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This talk discusses some recent studies of gluon saturation in nuclei. We stress the connec-
tion between the initial condition in heavy ion collisions and observables in deep inelastic
scattering (DIS). The dominant degree of freedom in the small x nuclear wave-function is
a nonperturbatively strong classical gluon field, which determines the initial condition for
the glasma fields in the initial stages of a heavy ion collision. A correlator of Wilson lines
from the same classical fields, known as the dipole cross section, can be used to compute
many inclusive and exclusive observables in DIS.

1 Connection between Small x DIS and HIC: Wilson Line

The initial condition in a heavy ion collision (HIC) is determined by the wave-functions of
the two colliding nuclei, parameterised by Q2 and x. As in any hadronic collision, the typical
magnitudes of these parameters can be estimated as Q2 ∼ 〈p⊥〉2 and x ∼ 〈p⊥〉/

√
s, where 〈p⊥〉 is

the typical transverse momentum of the particles being produced, and
√

s is the collision energy.
At relativistic energies, such as at RHIC and LHC, this means that the relevant domain for bulk
particle production is at very small x. Gluon bremsstrahlung processes lead to an exponentially
(in rapidity y = ln 1/x) growing cascade of gluons in the wave-function. The number of gluons
in the wave-function grows as dN/ dy ∼ x−λ, where the phenomenologically observed value is
λ ∼ 0.2 . . .0.3. When the number of gluons grows large enough, eventually their phase space
density becomes large, with occupation numbers ∼ 1/αs; in terms of the field strength this
meas Aµ ∼ 1/g. At this point the nonlinear terms in the QCD Lagrangian (think of the two
terms in the covariant derivative ∂µ + igAµ) become of the same order as the linear ones, and
the dynamics becomes nonperturbative. Due to the nonlinear interactions the gluon number
cannot grow indefinitely, but it must saturate at some 1/αs for gluons with p⊥ . Qs, where Qs

is the saturation scale. When Q2
s ∼ x−λ becomes large enough, αs(Qs) � 1 and the dynamics of

these fields is classical. This situation is most conveniently described using the effective theory
known as the Colour Glass Condensate (CGC, [1]), where the large x degrees of freedom are
described as a classical colour current Jµ and the small x gluons as classical fields that this
current radiates: [Dµ, F µν ] = Jν .

Let us consider a hadron or a nucleus moving in the +z-direction. Its colour current in
the CGC formalism has only one large component, the one in the +-direction (recall that
x± = (t±z)/

√
2). For a nucleus moving at high energy we can take the current to be independent

of the light cone time x− as J+ = ρ(xT , x−) with a very narrow, δ-function-like support in
x−: ρ(xT , x−) ∼ δ(x−)ρ(xT ). A simple solution for the equations of motion can be found
as A+ = ρ(xT , x−)/∇2

T ; this is known as the covariant gauge solution. In order to have a
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Figure 1: Left: Space-time structure of the field. In regions (1) and (2) there is a transverse
pure gauge field (2) with no energy density. In region (3) after the collision there is the glasma
field. Right:

physical partonic picture of the gluonic degrees of freedom it is necessary to gauge transform
this solution to the light cone gauge A+ = 0. The gauge transformation that achieves this is
done with the Wilson line constructed from this gauge field:

U(xT ) = P exp

[
i

∫
dx−A+

]
. (1)

This results in a field with only transverse components:

Ai
(1,2) =

i

g
U(1,2)(xT )∂iU

†
(1,2)(xT ) (2)

for both of the colliding nuclei (1, 2) separately. The initial condition for the “glasma” [2] fields
at τ > 0 is given in terms of these pure gauges [3].

Ai
∣∣
τ=0

= Ai
(1) + Ai

(2) (3)

Aη |τ=0 =
ig

2
[Ai

(1), A
i
(2)]

Inside the future light cone τ > 0 the field equations must be solved either numerically or in
some approximation scheme. The space-time structure described here is illustrated in Fig. 1
(left). In the rest of this talk we shall be referring to the numerical “CYM” (Classical Yang-
Mills) computations [4].

To see the connection to DIS it is convenient to consider the process in a Lorentz frame
where the virtual photon has a large longitudinal momentum. In the target rest frame (or more
properly the “dipole frame” [5] that does not leave all the high energy evolution in the probe)
the timescales of the quantum fluctuations of the virtual photon are extremely slow. In order to
interact with a hadronic target it must therefore split into a quark-antiquark pair already long
before the scattering. This qq̄-dipole then interacts with the hadronic target with a scattering
amplitude whose imaginary part is known as the “dipole cross section”. As typical hadronic
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scattering amplitudes at high energy, that of the dipole is almost purely imaginary, and we shall
here neglect the real part. The dipole cross section can be obtained from the quark propagator
in the gluonic background field of the target, which is quite naturally given by the same Wilson
line (1) [6]. The dipole cross section (which, in general, is a function of the size of the dipole
rT , the impact parameter bT and x) is the correlator of two Wilson lines

σ̂(rT ) =

∫
d2bT

1

Nc

〈
1− U †

(
bT +

rT

2

)
U

(
bT − rT

2

)〉
. (4)

For example, the total virtual photon cross section can be obtained by convoluting the dipole
cross section with the virtual photon wave-function which relates the Q2 of the photon to the
size of the dipole r ∼ 1/Q:

σγ∗p
L,T =

∫
d2bT

∫
d2rT

∫
dz

∣∣∣Ψγ
L,T (Q2, rT , z)

∣∣∣
2

σdip(x, rT ,bT ). (5)

Fourier-transforming instead of simply integrating over the impact parameter dependence gives
access to the momentum transfer to the target in diffractive scattering. The inclusive diffractive
virtual photon cross section (really the elastic dipole-photon cross section) is proportional to
the square of the dipole cross section

σD,tot
L,T

dt
=

1

16π

∫
d2rT

∫
dz

∣∣∣Ψγ
L,T (Q2, rT , z)

∣∣∣
2

σ2
dip(x, rT ,∆) (6)

and diffractive vector meson production can be obtained by projecting on the virtual photon
wave-function

σD,V
L,T

dt
=

1

16π

∣∣∣∣
∫

d2rT

∫
dz

(
ΨγΨ∗V

)
L,T

σdip(x, rT ,∆)

∣∣∣∣
2

. (7)

The exclusive cross sections are proportional to the dipole cross section (the scattering am-
plitude) squared, whereas the inclusive one depends on it linearly; this is due to the optical
theorem and our approximation that the scattering amplitude is purely imaginary. We shall
now go on to discuss some recent applications of saturation ideas to heavy ion collisions and
DIS phenomenology, trying to stress the unity of the approach between the two.

2 Gluon Multiplicity at RHIC and LHC AA Collisions

Ideally one would like to measure the value of Qs in DIS experiments and use the resulting
value as an independent input in calculations of the initial state of heavy ion collisions. In
practise most of the exiting CYM computations of the glasma fields have been performed in
the MV model [9] in terms of the colour charge density parameter g2µ that parameterises the
fluctuations of the classical colour currents J±. One must therefore relate the values of g2µ and
Qs in a consistent way. In practise this can be done by computing the Wilson line correlator in
the MV model, using exactly the same numerical implementation of the model as in the CYM
calculations, and extracting the correlation length 1/Qs [10].

The other ingredient necessary in using the existing DIS data to calculate initial conditions
for heavy ion collisions is the correct implementation of the nuclear geometry in extending
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Figure 2: Left: Comparison of the fit [7] to existing nuclear DIS data from NMC. Right:
Extrapolation of the gluon multiplicity to LHC energies, from [8]

the parameterisation from protons to nuclei. In a “Glauber”-like formulation of essentially
independent scatterings of the dipole on each of the nucleons this is a straightforward estimate,
see e.g. Refs. [7, 11]. A simple geometrical argument would give the estimate Q2

sA ≈ 0.5Q2
spA

1/3,
where the coefficient in front follows from the inter-nucleon distance in a nucleus being smaller
than the nucleon radius. The actual values in the estimate of Ref. [7] are shown in Fig. 1 (right).
For other estimates of Qs based on DIS data see Ref. [12]. Being really consistent with high
energy evolution would require some further theoretical advances, since the approximation of
independent dipole-nucleon scatterings will break down during the evolution. In the infinite
momentum frame this can be thought of as gluons from different nucleons starting to interact
with each other.

Combining these ingredients the CYM calculations [4] of gluon production paint a fairly
consistent picture of gluon production at RHIC energies. The estimated value Qs ≈ 1.2 GeV
from HERA data [7, 11] (corresponding to the MV model parameter g2µ ≈ 2.1 GeV [10]) gives
a good description of existing nuclear DIS data from the NMC collaboration, see Fig. 2 (left).
The same value leads to dN

dy ≈ 1100 gluons in the initial stage. Assuming a rapid thermalization
and nearly ideal hydrodynamical evolution this is consistent with the observed ∼ 700 charged
(∼ 1100 total) particles produced in a unit of rapidity in central collisions.

The gluon multiplicity is, across different parameterisation’s, to a very good approximation
proportional to πR2

AQ2
s/αs. Thus the predictions for LHC collisions depend mostly on the

energy dependence of Qs. On this front there is perhaps more uncertainty than is generally
acknowledged, the estimates for λ = d ln Q2

s/ d ln 1/x varying between λ = 0.29 [13] and λ =
0.18 [14] in fixed coupling fits to HERA data, with a running coupling solution of the BK
equation giving something in between these values [15]. This dominates the uncertainty in
predictions for the LHC multiplicity, see Fig. 2 (right).

3 Multiplicity Distributions

One very recent application of the CGC framework has been computing the probability distri-
bution of the number of gluons in the glasma [16]. The dominant contributions to multiparticle
correlations come from diagrams that are disconnected for fixed sources and become connected
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only after averaging over the colour charge configurations. In other words, the dominant corre-
lations are those arising from resummed large logarithms of the collision energy and are present
already in the initial wave-functions of the colliding nuclei.

Working with the MV model Gaussian probability distribution

W [ρ] = exp

[
−

∫
d2xT

ρa(xT )ρa(xT )

g4µ2

]
(8)

computing the correlations in the linearised approximation is a simple combinatorial problem.
The result can be expressed in terms of two parameters, the mean multiplicity n̄, and a param-
eter k describing the width of the distribution. The q’th factorial moment of the multiplicity
distribution is, to leading order in αs, proportional to 2q(q−1)!. Explicitly, the connected parts
of the moments mq ≡ 〈N q〉 are

mq = (q − 1)! k
( n̄

k

)q

with (9)

k ≈ (Nc
2 − 1)Q2

sS⊥
2π

(10)

n̄ = fN
1

αs
Q2

sS⊥. (11)

These moments define a negative binomial distribution with parameters k and n̄, which has been
used as a phenomenological observation in high energy hadron and nuclear collisions already for
a long time [17]. In terms of the glasma flux tube picture this result has a natural interpretation.
The transverse area of a typical flux tube is 1/Q2

s , and thus there are Q2
sS⊥ = NFT independent

ones. Each of these radiates particles independently into Nc
2−1 colour states in a Bose-Einstein

distribution (see e.g. [18]). A sum of k ≈ NFT(Nc
2−1) independent Bose-Einstein-distributions

is precisely equivalent to a negative binomial distribution with parameter k.

4 Inclusive Nuclear Diffraction at eRHIC and LHeC

The large fraction of diffractive events observed at HERA shows that modern colliders are
approaching the nonlinear regime of QCD, where gluon saturation and unitarization effects
become important. It should be possible to perform the same measurements in DIS off nuclei.
There are plans for several facilities capable of high energy nuclear DIS experiments, as the
EIC [19] and LHeC [20] colliders. Due to the difficulty in measuring an intact recoil nucleus
deflected by a small angle, diffractive eA collisions present an experimental challenge. But if they
are successful, nuclear diffractive DIS (DDIS) would provide a good test of our understanding of
high energy QCD. Measuring the momentum transfer t in both coherent (nucleus stays intact)
and incoherent (nucleus breaks up into nucleons) would enable one to go measure directly
the transverse structure of the gluonic degrees of freedom [21] instead of the electric charge
distribution that is measured in low energy experiments. Figure 3 (left) demonstrates some
expected results from such a measurement. The diffractive structure function can be divided
into different components according to the polarisation state of the virtual photon and the
inclusion of higher Fock states (e.g. qq̄g in addition to qq̄) in the dipole wave-function. All
of these have different dependences on the impact parameter of the dipole-target collision (see
Fig. 3 right), which stresses the importance of having a detailed picture of the transverse
geometry of both the proton and the nucleus.
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Figure 3: Left: nuclear modification of the diffractive structure function, showing characteristic
suppression at small β (large mass of the diffractive system) and enhancement at large β. From
Ref. [22]. Right: dominant impact parameters for the different contributions to the proton
diffractive structure function.
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