell. Approximation of the sites occupied by the boron and berylliuas atoms was not attempted at this point, since this information should come out of the electron-density and clectrondensity difference maps when calculated with the phases determined by the models described above.

The calculation of a series of successive electrono density and electron-density difference maps was now begun. The first model, PL 1 , contained $C s$ in position 18 at 000 and Al in position $4 \mathrm{e}, \mathrm{x}=3 / 8$. This led to model Pl 2, which had in addition $12 O$ (2) in position 12 with $x=3 / 8$ and $z=1 / 8$; model PL 3 contained $O(1)$ in position $4 e$ with $x=5 / 8$ and $0(3)$ in position 121 with $y=1 / 8$ and $2=5 / 8$ in addition to the atoms in model pL 2. The discrepancy

52.

factor, \mathbb{E}, was computed for each structure factor calculation. A refinement of the scale factor was necessary for each new model. For model PL 3 the scale factor, the coordinates and the temperature factors were refined by the least-squares method. The R factor for PL 1 was initially 41% but dropped to 33% in PL 2. The agreement between ${\underset{F}{c a l}}$ and $\mathrm{F}_{\mathrm{Obs}}$ for model PL 3 increased after four refinement cycles and showed a discrepancy factor of only 19.1%.

Now an electron-density function was again computed; the peak at the former Al position in 4 e, $x=1 / 4$ almost vanished, and the electron density showed maximum in the complementary tetrahedral position $4 \mathrm{e}, \mathrm{x}=3 / 4$; it seemed very likely that the four beryllium atoms could fit in the centers of these four tetrahedral. After another refinement the R factor first increased to 20% and then decreased to 19.4%; it always remained above the former value of 19.1%. The electron-density map, and especially the electrondensity difference map, were again investigated and an additional peak of medium height was discovered in position $12 \underline{h}, x=1 / 4$. It seemed possible that this mint be the

TABLE 9
Series of models II (PLi, $1=1,2, \ldots 9$) listing the idealized coordinates

equipoint	1 a	12h	121	121	4 e	4 4	4 e	1 b	3d	罢 (\%)
symaetry	43 m	2	0	m	3 m	3m	3m	43 m	42 m	
$\begin{array}{cl} \text { idealized } & x \\ \text { coordinates } & y \end{array}$	0	1/4	3/8	1/8	3/8	5/8	3/4	1/2	1/2	
	0	1/2	x	x	x	*	x	1/2	0	
	0	0	1/8	3/8	x	\%	\times	$1 / 2$	0	
Atoms in PL 1	Cs	-	-	-	A1	-	-	-	-	41.2
Atoms in PL 2	Cs	-	O(2)	-	A1	O(1)	-	-	-	33.4
Atoms in PL 3 (R factor only)	C8	-	O(2)	O(3)	A1	O(1)	-	-	-	27.1
Atoms in PL 3 (first cycle)	Cs	-	O(2)	O(3)	A1	O(1)	-	\cdots	-	23.6
Atoms in PL 3 (second cycle)	Cs	-	O(2)	O(3)	A1	O(1)	-	-	-	21.5
Atons in PL 3 (third cycle)	Cs	-	O(2)	O(3)	A1	O(1)	-	-	-	19.6
Atoms in PL 3 (fourth cycle)	cs	-	O(2)	O(3)	A1	O(1)	-	-	-	19.1
Atoms in PL 4 (R factor only)	Cs	-	O(2)	O(3)	A1	O(1)	Be	-	-	20.0
Atoms in PL 4 (first cycle)	Cs	-	O(2)	O(3)	A1	$0(1)$	Be	-	-	19.4

TABLE 9 (continued)

TABLE 10
Series of models II (PLi, $i=1,2, \ldots 9$) listing the actual parameters

TABLE 10 (continued)

57.

location of the boron atoms, especially since their occurrence in tetrahedral coordination of oxygen atoms is common. The discrepancy factor, R, however, showed an increase to 19.9\%. The beryllium atom was therefore taken out of the last model and the discrepancy factor, R, was recalculated. It decreased to 15.5%, and to 14.6% after one cycle of refinement. It seemed unlikely that the discrepancy factor would decrease further. Hence the beryllium atoms were put in again, and after one cycle of refinement the value of $\mathrm{R}, 13.7 \%$ showed that the right structure had been found. Now an electron-density map was prepared. It still showed a peak at $\frac{1}{2} \frac{1}{2} \frac{1}{2}$. Geometrical and crystal chemical considerations preclude the placing of an atom in this very small hole and in the immediate environment of negatively and positively ionized atoms. This was proved by showing that the R factor increased to 15.7% when computed for a model containing an additional oxygen atom at 1 b . Then a model with three oxygen atoms at $\frac{1}{2} 00$ in $3 d$ was tried. R increased to 16.0% and thens decreased slightly to 15.1% after two refinement cycles.

It was thus established that the unit cell of thode izite contaln one alkald ato at the origin, twelve atom 0(2) in 121 at $x \approx 3 / 8,2 \approx 1 / 3$, four $0(1)$ in 4 with $x \approx 5 / 8$, twelve $0(3)$ in 121 at $x \approx 1 / 8, z \approx 5 / 8$, four A1 atons, four Be stoms and twelve B atoms. Tablea 9 and 10 show the series of models II (RLi, $i=1,2, \ldots .9$)。

CHAPTER VIII
The Final Stage of Refinement
The final stage of refinement (Cruickshank, 8) of the structure of rhodizite was now possible and, for several reasons, necessary.

1. The reflection deck had to be thoroughly checked for heavy systematic errors due to the overlapping of reflections by general-radiation streaks. These streaks belonged to reflections which were lying on the same central reciprocal-lattice line but nearer the origin. offflsa3(2s)
2. Adjustment of the subroutine WEIGHT to reflect the accuracy of the various data was very important in order to avoid drastic effects on the scale factor and vibration parameters. A good weighting scheme is one which gives refined parameters with the smallest standard deviations (Cruickshank, 7, 8).
3. The alkalies $C s, R b, K$ and $N a$ have absorption edges with frequencies \sim alkali lying within the range of the frequency, $\mathcal{L}_{\text {MOK }}$, of the MOK radiation ($\nu_{\text {MOK }} \approx$ $\nu_{\text {alkali }}$). This means that corrections for anomalous
dispersion are necessary. The average corrections of the alkali scatcexing factor are:

$$
f^{\prime}=-0.3 e \% \quad f^{\prime \prime}=1.9 e
$$

A section of the subroutine SPGRP of program SFLSQ 3 takes care of this correction.
4. The occupancy of the alkali atom had been assumed to be 1, although the result of the chemical analysis gave a value of 0.94 . Refinement of the occupancy was therefore desirable.

The final stage of refinement consisted of six cycles of least-squares refinement. The variations mentioned above for attaining better agreement between $\mathrm{E}_{\mathrm{obs}}$ and $\mathrm{E}_{\mathrm{cal}}$ were tried.

All reflections on the same reciprocal-lattice line directly beyond wery strong reflections were removed from the deck. These were: $500,550,560,900$ and 1000 . For the refinement the full deck of cards was used.

The subroutine WEIGHT was changed as suggested in (3) above. For $\mathrm{E}_{\mathrm{obs}}=0$, the standard deviation was computed as $\sigma=100 /$ F $_{\text {obs }}$. The weight for a reflection was calculated according to the formula

$$
w=1 / \sigma^{2} \quad=E_{\mathrm{obs}} / 10,000
$$

Some criteria for the right choice of a weighting scheme are:
A. The weighted

$$
R=\frac{\sum W\left(\left\|F_{o b s}|-| F_{c a l}\right\|\right)}{\sum W\left|F_{o b s}\right|}
$$

should be minimized. It decreased in the computations from $\mathbf{1 8 . 4 \%}$ to $\mathbf{6 . 6 \%}$ after the first refinement cycle and to 5.4% after the second.
B. The variance of the refined parameters should become very small. The refined parameters in the first and second refinement cycles were the scale factor, the space parameters and the isotropic temperature factors;
62.
the refined scale factor, $\mathrm{B}_{\mathrm{n}}=1.445$, had a standard deviation of 0.006 . In the second refinement cycle for model PL 7 the gcandard deviation was 0.02. The standard deviations of the apace parameter increased slightiy in the first cycle and somewhat in the second, but did not go below their values in the second cycle of PL 7.
C. An incorrect weighting achame also has very drastic effects on the temperature factors. The tamperature factors of the beryilimm atom increszed from $1.7 \AA^{2}$ tn $8.6 \AA^{2}$ in the first cycle, to $4^{4} \AA^{2}$ in the second cycie, and to $25 \dot{A}^{2}$ in the third cycle of the Einsl stage of refinement. This could have been incorrectly intarpreted to mean that Be does not belong at the location at which it had been put. It was found, however, that the weighting scheme was chosen properly but that for two very strong reflections, 400 and
 be abnormally high, although for both reflections Fcal and $E_{o b s}$ showed very good agreement. Thege reflections were therefore assigned a weight of zero, since the
weighting scheme did not hold for them. After the sixth refinement cycle the temperature factor for be had a very reasonable value (atomic B for B after the sixth cycle $=$ $1.8 \pm 0.5 \AA^{2}$) .

The presence of an anomalous scatterer separates the symmetrically equivalent Friedel reflections into two groups which are no longer equivalent. Table 11 shows the two groups of reflections for the space group $p^{4} 3 m$ derived by Pepinski and okaya (19). The difference, ΔI, of the intensities $\mathrm{CF}^{2}(\mathrm{hkl})$ and cF^{2} (hiv), where c is the reciprocal of the intensity correction factor, can be computed in the following way:

$$
\begin{aligned}
& \Delta I=I(h k 1)-I(h \hat{k} \hat{1})=\left(c F^{2}(h k 1)-c F^{2}(\overline{h \bar{k}} \overline{1})\right) \\
& F^{2}(h k 1)=F *(h k 1) \cdot F(h k 1), \text { where } \\
& F(h k 1)=\sum_{j} f_{j} e^{i \phi_{i}} \text {, or } \\
& F(h k 1)=\left(\Delta f^{\prime} c_{j}+i \Delta f^{\prime \prime} c_{s}\right)\left(\cos \phi_{c}+i \sin \phi c_{k}\right)+ \\
& \text { 国 } \cos \phi+i \text { in } \sin \phi, \text { where }
\end{aligned}
$$

$$
64 .
$$

TABLE 11

The two equivalent groups due to anomalous dispersion

equivalent reflections	equivalent reflections
of group 1	of group 2
(right-handed)	(left-handed)

hkl	hk
khl	khi
Khi	kh1
hik 1	hkI
khL	kh1
hki	hkl
kh1	khI
hkI	hicl
1hk	1hk
klh	kIh
hlk	hik
h1\%	hlk
Ihk	1hk
hik	hilk
2hx	Ihk.
hik	hik
Ink	Thik
1kh	15h
Ikh	1kh
EIh	klh
1kh	1kh
kIh	k1h
1kh	1 kh
klh	kİh

$$
65 .
$$

$$
|R| \cos \phi=\Sigma f j \cos \phi_{j} \text { and }|R| \sin \phi=\sum f j \sin \phi_{j}
$$

As $\phi_{\mathrm{cs}}=0$, it follows that

$$
\begin{aligned}
& F(h k I)=\Delta f^{\prime} c s+i \Delta f^{\prime \prime} \operatorname{cs}+|\mathbb{R}| \cos \phi+|\mathbb{R}| \sin \phi \\
& c^{2}(h k 1)=c \cdot\left(|\mathbb{R}| \cos \phi+\Delta f^{\prime} c s\right)^{2}+\left(\Delta f^{\prime} c s+|\mathbb{R}| \sin \phi\right)^{2}
\end{aligned}
$$

As $\cos \phi=\cos (-\phi)$ and $\sin \phi=-\sin -\phi$, we get

$$
c F^{2}(\bar{h} \hat{k} \overline{1})=c \cdot\left(R \cos \phi+\Delta f^{\prime} c s\right)^{2}+\left(\Delta f^{\prime} c s-|R| \sin \phi\right)^{2}
$$

Therefore, the difference, ΔI, is

$$
\Delta I=4 c|R| \Delta f^{\prime \prime} c s \sin \phi
$$

If the correction factors are not equal and $c_{1}=c_{2}=$ c does not hold, then

$$
I(h k l)-I(\bar{h} \bar{k} 1)=2\left(c_{1}-c_{2}\right)|R| \Delta f^{\prime \prime} \sin \phi
$$

The difference of the corresponding structure factors is:

$$
F(h k 1)-F(\bar{h} \bar{k} \overline{1})=\sqrt{F^{2}(h k 1)}-\sqrt{F^{2}(\bar{h} \bar{k} \overline{1})}
$$

$$
66
$$

$$
=\frac{\sqrt{\left(R \mid \cos \phi+\Delta f^{\prime} c s\right)^{2}+\left(\Delta f^{\prime \prime} c s+R \sin \phi\right)^{2}}-}{-\sqrt{\left(R \mid \cos \phi+\Delta f^{\prime} c s\right)^{2}+\left(\Delta f^{\prime \prime} c s-|R| \sin \phi\right)^{2}}}
$$

It was not known to which group of reflections the measured intensities should be assigned. It was, however, certain that all these reflections belonged to one group only and not to both. In the first and second refinement cycle they were assumed to be right-handed; as the R factor went up to 17%, it was concluded that they belonged to the other (left-handed) group. After four cycles of refinement the unweighted factor went dowa to 12.7%. This was the best agreement between the calculated and observed structure factors. The occupancy of the alkali, which was also refined, did not change significantly. In the fourth cycle the product of the multiplicity factor (1/24) and the occupancy was refined to 0.0407 . This means that the occupancy was refined to 0.97 . From the correlation matrix it is surprising that the temperature factor of cesium is not very highly dependent on the occupancy, c, of cesium $\left(\rho\left(c_{c s}\right.\right.$, atomic B

TABLE 12

> Coordinates and temperature factors of the rhodizite structure
> (Space group $\underline{p}^{4} 3 \underline{m}, \underline{a}=7.319 \AA$)

Atom	Equipoint	Coordinates of representative point	Ideal	```ters R=12.7% un- weighted, 7.1% weighted```	Temperature factors, \AA^{2}
Cs	1 a	000			1.3340 .06
B	12h	$\times \frac{1}{2} 0$	$x=\frac{1}{4}$	0.2448 ± 0.0013	0.88 ± 0.09
Be	4e	xxx	$x=\frac{3}{4}$	0.755 ± 0.003	1.7 ± 0.5
A1	4 e	xxx	$x=\frac{3}{8}$	$0.3575 \div 0.0005$	0.29 ± 0.08
$0(1)$	4 e	xxx	$x=\frac{5}{8}$	0.6195t0.0009	0.01 ± 0.09
O(2)	12 i	xxz	$\begin{aligned} & x=\frac{3}{8} \\ & z=\frac{1}{8} \end{aligned}$	0.3635 ± 0.0006 0.1017 ± 0.0006	$0.13+0.05$
$0(3)$	12 i	xxz	$x=\frac{1}{8}$	$0.1339+0.0008$	0.68 ± 0.07
(3)	121	x<z	$z=\frac{5}{8}$	0.6019 ± 0.0008	0.6810 .07

68.

TABLE 13

Structure Factors

69.

70.

h	\%	1	Fobs	$F_{c a l}$	h	k	1	$F_{\text {ob }}$	$\mathrm{F}_{\text {cal }}$
8	8	6	12.41	16.54	9	8	7	12.17	10.58
8	8	8	38.85	42.65	9	9	0	21.48	7.61
9	1	0	10.61	2.73	9	9	2	17.02	18.51
9	1	1	12.81	14.57	9	9	3	14.81	12.48
9	2	0	16.69	13.55	9	9	4	8.16	9.46
9	2	1	22.13	23.50	9	9	5	14.83	10.71
9	2	2	20.29	20.71	9	9	8	8.23	12.01
9	3	0	14.40	17.67	9	9	9	12.51	4.67
9	3	1	21.68	17.70	10	1	0	17.43	19.49
9	3	2	17.82	15.69	10	1	1	30.63	31.49
9	3	3	21.08	13.25	10	2	0	8.38	10.32
9	4	0	18.19	17.04	10	2	1	10.93	10.84
9	4	1	18.83	21.57	10	2	2	22.88	28.85
9	4	2	16.73	16.37	10	3	1	15.03	10.34
9	4	3	12.72	12.73	10	3	2	12.03	12.54
9	5	0	14.60	9.04	10	3	3	21.84	20.61
9	5	1	22.54	20.12	10	4	0	21.56	26.54
9	5	2	15.10	14.06	10	4	2	11.31	12. 26
9	5	3	7.94	6.65	10	4	3	18.45	18.80
9	5	4	14.82	12.44	10	5	0	13.10	11.60
9	5	5	11.67	12.08	10	5	1	14.63	8.61
9	6	0	16.29	16.36	10	5	3	26.39	27.04
9	6	1	12.01	7.60	10	5	4	15.46	8.86
9	6	2	13.37	11.83	10	5	5	29.54	22.21
9	6	3	22.66	24.18	10	6	0	14.78	6.75
9	6	4	9.96	8.87	10	6	1	14.55	11.72
9	6	5	17.07	18.25	10	6	2	20.37	20.65
9	6	6	9.37	10.49	10	6	4	10.33	7.28
9	7	1	9.69	9.49	10	6	6	11.75	17.98
9	7	2	16.39	16.86	10	7	0	17.07	18.79
9	7	4	7.41	12. 37	10	7	1	19.93	18.77
9	7	5	10.20	9.43	10	7	2	7.81	8.20
9	8	0	9.67	6.29	10	7	3	10.09	9.48
9	8	1	20.07	18.56	10	7	5	9.36	3.54
9	8	2	14.59	14.13	10	7	6	12.95	9.03
9	8	3	14.70	18.26	10	8	1	12.03	10.67
9	8	4	12.53	12.98	10	8	2	9.72	9.74
9	8	5	16.88	19.06	10	8	4	12.89	12.52
9	8	6	10.45	12.27	10	8	6	12.36	11.04

h	k	1	$F_{\text {obs }}$	$F_{\text {cal }}$	h	k	1	$F_{\text {obs }}$	$F_{\text {cal }}$
10	8	7	8.80	7.97	11	7	2	10.45	9.93
10	8	8	11.61	11.72	11	7	3	10,97	8.39
10	9	1	14.68	19.55	11	7	4	34.97	32.73
10	9	2	8.06	7.93	11	7	7	16.22	19.73
10	9	4	9.80	12.50	11	8	0	18.68	18.43
10	9	7	17. 27	16.06	11	8	3	17.24	14.89
10	9	9	11.58	10.77	11	8	7	18.82	17.25
10	10	0	15.68	2.00	11	8	8	10.48	11.82
10	10	3	7.98	7.79	11	9	2	9.00	5.96
10	10	6	13. 74	11.79	11	9	3	8.12	8.16
10	10	8	7.57	7.25	11	9	6	14.52	11.43
10	10	9	7.46	5.82	11	10	2	9.44	6.99
10	10	10	9.00	8.60	11	10	3	10.17	7.18
11	0	0	38.51	33.86	11	10	4	9.09	9.70
11	1	0	13.04	11.68	11	10	5	14.13	12.83
11	1	1	20.87	18.22	11	10	6	8.24	6.51
11	2	1	11.51	13.17	11	10	7	10.57	7.15
11	2	2	10.70	12.49	11	11	0	38.30	35.21
11	3	0	27.26	36.92	11	12	2	9.29	6.63
11	3	2	11.75	13.85	11	11	3	12.90	15.07
11	3	3	21.53	23.45	11	11	4	28.67	27.43
11	4	0	12.29	15.25	11	11	6	8.45	6.99
11	4	1	17.81	18.89	11	11	7	16.75	10.13
11	4	2	9.29	10.43	11	11	8	19.58	19.90
11	4	3	22.63	21.36	12	0	0	20.11	8.80
11	4	4	23.81	25.31	12	1	0	16. 20	16.09
11	5	0	8.61	7.32	12	1	1	22.97	29.99
11	5	1	10.45	11.37	12	2	0	7.51	8.28
11	5	2	14.11.	13.77	12	2	1	12.44	15,60
11	5	3	14.18	12.15	12	2	2	11.53	13.59
11	5	5	10.55	8.81	12	3	0	9.81	1.54
11	6	0	17.71	14.11	12	3	1	24.20	22.29
11	6	1	17.18	14.53	12	4	0	47.12	42.36
11	6	2	10.61	10.87	12	4	2	14.56	14.19
11	6	3	10.77	9.07	12	4	3	14.74	14.62
11	6	6	9.00	8.51	12	5	2	15.14	15.55
11	7	0	35.17	32.90	12	5	3	18.06	20.95
11	7	1	15.44	16.69	12	5	5	20.37	22.60

72.

n	k	1	Fobs	${ }^{4} \mathrm{cal}$	h	k	1	$\mathrm{F}_{\text {obs }}$	${ }^{5} \mathrm{cal}$
12	5	0	11.63	12.48	12	12	8	15.49	16.46
12	6	1	12.17	12.85	12	12	9	7.81	8.52
12	6	4	10.15	10.53	13	0	0	16.94	4.51
12	6	5	10.76	11.95	13	1	0	9.96	6.19
12	6	6	17.43	11.45	13	1	1	9.95	9.34
12	7	0	14.90	11.70	13	2	0	9.13	9.48
12	7	1	11. 32	12.08	13	2	2	9.14	7.95
12	7	3	11.06	10.51	13	3	2	11.07	11.92
12	7	5	14.30	12.19	13	4	3	9.00	8.23
12	7	6	7.92	5.37	13	4	4	8.92	5.99
12	8	0	9.75	3.07	13	5	0	9.43	3.48
12	8	1	10.67	13.87	13	5	2	14.68	16.30
12	8	2	16.26	16.50	13	5	3	8. 52	8.45
12	8	4	28.10	26.20	13	5	5	11.25	9.27
12	8	6	14.78	15.31	13	6	1	10.91	12.51
12	8	7	7.61	8.32	13	6	2	10.47	6.95
12	8	8	13.85	14.23	13	6	3	9.41	1.56
12	9	0	8.63	9.24	13	6	5	8.10	9.26
12	9	1	16.52	18.41	13	7	0	7.73	9.92
12	9	2	9.27	9.62	13	7	3	8.99	7.58
12	9	3	16.92	15.71	13	7	6	12.56	10.16
12	9	5	12.23	13.97	13	8	0	7.79	5.66
12	9	6	9.87	7.65	13	8	1	8.56	12.36
12	9	7	9.86	9.85	13	8	2	8.66	6.99
12	9	8	8.80	10.90	13	8	3	13.21	10.82
12	9	9	8.69	9.63	13	8	5	10.75	10.38
12	10	2	11.06	9.32	13	8	6	9.04	4.41
12	10	3	7.84	5.89	13	8	7	7.63	7.49
12	10	4	14.30	10.38	13	9	0	9.94	5.40
12	10	5	9.58	7.13	13	9	1	9.09	8.56
12	10	6	10.65	7.71	13	9	2	15.07	17.52
12	10	8	10.31	9.67	13	9	9	8.12	6.26
12	11	7	7.88	8.45	13	10	0	13.88	10.61
12	12	0	17.74	14.78	13	10	3	9.90	10.59
12	12	1	9.70	10.65	13	10	5	9.48	8.29
12	12	2	14.60	13.87	13	10	8	6.36	6.99
12	12	4	9.79	9.30	13	11	2	8.42	5.17
12	12	6	10.29	12.19	13	12	1	9.37	10.48

75.

74.

h	k	1	$F_{\text {obs }}$	$\mathrm{F}_{\text {call }}$	h	k	1	$F_{\text {ob }}$	$\mathrm{Feal}^{\text {cel }}$
16	3	3	14.23	14.10	18	6	2	6.00	4.76
16	4	0	9.18	. 71	18	7	0	5.33	6.56
16	4	4	17.88	12.72	19	1	0	6.18	4.53
16	5	1	13.32	17.08	19	2	1	9.10	9.82
16	5	3	17.06	15.16	19	2	2	5.92	7.26
16	6	1	7.42	9.44	19	3	0	9.00	8.62
16	6	4	8.52	10.22					
16	6	5	9.64	7.50					
16	7	1	12.56	11.36					
16	7	7	7.51	6.88					
16	8	0	12.07	9.71					
16	8	2	9.44	10.46					
16	8	6	9.92	9.39					
16	9	1	11.39	11.13					
16	9	3	8.74	11.01					
16	10	0	9.64	9.55					
17	0	0	7.52	6.57					
17	2	1	7.67	7.54					
17	3	2	7.55	3.29					
17	5	2	8.00	11.57					
17	5	4	6.28	7.59					
17	6	0	9.30	6.33					
17		5	8.12	9.19					
17	7	4	5.78	4.63					
17		1	5.56	7.40					
17	9	0	4.98	7.14					
17	9	2	8.94	8.06					
18	0	0	11.45	10.25					
18	1	1	12.18	12.34					
18	3	1	6.74	5.17					
18	3	3	10.00	6.26					
18	4	0	14.43	13.25					
18	4	4	5.86	6.25					
18	5	1	9.05	7.88					
18	5	3	8.91	11.36					
18	5	5	6.82	6.78					

of $(s)=.59)$. Ysumlly the correlation between these two parameters is very high. Table 12 contains the final epace paraneters and temperature factors of the rhodizite structure. In Table lis the observed structure factors and final calculated gtructure factors are listed.

CHAPTER IX

The Final Structure

In the rhodizite structure the oxygen atoms are arranged in cubic close-packing whose period parallel to a is $1 / 4$ a. If all closeopacked sites were occupied, 32 oxygen atoms would be required; however, four sites are unoccupied, in the manner described below, and the cell contains only 28 oxygen atoms, namely $40(1)+12 O(2)+12 O(3)$.

The metal atoms occupy actahedral and tetrahedral voids between oxygen atoms. Each Al atom is surrounded by six oxygen atoms in octahedral coordination, namely $30(1)+$ $30(2)$. Each of the four octahedra shares three edges with the other octahedra to form a tight central cluster of conposition $\mathrm{Al}_{4} \mathrm{O}_{16}{ }^{-20}$.

Each of the Be atoms is surrounded by four oxygen atoms in tetrahedral coordination, namely $O(1)$ and $3 O(3)$. The four be atoms thus augment the central cluster to form a larger cluster of composition $\mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{O}_{28}{ }^{-36}$. This cluster is bordered by 24 oxygen atoms, namely $120(2)+120(3)$, and all atoms of this cluster are entirely within the cell boundaries.

Each of the B atoms is surrounded by four oxygen atoms in tetrahedral coordination, namely $20(3)+20(2)$. The Be atoms lie in the cell faces, four to a face, and connect the enlarged clusters with one another. In this way the entire structure, except for the alkali atoms, comprises a connected network of composition $\left(\mathrm{B}_{12} \mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{O}_{28}\right)^{0}$ per celi.

The oxygen atoms of the connected network are in cubic close-packing which would be complete except for four misso ing oxygen atoms which would tetrahedrally surround the origin. The resulting hole at the origin is occupied by an alkali atom whose imediate enviromment consists of $120(3)$ atoms, each at a distance of about 3.24 A. These oxygen atoms do not surround the alkali uniformiy, but occur as four tetrahedrally located clusters of three, each three outlining a face of a tetrahedron of oxygen atoms surrounding Be.

Figures 4 and 5 illustrate the arrangement of atoms in the mineral rhodizite. Figure 4 shows the acom locations in the lower half of the ideal structure, and some of the
symmetry elements of space grous p43m which repeat the labelled atoms. Figure 5 shows the network in the upper half of the cell represented as coordination polyhedra. The tetrahedra in the heavily shaded diagonal bands have their centers on leval $z \approx 3 / 4$. In these tetrahedra the metal is alternately B and $B e$, with the $B e$ on the mirror in the middle of the band. The more lightly shaded tetrahedra have their centers at $z=1 / 2$ and contain B only. The central pair of heavily shaded octahedra contain A1 at level $z \approx 5 / 8$. The circles represent the alkali atoms at level $z=1$.

The structure reported here has the idealized formula $\mathrm{CsB}_{12} \mathrm{Al}_{4} \mathrm{Be}_{4} \mathrm{O}_{28^{2}}$ which differs from the Firondel and Ito formula in that (a) it has 12 B instead of 11 , (b) it has 280 instead of 29, and (c) it does not appear to need any hydrogen atoms, as suggested by the following axgument: All oxygen atoms of rhodizite are exactly satisfied by electrostatic valency bonds provided that the alkali atom is ignored and no oxygen atoms are regarded as hydroxyls. The electrostatic valency sumations are as follows:

Figure 4

Atom locations in the lower half of the ideal structure
79.

Figure 5

Network in the upper half of the cell represented as coordination polyhedra

$O(1): \quad 3 \cdot \frac{1}{2}(\mathrm{Al})+\quad \frac{1}{2}(\mathrm{Be})=2$
O(2):
$(A 1)+2 \cdot \frac{3}{4}(B)=2$
$0(3):$
$\frac{1}{2}(B e)+2 \cdot \frac{3}{4}(B)=2$

Because of this, it seems reasonable to suppose that the hydrogen atoms reported in Frondel and Ito's analysis are, in fact, absent from the structure, and that in the recorded analysis the loss on ignition was due rather to a loss of some of the other constituents, especially B and alkali. The density computed for the ideal formula, $\mathrm{CsB}_{12} \mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{O}_{28}$ (except that the alkali mixture found by Frondel and Ito was used instead of pure Cs), in an isometric cell of edge $\underline{a}=$ $7.319 \AA$, is $3.478 \mathrm{~g} / \mathrm{cc}$. This is essentially the same as that of Frondel and Ito's preferred formula, which requires 3.47, as compared with a measured density of 3.44 . The small excess in calculated density could readily be attributed to a small error in determination of the proportions of the several alkalies making up the alkali site.

The ideal formula $\mathrm{CsB}_{12} \mathrm{Be}_{4_{4}} \mathrm{Al}_{44} \mathrm{O}_{28}$ appears to be unbalanced in the amount of one excess positive charge. In other

$$
82
$$

table 14
Bond distances

Bond
Al - O(1)
A1 - O(2)
A1 - Al
Be - $0(1)$
Be - $\mathrm{O}(3)$
B - $0(2)$
B - O(3)
Cs - o(3)
distance, \AA
1.932
1.873
2.950
1.72
1.606
1.519
1.475
3.227
standard deviation, \AA 0.005
0.005
0.007
0.02
0.010
0.006
0.006
0.010

$$
83 .
$$

TABLE 15
Bond angles
bond angle
(degrees)
99.5
119.5
40.2
88.1
93.5
118.2
114.2
120.8
119.5
114.9
118.4
100.5
108.8
110.2
113.2
standard deviation (degrees)
0.4
0.3
0.2
0.2
0.2
0.8
0.9
0.6
0.4
0.4
0.4
1.2
0.4
0.4
0.8
words, the alkali appears to behave formally as a neutral atom. It also appears to be held, clathrate fashion, within the large hole at the origin. For the Manjaka rhodizite, the composition of the alkali in the hole is $\mathrm{Cs} \cdot 47^{\mathrm{Rb}} \cdot 17^{\mathrm{K}} \cdot 33^{\mathrm{Na}} \cdot 03^{\circ}$ It is evident that these various atoms, whose radii vary from about $1.7 \AA$ down to $1 \AA$ for ionic radii, or about $2.4 \AA$ to $1.6 \AA$ for metallic radii, cannot all fit the same void. The occurrence of neutral Na in the clathrate structure $\mathrm{Na}_{8} \mathrm{Si}_{46}$ and $\mathrm{Na}_{\mathrm{X}} \mathrm{Si}_{136}$ has just been discovered and discussed by Kasper et al. (15) Rhodizite appears to offer another example of a neutral alkali in cage. This is anomalous, however, because Cs is one of the most easily ionized atoms. An explanation may be that it contributes its electron to a bond between the four close Al atoms, thus permitting the network to have a valence of -1 . Each of the four $A l 0_{6}$ tetrahedra shares three edges with the other three, giving rise to a tight cluster whose composition is $\mathrm{Al}_{4} \mathrm{O}_{16}$, with formal valence of -20. The distance between Al atoms of this
cluster ($2.95 \AA$) is only a little larger than in matallic Al, and bond between them thus appears possible. The same cluster is found in the spinel and pharmacosiderite structures.

In Tables 14 and 15 the inter-atomic distances and bond angles, with their standard deviations, are listed.

Bibliography

1. Behier, J. Contribution a la mineralogie de Madagascar. Ann. Geol. de Madagascar 29 (1960) 56.
2. Biscoe, J. and Warren, B.E. The structure of euclase, HBeAlSiO ${ }_{5}$. Z. Krist. A 86 (1933) 292-297.
3. Buerger, M.J. Crystal-structure analysis. John Wiley \& Sons, Inc., New York (1958).
4. Buerger, M.J. X-ray crystallography. John Wiley \& Sons, Inc. ${ }^{\text {New }}$ York (1942).
5. Buerger, M.J. The precession method. John Wiley \& Sons, Inc., New York (1964).
6. Buerger, M.J. Vector space and its application in crystalstructure analysis. John Wiley \& Sons, Inc., New York (1959).
7. Cruickshanck, D.W.J. The required precision of intensity measurements for single-crystal analysis. Acta Cryst. 13 (1960) 774.
8. Cruickshanck, D.W.J. Errors in least-squares methods, in Computing methods in crystallography (ed. J.S. Rollet), Perganon Press, oxford (1965) 112.
9. Damour, A. Sur la rhodizite. Bull. soc. min. franc. 5 (1882), 98-103.
10. Duparo, W.L., Wunder, M. and Sabot, R. Contribution a la connaissance des mineraux des pegmatites. Bull. soc, min. franc. 34 (1911) 136-139.
11. Frondel, C. and Ito, J. Composition of rhodizite. Tschermaks min. u, potr. Mitt. 10 (3) (1965) 409.
12. Fankuchen, I. Fine angle adjustments. A new use of the Weissenberg goniometer. Acta Cryst. 16 (1963) 930.
13. International tables Sor x-ray crystallography, volumes 2. II and IIT. The Kynoch Press, Oxford (1955).
14. Ito, J. and West, J. The structure of bertrandict $\mathrm{H}_{2} \mathrm{Be}_{4} \mathrm{Si}_{2} \mathrm{O}_{9} \cdot$ Z. Kxist. 83 (1932) $384-393$.
15. Kasper, J.S., Hagemuller, P., Pouchard, M. and Cros, C. Clathrate structure of silicon $\mathrm{Na}_{8} \mathrm{Si}_{46}$ and $\mathrm{Na}_{\mathrm{x}} \mathrm{Si}_{136}$ (x 11). Science 150 (1965) 1713.
16. Lacroix, A. Mineralogie de Madagascar 1 (1922) 340-342.
17. Lippard, 5. \#. Alp program for accurate lattice para* meters (private communication).
18. Main, P. and Woolfson, M.M. Accurate lattice parameters from Weissenberg photographs. Acta Cryst. 16 (1963) 731.
19. Okaya, Y. and Pepinsky, R. New developments in the anomalous dispersion method for structure analysis: paper 28 in Computing methods and the phase problem in x-ray analysis (report of a conference held at Glasgow) (ed. R. Pepinsky, J.M. Robertson and K. Speakman). Pergamon Press, New York (1961) 273.
20. Onken, H. H. Manual for some computer programs for x-ray analysis. Massachusetts Institute of Technology, Cambridge, Massachusetts (1964).
21. Onken, H. H. GAMP: Program for computing absorption correction.
22. Onken, H. H. FINTE 2: Program for computing integrated intensities.
23. Palache, C. Berman, H. and Frondel, C. Dana ${ }^{\circ}$ s Syatem of mineralogy, Voi. IT, John Wiley \& Sons, Inc., New York (1953), 329.
24. Pisani, Bull. Boc. min. 33 (2910) 37.
25. Prewitt, C.T. SNLSQ 3; Program for structure factor calculation and least squares refinement.
26. Prewitt, C.T. DFSET: Program for computing diffractometer setinings.

2\%. Rose, G, tber den Rhodizit, eine neue Mineral gattung. Ann. Phys. 33 (1834) 253-256.
28. Shankar, 3. Amirthalingam, V. and Padmanabhan, V.M. The crystal structure of bismacetylacetone-beryllium. Acta Cryst. 13 (1960) 201.
29. Strunz, H. Gitterkonstante und Raungruppe von Rhodizit. Naturwiss. 26 (1938) 217.
30. Strunz, H. Die Struktur von Rhodizit. Naturwiss. 31 (1943) 68.
31. Strunz, u. Mineralogische Tabellen. Akademische Verlage- $^{\text {a }}$ gesellschaft Geest \& Portig K, -Go Leipzig (1957).
32. Sly, W.G. and Shoemaker, D. P. MIFR 2: Crystallographic Fourier aumation program for the IBM 7090/94.
33. Trojer, FoJ. and Dollase, W. D. ADIAG: Program co generate a six-fold deck for MIFR 2.
34. Zeman, J. Formel und Strukturtyp des Pharmacosiderite. tschernaks min. u. petr. Mitt. 1 (1) (1948).

