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ABSTRACT

An efficient three-dimensional spectral radiative-dynamical-chemical model

was developed for the purpose of simulating the response of the middle

atmosphere to a solar flare-generated high-latitude ozone deficit. In addition

to solving the global balance equations, the model includes detailed on-line

ozone photochemistry and transport, a band model and Curtis matrix calculation

of infrared cooling, and a Rayleigh friction and vertical eddy diffusion

parameterization of breaking gravity wave turbulence. When compared with the

observations reported by Wu, et al (1984), the model successfully reproduces the

observed zonally-averaged climatological circulation of the middle atmosphere,

but underpredicts the strength of the eddy circulation by a factor of two.

The result of a solar proton-induced odd nitrogen injection into the model

upper stratosphere comparable to the massive event which occurred on August 4,

1972 was a decrease in the photochemical acceleration rate near the polar

stratopause, followed consequently by the growth of planetary waves in the

high-latitude mesosphere. Accompanying the changes in the eddy circulation was

a 10% enhancement of the mesospheric zonal wind speed at mid-latitudes. The

zonal wind acceleration was brought about by a thermally-direct mean meridional

circulation induced by the diabatic heating changes resulting from the

high-latitude ozone deficit. No significant response was obtained at levels

below the upper stratosphere, thus disproving any short-term connection between

solar activity-related ozone variability and the tropospheric circulation.
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I. INTRODUCTION

1.1 Statement of the Problem

The dynamics of the middle atmosphere has received increased attention in

the past decade, largely out of concern for the ozone layer in the earth's

stratosphere. A major goal of middle atmospheric research has been to identify

the processes by which natural and anthropogenic changes in ozone occur, and to

understand the consequences that ozone variability may have for tropospheric

weather and climate. For some time now there has been much speculation over the

possibility that solar activity leads to observable changes in stratospheric

ozone, and that these changes in turn lead to noticeable signals in the

troposphere (see for instance Willet, 1962; Heath, et al, 1977; Reiter, 1979;

Callis, et al, 1985). Much of the recent research into this particular problem

has been fueled by a hypothesis first stated by Hines (1974), who proposed that

solar disturbances modulate planetary wave activity in the earth's middle

atmosphere, thereby influencing meteorological processes below. The energetics

of this is such that a "trigger" mechanism is excited which results in the

redistribution of energy already present in the atmosphere itself. This feature

of Hines' hypothesis negates the standard criticism of most solar-terrestrial

mechanisms which claims that the minute energy associated with solar

disturbances at the highest levels of the atmosphere cannot directly force the

circulation at lower levels (see Willis, 1976).

The thermal and dynamical balance of the middle atmosphere depends

significantly on the distribution of ozone, which is sensitive to the solar

output. The principal goal of this thesis is to examine whether or not changes

in ozone induced by solar activity are sufficient to cause observable changes in

the amplitudes and phases of planetary waves, primarily in the stratosphere and
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mesosphere, and secondarily in the troposphere. We shall investigate this

problem using a numerical model designed to take into account all the major

feedbacks in a sufficiently detailed way. Our model is unique in that no other

current middle atmospheric three-dimensional model combines a dynamical

prediction with: an explicit solar and infrared radiative transfer and heating

computation, extensive on-line ozone photochemistry, and on-line ozone

transport. The value of this thesis lies therefore in its being the first

fairly complete three-dimensional numerical simulation of the effects of a

solar-induced ozone perturbation on the dynamics of the middle atmosphere.
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1.2 Solar-Terrestrial Correlations in the Lower and Middle Atmosphere

A vast number of correlations between solar activity and meteorological

phenomena have been reported in the literature. These correlations cover time

scales ranging from a day (usually associated with irregular events such as

solar flares and geomagnetic storms), to 11 years, which is the period of the

well-known sunspot cycle. There are also correlations associated with the

27-day rotation of the sun and the associated interplanetary magnetic field. A

detailed review of the more plausible correlations and postulated mechanisms put

forward in the last decade is provided by Pittock (1983). In this thesis, we

shall concentrate exclusively on short-term connections between solar

variability and the lower and middle atmosphere- in particular, correlations

with time scales of the order of 27 days or less.

The study of Wilcox, et al (1974), which purported to show a connection

between tropospheric cyclonic activity and the sector structure of the

interplanetary magnetic field has not only generated considerable controversy,

but has also been responsible for an upsurge of interest in sun-weather

connections. In that study, Wilcox, et al analyzed Northern Hemisphere data

from the winters of 1963-1973 and reported that cyclonic activity at 300 mb as

measured by the vorticity area index (VAI: defined as the area in square

kilometers over which the absolute vorticity exceeds 2 x 10-4 s-I) decreases

significantly one day after the passage of a solar magnetic sector boundary

(MSB). The effect is supposedly stronger during sunspot activity. An

independent skeptical analysis of the data by Hines and Halevy (1977) appeared

to confirm the statistical significance of the VAI phenomenon; however, an

extension of the analysis to the winters of 1974-1977 by Williams and Gerety

(1978) failed to reproduce the effect reported by Wilcox, et al (1974).

Williams (1978) and Williams and Gerety (1980) examined the energetics of the
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atmosphere in connection with sector boundary transits and found correlations of

marginal significance between MSB passage and the kinetic energy of planetary

wavenumber 5. They concluded that the simplest interpretation of their results

was that they were a statistical fluctuation.

Padgaonkar and Arora (1981) conducted their own superposed epoch analysis

using vorticity data from 1947-1957 and 1963-1974 and concluded that the

atmosphere at 500 mb did not respond in the manner observed by Wilcox, et al

(1974). They also studied VAI as a function of geomagnetic disturbances and

found a minimum either on the same day or one day after a large geomagnetic

storm. Shah (1980) looked at the behavior of VAI during solar proton events and

also found a dip in cyclonic vorticity one day after the key date. However, he

reported that the effect was evident only during the summer and was observed

from 1954-1969, but was not evident from 1970-1972.

King, et al (1977) examined correlations between 500 mb geopotential height

waves and the 27-day solar rotation. The morphology of their solar-induced

perturbations suggested that planetary wavenumbers 1 and 2 are modulated by

solar activity. Schafer (1979), however, claimed that the correlation was not

statistically significant, arguing that the persistence of planetary

disturbances with quasi-periods near 27 days will occasionally produce

coincidentally high correlations with the solar rotation.

Zerefos (1974) studied circulation changes in the atmosphere associated

with energetic solar proton events and found 24-hour height decreases in the

lower stratosphere and upper troposphere of the order of 20 geopotential meters

(gpm) at high latitudes. Schuurmans (1979) reported similar height changes one

day after a solar flare, but noted a later effect following after 2-4 days.

Nastrom and Belmont (1978) and Venne, et al (1982) correlated stratospheric

wind variations with the 10.7 cm solar radio flux (FI1 ,7) and found only

marginally significant correlations at periods of 27.1 and 13.6 days- i.e., the
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first and second harmonics of the solar rotation period. Venne, et al (1982)

concluded that the results, derived from rocketsonde data from the years

1960-1976, were near or below the level of detection. Ebel, et al (1981) and

Ebel and Schwister (1983), on the other hand, found correlations between lower

stratospheric waves and F10.7 at periods of 25, 15.1, and 13.6 days. The

height perturbations associated with these waves were of the order of 10 gpm at

high latitudes. Ebel, et al explained the occurence of a 25-day wave as the

result of the modulation of a 27-day wave by the well-known annual quasi-

stationary wave in the lower stratosphere. The 15-day wave, on the other hand,

showed evidence of being a westward-traveling external wave, which Ebel, et al

(1981) related to the well-known traveling 15-day wave in the lower and middle

atmosphere.

It is apparent from the various observational studies quoted here that the

evidence for solar-induced meteorological signals in the lower stratosphere and

upper troposphere, while suggestive, is controversial and often contradictory.

Its primary value with regard to our own study is to furnish typical

characteristics of planetary wave changes putatively asssociated with solar

activity which may be compared to our modelling results. Thus the significance

of this thesis can be measured in terms of whether it can clearly demonstrate

the feasibility or infeasibility of the Hines mechanism (see Section 1.1) in

producing planetary wave amplitude changes of the order of 10-20 gpm in the

lower stratosphere and upper troposphere.
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1.3 Solar Variability Effects on Ozone

There are a number of potential mechanisms by which solar disturbances may

induce short term changes in stratospheric ozone. Ruderman and Chamberlain

(1975) and Chamberlain (1977) have hypothesized that modulation of galactic

cosmic rays (GCR) by solar activity leads to a modulation of odd nitrogen

compounds (NO ) in the stratosphere. Since NOX acts as a catalyst in the

destruction of ozone, any change in the concentration of stratospheric NOx

could affect the radiative balance of the middle atmosphere. Suda and Wada

(1978) performed a superposed epoch analysis of GCR intensity with MSB passage

as the key date. They found short term variations in GCR flux of the order of

one per cent. Since GCR radiation is important primarily in the lower

stratosphere where catalytic removal of ozone is least effective, it is doubtful

that such minor variations in GCR flux can produce detectable changes in ozone.

In contrast to the more energetic galactic cosmic rays, solar protons yield peak

NOX production at altitudes above 25 km, where catalytic destruction of ozone

is far more efficient than at lower levels. Yet another mechanism involving

energetic particles was proposed by Thorne (1977,1980), who noted that

precipitation of outer zone electrons during geomagnetically disturbed periods

can enhance the ionization rate throughout the mesosphere by several orders of

magnitude over quiet time values. Although the relativistic primary electrons

generated during such events do not penetrate below 50 km, they produce large

fluxes of bremsstrahlung X-rays which penetrate deep into the stratosphere

before ionizing and exciting neutral gas molecules, leading in turn to increased

concentrations of NOR. Finally, it has been observed by Heath (1975) that the

solar output of ultraviolet (UV) radiation varies with solar activity. Heath

showed that the full-disk solar UV intensity tends to maximize at a time when a

solar magnetic sector boundary is near central meridian on the sun. The
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magnitude of this variation is of the order of one per cent. Changes in solar

UV intensity influence ozone concentrations through photodissociation and UV

heating.

Whether or not stratospheric ozone exhibits variations in response to solar

activity is still a matter of dispute. The solar proton event (SPE) of August

4, 1972, in which a zonally averaged decrease of 20% in the ozone column above

4 mb was observed at altitudes above 75N (Heath, et al, 1977), is perhaps the

most obvious and dramatic instance of such an effect. The changes associated

with this event were long-lived and persisted for approximately one month.

This, however, is highly unusual in that most SPE's do not result in significant

ozone changes beyond a few hours (McPeters and Jackman, 1985). Other

connections between solar activity and atmospheric ozone are indicated in

studies by Reiter and Litfass (1977) and Reiter (1979), who observed that

stratospheric air intrusions at Zugspitze, West Germany are 40% more frequent

after solar flares and MSB crossings. In conjunction with this, Reiter (1979)

found a significant maximum in atmospheric total ozone (TOZ) on the day before a

solar flare when the active region approached central meridian on the sun, a

phenomenon which he attributed to Forbush decreases in GCR intensity reaching

the lower stratosphere. Heath and Prasad (1976) studied BUV measurements and

found that high latitude ozone was enhanced 4 days prior to sector boundary

crossings and that the Northern Hemispheric average of TOZ appeared to be

slightly depressed after MSB passage. However, an attempt by Weinbeck and

Yarger (1978) to deduce a relationship between atmospheric ozone profiles and

MSB crossings using 18 years of Umkehr data from Arosa, Switzerland proved

negative. Weinbeck and Yarger (1978) also examined more than 100 energetic

solar flares but found no significant ozone trends associated with these

events. Rao and Nair (1980) tested the behavior of TOZ with the day of central

meridian passage of the solar MSB as the key date, but did not find any evidence
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to suggest that solar UV variability had any effect on ozone. Chandra and Maeda

(1980) searched for a correlation between geomagnetic activity and TOZ as

measured by the Nimbus 4 BUV experiment. They found an apparent correlation at

high latitudes in winter, but suggested that this was due to planetary waves

which by coincidence have periods comparable to magnetic activity. Chandra

(1985) analyzed the Nimbus 4 data for 1970-1972 and found tropical temperature

and ozone to be correlated with F10 .7. However, these oscillations were not

regional phenomena but manifestations of high latitude oscillations that were

180* out of phase, suggesting that the oscillations were not excited directly by

solar UV variations, but rather were planetary-wave induced. Meanwhile, several

other authors have put forward observational evidence for a solar rotation-

atmospheric ozone connection (see Gille, et al, 1984; Keating, et al, 1985;

Heath and Schlesinger, 1985; Hood, 1986; Eckman, 1986a,b). Substantial

disagreement still remains over the interpretation of these results,

particularly concerning the phase of the observed ozone response. We conclude

by noting that, as was true for the circulation-solar activity connections

discussed in the previous section, the case for short-term modulation of

atmospheric ozone by solar activity is at best controversial, being

well-established only for major solar disturbances such as the SPE of August,

1972.
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1.4 Dynamical Models of Solar-Terrestrial CouDling

Planetary wave coupling between the troposphere and the middle atmosphere

is by now a well-understood phenomenon. Theoretical studies by several authors

have shown that the transmissivity of upward propagating planetary disturbances

is determined largely by the mean zonal wind, the background static stability,

and the mechanical and thermal dissipation rates (see for instance Charney and

Drazin, 1961; Dickinson, 1969; Matsuno, 1970; Schoeberl and Geller, 1977;

Schmitz and Grieger, 1980). Hines' (1974) hypothesis hinges on whether solar

disturbances can alter these quantities sufficiently so as to change the

structure of planetary waves in the middle atmosphere, thereby changing the

nature of the wave pattern below, as the waves tend to be reflected by the

background winds at certain levels. That the troposphere is indeed sensitive to

stratospheric changes in zonal wind and static stability was shown by Bates

(1977), who used an analytical quasi-geostrophic model of steady-state

stationary waves. Bates showed that the meridional heat flux of planetary waves

in the troposphere, as well as their amplitudes and phases, is influenced by the

wind and temperature structure at higher levels. In another paper Bates (1980)

also demostrated the sensitivity of planetary wave structure to the thermal

dissipation rate in the stratosphere. Geller and Alpert (1980) used a numerical

steady-state quasi-geostrophic model wherein the zonal wind was arbitrarily

decreased by 20% at various levels. They found that wind changes at or below

the 35 km level give rise to changes in the tropospheric wave pattern at middle

and high latitudes comparable with observed interannual differences. They also

found that the alterations in wave structure do not propagate downwards to more

than 3 scale heights beneath the level where the zonal wind is perturbed.

The above studies do not demonstrate that solar disturbances are capable of

producing effects in the troposphere since the changes made in the background
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state of the atmosphere were prescribed rather than induced through an explicit

mechanism. To date, only two models have incorporated realistic short-term

solar-induced ozone perturbations; both of these models were intended to mimic

the effects of a solar flare of the same magnitude as the August 1972 SPE. The

first of these was a zonally-averaged quasi-geostrophic model employed by

Schoeberl and Strobel (1978), who found a negligible response to their

prescribed ozone density reductions of about 22% at the polar stratopause. The

second was an 18-level hemispheric general circulation model with annual mean

insolation, used in a numerical experiment by Hunt (1981). In this experiment,

ozone deficits of 6% of the total amount were inserted at high latitudes,

resulting in an enhancement of the zonal wind speed near the tropopause some

20-24 days after the initial perturbation. Accompanying the zonal wind changes

was a 14% increase in the eddy kinetic energy in the upper troposphere. The

problem with Hunt's model, however, is that the bulk of the prescribed ozone

reduction occurred unrealistically at the top of the model at 37.5 km, so that

it is probable that the effects of the perturbation were strongly distorted by

the reflecting rigid lid at the upper boundary. Moreover, neither Hunt's model

nor that of Schoeberl and Strobel (1978) incorporated any photochemical

feedback, thus limiting their applicability to the real atmosphere.

I propose here to reexamine the effects of a major solar flare using a

numerical model whch not only incorporates all of the major feedbacks not taken

into account in previous modelling studies, but does so at relatively low cost

owing to its computational efficiency. Because of the nature of the problem and

the time and budget constraints involved, I decided to base the model in part on

a pre-existent one available to me from previous research done at MIT. I

stress, however, that my model is a significant improvement on this base model.

As mentioned previously, no three-dimensional model other than the one presented

in this thesis combines detailed simulation of all major aspects of the
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radiation, chemistry and dynamics of the middle atmosphere pertaining to extra-

tropical latitudes suitable for studying sun-ozone-circulation connections.
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II. THE NUMERICAL MODEL

2.1 The Governing Equations

The model we have chosen for our numerical experiments is a highly improved

derivative of a global stratospheric model originally developed at MIT by Drs.

Cunnold, Alyea, Phillips, and Prinn (henceforth referred to as CAPP). Designed

so as to incorporate the effects of radiative transfer, photochemical processes,

and fluid motions on the large scale circulation of the middle atmosphere, the

CAPP model went through three versions which differed slightly in detail. The

first of these, known as RUN12, is described in Cunnold, et al (1975), while the

results of the second, known as RUN17, can be found in Cunnold, et al (1980).

Aspects of the third, known as RUN34, are presented in Golombek and Prinn

(1986). The primary objective of the CAPP model was to simulate the

climatological behavior of ozone in the lower stratosphere, rather than any

short-term fluctuations such as those which concern us in this study. This

being the case, we found it necessary to make substantial changes in order to

ensure adequate performance, particularly in the upper stratosphere and

mesosphere, where solar activity effects are likely to be more pronounced than

at lower altitudes. What motivated these changes were a number of defects in

the original model which included:

1) a radiative heating scheme that underestimated the strength of the

diabatic forcing above 40 km; and

2) the lack of an adequate damping mechanism at mesospheric levels.

In this chapter, we discuss the details of the model used in our solar-

terrestrial experiment.

The basic variables and symbols employed in our discussion are defined as

follows:
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t = time

X = longitude [measured positive eastward from Greenwich]

6 = latitude

y = sin 6

P = pressure in atmospheres

Z = -ln P

V = spherical gradient operator at constant Z

k = vertical unit vector

* = horizontal velocity stream function

3X/3P= horizontal velocity potential

C = V2

W = dZ/dt

To = standard horizontally averaged temperature [=T 0(Z)]

T = temperature

z = geopotential height

n0 3 = ozone number density

nm = neutral atmospheric number density

X03 = n0 3/nm [i.e., the ozone number mixing ratio]

0 = angular velocity of the earth

g = acceleration due to gravity

f = 2SIy [i.e., the Coriolis parameter]

H0 = atmospheric scale height

R = ideal gas constant

c= specific heat at constant pressure

K = R/cp

a = dTo/dZ + K [i.e., the stability parameter]

Kd = vertical austausch coefficient

S = frictional stress
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KH= horizontal fourth-order diffusion coefficient

q = diabatic heating rate per unit volume

p = neutral atmospheric mass density

Q = q/pc p

G = photochemical source term

() = horizontal average

( )'= deviation from horizontal average

The model employs the global balance approximation, and thus does not

retain all the dynamical modes necessary to faithfully represent equatorial

processes, particularly the Kelvin mode (Moura, 1976). While this may somewhat

affect circulation patterns elsewhere, we nevertheless expect our model to give

results which are, at the very least, qualitatively similar to processes in the

real atmosphere, particularly at mid and high latitudes.

Diagnostic relations include the hydrostatic equation, the condition for

quasi-geostrophic balance, and the continuity equation, which we write

repectively as:

RT' = g 3z'/az (2-1)

g V2z' = V-fV? (2-2)

PW = V2X (2-3)

Furthermore, the model predicts vorticity, temperature, and ozone mixing ratios

as follows:

3C/3t = -k x V*-V(f+c) - V-fV3X/3P - V-3(PS)/3P + KH4g (2-4)

3T'/at = -k x V-VT' - aW + Q' + KHV4T' (2-5)

aX03'/at = -k x Vi.VX 0 3' - WaX0 3/aZ + 3[P(WX03

- (1/Ho 2)3(KdPaXo 3'/3Z)/aP + C' (2-6a)

3X03/at =3[P(WX03

- (1/Ho2)3(KdPaX0 3/aZ)/aP + C (2-6b)

Note that we do not predict any deviation of T from its reference distribution,
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given by To(Z). Moreover, the model assumes a constant static stability, which

is necessary in order to derive proper energy integrals, following-Lorenz

(1960).

Table 2.1 summarizes the essential differences between the CAPP model and

our improved version. Among the changes we have made is the inclusion of the

vertical flux convergence term in the prediction equation for the ozone

deviation, so that with this addition eqs.(2-6a,b) can be combined together to

form a single equation for X03:

3X0 3/at = -k x V*-VX 0 3 - V.X03VaX/aP'+ (PWX03)/3P

- (1/H02 )a(Kd PX03/9Z)/3P + G (2-7)

The model atmosphere extends vertically from Z=0 at the surface to

Z=Ztop=10.14 where a rigid lid is imposed, so that W(Z=Ztop )=0. At the

bottom, the flow is determined by the orography zo(X). Thus the lower

boundary condition may be expressed approximately as:

W(Z=0) = k x V*-Vz 0/H0  (2-8)

For the ozone prediction equations, we use the boundary condition that the

vertical diffusive flux at the bottom equals the surface destruction rate, which

is assumed to be proportional to the concentration, i.e.

(Kd/HO)aX03 /DZ = dX0 3  (2-9)

The constant d is assigned the value of .08 cm s~ so as to be consistent with

the results of Fabian and Junge (1970). At the top of the model, we assume that

the vertical diffusive flux vanishes- an expedient mitigated by the fact that

ozone in the presence of sunlight is in photochemical equilibrium at high

levels.
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2.2 Numerical Scheme and Energetics

The dynamics of the stratosphere is governed primarily by the propagation

of planetary Rossby-type waves, unlike the troposphere where synoptic and

convective scales are important. In the mesosphere, the situation is somewhat

modified by the dissipation of gravity waves with length scales estimated by

Fritts, et al (1984) from VHF echo observations to be of the order of a thousand

kilometers. Nevertheless, because planetary waves do tend to dominate the

energy spectrum above the troposphere, it is adequate for our purposes to adopt

a numerical scheme which parameterizes rather than explicitly predicts the

effects of scales of the order of the Rossby radius of deformation.

Accordingly, the dynamical fields in our model are represented by truncated

series of spherical harmonics, so that for instance:

M Nm

$(Ay,Z,t) = E imn(Z,t)fm(y)exp(im) (2-10)
m=-M n=m

where Hm(y) is the associated Legendre polynomial of order m and degree n,

normalized so that fIjl[n(U)] 2 dy = 2. Similar representations are used for

Xo3 , W,T', and z0 . The truncation used is the same as in the CAPP model,

i.e. M=6 and Nm equal to 6,6,7,8,9,10,11 for Im =0,1,2,3,4,5,6 respectively.

The orographic spectral coefficients employed in our model, however, give a

realistic Southern Hemisphere, as opposed to previous versions which assumed

topographic symmetry about the equator.

The vertical representation of the various fields is achieved by dividing

the atmosphere into 25 layers, each of thickness AZ = in 3/2, corresponding to a

height increment of ~2.89 km. The grid is staggered so that the variables * and

3X/3P are evaluated at the middle of each layer, while W,T', and )b3 are

evaluated at the interfaces. Table 2.2 shows the vertical coordinate, pressure,

standard temperature, stability parameter, and approximate height at each

level. It should be mentioned that our adopted values of the static stability
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are identical to those of RUN12, which in turn differ from the values adopted in

RUN17 and RUN34 in that they are m25% less in the lower troposphere.

The time-differencing scheme employed is a Lorenz "4-cycle", with four 1 hr

time steps in each cycle. At every time step, W is evaluated by solving the

vertical finite difference and horizontal spectral equivalent of the following

continuous equation, obtained by elimination of 3/3t and 3T'/at from equations

(2-1) to (2-5):

RaV 2W + [(V-fV)V-2 I2 a[(/P)3(Pw)/3z]/Z

= RV2G1- [(V.fV)V-2]3G 2/3Z (2-11)

where G, = -k x V4'VT' + Q'+ KHV4T'

G2 = -k x V*-V(f+C) - V-3(PS)/aP + KH v4

The Jacobian advection terms in G, and G2 are evaluated by the method of

interaction coefficients, whereas the transform method is used for the

transcendentally nonlinear diabatic heating term. The three-dimensional grid

employed for the heating calculation has 16 points in longitude and 15 in

latitude, the latter providing exact quadrature for quadratic products (see

Table 2.3). Once the G.'s are known, W for the current time step can then be

found by matrix methods and * and T' may then be predicted for the next time

step from equations (2-4) and (2-5). (We postpone the discussion of the ozone

prediction scheme until section 2.5.)

The energetics of the governing equations is described as follows. First

let the kinetic energy per unit mass and the available potential energy per unit

mass be defined by:

K = (1/2)V$V*

A = RT, 2/2a

Denoting the integral of a quantity over the mass of the entire atmosphere by

f( )dM, we derive from equations (2-1) to (2-5) the relations:

fDK/3t dM = fRWT' dM + (p0/g)f*(V-fV)V-W s dS



-30-

+ f*V-3(PS)/P dM + f*KHV4g dM (2-12)

f3A/at dM = -fRWT' dM + f(R/a)Q'T' dM + f(R/a)T'KHV4T' dM (2-13)

6 -2
where S is the horizontal surface at pressure p0=10 dyn cm- . The term

JRWT' dM represents the conversion between available potential and kinetic

energy, while the second term on the right hand side of equation (2-12) is the

energy change due to orography. The term f4V-3(PS)/aP dM on the other hand, is

the rate of frictional dissipation, whereas the term f(R/a)Q'T' dM represents

the generation of available potential energy by the diabatic heating. The last

terms of both energy equations are non-zero only if KH is horizontally

dependent.
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2.3 Heating

The general circulation of the terrestrial atmosphere is highly dependent

on the distribution of the diabatic heating. In the stratosphere and mesosphere,

this heating consists primarily of the absorption of direct solar radiation by

ozone molecules and the radiative cooling due to infrared emission by

atmospheric molecules, mainly carbon dioxide and ozone. The CAPP model employed

the Newtonian cooling approximation to parameterize the infrared contribution to

the radiative forcing. However, Ramanathan and Grose (1978) and more recently,

Fels, et al (1980) and Wehrbein and Leovy (1982) have shown that when more

accurate radiative algorithms are employed, the large scale circulation is found

to be much stronger than is suggested by simpler calculations. This is because

Newtonian cooling, which models the thermal relaxation of the atmosphere as

being proportional to the deviation from a specified equilibrium temperature,

seriously underestimates the differential radiative forcing between the equator

and the pole. In the case of the CAPP model, this equilibrium temperature is

identical to the horizonally averaged temperature, so that the Newtonian cooling

parameterization may predict anomalous heating in cold regions such as the polar

night, where only cooling occurs. We have therefore found it necessary to

resort to a more sophisticated treatment of radiation than that employed by the

the CAPP model.

For convenience, we shall partition the diabatic heating rate in the

following manner:

q = qUV + qIR

where qUV is the diabatic heating due to absorption of visible and ultraviolet

light, and qIR is that due to infrared emission and absorption. qUV, like

in the original model, is calculated as a diurnal average from the empirical

formula:
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qUV = (H/2.05,r)[qt(9=91 ) + q (9=92)] (2-14)

where g, and 92 are the zenith angles at the solar hour angle corresponding to

local noon H/4 and local midnight 3H/4, while q is given by:

qt(g) = n0 3fa(X')I(X')s(X')exp(-aNsecg) dX' (2-15)

where:

X'= wavelength

a = absorption coefficient

I = solar flux at the top of the atmosphere

c = energy of a photon

N = ozone column amount

The infrared heating rate, on the other hand, is calculated as follows.

First we let

qIR = qCO2 + q03

where qC02 and q0 3 are the heating due to the 15y band of carbon dioxide and

the 9.6p band of ozone, respectively. For either absorber, but for CO2 in

particular, the contribution to the atmospheric heating rate may be expressed

as:

q = f W dT(z,z')/dz dBv(z')/dz' dz' (2-16)

where By is the Planck function evaluated at the band center, and TV is the

flux transmission function between levels z and z' for the wavenumber interval

Av (cm~1 ), expressed as:

Tv(z,z') = (2/AV)fAVdVflexp[-xTV(z,z')] dx/x 3  (2-17)

In eq.(2-17), TV is the monochromatic optical depth between levels z and z',

while the dummy variable x represents the secant of the angle of incidence of

the diffuse radiation.

Curtis (1956; see also Goody, 1964) developed a method wherein the effects

of temperature and absorber distribution are separated via a "Curtis matrix".

The basic principle underlying this method is as follows: the atmosphere is
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divided into n equally-spaced reference levels (taken as model levels 1 to 26)

at each of which the temperature and heating rate are evaluated. The Planck

function between the levels is then represented by some interpolation formula so

that the heating rate at the ith level reduces to a linear combination of the n

Planck functions, i.e.
26

q = jRiJB(T )
j=1

Integrating eq.(2-16) by parts and approximating the result by finite

differences, we obtain the following expression for the Curtis matrix elements:

Rij = (ir/Az)[Ai+1,j+i-Ai+1,j

-Aij+1+Aij] (2-18)

where Az is the spacing between the levels, and Aij is the matrix of

absorptance, defined as:

Aij = [1 - Tv(zi,zj)]Av

Wehrbein and Leovy (1982) found that cooling rates in the upper

stratosphere and lower mesosphere are not very sensitive to the method of

treating line strength distribution, as these rates are closely tied to the

fundamental band of C02. We shall take advantage of this fact by adopting

a simple formula for the absorptance which neglects the contribution of the hot

and isotopic bands, following Houghton (1977). In the limit of strong

absorption, the absorptance of a single line may be expressed as:

A = 2(syu)1/2 (2-19)

where s is the line strength, y the line half-width, and u the absorber amount.

The line half-width is assumed to depend linearly on pressure, so that

Y = YoP

We shall use the Curtis-Godson approximation to calculate the average line

half-width between levels i and j, so that assuming a uniform amount of absorber

of fractional concentration c, this average is given by

y = (1/2)y 0 (Pi + P )
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The absorber amount, on the other hand, is given by

u = (5/3)f cp dz' (2-20)
z

where 5/3 is the well-known diffusivity factor, which takes into account the

fact that the radiation is incident at various angles. Using the hydrostatic

approximation, eq.(2-20) reduces to

u = (5cpo/3g) Pi - P

so that, neglecting the effects of temperature on line structure, we find that

for the entire band:

Ai. = {(10cp0 /3g)I P 2 _ p 2 1/2 (sky0k)l/ 2

i/2 k (2-21)

where I(sk 0k) is the sum of the square roots of the product of the

line strength and line half-width at STP within the band. Table 2.4 gives

spectral band information for the strongest C02 lines, derived from McClatchey,

et al (1973), from which we conclude that

Aig = (2.0 x 103) P 2 - p 211/2 cm 1

For the 9.6p band of ozone, we use the cooling-to-space approximation,

since the contribution of this band to the net heating is only of the order of

-1 K/day. Thus we may write

q0 3 = RBV(T)dA(zoo)/dz (2-22)

To evaluate q0 3, we employ the empirical hand absorptance formula of

Ramanathan (1976), given by:

A(U,) = 2Av ln{1 + U/[4 + U(1+8 1) 1/2 (2-23)

where

U = (5/3)f (S/Av)P0 3dz'

U
= (4y0/6U)f PdU'

0

P0 3 = ozone partial pressure in atm

S = total band intensity = 387 cm- 2atm~ STP

0= mean line half-width = 0.076 cm-1
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6 = mean line spacing = 0.1 cm-1

Av = band wavenumber width = 39 cm~ 1

[See Cess and Tiwari (1972) for the definition of the band intensity.]

The quantity 0 in eq.(2-23) is essentially a dimensionless measure of the line

structure within the band, while U is a dimensionless measure of the absorber

amount. Figs. 2.1(a),(b) show typical infrared and net heating rates at

solstice as computed by our model. The infrared rates may be compared with

those of Freeman and Liou (1979), who employed the discreet-ordinates method for

radiative transfer. Their results for the lower stratosphere are shown in Fig.

2.2(a). Fig. 2.2(b), on the other hand, illustrates the profile of net diabatic

heating in the upper stratosphere and mesosphere generated by the radiative

algorithm of Wehrbein and Leovy (1982). Note how our computed heating rates

compare remarkably well with those resulting from more detailed modelling

studies.

The computational procedure described thus far in this section is applied

only to levels above 20 km (Z>2.84). Below 20 km, we use a much more empirical

representation of the net heating, which is a somewhat modified version of the

tropospheric heating scheme employed by the CAPP model. This heating may be

expressed as:

q' = pc h(Z)(T t- T') (2-24)

where TI(X,y,Z,t) is an "equilibrium temperature" defined such that

Tt = q'obs/Pcph(Z) + T'obs

where q'obs and T'obs are the observed seasonal distributions of q' and T'.

Eq.(2-24) may therefore be rewritten as

qI = q'obs + pcPh(Z)(T'obs- T') (2-25)

The second term on the right hand side of eq.(2-25) is a relaxation term, which

represents the heating not explicitly taken into account in the model, such as

the effects of synoptic and convective scales.
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We shall partition the equilibrium temperature into an annual mean and a

seasonal sine wave, so that

Tt = Tfa(X.9yZ) + sin[60(t-#O)]Tts

where t=0 at the vernal equinox, 60= 2n/(3 60 days), and #0= 30 days. The

quantity #0 is a mild time lag introduced in the troposphere to account for

delayed ocean warmth. Following Trenberth (1973), we shall assume symmetry

about the sub-solar point so that T a contains only even polynomials and

Tts only odd polynomials. This means that the annual average term will be a

symmetric function of latitude, while the seasonal term will be antisymmetric

with respect to the equator. Moreover, Tt may be further subdivided into

longitudinally dependent and longitudinally independent components. Thus,

Tt = Tt zonal + Ttlong

where

TTzonal T 0 + TOR0 + sin[60(t-*0)](TIH0 + TtIIO) (2-26a)

and

Ttlong = w(Z) [ + sin[6 0(t-*0)] I
m=1,2 n=m,m+2 n=m+1,m+3 (2-26b)

x [cMcos(ml) + smsin(mX)]T1

In (2-26a), Ti(Z) = 1.1[ai(Z) + bi(Z)/h(Z)]. Table 2.5 gives the variation

with height of the Newtonian cooling coefficient h(Z). The values of h in the

upper troposphere are similar to those adopted in RUN34, which in turn are taken

from Trenberth (1973). The values near the surface, on the other hand, are

somewhat greater than those in RUN34 and may be compared to the value h=0.48

day~1 used by Bushby and Whitelam (1961) to represent convection effects over

the North Atlantic in a three-level numerical weather prediction model. Tables

2.6-2.7 give the values of the coefficients used for each expansion in

eqs.(2-26). These were calculated to fit the data of Newell, et al (1972) for

the zonal forcing, and Katayama (1964) for the non-zonal forcing. The quantity

w(Z) in eq.(2-26b) is a weighting factor, which in the original version of the
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model was set equal to unity at levels below 10 km (Z<1.42) and zero elsewhere.

In our version of the model, the profile of w(Z) below 10 km (levels 23-25) has

been adjusted so that

w(Zj) = P(z )h(Z (2-27)

1 P(Z )h(Z )
J=23

Moreover, the even terms in eq.(2-26b) were found to be produced primarily by

equatorial forcing, to which our model may not respond realistically because of

the global balance assumption. Hence in our new version, these terms are

suppressed. Finally, the values of the coefficients bi in Table 2.6 differ

slightly from those used in the CAPP model at the lowest levels. Most of the

revisions in Tables 2.6-2.7 were suggested by the recent work of Drs. Alyea,

Cunnold, and Cardelino (personal communication) who have incorporated these

changes into a version of the CAPP model in which the resolution was increased

to include zonal wavenumbers up to eighteen.
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2.4 Sub-Grid Scale Dynamics

One of the serious defects associated with the CAPP model was the lack of

an adequate damping mechanism that would prevent the spurious energy reflected

by the rigid lid at the top of the model from contaminating the numerical

solution in the upper stratosphere and mesosphere. As a result of this

deficiency, the model failed to predict the observed closing of the polar night

jet and the associated reversal of the meridional temperature gradient above a

height of 60km. It is by now generally agreed that the closing of the jets in

the mesosphere is caused by turbulence generated by gravity waves which saturate

as their lapse rates become convectively unstable (Lindzen, 1981; Holton, 1983;

Fritts, 1984). The breaking level of these waves is determined by their

wavelengths and phase speeds, and is also influenced by radiative damping

(Schoeberl, et al, 1983) and by eddy diffusion caused by the breaking waves

themselves (Holton and Zhu, 1984). Above the breaking level, gravity wave

dissipation results in enhanced vertical diffusion and in a decelerating drag

which Lindzen (1981) showed to be proportional to ([u]-c)3 where [u] is the mean

zonal wind and c the gravity wave phase speed.

Unfortunately, Lindzen's gravity wave parameterization is difficult and

time consuming to implement in a spectral global balance model such as ours, as

it involves the calculation of a cubic term and, moreover, requires the

specification of gravity wave characteristics, observations of which are

sparse. This being the case, we have resorted to a lower order scheme based on

the work of Smith and Lyjak (1985), who used the residual method (Hartmann,

1976; Hamilton, 1983) to evaluate the effect of gravity wave breaking on the

momentum budget of the middle atmosphere below 0.3 mbar. Smith and Lyjak

estimated their momentum residuals from the primitive equations using daily LIMS

data from Nimbus 7, from which they also derived a height-dependent Rayleigh
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friction coefficient suitable for parameterizing the effects of gravity wave

turbulence in the upper stratosphere and lower mesosphere. It must be warned,

however, that their Rayleigh friction parameter is not a dependable measure of

forcing by small-scale waves at levels below 1 mb, since their calculated

residuals were not consistent over adjacent latitudes, levels, and months in t

middle and lower stratosphere. With this caveat in mind, we have nevertheless

decided to adopt Smith and Lyjak's Rayleigh friction parameterization in

addition to the vertical eddy diffusion already employed in the model. The

frictional stress term in the vorticity equation is then expressed as:

he

KRVq , Z=0

S -KR d /H02)aV*/aP , AZ<Ztop-AZ (2-28)

0 ,Z=Ztop

where the vertical variation of KR above 0.3 mb is given by the formula:

KR = [0.3(Z/Zt 0 p)4 + 3.0(Z/Ztop) 32] day- 1  (2-29)

Eq.(2-29) is effectively an extrapolation of the Smith and Lyjak (1985)

results, chosen so that it yields wind decelerations at the top of the model

(=72 km) comparable to those calculated by Holton and Zhu (1984) in a

one-dimensional model employing Lindzen's (1981) wavebreaking parameterization

and a gravity wave spectrum similar to that used by Matsuno (1982). Our adopted

profile of KR is illustrated in Fig. 2.3, which in addition shows an

equivalent Rayleigh friction coefficient which we have computed using winter

zonal wind speeds and deceleration rates taken from Holton and Zhu (1984).

Fig. 2.3 also shows the Rayleigh friction coefficient used by Holton and

Wehrbein (1980) in a semi-spectral model that employed the Newtonian cooling

approximation. Note how the observations imply significantly larger damping

than is assumed in models which underestimate the radiative forcing.

The profile of vertical eddy diffusion employed in the model is illustrated

in Fig. 2.4 together with that derived by Holton and Zhu (1984) for the winter
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solstice. The values of Kd were chosen to account for three things: (a)

gravity wave turbulence, (b) the effects of other scales not resolved due to the

model truncation, and (c) the reflection of waves by the model rigid lid. It is

clear from Lindzen's theory that the zonal wind deceleration and the vertical

eddy momentum diffusion due to gravity wave breaking are closely linked. For

this reason, Kd at the top of the model (middle mesosphere) was set to agree

with the corresponding value from Holton and Zhu (1984). In the troposphere and

lower stratosphere, the profile of eddy diffusion is similar to that used by

Wofsy and McElroy in a one-dimensional chemical-diffusive model of methane, and

in our model is intended to represent the vertical transport due to absent or

unresolved convective and synoptic-scale motions. In between these two regions,

the diffusion coefficient increases monotonically with altitude, but the rate of

increase is somewhat arbitrary. The adopted Kd is greater in the lower

mesosphere than that of Holton and Zhu (1984) so as to minimize reflection of

wave energy by the rigid lid, and decreases smoothly to the tropopause value in

order to avoid similar reflection problems due to rapid variations in Kd'

We have found it necessary to include additional numerical dissipation in

the dynamical equations to prevent spurious energy from building up at higher

wavenumbers. Puri and Bourke (1974) demonstrated that low resolution spectral

models tend to exhibit such "spectral blocking" as a result of neglecting

interactions involving components outside the truncation limits. This motivated

our inclusion of the fourth order diffusion terms in eqs. (2-4) and (2-5), where

we have allowed KH to vary with both latitude and height according to:

KH = 5 x 1018 m4s-1 (a(Z) + p 6 ) (2-30)

where

1 ,Z>5

a(Z) =

(Z/5) 5 ,Z<5
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The values of KH in eq.(2-30) give roughly similar damping times for the

smallest retained horizontal scales as does the value 5 x 10.16 ms~1 used by

Bridger (1981) in a semi-spectral primitive equation model with a meridional

resolution of 5 degrees in latitude. The latitudinally varying part of KH was

chosen deliberately in order to suppress spurious wave disturbances near the

poles, particularly in the troposphere. (Multiplication of a spectral field by

y6 has the advantage of being easily computed via recursion relations involving

associated Legendre polynomials.) The vertical variation, on the other hand,

tends to curb the formation of high-latitude jets in the upper stratosphere

which result from anomalous wave-wave interactions (see Chapter III for a more

detailed discussion).
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2.5 Photochemistry

The chemistry of the stratosphere and mesosphere consists of a complex

array of reactions involving several minor constituents- among them oxygen,

hydrogen, nitrogen, and chlorine compounds, to be referred to respectively as

Ox, NO, HO,, and Cl0x. We have extensively updated the photochemistry

employed in RUN34 of the CAPP model by including an extra three-body reaction

involving the recombination of atomic oxygen and by using the latest rate

constants taken from Baulch, et al (1982). Table 2.8 is a list of the various

photochemical reactions included in the model, as well as their reaction rates,

denoted by the ki's. We also use the notation Ji to denote the

photo-dissociation rate for the ith species, where

Ji = f ai(X')I(l')exp(-aiNisec,) dx'

NOX, HOx, and ClOx are all assumed to be in photochemical

equilibrium, so that:

k3 [NO][0 3] + k32[C10][NO] + k 38 [NO][HO 2]

= k4 [NO 2 ][0] + [NO2l.JNO 2  (2-31)

k 1 4 [OH][0] = k 1 6 [H][0 2 ][M] + kl 7 [H][03] (2-32)

ki7 [H][03] + k18 [H0 2][0] + k 3 8 [NO][HO2] +k2 0 [H0 2][03]

= k12 [OH][03] + k 1 4[OH][0] (2-33)

Moreover, the 0/03 balance is determined by the principal terms only:

[03 03 = 12 5 [0][0 2 ][M] (2-34)

Eqs.(2-31) to (2-33) imply the following expression for the chemical loss of odd

oxygen:

[M](3X0 3 /3t)c = 2[0 2 ]J20 - 2k4 [NO 2][0] - 2k1 2[OH][03]

-2k1 [OH][0] - 2k22[03][01 (2-35)

-2k31 [C1O][0] - 2137[01 2[M] + 2k38 [NO][HO 2]

Two-dimensional distributions of the mixing ratios of the catalytic



-43-

species/families NOx, ClO,, and OH are specified in the model and are
p

assumed to evolve sinusoidally in an annual wave throughout the year. These

These distributions have been provided by Dr. Dak Sze from the work of Ko, et al

(1985, 1986), who utilized a zonal mean model in isentropic coordinates in

modelling the advection of stratospheric tracers by the diabatic circulation.

Number densities at solstice for each of these catalytic species/families are

shown in Figs. 2.5(a),(b),(c).

Eqs.(2-34) and (2-35) together allow us to evaluate the photochemical

source term G in the ozone prediction equation. The computation of this term,

like the calculation of the diabatic heating rate, is performed in grid space,

after which G is transformed into spectral space and added along with the other

terms in eq.(2-6). Because of the rapidity of the reaction rates in the upper

part of the model, X03 was assumed to be in photochemical equilibrium above 48

km (Z>6.89). Moreover, we assumed the complete absence of chemistry in the

polar night. We also set G equal to zero at levels below 12 km (Z<1.62), which

is an artifice since there is in situ photochemical generation of 03 in the

troposphere. However, since we are concerned with the troposphere only as a

sink for stratospheric ozone via downward transport, accurate simulation of

tropospheric ozone is unnecessary for our purposes. As a further expedient, we

also set the term 3[P(WX0 3 ')']/3P equal to zero below 12 km to avoid extra

spectral to grid transformations. (This term was also evaluated by the

transform method and not the interaction coefficient method so that it could he

computed simultaneously with the diabatic heating terms, thus saving computer

time.) At the surface, the boundary condition (2-9) allows x03 to be expressed

in terms of its value at Z=AZ as follows:

X03(Z=0) = X0 3 (Z=AZ)/[1 + dHioAZ/Kd] (2-36)
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III. MODEL PERFORMANCE

3.1 Preliminary Experiments

The success of our solar-terrestrial experiment depends on our generating

control runs which adequately simulate climatological conditions in the middle

atmosphere especially during the winter when planetary wave activity is most

intense. An important part of our work therefore was to sufficiently improve

the model so as to eliminate any spurious response to external forcing in the

regions of interest. Our aim was to produce satisfactory control fields for the

month of February, hence we decided to generate these fields by integrating the

governing equations forward in time starting from rest on model day 0,

corresponding to November 30 of the model year. During this process we

encountered some interesting behavior which corresponded to the sudden warmings

periodically observed in the winter stratosphere. In this chapter we present

the results of two simulations for the model time period beginning on day 30 and

ending on day 40 of the model year. The first of these simulations, henceforth

referred to as RUN35, includes all the dynamical improvements described in the

previous chapter, except for the fourth order diffusion terms in the vorticity

and thermodynamic equations. Moreover, RUN34 chemistry is used, as well as the

RUN34 profile of h(Z). The second, known as RUN36, differs from the first only

in that the relaxation term in eq.(2-25) has been omitted from the zonal

components of q'. Figs. 3.1 through 3.5 show the various background fields for

day 30 generated by each run. For comparison's sake, the corresponding fields

from day 390 of RUN34 of the CAPP model are also shown. This comparison is, of

course, limited by the fact that the wave fields for RUN35 and RUN36 are not yet

fully developed; however, our purpose here is merely to indicate the effects of

the various improvements we have made in the model physics.
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Figs. 3.1(a)-(c) illustrate the net diabatic heating q' for each run. Note

the drastic difference between RUN34 and the others above 40 km. From this it

is clear that the Newtonian cooling parameterization of infrared emission

seriously underestimates the strength of the diabatic forcing in the upper

stratosphere and mesosphere. We attribute this partly to the fact that the

radiative equilibrium temperature used in the CAPP model is not a local

equilibrium temperature but rather the horizontal mean T. As alluded to

earlier, the use of T as the equilibrium temperature leads to heating in the

polar night where T<T, contrary to the expected cooling due to the absence of UV

absorption in the region. The resulting temperature distribution for each run

is shown in Figs. 3.2(a)-(c) whereas Fig. 3.2(d) depicts the observed

distribution as presented by Newell (1969). The interesting features of RUN34

are the very cold stratopause and the warm tropopause in the region of the polar

night. RUN36, on the other hand, most successfully reproduces the observed

pattern, except that it gives an equatorial tropopause temperature minimum that

is several degrees warmer than observed. Apparently, without the zonal

relaxation terms, the thermal forcing at the equator is poorly simulated,

perhaps owing to the adjustment made in the tropical tropospheric heating (see

Section 2.3). RUN35 shows somewhat similar features, but differs from RUN36 in

that it gives a cooler stratopause and warmer lower stratospheric temperatures

in polar regions, as does RUN34. As we shall see, this is due to the sudden

warming progressing at around this time in the simulation.

One key feature worthy of note is that in both RUN35 and RUN36 there is a

reversal of the meridional temperature gradient near the winter mesopause. This

reversal indicates a closing of the polar night jet based on the thermal wind

relation, as is indeed shown in Figs. 3.3(b),(c), which together with Fig.

3.3(a) illustrate the zonal wind distribution in each case. The observed zonal

wind pattern from Newell (1969) is shown in Fig. 3.3(d). Fig. 3.3(a) exhibits,
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apart from the large mesospheric jets, a band of easterlies extending across

almost the entire lower stratosphere. In addition, there is a single

tropospheric jet core which is centered around 10N. In contrast to this, RUN35

and RUN36 give two tropospheric jets, with stratospheric easterlies confined to

the Southern Hemisphere, as is observed. We found from intermediate runs that

the splitting of the tropospheric jet is associated with a more realistic polar

night jet, which is in turn due primarily to the enhanced mechanical dissipation

at mesospheric levels. This may be due to the fact that changes in the shape of

the polar night jet lead to alterations in the refractive index of the longest

planetary waves, which then modify the distribution of the eddy transports near

the tropopause, as shown by Bates (1977; see Section 1.4). On the other hand,

the improved tropospheric jet structure might also be attributed to decreased

reflection by the rigid lid in the cases of RUN35 and RUN36, rather than to

changes in the actual wind values in the mesosphere. Nevertheless, hints of a

dynamical coupling between the middle and lower atmospheres can be found in the

work of Koermer, et al (1983), who used a primitive equation spectral model with

orographic forcing to study the sudden warming phenomenon. They found that the

strength and shape of the polar night jet were crucial to the development of the

warming, as demonstrated by two experiments in which they varied the initial

intensity of the jet. Their Figure 14 illustrates the effect on the

tropospheric zonal wind structure in that the core changes position

significantly in the second case in which the initial mesospheric jet was

stronger (see later discussion in Section 3.3 including Fig. 3.36).

Other changes we have made in the model that affected the zonal wind

distribution in the troposphere were the lower static stability of the current

model compared to that of RUN34 and, in the case of RUN36, the elimination of

the relaxation term in the zonal components of q'. The former helped only

slightly in pushing the winter tropospheric jet more towards 30N. The latter,
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however, clearly had a significant effect, resulting among other things in a

more realistic Southern Hemispheric jet. Changes in the model topography, on

the other hand, did not seem to generate significant differences in the

circulation pattern, probably because the Southern Hemisphere was in summer,

when wave activity is less effective.

Meridional circulation patterns for all three simulations and for

observations are presented in Figs. 3.4(a)-(d), which show contours of the

mass-weighted meridional stream function, defined by:

XM= 2(p 0/g)cos6 3[X]I/36 (3-1)

The tropospheric cells in all three cases bear some resemblance to the observed

circulation, particularly in the Northern Hemisphere. The differences in the

diabatic heating schemes, however, result in qualitatively different

circulations above 40 km. The cell between 10 and 50 mb in the polar night in

RUN35 is an indication of a sudden warming taking place, and is a direct result

of the eddy heat and momentum transports in that vicinity. The descending

branch of this cell corresponds to adiabatic warming which maintains the

relatively warm temperature at 50 mb compared to that in RUN36. On the other

hand, the ascending branch of the cell at the polar stratopause in RUN34

explains the relatively cold temperature in that region. The resulting

distributions of ozone in the lower stratosphere for each run and for

observations are shown in Figs. 3.5(a)-(d). We see that the circulation pattern

of RUN36 results in a larger pole-to-equator gradient in ozone concentration,

owing to its poleward and downward character at high latitudes. This

circulation, however, does not correspond to observations (Louis, et al, 1975),

which indicate an extension of the tropospheric Ferrel cell into the lower

stratosphere. In reality, the latitudinal gradient of ozone is maintained not

only by the mean meridional circulation, but also by tracer transport due to

planetary waves, which in RUN36 are less active during this time period than in



-48-

the other two runs.

It is interesting to compare the energetics of the three simulations

described above. In order to do this we first partition the available and

kinetic energies into zonal and eddy components after Lorenz (1955). The

"Lorenz energy cycle" consistent with the governing equations is then as

follows:

DAZ/at = GZ - CA + CZ

3AE/at = GE + CA - CE
(3-2)

KZ /at = CK - CZ - DZ + BZ

DKE/at = CE - CK -DE + BE

where:

AZ = f R[T'] 2/2a dM

AE = f R[T*%/2a dM

KZ = f (1/2)V[$]eV[$] dM

KE = f (1/2)[Vp*.Vp*] dM

CA = f -(R/aa)[v*T*]a[T]/36 dM

CK = f [u*v*][V 2*1 dM

CZ = f -R[W][T'] dM

CE = f R[W*T*] dM

GZ = f R[Q'][T']/a dM

GE = f R[Q*T*]/a dM

DZ = f [F][] dM

DE = f [F***] dM

BZ = (PO boundary* 2[W] dS

BE = (p/g)fboundary *(Vf) -2pW*] dS

u* = (1/a)3**/36

v* = -(1/a)3p* /ax

F = V.a(PS)/3P
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a = radius of earth

[ ] = zonal average

[ ] = deviation from zonal average

In deriving eqs.(3-2) we have assumed that KH=O, as is the case in RUN34,

RUN35, and RUN36. Recall also that the term F includes the effects of both

Rayleigh friction and vertical eddy diffusion.

Fig. 3.6 shows the energetics of the atmosphere as deduced by Oort and

Peixoto (1983) for the winter months, while Figs. 3.7(a)-(c) illustrate the

Lorenz energy cycle for the troposphere, stratosphere, and mesosphere averaged

over the time period beginning on model day December 30 and ending on January

10, corresponding to the last day of RUN35 and RUN36.

In the troposphere we find that the energy storage terms of RUN36 come

closest to observations, particularly in the total amount of eddy kinetic

energy. RUN34, on the other hand, has an overactive tropospheric circulation,

probably as a result of the larger eddy forcing in the diabatic heating. This

surplus of eddy kinetic energy results in an anomalous boundary flux into the

stratosphere causing transience and eventually sudden warmings, which lead to

the formation of easterlies during the winter. Fig. 3.8 shows Lorenz energy

cycle diagrams for the stratosphere before and after an observed warming, as

computed by Julian and Labitzke (1965). From the direction of the various

conversions we see that the stratospheric energy cycle of RUN34 indeed fits a

postwarming pattern, a pattern which to a lesser degree fits that of RUN35. In

the mesosphere we find that the improved radiation code of the current model

results in a net generation of zonal available potential energy, in marked

contrast to the net dissipation of RUN34. Moreover, the difference in the

meridional circulation between the two models is reflected in the differing

signs in the conversion terms CZ and CE. It also comes as no surprise to

find that the kinetic energy dissipation terms of RUN35 and RUN36 are several
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times larger than those of RUN34, indicating the effect of breaking gravity

waves in the mesosphere.
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3.2 The Theory of Sudden Warmings

The sudden warming phenomenon plays an important role in meteorology, not

only because it contributes significantly to the overall budgets of heat,

momentum, energy, and trace constituents in the stratosphere, but also because

it provides a convenient natural test of our understanding of planetary

atmospheric dynamics. Observational aspects of the sudden warmings have been

reviewed extensively by McInturff (1978) and more briefly by Schoeberl (1978),

while theoretical aspects of the phenomenon are discussed by Holton (1980) and

by McIntyre (1982). A concise statement of the current theory of stratospheric

sudden warmings can be made following Holton (1980):

1) Quasi-stationary planetary waves of zonal wavenumber 1 or 2

amplify in the troposphere and propagate into the stratosphere.

2) As a consequence of the thermal wind constraint, the eddy momentum

and heat fluxes associated with the growing waves induce a mean

meridional circulation which causes adiabatic warming in the

lower stratosphere at polar latitudes.

3) The temperature changes associated with the sudden warming result

in the deceleration and distortion of the polar night jet.

4) Major warmings occur when critical levels (where [u]=0) are formed,

which block further upward transfer of wave energy and result in

the appearance of easterlies as the critical level moves downward.

A physical explanation of the sudden warming phenomenon hinges on the

theory of wave-mean flow interaction (Charney and Drazin, 1961; Eliassen and

Palm, 1961; Andrews and McIntyre, 1976; Boyd, 1976). What follows is an

elucidation of this theory from an Eulerian standpoint using the notation of the

previous chapter. Following Holton (1975), the linearized equations governing

the mean zonal wind and temperature are as follows:
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3[u]/at = f[v] - (1/a cos 2 o)3([u*v* ]Cos 2)/6 (3-3)

3[T']/3t = -a[W] - (1/a cose)3([v* T *]cose)/36 (3-4)

where we have ignored the effects of dissipation. Furthermore, the mean

meridional circulation conserves mass, so that

(1/a cosO)3([v]cose)/a3 - 3(P[W])/3P = 0 (3-5)

We now introduce the residual mean meridional circulation (v ,W ), defined

by:

v = [vI + 3(P[v* T ]I/a)/aP (3-6)

W = [W] + (1/a cos6)3([v*T* ]cosO/a)/36 (3-7)

With this transformation, eqs.(3-3) to (3-5) can then be rewritten as follows:

9[ul/at = fvt + [E] (3-8)

3[T']/3t -aWt (3-9)

(1/a cosO)a(vtcos6)/36 - 3(PWt)/aP = 0 (3-10)

where [E] is the divergence of the Eliassen-Palm flux, given by:

[E] = -(1/a cos2 6)([u*v* ]cos 2 6)/36 - f3(P[v*T* ]/a)/aP

It can be shown that [E] is just the meridional transport of potential

vorticity, that is

[E] = [q0*v *]

where

qO = (1/a cos a6)3*/a2 + (f2 /a 2cose)a(coso 3*/96/f 2)/36

- f3(PT*/a)/3P (3-11)

In eq.(3-11), t * is the perturbation geopotential so that:

U= -(1/fa)3$*/36 (3-12)

V= (1/fa cos6)30*/aX (3-13)

Combining eqs.(3-8) to (3-10) with the equation for thermal wind balance:

fa[u]/az = -(R/a)a[T']/36 (3-14)

we get the following elliptic equation for the residual mean meridional

velocity:
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(Ra/a2 )3((1/cose)3(vtcose)/36)/96 + f2 2v/aZ

= f3[E]/3Z - f32[E]/aZ2  (3-15)

Eq.(3-15) demonstrates that it is the transport of both heat and momentum by the

waves which induces the residual mean meridional circulation. Whenever this

transport vanishes and assuming that dissipation is absent and that vt

vanishes on the boundary, then the residual mean meridional circulation will

also vanish, and there will be no deceleration or warming, according to

eqs.(3-8) to (3-10).

We may ask under what conditions will planetary waves transport potential

vorticity. Again assuming no dissipation, we may answer this by appealing to

the conservative nature of the potential vorticity, so that to first order in

wave amplitude,

aq0 /at + [W]Dqo*/3A = -(v*/a)3[qo]/a6 (3-16)

where [w] = [u]/(a cosO) and 3[q0]/36 is the latitudinal gradient of the zonal

mean potential vorticity, given in spherical coordinates by the formula:

3[q 0 ]/aO = { 2(R + [w]) - a2 [ 2/a2 + 3tan6 3[w]/36

- (f2a2 /R)3((P/a)a[w]/Z)/3P }cosO (3-17)

Multiplying eq.(3-16) by q0* and zonally averaging, we obtain:

[q0 *v*] = -(a/2) 3 [qo *2]/3t/(3[q 01/36) (3-18)

Eq.(3-18) implies that wave transience will lead to potential vorticity

transport, and hence to deceleration of the zonal mean flow. On the other hand,

if the wave is stationary the term 3qo*/3t in eq.(3-16) will vanish, in which

case eq.(3-13) implies that

[u][q 0 *v*] = 0

Thus [q0 v ] = 0 unless [u] = 0 --i.e., wave mean flow interaction will

occur in the vicinity of a critical level.

Eliassen and Palm (1961) showed that the heat and momentum transports of

long waves are related to their wave energy flux as follows:
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[v*t*] = [u]{(alu]/az)[v*T*]/a - [u*v*]}

[W**] = [u]{(f - (1/a)3[u]/a6)[v*T*]/a - [u*v*]}

For quasi-geostrophic waves in the stratosphere, these reduce approximately to

[v* t*]I = -[u][u v ]

[W*l*] = f[u][v*T*]/a

From these last two equations we see that a poleward heat flux is associated

with an upward energy flux, while a poleward momentum flux corresponds to an

equatorward energy flux. A poleward heat flux is in turn associated with a

westward phase tilt of the wave with height, while a westward phase tilt with

decreasing latitude is indicative of poleward momentum transfer.

One key feature of sudden warmings as discerned from observations is that

focussing of wave energy into polar latitudes is essential if a major warming is

to occur (O'Neill and Taylor, 1979; Kanzawa, 1982; O'Neill and Youngblut, 1982;

Palmer, 1981a). This is because the small mass and moment of inertia of the

polar region maximizes the effects of wave energy on the background flow. For

focussing to occur there must be equatorward momentum transport in the

stratosphere. What determines whether or not this will actually occur during a

particular warming? This question was investigated by Butchart, et al (1982)

with a three-dimensional primitive equation model in connection with the unusual

wavenumber 2 major warming of February, 1979. They concluded from their

numerical experiments that it is the initial zonal wind structure which

determines whether a wave is focused towards the pole. It is quite well known

that the refractive index of planetary waves is related to the basic zonal state

(Charney and Drazin, 1961). Matsuno (1970) used a quasi-geostrophic model with

spherical geometry to look at the propagation of waves in the presence of

realistic wind profiles. He reduced the governing equations to a single

equation for the wave geopotential of the form:

LzD* + L* + Qm* = 0
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where Lz and Le are vertical and horizontal operators and Qm is the

refractive index squared, written as:

Qm = 3[q 0]/3 (1/[w]cose) - m2/cos 2 e _f2a2/4 2R2  (3-19)

m representing the zonal wavenumber. A given wave will become evanescent when

Qm is negative and will propagate towards regions where Qm is both large and

positive. The simpler Charney and Drazin theory, on the other hand, showed that

stationary planetary waves would propagate vertically only if

0 < [u] < 0/k2

where 8 = 2Qcos6/a and k = m/(a cos6), so that planetary waves tend to be

trapped by easterlies and by critical levels, as well as by strong zonal winds.

One immediate consequence of eq.(3-19) is that shorter waves avoid polar regions

more easily than do longer ones. This is undoubtedly one reason why sudden

warmings dominated by wavenumber 2 are rare in comparison to those dominated by

wavenumber 1.

Kanzawa (1984) found that the field of a[q 0]/36 is a good indicator of wave

focussing by the basic state. It is, after all, the background gradient of

potential vorticity which allows planetary waves to grow in amplitude as they

extract potential enstrophy from the mean flow (Schoeberl, 1982). McIntyre

(1982) theorized that irreversible potential vorticity mixing by planetary waves

outside polar latitudes preconditions the basic state so that wave focussing

becomes possible.

The onset of a sudden warming is, as mentioned earlier, preceded by an

amplification of wave energy in the troposphere. It is currently understood

that the vacillations in the amplitudes of planetary waves propagating into the

stratosphere are caused primarily by the interference between westward traveling

external Rossby waves and quasi-stationary waves generated by flow over

orography (Madden, 1983). The period of this vacillation cycle is that of the

traveling wave and is of the order of two weeks. It is further hypothesized
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that resonant amplification of topographic waves can occur if the basic state

evolves such that a free mode of the atmosphere becomes stationary (Tung and

Lindzen, 1979). Schoeberl and Strobel (1980a) used a quasi-geostrophic

semi-spectral model to simulate wavenumber 1 and wavenumber 2 sudden warmings

and found that in the case of the former, oscillations of wave amplitude and of

the mean flow resulted from the interference between the topographically forced

wave and a trapped, westward-propagating planetary wave excited by the switch-on

of the forcing. More recently, Robinson (1985) explored the dynamics of wave

vacillations using a truncated three-dimensional quasi-geostrophic 8-channel

model and found that the vacillation of wavenumber 2 in the stratosphere could

be explained by wave-wave interactions between stationary wavenumber 2 and the

traveling and stationary components of wavenumber 1. Moreover, he was able to

account for the observed anticorrelation between the two wavenumbers in the

winter stratosphere (Hirota and Sato, 1969; Labitzke, 1981; Smith, 1983a,b;

Smith, et al, 1984).
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3.3 Model Sudden Warmings

The differences in tropospheric heating between RUN35 and RUN36 had

important consequences for the succeeding time development of their respective

fields. The more efficient conversion of available energy into eddy kinetic

energy in the case of the former led to a larger wave energy flux into the

stratosphere. The transience associated with this upward flux initiated a major

sudden warming which resulted in the development of easterlies in the upper

stratosphere and a substantial deceleration of the polar night jet. This is

shown in Figs. 3.9(a),(b) which represent the zonal wind patterns during days 35

and 40 of RUN35. Note how the tropospheric jet core in the Northern Hemisphere

has been shifted southward probably as a result of the buildup of wavenumber 1

in the troposphere together with the lack of momentum transport due to synoptic

scale waves. Figs. 3.10(a),(b) show the temperature changes that accompanied

the RUN35 warming. In addition to the warming of the polar lower stratosphere,

we see that the upper stratosphere and the lower mesosphere have undergone

significant cooling at high latitudes. This mesospheric cooling has been known

to accompany observed warmings (Labitzke, 1972; Hirota and Barnett, 1977), as

well as simulated warmings such as that of Schoeberl and Strobel (1980a), who

attributed the temperature changes to the induced secondary meridional

circulation.

Figs. 3.11-3.13 show the time development in RUN35 of the zonal wind and of

the geopotential height amplitudes of wavenumbers 1 and 2 at 50N up to day 40.

The warming actually commences around day 22 as both wavenumbers 1 and 2 become

transient. By day 29, wavenumber 1 begins to decrease in amplitude while

wavenumber 2 continues to build up until stratospheric easterlies appear on day

33, a sequence of events akin to Schoeberl's (1978) "Type A" pattern of observed

warmings, except that wavenumber 2 plays a larger role than usual. The role of
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wavenumber 1 appears to be that of a precursor which conditions the basic state

thus paving the way for wavenumber 2 to produce the major effects, much like in

the observed warming of February 1979 (McIntyre, 1982). Schoeberl and Strobel

(1980b) extended their study of stratospheric sudden warmings by adding a

troposphere to their earlier model, so that both wavenumbers 1 and 2 were

simultaneously forced by orography. They found that because of the relatively

slow development of wavenumber 1, their simulated warming was dominated by

wavenumber 2, although wavenumber 1 tended to moderate the strength of the

warming by decelerating the polar night jet and allowing wavenumber 2 energy to

escape into the mesosphere. The importance of wavenumber 2 in our simulated

warming in RUN35 can be appreciated from the RUN35 zonal winds (Fig. 3.9(b))

where unlike in most major warmings the stratospheric easterlies are not

confined to the polar region where wavenumber 1 is dominant, but extend as far

southwards as 40N. This may be partly due to the fact that the equatorial

critical line, which tends to reflect wave energy back towards high latitudes,

does not advance poleward as in other modelling studies (e.g., Schoeberl and

Strobel, 1980a,b; Dunkerton, et al, 1981; Koermer, et al, 1983). Another

possible explanation, further elaborated in connection with RUN36, may be that

owing to the limited truncation of the model, wave-wave interactions are not

properly simulated thus resulting in a spurious growth of wavenumber 2.

Figs. 3.14-3.17 illustrate the geopotential height amplitude and phase

contours of wavenumbers 1 and 2 in the Northern Hemisphere during the RUN35

warming sequence. By day 40, wavenumber 2 becomes confined to the lower

stratosphere indicating that it has been trapped by the background flow. This

is confirmed by the phase contours of Fig. 3.17(c), which show eastward phase

tilt with height in the upper stratosphere and mesosphere. This in turn can be

explained by referring to the field of the latitudinal gradient of potential

vorticity which, as discussed earlier, is a measure of the refractive index of
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planetary waves. Indeed, Figs. 3.18(a),(b),(c), which illustrate the potential

vorticity gradients during the warming, show a tongue of negative 3[q 0]/36

developing between 1 and 20 mb at high latitudes near the appearing easterlies.

Wavenumber 1 also seems to be trapped at high latitudes on day 35 (see Fig.

3.15(b)) owing to the region of negative 3[q 0 ]/36 between 0.2 and 5 mb.

Figs. 3.19(a)-(c) and 3.20(a)-(c) show the eddy transports of zonal

momentum and heat during the period of the RUN35 sudden warming. Note how

equatorward momentum transport appears in the lower stratosphere in the vicinity

of the developing easterlies. Moreover, we see that the flux distributions of

both momentum and heat in the troposphere undergo significant evolution during

the warming. In particular, the maximum in the eddy momentum flux seems to

migrate northwards by about 10 degrees. Profiles of the Eliassen-Palm flux

divergence are depicted in Figs. 3.21(a)-(c), which show large convergences

coinciding with critical levels, indicating intense wave-mean flow interaction

in these regions.

The case of RUN36 is very different from that of RUN35. Figs. 3.22-3.29

show the corresponding development of the zonal winds and of the amplitudes and

phases of geopotential wavenumbers 1 and 2. The first feature worthy of note is

that the onset of transience in RUN36 is slower than in RUN35 so that no

easterlies form in the upper stratosphere. However, a minor warming does take

place which results in a significant decrease in the strength of the polar night

jet owing to an anomalous buildup of wavenumber 2. Moreover, the jet undergoes

a sudden distortion in the vicinity of the polar stratopause, which is

accompanied by a drastic decrease in the amplitude of wavenumber 1 by day 40 of

the simulation. This evanescence of wavenumber 1 is evident from the phase

contours of Fig. 3.27(c) which show almost no phase variation with height in the

upper stratosphere.

Figs. 3.30(a),(b),(c) show 3[q 0]/30 to be decreasing in the upper
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stratosphere and increasing in the lower stratosphere at around 60N, an

indication that wave energy is being guided into polar regions by the basic

zonal state. This fact is further confirmed by the large equatorward eddy

momentum transport appearing by day 35 in Figs. 3.31(a)-(c). Meanwhile, the

tropospheric maximum in the eddy momentum flux migrates southwards and upwards,

while that of the eddy heat flux moves northwards and downwards as depicted in

Figs. 3.32(a)-(c). As a result of these changes, the tropospheric jet core has

once again moved southwards as is evident from Figs. 3.25(a)-(c). Contours of

[E] during the warming are illustrated in Figs. 3.33(a)-(c). Note the large

divergences at the polar stratopause as well as the strong convergences near the

core of the mesospheric jet that develop by day 40.

The time development of the kinetic energy spectrum at 1 mb during the

period of the warming is shown in Fig. 3.34. Here we see the anomalous growth

of wavenumbers 3 and 4 at the expense of wavenumber 1 which occurs at this

level. The sudden energy cascade explains why the shape of the polar night jet

becomes distorted in the neighborhood of the polar stratopause, as the

transience resulting from the decrease in amplitude of wavenumber 1 causes a

local acceleration of the jet according to eqs. (3-8) and (3-18). Apparently

the spurious growth of wavenumber 2 results in a significant decrease in the

background potential vorticity at high latitudes, making propagation less

feasible for wavenumber 1. A cascade towards higher wavenumbers (which tend

to avoid polar regions) is then triggered, resulting in the appearance of high

latitude jets in the upper stratosphere.

Evidence that such high latitude jets accompany at least some warmings was

put forward by Palmer (1981b), who analyzed the major warmings of February 1979

and February 1980. Figs. 3.35(a)-(d) show meridional cross sections of the mean

zonal wind appropriate to these events, both of which were preceded by a minor

warming which preconditioned the basic state so that succeeding planetary waves
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were more easily focused towards the high latitude stratosphere. Palmer

attributed the appearance of high latitude polar night jet cores prior to both

major warmings to the previous decay of a wavenumber 1 pulse in the polar

mid-stratosphere. Koermer, et al (1983), in the modelling study noted earlier,

developed such high latitude stratospheric jets in their simulations of major

and minor warmings (Figs. 3.36(a)-(h)). Associated with these displaced jets

was the growth of wavenumber 3 in the upper stratosphere, coinciding with the

rapid weakening of wavenumber 1 and the intensification of wavenumber 2 in that

region. Palmer and Hsu (1983) and Matsuno (1984) used simplified numerical

models to show that wave-wave interactions were indispensable to the formation

of high latitude westerly jets during minor warmings. Both of these simulations

confirmed the hypothesis due to McIntyre (1982) who, as mentioned earlier,

suggested that the preconditioning of the basic state during a minor warming is

a result of irreversible mixing of potential vorticity by planetary waves in the

outer regions of the polar vortex. Accompanying this mixing would be the

breaking of upward propagating wavenumber 1 due to nonlinear interactions with

other waves, primarily wavenumber 2.

Since it is the anomalous growth of wavenumber 2 which apparently triggers

the decay of wavenumber 1 and not vice-versa, we believe the energy cascade

accompanying the warming of RUN36 to be an artifact of the model truncation. We

believe that the limited horizontal resolution of the model also explains why

the amplitude of wavenumber 1 in the troposphere is a maximum at high latitudes

rather than at mid latitudes as indicated by observations (van Loon, et al,

1973; Wu, et al, 1984). Since the associated Legendre polynomials of high

meridional mode number tend to have large values near the poles, limited

spectral truncation can result in large errors in these regions. It should be

stated that the most recent observations (see Wu, et al (1984), also Chapter IV

and Figs. 4.5, 4.11, 4.15) do indicate high latitude jets to be common in the
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winter stratosphere, but in the context of wave amplitudes that are very

different from those which develop in RUN36. Ultimately, we believe that proper

simulation of these jets can only be attained with a model of greater horizontal

resolution than our own.
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3.4 Effects of Fourth Order Diffusion

RUN35 and RUN36 served as instructive precursors to runs of the "complete"

model as described in Chapter II. Important differences between RUN35 and RUN36

and the complete model run are the inclusion of "fourth-order" diffusion and the

updated photochemistry in the complete model. The inclusion of numerical fourth

order diffusion in the vorticity and thermodynamic equations, in particular,

resulted in decisive improvements in the model circulation. This is

demonstrated in Figs. 3.37-3.46, which illustrate various fields at solstice

output by the complete model. Like the fields for day 30 in RUN35 and RUN36,

these were obtained by running the model for 30 days starting from rest on day

0. Firstly, it should be noted that the winter mesosphere of Fig. 3.37 is

somewhat colder than in either RUN35 or RUN36, a development which we attribute

to the updated photochemical reaction rates used in the complete model. The

stronger thermal contrasts associated with these changes led in turn to the

closing of the Southern Hemisphere mesospheric jet, as is evident in Fig. 3.38.

The primary effects of the added numerical dissipation, on the other hand, were

twofold. On one hand, the height-dependent component of KH was responsible

for retarding the growth of geopotential wavenumber 2 (Fig. 3.41) in the

stratosphere, thus allowing wavenumber 1 to develop more rapidly than in the

previous numerical experiments (Fig. 3.39). Moreoverit prevented the

development of high latitude jets in the vicinity of the stratopause further on

in the simulation (see Chapter IV). The p6 variation, on the other hand,

enabled the amplitude of wavenumber 1 to maximize at mid-latitudes in the upper

troposphere and lower stratosphere, a fact confirmed by the westward phase tilts

of Fig. 3.40, which compared to the phase tilts in the lower stratosphere of

Fig. 3.15(a) show greater evidence of upward energy propagation at 50N. This

feat, however, was achieved at the expense of reducing the amplitudes of the
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highest wavenumbers, which are affected most, not only by the V4 operator, but

also by the p 6 variation in KH, as it is precisely these wavenumbers which

tend to have large values near the poles. The result of the severe amplitude

reduction of these waves was to drastically decrease the eddy transports in the

lower troposphere where the waves are most important (see Figs. 3.43-3.44).

This, in turn, led to a decrease in the strength of the mid-latitude westerlies

near the surface and a subsequent trapping of wave energy at the lowest levels.

One of the bonuses obtained from the added numerical dissipation in the

troposphere and lower stratosphere is a mean meridional circulation which bears

much closer resemblance to the observed pattern (Fig. 3.45). In particular, the

mid-latitude Ferrel cell now extends to the lower stratosphere as in the

observations. Moreover, a distinct polar cell is now evident in the Northern

Hemisphere, in contrast to the two-cell pattern of previous experiments. As a

result of this high-latitude circulation, the Arctic maximum in ozone

concentration is now more intense than in RUN35 and RUN36 (Fig. 3.46). One

drawback of this new circulation, however, is that its strength in the

troposphere is roughly a third of that in the observed circulation (see Fig.

3.4(d)), owing to the reduction in the eddy momentum trasport due to the higher

wavenumbers. Since we are primarily interested in the stratosphere and

mesosphere, however, we do not regard this as a major problem for the purposes

of this thesis.

The improved model, like the parent CAPP model, is remarkably efficient.

With vectorization of most of the code, running time for the model is currently

38 seconds per day of integration on the Goddard Cyber 205. Despite the many

approximations made which lead to this efficiency, the quality of our results

compares favorably with those of more detailed and computationally demanding

general circulation models (GCM's). For example, Fig. 3.47(a) illustrates the

zonal wind field for January obtained from the GFDL "SKYHI" general circulation

model (Mahlman and Umscheid, 1984), which incorporates a sophisticated radiation
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code along with fairly complete dynamical and tropospheric physical processes in

a primitive equation model with 40 vertical levels and 5* latitude by 6*

longitude resolution. The GFDL model winds exhibit several defects not evident

in our results, including an overly strong mesospheric circulation (no large

external damping is incorporated), mid-latitude surface easterlies, and a

Southern Hemisphere jet stream several degrees north of its observed position.

Fig. 3.47(b), on the other hand, shows the January mean zonal wind profile

resulting from the latest version of the NCAR Community Climate Model (Boville,

1986), which like our model includes a Rayleigh friction parameterization based

on that of Smith and Lyjak (1985) in a 33-level primitive equation spectral GCM

with 15 zonal wavenumbers. The NCAR model mesospheric circulation is somewhat

deficient in comparison to observations and to our model results, owing

(according to the author) to its specification of uniform ozone mixing ratios

above the 0.49 mb level.

There are also defects in our model resulting from the approximations which

lead to its computational efficiency. The least of these is the constant static

stability which must be assumed by all energetically consistent quasi-

geostrophic models. Of greater consequence is the balance assumption, which

prevents us from accurately simulating the behavior of the equatorial zero-wind

line. Also, the limited truncation of the model does not allow us to resolve

(nonlinear) interactions involving high wavenumber components of large

amplitude. Our solution to the problems associated with truncation, which

involved the inclusion of the fourth-order damping term, meant the curtailment

of significant eddy transport by higher wavenumbers in the troposphere, which in

turn resulted in the trapping of orographic waves near the surface. We have

experimented with simple horizontal eddy diffusion-type parameterizations of

these transports in the lowest layers, but thus far no paramaterization has been

found of sufficient sensitivity to the basic state so as to correct the problem.
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IV. THE UNPERTURBED MIDDLE ATMOSPHERE EXPERIMENT

4.1 Purpose of the Experiment

In the preceding chapter we discussed the various improvisations that went

into the design of our model with a view to understanding both its capabilities

and limitations in simulating the behavior of the real atmosphere. Our ultimate

aim is, of course, to be able to predict the atmosphere's response to changes in

the external forcing- in particular, the changes associated with solar

variability on time scales of the order of several days to a few weeks. In

modelling the atmosphere's sensitivity to such changes, we first need to

understand its behavior in the absence of any perturbations in order to

appreciate both qualitatively and quantitatively the significance of the

presumed solar signal. In this chapter we present the climatology of the model

during the late winter and early spring in the form of monthly averaged

statistics for January (days 31-60), February (days 61-90), and March (days

91-120). These statistics were the result of continuing the run already

discussed partially in Section 3.4, which dealt with the model output for day 30

of the simulation.

Our choice of time period for the experiment is dictated by the goal of

this thesis, which is to test the viability of the Hines mechanism as a causal

chain linking solar activity to changes in atmospheric circulation in the

troposphere. Doing this requires two things: a) the presence of sunlight at the

latitudes of interest, and b) significant planetary wave activity in the

stratosphere and mesosphere during the time period of the simulation. The first

of these is made necessary by the presumption that ozone is the triggering link

which instigates changes in planetary wave behavior. The second requirement

restricts the time period of interest to the winter and spring. As such, our
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control fields will be taken from February and March, by which time the model

should have already reached quasi-equilibrium.
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4.2 Climatology of the Zonal Mean Flow

We begin our discussion of the model climatology with a description of

those background fields which determine the propagation characteristics of

planetary waves, primarily the zonal wind and temperature. Before this we need

to consider the background radiative forcing, which is illustrated in Figs.

4.1(a)-(c). From these we see that as the sub-solar point progresses

northwards, the diabatic heating field throughout the entire depth of the

atmosphere becomes more and more symmetric with respect to latitude, a

characteristic also typical of the field of temperature, as shown in Figs.

4.2(a)-(c). Because of the thermal wind relation, the resulting decrease in

the meridional temperature gradient implies a weakening of the winter

mesospheric jet and a progression of the zero-wind line from equatorial regions

to mid-latitudes, as is the case in Figs. 4.3(a)-(c).

Figs. 4.4-4.5 display observations of temperature and zonal wind taken from

the years 1978-1982 as reported by Wu, et al (1984). A few comments are in

order regarding the relationship between the observed climatology of the middle

atmosphere and that produced by the model. Firstly, the model extremes in the

temperature field are generally lesser in magnitude than the corresponding

extremes in the observations. In the tropical tropopause, this discrepancy may

be due partly to the balance assumption and partly to the adjustments in the

tropical diabatic forcing as discussed in Section 3.1. In the vicinity of the

polar lower stratosphere, the very cold temperatures of observations are

associated with the presence of high latitude jets in the upper stratosphere

which, as mentioned earlier cannot be simulated properly by the model owing to

its limited truncation. This lack of horizontal resolution may also explain why

the Northern Hemisphere tropospheric jet stream is located somewhat south of its

observed position, as intermediate and synoptic scales would normally contribute
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significantly to the zonal momentum budget of the upper troposphere. On the

whole, though, agreement between the model and observations seems adequate.

Contours of potential vorticity gradient consistent with the model basic state

are shown in Figs. 4.6(a)-(c) for future reference. Notice the decrease in

potential vorticity available to planetary waves from winter to spring.

Meridional circulation patterns for the three months are illustrated in

Figs. 4.7(a)-(c), while Figs. 4.8(a)-(c) show the corresponding distribution of

ozone. Note that as a consequence of the lower stratospheric extension of the

mid-latitude Ferrel cell, coupled with the decrease in lateral mixing by

planetary waves during the spring, the Arctic maximum in ozone concentration

occurs further south in February and March than in January.
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4.3 Wave Climatology

We now proceed to examine the structure of the planetary waves in the model

as compared to the observations of Wu, et al (1984). Figs. 4.9-4.10 illustrate

the climatology of model geopotential wavenumber 1, while the corresponding

observed climatology is demonstrated in Figs. 4.11-4.12. An important feature

of the comparison is that the model amplitudes are somewhat weaker than those

implied by the observations (by a factor of two at 10 mb), a fact we attribute

to the trapping of wave energy at the lowest layer owing to the diminished eddy

momentum transport in the troposphere. The phase contours of Figs. 4.10(a)-(c),

apart from showing clear signs of westward propagation in the stratosphere and

mesosphere, exhibit little variation in their structure from month to month.

This is different from the apparent transience in the phase contours

corresponding to observations (Figs. 4.12(a)-(c)), which is probably indicative

of sudden warming activity, particularly in the late winter. Since the accurate

simulation of wave transience depends on satisfactory resolution of wave-wave

interactions in both the troposphere and stratosphere, as is apparently

indicated by the most recent modelling studies (see Section 3.2), we cannot

expect our model to duplicate the observational features associated with this

aspect of planetary wave behavior. Agreement between the behavior of the model

and the observations is better for geopotential wavenumber 2 than for wavenumber

1, as is demonstrated by Figs. 4.13-4.16.

Figs. 4.17-4.19 show the eddy transports and resulting decelerations of the

zonal flow for the model waves, while Figs.4.20-4.22 give their observational

counterparts for the standing eddies. Here again we see a difference of a

factor of two between the model fields and the observations, a defect linked to

the failure of the model to simulate properly the buildup of wavenumber 1

amplitude in the winter and spring.
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4.4 Model Energetics

To complete the discussion of the climatology of the model atmosphere, we

present an analysis of the energetics of the general circulation, as illustrated

in Figs. 4.23(a)-(c). Note that we have not explicitly included the effects of

the fourth-order dissipation in the analysis, as only the latitudinally

varying component of this dissipation contributes to the horizontally averaged

energy cycle. Since this component decays rapidly away from the poles and

affects primarily the higher wavenumbers, it is important only in the

high-latitude troposphere, which contains a relatively small fraction of the

total atmospheric mass.

Comparison of the three-month average of the tropospheric energy storage

terms of Figs. 4.23(a)-(c) with those of Oort and Peixoto (1983; see Fig. 3.6)

shows good agreement between the model and observations, except in the case of

the eddy kinetic energy, which in the model is s80% less than the observed

value. This is undoubtedly due to the drastic decrease in the amplitudes of

intermediate scale planetary waves enforced by the fourth-order diffusion

terms. Since much of this energy in the real atmosphere is found in synoptic

scale motions, this is not in itself a serious problem.

In the stratosphere, there is a general weakening of the model circulation

from winter to spring as net zonal available energy is no longer generated but

dissipated by the radiative forcing. This available energy is related to the

reservoir of potential vorticity gradient in the basic state, which supplies the

fuel for the growth of planetary waves in the stratosphere. As this supply

diminishes, the amplitudes of the waves decrease, leading to a reduction in the

magnitudes of the eddy storage terms and in the conversion terms representing

the exchange of energy between the zonal mean and eddy circulations. Moreover,

the reversal of the meridional circulation in the Southern Hemisphere
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stratosphere during the spring (see Fig. 4.7) results in a change in the sign of

the conversion between zonal kinetic and available energies.

The directions of the energy transformations in the model mesosphere differ

from those in the stratosphere in that the mesospheric eddies draw energy from

the zonal flow, rather than vice-versa. In the case of the available energy

conversion, this is due to the differing signs of 9[T]/36 between the

stratosphere and mesosphere (see Fig. 4.2). On the other hand, the focusing of

wave energy in the polar lower stratosphere leads to an equatorward momentum

flux (Fig. 4.20), which in turn leads to an acceleration of the zonal flow at

high latitudes (Fig. 4.22). This is the opposite of what occurs in the

mesosphere, where poleward momentum transfer predominates, thus implying a

difference of sign in the term CK in eqs.(3-2) compared to that in the

stratosphere.



-73-

V. A SOLAR-TERRESTRIAL EXPERIMENT

5.1 Solar Flare Simulation

The numerical model discussed in the previous two chapters provides an

especially suitable tool with which to investigate the hypothesized link between

solar activity and middle atmospheric planetary-scale waves. The experiment we

have designed for this purpose is similar to that of Schoeberl and Strobel

(1978) in that we simulate the effects of a major solar flare on the

general circulation of the stratosphere and mesosphere. Our model, however,

provides a more valid test of atmospheric response to such a perturbation in

that the radiative and photochemical effects are consistently calculated.

Moreover, Schoeberl and Strobel used a zonal mean model and ignored wave-mean

flow interactions, without which the atmosphere may be less sensitive to changes

in external forcing.

The strength of our simulated solar flare is comparable to that of the

August 1972 solar proton event as analyzed by Reagan, et al (1981), and can be

measured in terms of the total odd nitrogen production resulting from the flare

(see Figs. 5.1-5.2). In our primary experiment, this is given approximately by

the formula:

AnNOx= (2 x 109 mol/cc)A(e)exp[-0.169(Z-6.49) 2] (5-1)

where the latitudinal distribution is given by

1 ,6>690

A(6) =

exp[(Q-69*)/11.50] ,6<69*

(We do not consider the direct heating of the atmosphere due to the fast

protons themselves, as only a negligible fraction of their energy goes directly

into translational energy of atmospheric molecules.) Note that the above
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distribution of solar flare-produced odd nitrogen is asymmetric with respect to

the equator. Actual measurements indicate that the distribution is symmetric

for high energy (=100 MeV) protons, whereas for less energetic particles, this

may not necessarily be the case (see Chivers and Hargreaves, 1965; Wescott,

1966), hence we also conducted an experiment wherein we employed a symmetric

distribution of perturbation NO * As we are interested primarily in the

Northern Hemisphere, we will first discuss the results of the asymmetric

distribution experiment, which has the advantage of minimizing the effects of

any spurious dynamical coupling between the hemispheres due to our use of the

global balance assumption. This will be followed by a discussion of the

symmetric distribution experiment, but we note parenthetically that the Northern

Hemisphere results in this case are similar to those in the asymmetric case.

The NOX perturbation is not added instantaneously (a precaution against

computational instability), but is instead added in equal increments per time

step over the first two days of the experiment. Meanwhile, the perturbation

NOx is advected according to:

3X"NOX /3t = -k x V*.VX"NOX - V-X"NOX VX/3P

+3(PWX"NOX )/P (5-2)

-(1/H 2)3(KdP3X"NOx /aZ)/aP

where X"NOX is the perturbation NOx mixing ratio. As in the ozone

prediction equation, we assume that the diffusive flux of perturbation NOx

vanishes at the top of the atmosphere.

Implicit in eq.(5-2) is that we are ignoring changes in the prescribed

background NO- concentration due to circulation changes induced by the solar

flare. Thus we are effectively treating the prescribed background and predicted

perturbation NOx as separate tracers, the former being externally specified as

in the unperturbed run (see Chapter IV). Furthermore, we shall not consider the
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effect of a transient injection of HOX which usually accompanies a solar

flare, as the photochemical perturbations due to this injection have a timescale

of only a few hours (Solomon and Crutzen, 1981). We are also ignoring HNO 3 as a

temporary sink for perturbation NOx via the reactions:

OH + NO2 + M + HNO3 + M (5-3)

HNO 3 + hv + OH + NO2  (5-4)

HNO 3 is only important as a NOx reservoir in the lower stratosphere where

ozone is in any case controlled primarily by dynamics rather than by

photochemistry.

In implementing the numerical scheme for advecting perturbation NOx, we

encountered the common problem of negative mixing ratios-'a difficulty we

resolved by the technique of "borrowing-and-filling" whereby the negative ratios

were set equal to zero and the difference extracted proportionally from the

positive values in the same horizontal level. The resulting mixing ratios were

then added to the prescribed background NOx to form a field of total NOx.

This total NOx was then used in the calculation of the photochemical source

term G in the ozone prediction equation.

It should be remembered that the solar proton event of August 1972 was an

unusually strong one in comparison to most solar flares, so that our experiment

is not necessarily indicative of the effects of corpuscular radiation

accompanying more regular events, such as solar sector boundary crossings.

Rather, the experiment provides an upper limit test case wherein the result of a

major ozone perturbation with spatial and temporal characteristics typical of

solar-terrestrial signal can be evaluated. Moreover, this experiment is, to the

best of our knowledge, the first detailed simulation of an odd nitrogen

injection into the upper atmosphere using a three-dimensional model capable of

resolving all the major feedbacks, whether radiative, dynamical, or

photochemical.
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5.2 Model Response to Solar Forcing

We now discuss the results of two month-long simulations of a

(hemispherically asymmetric) solar proton event, the first proton event being in

February, representing late winter conditions, and the second in March,

representing the spring. In each experiment, the solar flare begins at the end

of the first day of the month, reaching its peak in integrated NOx production

two days later- a computational expediency designed, as noted earlier, to avoid

spurious advection of NOx due to large gradients in species concentration.

Since the model is non-diurnal, we cannot hope to properly resolve circulation

changes occurring within a day, so that the time scale of interest is on the

order of a week. Figs. 5.3-5.10 illustrate the changes (perturbed case minus

unperturbed case) in geopotential amplitude and phase for wavenumbers 1 and 2 at

60N during each day of the simulation. (The amplitudes and phases for each

experiment are computed separately before the subtraction.) In each case, the

figures show initially growing disturbances above 45 km, which begin much

earlier in the March event than in the February event. This may be attributed

to the fact that sunlight penetrates higher latitudes only towards the middle of

February, so that changes in ozone due to the injected NOx and its subsequent

effects are activated sooner in March, when the photochemically and

thermodynamically important sunlight is more readily available. The maximum

absolute changes for the two months are of the same order of magnitude and are

comparable to the day-to-day variations in mesospheric wave amplitudes and

phases. However, because the circulation is stronger in winter than in spring,

the relative changes are smaller in February (-4%) than in March (10%). For

this reason, we shall analyze the March experiment in greater detail.

Figs. 5.11(a)-(d) show the development of the field of perturbation NOx

during March. The apparent result of the mean meridional circulation is to
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advect NOX downwards to the lower stratosphere, while the planetary waves tend

to diffuse the species out towards the equator. The effects of this spreading

perturbation on ozone and on the diabatic heating are shown in Figs. 5.12(a)-(d)

and 5.13(a)-(d). The maximum ozone decrease occurs near the pole at around 45

km and is of the order of 2 ppmv, representing a relative change of around

-25%. The ozone changes, like the NOX perturbation, propagate downwards in

time as the increase in the ambient NOX results in greater catalytic

destruction of ozone. The ozone decrease, in turn, leads to a decrease in

absorption of ultraviolet light and hence to a reduction in the net diabatic

heating as shown in Figs. 5.13(a)-(d). The heating changes are of the order of

-0.2 K/day near 45 km and represent a 10% reduction of the unperturbed values.

Note in particular how the effects of the perturbation diminish as the

additional NO, sinks towards those levels where dynamics becomes dominant over

photochemistry in the ozone prediction equation.

Changes in temperature and zonal wind accompanying the solar flare are

illustrated in Figs. 5.14(a)-(d), which show maximum temperature decreases of

the order of 1K near the pole. The perturbation cooling apparently intensifies

the meridional temperature gradient, which in turn leads to an increase in the

zonal wind speed in the mesosphere of the order of 2 m/s near 40N, as may be

seen from Figs. 5.15(a)-(d). This is an appreciable change, considering that

the mean zonal wind in this region is of the order of 20 m/s in late March.

That this is not a secondary effect induced by planetary waves is demonstrated

by the contours of the change in the Eliassen-Palm flux divergence in Figs.

5.16(a)-(d). These show the maximum decelerations due to the "perturbation

waves" to be several degrees north of the largest zonal wind deviations. The

actual acceleration of the mesospheric jet is accomplished by the Coriolis

torques associated with a mean meridional circulation induced by the diabatic

heating perturbation, illustrated in Figs. 5.17(a)-(d). Notice how the
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descending branches of the meridional cells coincide with the region of major

perturbation cooling in the upper stratosphere.

Figs. 5.18(a)-(d) portray the time development of the change in the

latitudinal gradient of potential vorticity during the solar proton event. The

relative change of this quantity in the mesosphere at 60N is of the order of 3%,

whereas the relative zonal wind deviations in the same vicinity are of the order

of 5%. Examination of the first term on the right hand side of eq.(3-19)

reveals that the relative changes in the square of the refractive index implied

by the perturbations in zonal wind and potential vorticity gradient are no

larger than 3% at high latitudes.

The actual dependence of wave amplitude on refractive index is quite

complicated, but it is nevertheless instructive to explore what would happen in

a simpler analytical model if the refractive index of the basic state were to be

perturbed by the same relative amount as in our numerical experiment. An

appropriate model is that of Charney and Drazin (1961; see also Section 3.2),

who used the quasi-geostrophic potential vorticity equation on a mid-latitude

S-plane to determine the vertical structure of steady waves in the presence of a

constant mean zonal wind. The refractive index squared (denoted by r)

corresponding to the case of geostationary disturbances is then:

r = (Ra/f0
2 )[O/[u] - k 2 ] - 1/4 (5-5)

where f0 is the Coriolis parameter at the center of the a-plane. In eq.(5-5) we

have made the additional assumption that the waves have an infinite latitudinal

scale, as did Hirota (1971), who employed a linearized lower boundary condition

of the form:

W(Z=0) = ik[u](h/H)exp(ikx) (5-6)

together with the Charney-Drazin model in deriving the following expression for

the density-weighted amplitude of the perturbation geopotential:

1 00*1 = 2Ra(h/H)/(1+4r)1/2 (5-7)
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We can relate the simple Charney-Drazin (1961) refractive index to the Matsuno

(1970) index by noting that the horizontal curvature of the mean zonal wind

changes the effective value of 0 "felt" by the waves, whereas the meridional

2 2
scale of the waves themselves may be taken into account by setting k =n(n+1)/a2.

Differentiating eq.(5-7) with respect to r, we get:

dI0o*I/dr = -4Ra(h/H)/(1+4r)3/2  (5-8)

so that:

A 0 0 = -[2r/(1+4r)]Ar/r

Setting k 2=12/a 2, 0=20/a, [u]=20 m/s, f0=10~ s ~, and a=83K, we obtain:

At0o*I0/I 1 " -0.44(Ar/r)

so that a 3% increase in the refractive index squared would imply a 1.3%

decrease in wave amplitude. Even though the analytical model employed above is

relatively simple, it would seem from our order-of-magnitude calculation that

the 10% increase in the amplitude of wavenumber 1 resulting from the solar flare

cannot be explained by alterations in the basic state. It is far more likely

that planetary waves are excited directly by the diabatic heating perturbations

associated with the flare, as we now proceed to demonstrate.

The spatial structure of the waves excited by the solar protons is

illustrated in Figs. 5.19-5.22, which show the time variations of the amplitudes

and phases of the "perturbation" wavenumbers 1 and 2 (calculated in the same

manner as in Figs. 5.3-5.10). The decrease in ozone heating in the upper

stratosphere apparently resulted in the growth of planetary waves above the

region of maximum change in the thermal forcing. The phase contours of Figs.

5.20(a)-(d) and 5.22(a)-(d), however, show primarily eastward tilt with height

in the high latitude mesosphere. This would seem to imply a diminishing of

upward energy propagation from the stratosphere, contrary to the evidence

afforded by the amplitudes of Figs. 5.19(a)-(d) and 5.21(a)-(d). We resolve

this paradox in the following manner.
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The energy diagrams of Fig. 4.23(c) show that the net effect of the

diabatic heating in the stratosphere and mesosphere is to dissipate the eddy

circulation. Strobel (1979) showed that the damping rate associated with this

radiative dissipation above 40 km can be parameterized as follows:

aT = a + (CH/T2 )y (5-5)

where a is the Newtonian infrared cooling coefficient, C a positive constant, H

the ozone heating rate, and ? a function of the ozone column amount, N,

representing opacity effects. The transmission function ' is, in turn,

empirically given by the formula

T = 13.47 - 0.325 In N (5-6)

The second term on the right hand side of eq.(5-5) takes into account the

buffering effect of ozone on temperature perturbations, known as "photochemical

acceleration" (Leovy, 1964; Blake and Lindzen, 1973), which comes about because

of the temperature dependence of photochemical reactions in the upper

atmosphere. The most sensitive quantity controlling the magnitude of the

photochemical acceleration term is, in fact, the ozone heating rate, so that a

decrease in this quantity may produce a comparable relative increase in wave

amplitude owing to the reduced thermal dissipation. This would seem to be the

case for wavenumber 1, whereas wavenumber 2 does not appear to be as

significantly affected by the solar perturbation presumably because it is guided

further equatorward of the maximum ozone changes than is wavenumber 1. Above

the region of maximum perturbation cooling, the atmosphere would tend to relax

towards radiative-photochemical equilibrium with much the same time constant as

in the unperturbed case. We show in the Appendix that radiative dissipation

leads to a decrease in the westward tilt with height of vertically propagating

planetary waves, a fact which probably explains the eastward tilt of the phase

contours in Figs. 5.20 and 5.22.

A concise summary of the mechanism we believe to be responsible for the



-81-

solar activity effects noted above is as follows:

1) Solar flare protons are dumped in the high latitude stratosphere

generating significant concentrations of odd nitrogen species as

a result of the ionization of chemically inert nitrogen molecules.

2) The odd nitrogen produced by the solar flare is advected downward

and equatorward to regions where sunlight is available. The sunlight

then activates the odd nitrogen, resulting in the catalytic destruction

of ozone, which in turn reduces the photochemical acceleration rate in

the upper stratosphere around 60N.

3) Planetary wave amplitudes increase in the vicinity of the maximum

radiative changes. The excited waves propagate through the mesosphere

acquiring an eastward tilt with height as a result of the atmosphere's

relaxation to radiative-photochemical equilibrium away -from the thermal

forcing.

4) Independent of the changes in the eddy circulation, the high latitude

stratospheric cooling resulting from the solar flare induces a thermally

direct mean meridional circulation at mid-latitudes. The Coriolis

torques associated with this cell accelerate the zonal wind in the

mesosphere around 40N.

5) As the solar flare-generated odd nitrogen reaches the lower stratosphere

where photochemistry is no longer dominant in comparison to the

dynamics, solar activity effects diminish so that no significant

changes in atmospheric circulation are found below 30 km.

We repeated the March experiment using a hemispherically symmetric

distribution of perturbation NO and found a slightly larger response in the

Northern Hemisphere. In the case of the amplitude of planetary wavenumber 1,

the maximum changes were around 19 gpm instead of the 16 gpm maximum amplitude

deviation in the previous experiment, whereas the maximum zonal wind increase
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was 3 m/s, compared to 2 m/s in the asymmetric case. The differences between

the two cases are perhaps not significant considering the uncertainties

introduced by the global balance approximation in assessing cross-equatorial

coupling between the hemispheres.

The major result of our numerical experiments is ultimately a negative one

in that we have demonstrated the infeasibility of ozone-circulation coupling as

an important trigger mechanism linking solar activity to observable

meteorological signals in the lower atmosphere.
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VI. SUMMARY AND CONCLUSION

In the introduction to this thesis, we briefly reviewed the evidence

concerning possible short-term solar-terrestrial coupling in the neutral

atmosphere- evidence which, while suggestive, remains as yet inconclusive. One

of the difficulties in interpreting the available observations is that there are

dynamical processes in the atmosphere which have natural time scales nearly

coincident with those of solar activity, so that an accidental correlation

involving such processes might easily be mistaken for a solar signal. Given the

tentativeness of many claimed solar-terrestrial correlations, there exists a

great need for plausible mechanisms by which such evidence may be properly

evaluated. One such mechanism, proposed by Hines (1974), postulates the

existence of an atmospheric trigger, which when activated by solar disturbances,

results in the modulation of planetary wave activity in the stratosphere and/or

mesosphere, leading to signals in the troposphere. The primary contribution to

sun-weather research in this thesis has been to provide a rigorous test of a

variant of the Hines mechanism, one which presupposes ozone to be the necessary

trigger. The test involved the only indubitable solar-induced ozone

perturbation known to occur, namely that associated with an energetic solar

proton event.

In order to provide an accurate test of the role of stratospheric ozone in

a sun-weather hypothesis, it was first necessary to construct a numerical model

which included all the major feedbacks involving the chemistry, radiative

transfer, and dynamics of the middle atmosphere. The one which I have developed

and used for the solar-terrestrial experiment is, to my knowledge, the most

detailed middle atmospheric global balance radiative-dynamical-chemical three-

dimensional model currently available. It successfully reproduces many

important features of the observed circulation, such as the mesospheric polar
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night jet and the mean meridional circulation of the troposphere and

stratosphere. An important part of this thesis involved the development and

subsequent analysis of various components of the model in order to ensure proper

simulation of the phenomenon of interest.

The model's response to the simulated solar proton event consisted of the

following chain of events: (a) a decrease in ozone concentrations of 25% at the

polar stratopause, (b) a subsequent change in the diabatic heating rate of about

-0.3 K/day in the same vicinity, (c) an increase in mesospheric wave amplitude

of 10-20 gpm resulting from the decreased photochemical acceleration rate in the

upper stratosphere, and (d) an acceleration of the mid-latitude mesospheric

zonal wind due to a solar-flare induced thermally-direct mean meridional

circulation. The changes in both zonal wind (=2 m/s) and geopotential height

accompanying the simulated solar flare are below the level of detection of

satellite measurements, so that no observationally important circulation effects

can be expected to result from a real solar flare. Our negative result implies

that for the Hines mechanism to be valid, some triggering link other than

stratospheric ozone must be involved, particularly one which is more effective

at producing changes in the lower stratosphere. One such possible link,

proposed by Dickinson (1975), involves the influence of galactic cosmic rays

(whose fluxes are modulated by solar activity) on the aerosol content, and hence

the radiative and thermal budget of the atmosphere.

In the future, the model developed for the purposes of this thesis may be

usefully applied to the study of other problems involving the ozone layer, such

as the effects of fluorocarbon pollution on stratospheric chemistry. It can

also be used to address the current controversy over the origin of the dramatic

springtime minimum in the Antarctic ozone column, which some have linked to the

11-year solar cycle (Callis and Natarajan, 1986).

In addressing possible future improvements to the model, perhaps the most
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serious shortcoming is the model's limited truncation, which necessitated the

inclusion of an artificial fourth-order diffusion term in the governing

equations. This resulted in an underprediction of the strength of the eddy

circulation in the middle atmosphere as well as the exclusion of certain

transient features associated with nonlinear wave interactions. The

underprediction problem may probably be addressed by employing an as yet

unspecified parameterization of intermediate and synoptic scale eddy transports

in the lower troposphere. Such a parameterization should adjust the

mid-latitude surface westerlies to allow greater vertical energy propagation

into the upper levels. The exclusion of transient features is more serious, and

would probably require an extension of the model resolution. The model's

inability to simulate the appearance of high latitude jets in the stratosphere

("sudden cooling") could conceivably have a bearing on the results of our

solar-terrestrial experiment. Such high-latitude jets would focus waves more

towards polar regions, where solar-induced ozone changes are greater and would,

in addition, reflect more wave energy down towards lower levels, possibly

resulting in detectable signals in the upper troposphere. However, we have

noted that the ozone concentration and diabatic heating changes due to NOx

injections require the presence of sunlight, which when present at high

latitudes diminishes the available supply of background potential vorticity

gradient, hence rendering such "sudden coolings" unlikely. We conclude,

therefore, that our numerical experiments provide a realistic assessment of the

atmosphere's response to a major solar-induced ozone perturbation.
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VII. TABLES AND FIGURES

Table 2.1 A _

Model Physics

Infrared Emission

Mechanical
Dissipation

Tropospheric
Heating

Synoptic Scale
Motions

Photochemistry

Ozone Transport

Orographic
Forcing

CAPP Model Scheme

Newtonian Cooling
Parameterization

Eddy Diffusion

Observed Zonal
Heating Plus Zonal
and Non-zonal
Relaxation Terms

Truncation at
Wavenumber 6

Reaction Rates
Circa 1974

Vertical Flux
Convergence Term
Neglected

Topographic
Symmetry
About Equator

Current Model

Explicit Band
Model and
Curtis Matrix
Calculation

Eddy Diffusion
Plus Rayleigh
Friction

Non-Zonal
Forcing
Adjusted

Fourth Order
Diffusion

Updated Reaction
Rates Plus
Additional
3-Body Reaction

Vertical Flux
Convergence Term
Included

Realistic
Southern
Hemisphere

Reason

CAPP Model
Underestimated
Diabatic
Forcing

Simulation
of Breaking
Gravity Wave
Turbulence

Better
Tropospheric
Boundary
Flux

Curbs
Spectral
Blocking

Improved
Mesospheric
Circulation

Better
Ozone
Transport

More Realistic
Topography

I I -



-87-

Table 2.2

Level j P. Z. z T-
(M z(km) (KI (K)

1 0.040 10.137 71.6 211 41.0

2 0.059 9.731 69.0 219 43.1

3 0.089 9.326 66.3 226.5 46.1

4 0.134 8.920 63.5 234 48.2

5 0.200 8.515 60.6 241.5 49.7

6 0.301 8.109 57.6 249.5 50.0

7 0.451 7.704 54.5 258.5 52.0

8 0.677 7.298 51.4 267 64.9

9 1.01 6.893 48.2 267.5 82.9

10 1.52 6.488 45.0 261.5 90.3

11 2.28 6.082 41.9 254.5 88.2

12 3.43 5.677 38.8 248.5 85.3

13 5.14 5.271 35.9 242.5 82.9

14 7.71 4.866 33.0 237 81.4

15 11.6 4.460 30.2 231 80.5

16 17.3 4.055 27.5 225 78.1

17 26.0 3.649 24.8 219.5 75.1

18 39.0 3.244 22.2 214.5 70.9

19 58.5 2.838 19.6 211.5 64.9

20 87.8 2.433 17.1 210.5 58.0

21 132 2.027 14.6 213 46.4

22 198 1.622 12.0 222 37.4

23 296 1.216 9.3 234 29.9

24 444 0.811 6.4 248 20.9

25 667 0.405 3.4 266 20.9

26 1000 0.0 0.1 287 23.9
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Table 2.3 m

Standard Latitudes
(degrees)

81.1N

69.6N

58. ON

46.4N

34.8N

23.2N

11.6N

0

11.6S

23.2S

34.8S

46.4S

58.0S

69.6S

81.1S

Standard Longitudes
(degrees)

0

22.5E

45E

67.5E

90E

112.5E

135E

157.5E

180E

157.5W

135W

112.5W

90W

67.5W

45W

22.5W

I
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Table 2.4

Wavenumbc. Interval 1(sky0k)1/2

(cm 1 ) k (gm /2

625-650 301.5
650-675 890.8
675-700 354.7

Spectral Band Data for 15P Band of CO2 (McClatchey, et al,

Table 2.5: Newtonian Cooling Coefficient

Level h(day~1)

20 .02
21 .02
22 .03
23 .09
24 .22
25 .50
26 1.00

Table 2.6: Zonal Tropospheric Heating Coefficients

a1  a 2  a 3

(deg)

3.2 8.4 3.2 -3.0

2.6 7.4 3.0 -2.3

2.9 0.0 1.3 -0.1

3.7 -7.5 0.2 0.1

4.0 -8.9 0.1 -0.3

4.5 -10.0 0.1

5.5 -11.5

-0.8

0.5 -1.5

bi b2 b3  b4

(deg/day)

.14

.10

-. 20 .02

-. 10 .00

.07 -. 11 -. 05

.11 -. 15 -. 10

.24 -. 53 -. 13

-. 02

.02

.13

.29

.28

.34 -.20 .15 -.25

.20 .06 .08 -. 24

Table 2.7: Non-zonal Tropospheric Heating Coefficients

m m
m n c S

n n

1 2 1.12 8.05

1 4 -2.09 -1.48

2 3 -8.57 2.15
2 5 -1.23 2.14

1973)

Level
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Table 2.8

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

NO + 03 + NO 2 + 02

NO2 + 0 + NO + 02

NO2 + hv + NO + 0

OH + 03 + HO2 + 02

OH + 0 + H + 02

H + 02 + M + H02 + M

H + 03 + OH + 02

HO2 + 0 + OH + 02

HO2 + 03 + OH + 202

03 + 0 + 202

03 + hv + 0 + 02

O + 02 + M + 03 + M

02 + hv + 20

C10 + 0 + Cl + 02

C10 + NO + C1 + NO2

O + 0 + M + 02 + M

NO + H02 + NO2 + OH

k3 =

k4 =

JNO 2

k 1 2=

k 1 6 =

k 17=

k 1 8 =

k20=

k22=

J03

125=

Jo 2
k31=

k 32=

137=

k 38=

3.6x10- 12exp(-1560/T)

9.3x10- 12

1.9x10- 12exp(-1000/T)

2.3x10l 1 exp(110/T)

5.9x10- 32(T/300)

1.4x10-1 0exp(-480/T)

3.7x10~
1 1

1.4x10~ 14exp(-600/T)

1.8x10~ exp(-2300/T)

6.2x10- 34(T/300)-2

7.5x10 1 1exp(-120/T)

6.2x10- 12exp(294/T)

4.8x10- 38exp(900/T)

3.7x10- 12exp(240/T)
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Fig. 3.4(d) XM (12 gm/s) Based on Observations for December-February (after Louis, 1975)
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Fig. 3.11: RUN35 [ul (m/s) at 50N
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Fig. 3.12: RUN35 Wavenumber 1 Amplitude (gpm) at 50N
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Fig. 3.13: RUN35 Wavenumber 2 Amplitude (gpm) at 50N
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Fig. 3.22:VRUN36 [u] (m/s) at 50N
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Fig. 3.23: RUN36 Wavenumber 1 Amplitude (gpm) at 50N Km
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Fig. 3.24: -RUN36 Wavenumber 2 Amplitude (gpm) at 50N
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Model Wavenumber 1 Amplitude (gpm) for day 30
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Model Wavenumber 2 Amplitude (gpm) for day 30.
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Model XM 12 gm/s) for day 30
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Fig. 5.3: Wavenumber 1 Amplitude Change (gpm) for February Solar-Terrestrial Experiment
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Fig. 5.4: Wavenumber 1 Phase Change (deg) for February Solar-Terrestrial Experiment

1o

I r -

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

DAY

Km

70

(00

50

iO

30

20

10



Fig. 5.5: Wavenumber 2 Amplitude Change (gpm) for February Solar-Terrestrial Experiment Km
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Fig. 5.6: Wavenumber 2 Phase Change (deg). for February Solar-Terrestrial Experiment
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Fig. 5.7: Wavenumber 1 Amplitude Change (gpm) for March Solar-Terrestrial Experiment Km
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Fig. 5.8: Wavenumber 1 Phase Change (deg) for March Solar-Terrestrial Experiment Km
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Fig. 5.9: Wavenumber 2 Amplitude Change (gpm) for March Solar-Terrestrial Experiment Km
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Fig. 5.10: Wavenumber 2 Phase Change (deg) for March Solar-Terrestrial Experiment
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VIII. APPENDIX: EFFECTS OF RADIATIVE DAMPING ON PLANETARY WAVE PROPAGATION

The details of the following derivation are after Dickinson (1969). We

begin with the linearized equation for perturbation potential vorticity on a

mid-latitude 8-plane with thermal dissipation- written in the notation of

Chapter III as follows:

3q0 *Iat + [u]3q0*/3x + 3**/3x 3[q 0 ]/3y

= -(f0 2/RP)9((PoI/a)3 */3Z)/9Z (A-1)

where:

x = (a cos6)A

y = a6

f0= Coriolis parameter at the center of the a-plane

aT= radiative dissipation rate (including photochemical acceleration)

We assume that [u], a, and cu are all constant, and that the perturbation

streamfunction has the form:

= 7 0(Z)exp[i(kx+ly-kct)+ Z/2] (A-2)

Substituting eq.(A-2) into eq.(A-1), we obtain the following equation for the

vertical variation of **:

d2 0/dZ 2 + n2 T0 = 0 (A-3)

where:

n = F/(1-ie) - 1/4

F = (Ra/f 0
2 )[ 0/[u] - (k 2 +1 2 )

e = oT/[u]k

The solution of eq.(A-3) which satisfies the radiation condition at Z+0 is

T0Z = A exp[(iy-r)Z] (A-4)

where:

Y = [ n2 + (n2)rI1 /2/V2

r = [1n21 - (n2)r]1/2//g
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(n2)r = F/(1+E2 ) - 1/4

Eqs.(A-2) and (A-4) may be combined to yield:

** = A exp[(1/2 - r)z]exp[i(kx+ly+yZ-kct)] (A-5)

Note that y is a positive definite quantity, so that if k>O, then contours of

the phase angle $=kx+ly+yZ-kct must have westward tilt with height.

Furthermore, let

B = 2y2/F = 1/(1+c 2) - 1/4F + [(1-1/2F)/(1+e2) + 1/16F 2] (A-6)

so that B is a measure of the westward phase tilt of the wave described by

eq.(A-5). Clearly if radiative dissipation is present (e is non-zero), the

value of B will be reduced in comparison to when e=O, so that the dissipation

decreases the westward phase tilt of the wave.

MMMEMMIN99MOMM-
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