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ABSTRACT

The forcing of large-scale, stationary, zonally asymmetric motions by
tropical diabatic heating is examined using idealized models. An equatori-
al 0-p ane, five-layer primitive equation model is used to study the
nonlinear tropical response to time-mean, zonally asymmetric forcing.
Idealized simple forms of diabatic heating are prescribed, and a time-
marching approach is used to obtain steady-state solutions. Linear and
nonlinear solutions are compared, and the sensitivity of the response to
the intensity and scale of the heat source and to its latitudinal position
is discussed. For the linear model, dissipative effects near the equator
are important. Nonlinear balances are dominant close to the equator for
the nonlinear model. In the case of heating centered at the equator, the
maximum upper-level winds are found to the east and to the west of the
heating for the linear case. For the nonlinear case, the response is
strongly dependent on the heating intensity. Linear and nonlinear solu-
tions are very similar for small heating but differ substantially for
moderate to strong heating. Maximum upper-level response for the nonlinear
case is found in the subtropics to the east and polewards of the heat
source, and there is a considerable degree of east-west asymmetry at
equatorial latitudes. For the lower levels the region of westerlies to the
west of the heat source becomes longitudinally more confined. Nonlineari-
ties are important in the zonal momentum equation, and the zonal wind is
approximately in geostrophic balance even near the equator. In the
thermodynamic equation, diabatic heating is balanced primarily by adiabatic
ascent or descent. Possible relations between some aspects of the nonlinear
model response and observed features of the tropical circulations and of
the upper level subtropical jet stream of the winter hemisphere are
discussed.

An observational part is also included. The horizontal structure of
the planetary-scale circulation in the Goddard Laboratory for Atmospheric
Sciences analyses of data from the First GARP Global Experiment is
presented. Streamfunction and velocity potential are calculated. The
divergent component of the flow is not much smaller than the rotational
part for the tropics. East-west (Walker-type) and localized north-south
(Hadley-type) circulations are observed to have comparable intensities.
Two east-west planetary mass overturnings are evident, one with rising
motion over South America and the other with rising motion over a broad
area extending from the eastern Indian Ocean to the western Pacific Ocean.
Subsidence occurs over the subtropical oceans and northern Africa.
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CHAPTER 1

INTRODUCTION

A traditional and fruitful approach in meteorology has been to divide

the particular phenomenon being studied into its climatological

(time-mean) and fluctuating (departures from climatology) components and

to examine these two components separately. For the large-scale motions

in the atmosphere, a suitable time-averaging period is a season or a year,

so that the climatological flow is given by the long-term seasonal or

annual averages. Generally, the climatological flow changes slowly in

response to external forcing and to boundary conditions, and superimposed

on this time mean flow are fluctuations of shorter time-scales. For the

study of the faster-changing fluctuations (perturbations), the

climatological flow (basic-state) is customarily assumed to be

time-independent and known; this approach has been historically the

backbone of stability analysis.

In a great number of cases, the perturbations owe their existence to

the hydrodynamic instability of the climatological flow, and the dynamic

behavior of the perturbations is closely related to the general properties

of this time-mean basic state. The baroclinic waves of midlatitudes, for

example, "are due to the instability of the mean, axially-symmetric,

circumpolar vortex whose gravity and Coriolis forces balance the pressure

forces associated with the radiatively induced pole to equator temperature

gradient" (Charney, 1971).

The detailed vertical and horizontal structure of the circumpolar

vortex of midlatitudes has been reasonably explained. Its longitudinal

variations, i.e., the standing wave pattern in midlatitudes, have been

associated with the atmosphere's response to large-scale orographic and



thermal forcing (Charney and Eliassen, 1949; Smagorinsky, 1953; Derome and

Wiin-Nielsen, 1971; Egger, 1976a,b; 1977).

The state of knowledge of the mechanisms responsible for the

maintenance of the tridimensional, time-mean planetary-scale flow in the

tropics is not nearly as complete as it is for its midlatitude

counterpart. Just a few decades ago, motions in the tropics were thought

to be forced essentially by midlatitude disturbances through lateral

coupling in the subtropics. Currently, it is widely recognized that

tropical circulations are forced mostly by diabatic heating sources and

sinks within the tropics primarily by the latent heating of condensation

due to cumulus convection. Therefore, it is of considerable interest to

find out what kind of circulation results from the observed time-mean

distribution of latent heating sources.

A first attempt in that direction was to study models of the axially

symmetric steady-state circulation forced by the release of latent heat of

condensation in the tropical rain belt, radiation, and transient and

stationary eddy flux divergences (Dickinson, 1971a,b; Pushistov, 1973;

Schneider and Lindzen, 1977; Schneider, 1977; Held and Hou, 1980; Crawford

and Sasamori, 1981). These axially symmetric models were successful in

simulating and explaining several aspects of the zonally averaged

circulation, such as the scale and intensity of the Hadley and Ferrel

circulations, the latitudinal position and the magnitude of the winds in

the subtropical jet stream, the easterlies in the tropics and westerlies

throughout the middle and high latitudes, and the slack temperature

gradients in the tropics. The main tropical forcing for these axially

symmetric models, i.e., the condensational heating, is assumed to be

zonally symmetric and concentrated in a narrow equatorial strip in the



Intertropical Convergence Zone (ITCZ). Some models attempt to take into

account zonal asymmetries by incorporating the observed zonally averaged

stationary eddies as forcing terms of the mean meridional circulation, as

in Dickinson (1971a,b), and Crawford and Sasamory (1981).

It is a valid question to ask whether the time-mean tropical

circulations can be accurately represented as being axially symmetric, in

which case zonal asymmetries in the forcing and in the circulation are

unimportant when compared to the symmetric part, or whether they present

longitudinal variations of such magnitude as to render the axially

symmetric representation incomplete. For example, on an ocean-covered

earth the ITCZ would be axially symmetric and the time-mean, large-scale

circulation in the tropics would be nothing but a north-south mass

overturning forced by this deep heat source at equatorial latitudes and by

radiative cooling at subtropical latitudes. A north-south overturning

would also be forced by a latitudinal surface temperature gradient only,

but several calculations have shown that such a circulation would be

shallow, weak, and have little resemblance to the observed Hadley cell.

However, there are extensive, noncontiguous land masses throughout

the equatorial area: South America, Africa and the Indonesian "maritime

continent." Land surfaces, unlike oceans, do not store much of the

absorbed solar radiation due to their considerably smaller heat capacity.

Over the tropical continents, a large fraction of the absorbed solar

radiation is used for evapotranspiration. Vertical motions due to

convective instabilities transport the water vapor upward which, upon

condensation during cumulus convection, heats up the large-scale

environment.



Unlike the oceans, tropical land masses act as a quick transfer

mechanism for solar radiation to heat up the atmosphere. For the oceans,

solar radiation is absorbed mostly at the top few meters, and the heat is

well-distributed throughout the mixed layer (20 to 100m). This and the

large heat capacity of water make diurnal and seasonal temperature

fluctuations small for the oceans. For land surfaces the scenario is

different. Absorbed solar radiation quickly raises the surface

temperature, and if there is availability of moisture, a large fraction of

the absorbed solar radiation is used for evapotranspiration. This rapid

diurnal warming of the land surface by solar radiation makes the atmosphere

column gravitationally unstable so that the water vapor, when available, is

carried upward and the conditional instability can be released.

The regions of maximum precipitation over the tropical oceans seem to

lie over warm waters, and the mechanisms to release the conditional

instability are related to large-scale convergence patterns. It is quite

likely that these large-scale convergence regions are at least initiated by

sea surface temperature (SST) gradients.

The ITCZ over the oceans is narrow (~ 100 of latitude), and its

latitudinal migration is not very large, being approximately 10* of

latitude from its southernmost to its northernmost position, and these lag

behind the sun by two to three months. This lag can be understood in term

of typical oceanic response time to external thermal forcing. Unlike the

oceanic ITCZ, the region of convective rainfall over land extends much

further poleward. For instance, over South America and Africa, this region

extends as far as 300S during the southern summer. Also, because the

response time to solar heating for land surfaces is short, there is almost



no lag between the location of the band of maximum precipitation and the

sun's position.

Therefore, it seems that due to the existence of land masses in the

tropical regions of the globe and of longitudinal asymmetries of SST's, the

distribution of precipitation (and thus, the condensational heating of the

atmosphere) for that region is far from being axially symmetric. In fact,

the distribution of precipitation in the tropics presents local maxima over

continents, and these are relatively confined in relation to the large

expanses of the tropical and subtropical oceans where (except for the

narrow oceanic ITCZ) rainfall has very low values. To illustrate the

zonally asymmetric character of tropical precipitation we show in

Figure 1.1 the zonally averaged precipitation as a function of latitude and

the corresponding standard deviation for the seasons and in Figure 1.2, for

the year. Note the high values of the standard deviation for the tropics

during southern summer and the lower but still significant values during

northern summer.

By and large the presence of zonal asymmetries in tropical rainfall

can be attributed to the existence of continents. The extensive area of

precipitation in the western Pacific Ocean would appear to be an exception

to this rule. Perhaps that is not so. Western Pacific SST's are among the

highest observed anywhere for the oceans, and this probably contributes to

the large precipitation through the mechanism of large-scale convergence

induced by SST gradients (and perhaps also by increased evaporation,

although Cornejo-Garrido and Stone (1977) have suggested that, this effect

is less important). There has been a suggestion (M. Cane and E. Sarachik,

personal communication) that those warm SST's are a result of the existence

of a western boundary "wall" provided by the Indonesian Archipelago. The
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argument goes as follows: easterly trade winds over the equatorial Pacific

transfer momentum to the ocean, which would tend to pile water up against

the western boundary. This piling up of water would create an east-west

sea level slope, thus deepening the thermocline in the western part of the

oceanic basin and causing the surface temperature to be warmer. Therefore,

it is likely that even the broad area of high rainfall in the western

Pacific Ocean is indirectly linked to the Indonesian land masses through

the above-mentioned mechanism of warmer SST's.

In addition to tropical land-sea contrasts in the zonal direction,

there are not-less-important land-sea contrasts in the latitudinal

direction as well. Because of the uneven distribution of land between the

tropical regions of both hemispheres (majority of the land in the northern

hemisphere), there are regions where a tropical or subtropical continent

lies just north of an equatorial ocean. These land masses would be

preferred regions for convection during the northern summer by the same

type of argument as suggested above for the equatorial continents, i.e.,

sustained convection caused, or at least initiated, by strong solar heating

of the ground. Here, however, it is likely that the transports of moisture

from the warm equatorial ocean would constitute a major source of water

vapor and the intense land heating would act as a mechanism for

establishing large-scale moisture convergence. The conspicuous examples of

such circulations are the West African and the vigorous Indian-Southeast

Asian monsoons during northern summer. Albeit these monsoonal circulations

are primarily initiated by the meridional land-sea contrast, the land

masses where they occur are longitudinally confined; therefore, they add to

the zonal asymmetries of the tropical thermal sources.



If zonal asymmetries in precipitation are indeed important, and we

believe they are, then we would expect to see thermally direct mass

overturnings established in the zonal plane with the rising branch located

where the release of convective heating is maximum, i.e., over the tropical

continents, and the sinking branch located where precipitation is at a

minimum, over the eastern part of the subtropical oceans.

There are a number of observational studies supporting this view and

demonstrating the importance of zonal asymmetries in the forcing of

tropical circulations. Ramage (1968) analyzed two distinct January

circulations for the eastern hemisphere and linked the differences to

anomalous precipitation over the maritime continent of Indonesia.

Krishnamurti (1971) and Krishnamurti et al. (1973) computed upper level

velocity potential fields for a summer and a winter season and detailed the

structure of thermally direct east-west circulations with intensities

comparable to that of the Hadley-type circulations and tied to zonal

asymmetries of heating. Krueger and Winston (1974) analyzed the tropical

circulation for two contrasting circulation regimes (February 1969 and

February 1971) and attributed the differences to precipitation changes over

the three continental regions. Cornejo-Garrido and Stone (1977) studied

the heat budget of the Walker circulation and found that the primary drive

for that circulation is the heating due to zonal variations in

condensation. Johnson and Townsend (1981), and Otto-Bliesner and Johnson

(1982) computed the thermally forced mean mass circulation in isentropic

coordinates for the northern hemisphere and concluded that zonal

asymmetries in the heating lead to longitudinal variations of the

meridional circulation and to pronounced east-west overturnings. Paegle

and Baker (1982) analyzed the First GARP Global Experiment (FGGE) data set



and indicated the importance of longitudinal heating gradients to the

forcing of ultra-long waves. Additionally, there have been studies of the

effects of interannual variability of tropical heating gradients (Bjerknes,

1966; 1969; Julian and Chervin, 1978; Horel and Wallace, 1981; and many

others).

A number of theoretical and modeling studies have attempted to explain

the atmosphere's linear response to planetary-scale tropical heat sources

and sinks. Matsuno (1966), in his classical paper on equatorial waves,

calculated the linear response of an equatorial a-p ane, shallow water

model to the imposition of stationary, periodic mass sources and mass sinks

along the east-west direction. Webster (1972) used a two-layer numerical

model on a sphere, including dissipation and realistic basic currents, to

calculate the large-scale, stationary, zonally asymmetric motions that

result from heating and the orographic effect in the tropical atmosphere.

Gill (1980) used a simple analytic equatorial a- plane model to elucidate

some basic features of the response of the tropical atmosphere to diabatic

heating concentrated in an area of finite extent. He found east-west

asymmetry which was explained in terms of the propagation properties of

equatorial waves (Kelvin waves to the east of the heat source and Rossby

waves to the west). Webster (1981 and 1982), Hoskins and Karoly (1981),

and Simmons (1982) studied the local and remote (teleconnection) response

of the atmosphere to thermal forcing (usually thought of as resulting from

SST anomalies) located at various latitudes. They used linearized,

steady-state, multi-layer baroclinic models on a sphere containing a

zonally symmetric basic state with horizontal and vertical shear. Geisler

(1981) introduced momentum mixing by cumulus clouds (cumulus friction) in a

study of the Walker circulation. Lau and Lim (1982) utilized a



shallow-water, equatorial s-plane model to study the heat-induced monsoon

circulations during Southeast Asian northeasterly cold surges. Webster and

Holton (1982) used a nonlinear shallow water model containing a

longitudinally varying, time-mean, basic-state zonal wind field to

investigate the cross-equatorial propagation of forced waves. They found

the interesting result that "...if the longitudinally-asymmetric basic

state includes a 'duct' in which the zonal winds are westerly, waves of

zonal scale less than the zonal scale of the westerly duct may propagate

from one hemisphere to the other even though the zonally-symmetric mean

zonal wind remains easterly in the equatorial region."

A common characteristic shared by most of the above-mentioned modeling

studies is that, by virtue of their linear character, they are actually

dealing with heating perturbations which are departures from the time-mean

diabatic heating field. The validity of these models' results is dependent

on the assumption that heating perturbations are small, so as to make

nonlinearities unimportant. However, there is considerable observational

evidence suggesting that when the heating perturbation results from SST

anomalies (for example, large anomalous precipitation over the central

Pacific Ocean in El Nino years), the magnitude of the perturbation is as

large as the mean heating field. If that is the case, nonlinear behavior

is likely to become important, primarily when we recall that anomalous

precipitation rates can be higher than 10 mm/day, hence nonlinearities

should not be excluded a priori.

Another assumption common to this class of modeling studies is to

prescribe a time-mean, basic state zonal wind. This zonal wind

distribution is variously taken as zero (resting atmosphere) or

longitudinally independent, and only in Simmons(1982), and Webster and



Holton (1982), was a more realistic, longitudinally varying, basic-state

zonal wind considered. It is an observational fact, however, that

time-mean circulations present a significant degree of zonal asymmetry in

the tropics, i.e., easterly and westerly winds are observed at different

longitudes for both lower and upper levels.

This study is a theoretical attempt to investigate the nonlinear

response of the tropical atmosphere to large-scale, stationary, zonally

asymmetric diabatic heating forcing and to gain some understanding about

the influence of this forcing on the time-mean circulation. We hypothesize

that the observed zonal asymmetries of the time-mean tropical circulation

are related to the stationary diabatic heating asymmetries, i.e., the

localized character of tropical precipitation over land masses. Given that

seasonal precipitation rates can be as high as 15 mm/day (or roughly

3.5*K/day heating for the tropospheric column) and that near the equator

the flow is likely to become increasingly ageostrophic (large Rossby

number), we also hypothesize that nonlinearities may play an important role

in the dynamical balances of stationary motions forced by zonally

asymmetric diabatic heating sources. To this end we develop an idealized,

five-layer, primitive, steady-state nonlinear model on an equatorial

a-p ane and calculate the response to a variety of prescribed, equatorial,

zonally asymmetric heat sources. Topographic forcing and transports of heat

and momentum by large-scale transient eddies such as those associated with

baroclinic-barotropic instabilities and short-term fluctuations in the

latent heating sources are not considered.

In Chapter 2 we review observations and observational studies

pertaining to zonal asymmetries in the tropics; we also analyze a subset of

the FGGE data set attempting to demonstrate the importance of divergent
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tropical circulations (Hadley-type and Walker-type circulations). A

simple, linearized analytic model is developed in Chapter 3, and linear

solutions are described. In Chapter 4 we develop the nonlinear model and

describe the numerical integration procedure. The presentation of the

results of this model for a number of idealized heat source distributions

and comparison of linear and nonlinear solutions is made in Chapter 5. In

the concluding section, Chapter 6, we discuss the results and some of the

limitations of the model.
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CHAPTER 2: REVIEW OF OBSERVATIONS AND FGGE DATA ANALYSIS

2.1 INTRODUCTION

Before we introduce the more theoretical aspects of this study, it

will prove to be of utility to review the observational work more

directly related to the existence of zonal asymmetries in the tropical

forcing fields. This Chapter is divided into two sections: in the first

we examine a selected set of observations and observational studies, and

in the second we analyze in detail a subset of FGGE data.

The usefulness of the review is threefold: First, it will provide

observational evidence to demonstrate the importance of zonal asymmetries

in the various meteorological fields and also to show that the

planetary-scale zonal circulations are comparable in strength to the

meridional circulations. Second, it will form the basis for prescribing

the structure and intensity of the diabatic heating forcing to be used in

the models described in subsequent chapters. And lastly, it will provide

the framework for discussing the results of the models developed in

Chapters 3 and 4.

Here we will not be concerned with describing in detail the general

circulation of the tropical atmosphere; for that the reader is referred

to elsewhere in the literature [Newell et al., 197i, Riehl, 1979]. We

will attempt to emphasize the non-zonally symmetric nature of the

planetary-scale tropical circulations and also try, from an observational

point of view, to link zonal asymmetries to the isolated regions of

strong convective activity over the tropical land masses.



2.2 REVIEW OF OBSERVATIONS

We selected maps of cloudiness, precipitation, pressure, winds and

streamlines, and velocity potential to study departures from zonal

symmetry in the tropics.

2.2.1 CLOUDINESS AND PRECIPITATION

Diabatic heating is not a directly measured quantity in the

atmosphere. For the tropics the regions of strong convective activity

and thus of latent heating of the atmosphere can be identified through

the analysis of cloudiness and precipitation maps. Precipitation

distributions are well-known for continental areas but less reliable for

oceanic ones. They can give a quantitative idea of the total heating of

the atmospheric column by the condensation of water vapor in

precipitating clouds but do not say anything about the vertical

distribution of this heating.

After the advent of satellites, the areal distribution of cloudiness

became well-established. Cloudiness is not a quantitative measure of

latent heating; however, its study provides important information about

geographical and seasonal distribution of regions of strong convection,

primarily over the oceans, due to the sparcity of reliable precipitation

measurements for those regions.



CLOUDINESS

Figure 2.1 shows the satellite-derived tropical cloudiness map for

each season averaged for the period 1967-1970 adapted from U.S.

Department of Commerce and U.S. Air Force (1971).*

For the northern winter season (DJF), we note the following

features:

a) the brightest areas occur over South America, southern

Africa and the maritime continent of Indonesia,

b) the mean latitude of the ITCZ cloudiness band of

Atlantic and Pacific Oceans is 50-60N; forking of the

cloudiness occurs over Western Pacific approximately at

the date line with the southern Pacific convergence

zone (SPCZ) cloudiness band running approximately NW-SE

and joining the southern hemisphere midlatitude

cloudiness belt,

c) over South America and southern Atlantic, cloudiness

also takes a NW-SE orientation.

* Deserts such as Sahara and Saudi Arabia appear as bright areas. Also,
bright areas off the west coasts of South and North America, South and
North Africa represent non-precipitating stratus clouds over cold waters.



24

DECEMBER JANUARY FEBRUARY

MARCH APRIL MAY

JUNE JULY AUGUST

SEPTEMBER OCTOBER NOVEMBER

Figure 2.1 Satellite-derived tronical cloudiness for each season

(adapted from U. S. Department of Co'nerce and U. S.
Air Force, 1971).
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For the northern summer season (JJA):

a) brightest areas are found over an extensive

region comprising India, Southeast Asia and the

maritime continent, over eastern equatorial Pacific and

northwest South America, and over West Africa,

b) the mean position of the ITCZ cloudiness band over

the Atlantic and Pacific Oceans is 70-80N,

c) the width of the ITCZ is larger over the eastern

part of the ocean basins (Pacific and Atlantic) than

over the western part.

We point out that the oceanic ITCZ cloudiness band lags behind the

continental band of cloudiness in its latitudinal migration following the

sun's motion. The oceanic ITCZ's southernmost (northernmost) position

happens during the MAM (SON) season, whereas the continental cloudiness

responds more quickly to the solar forcing, i.e., its southernmost

(northernmost) displacement occurs in the DJF (JJA) season.

PRECIPITATION

Fig. 2.2 depicts the total annual precipitation, and Fig. 2.3, the

seasonal precipitation. These maps were prepared at GLAS using data from

Jaeger (1976). Some features of interest from the annual precipitation

map are:

a) highest precipitation rates are found over the

Amazon, West Africa and the maritime continent of

Indonesia,



SMOOTHED MINTZ/JAEGER MONTHLY MEAN PRECIPITRTION SMOOTHED

MEAN RAIN (MM/DAY) FOR ANNUAL

CONTOUR FROM 0.0

Figure 2.2

TO 0.90000E+01 CONTOUR INTERVRL OF 0.10000E+01

Global annual precipitation in mm/day (map
prepared at GLAS based on data from Jaeger,
19 76 ).Arrows indicate direction of displacement
of centers of maximum precipitation between
summer and winter.
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b) lowest precipitation is seen over the eastern part

of oceans (South and North Atlantic, South and North

Pacific and Indian Oceans) and adjoining continents at

the latitude of the subtropical deserts,

c) subtropical belt of low precipitation is broken over

India and southeast Asia,

d) both in terms of intensities and areal extent,

precipitation over the Indonesian maritime continent and

western Pacific is the largest.

For the DJF season:

a) highest precipitation rates are found over South

America and the Indonesian maritime continent-western

Pacific region with maximum >10 mm/day,

b) over southern Africa precipitation is less intense,

and maximum of 6 mm/day occurs over Madagascar,

c) most of the precipitation and therefore latent heating

is concentrated in the Southern Hemisphere,

d) heating over the Amazon is quite isolated both

longitudinally and latitudinally with x and y

dimensions of the order of 4x10 3 km and 2x10 3 km,

respectively, and centered at about 10*S,

e) latent heating over Indonesian-western Pacific region

is more zonal with an NW-SE orientation from the



SMOOTHED MINTZ/JAEGER MONTHLY MEAN PRECIPITATION SMOOTHED

MEAN RAIN (MM/DAY) FOR WINTER

CONTOUR FROM 0.0 TO 0.10000E+02 CONTOUR INTERVRL OF 0.10000E+01

Same as Figure 2.2 but for DJF season.Figure 2.3a
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eastern Indian Ocean towards the South Pacific; scales

in the x and y direction are approximately 104 km and

2x10 3 km, respectively, and centered at about 5*-6*S,

f) latent heating over southern Africa also presents an

NW-SE orientation from the Atlantic coast towards

Madagascar; it is centered at about 150S, and its

eastern flank joins with the western part of the

Indonesian-Western Pacific heating,

g) in general, precipitation over the oceanic ITCZ is

less than the maximum over land areas; for instance, 4

to 6 mm/day over equatorial oceans as opposed to 10

mm/day or more over South America and Indonesia, which

stresses the nature of alternating, isolated heat

sources over land masses,

h) minimum of precipitation over the subtropical

oceans,

i) regions of low precipitation are oriented NW-SE over

southern Atlantic and southern Pacific,

j) over the Indian Ocean and Australia, the area of low

precipitation is more zonally oriented, perhaps

reflecting the more zonal distribution of precipitation

to the north over the Indonesian maritime continent.



SMOOTHED MINTZ/JAEGER MONTHLY MEAN PRECIPITATION SMOOTHED

MEAN RAIN (MM/DAY) FOR SPRING

CONTOUR FROM 0.0 TO 0.10000E+02 CONTOUR INTERVAL OF 0.10000E+01

Figure 2.3b Same as Figure 2.2

...... ...... .....

but for MAM season.



For the JJA season:

a) maximum rainfall rates are over northwestern South

America-Central America-eastern equatorial Pacific

region, West Africa-eastern equatorial Atlantic region

and the extensive precipitation area of the Southeast

Asian monsoon-Indonesia-western Pacific region,

b) the maximum over South America is centered at 10*N

with a NW-SE orientation following the orientation

of land in Central America,

c) over Africa it is remarkably zonal with a conspi-

cuous maximum of up to 10 mm/day over West Africa, the

band being centered at about 70N,

d) the most striking feature of any season in terms of

precipitation is the huge area of intense rainfall over

India, Southeast Asia, Indonesian maritime continent, and

western Pacific during northern summer where precipi-

tation rates are up to 12 mm/day over Southeast Asia,

and the areal extent of this active precipitation

region is several times greater than those over Africa

and South America-Central America,

e) this area is slanted in a NW-SE direction from India

towards the South Pacific and presents very sharp

rainfall gradients at its western, northern, and southern

boundaries; it is to be expected that this area will



SMOOTHED MINTZ/JAEGER MONTHLY MEAN PRECIPITRTION SMOOTHED

MEAN RAIN (MM/DAY) FOR SUMMER

.... .. . ...::: ::. ... ... ... ... ...... .. .. .. .. .. . .. .. .. .

CONTOUR FROM 0.0 TO 0.13000E+02 CONTOUR INTERRL OF 0.10000E+01

Figure 2.3c Same as Figure

r~3

2.2 but for JJA season.
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exert a major role for the northern summer tropical

circulation given its intensity and extent,

f) most of the heat sources are located in the northern

hemisphere,

g) subtropical areas of low precipitation now cover

most of the southern hemisphere subtropics and have

a zonal orientation,

h) precipitation gradients are mostly meridional except

over the Arabian Sea, where they are strongly zonal,

i) precipitation over the oceanic ITCZ is lower than

over land and over the Southeast Asian monsoon region

with the exception of the oceanic monsoon areas of

South America and West Africa where the precipitation

rate is higher.

COMPARISON OF DJF AND JJA SEASONS:

If the continents were perfectly symmetric about the equator, one

would expect that there would be precipitation maxima at the longitudes

of the continents due to their existence and that these maxima would move

north-south with the sun's motion and perhaps not vary much in their

position within the continents. In reality the distribution of land is

far from being symmetric about the equator, and most of the land masses

are found in the northern hemisphere. In the cases of India and

Southeast Asia, West Africa, and to a lesser extent Central America,

tropical land masses are found just north of an equatorial ocean. This



34

latitudinally asymmetric distribution of land is bound to cause the

tropical rainfall maximum to vary longitudinally as well as latitudinally

with the seasons, and that is exactly what is observed. During southern

summer, rainfall maxima are located in the southern hemisphere and tilted

NW-SE; whereas during northern summer they are found in the northern

hemisphere, still tilted NW-SE though not at all at the same longitudes

but west of their southern summer position. The general SE-NW movement

of the centers of rainfall maximum is indicated in Fig. 2.2. Also it is

worth mentioning that the rainfall distribution is less zonally

asymmetric for the northern summer season than for that of the southern

summer.

MAM AND SON SEASONS:

The MAM season resembles more closely the DJF season in that most of

the rainfall is to be found in the southern hemisphere; whereas the SON

SON season is closer to the JJA season with most of the precipitation

concentrated in the northern hemisphere. The transition from one regime

to the other (i.e., mostly southern hemisphere latent heating to mostly

northern hemisphere latent heating and vice-versa) generally does not

proceed slowly throughout spring and autumn seasons, but the change in

regimes takes place rather abruptly by the time the monsoon circulations

of the northern hemisphere are established or cease to exist,

approximately in June and November, respectively.

Rainfall rates over the oceanic ITCZ are still weaker than over land

for spring and autumn. Annual precipitation totals over the oceanic ITCZ

can be almost as high as annual totals over land, primarily because the
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Figure 2.3d Same as Figure 2.2 but for SON season.



latitudinal migration of the oceanic ITCZ's precipitation band is

considerably less than the precipitation regions over land masses,

roughly 5*-7* lat. for the former and 20* lat. for the latter. In a

seasonal time scale, precipitation rates (i.e., latent heating of the

atmosphere) are significantly higher over the three main precipitation

areas than over the oceanic ITCZ; this reinforces the isolated and

zonally asymmetric nature of tropical heat sources. In an annual mean

sense, these differences are smoothed out, and precipitation is more

zonally symmetric than for any individual season but still presents a

substantial and important degree of zonal asymmetry. However, to talk

about "annual mean conditions" is rather academic considering that the

summer and winter heating patterns are significantly distinct from each

other in many respects. In a seasonal mean sense, tropical precipitation

over land is displaced farther poleward in comparison with its annual

mean position, and seasonal maximum rainfall rates are considerably

higher than the corresponding annual ones.

The question of seasonal versus annual tropical forcing by latent

heating merits some discussion. Some studies (Scheneider and Lindzen,

1977; Scheneider, 1977) assumed that the tropical diabatic heating is

nearly axisymmetric in the annual mean sense (driving a mean Hadley cell)

and that departures of condensational heating from zonal symmetry are

small. Hence, the effects of these asymmetries on the mean meridional

circulation, for instance, the transports by the stationary eddies, were

neglected altogether in those studies. However, for the seasonal

forcing, the maximum condensational heating is generally found further
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poleward over land, either flanked on the east and west sides by oceanic

regions of low precipitation as is the case during southern summer, or

adjacent to subtropical deserts as it is for the Asian monsoon region

during northern summer. For both cases there is a strong degree of zonal

asymmetry which would likely drive east-west circulations of comparable

magnitude to the MMC, since the standard deviation of the zonally

averaged precipitation is almost as large as the mean. One would then

expect the transports by the stationary eddies to be comparable to the

transports by the MMC, and that is indeed what is observed, as will be

shown in Section 2.2.8.



2.2.2 PRESSURE AND CIRCULATION

PRESSURE AND GEOPOTENTIAL

Global maps of sea level pressure (SLP) for January and July from

Godbole and Shukla (1981) are shown in Fig. 2.4a and Fig. 2.4b,

respectively.

For January we note the following climatological features:

a) isobars are more zonal in the belt of high pressures

on the northern hemisphere, i.e., the subtropical highs

of the North Atlantic and North Pacific exhibit a weak

circulation in comparison with the three subtropical

highs over the southern hemisphere oceans which exhibit

prominent circulations associated with them,

b) mean latitude for the subtropical high belt is

~ 25*-300S in the summer hemisphere and ~ 34*-40*N in

the winter hemisphere,

c) continental lows are found over South America, southern

Africa, and northern Australia,

d) the low over northern Australia extends zonally

eastward to central Pacific,

e) continental lows are located at more equatorward

latitudes than the subtropical highs in the southern

hemisphere. We observe that in the longitudinal

direction there is an alternating pattern of oceanic

highs and continental lows for the summer hemisphere in

January.
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For July:

a) the belt of high pressures of the southern hemi-

sphere is more zonally oriented and spans all longitudes

(southern summer continental lows have disappeared); its

average latitude is about the same (slightly south) as

in January, and its intensity is higher in July,

b) North Atlantic and North Pacific subtropical highs

are prominent in July, more intense than in January, and

slightly equatorward of its January mean position,

c) monsoonal lows exist over Mexico, North Africa, and

Asia; the latter is by far the more intense and

extensive of the three,

d) zonal asymmetries due to land-sea contrast are not as

strong in the northern hemisphere summer.

In summary we can say (Godbole and Shukla, 1981) that "for both

hemispheres the summer hemisphere is characterized by continental lows and

oceanic highs . . . . The location and intensities of the southern

hemisphere subtropical highs, which occur over the ocean, are remarkably

similar in January and July .... The North Atlantic and South Atlantic

subtropical highs are found to attain their maximum intensity at the same

time, during July", and for both hemispheres the subtropical high pressures

are more zonally oriented during winter.

From maps of geopotential height for the upper levels (not shown

here), we observe the following main features: for July the dominant

feature is a quite intense high over the Tibetan Plateau extending towards



North Africa, zonally oriented and centered at about 300N. For the

southern summer season (Krishnamurti et al., 1973), we observe strong

anticyclonic circulation over South America centered at about 150S

(Bolivian upper-level high), over Africa centered at about 170S, and

zonally oriented highs in both sides of the equator over the Indonesia

maritime continent region.

CIRCULATION

Fig. 2.5. shows the circulation and isotachs at 850 mb for DJF and

JJA and Fig. 2.6, at 200 mb. These figures are from Sanders (1975).

For the lower-level circulation (850 mb), we notice the following

features:

DJF season, 850 mb (Fig. 2.5a):

a) anticyclonic centers over the three oceans of the southern

hemisphere and also over the North Atlantic and North Pacific,

b) equatorial westerlies in the Indian Ocean and western

Pacific,

c) mostly meridional flow along both flanks of the

Andes, with southerlies to the west and northerlies to

the east.

JJA season, 850 mb (Fig. 2.5a):

a) anticyclonic centers over North and South Atlantic,

North and South Pacific, and Indian Oceans and over Australia,
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Figure 2.5 Long-term 850 mb tropical flow, a)
and h) June-August (after Sanders,

December-February
1975).
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b) equatorial westerlies dominating the Asian and African

monsoon circulations,

c) monsoonal reversal of the flow over the Arabian Sea

in relation to DJF flow,

d) confluence zone over Atlantic and over eastern and

central Pacific found north of its DJF position,

e) still predominantly meridional flow observed along

the Andes.

For the upper-level circulation (200 mb), we observe the following

aspects:

DJF season, 200 mb (Fig. 2.6a):

a) anticyclonic centers over South America (~ 130S

over Bolivia), Africa (~ 15*S), northern Australia

(~ 13*S) and western Pacific (~ 11*S, 175 0E), all

located at about the same latitude band,

b) three wind speed maxima of the subtropical jet

stream, off the east coast of North America (320N,

40 m/sec), over northern Africa (28*N, 40 m/sec), and

off the east coast of Asia (350N, 70 m/sec),

c) extensive region of upper air equatorial easterlies

from Africa to central Pacific.
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JJA season, 200 mb (Fig. 2.6b):

a) the outstanding feature is the anticyclonic

circulation centered over the Tibetan Plateau (~ 300N),

dominating the northern hemisphere upper level

circulation,

b) one wind speed maximum of the subtropical jet stream

is found over southern Australia (~ 30*S, 50 m/sec),

c) the region of upper air equatorial easterlies is

more extensive than in DJF and spans the whole

equatorial belt.

The climatological flows depicted in Figs. 2.5 and 2.6 give a clear

idea of the degree of zonal asymmetry of the tropical circulations. Both

the lower-level and upper-level flows show a considerable complexity with

centers of cyclonic and anticyclonic circulation and with easterlies and

westerlies throughout the tropics and subtropics. The lower-level flow

is made even more complex due to the earth's topography, primarily the

Andes and Tibetan Plateau. The upper-level anticyclones have remarkable

association with the centers of maximum precipitation.



2.2.3 VELOCITY POTENTIAL AND WALKER AND HADLEY CIRCULATIONS

The velocity vector V can be decomposed into the rotational part Vp

and a divergent part V), i.e.,

V = V + Vx . [2.1]

The velocity potential x is defined by

Vx = Vx [2.2]

and is obtained from a solution of the equation

V2 = -V-V [2.3]

The east-west and north-south circulations are very clearly revealed

by the isopleths of x and by the streamlines of the divergent velocity

vector Vx.

In Fig. 2.7 we show the isopleths of velocity potential for summer

and winter (JJA 1967 and DJF 1971 at 200 mb) from Krishnamurti (1971) and

Krishnamurti et al. (1973), and in Fig. 2.8, the climatological values of

x for July (850 mb and 200 mb) from van de Boogard (1978).

If lines of velocity potential run parallel to the meridians, then

there would be no Hadley-type circulations. On the other hand, if the

lines of velocity potential are parallel to latitude circles, then there

would be no Walker-type (east-west) circulations. From Fig. 2.7 it is

seen that

the isopleths of x during northern summer were more

circular over the region of the summer monsoons and the

streamlines of the divergent part of the wind were more

radial than either purely meridional or purely zonal.
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Figure 2.7 Isopleths of the northern winter (a) and northern
summer (b) mean velocity potential at 200 mb, and
streamlines of the divergent part of the wind shown
with arrows (after Krishnamurti et al., 1973 and
Krishnamurti, 1971).



As a consequence, it was inferred that the intensities

of the Hadley and east-west type circulations were

comparable (Krishnamurti et al., 1973).

The same paper also noted that for the northern winter (Fig. 2.7#)

...[the] isopleths of x are more parallel to the

latitude circles and the Hadley-type vertical over-

turnings are evidently stronger .... There are two

regions where maximum values of x are found in the

equatorial latitudes, and streamlines of the divergent

part emanate from these regions .... The two centers of

x maxima are located over the northwestern part of South

America and the equatorial rainbelt near Borneo ... The

streamlines of the divergent motions converge near 30*N

over the Pacific and Atlantic Oceans directly above the

sea level, subtropical high pressure belts. The

strongest divergent motions are found over eastern Asia

where local contribution to the Hadley circulation

(-ax/3y) is largest. This is also the region where the

strongest winds, at 200 mb during northern winter, were

noted by Krishnamurti (1961) .... the intensity of this

circulation [east-west] is comparable to that of Hadley-

type circulations .... the intensity of the east-west

circulation during the northern summer is somewhat

stronger than during northern winter.

The climatological values of the velocity potential for July at

200 mb in Fig. 2.8a reproduces the features shown in Fig. 2.7a. For the

lower levels (850 mb) in Fig. 2.8b, we observe that the center of x
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minimum is found over Southeast Asia, consistent with the position of the

x maximum at 200 mb, and that the isopleths of x are more circular around

this center rather than more zonally or meridionally oriented, thus

indicating convergence of mass from all directions (although the flow

here is complicated by the presence of the Tibetan Plateau topographical

barrier). We also note a center of x minimum over the South Atlantic and

Indian Oceans at the latitude belt of the oceanic, sub-tropical highs

(values of x for the eastern Pacific are not shown in Fig. 2.8b).

In Fig. 2.9, we show the mean velocity potential and mean divergent

part of the wind at 200 mb during southern summer over South America

from Virji (1981). It is clearly seen, from Fig. 2.9 for the

streamlines of the divergent flow, that there is an outflow in all

directions at 200 mb and that this is consistent with the idea of

vertical circulations in a zonal plane (Walker-type) and in a meridional

plane (Hadley-type) with comparable intensities.

Schematic diagrams of east-west cells are shown in Fig. 2.10 from

Newell (1979) for January and in Fig. 2.11 from Krishnamurti et al.

(1973) for summer and winter. In the latter figure the intensity of

east-west circulation, IE at 200 mb, is given by

I 1 -Y2 ax dy [2.4]

(y2-y1) Y1  3x

where y1 and y2 are the southern and northern limits of the tropical

channel of interest, yi = 150S and y2 = 150N for northern winter and

yi = 0 and y2 = 30*N for northern summer. Of interest in Figs. 2.10
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Figure 2.10 Zonal circulations in January as deduced from calcu-
lations of vertical motion patterns by Boer and Kyle
(see Chapter 9 of Newell et al.,1974; after Newell,
1979).
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Figure 2.11 Intensity of east-west circulation, IE, at 200 mb,
as a function of longitude, and a schematic diagram
of east-west cells on mass continuity; C and D
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and divergence, respectively (after Krishnamurti
et al., 1973).
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and 2.11 are the locations of ascending and descending motion and the

relative range of the eastward and westward branch for each cell. We

note that Fig. 2.10 shows the sinking motion taking place at the eastern

Atlantic and Pacific Oceans and at the western Indian Ocean. In

Fig. 2.11 the cells present more zonal structure, and the descending

motion takes place over central Pacific and Atlantic Oceans for the

northern winter. This may be due to the latitudinal averaging in the

calculations of IE and also to Fig. 2.11's being based on calculations

for one season only, whereas the schematic circulation of Fig. 2.10 is

based conceptually on the tropical climatological forcing. It should be

pointed out that the idealized longitudinal structure of the cells shown

in Figure 2.11 for southern summer is not consistent with rainfall maps.

2.3 FGGE DATA ANALYSIS (GLAS)

2.3.1 BACKGROUND AND DATA SET DESCRIPTION

The study of tropical meteorology has been historically handicapped

by the lack of observations. The causes for the lack of a more

comprehensive observational network are two-fold. First, because large

parts of the tropical and subtropical regions are covered by oceans, and

second, because tropical lands traditionally have been much less

developed than the midlatitudes. Meteorological reasons are partly

responsible for the large regions of low populational density: the

impenetrability of the tropical rain forests in the equatorial rainbelt

and the inhospitality of the vast subtropical deserts.

However, the perspectives have greatly improved with the advent of

satellite-derived meteorological information. Data such as vertical



profiles of temperature and humidity, cloud winds, radiative balance

terms at the top of the atmosphere, cloudiness, sea surface temperature,

etc., are becoming routinely available and are being used to improve the

forecasts of numerical weather forecasting models. This added capability,

along with the improvement of the ground-based observational network, has

contributed to closing the observational gap in the tropics.

The FGGE (First rARP Global Experiment) program was carried out

during 1979 as the first attempt to gather meteorological data in a

global scale with the aid of satellites and to use these data in the

integration of General Circulation Models (GCM's). Data collection

included radiowind, airplane, ship and satellite data. From Dec. 1978

through Feb. 1980, global data was collected every 6 hours. Density of

coverage was substantially augmented during two special observing periods

(Jan.-Feb. and May-June 1979).

Paegle and Baker (1982) describe the GLAS analysis system (Halem et

al., 1982) as "...consist[ing] of an objective analysis scheme, which

makes use of the continuity provided by a first guess, which is a 6 h

forecast from the previous analysis. The first guess is then corrected by

all the data collected with a ±3 h window, about each analysis time. The

analysis scheme (Baker et al., 1981) ... takes into account the density

and the quality of the observations." The model used is the GLAS

fourth-order global atmospheric model described in Kalnay-Rivas et al.

(1977) and Shukla et al. (1981).

The FGGE data collection was the most encompassing and complete

global data-gathering operation for the earth's atmosphere to date.

However, we recognize that for data-sparse regions the GLAS analysis may



be unduly influenced by the model's particular physical

parameteriza-tions. For instance, for large expanses of the tropical and

southern hemisphere oceans where vertical profiles of atmospheric

quantities are seldom obtainable, satellite-derived vertical profiles of

temperature and cloud-track winds were utilized in the FGGE experiment.

Because of its less-than-perfect representation of physical processes,

the model might tend to generate unrealistic fields. However, every 6

hours a new set of observations was inputed, and the model was corrected

to adjust itself to the observations. If we assumed that observational

errors are not large, it is hoped that even for data-sparse areas this

method of constraining the model to follow whatever observations are

available would limit the model's drift from the actual climatology.

The data set analyzed in this section was derived through this

data-assimilation procedure for the period January 5 through March 5,

1979 (Special Observing Period-1, SOP-1). It would have been desirable to

include Dec. 1978 in our analysis to obtain a better representation of

mean southern summer conditions and also to analyze the data for the JJA

season. Unfortunately, only data for those two months was available to

the author when the analysis was conducted.

To check the validity of the FGGE data set assimilated by the GLAS

GCM, we will compare it with the same data set assimilated by the

European Center for Medium-Range Weather Forecast (ECMWF) GCM. If the

model's particular physical parameterization is incorrectly influencing

the results, we would expect the results of the two GCM's to differ

significantly. Also, we will compare the generated diabatic heating

field with independently obtained heights of the top of precipitating
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cumulus clouds; these heights provide a crude estimate of the areal

distribution of latent heating. We believe that the model's physical

parameterization has not caused the simulated fields to depart, to a

large degree, from the true fields in the scale of motion with which we

are concerned (planetary scale).

2.3.2 DIABATIC HEATING AND VERTICAL VELOCITY

Total diabatic heating, as shown in Figs. 2.12, 2.13, and 2.14, is

calculated in the GLAS model as the sum of individual diabatic heating

components: latent heat of condensation, net radiative heating, sensible

heating, vertical diffusion of heat, and adiabatic adjustment. For the

tropical troposphere generally only the first 3 terms are important, with

sensible heating being important only in the lowest part of the

atmosphere. Heat budgets studies (Katayama, 1974; Cornejo-Garrido and

Stone, 1977; Kalnay, 1981, personal communication) have shown that latent

heating is the largest diabatic heating term in the tropics. Without

incurring much error, one can think of the distribution of diabatic

heating presented in the figures below as being predominantly the

distribution of latent and radiative heating, and one can confidently say

that its longitudinal variations can be almost exclusively attributed to

zonal variations in latent heating since the net radiative heating

presents much less zonal asymmetry as well.

Global distribution of total diabatic heating at 400 mb (approximate

level of maximum heating) is shown in Fig. 2.12. We observe a maximum in

excess of 7*K/day over northeastern South America and a succession of

zonally oriented maxima > 70K/day and up to 11*K/day roughly centered at
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Figure 2.12 Diabatic heating distribution at 400 mb for Jan-Feb,
(units: K/day, interval every unit).
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the equator, from the eastern Indian Ocean eastward to central Pacific.

There is a region of heating over south Africa but of smaller intensity.

We note the occurrence of strong diabatic heating over the western

Pacific centered at the dateline and the band of heating of the SPCZ

protruding into the southern hemisphere in a NW-SE orientation. This

maximum heating over the western Pacific appears to be displaced eastward

of its climatological position for the southern summer season (compare

with Figs. 2.1 and 2.2a).

In Fig. 2.13 we show the global distribution of total diabatic

heating averaged for the atmospheric column from 100 to 1000 mb. The

geographical distribution resembles, to a great degree, the one of

Fig. 2.12 at 400 mb. We remark that values of up to 4*K/day,

corresponding roughly to precipitation rates of up to 15 mm/day, are

observed over South America. The conspicuous feature in Fig. 2.13, in

addition to the existence of isolated heat sources over the tropics, is

the realization that tropical diabatic heating provides the most intense

heat source for the whole troposphere. We note that the main features of

Figure 2.13, i.e., diabatic heating maxima over South America, Indonesian

maritime continent, and western Pacific including the SPCZ are consistent

with the precipitation distribution shown in Figure 2.3a.

To provide a clearer picture of zonal asymmetries in the diabatic

heating field, we averaged the total diabatic field from 100 mb to

1000 mb and from 300S to 140N. The choice of this latitudinal band is

due to the observation that most of the heating is found within this band

for the southern summer. The result of this averaging and also the

corresponding distribution of vertical velocity (omega velocities) is

depicted in Fig. 2.14. Here the east-west asymmetries in diabatic
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heating (solid line) and vertical omega velocity (thin line) are

striking. Note the heating regions of South America, Africa,

Indonesia-Phillipines, and western Pacific and the cooling regions of

eastern Atlantic, Indian and Pacific Oceans. The vertical omega velocity

follows the diabatic heating lines quite well, indicating that the main

thermodynamic balance is between diabatic heating (cooling) and adiabatic

expansion (contraction).

In Figure 2.14 the African heat source seems to attain a magnitude

comparable to the other three heat sources, a feature that was not seen

in Figure 2.12, for the global distribution of diabatic heating at 400 mb

TABLE 2.1

MAXIMUM DIABATIC HEATING RATES IN OK/DAY

FOR REGIONS OF STRONG HEATING

DURING SOP-1*

Level South Southern Central Indonesia Western
(mb) America Africa Africa Pacific

200 0.6 0.1 - 0.2 1.2 0.5

250 1.3 0.2 - 0.1 2.8 1.2

300 2.7 1.2 0.5 4.8 2.5

400 7.2 2.2 1.5 10.5 6.0

500 5.5 1.7 1.5 9.0 6.0

700 4.2 2.0 2.0 5.0 4.2

850 1.5 3.7 4.0 3.0 3.0

1000** 0.5 2.5 3.5 0.2 0.2

* SOP-1: Special Observing Period of FGGE, January 5 to March 5, 1979.

** For areas where the ground is above the 1000 mb surface, the heating
rates were extrapolated.
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where the maximum heating rates over Africa are slightly over 20K/day,

which is much less than heating rates over South America (up to 70K/day)

and Indonesia - western Pacific (up to 100K/day). This apparent paradox

in Figure 2.14 can be understood as caused by the latitudinal and vertical

averaging employed. In Table 2.1 we list the approximate maximum heating

rates from 200 to 1000 mb for the different heat sources. It is readily

seen from Table 2.1 that the diabatic heating over southern and central

Africa was rather shallow with maximum rates at the lower levels so that

the vertical averages show two broad regions of heating (albeit not large)

over southern and central Africa (Figure 2.13). When these two broad

areas of somewhat weak and shallow heating were averaged latitudinally

from 140N to 300S, they produced the maximum of Figure 2.14 at

approximately 250E. The vertical omega velocity at 400 mb in Figure 2.15

shows that the magnitude of the ascending motions over southern Africa is

at most 1/4 of that for the other heating regions. Also, the analysis of

vertical omega velocities for other levels (not shown here) shows that

|aw/api at the upper levels is considerably smaller for the southern

Africa heat source than it is for the other heat sources, i.e, there is a

very weak divergence maximum associated with that heat source.

The global distribution of vertical omega velocity at 400 mb is shown

in Fig. 2.15. Although the field is much noisier than the diabatic

heating field, it reproduces well the main features found in Fig. 2.12. It

shows highest negative values (rising motion) over the convectively active

regions. Very large positive values at high latitudes are not real but

were introduced artificially by the numerical scheme of the GLAS model

(Kalnay, 1981, personal communication).
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Figure 2.15 Vertical omega vqlocity at 400 mb for Jan-Feb, 1979
(units 10-3 mbs~ , interval every 0.50 units).



To provide a check on the validity of the model-derived distribution

of diabatic heating, we present Fig. 2.16, which shows the global

distribution of cloud top heights as derived from independent radiation

calculations from Susskind (1982). It matches reasonably the geographical

distribution of diabatic heating of Figs. 2.12 and 2.13 for the tropics.

Importantly, it confirms the existence of isolated convective regions

throughout the tropics exhibiting strong zonal gradients.

2.3.3 HORIZONTAL WINDS

To gain some idea of the spatial and temporal coverage of the FGGE

observing system, we show in Figure 2.17a the geographical distributions

of rawinsonde stations, satellite temperature soundings, and cloud-track

winds. An assessment of the FGGE observing system is given by Halem et

al. (1982).

The global distributions of the zonal component of the wind at 850

and 200 mb are shown in Fig. 2.17b and Fig. 2.17c, respectively. We

observe the following features for 850 mb:

a) mostly easterlies throughout the tropics with

maximum in excess of 10 m/sec over central equatorial

Pacific,
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b) existence of equatorial westerlies extending from

the western Indian Ocean eastward to the dateline and

from the equator to 150S, exhibiting maximum of more

than 10 m/sec just south of the Phillipines and also

over South America and southern Africa.

For 200 mb we observe several quite interesting features:

a) the existence of weak equatorial easterlies (wind

speeds < 7 m/sec) at the upper levels from eastern

Atlantic westward to the dateline and over a smaller

area of South America,

b) the position of the upper level easterlies

corresponding approximately with the position of lower

level westerlies,

c) the meandering subtropical jet stream at about 300N,

showing three maxima in wind speed, off the east coast

of North America (u > 50 m/sec), over the Persian Gulf

(u > 40 m/sec) and just south of Japan (u > 65 m/sec),

d) in the southern hemisphere the jet stream is weaker

(u < 35 m/sec), and is located farther poleward (450 to
5

500,K).

Figs. 2.18a and 2.18b depict the global distributions of the

meridional component of the wind at 850 mb and 200 mb. For 850 mb we

observe that the meridional wind is generally weak, and the maximum

(v ~ -6m/sec) is found off the east coast of South America at about 25*S;
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also, it is noteworthy to observe the occurrence of both southerlies and

northerlies in the tropics and subtropics of both hemispheres. At 200 mb

the striking feature is the waves over South America (Kalnay and Halem,

1981) and adjacent oceans and over Australia and adjacent oceans. At

around 30*S we observe northerlies off the west coast of South America,

southerlies over the continent, and northerlies again off the east coast.

The maximum magnitude of these meridional winds is in excess of 15 m/sec,

and the zonal scale of the wave (1/2 of the wavelength), ~ 2x10 3 to

3x10 3 km, is rather short. At about the same latitude band, i.e., 300S,

we see northerlies over eastern Australia, southerlies over the western

part of that continent, and northerlies again over the western Pacific.

This pattern bears similarity with the one over South America; however,

the magnitude of the meridional winds is about half as large as that of

the meridional winds over South America, and the scale of the wave is

somewhat larger, ~ 3x10 3 to 4x10 3 km. The same pattern, northerlies -

southerlies - northerlies, is found over southern Africa and adjacent

oceans, although the amplitude of the wave is considerably smaller.

2.3.4 GEOPOTENTIAL HEIGHT AND TEMPERATURE

Global distributions of geopotential heights at 1000 mb and 200 mb

are shown in Figs. 2.19a and Fig. 2.19b, respectively. At the lower

levels, Fig. 2.19a, we observe the alternating pattern of highs and lows
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in the southern hemisphere with continental lows and oceanic highs. The

northern hemisphere subtropical belt of high pressures is more zonally

oriented. Fig. 2.19b, for the upper levels, shows some very interesting

features. Now we see continental highs over South America, southern

Africa, and northern Australia, approximately at the same position where

the continental lows were found at the lower levels. In this respect,

one can say that the tropical atmosphere is considerably "baroclinic"

with the circulation reversing from the lower to the upper levels (Paegle

and Baker, 1982). Also note the oceanic troughs off the east coast of

the continents in the southern hemisphere and the large magnitude of the

geopotential perturbation over South America. For the northern

hemisphere we point out that the closely spaced isopleths of geopotential

height off the east coast of North America, Persian Gulf, and south of

Japan is consistent (geostrophically) with the observed subtropical jet

stream wind speed maxima.

In Figs. 2.20a and 2.20b, we show the temperature field at 850 mb

and 200 mb, respectively. We simply notice that for the lower levels,

Fig. 2.20a, the higher temperatures over land correspond to the position

of the continental lows of Fig. 2.19a; and for the upper levels,

Fig. 2.20b, there is a large degree of zonal asymmetry caused by the

standing wave pattern of the southern hemisphere (as depicted, for

instance, by the 241 0C isothern), and the wave reaches a very large

amplitude over South America and adjacent oceans.

2.3.5 VORTICITY AND STREAMFUNCTION

If u and v represent the time mean zonal and meridional velocities,

respectively, then the vorticity is given by
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_ v2  _ av _ _u + u tan 0 [2.5]
ax ay a

where Y is the time-mean streamfunction and may be obtained by solving

the Poisson equation [2.5] with appropriate boundary conditions.*

In Figs. 2.21a and 2.21b, we show the fields of vorticity E at

850 and 200 mb from which the streamfunction was computed. The seasonal

fields of Y at 850 mb and 200 mb are shown in Figs. 2.22a and 2.22b.**

For the upper levels, Fig. 2.22b, we can make the following remarks:

a) anticyclonic circulation over South America,

southern Africa, and northern Australia,

b) the large-amplitude stationary waves of the tropics

and subtropics in the southern hemisphere, particularly

the wave over South America and adjacent oceans,

c) westerlies over most of the tropics and subtropics

in the northern hemisphere and the position of the jet

stream are evident (large |vT|),

* To solve the Poisson equation [2.5] we used NCAR routines with
undetermined boundary conditions at the poles. The same routines were
used to solve the Poisson equation for the velocity potential of Section
(2.3.6), below. For the lower levels we did not solve the Poisson
equation taking into account the topographical barriers (Tibet, Greenland
and Antarctica at 700 mb) as a boundary-value problem. Instead, a value
was assigned to the grid points with topography, and the computations
were carried out; thus, the streamfunction and velocity potential values
near topography may have been incorrectly affected by this procedure.

** We remark that the maximum of V2 is not necessarily at the same
location as the maximum of T which is also true for the divergence (-V2X)
and the velocity potential (X).
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d) three regions of maximum velocity in the three waves

of the subtropical jet stream, off the coast of North

America, over the Persian Gulf, and south of Japan.

The rotational part of the wind for the lower levels, Fig. 2.22a,

shows strong anticyclonic circulation over the three oceans of the

southern hemisphere and weaker and more zonally oriented anticyclonic

circulation in the subtropics of the northern hemisphere. Also note

weaker cyclonic circulation over the tropical continents in the southern

hemisphere.

2.3.6 DIVERGENCE AND VELOCITY POTENTIAL

The time mean velocity potential x is defined as

V2X = + a' + v tan . [2.6]
ax ay a

The distribution of x is found by solving the Poisson equation [2.6]

with appropriate boundary conditions (see footnote on page ?).

The divergence field (R.H.S. of Eq. [2.6]) at 700 mb and 200 mb is

shown in Figs. 2.23a and 2.23b, respectively. This field was used to

compute x by numerically solving the Poisson equation. The fields of

velocity potential at 700 and 200 mb are depicted in Figs. 2.24a and

2.24b, respectively. It is worth remarking again that if the lines of

velocity potential are parallel to latitude circles, then there would be

no Walker-type (east-west) circulations. Lastly, if the lines are

circular, then the circulation is neither purely Hadley-type nor purely

Walker-type but a mix of the two. Let it be called Hadley-Walker
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circulations. With this in mind we now analyze the fields of velocity

potential.

The analysis of Fig. 2.24b (200 mb) reveals the following

interesting features:

a) the isopleths of X indicate the existence of two

major centers of rising motion, one over Brazil

(~13 0S) and the other over western Pacific (~10*S),

b) centers of sinking air are found over eastern

Pacific and Atlantic Oceans in the southern hemisphere

and over the Atlantic in the northern hemisphere,

c) the local character of the Hadley-type circulations

is evident, i.e., they do not occur uninterruptedly

along the tropical belt, but the strongest north-south

overturnings are observed over a relatively short

longitudinal span north of South Anerica and over a

broader region in western Pacific and Indonesian

maritime continent,

d) the maximum in wind speed of the subtropical jet

stream is found to lie northwest of these regions of

maximum meridional divergent winds,

e) the isopleths of x are more nearly zonal (indicating

predominantly north-south overturnings) from the

central Indian Ocean eastward to the dateline in the

northern hemisphere, and those are the longitudes where
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the broad maximum of wind speed in the subtropical jet

stream is observed,

f) isopleths of x around the low center over South

America are more circular, indicating an upper-level

spillover of mass in all directions,

g) planetary-scale east-west circulations, with

rising motions centered over South America and

western Pacific and sinking motions over the

Atlantic and Pacific Oceans,

h) the westward branch of the Pacific cell extends for

half of the circumference of the earth,

i) it is remarkable that the position of the upper air

easterlies (Fig. 2.17a) over western Pacific and Indian

Oceans, Africa, and South America corresponds quite well

with the westward branches (i.e., the divergent winds

being easterlies) of the two east-west cells,

j) over central Pacific we note a vigorous east-west

circulation (the isopleths of x are more parallel to

meridians and |vxI is large),

k) the intensity of the divergent part of the wind is

comparable to the rotational part for the tropics;

elsewhere, the divergent part becomes very small and the

rotational part is at least an order of magnitude greater,
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1) the trough of the isopleths of x over the central

Pacific and western Atlantic in the southern hemisphere

agrees well with the position and alignment of the

SPCZ and the southern Atlantic convergence zone (SACZ)

as revealed by cloudiness and precipitation maps and by

the diabatic heating field in Fig. 2.12 and 2.13.

The isopleths of x for the lower levels (Fig. 2.24a) help us

visualize the tridimensional, thermally direct circulations in the

tropics. Here we see two centers of convergent motion, one over South

America, the other over western Pacific, in very close correspondence

with the upper-level centers of divergent motion. Also the position of

the observed low-level equatorial westerlies over the Indian Ocean and

western Pacific agrees with the position of the lower branch of the

eastern hemisphere Walker-type cell. Due to their proximity to the

earth's surface, the patterns at 700 mb are not as clearcut as the ones

at 200 mb, but they are consistent with the patterns at the upper levels.

The magnitudes of VX both for 200 and 700 mb indicate that the Walker-

type and the Hadley-type circulations are of comparable strength. The

upper-level convergence seen from x has remarkable association with the

surface highs.

The position of the centers of rising motion is consistent with the

distribution of diabatic heating (Fig. 2.12), i.e., an isolated heat

source over northeastern South America and a longitudinally oriented band

of heating from the Indian Ocean eastward to the western Pacific.

According to the traditional view, there are three east-west cells during

the southern hemisphere sunmmer (see Fig. 10), the two discussed above



and one more with rising motion over the convectively active region of

southern Africa. This latter cell, with rising motion over the continent

and sinking motion over the Atlantic Ocean to the west and the Indian

Ocean to the east, is not seen in Fig. 2.24. Its nonexistence is

consistent with the rather weak diabatic heating over southern Africa

(<3*K/day at 400 mb as compared to heating of up to 11*K/day for the

other two regions) for that particular period.

2.3.7 HORIZONTAL FLUXES OF MOMENTUM

In this and the next section, we will present calculations of

horizonal flux of momentum pertaining to the FGGE data set for Jan-Feb

1979. All the previous FGGE data analysis in this chapter dealt with

time-mean quantities, and it would be of interest to have some idea about

the shorter term variability (within a season) of the tropical

circulations. We selected to show global maps of the meridional flux of

zonal momentum by the time-mean circulation (UV) and by the transient

eddies (T'V') at 200 mb in Figs. 2.25 and 2.26, respectively.*

The upper-level meridional fluxes of zonal momentum by the time-mean

circulation (Fig. 2.25) are generally very small for the equatorial belt,

and the maximum values are reached in the subtropics of both hemispheres.

The three wave pattern of the subtropical jet stream (the "meandering" of

the jet stream) is seen in the alternating pattern of poleward and

equatorward fluxes at the latitudes of maximum wind speeds. Convergence

of this flux (not presented here) shows regions of deposition of westerly

* () bars denote time-mean quantities, ( )' primes refer to departures
from time mean, [( )] square brackets, to zonal mean quantities and ( )*
stars, to departures from zonal mean.
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momentum (i.e., accelerating westerlies) to the west of the maximum in the

wind speed, one off the east coast of United States and the other south of

Japan, and a region of deposition of easterly momentum (decelerating

westerlies) to the east of those maxima. For the southern hemisphere the

fluxes are not as large as the ones for the northern hemisphere and are

associated with the regions of large meridional velocities over South

America and adjacent oceans and over Australia and adjacent oceans.

The meridional transport of zonal momentum by the transient eddies

(Fig. 2.26) at 200 mb shows predominantly poleward fluxes in the

sub-tropics and midlatitudes of both hemispheres with higher values for the

winter hemisphere (northern hemisphere). Note that the fluxes by the

transient eddies are generally smaller than the fluxes by the time-mean

circulation, and like the latter, very small in the equatorial belt.

Although their magnitude is about 1/3 to 1/2 of the fluxes by the time-mean

circulation, they are likely to play an important role in the maintenance

of the time mean zonal wind. We observe, for instance, that for two areas,

southern Central Pacific and eastern North Pacific, ITV'I>|UVI. In the

next two chapters, we will develop models of the tropical circulation

forced by time mean diabatic heat sources, and we will be leaving out the

effects of transience. It is worth keeping this in mind because transient

eddies may be important in explaining some aspects of the maintenance of

the time mean circulation.

2.3.8 ZONALLY AVERAGED HORIZONTAL FLUXES OF MOMENTUM

It is sometimes of interest to regard the atmospheric circulation as

axially symmetric and to study its zonally averaged state. The time-mean,
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zonally averaged meridional flux of zonal momentum can be written as

[IV] = [TI][] + I*V*] + LU'']J [2.7]

where the terms in the R.H.S. of [2.7] are the flux of zonal momentum by

the mean meridional circulation (MMC), stationary eddies (SE) and

transient eddies (TE), respectively.

In Fig. 2.27 we show latitudinal profiles of the zonally averaged

fluxes at 200 mb (approximately the level of maximum fluxes). For the

tropics and subtropics, the fluxes are small in the southern hemisphere,

and the flux by the MMC peaks at ~20 0N, by the SE at ~25 0N and by the TE

at ~30 0N. It is important to note that the three fluxes are comparable in

magnitude in the tropics at that level. Also, for comparison, the

climatological values of the fluxes based on data from Oort (1982) were

included in Fig. 2.27. There is agreement between the two sets of

data in terms of the sign and magnitude of the fluxes.

Similarly, we present in Fig. 2.28 the divergence of the meridional

fluxes of Fig. 2.27. It is evident that the divergence of the three

fluxes are of the same order of magnitude in the tropics, the values

being larger in the northern hemisphere. The convergence of [U][V] is

maximum (i.e., maximum deposition of westerly momentum by the MMC) at

~ 150N and ~ 20*N for [3*V*] and [U'v']. The convergence of [U][V] is

the largest of the three for the tropics, but for the southern hemisphere

subtropics, the convergence of [U'V'] is larger than the other two terms.
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Figure 2.27 Zonally averaged fluxes of horizontal momentum by the
MMC (thick line), TE (thin line), and SE(dashed line)
at 200 mb for Jan-Feb, 1979 (units:m 2 s- 2 ); climatological
values from Oort (1982) are indicated.
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SE (dashed line) at 200 mb for Jan-Feb, 1979
(units: 10-3 cms- 2 ).



In some axisymmetric models the zonally averaged eddies were assumed

to be very small, and only the contributions by the MMC were taken into

account. Figs. 2.27 and 2.28, by showing that the eddy fluxes and

divergences have about the same magnitude as the flux and divergence by

the MMC, seem to indicate that the contributions by the stationary and

transient eddies should be included as forcing terms in axisymmetric

models of the seasonal, zonally averaged tropical circulation.

2.4 FGGE DATA ANALYSIS (ECMWF)

The FGGE data set was also assimilated into the integration of the

ECMWF GCM following a somewhat different data assimilation technique as

was used with the GLAS model. In this section we will briefly compare

the results of the two analyses and expand our data analysis to include

the FGGE data for the northern summer months. Let us keep in mind that

if the data analyses of the two different models yield similar results,

then we can be reasonably assured that the particular model's physical

parameterization did not modify the results (as compared to reality) to

a significant extent, although we can not completely rule out that

possibility.

Monthly means -- from January through August 1979 -- of various

meteorological quantities (winds, streamfunction, velocity potential, and

zonally averaged momentum fluxes) for 200 mb and 850 mb, were available

for this analysis.

2.4.1 COMPARISON OF FGGE DATA ANALYSIS AT GLAS AND AT ECMWF

To compare ECMWF and GLAS analyses we selected to show the fields

of streamfunction and velocity potential at 200 mb for January and

February 1979. Figs. 2.29a and b show the streamfunction for January



and February 1979, respectively, at 200 mb. This figure should be

compared with Fig. 2.22 for the GLAS model. The agreement is quite good

in terms of wind speeds and directions, position and orientation of the

troughs in the southern hemisphere, features of the subtropical jet

stream of the northern hemisphere such as the three-wave pattern, and the

longitudinal position and speed of the region of maximum velocities. The

large-amplitude short wave in the subtropics over South America was also

similar in the two analyses.

Velocity potential fields for January and February 1979 at 200 mb

are shown in Figs. 2.30a and b, respectively, and these are compared with

Fig. 2.24b for the GLAS model. The distribution of isopleths of velocity

potential is very similar in the two analyses. Minimum values are found

over South America and the Western Pacific, and maximum over the

subtropical oceans. The intensity and direction of the principal

Hadley-Walker circulations are approximately the same in Figs. 2.30 and

2.24b. However, there is a difference between the two analyses that is

worth mentioning. The center of low-velocity potential at the upper

level over South America is displaced southeasterly and has an elongated

shape (Fig. 2.30) for the ECMWF analysis, as opposed to that feature from

the GLAS analysis, which is more nearly circular and is centered over

northeastern South America. The ECMWF model analysis seems to bear a

closer relation to reality in that respect, since January and February

1979 were months of large positive precipitation anomalies over the coast

of Brazil (A. D. Moura, 1982, personal communication).
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Comparison of several other fields for January and February 1979

(not shown here) indicates that the two FGGE data analyses, one carried

out with the GLAS model and the other with the ECMWF model, generally

yield quite similar results. Unfortunately, diabatic heating fields from

the ECMWF analysis were not available to the author. Since diabatic

heating, primarily latent heating, is the most important forcing of

tropical circulations, one would have more confidence in the FGGE data

assimilation techniques if the two models produced similar distributions

of that quantity. Obviously, this and other comparisons will be

necessary to check the validity of the FGGE data assimilation techniques.

2.4.2 ECMWF FGGE DATA ANALYSIS FOR JULY 1979

In this section we extend the FGGE data analysis of the previous

sections to include northern summer conditions. Streamfunction and

velocity potential at 200 mb and 850 mb, which are shown in Figs. 2.31

and 2.32, respectively, are based on the FGGE data analysis at the ECMWF

for July 1979.

Fig. 2.31a, for the streamfunction at 200 mb, shows a broad region

of anticyclonic circulation centered roughly over the Tibetan Plateau and

weaker regions of anticyclonic circulation over the Indonesian maritime

continent in the southern hemisphere, and over Mexico. We also note the

southern hemisphere subtropical jet stream located around 300S with two

wind speed maxima, one over Australia and the other over the Central

Pacific at 150 0W. The streamfunction at 850 mb (Fig. 2.31b) shows, in

the northern hemisphere, anticyclonic circulations over the North

Atlantic and North Pacific and cyclonic circulation centered over
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Pakistan. For the southern hemisphere there is an almost continuous belt

of anticyclonic circulation in the subtropics.

We show the velocity potential at 200 mb in Fig. 2.32a. The

striking feature is the strong divergent flow over the Indian Ocean east

of the minimum of velocity potential over the China Sea (centered at

~ 150N). It is clearly seen that there is an upper-level outflow of mass

in all directions with strongest divergent motions to the west and south

of the low center. Another center of upper-level divergent motion,

although somewhat weaker, is found over southern Mexico (~ 220N).

Centers of upper-level convergent motion are observed over the eastern

South Pacific, South Atlantic, southern Africa, and the Mediterranean

Sea. Comparing this figure with the climatological velocity potential

field for July (Fig. 2.8b) and with maps of precipitation, we see that

the center of upper-level divergent motions over the eastern hemisphere

seems to be displaced eastward of its climatological position (which is

south of Southeast Asia over the Indian Ocean) for July 1979. The

upper-level velocity potential for June and August 1979 (not shown here)

exhibits the same behavior, i.e., the low center over the eastern

hemisphere seems to be displaced eastward of its climatological position.

The velocity potential at 850 mb is shown in Fig. 2.32b. There is

general agreement between the upper- and lower- level nonrotational

flows, i.e., lower level centers of convergent (divergent) flow are found

in the general position where the upper- level centers of divergent

(convergent) flow are observed to exist.

The summer and winter thermally direct circulations, as inferred

from the analysis of lower- and upper-velocity potential flow, differ in
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two important respects. First, as it might be anticipated, the centers

of rising motion follow the sun's motion; in southern summer they are

found in southern latitudes; and in northern summer, in northern

latitudes. Second, during the southern summer there seem to exist two

significant heat sources with strong associated divergent flows (one over

South America, the other over Indonesia-western Pacific); whereas during

northern summer, the Southeast Asian monsoonal heat source is by far the

most intense for that season and generates the strongest and most

extensive divergent flows of any season.

2.5 SUMMARY OF OBSERVATIONAL RESULTS

In this chapter we have attempted to identify zonal asymmetries in

the thermal forcing and to relate them to the observed asymmetries in the

circulation. Climatological maps of cloudiness and precipitation revealed

significant east-west as well as north-south asymmetries in the

convective heating of the tropical atmosphere, which is the major energy

drive for the planetary-scale tropical motions. The GLAS Jan-Feb, 1979

FGGE data analysis of diabatic heating and vertical velocity confirmed

the presence of these large asymmetries and provides a quantitative

picture for the thermal sources, with heating rates up to 100K/day at the

model's level of maximum heating (~ 400 mb).

Precipitation zonal asymmetries were seen to be related to the

presence of continents straddling the equatorial region. The degree of

precipitation asymmetry was shown to be greater for the southern summer

because the longitudinal land-sea contrast is more marked for the

southern hemisphere. For the northern summer the precipitation
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distribution is less zonally asymmetric. Also, it was seen that the

position of the precipitation maximum within the tropical continents

moves in a SE-NW direction from southern summer to northern summer and

vice-versa. It was suggested that this orientation is due to the

establishment of the northern hemisphere monsoonal circulations or, in

the last instance, to north-south land-sea contrasts with a tropical

continent lying north of an equatorial 'ocean.

The scale and intensity of the latent heating sources were observed

to have considerable geographical dependence. Highest heating rates were

seen to occur over the Indonesian maritime continent and South America,

whereas the southern Africa heat source is somewhat weaker. The

meridional scale of the heat sources is about the same, 200 to 300 of

latitude, but their zonal scales vary by a large measure. Over South

America (for summer and winter) and Africa (for southern summer), they

are also relatively confined in the longitudinal direction. Northern

summer precipitation over equatorial Africa presents a more zonally

symmetric distribution and a narrower latitudinal scale. The zonal scale

of the heat source over the Indonesian maritime continent is much larger

than its meridional scale for both summer and winter seasons. During the

northern summer there is a succession of intense heat sources displaced

in a longitudinal direction and extending from the western Pacific

westward to India, spanning over 1/3 of the earth's circumference. These

heat sources are tilted horizontally in a NW-SE orientation.

The atmospheric circulation in the tropics was observed to depart a

great deal from a state of zonal symmetry. Lower and upper level

equatorial westerlies are a persistent feature of the time-averaged
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tropical flow, as are the centers of strong anticyclonic circulation over

the subtropical oceans at the lower level and over the tropical

continents at the upper level. The sea level pressure shows a

characteristic pattern of semi-permanent subtropical highs over the

eastern portions of the oceanic basins and continental lows over the

tropical continents during the summer season. The sea level isobars are

more parallel to latitude circles in the winter hemisphere.

It is noteworthy that the subtropical jet stream of the upper

troposphere during northern hemisphere winter presents a wavenumber 3

structure with three regions of maximum wind speed. This wavenumber 3

structure is not clearly seen in the southern hemisphere subtropical jet

stream during southern summer where the jet stream presents just one

clearly distinguishable maximum. This is suggestive of an association

between the tropical heat sources and the wind speed maxima, i.e., there

is a marked wavenumber 3 structure in the heat sources during northern

winter, whereas the heat sources are considerably less asymmetric during

southern winter.

Analysis of the velocity potential and the divergent part of the

wind provided a clearer picture of the thermally direct, large-scale mass

overturnings in the tropics. Major areas of divergent motions at the

upper level (indicating ascending air) are seen over South America and

the Indonesia western Pacific region during the southern summer and a

quite vigorous divergent circulation centered over the Southeast Asian

monsoon region during northern summer. Convergent upper-level motions

are observed over the subtropical oceans and deserts. The picture for

the lower level is approximately reversed from the upper level, i.e.,

convergent motions over the tropical continents and divergent motions
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over subtropical oceans and deserts. North-south mass overturnings exist

but are confined to the longitudes of the heat source. The east-west

(Walker-type) and north-south (Hadley-type) mass overturnings are of

comparable strength.

There is a close association between the position and intensity of

the divergent circulations and the location of the centers of

precipitation maxima and their gradients. The centers of divergent

circulation appear where precipitation peaks, and the divergent motions

are strongest where precipitation gradients are large, e.g., over Saudi

Arabia for the monsoon season. The position of the upper-air easterlies

and lower-level westerlies bears correspondence with the westward branch

of the east-west circulations (divergent winds being easterlies at the

low level and westerlies at the upper level). This agreement seems to

indicate that the planetary-scale, stationary asymmetric circulations in

the tropics are predominantly forced by condensational heating.

In summary, we can say that localized and intense heat sources over

the tropics give rise to strong upward motion with associated convergence

at the lower levels and divergence at the upper levels and cause

large-scale subsidence around the source region. The cloudless and

low-precipitation areas of the subtropical oceans and deserts are thus

likely related to this large-scale subsidence.
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CHAPTER 3: SIMPLE LINEAR MODEL

Although the main focus of this study is on the nonlinear response

of the large-scale tropical circulation forced by isolated diabatic

heating sources, we feel that the study of a simple analytic linear model

is quite useful in providing some basic understanding about the linear

equatorial dynamics. In the present chapter we develop a very simple

analytic linear model, linearized about a given basic state and forced by

idealized heat sources.

We attempt to address the following question: to what extent does a

linear model forced by isolated heat sources simulate features of the

planetary-scale atmospheric motions in the tropics, and when are

nonlinearities likely to be important? To start to answer this question

one should understand the physics of linearized solutions. In this

chapter we review some basic concepts of linear solutions forced by

zonally asymmetric diabatic heating, and in Chapter 5 we will compare

linear and nonlinear solutions.

The results of this linear model compare well with results of

previous linear studies (Webster, 1972; Gill, 1980) and seem to provide

an explanation for some features of the time-averaged large-scale

circulation in the tropics.

3.1 LINEAR MODEL DESCRIPTION

3.1.1 MODEL EQUATIONS

The linearized dynamics of hydrostatic steady-state perturbations

about a given basic state on a stratified atmosphere in an equatorial

O-plane driven by differential heating and controlled by friction, can

be written in log-p coordinates as
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UO au - yv = - 4- - U/tf [3.1]

ax ax

UO - + yu = - - - V/Trf [3.2]

ay ay

au + al+ aw - 0 [3.3]
ax ay az H

UO - + S(z)w =[3.4
ax

Within the scope of this simple analysis we will not attempt to

specify how the mean flow Uo is maintained but just say that it is

in balance with a mean geopotential field and Reynold stresses.

In [3.1]-[3.4], x and y are the eastward and northward distances;

z = -H In (p/ps) is the vertical coordinate where H is the scale height, p

the pressure and ps is a standard pressure value (usually ps = 1000 mb); u

and v are the eastward and northward velocities, w = dz/dt is a measure of

the vertical velocity; is the geopotential; T is the temperature; S(z)

is the static stability; and a = 2Q/a (= 2.28x10-11 m-is-1); Q is the

diabatic heating; and Tf is a constant Rayleigh friction relaxation time.

BOUNDARY CONDITIONS

a) periodic in x [3.5]

b) motions are equatorially confined, i.e., all fields +o as |yloW

c) zero mass flux at the ground (assumed flat) and at the top of the

atmosphere, thus we take w = o at the top and bottom of the atmosphere.

We will make an additional assumption about the thermodynamic

equation [3.4]. Heat budget studies for the tropics (Katayama, 1964;

Cornejo-Garrido and Stone, 1977) indicate that

UO aT << S(z) w ~
ax
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thus we will neglect the temperature advection term. Eq. [3.4] then

becomes

S(z)w = Q . [3.6]

This simple form of Eq. [3.6] has an important advantage: vertical and

horizontal dependencies easily separate out. If the advection term is

not neglected in [3.4], vertical and horizontal dependencies do not

separate out easily and an eigenvalue-eigenfunction approach has to be

used as in Pedlosky (1980, Ch. 9).

3.1.2. NONDIMENSIONALIZATION

Equations [3.1], [3.2], [3.3], and [3.6] are now nondimensionalized

by the following scaling

x,y + L, u, v + U

H
z + H, w + - U

L

+ SL2 U

S(z) + So, + Qo

where So and Qo are typical (constant) values of the static stability and

of the diabatic heating, respectively, and L is a typical scale of the

forcing.

The nondimensional set of equations can be written as

Ro au - yv = - Eou [3.7]
ax ax

Ro - + yu = - - Eov [3.8]
ax ay

u + + -w - W= 0 [3.9]
ax ay 3z
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S(z)w = Q(x,y,z) [3.10]

where all variables now are nondimensional and the nondimensional

numbers are given by

UO
RO = - , Eo = (SLTf)-

SL2

where Ro is the Rossby number. The velocity scale is related to heating

by U = QOL/SoH.

3.1.3 METHOD OF SOLUTION

From [3.7] - [3.10] we can obtain an equation for v (the vorticity

equation):

{(Eo + Ro )( + -) + - v = {yi- - (Eo + R. I) }Q,
ax ax2  ay2  ax ax ax ay

[3.11]

where I= ( -- 1)
S(z) az

The solution of [3.11] is completely determined by the distribution of

heating Q(x,y,z) and the boundary conditions for v.

The prescribed diabatic heating Q(x,y,z) is an idealization of heat

sources over tropical continents and radiative cooling over the tropical

oceans and is assumed to be of the form

Q(x,y,z) = QO(z) Q(x,y) . [3.12]

The distribution of Qo(z) is shown in Figure 3.1 and corresponds to

a vertically distributed heating associated with deep convection given by

Qo(z) = sin kz where k = n/Htop. The functions X(x) and Y(y),
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describing the horizontal distribution of heating, will be shown in

Section 3.3 below.

HTOP

0 tz) sin

0 .5 1.0

(Z)

otz>

Figure 3.1 Vertical structure of prescribed heating given by
Qo(z) = sin kz where k = r/Htop.

With the heating as given by [3.12], v admits solutions of the form

v (x,y,z) = A(z) V(x,y) [3.13]

Then Eqs. [3.11] - [3.13] give the vertical structure equation

A( z) = ( a -1)Q(z)
S(z) az

= -(k cos kz -
S(z)

and the horizontal structure equation

a a2  a2
{(E0 + R -) (- + )

ax ax2 @y2

{yi
ax

- (Eo + Ro

+ a} V(x,y)
ax

)a}Q(xy) .
ax ay

The solution of [3.15] is found by expanding V and Q as

V -imx
{ m~ 9 gy e.

[3.16]

sin kz) [3.14]

[3.15]

V (x,y){ }Q(x,y)

M

m= -M

L

X= 0
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where 'T(y) = e Y2/2 H(y) is the tth-order Hermite function, such that

f $n *n dy
-Cc

= 1/2 2m m!

= £(Z-1)~...2 - (x+ 12)*y + /'P++2 .

From [3.15] using [3.16] - [3.18], we obtain

Em (t+1) (+2)Vm,Z+2 + [im - Enm2+.+1 /2)] VML

[/ 2 (im+m) Qm, .-1 + (im-em)(Z+1)Qm,z+1] ~

+ -EV-2
4

where em = e - imRo.

For each m the system of equations [3.19] splits up into two

symmetries and can be written, for n = 0,2,4, ... , as

em(l -m2+im/Cm)

Em/ 4

0

and for n = 1,3

cm(1.2)

em(- - m2+im/Em)

em/ 4  E

0

0----

em(3.4)

m(- -m2+iM/Fm)

cm/4

0

,5 .... as

Em(- -m2+im/em)

em(- j -m2+im/em)

em/4

0----

em(4.5)

m(- -mn2+ iMm)

em/4

0

and

6nm

dy2

[3.17]

[3.18]

[3.19]

Vm ,0

Vm, 2

Vm , 4

Om,o

0m,2

0m,4
[3.20]

Vm

Vm, 3

Vm, 

,3

-- O,5 [3. 21]

cm (2. 3)
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The two tri-diagonal matrix systems [3.20] and [3.21] are solved by

the matrix factorization method for each m (Isaacson and Keller, 1966,

pp. 55-56). The terms of the series [3.16] converge as fast as 1/n for

large i. This model is similar to the one used by Moura and Shukla

(1981) where in their model em is simply a constant Rayleigh friction

coefficient.

Once v is know; u can be calculated from [3.9], using [3.10] and

[3.12] and an expansion similar to [3.16], resulting in

Umz = i- [-1/2 Vm,9-1 + (L+1) Vm,L+1 - Qm,] - [3.22]
m

Having obtained u and v, we calculate the geopotential + from [3.7],

i.e.,

$m,2 = - [EmUmL - 1/2 Vm,X-1 - (X+1) Vm,X+1] - [3.23]
m

The "vertical velocity" w is directly determined by [3.10].

3.2 LINEAR MODEL RESULTS

3.2.1 PRELIMINARIES

In this section we will exhibit the linear response to various

distributions of forcing functions. In particular, the change of the

response with longitudinal scale and distribution and with latitude of

thermal sources will be discussed. Here we will use simple arguments

based on the linearized vorticity and temperature equation as an aid to

comprehending the linear response.

The equatorial s-plane vorticity (E) equation is derived from [3.1],

[3.2] and [3.3] as
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a a 1
(U0 -- +Tf ) + Sv= y(- -- )w

ax az H [3.24]

In the tropics, vertical advection is dominant in the thermodynamic

equation for deep heat sources, i.e., w ~ Q/S, and Eq. [3.24] becomes

(Ua Ia 1
(U0 - + + Ov = y(- )Q/S.

ax az H [3.25]

It is immediately seen that for symmetric heating, a vorticity

maximum/minimum pair is formed on opposite sides of the equator. The

distance of this pair away from the equator is found by differentiating

the R.H.S. of [3.25] with respect to y. For the forcing y-structure

1 2
- - (y/ys)

Q(y) = e a
1/2

they are at a distance (a/2) ys. At the equator the generation of

vorticity is zero and the flow is strongly convergent (Lao and Lim,

1982).

In the inviscid limit Tf- + 0, and for large horizontal scales, i.e.,

R0 << 1 (m << ms = (/Uo) /2), the a and stretching terms must balance,

i.e.,

a 1 ya3 1
v ~ y( )w ~- - -)Q.az H S az H [3.26]

For a deep heat source with maximum amplitude above, the heating is

balanced by upward motion (w > 0) at the lower levels, and there is

generation of positive vorticity ((a/az-1/H)w > 0). It follows from [3.26]

that there is poleward meridional flow, accordingly the low-level trough

must be to the west of the heat source (Gill, 1980; Hoskins and Karoly,
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1981). When the thermal source is moved away from the equator, the

Coriolis parameter increases (in simple terms, Ov ~ faw/az), so that the

poleward meridional flow is even stronger; and likewise will be the

low-level trough to the west of the heat source.

3.2.2 SCALE CONSIDERATIONS

We examine the dimensionless set of equations [3.7] through [3.10]

which, in simplified form, can be written as

Roux - yv = - $x - Ecu, [3.27]

Rovx + yu = - ty - Eov; [3.28]

and combining the continuity and thermodynamic equations,

ux + vy = - Q/HQ, [3.29]

where HQ = Q/Qz is a nondimensional heating scale height.

a) Near-equatorial balances: y << 1

The relevant balances are given by

Roux + x + Eou = 0 [3.29a]

and

Rovx + 4y + Eov = 0. [3.29b]

If the advection term dominates, i.e., Eo << Ro, the near-equatorial

balances are between pressure gradient force and zonal advection. If m and

t are the inverse of the zonal and meridional local scale of variation of

the heating Q, respectively, and are assumed to be proportional to the

scale of the response, the magnitudes of u and v are proportional to
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m
lul - IQI/HQ9

(m2 + X2) [3.30a]

and

|vi ~ (m2 + Z2) |Q|/H. [3.30b]

It is seen that for a forcing function centered on the equator with

X = X(y) being a slowly varying function of latitude near the equator,

I < m and thus, u > v. For instance, if the heating function has a

Gaussian latitudinal profile (Q(y) = e-y2/2), then X is very small near the

equator (I = 0 at y = 0) and as a consequence the meridional motions are

small. On the other hand, if the heating function is centered at a

distance away from the equator and dQ/dy is large near the equator, then X

will not be small and cross-equatorial flow will be significant. Zebiak

(1982), studying a linear model similar to ours also derived some

conclusions about the relative magnitudes of u and v based on simple scale

arguments.

For the case where Ro << E0, the near-equatorial balances are

between pressure gradient force and frictional terms, and the magnitudes

of u and v are also approximately given by [3.30]. For the tropics,

advective and frictional relaxation time scales are about the same order;

therefore, we would expect a three-way balance near the equator among

pressure gradient force, advection and friction.

b) Balances away from the equator: y > 1

If we assume Ro << 1, i.e., m << ms = (a/UO)1/ 2, and also, weak

frictional dissipation, i.e., Eo << 1, then the 0(1) balances away from

the equator are approximately geostrophic

yv - ex = 0 and [3.31a]

yu + $y = 0. [3.31b]
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In this case, the magnitudes of u and v are proportional to

X
(m2 + £2) 

[3.32a]
and

m
|v| ~ (m2 + £2) |Q|/H. [3.32b]

Here, because of the geostrophic coupling of u and v, we see that the

magnitudes of the horizontal components of the wind as given by [3.32]

present an inverse scale dependency as compared to [3.30]. For m << X

(long-wave approximation), we have u >> v, and the balances are

0(1) : yu + ty = 0, Eov, Rovx < 0(Ro) [3.33a]

0(Ro) : Roux - yv + ex + Eou = 0, for Eo = 0(Ro). [3.33b]

For heating centered away from the equator, say at y = 1, the magnitudes of

u and v will be of the same order when X ~ m, i.e., if we assume that the

heating meridional scale changes slowly near the region of maximum heating.

It follows that the meridional motions can attain considerable magnitude.

For heating centered at the equator and of zonal scale much larger than

meridional scale (m << x), the magnitude of v will be small throughout the

domain, near the equator because of the slow y-variation of the forcing,

and away from the equator due to the geostrophic constraint.

In our simplified analysis in the present chapter, we are not taking

into consideration the effects of vertical and meridional advections by

the zonal mean winds. We are implicitly assuming that

X[Iv], [w]/H << m[!u], i.e., the zonal advection by the mean flow is the

dominant advection. In the next chapter, we will relax this constraint
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and assess the importance of meridional and vertical advections of momentum

and temperature. Also, by assuming that the scale of motion is determined

by the scale of the forcing, we are not taking into consideration the

scales determined internally by the system. Thus, relations [3.30] and

[3.32] should be thought of as order of magnitude approximations for the

forcing region only.

3.2.3 RESULTS

We use the following set of dimensional parameters:

L = 10*

H = 7.5 km
[E.34]

So = 4*K/km

(Qo/Cp) = 50K/day

UO = 5 m/s

Tf = 7 days.

With this choice of dimensional parameters, U = 2.2 m/s, and the

nondimensional numbers take the values

Re = 0.18 and Eo = 0.05. [E.35]

Equations [3.20] through [3.23], for v, u and 4, will be solved for a

number of cases in which we vary the zonal scale and latitudinal position

of isolated heat sources. Also, the sensitivity of the response to changes

in the parameter Ro (mean zonal wind) will be discussed. Lastly, we

examine a case where we attempt to represent typical heating patterns for

the southern summer. All the results are presented for the 700 mb level in

nondimensional form, and dimensional values are given by [E.34].
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a) Zonal Scale of Forcing

To a first approximation the zonal scale of the condensational heating

in the tropics is given by the longitudinal dimension of the tropical

continents. This is probably the case with respect to contiguous land

masses straddling the equatorial area (e.g., South America and Africa).

The heat sources over the Indonesian Archipelago connect continuously with

those over the western Pacific, and in this case, the zonal scale is larger

and is not determined directly by the size of a tropical continent, for a

large part of it seems to lie over the ocean. Still an open problem in

dynamic meteorology is the question whether the scales of tropical heat

sources are mostly determined by the dynamics of the flow field (e.g.,

large-scale convergence organizing smaller-scale cumulus convection) or

whether the lower boundary condition (e.g., land versus ocean) plays a more

determinant role. It is our contention that over land, the scale of the

heat sources is determined to a first order solely by the dimensions of the

tropical land masses. This point will be discussed in more detail in the

concluding section, Chapter 6.

Figure 3.2 shows the four different x-structures used (see

Appendix A). Their zonal scales are approximately a) 360, b) 450, c) 600,

and d) 904. The y-structure is simply the zeroth order Hermite Function

$o(y) (Gaussian). We start by examining in more detail the response to

forcing (a). All figures in the remainder of this chapter refer to the

lower-level response. Given the simple vertical structure of the forcing,

the upper-level solution is similar; just the sign is reversed. For this

case EO = 0.05 and Ro = 0.

Zonal and meridional velocities, geopotential and vorticity are shown

in Figure 3.3 for the forcing (a) of Figure 3.2. We observe a pair of low
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centers (Figure 3.3c) symmetric about the equator, to the west of the heat

source, and about 150 away from the equator. Cyclonic circulation develops

around the low centers, and in the source region the meridional flow is

poleward. Near the equator, easterlies prevail to the east of the source

and westerlies, to the west, but the wind distribution presents marked

zonal asymmetry, with the region of easterlies extending much farther than

the region of westerlies. This asymmetry was explained by Gill (1980) in

terms of propagation of equatorial waves away from the source, a Kelvin

wave to the east and the lowest order Rossby mode to the west, for a

heating function symmetric about the equator. The phase speed of the

fastest moving Rossby mode is 1/3 of that of the Kelvin wave (Matsuno,

1966), or for the stationary case, dissipation acts three times as strongly

for the Rossby mode to the west than for the Kelvin wave to the east. Gill

(1980) also suggested that the observed asymmetry in the east-west

circulations (see Figures 2.10 and 2.11) may be explained in terms of the

above mechanism. We will return to this point in the discussion section,

Chapter 6. The vorticity field, Figure 3.3d, shows a minimum/maximum pair,

symmetric about the equator and 10* of latitude away from the equator. We

remark that the maximum wind speeds are found at the equator with the

magnitude of the westerly jet approximately twice as large as that of the

easterly wind maximum.

In Table 3.1 we present minimum and maximum values of zonal and

meridional winds, geopotential and vorticity for the forcings of

Figure 3.2.
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Table 3.1

Minimum and Maximum Values of u, v, , and (

for Different Zonal Scale of Forcing

u v
Forcing
x-scale MIN MAX MIN MAX MIN MAX MIN MAX

360 -1.08 2.19 -0.46 0.46 -1.37 0.48 -1.79 1.79

450 1.29 2.69 -0.43 0.43 -1.61 0.60 -2.17 2.17

600 -1.69 3.24 -0.43 -0.43 -2.01 0.80 -2.65 2.65

900 -2.39 4.01 -0.38 -0.38 -2.50 1.18 -3.18 3.18

We show, in Figure 3.4, winds and geopotential for the different

forcings. As the zonal scale of the forcing is increased, u, * and E
increase, whereas v slightly decreases. This is consistent with the scale

arguments of the previous section (Eqs. [3.30] and [3.32]) for heating

centered at the equator.

b) Latitudinal Position of Forcing

Here we vary the latitudinal position of the forcing. The forcing now

is located at approximately 120S and its zonal structure is the one given

in Figure 3.2a (zonal scale ~ 36*). Eo = 0.05 and RO = 0.0 for this case.

The forcing's horizontal structure and the fields of u, v and E are shown

in Figure 3.5. In Figure 3.6 geopotential and wind vectors are shown for

this case and for the case with heating centered at the equator, which is

reproduced here for comparison.

When the heat source is moved away from the equator, zonal

winds (Figure 3.5b) are maximum away from the equator, and unlike the case
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for a heat source at the equator, the meridional winds are much stronger

and non-zero at the latitude of maximum heating. Also, there is cross

equatorial flow (Figure 3.5b). Accompanying the greater meridional

velocities near the heat source is an intensified low center to the

southwest of the source (Figure 3.6 a). The increase in v and thus in the

geopotential field is understood in terms of conservation of vorticity as

explained in section 3.2.1.

c) Southern Hemisphere "Realistic" Heating

We attempt in this section to represent a typical heating pattern of

the southern hemisphere summer with three heat sources of finite

longitudinal extent, centered over South America, Africa and the Indonesian

maritime continent, respectively. In Figure 3.7, we show the horizontal

structure of the forcing. Note the different zonal scales for each heat

source, the cooling regions over the oceans, and the pattern which is

centered approximately at 120S. For this case we take EO = 0.051 and

Ro = -0.178 which is equivalent to a mean easterly zonal wind of 5 m/sec.

In Figure 3.8, we present the fields of u, v, E, and p plus wind vectors.

The response is concentrated in the hemisphere containing the heat

source as meridional velocity and geopotential are small in the northern

hemisphere. In the heating hemisphere there is a pattern of lows to the

west of the heat source and highs to the east. The strongest circulation

is associated with the Indonesian heat source. Maximum winds are

easterlies converging into the region of the Indonesian heat source. The

circulation associated with the African heat source is smaller in magnitude

reflecting weaker heating.

If we conceptually add to this asymmetric heating a symmetric heating

representing a hypothetical ITCZ centered at the equator, the geopotential



135

field created by this axially symmetric heating would be negative at the

equator, becoming less negative polewards. For our linear systems, that

solution would simply add to the zonally asymmetric solution. The emerging

picture would show a geopotential distribution less zonally asymmetric in

the northern hemisphere and an alternating pattern of lows and highs in

the southern hemisphere. The mean easterlies would add to the zonally

asymmetric winds, and the result would be an augmented region of easterlies

and a smaller area of westerlies. This picture retains qualitatively some

major features of the southern summer tropical circulation.

d) Parameter Sensitivity Analysis

It is of some interest to study the sensitivity of the response to

changes in the mean zonal wind and frictional dissipation. The scale

analysis of the previous section has shown that near the equator, advection

and friction are likely to be important in the dynamical balances. Also,

although the mean winds in the tropics are easterlies, it is interesting to

see what the solution would be for mean westerly winds. This is a crude

way of taking into consideration the observation that there are extensive

areas in the tropics for which the time mean winds are westerlies. The

simplicity of our model does not allow for taking explicitly a

longitudinally varying basic-state.

We show in Figure 3.9 geopotential and wind vector for seven cases

where Eo was kept fixed (Eo = 0.051) and Ro was varied corresponding to the

following mean zonal winds: -10 m/s (a), -5 m/s (b), -2 m/s (c), no zonal

wind (d), 2 m/s (e), 5 m/s (f), and 10 m/s (g). For mean easterlies and

weak westerlies the solution is not very sensitive to the zonal wind, but

for strong mean westerly wind (Figure 3.9g) there is meridional

propagation. This result is similar to the results obtained by Hoskins and

Karoly (1981).
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CHAPTER 4: NONLINEAR MODEL

In the previous chapter, scale analysis has stressed the importance

of advection for the dynamical balances in the tropical regions. A

simple linear model was used to study the response of the tropical

atmosphere to a zonally asymmetric perturbation heating for a given mean

zonal flow. The results of this linearized advection analysis pointed to

the need of taking into account nonlinearities, which is what we are

attempting to do in this chapter.

It is expected that inertial balances become increasingly important

near the equator as the Coriolis force becomes vanishingly small. The

observational evidence of easterlies and westerlies in the tropical

troposphere indicates that zonal advection of momentum might be

important. Schneider (1977) has shown, for an axisymmetric model, that

the poleward advection of zonal momentum from the convectively active

equatorial belt is very important in maintaining the upper-level

subtropical jet stream.

In view of what was said, it is clear that a horizontally unvarying

basic flow, as considered in the previous chapter, is not realistic.

Easterlies and westerlies at the same latitude are a conspicuous feature

of the time mean tropical circulation. In the present section we develop

a simple, primitive equation, nonlinear model to attempt to take into

account the full nonlinear character of the problem. Purposedly the

model's physics is made very simple so that, unlike complex GCM's,' it can

hopefully yield simple physical interpretation.
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4.1 DESCRIPTION OF THE MODEL

4.1.1 GOVERNING EQUATIONS

Equatorial a-plane geometry is used since we are primarily

interested in the response of the tropical atmosphere to forcing within

the tropics.

The governing equations for this problem are the zonal and

meridional momentum, hydrostatic, continuity and thermodynamic

equations. In log-p vertical coordinates (Eliassen, 1949; Holton, 1975)

on an equatorial a-plane, they are, respectively,

au + au+ + au - -- + Fx [4.1]
at ax dy az ax

av + u + v + w + ayu - + Fy [4.2]
at ax ay az ay

= RT' 
[4.3]

az H

au a+v+-w _ w- - 0 [4.4]
ax ay az H

aT'+ uaT' + vT'+ waT' So(z)w = - LAR]- [4.5]
at ax ay az Cp

The vertical coordinate is z = -H Xn(p/ps) where H is the scale

height and ps is a reference pressure value taken equal to 1000 mb. For

an isothermal atmosphere z is the actual height, w = - is a measure of
dt

vertical velocity, and H, the density scale height, is given by

H = RTo/g where T is a global average temperature. For To=255K,

H ~ 7.5 km. This value will be used thereafter. T' is the departure of

the actual temperature T from the basic state temperature To(z).
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The static stability is given by

SO(z) = dTp(z) + K Tp(z) [4.6]
dz H

where To is a basic-state temperature, assumed to be a function of z only.

This basic-state temperature is in hydrostatic balance with a basic-state

geopotential

d~o(z) - R TO(z). [4.7]
dz H

The remaining symbols in equations [4.1] through [4.7] have the usual

meaning and are defined in the list of symbols in Appendix H.

BOUNDARY CONDITIONS

1) all fields are periodic in x

2) all fields vanish as y + ±

3) vertical boundary conditions: no mass flow at the bottom and

"top" of the model that is assumed to be a rigid lid.

In the log-p coordinate system the lower boundary condition is given

by (Holton, 1975, pp. 57-58)

do g wphys at z = -H zn(pB/ps) [4.8]
dt

where pB(x,y,t) is the variable surface pressure and wphys is the actual

vertical velocity. The departures of PB from ps are small so that to a

good approximation we can apply the surface boundary condition at the

coordinate surface z=o, i.e., PB = Ps-

Remembering that t(x,y,z,t) = $(x,y,z,t) + tO(z) we obtain from [4.8]

an equation for the local variation of geopotential for the lower boundary
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2+ uh+ v L+ w(a0- + = g wphys at z = 0. [4.9]
at ax ay az az

Neglecting -- as compared to and making use of the hydrostatic relation
az az

[4.7] to eliminate -- we arrive at the following expression
az

+ u 3 + v - + w R Ts = g wphys at z = 0, [4.10]
at ax ay H

where Ts is the lower boundary temperature and is assumed to be constant

and equal to 300 K.

Heating at the bottom surface, Ekman pumping (frictional convergence

in the boundary layer) and topography can produce a vertical velocity at

the lower boundary. The effect of the earth's topography can be taken into

account by considering a vertical velocity forced at the surface

wtopog = US Vh(xy) at z = 0 [4.11]

where h(x,y) represents the height of the topography and Us is a reasonable

estimate of the horizontal wind at the surface. Such a representation of

topographical effects is rather crude, but on the other hand, the model's

low resolution would preclude a realistic representation of the earth's

topography.

4.1.2 PHYSICAL PARAMETERIZATION

In keeping with the main goal of this work that focuses on the study

of nonlinear dynamics in tropical motions forced by isolated heat sources,
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we will keep the model's physics very simple so as to make it possible to

easily identify the effect of nonlinearities.

FRICTIONAL DISSIPATION AND RADIATIVE PROCESSES

Frictional dissipation and radiative processes are parameterized as

simple linear damping laws (Rayleigh friction and Newtonian cooling).

Friction is parameterized as a linear function of wind speed

Fx = -U/Tf and Fy = -v/Tf [4.12]

where the Tf is the relaxation time for momentum dissipation and is assumed

to be constant.

Newtonian cooling is parameterized as proportional to the temperature

departure from the radiative equilibrium temperature

QR = - (T-TE)/Tr [4.13]

where TE is a prescribed radiative equilibrium temperature and Tr is a

constant temperature relaxation time.

For the actual calculations, Tf and Tr are taken to be equal to 10

days, and we write

R = -(TO(z) -TE)/Tr - T'/Tr [4.14]

where the first term in the R.H.S. of [4.14] will be prescribed.

STATIC STABILITY

To a first approximation the vertical temperature of the tropical

atmosphere is close to the moist adiabatic lapse-rate. In a climatological
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sense it does not depart significantly from that state seeing that

imbalances in the vertical column that arise due to diurnal solar heating

of the surface are quickly restored by convective adjustments, and the

lapse-rate remains nearly moist adiabatic. Also, because the horizontal

temperature gradients are small in the tropics, So is approximately

constant horizontally except in clouds. Based on data from Newell

et al. (1974), the static stability So is taken equal to 4*K/km.

LATENT HEATING

The main asymmetric forcing in our study will be the heating of the

large-scale environment by the condensation of water vapor in deep

cumulus clouds (hot towers). Heat budget studies (Katayama, 1964;

Cornejo-Garrido and Stone, 1977) have indicated that this is the leading

diabatic heating term for the tropical regions, it being larger than net

radiative heating and sensible heating of the atmosphere.

As evidenced from the precipitaton maps shown in Chapter 2, latent

heating in the tropics presents strong zonal asymmetries. To a first

approximation it can be thought of as being made of isolated heat sources

over the continents and a narrow continuous band (ITC) over the oceans.

We recognize, however, that precipitation maps (Figs. 2.2 and 2.3) have

shown that only for South America and Africa can the heat sources be

thought of as isolated; the Indonesian-Western Pacific heat source is

broader and more nearly zonally oriented.

Because the main focus of this study is on zonal asymmetries, we

will be concerned only with the isolated heat sources over continents,

i.e., the discontinuous character of the latent heating along the zonal

direction. Of course, in a more realistic representation of large-scale

circulations forced by diabatic heating in the tropics, the axisymmetric
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part of the heating including the narrow ITCZ also has to be taken into

account. There has been, however, a great deal of theoretical work on

the symmetric circulations (Schneider and Lindzen, 1977; Schneider, 1977;

Held and Hou, 1980), and we felt it was more appropriate for our study to

concentrate on the asymmetric forcing.

The latent heating will be prescribed in the model and not allowed

to vary with time. We realize that small-scale cumulus cloud formation

is to a great extent organized by meso- and large-scale moisture

convergence at the lower level. This implies that precipitation is

dynamically coupled to the flow field. How the large-scale flow affects

cumulus dynamics is not yet well understood and only recently, due to its

importance to GCM's, has this subject provoked theoretical (Arakawa and

Schubert, 1974; and others) and observational study (Houze, 1973; and

many others). Also several studies (Schneider and Lindzen, 1977;

Geisler, 1981) have pointed out the importance of momentum transports

within the cumulus cloud environment. This so called "cumulus friction"

effect is not taken into account in this study.

TOTAL PRESCRIBED DIABATIC HEATING

The vertical profile of diabatic heating adopted is depicted in Fig.

4.1 in nondimensional form. It peaks at 500 mb and goes to zero at

100 mb (top) and 1000 mb (bottom).

The prescribed total diabatic heating in our model comprises two

terms: a latent heating term, QL, and a radiative cooling term,

(-TO(z) - TE)/Tr- Values for the net radiative cooling for the

atmosphere are given by Newell (1974, pp. 11). In the tropics, radiative

heating rates of -2.0*K/day are observed near the surface, -0.70K/day at

mid-tropospheric levels and -1.70K/day at 300 mb; so the radiative

heating vertical structure is different from that of the latent heating
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which peaks at the middle troposphere. The distributions of diabatic

heating used are idealizations of realistic distributions, and their

choice was guided by the diabatic heating generated by the GLAS analysis

of FGGE data.

In Table 5.1 of the next chapter, the three values of diabatic

heating intensity used in numerical integrations of the model are

presented as well as their equivalence in terms of precipitation rates.

In the actual integration of the model, we will not attempt to

simulate a detailed and realistic distribution of diabatic heating since

that would require a fine resolution which would become computationally

very expensive for the nonlinear model. Instead we chose to work with

idealized heat sources with simple x, y and z structures. That is

computationally less expensive because of the coarser resolution. Also, it

will yield simpler interpretations of the results still, hopefully,

retaining important qualitative features of tropical large-scale

circulations. In Chapter 5 we show the various horizontal distributions of

latent heating used in this study (Figure 5.1).

RESULTING EQUATIONS

With the physical parameterizations adopted, the governing Eqs. [4.1],

[4.2] and [4.5] become

au au + u au a~ u
+ u-_u + v-u + w - yv = - - [4.1']

at ax dy az ax Tf

av + av av av a~ v+ u + v -+ w-+ ayu = - - - [4.2']
at ax ay az ay Tf

+ u + v 2.1+ w 2! + Sow = . (xy,z) - [4.5']
at ax ay az Cp Tr
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where

QT = QL - (TO(z) - TE )/Tr

is the prescribed total diabatic heating.

4.1.3 NONDIMENSIONALIZATION

Equations [4.1]', [4.2]', [4.3], [4.4], [4.5]', and the vertical boun-

dary condition [4.10] are now nondimensionalized. Denoting new nondimen-

sional variables as starred variables, the scaling will be the following:

x,y = L(x*,y*)

z = Hz*

u,v = U(u*,v*)

w = (HU/L)w* [4.15]

t = (SL)-' t*

* =(6L2U)$*

T = (aL2U/R)T*

QT = QoQT*

where L, H and U are typical scales for horizontal length, vertical

length, and horizontal wind speed, and Qo is a typical diabatic heating

rate.

The new set of nondimensional equations is

au- + Ro(u* --- + v* + w* --- ) - y*v* = - rou* [4.16]
at* ax* dy* az* ax*

-- + Ro(u* - + v* -- + w* -- ) + y*u* =- - rov* [4.17

at* ax* ay* az* ay*

- = T* [4.19]

au* av* aw*
- + - + -- - w* = 0
ax* ay* dz* [4.19]

3T* 3T* 3T* 3T*
+ Ro(u*-+ v*-+ w*-) + Aow* = FO QT* - yoT*

at* ax* dy* 3z* [4.20]
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and the nondimensional B.C.

-L + RO(u*Le+ v*-Le) + Now* = BO w*phys at z* = 0 [4.21]
at* ax* dy*

where the nondimensional parameters are

RO- U AO = SoRH , FO =

SL2  (aL2)2  Cp 2L3 U
[4. 22a]

RTs gH
ro= (ILTf)- 1 , Yo = (OLTr)- 1 , No = , Bo = 2 2

( 2L 2) 2 U ( 2L 2

where RO is the Rossby number.

The dimensional parameters used for the nonlinear integrations are

L = 10* H = 7.5 km

U = 10 m s-I a = 2.28 x 10-11 (m s)-1

R = 287 K-1 m2 s-2 g = 9.81 m s-2

(Qo/Cp) = 50K day -1 So = 40K km- 1  [4.22b]

Tf = Tr = 10 days Ts = 300 K

With this choice, the nondimensional numbers become

Ro = 0.354 EO = 10.8 FO = 2.32

ro = yo = 0.05 No = 108.8 BO = 92.5 [4.22c]
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4.2 SPECTRAL REPRESENTATION OF THE MODEL

In this section a spectral model will be developed for the numerical

integration of the set of equations [4.16] through [4.22]. Horizontally,

all variables and the forcing will be expanded in Fourier series in the

x-direction and normalized Hermite Functions in the y-direction. The

rationale for choosing Hermite Functions for the latitudinal expansions

is that this set of basis function allows for great simplicity in the

calculations of Coriolis terms and y-derivatives by virtue of their

recursion relations and also due to the realization that the normal modes

for an equatorial s-plane are expressed in terms of Hermite Functions

(Matsuno, 1966). The forcing function in the model -latent heating in

deep cumulus clouds -in general attains high values in the tropics and

falls off to very small values rather abruptly in the subtropics. That

being the case, the e-y2/2 factor in the Hermite Functions is compatible

with the y-variation in the forcing.

Vertically the model's atmosphere will be divided into 5 layers,

and finite differences will be used to evaluate vertical derivatives.

The set of equations for the spectral coefficients will be numerically

integrated in time until the solution equilibrates the prescribed latent

heating source.

4.2.1 SPECTRAL EXPANSIONS

Expand all fields as

u* Umx
v* M L VmX -imx
w* = Re { I { Wm,X 'X(y) e } [4.23]

** m=-M x=0 AnM
T* TM,
QT* Qm,X
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where

Hx~ye-y2/2Y,(y) = _ _ _ _ _ _ _ _

(2P- V k i/2) 1/2

is the normalized Hermite Function (NHF) of order X with H2 (y) being the

Xth order Hermite polynomial and the spectral coefficients UmX, Vm,t,

Wm,£, $m,x and Tm,£ are functions of only z and t (see Appendix B for a

summary of NHF properties).

Substituting the spectral expansions [4.23] into the nondimensional

set [4.16] through [4.21] in order to eliminate the x and y dependencies

and to obtain a set of equations for the spectral coefficients, we apply

the standard procedure: multiply the set of equations through by

einx Tk(y) and then integrate from -w to fr in x and from -co to co in y.

After making use of the recursion relations for NHF

yY X= ( )1/2 Tx_1 + ( )1/2 Tx+12 2

-TX L 1/2 - +1 1/2 [4.24]
(- TY C -) 'Yx~+idy 2 2

and the orthonormality relations for Fourier series and NHF

1 f -i(m-n)x 1 m n [4.25]
-fe dx = { [.5

2r-r 0 m n

1 k=z
f Yk(y) TX(y) dy = { [4.26]

-- 0 k #

we obtain the following set of equations for the spectral coefficients
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3Um,t = -ROC(U)

at m,
+ [(..+)1/2 Vmt+1 + (-)1/2 Vm,- 1 ]2 2

+ im $m, - ro Um ,

aVm,= -ROC(V +
at m ,

+ (,t)1/2 (Um- -

= Tm, x

awm,x

az

[(+1)1/2 (Um,+1 + $m, +12

$m -1) ] - roVm.x

[4. 29]

Wmp + im Umk - [[ )1/2 Vmgk+1 +

= -ROC(T - Ao Wm, + FO Qm X - yo Tm, Yat m,

and the boundary condition

-ROCH(+) + No WmL + Bo W(phys)
m,29. m,29

where C(A) is the spectral
m,

of the quantity A

representation of the tridimensional advection

u- C(A) + v(y) e [imx
ax ay az m=-M Z=0 m9I

and CH(A) is the spectral representation of the horizontal advection
m,L

u A+ v A - CH(A) *t(y) e [
ax ay m=-M L=0 m,2

[4. 27]

[4. 28]

)1/2 ym, .3]

[4. 30]

[4.31]

[4.32]

4.33]

4.34]
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4.2.2 CALCULATION OF NONLINEAR TERMS

Let A and B be two variables expressed in terms of a set of basis

orthogonal functions

M L -imx
A = I ) A *X(y) e [4.35]

m=-M 2=0 m,

M L -imx
B = I B i2(y)e [4.36]

m=-M 1=0 m,

where TX is the NHF of order t.

We want to find the spectral coefficients Qny such that

M L -imx
AxB = I C M pg (y) e . [4.37]

m=-M Z=0 m

The transform method will be utilized for the calculation of the

nonlinear interaction coefficients. Briefly, the method consists of the

following steps (see Appendix C for details on the transform method and

its advantages and for references about spectral methods):

1) define a set of grid-points (xi,yj) (physical space) and evaluate

M L -imx
A(xi,yj) = I A *t(yj) e 1 [4.38]

m=-M Z=0 m,z

M L -imx.
B(xi,yj) = X B *P2(yj) e 1 [4.39]

m=-M X=0 mqz

for each grid-point for all pairs (xi, yj),

2) carry out the nonlinear multiplication in the physical space for

all grid-points (xi,yj),
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3) tranform the product AxB in physical space to spectral space,

i.e., find

7T 0 -imx
Cm = f f [AxB](x,y) pZ(y) e dy dx. [4.40]

-7TI -00

In the actual calculation of advection terms, a derivative has to be

evaluated before step 1, such as in the calculations of u , v - and

aA 3x ay
w -. Evaluate the horizontal derivatives in the spectral space, i.e.,
az

+ - (im)Am

ax

3A x+1 1/2 1/2
-- + [(1-) A A
ay 2 m,9A+1 2 m,92-1

3Aand - is evaluated using finite differences in the vertical. Then
az

proceed to steps 1,2, and 3.

4.2.3 VERTICAL DIFFERENCING SCHEME

The model's atmosphere is divided into 5 layers in the vertical as

shown in Fig. 4.2 with rigid lids at the top (100 mb) and bottom

(1000 mb). In Section 4.3 we will discuss some of the possible

limitations of having a rigid lid at 100 mb. The variables u, v and T'

will be evaluated at mid-layer points and w and + in the layer edges. A

mid-layer variable is denoted by k even; a variable taken at the edge of

the layer, by k odd. Variables vanish at the top boundary, i.e.,

(u,v,w,$,T') + 0 at z = zp=100 mb [4.41]
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If topography is considered, the real vertical velocity at the lower

boundary can be approximated by Eq. [4.11] (wphys = Us . vh(x,y)) where

the surface wind Us can be estimated from extrapolating to the ground the

wind at the lowest layers of the model, and the topographical height

h(x,y) can be represented by

M L -imx
h(x,y) = I I h 99t(y) e . [4.42]

m=-M X=0 ,

With topography included, the lower B.C. (Eq. [4.31]) becomes

'mt = -ROCH($) + No Wm,t + Bo CH(h) [4.43]
at mL m,1 [

The resulting set of equations consists of 4 prognostic equations

for U, V, T and for the geopotential at the lower boundary, and two

diagnostic equations.

PROGNOSTIC EQUATIONS

kaU k k k k
U -ROC (U) + [( +1)1/2 Vm,k+1 + (!)1/2 VmX-1]

at m, k 2 2

k [4.44]
+ im $m,k - ro Um,k

k
-ROC (V) + [(+1)1/2 (Um,+1 + $m,+1) +

at m,2. 2 [4.45]

k k k
2!)1/2 (Um,-1 - $m-1)] - ro Vmj

k
3Tm _ k k k k

= -ROC (T) - Ao Wm,X + Fo Qm,t - yo Tm,t - [4.46]
at m,'

The three equations above are evaluated at k even, and the lower boundary

condition
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k
km _ k k k' = -ROCH ( ) + No WmX + BO CH (h) at k=1 [4.47]

at m2, m,.

DIAGNOSTIC EQUATIONS

k+1 k-1 k k
4, = , + Az T [4.48]
mn,2 m,2. m,2.

-7
where $1 is obtained from [4.4f>], and

m,9X

k-1 1 k-1 k
= (1+Azk) [(-Azk) Wm,L + Azk (-im Um,.t

[4.49]

X+1 1/2 k 1/2 k
+( ) V -Q!) V )
2 m,k+1 2

with Wi1 (z=ztop) = 0.
m,k

The prognostic equations for U, V and T will be evaluated at

mid-layer points, and the hydrostatic equation will be integrated upward

with the bottom B.C. for 4 given by the prognostic equation [4.4$] for

4(z=O). The continuity equation will be integrated downward with the

top B.C. given by w=O at z=ztop-

For the calculation of vertical advection terms in Eqs. [4.43],

[4.44] and [4.4v], mid-layer values for w and edge values for the advected

quantitites are calculated. For instance, to evaluate (wdT)
dz k

even

first we calculate W at the mid-layer level as Wk = (Wk+1 + Wk-1)/2 and

then approximate

dT Tk+1 + Tk- [4. 50]
dzk Azk

where
Tk+1 = (Tk+2 + Tk)/2

and

Tk-i = (Tk + Tk-2)/2 .
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In Table 4.1 and 4.2 we show the dimensional and nondimensional
vertical coordinates corresponding to Fig. 4.1.

TABLE 4.1 - VERTICAL COORDINATES OF THE MODEL'S LAYERS

LEVEL Zdim Znd
k (mb) (km)

1 1000 0 0

2 900 0.7902 0.1054

3 800 1.6736 0.2231

4 700 2.6751 0.3567

5 600 3.8312 0.5108

6 500 5.1986 0.6932

7 400 6.8722 0.9163

8 300 9.0298 1.2040

9 200 12.0708 1.6094

10 150 14.2284 1.8971

11 100 17.2694 2.3026

TABLE 4.2 - VERTICAL LAYER THICKNESS
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4.2.4 TIME INTEGRATION SCHEME

The prognostic equations (Eqs. [4.43] through [4.46]) will be inte-

grated in time, and the time integration scheme used is a slight

modification of the Matsuno (Euler backward) scheme. Schematically, say

dX F

dt

is the equation to be integrated numerically in time. The Matsuno scheme

is a two-step iterative scheme in that it advances first to an inter-

mediate time step and then to the final time step, i.e.,

Xt* = Xt + At Ft

Xt+At = Xt + At Ft*. [4.51]

We made some test runs with different time integration schemes and

concluded that the Matsuno scheme provided essentially accurate results

with less computations than higher order schemes such as the Runge-Kutta

4th order scheme. The number of computations is a critical consideration

since the calculation of the nonlinear terms requires a large number of

operations, and a higher order or an iterative scheme with many

iterations to advance to the next time step would render the integration

computationally too expensive.

In the actual numerical integration of equations [4.43] through

[4.46], it was found necessary to modify slightly the Matsuno scheme to

avoid error growth. The new scheme we call modified Matsuno time

integration scheme. Appendix D gives details on how this error growth

arises and how it was corrected. In summary, the accumulation of errors

occurred in the prognostic equation for the meridional wind v

(Eq. [4.44]) due to truncation errors in the computation of 3$/ay. We

found that the problem was corrected by not advancing the geopotential

field in the second iteration of the Matsuno time scheme. With this
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modification truncation errors remained bounded and the solution

converged to a steady-state solution.

The time step At for computational stability will be a function of

the model's resolution. The finer the resolution, the smaller the time

step that still resolves the fastest moving gravity waves. This resolu-

tion in the meridional direction is approximately given by the distance

between zeros of the highest order Hermite Function (see Fig. B.1 in

Appendix B). For Y20 this scale is ~ 0.5 nondimensionally which, with a

scaling L of the order of 100 of latitude, gives a maximum resolution of

~500 km. For this scale, the time step to achieve computational

stability will be generally short, of the order of 30 minutes.

4.2.5 METHOD OF INTEGRATION AND FILTERING

In general the numerical integration of a nonlinear system of

differential equations aiming at reaching a steady solution is not a

simple task. The system may present periodic, quasi-periodic or

aperiodic behaviour so as to render a steady-state solution unattainable.

Even if such a steady state exists, to reach it may present additional

problems if instabilities are excited. The physics of the particular

problem being studied may be such as to allow for the excitation of one

or more types of instabilities such as baroclinic, barotropic, symmetric,

etc. In general., these problems are tackled by artificially increasing

or numerically introducing dissipation so as to "force" the solution to a

steady-state.

Equations [4.43] through [4.48] were integrated in time for a number

of idealized latent heating distributions. With the choice of
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dissipation time scales for momentum and temperature (10 days),

satisfactory equilibrium conditions have been obtained. To verify if

equilibrium conditions have indeed been found, a suitable condition for

reaching the steady-state has to be established. The chosen criterion is

that the solution should not vary by more than 2% over a period of 10

days. The time evolution of the fields of wind, geopotential and

temperature were plotted for selected grid points throughout the

integration, which was stopped when the above criterion was met.

It has been found that the solutions converged faster to a steady

state when the initial condition for the nonlinear integration was the

steady-state solution of a linearized version of the nonlinear model.

The procedure was as follows (see Appendix E for details): turn the

forcing function on instantaneously at t=0 and integrate a linear version

of the model (nonlinear terms removed) until steady-state conditions are

reached. In general, after 30 to 40 days the solution has converged to a

steady-state. Next, take as the initial condition for the nonlinear

integration, the linear steady-state solution and again integrate in time

until the solution has approached steady-state conditions. It takes

about 40 to 50 days to reach steady-state for most nonlinear

integrations. As might be anticipated, the residual imbalances for the

nonlinear solution are larger than the ones for the linear solution

(0(10_2) for the nonlinear solution and smaller for the linear solution).

However, these errors are much smaller than the main balances in the

equations even in the worst case.

Filtering was used to avoid the occurrence of the spurious growth

of the amplitudes of the harmonics close to the truncation wavenumber.
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This problem, known as spectral blocking (Puri and Bourke, 1974), is the

spectral equivalent of the cascade of energy to the smaller scales in

finite-difference models. We use a linear Shapiro filter (Shapiro, 1970)

that damps according to the zonal wavenumber. (See Appendix F for

details on this filtering technique.) We have found that an eleventh

order zonal filter (or twentieth order for the higher resolution

integrations) applied every time step is effective in avoiding the

cascade of energy to the smallest resolvable scales and the associated

spurious amplitude growth of the shortest waves.

We present in Fig. 4.3 the time evolution of wind, geopotential and

temperature for selected grid-points throughout the nonlinear integration

for a sinusoidal forcing. It is readily seen that at t=40 days the

solutions is pretty flat and almost unchangeable for all fields. Similar

time evolution graphs for the cases with different forcings (not shown

here) also indicate that the numerical solutions have approached a steady

state after 50 days of integration.

Numerical integrations were carried out with two different

resolutions,

1) 11 Fourier modes in x 2) 20 Fourier modes in x
10 Hermite modes in y 10 Hermite modes in y
5 Vertical levels in z 5 Vertical levels in z

The most limiting factor in the actual numerical integration of the

model is its high computational cost. It takes 1 hour of CPU time on the

GLAS AMDAHL-470 computer to simulate 10 days of integration for the lower

resolution and approximately 2 hours of CPU time for the finer

resolution. For each time step, ~ 90% of the time is spent in the

computation of the nonlinear terms. From that time, ~ 80% is spent in
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the forward and inverse Hermite calculations and ~ 20% in the Fourier

transforms using FFT. To our knowledge, a fast algorithm to compute

transforms of Hermite functions the way FFT algorithms do to Fourier

series is not known.

Because of the computational cost, we chose the strategy of running

several cases with planetary-scale forcing. Consequently, we made use of

a low resolution model instead of attempting to realistically represent

the condensational heating field, which would require increasing the

resolution. Also, with the finer resolution, the number of computations

would greatly increase not only because of the higher number of modes,

but also because the time step would have to be made shorter to avoid

computational instability.

4.3 SOME LIMITATIONS OF THE MODEL

We recall that our approach to the problem of equatorially confined,

diabatic heating asymmetric forcing was to develop a model with simple

physics yet to retain the nonlinear advection terms in order to

compare the linear and nonlinear responses to prescribed heat sources.

In keeping with this simplicity we left out a number of important

physical processes. In this section we will discuss some of the most

relevant limitations of our model.

Foremost among the limitations of our model is the non-inclusion of

orographic effects. The major topographic barriers in the tropical

regions, the Andes and the Tibetan Plateau complex, certainly affect the

time mean circulation in significant ways. They act not only as barriers

to the low-level flow but also as elevated heat sources. The upper-level
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anticyclonic circulation over Bolivian and Tibetan Plateaus during the

respective summers are probably affected by this heat source. Also, by

modifying the boundary layer flow, these barriers create regions of low-

level convergence and divergence with associated high or low rainfall,

respectively. It is probable that, for example, the climatological

precipitation maximum in the northwestern part of the Amazon basin is

related to convergence caused by the Andes.

Second, we are not taking into account the effects of transience in

our model. Therefore, the effects of the baroclinic eddies of

midlatitudes and the transient eddies in the tropics and subtropics are

suppressed. We have seen in Chapter 2, however, that the divergence of

the meridional flux of zonal momentum by the transient eddies has about

the same magnitude as the meridional advection of zonal momentum by the

time mean circulation.

We do not include a hydrological cycle in our model, and moisture

processes are neglected except that cumulus condensational heating,

the most important forcing in our model, is prescribed. Of course,

tropical precipitation, and thus latent heating, is to a great extent

determined by the flow field; a more realistic model should allow for

the cumulus clouds and the flow field to interact.

Because the forcing in our model - the latent heat of condensation

in deep cumulus clouds - decays rapidly to very small values in the

subtropics, we used equatorial s-plane geometry with all fields decaying

exponentially away from the equator. Consequently, our results should be

interpreted as being valid only to the tropics and subtropics.
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Radiative processes are simply modeled as a linear damping law. We

realize that radiative cooling at the subtropics is an important factor

in driving the sinking branch of the Hadley-type circulations;

accordingly, the crude parameterization used in our model will not allow

a good representation of the thermally direct circulations in the

meridional plane.

Our model does not have a boundary layer where friction is

important; surface drag is not included; in addition, we do not attempt

to take into consideration the effects of vertical momentum mixing by

cumulus clouds in the heating regions. Therefore a good quantitative

agreement with observations is not expected.

The upper boundary condition, i.e, a rigid lid of 100 mb, might

prevent upward propagation of energy into the stratosphere and thus

generate spurious oscillations (Lindzen et al., 1968). It has been

suggested (E. Sarachik, personal communication) that the meridional

propagation of Rossby waves as in Hoskins and Karoly (1981) might be

caused by the impossibility of upward energy propagation due to a low

rigid lid as the upper boundary. In our study, however, we are concerned

with the local response in the tropics and not with remote response in

midlatitudes. Moreover, Geisler (1981), in a study of the linear

response of the tropical atmosphere to thermal forcing, conducted

experiments for which the rigid top was placed higher in the atmosphere;

and he remarked that the results remained essentially the same.
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We do not attempt to include the latent heating over the narrow

ITCZ. Of course that heating would have an important effect in driving

north-south circulations, as shown by Schneider and Lindzen (1977),

Schneider (1977) and many others. That being the case, the symmetric

circulations generated by our model is not meant to agree well with

zonally averaged circulations, seeing that the important ITCZ forcing is

not present altogether.

For the free atmosphere Rayleigh friction is too simplified an

approximation for representing momentum dissipation processes.

A formulation in terms of the vertical turbulent diffusivity of momentum

in which the coefficient of diffusivity is a function of height and

becomes small at the upper levels would be more appropriate.
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CHAPTER 5

NONLINEAR MODEL RESULTS

In this chapter we present the results of the numerical model

developed in Chapter 4 for a number of idealized forcing functions. As

mentioned before, in the process of numerical integration of equations

[4.47] through [4.49], we first find the linear steady-state solution and

then, using this solution as the initial condition for the nonlinear

integration, we time march the nonlinear model until a satisfactory steady

state is reached. Here we will be comparing linear and nonlinear solutions

for different choices of latent heating.

5.1 DIABATIC HEATING DISTRIBUTIONS

The vertical distribution of diabatic heating is shown in Figure 4.1

in the previous chapter, and it is assumed not to vary horizontally. The

three different horizontal distributions of diabatic heating used in this

chapter are shown in Figure 5.1: a) one heat source centered at the

equator (1-EQ), b) three heat sources centered at the equator (3-EQ), and

c) one heat source centered at 100S (1-10S). These heat sources are of

planetary scale and, in this respect, depart from the localized character

(comparable zonal and meridional scales) of realistic diabatic heat sources

over tropical continents. The reason for this choice lies in the high

computational costs of the nonlinear integrations, so we decided to use a

low-order model and run several cases varying the horizontal structure and

intensity of the forcing.

The horizontal distributions of QT(x,y) in Chapter 3 had no zonal mean

([QT] = 0) since we were dealing with heating perturbations about a zonal
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Figure 5.1 Latent heating distributions at 500 mb used in the nonlinear
integrations: a) one heat source at the equator, b) three
heat sources at the equator and c) one heat source at 10*S.
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mean heating. Now, for the nonlinear model we prescribe diabatic heating

functions whose zonal mean values are non-zero and positive, which is of

course more realistic. In a steady-state two-dimensional (2-D) model

(latitude x height), this mean heating would drive an axially symmetric

circulation. An interesting question arises in connection with the

nonlinear integration of 2-D models forced by the zonal mean latent heating

in the tropics (ITCZ). If the contribution by the standing eddies is

unimportant compared to the MMC transports ([u*v*]<<[u][7v]), then the

zonally averaged 3-D model solution resulting from a given distribution of

heat sources with a non-zero mean would be similar to the 2-D model

solution resulting from this zonal mean heating. In section 5.4 we will

show some results of integrations with a 2-D nonlinear version of our model

and compare them with the zonally averaged solution of the 3-D nonlinear

model.

The zonal scale of (1-EQ) and (1-10S) is ~ 18 x 103 km, which is much

larger than the scale of any observed tropical heat source. However, the

zonal scale of each heat source in (3-EQ) is ~ 6 x 103 km, which is about

the same order of magnitude as the scale of observed sources (see

Figure 2.14). The intensity of the heat source will be made to vary, and

the values used are shown in Table 5.1. In the location of maximum

precipitation (and thus of latent heating), these intensities range from

4.6 to 13.8 mm/day and are meant to encompass the whole range of spacial

and temporal (interannual) variability of tropical precipitation. There

are marked interregional precipitation differences among the tropical

continents (e.g., smaller precipitation rates over Africa as compared to

over South America and the Indonesian region during the southern summer)

and also large interannual variability (Stockenius, 1981).
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TABLE 5.1: DIABATIC HEATING INTENSITIES USED IN THIS STUDY

QL at 500 mb Vertical Average of QL Equivalent Precipitation
(k/day) (k/day) (mm/day)

2.5 1.15 4.6

5.0 2.30 9.2

7.5 3.45 13.8

Probably the most important aspect of realistic distributions of

latent heating that we are not considering in our model is the narrow ITCZ

over the oceans. It is a permanent feature of the time-mean tropical

circulation, and it is generally found in the northern hemisphere (see

Figure 2.1). Mechanisms for explaining its narrowness and the fact that it

does not lie at the equator have been suggested by Charney (1971) and

Schneider and Lindzen (1977) in terms of CISK and warm SST's.

The smallness of the oceanic ITCZ meridional scale (4 1000 km) in

comparison with the y-scales of convective regions over tropical continents

(0 (3000 km)) would make it necessary to increase the latitudinal

resolution of the model to represent it. For reasons mentioned at the end

of Chapter 4, we decided to keep a low resolution model and to attempt to

model only the longitudinally asymmetric character of tropical diabatic

heating.

Because we do not attempt to realistically represent diabatic heating

sources and sinks, we do not expect our model to agree quantitatively with

observations. We are aiming at gaining a qualitative understanding of the

zonally nonlinear problem and at seeing to what extent nonlinearities are

important and not at being quantitatively accurate. Besides, our model is

too simplified - and leaves out important physical processes - to warrant

good quantitative agreement with observations.
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5.2 PRESENTATION OF RESULTS FOR THE 6 CASES STUDIED

We will present results for six different integrations of the

nonlinear model in which the horizontal distribution or the intensity of

the forcing was changed. The six cases are shown in Table 5.2. Results

are shown in nondimensional form and the conversion factors for u (and v),

w, $, T, D (and E) are approximately 10 m/s, 7 cm/s, 300 m2 /s 2, 1*C and

9 x 10-6 s-1, respectively, according to the dimensions given in [4.22b].

TABLE 5.2: THE SIX INTEGRATIONS OF THE NONLINEAR MODEL

Case* 1-EQ-L 1-EQ-M 1-EQ-H 3-EQ-M 3-EQ-H 1-10S-M

No. I II III IV V VI

Forcing

Horizontal
Distribution (a) (a) (a) (b) (b) (c)
(see Fig. 5.1)

Intensity 4.6 9.2 13.8 9.2 13.8 9.2
(mm/day)
(see TABLE 5.1)

The fields of zonal, meridional, and vertical winds, and geopotential

and wind vectors vorticity and divergence for the six cases of Table 5.2

are shown in Figures 5.2 through 5.25 for a) linear solution at 300 mb,

b) linear solution at 700 mb, c) nonlinear solution at 300 mb, and

d) nonlinear solution at 700 mb.

* The code for each case reads as follows: the first digit codes the
number of heat sources (1 = one heat source, 3 = three heat sources); next,
its latitudinal position (EQ = at the equator, 10S = at 10*S); and the
letter at the end, its intensity (L = 4.6 mm/day (low), M = 9.2 mm/day
(medium) and H = 13.8 mm/day (high)).
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We present in Tables 5.3a and 5.3b the maximum and minimum values of

zonal wind (u), meridional wind (v), vertical wind (w), geopotential (f),

temperature (T'), divergence (D) and vorticity (c) for the six cases shown

in Table 5.2. In Table 5.4 we show the band of longitudes for which

easterlies and westerlies are observed for the linear and nonlinear

calculations. The longitudes covered by easterlies or westerlies provide a

crude estimate of the Walker-type cell longitudinal extent and east-west

asymmetry on this circulation.



TABLE 5.3: MINIMUM AND MAXIMUM VALUES OF VARIABLES FOR THE SIX CASES

a) 300 mb and b) 700 mb

a) 300 mb u v w T' D

CASE min max min max min max min max min max min max min max

L -0.83 0.73 -0.06 0.06 -0.01 0.06 0 2.12 0 2.66 -0.03 0.12 -1.20 1.20
I 1-EQ-L

NL -0.70 0.73 -0.06 0.06 -0.01 0.07 0 2.12 0 2.72 -0.04 0.15 -1.13 1.13

L -1.67 1.45 -0.12 0.12 -0.02 0.11 0 4.27 0 5.32 -0.06 0.25 -2.41 2.41
II 1-EQ-M

NL -. 77 1.46 -0.11 0.11 -0.03 0.14 0 4.31 0 5.87 -0.08 0.31 -1.96 1.96

L -2.50 2.18 -0.18 0.18 -0.04 0.17 0 6.43 0 7.97 -0.10 0.37 -3.62 3.62
III 1-EQ-H

NL -0.44 2.37 -0.24 0.24 -0.05 0.24 -0.25 6.44 0 10.83 -0.15 0.46 -2.61 2.61

L -0.60 0.98 -0.11 0.11 -0.02 0.11 0 3.84 0 5.22. -0.07 0.25 -1.b5 1.51
IV 3-EQ-M

NL -0.53 1.17 -0.18 0.18 -0.03 0.14 0 3.95 0 5.45 -0.10 0.32 -1.66 1.66

L -0.90 1.47 -0.17 0.17 -0.03 0.17 0 5.80 0 7.83 -0.10 0.37 -2.27 2.27
V 3-EQ-H

NL -0.40 1.80 -0.34 0.34 -0.06 0.22 0 5.74 0 8.80 -0.17 0.44 -2.54 2.54

L -2.24 1.24 -0.17 0.21 -0.02 0.13 0 5.16 0 5.42 -0.06 0.27 -2.90 3.33
VI 1-1OS-M

NL -1.26 1.49 -0.10 0.28 -0.03 0.15 0 4.31 0 7.49 -0.08 0.35 -2.12 1.49



TABLE 5.3 (continued)

b) 700 mb u v w T' D

CASE min max min max min max min max min max min max min max

L -0.59 0.65 -0.05 0.05 -0.01 0.05 -1.63 0 0 3.51 -0.12 0.04 -0.91 0.91
I 1-EQ-L

NL -0.64 0.81 -0.06 0.06 -0.01 0.04 -1.71 0 0 2.95 -0.10 0.04 -1.33 1.33

L -1.18 1.29 -0.09 0.09 -0.03 0.11 -3.22 0 0 7.01 -0.23 0.08 -1.83 1.83
II 1-EQ-M

NL -1.23 1.56 -0.13 0.13 -0.02 0.07 -3.39 0 0 5.76 -0.22 0.08 -2.48 2.48

L -1.77 1.94 -0.14 0.14 -0.04 0.16 -4.81 0 0 10.51 -0.35 0.12 -2.74 2.74
III 1-EQ-H

NL -1.63 2.25 -0.22 0.22 -0.03 0.09 -5.17 0 0 8.53 -0.38 0.19 -3.69 3.69

L -0.76 0.71 -0.10 0.10 -0.03 0.11 -2.96 0 0 6.71 -0.29 0.10 -1.43 1.43
IV 3-EQ-M

NL -0.81 0.65 -0.12 0.12 -0.02 0.08 -2.91 0 0 6.61 -0.23 0.12 -1.61 1.61

L -1.13 1.06 -0.15 0.15 -0.04 0.16 -4.40 0 0 10.07 -0.44 0.15 -2.14 2.14
V 3-EQ-H

NL -1.09 0.80 -0.18 0.18 -0.03 0.10 -4.50 0 0 8.84 -0.38 0.17 -2.17 2.17

L -0.98 1.70 -0.15 0.11 -0.02 0.11 -3.77 0 0 9.04 -0.22 0.06 -2.12 2.46
VI 1-10S-M

NL -1.09 1.70 -0.13 0.16 -0.02 0.09 -4.24 0 0 5.48 -0.26 0.08 -2.82 1.70
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TABLE 5.4 APPROXIMATE LONGITUDINAL EXTENT OF EASTWARD AND WESTWARD BRANCH

OF EAST-WEST CELLS AT 300 mb AND 700 mb

LINEAR 300 mb NONLINEAR

CASE EASTERLIES WESTERLIES EASTERLIES WESTERLIES

I 1700 190* 170* 1900

II 1700 190* 1600 2000

III 1700 1900 1400 220*

IV 580 620 620 580

V 580 620 520 68*

VI 2100 1500 2100 1500

LINEAR 700 mb NONLINEAR

CASE EASTERLIES WESTERLIES EASTERLIES WESTERLIES

I 195* 165* 2000 1600

II 1950 1650 2150 1450

III 1950 1650 235* 1250

IV 650 550 70* 500

V 650 550 770 430

VI 1400 220* 1750 1850



CASE I

NCSRE LEVEL IS 300 18
ZONAL WIND

-180 -160 -140 -120 -100 -80 -50 -40 -20 0 20 40 60 50 100 120 140 160 180
LINEAR CASE : 1W-HALF

VALUES RANGE BETWEEN -0.83 AND 0.73 FOR CONTOUR INTERVALS OF 0.250RUN- I

NOBPE LEVEL 15 700 M0
ZONAL WIND

NTMRE LEVEL IS 300 t11
ZONAL WIND c)

-160 -160 -140 -120 -100 -60 -60 --40 -20 0 20 40 50 60 100 120 140 160 160
NONLINEAR CASE 1 IW-HALF

VALUES RANGE BETWEEN -0.70 AND 0.73 FOR CONTOUR INTERVALS OF 0.250
RUN- I

NOBRE LEVEL IS 700 Hd
ZONAL WIND (d

-100 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 160 -160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 16
L[NEAR CASE : 1W-HALF NONLINEAR CASE 2 1W-HALF

VALUES RANGE BETWEEN -0.59 AND 0.65 FOR CONTOUR INTERVALS OF 0.250 VALUES RANGE BETWEEN -0.64 AND - 0.811 FOR CONTOUR INTERVALS OF 0.250

Figure 5.2 Zonal wind for Case I. Linear solution at 300 mb (a) and 700 mb(b), andnonlinear solution at 300 mb (c) and 700 mb (d).
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CASE I
NORfE LEVEL I5 300 18
MERIDIONAL WIND

-100 -160 -140 -120 -100 -60 -60 -10 -20 0 20 40 60 60 100 120 140 160 160
LINEAR CASE : 1W-HALF

VALUES RANGE BETWEEN -0.06 AND 0.06 FOR CONTOUR INTERVALS OF 0.020
RUN- 2

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 180
LINEAR CASE s1W-HALF

VALUES RANGE BETWEEN -0.05 AND 0.05 FOn CONTOUR INTERVALS OF 0.020
RUN- 2

NORE LEVEL IS 300 MB
MERIDIONAL WIND (c)

-160 -160 -110 -120 -100 -60 -60 -40 -20 0 20 10 60 60 100 120 140 160 10
NONLINEAR CASE : 1W-HALF

VALUES RANGE BETWEEN -0.06 AND 0.06 FOR CONTOUR INTERVALS OF 0.020RUN- 2

NOBRE LEVEL 15 700 1

MERIDIONAL WIND
(d)

40-

30-

20-102
-10-

-20

-30-

-40

50 0

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 160
NONLINEAR CASE a 1W-HALF

VALUES RANGE BETWEEN -0.06 AND 0.06 FOR CONTOJR INTERVALS OF '0.020
RUNI- 2

Figure 5.3 Same as figure 5.2 but for meridiorial wind.



CASE I
WJBRE LEVEL IS 300 MiMRE LEVEL IS 300 VERTICAL WIND

(a) VERTICAL WIND 50-- -

40-

30-
30-

20-
20-

0-

-- 016014 10-0 -0-0-0-2 0 4 6 0 10-0 4 S S

-20- -2

-30 -
-30 -

--40 -

-1-10 -160 -10 -120 -100 -0 -60 -10 -20 0 20 40 60 60 100 120 1-40 160 IS ONIER AE 10HL-180 -160 -140 -120 -100 -BO -60 -40 -20 0 20 40 60 80 100 120 140 160 180 10-6-40-2-00-0NONL INEAR CASE IWl-HALF60 8 0 12 14 16 10
LINEAR CASE 1 W-HALFLNACAE IHAFVALUES RANGE BETWEEN -0.01 AND 0.07 FOR COINTOUJR INTERVALS OF 0.020VALUES RANGE BETUEEN -0.01 AND 0.06 FOR CONTOUR INTERVALS OF 0.020 RUN- 3

RUN- 3

NOBRE LEVEL IS 700 MNOBRE LEVEL 15 700 MB VERTICAL WIND (d)(b) VERTICAL WIND SO
50

40-

340-

30
30-

20-
20-

-4

110-

E(D

-- 016010-10-0 6 60-0-0 0 2 ,0 6 0 10-2 4 6 6

-20 -- 20

-30 -
-30 --

- -40 -
-40 -

-160 -160 -140 -120 -100 -80 -60 -10 -20 0 20 40 60 80 100 120 140 160 160 NOLI0A -16E -10-20-0 80-0-4 2 2 0 60 8 001010 6 6
LlERCS WHL OLINEAR CASE W-HALF
L A A I AVALUES RANGE BETEEEN -0.01 AND 0.04 FOR CONTCOJR INTERVALS OF 0.020VALUES RANGE BETIIEEN -0.01 AND 0.05 FOR CONTOUR INTERVALS OF 0.020 RUN- 3

P1INI- 3

Figure 5.4 Same as figure 5.2 but for vertical wind.



CASE I
mRF LCVEL IS 300 MD NOCRE LEVEL IS 300 10(

(a WINDfGEOPOTENTIA WINDf.GEOPOTENTIA c

4050

3O0----------

-100

-20 -- 20 ------- ----

-30 -- - -- 2-+0- -- - -

-40 -30o

-50 1 I t I I I -50__

-160 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 180 -I0 -160 -140 -120 -100 -60 -6 0 -20 0 20 40 60 60 100 120 140 160 160
LINEAR CASE 1W-HALF NONLINEAR CASE 1W-HALF

VALUES RANGE BETWEEN 0.00 AND 2.12 FOR CONTOUR INTERVALS OF 0.250 VALUES RANGE BETWEEN 0.00 AND
RUN- 4RUN- 4 __

20

NORE LEVEL IS 700 MB NOME LEVEL 1S 700 Ifi

50 (b) WINDFGEOPOTENTIA 50 INDEGEOPOTENT IA(d

0 - - - ----

-to - - - - - - - - .- - E- ID- - - . - - .- -- -

-2-- - - -- - -- 20--- --- --- -

-20--

-150

-30------------------------------------------------30-

-160 -160 -140 -120 -100 -00 -6-020 24000500014 6 0 II I I
-160 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 160

LINEAR CASE l 1W-HALF NONLINEAR CASE s 1W-HALF

V1IVALUES RANGE BETWEEN --.73 AN -0.01 FOR CONTOUR INTERVALS OF 0. 250

RUN- 4 ~~RUN- 4 ________

(b) 5.5 NDaeG as figure 5.2 WINDEG E0PO TENTIA and horizonta wn vetos

Fiur 50 --aea gr . u o epteta n o iot lw n etr .



(a) NOBRE LEVEL IS 300 f
ZONAL WIND

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 160
LINEAR CASE 2 - 1W -

VALUES RANGE BETWEEN -L.67 AND 1.45 FOR CONTOUR INTERVALS OF 0.250
RUN- I

(b) NOBRE LEVEL IS 700 6
ZONAL WIND

50

30

20 
-o

10

-20- --

-30 aw

-40

-5c
-160 -160 -140 -120 -100 -60 -60 -4B -20 0 20 40 60 60 100 120 40 160 160

LINEAR CASE - 1W -

VALUES RANGE BETUEEN -1.18 AND 1.29 FOR CONTOUR INTERVALS OF 0.25
RUN- I

CASE II

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
NONLINEAR CASE - 1W -

VALUES RANGE BETWEEN -0.77 AND 1.46 FOR CONTOUR INTERVALS OF 0.250
RUN- I

00

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 180
NONLINEAR CASE : - 1W -

VALUES RANGE BETWEEN -1.23 AND RUN- 1.56 FOR CONTOUR INTERVALS OF 0.250

Figure 5.6 Same as figure 5.2 but for zonal wind for Case II.



CASE II

516-180 -180 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE s - 1W -

VALUES RANGE BETWEEN -0.12 AND 0. 12 FOR CONTOUR INTERVALS OF 0.020RUN- 2

)(b )N3RE LEVEL IS 700 HBMERDIONAL WIND

50II II
-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

LINEAR CASE : - 114 -
VALUES RANGE BETWEEN -0.09 AND 0.09 FOR CONTOUR INTERVALS OF 0.020PUN- 2

NOBRE LEVEL IS 300 B
MERIDIONAL WEND

50 (0

30 -

20

-160 -160 -140 -120 -100 -80 --60 -40 -20 0 20 40 60 60 100 120 140 160 160
NONLINEAR CASE :- 1W4 -

VALUES RANGE BETWEEN -0.11 AND RU-0.11I FOR CONTOUR INTERVALS OF 0.020

N V(
5EVE IS 00d

50 I 1 1 1 1 I I I 1 1 ' I a i I I I I
-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

NONLINEAR CASE a - 1W -
VALUES RANGE BETWEEN -0.13 AND 0.13 FOR CONTOUR INTERVALS OF 0.020

RUN- 2

Figure 5.7 Same as figure 5.6 but for meridional wind.



CASE II

-160 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE - 1y -

VALUES RANGE BETWEEN -0.02 AND 0.11 FOR CONTOUR INTERVALS OF 0.020
RUN- 3

NBRE LEVEL IS 700 M9
VERTICAL WIND

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE a - 1W -

VALUES RANGE BETWEEN -0.03 AND 0 If FOR CONTOUR INTERVALS OF 0.020
RUN- 3

NOBRE LEVEL IS 300 M8
VERTICAL WIND (c)

-180 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
NONLINEAR CASE - 1W -

VALUES RANGE BETWEEN -0.03 AND 0.14 FOR CONTOUR INTERVALS OF 0.020
RUN- 3

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 180
NONLINEAR CASE z - 1W -

VALUES RANGE BETWEEN -0.02 AND 0.07 FOR CONTOUR INTERVALS OF 0.020
RUN- 3

Figure 5.8 Same as figure 5.6 but for vertical wind.

(b)



CASE II

(a) MJBRE LEVEL IS 300 M
WINDEGEOPOTENTIA

-180 -160 -140 -120 -100 -80 -80 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE 3 - 1W -

VALUES RANGE BETWEEN 0.01 AND 4.27 FOR CONTOUR INTERVALS OF 0.250
RUN- 4

N()RE LEVEL IS 700 AB
(b) ____ _ W INDEGEOPOTENT IA

-180 -160 -140 -120 -100 -B0 -50 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE ' - 1W -

VALUES RANGE BETWEEN -3.22 AND -0.01 FOR CONTCOUR INTERVALS OF 0.250
RUN- 4

(c)NORE LEVEL IS 300 MB
WINDEGEOPOTENT IA

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 150 180
NONLINEAR CASE : - 1W -

VALUES RANGE BETWEEN -0.03 AND 4.31 FOR CONTOJR INTERVALS OF 0. 250
RUN- 4

NOBRE LEVEL IS 700 1B
WINDEGEOPOTENTIA

(d)

10

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 (0 B0 100 120 140 160 180
NONLINEAR CASE a - 1W -

VALUES RANGE BETW4EEN -3.39 AND -0.00 FOR CONTOUR INTERVALS OF 0.250
RUN- 4

Figure 5.9 Same as figure 5.6 but for geopotential and wind vectors.

-oil



CASE III

(a) NOPE LEVEL IS 300 1e
rONAL WIND

-50' 
1  

1 1
-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 161

LINEAR CASE 1W - GT

VALUES RANGE BETIIEEN -2.50 AND 2. 18 FOR CONTOUR INTERVALS OF 0.250
RUN- I

(b) NOBRE LEVEL 1 700 MB
ZONAL WIND

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 80 80 100 120 140 160
LINEAR CASE i 1W - GT

VALUES RANGE BETWEEN -1.77 AND 1.94 FOR CONTOUR INTERVALS OF 0.250
RUN- 1

180

NOBRE LEVEL IS 300 HEI
ZONAL WIND

-150 -160 -140 -120 -100 -10 -60 -40 -20 0 20 40 60 50 100 120
VA LINEAR CASE F CW- OF

VALUES RANGE BETWEEN -0.44 AND 2.37 FOR CONTOUJR INTERVALS OF
RUN- I

Cc)

140 160 180

0.250

-10 -150 -140 -120 -100 -80 -0 -40 -20 0 20 40 80 80 100 120 140 160 180
V R T .L INEAR CASE F CIN- T A

VALUES RANGE BETWEEN -1.63 AND 2.25 FOR CONTOUJR INTERVALS OF 0.250
RUN- I

Figure 5.10 Same as figure 5.2 but for

0~

I I I

30-

20

-20

-30

-40-

-50.

zonal wind for Case III.
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1.0rg

- 8 
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CASE III
FtMPE LEVEL IS 301 Mo
MERIDIONAL WIND

50
-160 -150 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 80 100 120 140 160 160

LINEAR CASE : 11 - GT

VALUES RANGE BETWEEN -0. 18 AND 0.18 FOR CONTOUR INTERVALS OF 0.020
RUN- 2

-10 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 50 80 100 120 140 150 180
LINEAR CASE : 1W - GT

VALUES RANGE BETWEEN -0.14 AND 0. 14 FOR CONTOJR INTERVALS OF 0.020
RUN- 2

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 150
"L.INEAP CASE : IW-GT

VALUES RANGE BETWEEN -0.24 AND 0.24 FOR CONTOUR INTERVALS OF 0.020
RUN- 2

WOBRE LEVEL IS 700 Me
MERIDIONAL WIND (d)

680 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 ' 50 80 100 120 140 160 IO
NOLINEAR CASE j IW-GT

VALUES RANGE BETWEEN -0.22 AND 0.22 FOR CONTOUR INTERVALS OF 0.020RUN- 2

Figure 5.11 Same as figure 5.10 but for meridional wind.



CASE III
NOBRE LEVEL IS 300 M

VERTICAL WIND

-180 -160 -140 -120 -100 -60 -60 -10 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE 1W - GT

VALUES RANGE BETWEEN -0.04 AND 0.17 FOR CONTOUR INTERVALS OF 0.020
RUN- 3

NERE LEVEL IS 700 MB
VERTICAL WIND

-150 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE : IW - GT

VALUES RAIGE BETWEEN -0.04 -NO 0.16 FOR CONTCUR INTERVALS OF 0.020
RUN- 3

NBRE LEVEL IS 300 M
VERTICAL WIND

-160 -150 -140 -120 -100 -10 -60 -10 -20 0 20 40 60 80 100 120 140 160 180
N-LINEAR CASE i IW-GT

VALUES RANGE BETWEEN -0.05 AND 0.24 FOR CONTOJR INTERVALS OF 0.020
RUN- 3

N]BRE LEVEL IS 700 M
VERTICAL WIND (d)

-160 -160 -140 -120 -100 -10 -60 -40 -20 0 20 40% 60 60 100 120 140 160 160
v,- LINEAR CASE : 1W-GT

VALUES RANGE BETWEEN -0.03 AND 0.09 FOR CONTOJR INTERVALS OF 0.020
RUN- 3

Figure 5.12 Same as figure 5.10 but for vertical wind.

(a)

(b)

00
M0



CASE III

( PRE LEVEL Is 300 to(a) WINDGEOPOTENTIA

10
50
-160 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 00 100 120 140 160 160

LINEAR CASE IW - GT
VALUES RANGE BETWEEN 0.01 AND 6.43 FOR CONTOUR INTERVALS OF 0.250

RUN- 4

40 i I 1 1 1 1 1 I I I

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 00 60 100 120 140 160 10
LINEAR CASE 1W - GT

VALUES RANGE BETWEEN -4.61 AND -0.01 FOR CONTOUR INTERVALS OF 0.250
RUN- 4

NORE LEVEL IS 300 M
WINDEGEOPOTENTIA (c)

-40 ---

-10 -150 -140 -120 -100 -80 -60 -40 -20 0 20 40 50 80 100 120 140 100 10
A[LINEAR CASE I 1W-GT

VALUES RANGE BETWEEN -0.25 AND 6.44 FOR CONiTOUR INTERVALS OF 0.250
RUN- 4

M]BRE LEVEL IS 700 MB
WINDEGEOPOTENTIA (d)

-100 -150 -140 -120 -100 -80 -60 -40 -20 0 20 40 50 80 100 120 140 I60 180
o-LINEAR CASE I IW-GT,'

VALUES RANGE BETWEEN -5.17 AND -0.01 FOR CONTOUR INTERVALS OF 0.252
RUN- 4

Figure 5.13 Same as figure 5.10 but for geopotential and wind vectors.
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CASE IV
(a) NOBRE LEVEL 15 300 M

ZONAL WIND

-180 -160 -140 -120 -100 -50 -60 -40 -20 0 20 40 60 B0 100 120 140 160 10
LINEAR CASE l 3W

VALUES RANGE BETWEEN -0.60 AND 0.96 FOR CONTOUR INTERVALS OF 0. 250
RUN- I

1BO -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 160
LINEAR CASE : 3W

VALUES RANGE BETWEEN -0.76 AND 0.71 FOR CONTCOR INTERVALS OF U.250RUN- 1

NCORE LEVEL IS 300 M
ZONAL WIND (c)

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 180
NONLINEAR CASE l 3W-BIG

VALUES RANGE BETWEEN -0.53 AND 1.17 FOR CONTOJR INTERVALS OF 0.25
RUN- I

NOBRE LEVEL IS 700 M
ZONAL WIND (d)

20

10

ECDoo

-10-

-20

-30-

-40-

-50A I I I I I I I I I I I I I

-180 -150 -110 -120 -100 -80 NOL5 EA CASE2 0 30 -840 0 60 100 120 1i0 160 180

VALUES RANGE BETWEEN -0.81 AND
RUN- 0.65 FOR CONTOUR INTERVALS OF 0.250

Figure 5.14 Same as figure 5.2 but for zonal wind for Case IV.

nil.



NJBRE LEVEL IS 300 M
MERIDIONAL WIND

-IO -160 -140 -120 -100 -80 -50 -40 -20 0 20 40 60 B0 100 120 140 160 180
LINEAR CASE 1 3W

VALUES RANGE BETWEEN -0.11 AND 0.11 FOR CONTCUR INTERVALS OF 0.020RUN- 2

(b) NZBRE LEVEL IS 700 M
MERIDIONAL WIND

H I I I 5180 -150 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 [00 120 140 10 1V0
LINEAR CASE 1 311

VALUES RANGE BETWEEN -0. 10 AND 0. 10 FOR CONTOJR INTERVALS OF 0.020
RUN- 2

-180 -150 -140 -120 -100 -80 -60 -40 -20 0 20 40 50 80 100 120 140 150 160
NONLINEAR CASE 1 3W-BIG

VALUES RANGE BETWEEN -0.18 AND 0.18 FOR CONTOUR INTERVALS OF 0.020
RUN- 2

NOBRE LEVEL IS 700 M
MERIDIONAL WIND

(d)

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20% 40 60 80 100 120 140 160 180
NONLINEAR CASE r 3W-BIG

VALUES RANGE BETWEEN -0. 12 ANO 0. 12 FOR CONTOUR INTERVALS OF 0.020
RUN- 2

Figure 5.15 Same as figure 5.14 but for meridional wind.

CASE IV
(c)



KtbHE LLVEL 5 J Me
VERTICAL WIND

-260 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LiNEAR CASE 1 3W

VALUES RANGE BETWEEN -0.02 AND 0. 1 FOR CONTOUR INTERVALS OF 0.020
RUN- 3

NOBRE LEVEL IS 700 M(b) VERTICAL WIND

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 160
LINEAR CASE 1 3W

VALUES RANGE BETWEEN -0.03 AND 0.1 FOP CONTOUR INTERVALS OF 0.020P'JN- 3

50
-180 -160 -140 -120 -100 -B0 -50 -40 -20 0 20 40 60 80 100 120 140 160 180

NONLINEAR CASE ' 3W-BIG

VALUES RANGE BETWEEN -0.03 AND 0. 4 FOR CONTCUR INTERVALS OF 0.020
RUN- 3

-180 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 80 100 120 140 160 260
NONLINEAR CASE i 3W-BIG

VALUES RANGE BETWEEN -0.02 AND 0.08' FOR CONTOUR INTERVALS OF 0.020
RUN- 3

Figure 5.16 Same as figure 5.14 but for vertical wind.

(a)

CASE IV



WOBRE LEVEL IS 300 MB
WINDEGEOPOTENT IA (c)

---JJ
,u

Eo- -- - - - - - -yZ- - - ----30

160 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 80 80 100 120 140 160 160
LINEAR CASE £3W

VALUES RANGE BETWEEN 0.01 AND 3.84 FOR CONTOUR INTERVALS OF 0.250
RUN- 4

NCBRE LEVEL IS 700 MB
W INDEGEOPOTENT IA

-40 .

--50 i I I I
-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

NONLINEAR CASE 3W-BIG
VALUES RANGE BETWEEN 0.00 AND 3.95 FOR CONTOUR INTERVALS OF 0.250RUN- 4

NOBRE LEVEL IS 700 M
WINDEGEOPOTENTIA (d)

-160 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 50 80 100 120 140 160 180
LINEAR CASE : 3W NONLINEAR CASE : 3W-BIG

VA.UES RANGE BETWEEN -2.96 AND -0.01 FOR CONTOUR INTERVALS Or n. 53 VALUES RANGE BETWEEN -2.q AND -0.00 FOR CONTOUR TNTERVALS OF 0.250
RUN- RUN- 4

Figure 5.17 Same as figure 5.14 but for geopotential and wind vectors.

(a) NOORE LEVEL IS 300 P"
WINDEGEOPOI ENTIA

CASE IV

(b)

4-- - - - - - - S

20- -

E -------------- -- - --- ------ --

-30

-40- - - - - - - - - - - - - - - - - - -

i~~~~~~~ J I-ii i I I I I I I I I I I I I

10 - -

E@ - ------ -------- -



CASE V
(a) NCRE LEVEL IS 300 19

ZONAL WIND

30

RUN---

20

10

EM

-20

-30-

-50 -_
- 180 -150 -140 -120 -100 -80 -60 -10 -20 0 20 40 60 80 100 120 140 160 180

L INEAR CASE :3W-GT

VALUES RANGE BETWEEN -0.90 AND RUN- 47 FOR CONTOUR INTERVALS OF 0.250

NOBRE LEVEL 15 700 M
ZONAL WIND

.1u -

20 -

10'O

EUN- -

-20-

-30

-40 -

-180 -160 -140 -120 -100 -80 -60 -40 -20 a 20 40 60 BO 100 120 140 160 180
LINEAR CASE 3W-GT

VALUES RANGE BETWEEN -1.13 AND 1.06 FOR CONTOUR INTERVALS OF 0.250
RUN- I

-20K

-50 - - § --i---L-- - -

-50iA LL J

-180 -160 -Ml) -120 -100 -dO -E0 -40 -20 0 ?U 40 61 80 ILO I 0 40 160 I30
NONI [NEAR CASE : -J Gl-PLG2

VALUF' RANGE UHtINEEN -O 40 AtO , I 10 EUR CONTOR INiFAALS F 0.l 0

r10BRE L FVEL IS 70D l'
0_ ZOJAL WIND (d)

50 -- - --------
40 -

-20K

0--e-u-~--~------- - -- e-

-110 160 -M0 -1;0 -100 -OU -ED 0 -1 o 0 '0 4 6 0 00 I.U I II 1o RI)
N-I'1L[NE-AR Co\: .3- rnr-E,[G2

VN-_UFI I xACCL RtTlCEN -I rIq ANI) O 9 f01 L0NTr R IN1P',AL "> ' eA o

Figure 5.18 Same as figure 5.2 but for zonal wind for Case V.

(b)
S0



-1

-18

V

CASE V ,,0, nI

(a) MERIDIONAL WIND ___ R W kh

-- CASE M 2I 4IN (c)/.20 4

30 \

9 -EC -- LJW--

RUN 2r0 -
Q~wU,

(b) NO RDRIDALNWIND

40 -I
30 --40

S-160 -140 120 -100 -80 -60 -40 -20 0 20 40 0 0 100 120 1-0 160 10-180 -160 -140 -120 -100 -0 -60 -0 CAS 0 3 -G 40 60 80 100 120 140 0 1601

LINEAR CASE £3W-GT IJN0,L [NER CASEa 3W-T-BIG12

ALUES RANGE BETWEEN -0. 15 AND 0. I FOR CONTOJR INTERVALS OF 0.020 VALUES RANGE BETIFEN -0. I8 AND 0.lB FOR CLONTCR INfERVALS OF 0.050

RUN- 2 r N- 2

Figure 5.19 Same as figure 5.18 but for meridional wind.
Note that interval for .(c) is every 0.50 units.



-18

V

-30

-40

-1

CASE V
1,1310 L[VEL 1S II (c)

(aWERE LEVEL 1S 30 
VER I CAL W 1ND(c

(a) NORVERTICALs WIN 5

30

20~

0--6--24 -20-10 -0;-0L ER CSE 2 096 6 10\10 40 60 10

40-

-40

-160-14 -10 -00 -0 -0 -0 -0 0 0 4 60 60 00 10 10 IO ~ -16 -150 -14l -120 -100 -80 -NO -L -2EA 0AS -GT 40 G0 80 100 I)12 -I4 160 lPO
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Figure 5.23 Same as figure 5.22 but for meridional wind.
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Figure 5.24 Same as figure 5.22 but for vertical wind.
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Figure 5.25 Same as figure 5.22 but for geopotential and wind vectors.
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5.2.1 COMPARISON OF CASES I, II, AND III

The linear response is simply proportional to the intensity of

forcing, and its structure, of course, does not change with the amplitude

of heating. The linear solutions are very similar to the linear solutions

of Chapter 3. The difference is that here we have added a positive mean

heating so that the axially symmetric response to this mean heating adds

linearly to the solutions with no mean heating as obtained in Chapter 3.

We see, for this linear solution at the lower level, easterlies

throughout most of the domain except near the equator where a westerly jet

exists to the west of the heat source (Figure 5.2b). For the upper levels

(Figure 5.2a) the picture is reversed, with mostly westerlies and an

easterly jet to the west of the heat source. The geopotential field

(Figure 5.5a and b) presents a wavenumber (wn) 1 structure of small

amplitude with the ridge to the west of the heat source. The zonal wind is

in geostrophic balance even at equatorial latitudes. We observe that

centers of cyclonic (anticyclonic) circulation are found symmetrically

about the equator to the west of the heat source for the lower (upper)

level. This solution is very similar to the solutions obtained by Matsuno

(1966) and Gill (1980). Quantitatively and qualitatively the upper- and

lower-level linear responses are very similar and that is caused by the

constant vertical structure of our model (constant static stability and

Rayleigh friction coefficient, no surface drag, etc.).

When the intensity of the heat source is increased, there is a

noticeable change in the nonlinear response. For Case 1 (low heating),

linear and nonlinear responses are very similar (Figure 5.2-5.5). As the

intensity of the thermal forcing increases (Figures 5.6-5.13), upper-level

easterlies to the west of the heat source weaken considerably; the upper-
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level westerlies to the east of the heat source also decrease but not as

much as the upper-level easterlies. The major change is seen in the

position of the upper-level maximum winds. Linearly and nonlinearly for

small heating, the position is found at the equator west of the heat

source, and the winds are westerly . For medium and strong heating, the

maximum winds are westerlies, and the band has shifted to the subtropics

and shows a NW-SE tilt in the northern hemisphere (symmetric in the

southern hemisphere). The geopotential field for cases II and III shows a

large-amplitude wavenumber 1 response at the upper levels. This wn 1

geopotential response is seen also for the linear cases, but it is smaller

in amplitude and presents a small latitudinal scale. For strong heating,

its latitudinal scale is greater and the response is largest northeast and

southeast of the heat source, corresponding to the position of the maximum

winds. Reflecting the increased amplitude of the geopotential response

away from the equator, the meridional wind distribution undergoes

significant changes for moderate and strong heating. Its maximum

magnitudes are 40% greater as compared to the linear case, and also it

presents a NW-SE tilt in the northern hemisphere. The vertical wind, shown

in Figure 5.12 for case III, shows an increase (decrease) at the upper

(lower) levels for the nonlinear case of up to 80%.

For the lower level the equatorial westerly jet intensifies slightly

(~ 10%), but the westerlies occupy a narrower longitudinal band for the

nonlinear case than for the linear case (~ 500 of longitude shorter at the

equator for strong heating) as shown in Table 5.4. The region of

easterlies to the east of the heat source increases in size, and the

magnitudes are smaller (~ 10% smaller). Centers of cyclonic circulation

are found in opposite sides of the equator at approximately 80N and 80S and

400 west of the longitude of maximum heating for the linear case. For
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medium and strong heating, the cyclonic circulation becomes more intense

around these centers and longitudinally more confined. Slack meridional

geopotential gradients are seen in the equatorial area west of the heat

source. The nonlinear solution for cases with strong heating are markedly

more asymmetric in the zonal direction when compared with linear solutions

and with the nonlinear solution for small heating. Lower-level meridional

winds almost double in magnitude for strong heating and now attain higher

magnitude to the west of the heat source and are very weak to the east of

it (Figure 5.11d). The wn 1 geopotential response increases in amplitude

but its latitudinal scale is not as large as for the upper-level response

(compare Figures 5.13c and d).

5.2.2 COMPARISON OF CASES IV AND V

The general features of the solution for three heat sources centered

at the equator and equally spaced along the x-direction show agreement with

the solution for the cases with one heat source. Linearly, as the x-scale

of the forcing decreases, the zonal wind speed decreases and the meridional

wind speed remains about the same in accordance with the scale arguments in

Chapter 3; so maximum zonal velocities are smaller for this case as

compared with the case of one heat source of planetary scale (see

Table 5.3). Easterlies (westerlies) are seen throughout the subtropics for

the lower (upper) levels, and strongly convergent flow is seen in the

equatorial latitudes with three centers of maximum vertical velocities

coinciding with the position of the heat sources (Figures 5.14-5.21).

The nonlinear solution presents several differences which are

qualitatively similar to the changes seen when linear and nonlinear

solutions were compared for cases I and II. For the case with strong
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heating (case V), the three wind speed maxima at 300 mb are now found away

from the equator in the subtropics of each hemisphere and display a NW-SE

tilt in the northern hemisphere. Also, the magnitude of the upper-level

equatorial easterties to the east of each heat source has become less

than 1/2 of its former value (Figure 5.18c). The upper-level geopotential

shown in Figure 5.21c shows a large-amplitude wn 3 structure with

latitudinal scale much larger than that for the corresponding linear case

(Figure 5.17a). Upper-level meridional wind speed is twice as large for

the nonlinear case (see Table 5.3a), and maximum southerlies in the

northern hemisphere are found further poleward and tilted horizontally

(Figure 5.19c). The upper-level vertical wind increases in magnitude, and

the geometry of areas of upward motions and downward motions changes

considerably for the nonlinear solution with areas of subsidence appearing

northeast and southeast of the heat source.

At the lower levels the changes between the linear and nonlinear

solutions are qualitatively similar to the cases with one heat source. We

see increased and longitudinally more confined equatorial westerlies

(Figure 5.18d), increased meridional winds which are more confined to the

west of the heat source (Figure 5.19d), decreased vertical winds

(Figure 5.20d), and weaker meridional geopotential gradients in the

equatorial area (Figure 5.21d).

5.2.3 CASE VI

Here, one heat source was placed away from the equator at 10*S, and we

examined the case with medium intensity of heating. The linear response

now shows non-zero meridional winds at the equator; a low is observed at

150S and 40* to the west of the longitude of maximum heating, and its

magnitude and the cyclonic circulation associated with it is more intense
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than for the case with one heat source at the equator (compare Figures 5.25

and 5.9). Maximum meridional velocity are observed at that latitude of the

heat source and east of it, in marked contrast with the cases for which the

heat source was placed on the equator. Also, the upper- (lower-) level

easterlies (westerlies) cover a broader longitudinal band as shown in

Table 5.4. These major features of linear response to a heat source away

from the equator were considered in Chapter 3.

The nonlinear response shows upper- level easterlies shifted

northward and considerably weaker. The upper- level westerly maximum

increases in magnitude and is found to the east and poleward of its former

position (Figure 5.22). Upper- level southerlies become stronger (~ 40%

larger) and northerlies decrease in magnitude and cross-equatorial flow

towards the northern hemisphere increases. The upper- level maximum

meridional wind is now found at the equator (Figure 5.23c). The

upper- level geopotential low center becomes weaker and is displaced about

300 to the east of its position for the linear case (compare Figures 5.25a

and c), whereas the lower-level geopotential is slightly stronger and

displaced to the west. Comparing Figures 5.25c and d, we observe that the

geopotential presents an eastward tilt with height for the nonlinear

solution. No such tilt is observed for the linear solution. The nonlinear

response is observed to change significantly in the northern hemisphere;

therefore, cross-equatorial flow is likely to play an important role.
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5.3 LINEAR AND NONLINEAR BALANCES

As an aid to understanding the nature of nonlinear solutions, we

calculate all the terms in the dynamical equations and show in

Figures 2.26 - 2.33 their longitudinal profile for a set of selected

longitudes at 300 mb and 700 mb and for linear and nonlinear solutions.

We will concentrate on Case III (one strong heat source at the equator)

because most of the aspects of the nonlinear response can be seen more

clearly for that case.

In Figure 5.26a and b the terms of the zonal momentum equation are

shown for Case III. The linear solution presented on top of Figure 5.26a

and b shows that away from the equator the major balances in the zonal

direction are among the Coriolis force and the zonal pressure gradient

force, and near the equator friction becomes increasingly important, and at

the equator there is a two-way balance between friction and the pressure

gradient force. The balances for the nonlinear solution present a quite

different behavior. At 300 mb (bottom of Figure 5.26a) we see that at the

equator the major balances are between -at/ax and advection terms. In

Figure 2.29 we break the advection terms in zonal, meridional, and vertical

advections of zonal momentum. For the upper- level at the equator,

vertical advection of zonal momentum is the largest advection term to the

west of the heat source. The upper- level nonlinear response increases

poleward as is evidenced from Figures 2.26a to d (bottom).
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At 200S the upper- level response is the largest, and for that latitude the

main balances are between Coriolis and pressure gradient forces, but we

remark that nonlinear terms still are important and zonal advection of

momentum is the leading advection term (Figure 2.29d, top).

The nonlinear response at 700 mb also shows distinct differences as

compared to the linear solution (Figure 2.26b, bottom). Here we see that

the nonlinear solution is largest at 100S and shows rapid poleward

decrease. At the equator the major balances are between pressure gradient

force and zonal advection of zonal momentum, and the latter is larger to

the west of the heat source in the region of strong equatorial westerlies.

At 100S there is a three-way balance among Coriolis, pressure gradient, and

meridional advection of zonal momentum.

Linear and nonlinear meridional momentum balances are shown in

Figures 5.27a and b at 300 mb and 700 mb, respectively. The linear balance

shows that the motions are mostly in geostrophic balance in the y-direction

and the response peaks at 200S and decreases poleward (not shown) and

equatorward of that latitude (at the equator v=0, for this forcing). The

nonlinear solution also is largest at 200S but shows a marked longitudinal

variation with maximum response 200E. The smallness of v compared to u

makes the frictional and advection terms negligible. Note that the

meridional balances are an order of magnitude larger than the zonal

balances and that was seen to be related to the longitudinal and

latitudinal scales of the forcing (Chapter 3, Section 3.2.2). At 700 mb

(Figure 5.27b) we see that the response is not as large as for the upper

levels and shows a maximum at 200S and 400 to the west of the heat source.
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The thermo-dynamic balances are shown in Equations 5.28a (300 mb) and

b (700 mb). Throughout the heating region the major balance is

Sw ~ (QL/Cp), and it is Sw ~ (T'/Tr) elsewhere for the linear case. The

nonlinear solution shows that nonlinear advection becomes important where

the heat source is strong, i.e., near the equator. Inspection of

Figure 5.30 reveals that vertical advection is the largest advection. T' is

maximum approximately at the level of maximum heating, so 3T'/az < 0 at the

upper levels and 3T'/az > 0 at the lower levels; and since

w (S + T'/z) ~ (QL/Cp), we see that the vertical velocity increases

(decreases) at the upper (lower) level. Linearly, the assumption

S w ~ (Q/Cp) seems to be a good approximation. However, for deep and

intense heat sources as is the case for tropical convection, vertical

advection of heat becomes important.

In Figures 5.31, 5.32, and 5.33, we compare the dynamical balances of

zonal momentum, meridional momentum, and the advection of zonal momentum at

300 mb for Cases I, II, and III at selected latitudes. The ratio of the

scales 1 : 2 : 3 for Cases I, II, III, respectively, is the same ratio as

the intensity of heating so as to make comparisons easy. As seen before in

Section 5.2, the nonlinear response to small heating (Case I) is very

similar to the linear one, i.e., advection terms are small and there is no

qualitative difference between the two solutions. For strong heating,

nonlinear advection becomes important for the maintenance of the zonal

wind, and the upper-level response is changed both qualitatively and

quantitatively, and the maximum response is poleward of the region of

maximum heating and to the west of it.
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For Cases IV and V (three heat sources at the equator), the nonlinear

balances display a similar behavior as for the cases with one heat source.

The leading balance near the equator in the zonal momentum equation is

between advection terms and pressure gradient force. In the meridional

momentum equation, the main balance is between pressure gradient and

Coriolis forces; that is, the zonal wind is in geostrophic balance

throughout most of the domain. Vertical advection of temperature (waT'/az)

is the most important nonlinear advection and is large only in the heating

region, so the main thermodynamic balance in that region is

(QL/CP) ~ w(S+3T'/3z). Since T' /3z > 0 at the lower levels and 3T'/az < 0

at the upper levels, the stratifaction increases at the lower levels and

decreases at the upper levels.

Also, as in Cases II and III, the upper-level maximum response is

seen in the subtropics. In Figure 5.34 we show the meridional momentum

equation balances at 200 of latitude away from the equator for Cases IV and

V as a function of longitude. The wavenumber 3 response is observed for

the linear solution but has small amplitude when compared with the

nonlinear solution. Note that the stationary wave pattern becomes more

asymmetric in the x-direction, i.e., there is a steeper gradient to the

east of the crest than to the west. This seems to be a feature related to

the behavior of nonlinear waves.

We now examine the linear and nonlinear balances for Case VI (one heat

source at 10*S). In Figure 5.35 we show the zonal momentum equation

balances for the linear and nonlinear solutions at 300 mb and 700 mb. Away

from the equator in the southern hemisphere, the balances are primarily

geostrophic. Frictional and nonlinear terms are small for both upper and

lower levels. Near the equator and up to 100N, the nonlinear terms are
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about the same magnitude as the other terms and the balances are between

Coriolis (except at the equator), pressure gradient, frictional forces, and

nonlinear advections. It is interesting to note that the advection terms

are comparable to the other forces approximately from 100S to 10*N

(Figure 5.36a). At 10*N and 300 mb, the meridional advection of zonal

momentum is the dominant advection term, and at the equator this advection

is positive. In Figure 5.37 we show the meridional momentum balances. The

balances are geostrophic throughout most of the domain. The nonlinear

response, however, differs from the linear one in important respects. At

southern latitudes, that is, near the heat source, the upper-level

nonlinear response shows a larger wn 1 response. However, it is in the

hemisphere opposite to the source that the maximum response is seen. The

300 mb response at 10*N and 20*N departs considerably from the linear

solution (compare Figures 5.37a and c). The wn 1 response is significantly

larger for the nonlinear case.

Near the equator where the Coriolis force is small, arguments in terms

of advections can be invoked to interpret the results. The decrease of the

upper-level equatorial easterlies to the west of the heat source, markedly

for the cases of strong heating, can be understood in terms of vertical

advection of zonal momentum. For Case III, Figure 5.29a (top) shows that

the vertical advection of zonal momentum is the leading advection term in

the neighborhood of the heat source at the equator. To the west of the

heat source, there is strong deposition of westerly momentum; hence, there

is weakening of the easterlies. This is mainly due to two factors. First,

the vertical wind shear is large to the west of the heat source and second,

the upper-level vertical velocity is larger. We recall that the

upper-level vertical velocity is larger because vertical advection of heat
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makes the temperature lapse-rate more stable for the upper levels. The

deposition of easterly momentum in a region of westerlies will decrease the

magnitude of the westerlies. The equatorial westerlies to the east of the

heat source are decreased approximately 40% in the nonlinear solution when

compared to the linear one. To the east of the heat source, there is

deposition of easterly momentum which is brought about by vertical and

zonal advections. The vertical advection is weaker than the vertical

advection to the west of the heat source, which is consistent with the

smaller vertical shear of the zonal wind to the east of the heat source.

For the lower levels near the equator, vertical advection of zonal

momentum as seen in Figure 5.29a (bottom) is less important. We have seen

that this is a result of the vertical velocity being smaller in the source

region. The leading advection term is the zonal advection of zonal

momentum. The longitudinal structure of this advection at the equator can

be used to explain, in a qualitative sense, the narrowing of the region of

westerlies to the west of the heat source and their intensification in the

nonlinear solution. Figure 5.29a at 700 mb shows a region of strong

negative advection of zonal momentum extending from ~ 125 0W to ~ 600W,

followed by strong positive advection to ~ 50E and then weaker negative

advection to the east of 50E. In a simple kinematic sense, we can say

that the deposition of easterly momentum at both flanks of the region of

westerlies contributes to making the region narrower, and the deposition of

westerly momentum within it contributes to its intensification.

For the linear calculations the dynamical balances near the equator

are primarily between frictional and pressure gradient forces,
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so the nature of the response depends on the formulation of friction, as

remarked by Webster (1972). The nonlinear solutions show near-equatorial

balances primarily between pressure gradient forces and nonlinear

advections, so the precise formulation of friction probably will not affect

the results to a great extent, although one should recall that for the free

atmosphere Rayleigh friction is too simplified an approximation for

momentum dissipation processes. A logical follow-up for this type of study

is to test the sensitivity of the response to the formulation of friction,

i.e., to take a form of frictional dissipation which better simulates

frictional dissipation processes in the real atmosphere, i.e., a

formulation of the type 3/az v 3V/az, where the turbulent diffusivity of

momentum v is a function of height and becomes small at the upper levels.
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5.4 COMPARISON OF ZONAL AVERAGES OF A 3-D MODEL WITH THE SOLUTION OF A 2-D

MODEL

In this section we will briefly describe zonally averaged solutions

for Case III (one intense heat source at the equator). Figure 5.38 shows

latitudinal profiles of u, v, w, , and T' for the following cases:

a) zonally averaged linear solution for Case III, b) zonally averaged

nonlinear solution for Case III, c) nonlinear solution of a 2-dimensional

(latitude x height) version of our model forced by the zonal mean diabatic

heating of Case III. The main differences between cases b and c are seen

in the fields of [u] and [T']. For case c the zonal winds are similar to

the zonal winds for the linear case. Both lower- and upper-level zonal

winds have larger magnitudes for case b. Moreover, the temperature

departure field is larger at 300 mb for case b than it is for case c. We

also point out that the latitudinal gradients of [u] are larger for case c

as compared to case b.

The analysis of Figure 5.38 reveals that the zonally averaged

3-dimensional solutions generally resemble the solutions of the

2-dimensional model. However, that should not be taken as a justification

for the validity of zonally asymmetric models in explaining the main

atmospheric motions in the tropics since the fields from which the zonal

averages were formed were highly zonally asymmetric (see Figures 5.10 -

5.13), although it is clear that v and w and consequently the mass

transports by the MMC are well predicted by the 2-D model.

The main similarities and differences between the zonally averaged 3-D

model solution and the 2-D model solution can be simply understood in terms

of the role of the stationary eddies in the zonally averaged solutions of

the 3-D model. If the zonally averaged flux divergences by the stationary

eddies played no role, we would expect the zonally averaged 3-D model
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solution to be similar to the solution of the 2-D model forced by the zonal

mean heating of the 3-D model. Accordingly, we will be looking at the

zonally averaged divergences of the meridional and vertical transports of

momentum and temperature by the stationary eddies. In the following

discussion a square-bracketed quantity refers to the zonal average of the

3-D model solution and a quantity with the subscript 2D refers to the 2-D

model solution.

We start by noticing the similarity of [w] and w2D for both lower and

upper levels. That can be explained by seeing that at steady-state the

leading thermodynamic balances are between the diabatic heating term and

adiabatic ascent or descent. To a good approximation the thermodynamic

equation can be expressed as

S(z) w = QT/Cp -

Since this is a linear equation it immediately follows that [w] and w2D

will be similar, which is readily seen in Figure 5.38b and c. Using this

conclusion and the linearity of the zonally averaged continuity equation,

it also follows that [v] ~ v2D as seen in Figures 5.38b and c for the

meridional wind. These simple linear arguments cannot be applied to the

zonal momentum equation because the 3-D model balances are nonlinear and

terms of the type a[v*u*]/ay and a[w*u*]/az may be different than zero.

Hence, if one takes these flux divergences of zonal momentum as forcing

terms in a 2-D model, then the generated zonal winds should be similar to

the zonally averaged zonal winds of the 3-D model. From Figure 5.29 for

the longitudinal profiles of the advection of zonal momentum we can

estimate the magnitude of these fluxes. For the upper levels near the

equator, Figure 5.29a (top) reveals that the zonal average of the vertical

advection of zonal momentum will be nontrivial, seeing that wuz is not
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zonally symmetric; and it can be seen that -[w*u*]z will be positive so the

stationary eddies are depositing westerly momentum; this explains why [u]

is westerly and larger than u2D near the equator. Following the same type

of analysis for Figure 5.29d (top) at 20*S (close to the latitude of

maximum [u]), we conclude that -[v*u*]y is negative, which means deposition

of easterly momentum at those latitudes; this would tend to decrease the

magnitude of the maximum [u]. Indeed the maximum [u] is 1.26 in

nondimensional form, whereas the maximum u2D is 1.39.
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5.5 SCALE ANALYSIS

In this section we will use the FGGE data for Jan-Feb 1979 analyzed in

Chapter 2 to estimate the magnitudes of the terms of the zonal and

meridional momentum equations at upper tropospheric levels in order to

obtain an idea about the predominant planetary-scale dynamical balances and

assess the relative importance of nonlinear terms. We will perform this

calculation at 2 different latitudes, at - 50 of latitude within a typical

region of tropical heating, and away from the equator at - 200N.

5.5.1 ZONAL MOMENTUM EQUATION AT 200 mb

The following values taken from the FGGE data analysis will be used

in estimating the magnitudes of terms of the zonal momentum equation.

A) Near equatorial balances (~50) B) Balances away from the equator (-20 0N)

u z 5 - 10 m/s u - 20 - 25 m/s

v - 2-3m/s v-5m/s

w - 5x10-4 - 10-3 mb/s w - 10-4 mb/s

Ahu - 10 m/s Ahu m 15 m/s

Azu - 5 - 10 m/s Azu z 10 m/s

Ax z 4x106 m Ax s 4x106 m

Ay = 1x106 m Ay 1x106 m

Ap - 300 mb Ap 300 mb

At m 3x10 s At 3x106 s

Ax$ z 20 m AX 100 m

where Ah, Ax and Ah represent typical horizontal, longitudinal, and

vertical variations of a variable, respectively, and TE, given below, is a

crude estimate of the flux divergences by the transient eddies obtained

from Figures 2.26 (u'v') and 2.28 (3Lu'v']/ay) and from maps of 1-r2 (not

shown here).
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Vertical derivatives are estimated for the layer from 500 mb to 200 mb.

Friction is assumed to be small.

The results in 10-5 m/s2 are as follows:

-- + u -- + v -- + W-- = fv - -- + Fx + TE [5.1]
at ax ay ap ax

A (~ 50) (0.25) (2) (2.5) (3) (3) (5) (small) (1)

B (-20 0N) (0.75) (8.5) (7.5) (0.5) (25) (25) (small) (7)

5.5.2 MERIDIONAL MOMENTUM EQUATION AT 200 mb

The same procedure used for the zonal momentum equation is now

utilized to estimate the magnitude of the terms of the meridional momentum

equation. The following values are used:

A) Near equatorial balances (~50) B) Balances away from the equator (-200N)

u - 5 - 10 m/s u s 20 - 25 m/s

v-2-3m/s vsv5m/s

w - 5x10- 4 - 10-3 mb/s w - 10-4 mb/s

Ahv - 3 - 5 m/s Ahv ~ 5 - 10 m/s

Azv - 3 m/s Azv 5 m/s

Ax m 4x106 m Ax 4x106 m

Ay 106 m Ay 1.5x106 m

Ap 300 mb Ap 300 mb

At 3x10 s At 3x106 s

Ay- 15 m Ayt 200 m

where Ay is a typical latitudinal variation of a variable.
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The results in 10-5 m/s2 are as follows:

-- + u -- + v -- + -- =-fu - -- + Fy + TE [5.2]
at ax ay ap ay

A) ( ~50) (0.08) (0.8) (1.0) (1.0) (10) (14) (small) (0.5)

B) (-20 0N) (0.17) (2.5) (3.5) (0.2) (120) (130) (small) (5)

5.5.3 THERMODYNAMIC EQUATION AT EQUATORIAL LATITUDES

The results for the thermodynamical balances (not shown here)

indicate that dominant balance is between diabatic heating and adiabatic

expansion or contraction. This result is similar to the one obtained by

Cornejo-Garrido and Stone (1977) studying the heat balance of the Walker

circulation. This balance was already evident in Figure 2.14 (Chapter 2)

in which the longitudinal profiles of diabatic heating and vertical

velocity were shown.

5.5.4 COMPARISON OF THE SCALE ANALYSIS WITH THE MODEL'S RESULTS

We seek here only qualitative similarities and differences between

typical balances in the real atmostphere and balances produced by the

nonlinear model. Given the simplified nature of the model, accurate

quantitative agreement is not expected.

The meridional momentum balances (Eq. [5.1]) show that the zonal wind

is approximately in geostrophic balance even near the equator. This result

is in very good agreement with the nonlinear model results (see

Figure 5.27a). Estimates of the flux convergences by the transient eddies
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indicate that these are at least one order of magnitude smaller than the

main geostrophic balance. Advection of meridional momentum is one order to

two orders of magnitude smaller than the Coriolis force.

Eq. [5.1] for the zonal momentum balances reveals that the nonlinear

terms are comparable in magnitude to the other terms. Away from the

equator, vertical advection is smaller but horizontal advections are of the

same order of magnitude as the Coriolis and geopotential terms. This is in

agreement with the model's results (for instance, compare with

Figures 5.26a (bottom) and 5.29 (top)).

In terms of the magnitudes of the dynamical balances, the cases with

intense heat sources (Cases III and V) bear a closer association with the

magnitudes revealed by this scale analysis.

As mentioned before, the main thermodynamical balance between diabatic

heating and adiabatic ascent or descent is well represented by the model,

as can be seen in Figures 5.28 and 5.30.
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CHAPTER 6

SUMMARY, DISCUSSION AND CONCLUDING REMARKS

To substantiate and emphasize the relevance of zonal asymmetries in

the tropical forcing and circulation, we reviewed a selected set of

observations and previous observational studies. We also analyzed a subset

of FGGE data for SOP-1 (January 5 to March 5, 1979) attempting to identify

zonal asymmetries in the thermal forcing and relate them to the observed

asymmetries in the circulation. Precipitation and cloudiness asymmetries

were seen to be linked to the continents straddling the equator and in the

western Pacific, possibly related to warmer SST's. The degree of

precipitation was shown to be greater for the tropical southern hemisphere

during southern summer due to the larger longitudinal land-sea contrast.

Also, it was seen that the position of the precipitation maximum within a

tropical continent moves in a SE-NW orientation from southern summer to

northern summer and vice-versa. It was suggested that such orientation is

related to the establishment of the northern hemisphere summer monsoonal

circulations or, in the last instance, to north-south land-sea contrasts,

with a tropical continent lying north of an equatorial ocean.

The scale and intensity of the latent heat sources were seen to have

considerable geographical dependence. The Indonesian-western Pacific heat

source is broad and intense. The heat sources over South Anerica and

Africa are generally more localized, where the former is a strong heat

source comparable in strength to the Indonesian heat source while the

latter is somewhat weaker, except for West Africa during northern summer

monsoon.
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The atmospheric circulation in the tropics was observed to depart

significantly from zonal symmetry. Lower and upper-level equatorial

westerlies and easterlies at the same latitude are a persistent feature of

the climatological tropical flow, as are the semi-permanent subtropical

highs. The upper level centers of anticyclonic circulation over the

tropical continents appear to be associated with the heat source and

located to the west and polewards from where precipitation is maximum. It

was also seen that the sea level isobars are more parallel to latitude

circles in the winter hemisphere. We also remarked that the subtropical

jet stream of the northern hemisphere upper troposphere shows a wavenumber

3 structure with three regions of maximum wind speed during northern winter

contrasting with the southern hemisphere subtropical jet stream during

southern winter which presents less zonal structure. It was suggested that

this may be related to the tropical heat sources being more zonally

asymmetric during northern winter than what they are during southern

winter.

The velocity potential and streamfunction fields were analyzed. The

divergent part of the wind provided a clear picture of thermally direct,

large-scale mass overturnings in the tropics. The rotational and divergent

components of the wind were seen to attain comparable magnitudes in the

tropics. Major areas of divergent motions at the upper level were observed

over South America and the Indonesian-western Pacific region during

southern summer and a quite strong divergent circulation centered over the

Southeast Asian monsoon region during northern summer. Convergent

upper-level motions were observed over the subtropical oceans and deserts.

North-south mass overturnings were seen to be confined to the longitudes of

the heat source and comparable in strength to the east-west circulations.
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The position of the upper air easterlies and lower-level westerlies in the

tropics was seen to bear correspondence with the westward branch of the

Walker-type circulation, i.e., divergent winds being easterlies at the

upper levels and westerlies at the lower level. The general level of

agreement found seems to indicate that the planetary-scale, stationary

asymmetric circulations in the tropics are predominantly forced by

condensational heating.

The main asymmetric heating of the tropical atmosphere is due to the

latent heating of condensation in deep cumulus clouds, which can be locally

quite intense. Seasonal precipitation rates higher than 10 mm/day are

observed over broad areas in the tropical continents. The intensity and

relative short scale of the tropical latent heat sources along with the

increasingly ageostrophic balances near the equator are likely to make the

effect of nonlinearities important. The highly asymmetric nature of

thermal forcing and circulation in the tropics, which is related to the

uneven distribution of land masses, suggests that one should try to examine

the effects of such asymmetric forcing and its influence on the time-mean

circulation, primarily when we recognize that the mechanisms that determine

the long-term circulation in the tropics are not well-known. In this work

we investigated the nonlinear response of the tropical atmosphere to

large-scale, stationary, zonally asymmetric diabatic heating sources that

arise primarily due to the localized character of precipitation over

tropical continents. In previous theoretical studies of tropical

circulations forced by isolated heat sources, the effects of advection of

momentum and temperature were not taken into account except by considering,

in some studies, the effects of zonal advection by a constant mean wind.
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Although we cannot rule out the influence of the midlatitude

baroclinic eddies on the tropical motions, it appears reasonable to examine

the tropical atmosphere response to forcing which is located within the

tropics and to separate it from midlatitude forcing. Therefore, the

effects of the baroclinic eddies are suppressed. Also, we do not include

the effects of topography although we recognize that the Andes and Tibetan

Plateau are likely to exert a major influence on the tropical and

extra-tropical circulations.

For the purpose of examining the tropical atmosphere's response to

isolated heat sources, we developed two models. The first model is a

simple semi-analytic linear model which is used to study the linear

response to changes in the structure and position of the heat sources. The

second model is a 5-layer, primitive equation nonlinear model used to

assess the importance of nonlinearities. Equatorial s-plane geometry, used

in both models, seems justifiable in view that the model's main forcing,

i.e., cumulus heating, decays rapidly away from the equator in the

subtropics and also that midlatitude baroclinic eddies were not

considered.

The choice of structure and intensity of the distributions of diabatic

heating was guided by observations. To a first approximation the

horizontal scale of a diabatic heating source over a tropical continent is

given by the continent's dimensions. This is probably true for the heating

sources over South America, Africa and the Indonesian Archipelago. As

mentioned above, the large precipitation rates over the western Pacific are

likely related to large-scale convergence patterns associated with warmer

SST's. In this respect it is probable that the heat sources over oceans

are more dependent on the dynamics of the large-scale flow and on the
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underlying surface conditions than are heat sources over continents.

Tropical continental rainfall seems to be less dependent on large-scale

convergence than does equatorial oceanic rainfall. Local

evapotranspiration seems to provide an important moisture source for

precipitation over forested surfaces, and several studies estimate that up

to 65% of the tropical rainfall over continents originates from

evapotranspiration. The latitudinal scale of the tropical heat sources

over continents is not related only to its meridional dimensions. If a

continent extends into middle and high latitudes, the high rainfall area

associated with cumulus precipitation will not extend to those latitudes.

The meridional scale of these heat sources is directly related to solar

radiation forcing, thereby an appropriate scale is given by the solar

declination, i.e., of the order of 230 of latitude.

In Chapter 3 we used simple arguments based on the linearized

equations to explain certain features of the linear model solution, such as

the changes in the position and intensity of lows and highs, and the

relative magnitudes of the zonal and meridional winds when the latitudinal

position and horizontal scale of the heat source were changed. Also, we

studied the sensitivity of the response to changes in friction and mean

winds. For mean easterly winds the solution is equatorially confined,

whereas for mean westerly winds there is meridional propagation and the

response away from the equator is large. This result is qualitatively

similar to the results on meridional propagation of Rossby waves obtained

by Hoskins and Karoly (1981), and Simmons (1982) using more sophisticated

models.

Linear and nonlinear solutions were compared in Chapter 5 for a number

of cases in which the forcing was changed. In some cases only the
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intensity of the heat source was changed; in others, the number of heat

sources and in one case the heat source was placed away from the equator.

When the intensity of the heat sources was changed, the nature of the

solution for the nonlinear cases changed considerably when compared to the

linear case. For weak heating rates the linear and nonlinear response are

very similar. When realistic heating rates were prescribed, the nonlinear

model produced upper level maximum winds that not only were higher in

magnitude as compared to the linear model winds but more importantly were

found in the subtropics away from the latitude of maximum heating, whereas

for the linear model maximum winds were found at the latitude of maximum

heating. East-west asymmetry, a feature which was already seen in the

linear model, becomes more pronounced in the nonlinear solution with

stronger and more confined lower-level westerlies to the west of the heat

source. The comparison of linear and nonlinear balances revealed that

advection terms are important. Near the equator, zonal and meridional

advection of zonal momentum is significant as well as vertical advection of

temperature in the source region. Linearly, the standing wave pattern

associated with the heat source is confined to the equatorial regions,

whereas for the nonlinear case the influence of the heat source is clearly

seen in the subtropics. The results of our model provide some indication

that nonlinearities are necessary to simulate some features of the

planetary-scale, time-mean atmospheric motions in the tropics which are not

present in linear models.

We summarize the most important results of our model as follows:

o The linear model is able to simulate to the zeroth order some major

features of the time-mean tropical circulation such as continental lows in

association with heat sources and subtropical highs in association with
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heat sinks. For a reasonable distribution of asymmetric heat sources

representing typical southern hemisphere heating during the summer, there

is some success in simulating the general distribution of easterlies and

westerlies in the tropics.

o One of the most remarkable results of the nonlinear model is that

for realistic heating rates it produces upper-level maximum zonal winds in

subtropical latitudes and to the east and polewards of the heat source, a

feature not seen in linear models, which produce maximum zonal winds at the

latitude of maximum heating. This seems to provide a zeroth order

explanation for the location and longitudinal structure of the subtropical

jet stream. The model's position for the wind maxima does not agree well

with the observed position of the wind maximum of the jet stream off the

east coast of North America, which is found to the northwest of the

tropical heat source over South America for northern winter. However, we

are not taking into account in our model the effect of topography, which

would tend to change the phase of the stationary wave and also the effect

of transient disturbances forced by the strong midlatitude temperature

gradient. The observed position of the other two wind speed maxima is to

the north/northeast of the tropical heat sources over Africa and

Indonesia.

* The nonlinear model's low-level zonal winds show considerable

east-west asymmetry with confined westerlies to the west of the heat source

and easterlies elsewhere. In the real atmosphere, low-level easterlies

cover most of the tropics, and the regions of westerlies such as those over

the Indian Ocean are more confined .

* Zonally averaged solutions of the nonlinear 3-D model are, in

general, similar to solutions of a nonlinear 2-D (latitude x height) model
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and the differences are due to the role of the stationary eddies. However,

the fields we are zonally averaging are highly asymmetric so it is not

justifiable to think of the tropical circulations as being mostly axially

symmetric.

o Scale analysis of the dynamical and thermodynamical equations based

on FGGE data showed good qualitative agreement with the nonlinear model's

results indicating that the zonal wind is in geostrophic balance even near

the equator, nonlinear terms are important in the zonal momentum equation,

and the main thermodynamical balances are between diabatic heating and

adiabatic ascent or descent.

We have neglected the effects of the transient eddies in our model.

In Chapter 2 we have shown that the zonal momentum flux divergences

associated with the transient eddies have magnitudes which are comparable

to the magnitudes of the advections by the time-mean circulation. From the

global distribution of 7P4 (not shown here) for Jan-Feb 1979, one can see

that there is significant convergence of the zonal transport of zonal

momentum by the transient eddies to the west of the jet stream wind speed

maxima off the east coast of North America, i.e., acceleration of the

westerlies, and divergence of this flux to the east of the wind speed

maximum and consequent deceleration of the westerlies. Thereby it appears

that the transient eddies play a role in determining the longitudinal

position of this jet stream wind speed maximum. Figure 2.28 for the

zonally averaged meridional divergence of zonal momentum by the transient

eddies at 200 mb indicates that in general the transient eddies are

depositing easterly momentum throughout the tropics and subtropics, and

since westerlies are predominant in this region, they are taking westerly

momentum away. A rough estimate of a dissipation time scale is simply
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given by the time it would take for the transient eddies to reduce the

westerly wind to zero. At 20*N (approximate latitude of maximum meridional

flux divergences by the transient eddies) the rate momentum is being

dissipated by the transient eddies is - 3.5 x 10-5 m/s2 and [u] - 25 m/s,

giving a dissipation time scale of - 8 days. At equatorial latitudes the

flux divergences by the transient eddies are much smaller but so is the

zonal wind. A typical value of the flux divergence is z 0.50 x 10-5 m/s2

and [u] P 3 m/s, yielding a dissipation time scale of z 7 days. In a very

rudimentary way, one may think of Rayleigh friction in the model as a

representation of the dissipative effects of the transient eddies at the

upper levels. However, in this crude approximation we are not taking into

account the detailed horizontal structure of the transient eddies flux

divergences. Its longitudinal variations act as sinks and sources of

westerly momentum at the upper levels whereas the Rayleigh friction acts

only as a momentum sink. It would be interesting to see how the results of

our nonlinear model would be modified by considering the transient eddies

flux divergences as forcing terms of the momentum equations and also by

considering a more realistic formulation of momentum dissipation

processes.

Gill (1980) suggested that the observed east-west asymmetry in the

Walker circulation may be due to the different propagation properties of

equatorial waves with faster Kelvin waves to the east of the heat source

and slower Rossby waves to the west, so the region of easterlies is larger

than the region of westerlies. We have seen that nonlinearities make the

east-west asymmetry even more pronounced. In Gill's linear model and in

our nonlinear model, however, there was almost no zonal asymmetry in the

heat sinks, which were given by a simple linear damping law. It is likely
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that in the real atmosphere there are zonal variations in diabatic heating

sinks such as radiative cooling and sensible heating. Associated with the

heat sources there is upward motion and downward motion associated to heat

sinks so that the east-west scale of the Walker-type circulations might be

determined by the scale of the forcing. The eastern part of the

subtropical ocean basins might provide just such a heat sink. For those

regions precipitation and thus latent heating is very low, usually

cloudless skies add to the radiative losses of the atmosphere, and the cold

underlying ocean acts as a sensible heating sink for the atmosphere.

Topography is another factor which is not taken into account in these

simple models and which would almost certainly influence the east-west

circulation. For instance, the high topographical barrier provided by the

Andes, extending north-south to the west of the Amazonian heat source,

would block the westerly return flow to the source region and thereby

affect the east-west asymmetry.

Another important question that arises in connection with tropical

heat sources is the relationship between tropical precipitation and the

underlying surface, whether ocean, forested land, or bare land. Are

forested surfaces more active in providing the conditions for the observed

copious rainfall over tropical continents or are they just passively

responding to high precipitation and consequently high soil moisture

content that would be high even in the absence of the rainforest? There

have been a number of attempts to assess the effects of changes in soil

moisture and albedo using GCM's, but the results have been inconclusive

probably due to imperfections in the physical parameterizations of ground

hydrology and PBL processes (Shukla and Mintz, 1981; see Mintz, 1982, for a

review on the subject). The question of whether tropical deforestation
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would cause a change in tropical precipitation and in which direction is

far from being settled. The soil-forest-atmosphere system is a complex

interactive biological system which probably does not respond to the

surface heat budget in simple ways. Lettau et al. (1979) have estimated

that up to 60% of tropical rainfall over the Amazon region comes from local

evapotranspiration; this would point to the need for better knowledge of

the energy and moisture exchange over a tropical rainforest.

The interannual variability of tropical and extra-tropical large-scale

circulations may be related to the interannual variability of the heat

sources since the zonally asymmetric heat sources seem to be an important

determinant of time-mean planetary circulations. Improved observations and

better models will be needed in order to capture and understand the

interannual variablity of the circulation.
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APPENDIX A

DECOMPOSITION OF THE FORCING OF CHAPTER 3 INTO FOURIER SERIES

In Chapter 3 we make use of idealized forcings whose basic x-structure

is shown in Figure A.1. The resulting forcing will be a linear combination

of such half-cosine functions given by

f(x) = A cos - (x-b)
[A.1]

where A is the amplitude 2d the width, and b is the displacement of the

forcing from the center.

fix)

f (x) = A cos(7rx b))

I
A

. - b - L X
f 2 d 4

Figure A.1 Basic X-Structure of Idealized Forcing

We want to obtain the expansion in Fourier series of the function f(x),

1.e.,

Ao co nwrx nwx
f(x) = - + I [An cos(-) + Bn sin(-)]

2 m=O L L
[A.2]

1 L
An = - f

L -L

n 7rX
f(x) cos(-) dx

L

- L

where

and

[A.3]
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Bn = - f

L -L

n 7rx
f(x) sin(--) dx.

L

After substitution of f(x) in [A.3] and [A.4] and upon integration, we

obtain the following expressions for the Fourier coefficients:

4Ad 1 C ,rbn )rdn
An = - c (-) COS (--)

'rL 2d LL
[1 - (n -

L
if n #-

2d
[A.5]

Ad nd
An =-cos(-)

L 2d

L
if n

2d

8A d n wbn wdn
Bn = - - (_)2 sin (-) cos (- )

7r L 2d 2  L L
[1 - (n -

L

Ad b
Bn = - sin(-)

L 2d

[A.6]

L
if n * [A.7]

2d

if n =-
[A.8]

Table A.1 below presents the values of the Fourier coefficients for

the x-structures of the forcing functions utilized in Chapter 3

corresponding to Figure A.2a, A.2b and A.2c. The series is truncated at

N = 15.
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TABLE A.1

Coefficients of Functions of Figure A.2

Figure A.2a Figure A.2b Figure A.2c

n An Bn An Bn An Bn

0.12263

0.11694

0.10931

0.10000

0.08940

0.07795

0.06603

0.05406

0.04244

0.03154

0.02164

0.01300

-0.18671

-0.26009

-0.13086

0.07558

0.16667

0.08272

-0.06114

-0.11614

-0.05169

0.04084

0.06770

0.02592

-0.02067

-0.02722

0.48017

0.25000

0.16837

0.09701

0.03880
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Figure A.2 X-Structures of Forcing. One Heat Source (a), 2 Heat Sources

(b), and 3 Heat Sources (c)
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APPENDIX B

SUMMARY OF PROPERTIES OF HERMITE FUNCTIONS AND POLYNOMIALS

Definition of Normalized Hermite Function (see Abramowitz and Stegun,

1965):

-x /2
Hn (x) e

'n(x) = (2n n! 1 /2)1/2

where Hn(x) is the Hermite polynomial of order n. The first five

normalized Hermite Functions are shown in Figure B.1.

Definition of Hermite Polynomial:

x2 dn -x2
Hn (x) = (-1)n e - (e )

dxn

Hermite Polynomials o through H8

H0 = 1

Hi = 2x H5 = 32x 5 - 160x 3 + 120x

[B.1]

[B.2]

H2 = 4x2 - 2

H3 = 8x 3 - 12x

H4 = 16x 4 - 48x 2 + 12

H6 = 64x 6 - 48x 4 + 700x 2 - 120

H7 = 128x 7 - 1344x 5 + 3360x 3 - 1680x

H8 = 256x 8 - 3584x 6 + 13440x 4 - 13440x 2 + 1680

[B.3]

Recursion Relations for Hermite Polynomials

1
xHn = - Hn+1 + nHn-1

2

dHn
= 2n Hn-1

dx

[B.4]

[B.5]
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Figure B.1 First Four Normalized Hermite Functions Given By

-x 2/2
Hn(x) e

(2nn! .1/2) 1/2
7n(x) =

5.0
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Recursion Relations for Normalized Hermite Functions

n n + 1
X'n = (-)1/12 n-1 + ( )1/2 Tn+1

2 2

dPn n n + 1
---= (-)1/2 Tn-1 - (-)1/2 Tn+1

dx 2 2

d2 Tn (n(n-1))1/ 2  1
- in-2 + (n + -) Tn + ((n+1)(n+2)) 1/2 Tn+2

dx 2 2

00n 

f Tn+1 (x)dx = (-) f
- c n+1 --

Tn-1 (x)dx ,

where,

f 00o(x)dx = (2w1/2)1/2 = 1.88279253

Orthonormality Relation

1 m =n
f 00 m(x) in(x) dx = {

-T 0 1lm #4n

Triple Integral (Bushbridge, 1948)

f 0 y(x) Tm(x) 'n(x) dx =

[B.6]

[B.7]

[B.8]

[B.9]

[B.10]

[B.11]
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4 1 K
(-)K r(K + -)I
3 2 r,s,t

(-z)s+t(-m)t+r(-m)r+s

r! s! t! (1/2 - K)r+s+t

0 < r+s+t < K

3(-)r+s+t
2
if X+m+n is even

2

3

0 [B.12]

where

K = (. + m + n)/2

F(a) is the Gamma Function

(a)n = a (a + 1)(a + 2) ---- (a + n - 1) is the Pochammer Function.

Hermite Integration Formula

From Abramowitz and Stegun (1965, pp. 924), we present in Table B-1

below the zeroes and weights for the 20-point Hermite integration formula.

f(x) dx =
i=1

wi f(xi)
[B.13]

n
f g(x) dx=

-00 =1

Xi2
wie g(xi)

[B.14]

)1/2

if X+m+n is odd

c -x2

e
- 0
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TABLE B.1

Zeros of Hermite Polynomials and Weight Factors
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APPENDIX C

SPECTRAL METHODS FOR CALCULATING NONLINEAR INTERACTION COEFFICIENTS

Assume A and B are variables expressed as spectral expansions of a set

of orthogonal basis functions

M
A= I

m=-M

M
B= I

m=-M

L

L=0

L

X=0

[C. 1]

[C. 2]

where 'T is the Hermite function of order x.

We want to calculate the spectral representation of the product AxB,

i.e., the series of coefficients Cnk such that

M
AxB = I

m=-M

L

X=0

[C.3]

To obtain the nonlinear interaction coefficients Cm, two methods can

be used: the direct method and the transform method.

Direct Method

The procedure to calculate the nonlinear interactions coefficients via

the direct method is quite straight forward.

M
AxB = I

m=-M

M
=([

m=-M

L

X=0

M

AmX vI~ e-imx)(
n=-M

L
{ Bn,k 'k e-inx)
k=0

[C.4]

Am,t IY(y) e-imx

Bm,t TZ(y) e-imx

Cm,.t Tt(y) e-imx.

CmX Tx(y) e-imx
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Multiply Eq. [C.4] through by Yp(y)eirx and integrate in x from -w to

a and in y from -- to o. We obtain

M L

e=-M j=0
e-i(e-r)x dx)

Ceij (f 00j(y) p(y) dy)(f

M M L L

m=-M n=-M X=0 k=O

x (f e-i(m+n-r)x dx)

Am,y Bn,k ( f TX Tk Tp dy)

The orthogonality relations for Hermite functions and Fourier series

are given by

e-i(m-n)x dx

1 1 m= n

0 1 m n

1 1 m= n

0 1 m n

Applying [C.6] and [C.7] in [C.5) results in

M
Cr,p = IM

m= -M

L L
X X
X=0 k = 0

Ar-m,t Bmk I (,k,p) [C.8]

where I(1.,k,p) is the triple Hermite function integral

I(Z,k,p) = f

Because Am, = 0 for ImI>M and Ar-(-M) = Ar+M we see that the

summation can be started at m = r-M. Hence the expression for the

[C.5]

00m n dy

-- 

1 r
-f
27 - r

[C.6]

[C. 7]

[C. 9]
'yk(y) 'Yk(y) Ypy) dy.



264

nonlinear interaction coefficients Cr,p becomes

M L L
Cr,p = I X I Ar-m,p Bm,q I(pq,x)-

m=r-M p=O q=0 [C.10]

The integral I(X,k,p) is calculated once and for all using relation

[B.12] (Appendix B).

Although this is a straight-forward way of calculating the nonlinear

interaction coefficients, it has a serious limitation. The number of

operations goes as N3 per calculation of nonlinear terms. Also N3 numbers

have to be stored for the integrals I(p,q,). For N = 10 (10 modes in

Fourier and 10 modes in Hermite) there are 1,000 operations per

calculation. For N = 20 the number of operations grows to 8,000 per

nonlinear calculation. Spectral methods have historically been less

attractive primarily because the number of operations goes as N3. Only

recently with the advent of alternative methods to calculate the

interaction coefficients have spectral methods become widely used.

Transform Method

The idea of the transform method (see Orzag (1980) for a review on the

subject) is to perform certain operations in the spectral domain and some

others in the grid-point domain. Differentiation is performed in the

spectral domain since higher accuracy is obtained when compared with

finite-difference schemes. Calculation of nonlinear terms is executed in

the grid-point domain where it is simply a multiplication.

Define the collocation points xi and yj. Any quantity A can be

expressed as
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00 00

A(x i,yj) = I I
m=-0 k=0

-imxi
Am .. IYj (yj ) e

[C. 11]

The spectral representation of a nonlinear term of the form

dB
A -

dx

is evaluated as follows:

1) Evaluate the derivative dB/dx in the spectral domain, i.e., simply

multiply by (-im).

2) Calculate the nonlinear product for each pair (xi, yj)

M L
C(xiyj) = (X £0

m=-M X=0

M
xm([

m=-M

-imxi
Afnl I(yj)e

L

'z=0

3) Find the spectral representation of C(x,y)

M
C(xi,yj) = I

m=-M

L

X= 0

-imxi
Cm,Z %(yj)e

Cmk is obtained by numerically evaluating the double integral

7T

Cmx = I f
-- -0

C(x,y)?T(y) eimx dxdy.
[C.14]

Each operation is carried out in the domain where it can be most

accurately and efficiently implemented. Unlike the direct method where the

number of operations grows as N3, now it grows roughly as 2N2 for the

transform method. For large N (N>10) the transform method is much more

efficient.

[C.12]

[C.13]

(-im Bm~ I~y -imxi
(-im) Sn , Y(yj )e )
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To increase computational efficiency even further, the FFT (Fast

Fourier Transform) algorithm is utilized in [C.12] and [C.14]. It is not

of the author's knowledge that any "Fast Hermite Transform" to evaluate

terms of the form

L
I Axt(y)
X=0

and integrals of the form

f A(y)TX(y)dy

exists. To calculate these integrals, we made use of the 20-point Hermite

integration formula (see Appendix B).
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APPENDIX D

MODIFIED MATSUNO TIME INTEGRATION SCHEME

The Matsuno (or Euler backward) time integration scheme is a two-step

integration scheme. For the ordinary differential equation

dA
- = F(A)
dt [D.1]

the scheme can be represented as

At* = At + At Ft

At+1 = At + At Ft*. [D.2]

First, a new value of A is calculated for the auxiliary time t*; then,

the solution is advanced to the time t+1.

In the integration of the numerical model in Chapter 4, a slight

modification of the scheme was necessary to keep errors from growing. The

error growth arises in connection with truncation errors for the series of

Hermite functions when y-derivatives are calculated.

Let

N
A = I An 'n(y),

n=O [D.3]

N
B = X Bn n(y),

n=O [D.4]

and,

dA
B = - .

dy [D.4]
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Using the recurrence relations of Appendix B, the Bn's can be written

as a function of the An's

Bn = (+) 1/2 An+1 - ( 1/2 An-12 2 [D.5]

For n = N (truncation value)

BN = - (1 /2 AN-12

since we assume An = Bn = 0 for n > N. For n sufficiently large, Bn + 0,

but in our expansion, N = 10, and we observed that for some instances the

error in the calculation of BN tends to accumulate. More precisely, error

accumulation arises in the numerical integration of the prognostic equation

for the meridional wind v due to the error in the calculation of the

y-derivative of the geopotential (dn/dy). Because of this error

accumulation problem, the Hermite spectral coefficients for v would start

to diverge after a few dozen time steps.

The problem was corrected simply by not time-advancing the

geopotential in the intermediate step of the Matsuno scheme. The

prognostic equations for u and v can be symbolically written as

du de
- = - - + Fu

dt dx [D.6a]

and

dv de
- = - - + Fv
dt dy [D.6b]

where Fu and Fv represents the remaining terms of the u and v momentum

equations, respectively.
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Applying the modified Matsuno time integration scheme to Eqs. [D.6]

yields for the first iteration t*

ut* = ut - At ()t + At Fut [D.7a]
dx

= y - At (--)t + At Fvt [D.7b]
dy

and for the final time step t + 1

ut+1 = Ut - At (--)t + At Fut* [D.8a]
dx

= y - At (-)t + At Fvt*
dy [D.8b]

We found that by using this scheme, the errors in the calculation of

(dp/dy) remain bounded and the series of Hermite coefficients for the

variables converges.

In Table D.1 we present an example of a 15 time-step integration of a

linear version of the model [Eqs. [4.43] through [4.48]] for the modified

Matsuno scheme and for the Matsuno scheme. Hermite coefficients are shown

for (de/dy)n and for Vn for selected time steps.

From Table D.1 we see that for time step = 15, the errors in the

calculation of (dp/dy)n for the Matsuno time integration scheme are already

large, i.e., I(d/dy)nl is increasing as n increases. After a few more

time steps, these errors will show up in the Vn's and eventually, in all

the remaining fields. For the modified Matsuno scheme, |(d /dy)nl

decreases as n increases and the series converges.



TABLE D.1

Coefficients (d /dy)n and Vn for a 15 Time-Step Integration of Eq. [4.45]

Time Matsuno Modified Matsuno
Step n

(dt/dy)n Vn (d /dy)n Vn

1 1 (0.0, 0.0) (0.0, 0.0) (-0.12082, 0.0) (0.0, 0.0)

2 1 (-0.12054, 0.0) (0.0, 0.0) (-0.12054, 0.0) (0.60E-2, 0.0)

3 1 (-0.21958, 0.0) (0.60E-2, -0.52E-4) (-0.19879, 0.61E-4) (0.17E-2, -0.52E-4)

(-0.340E-1, -0.15E-3) (0.83E-2, 0.0)

5 1 (-0.33182, -0.92E-2) (0.03100, -0.52E-3) (-0.29667, -0.47E-3) (0.04510, -0.53E-3)

3 (-0.07716, -0.13E-2) (0.31E-2, -0.41E-4) (-0.05928, -0.62E-3) (0.72E-2, -0.31E-4)

5 (-0.02929, 0.0) (0.42E-3, -0.37E-5) (-0.04927, -0.56E-3) (0.32E-2, 0.75E-5)

10 1 (-0.44131, -0.01037) (0.12128, -0.53E-2) (-0.38997, -0.88E-2) (0.13219, -0.53E-2)

3 (-0.06302, -0.88E-2) (-.01777, -0.13E-2) (-0.13929, -0.01114) (0.02349, -0.11E-2)

5 (0.01140, -0.01145) (0.49E-2, -0.63E-3) (0.68E-2, -0.01039) (-0.22E-2, -0.46E-3)

15 1 (0.46659, -0.04635) (0.22501, -0.01781) (-0.18023, -0.04965) (0.23536, -0.01697)

3 (-0.30108, -0.04184) (0.04373, -0.37E-2) (-1.64210, -0.06246) (0.06602, -0.36E-2)

5 (-0.07375, -0.04526) (0.55E-2, -0.11E-2) (1.76180, -0.01827) (0.24E-2, -0.67E-4)
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APPENDIX E

NUMERICAL INTEGRATION SCHEME FOR THE NONLINEAR MODEL OF CHAPTER 4

The numerical integration scheme for the nonlinear equations of

Chapter 4 will be presented in this appendix in detail.

Equations [4.43] through [4.48] can be represented schematically as

dUkm,

dt

dVkm,z

dt

dTkm,t

dt

d ,k M

dt

k+1

M 2

k-1
W
mE

Ak(U, V, W) + Bk( )

Ck(U, V, W) + Dk( )

Ek(U, V, W, T, Q)

[E.1]

[E.2]k even

[E.3]

[E.4]Fk(W), k = 1

[E.5]= Gk-l(4 ) + Hk(T)

k even

= Ik+1(W) + J(U, V)
[E.6]

where we group the terms in the R.H.S. of [4.43] - [4.48] in two

categories, terms containing the geopotential height and terms without it,

as follows

k
A(U,V,W) = - Ro C

m ,Z
(U) + [(--)1/2 k

2 m, x+1
+ 1)/2 vk

2 m, X-1

k
- ro U

m,2. [E.7]
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Bk( ) = + imd
m,Z

k
Ck (U,V,W) = - Ro C

m'R
(V) + [(X+) 1/2 Uk

2 m,2x+1
+ (-)/2 U

2 mx-1

- ro V

mj'k

21 kDk( ) = [((__-)1/2
2 mqx+1

- 1/2

2

k

mqt-1 [E. 10]

Ek(U,V,W,T,$) = - Ro
k k
C (T) - AO W
m, Y.m,.

k
+ Fo Q

m,2,

k
- yo T

m,2,

Fk (W) = - No W
m.9 X

[E.11]

[E.12]

k-1
Gk-1 (1) =

Hk (T) = Azk T

(1 - Azk)
Ik-1 (W) =

(1 + Azk)

Azk I
jk (U,V) = [-imU

(1+Azk) i

[E.13]

[E.14]

k+1

[E.15]

+ ( -- )1/2
2

k
v
m q,+

k 1/2

2
[E.16]

In the boundary condition [4.46] we are assuming flat topography,

i.e., h(x,y) = 0 so

[E. 8]

[E.9]
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CH1 (h)= 0
m,L

and also we are making the additional assumption that

(u - + V -) << w -
ax ay az

at z = 0. We have carried out test runs with the horizontal advection term

(u - + v -)
ax ay z = 0

included and have concluded that eq. [E.12] is a very good approximation to

the nonlinear boundary condition and that it saves us the computation of

two nonlinear terms.

The integration starts at a given time, say, t = T. At this time we

know all the initial fields, i.e., the coefficients

0 < m < M
k,T k,r k,T k,T k,T

{U ,V ,W , ,T }for < 4 < L
m,Q. m,E. m,E m,Z m,A i~ k~K[.7

1 4 k < K [E.17]

are given.

We want to integrate numerically the set of equations [E.1] through

[E.6] and find a new set of coefficients for time t = T + At using the

modified Matsuno time integration scheme. That will be accomplished

through the following steps:

1) Advance the prognostic equations to an intermediate time step T*
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k ,T*

U
m,2.

kT*
V
m,2

k T*
T
m,2

k.,T*

k
,

k,
=U

m,9.

k,r
=V

m,9

k,T
=T

m,2.

k,T
=4+

m,t.

2) Integrate vertically the continuity and hydrostatic equations at

t = T*

k+1 ,T*

m,

k-1, *
=4,

m,2.
+ HkT*

[E.22]

1,T*
where

is given by [E.21] and

k-1,T*
W

mE

k+1,T* k,T*
=I+

[E.23]

with Ik,'T* = 0, i.e., W(ztop) = 0.

3) Now that all fields are known for t = T*, advance the prognostic

equations to the time t = T + At. Remember that the geopotential functions

Bk() and Dk($) will still have the values for t = T (see Appendix D about

this modification in the Matsuno scheme).

+ At [AkT + B k,' (4)]

+ At [Ck,T + D k,t (4)]

+ At EkT

+ At Fk,Tr

[E.18]

k even

} k=1

[E.19]

[E.20]

[E.21]
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k,T k,T* k,T
=U + At [A + B

k,T+At k,t
+ At [C

k,T* k,T
+ D ()]

k,T+At k,t

m, t

k,T+At

m,L

= T + AtE

k,T

kT*

[E.26]

k, *
+ AtF k = 1

[E.27]

4) Repeat step 2 and find the geopotential and vertical velocity for

t = T + At.

5) Apply Shapiro filter to all fields to avoid the cascading of

energy to small scales (see Appendix F).

6) Calculate the time derivatives of u, v and t for time t = T + At.

k,T+At
dUmz k,T+At

- A

dt

k,T+At
dVmL

=C
dt

k,T+At
dTm ,

dt

kT+At k,-r+At
+ D

kT+At

[E.28]

> k even
[E.29]

[E.30]

U
mE

()]

V
m,

[E.24]

k even
[E.25]

=V

mA
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and find

k,T+At kT+At kT+At 0 < m < M
d Um 2.dVm . d Tm,2 j

MAX (jd2-f) , MAX (|dmI) and MAX (|m I) for 0 < z < L
dt dt dt

k even

7) Compute the value of u, v, w, e and T for selected grid-points at

t = T + At.

8) Repeat steps 1 through 7 until the imbalances become very small,

i.e., at least an error of magnitude smaller than the leading terms in the

prognostic equations. That will provide a crude indication that a

steady-state is being approached. Verify that the time evolution fields

computed in 7 have met the defined criteria of less than 2% variation over

10 days of integration.
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APPENDIX F

SHAPIRO FILTER

This description of the Shapiro filter closely follows Brenner

(1981, pp. 166-168).

The Shapiro filter (Shapiro, 1970) is an ideal filter in that it

operates only on the amplitudes and the phases are kept unchanged.

Let A be an arbitrary field represented by a truncated Fourier

series.

M
A(x) = I Ame-imx . [F.1]

m=-M

The response function of the pth-order filter is defined by

mar
Rp(m) = 1 - sin 2p (--)

2M [F.2]

and the filtered field is simply given by

M
K(x) = I Ame-imx [F.3]

m=-M

with

im = AmRp(m). [F.4]

One of the main advantages of the Shapiro filter is that it can be

made as selective as desired simply by choosing the order of the filter.

This is illustrated in Figure F.1 which shows the filter response of an

11th order filter for various spectral truncations. The response function

is flat, is close to one for long and medium wave numbers, and drops off

sharply only near the truncation wavenumber. The longer waves are not
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significantly damped while the shortest resolved waves are effectively

eliminated.

0 I 2 3 4 5 6 7 8 9 1O 11

Figure F. 1 Shapiro Filter Response Function for Various Spectral
Truncations
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APPENDIX G

RESULTS OF A NONLINEAR INTEGRATION FOR WAVENUMBER 1 SINUSOIDAL FORCING

We include in this appendix the results of a nonlinear integration of

the model of Chapter 4 for the wavenumber 1 sinusoidal forcing shown in

Figure G.1. We did not include this case with the other six analyses in

Chapter 5 mainly because the forcing's mean heating is zero for the former,

i.e., the prescribed diabatic heating sinks are equal and opposite to the

sources, and non-zero and positive for the latter. This would have

rendered comparisons difficult to make. Nevertheless, we find it is worth

describing briefly, in this appendix, the results for that case.

In Figures G.2 through G.7, we show the upper-level (300 mb) and lower-

level (700 mb) fields of u, v, w, p, D, and E for both the linear and

nonlinear cases. Table G.1 below lists the minimum and maximum values of

all variables at 300 mb and 700 mb.

TABLE G.1 MINIMUM AND MAXIMUM VALUES OF ALL VARIABLES FOR THE

SINUSOIDAL FORCING CASE (see Figure G.1)

u v w T' D E

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

300 mb

L -3.00 3.00 -0.17 0.17 -0.14 0.14 -1.32 1.32 -1.97 1.97 -0.31 0.31 -2.72 2.72

NL -1.96 2.65 -0.21 0.21 -0.13 0.15 -2.06 1.13 -1.58 1.52 -0.29 0.40 -3.13 3.13

700 mb

L -2.32 2.32 -0.12 0.12 -0.13 0.13 -0.88 0.88 -2.84 2.84 -0.29 0.29 -2.12 2.12

NL -1.18 2.47 -0.22 0.22 -0.13 0.11 -1.09 0.44 -5.03 1.18 -0.31 0.30 -2.96 2.96
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NOBRE LEVEL IS 500 1B
LATENT HEATING

-180 -160 -140 -120 -100 -80 -50 -40 -20 0 20 40 60 00 100 120 110 160 160
FORCING : COS(X)

VALUES RANGE BETWEEN -1.00 AND 1.00
RUN- 8

FOR CONTOUR INTERVALS OF

Wavenumber 1 sinusoidal latent heating forcing at 500 mb.

0. I300

Figure G. 1
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RUN-ERUN- 2

Figure G.A Zonal wind (u) for the sinusoidal forcing case. Linear solution at 300 mb (a) and
700 mb (b), and nonlinear solution at 300 mb (c) and 700 mb (d).

VA
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Figure G.3 Same as figure G.3..but for meridional wind (v).



-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE : COS(X)

VALUES RANGE BETWEEN -0.14 AND 0.24 FCJ CONTOUP INTERVALS OF 0.f'20RUN- 3

-180 -150 -140 -120 -100 -00 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
LINEAR CASE a COS(X)

VALL'FS RANGE BETWEEN -0. 13 AND 0. 13 FOR CONTOJR INTERVALS OF 0.020
RUN- 3

-180 -160 -140 -120 -100 -80 -80 -10 -20 0 20 10 B0 80 100 120 110 160 180
NONLINEAR CASE % COS(X)

VALUES RANGE BETWEEN -0.13 AND 0. 15 FOR CONTOUR INTERVALS OF 0.020
RUN- 3

-180 -180 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 150 180
NONLINEAR CASE I COS(X)

VALUES RANGE BETWEEN -0.13 AND 0. 21 FOR CONTOUR INTERVALS OF 0.020
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Figure GA Same as figure G.2.but for vertical wind (w).



-30 -

I I I I I li i i| | I | | | I-50 - 1 1 1

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 60 100 120 140 160 180
LINEAR CASE s COS(X)

VALUES RANGE BETWEEN -1.32 AND 1.32 FOR CONTCUR INTERVALS OF 0.250
RUN- 4

NOBRE LEVEL IS 700 M
WINDCGEOPOTENTIA

30 4 - - 6-

20

10-RUN

-20 -

-.40 -

-160 -150 -140 -120 -100 -BO -60 -40 -20 0 20 -40 60 80 100 120 140 160 180
LINEAR CASE :COS(X)

VALUES RANGE BETWEEN -0.88 AND 0.88 FOR CONTOUR INTERVALS OF 0.250
RUN- 4

( C. NOBRE LEVEL IS 300 9
WINDCGEOPOTENTIA

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 60 100 120 140 160 160
NONLINEAR CASE 1 COS(X)

VALUES RANGE BETWEEN -2.06 ANO 1.13 FOR CONTOUR INTERVALS OF 0.250
RUN- 4

(4 NOBPE LEVEL IS 700 MB
WINDEGEOPOTENTIA

-160 -160 -140 -120 -100 -60 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
NONLINEAR CASE ' COS (X)

VALUES RANGE BETWEEN -1.09 AND 0.44 FOR CONTOUR INTERVALS OF O. O
RUN- 4

Figure G.6 Same as figure G.2-.but for geopotential ( ) and horizontal wind (v).
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DIVERGENCE
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Figure G.6 Same a's figure G.2..but for divergence (D).
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Figure G.7 Same as figure G.. but for vorticity (c).
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The linear solution for this case is very similar to the stationary linear

solution obtained by Matsuno (1966) using a simple shallow-water, equatorial

s-plane model for a wavenumber 1 forcing, whereas in his model cooling and

heating was interpreted as mass sinks and sources, periodic along the

x-direction. At the lower level, lows with associated cyclonic circulation are

found to the west of the heat source and highs with associated anticyclonic

circulation to the west of the heat sink (Fig. G.5). The zonal wind presents

maximum at the equator with westerlies to the west of the heat source and

easterlies to the east of the heat source (Figure G.2). The upper-level linear

solution is very similar to the lower-level one, but easterlies (westerlies)

become westerlies (easterlies) and highs (lows) become lows (highs).

The upper-level zonal winds for the nonlinear solutions are smaller in

magnitude (~ 50% for easterlies and ~ 20% for the westerlies) as compared with

the zonal winds of the linear solution (Figure G.2c). The lower-level

westerlies slightly increase in magnitude and decrease considerably in

longitudinal extent. Maximum easterlies decrease in magnitude and are found

away from the equator and north of its former position (Figure G.3c). The

geopotential for the nonlinear case undergoes a large degree of change, both

qualitative and quantitative, as shown in Figures G.5c and d.
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APPENDIX H

LIST OF SYMBOLS

0 latitude

x distance in the eastward direction

y distance in the northward direction

z a measure of "height" [F -H zn (p/ps)]

u eastward velocity

v northward velocity

w a measure of "vertical velocity" [= dz/dt]

wphys vertical velocity at the lower boundary

wtopog vertical velocity due to topography

W omega "vertical velocity" [= dp/dt]

V horizontal wind vector

Us horizontal wind vector at the surface

Vp rotational part of the wind

Vx divergent part of the wind

UO basic-state zonal wind

4 streamfunction

x velocity potential

vorticity

D divergence

p pressure

Ps a constant reference pressure [E 1000 mb]

PB a variable surface pressure

(D geopotential

$o a basic-state geopotential [= to(z)]

departure of local geopotential from to(z)
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T temperature

TO a basic-state temperature [= TO(z)]

T' departure of local temperature from tO(z)

TO a constant tropospheric mean temperature

TE radiative equilibrium temperature

Q angular velocity of earth

a radius of earth

a y-derivative of Coriolis parameter at the equator [E 2Q/a]

g gravitational acceleration

R gas constant for dry air

Cp specific heat at constant pressure

K ratio of gas constant to specific heat at constant pressure

H scale height [= R T0/g]

h height of topography

Htop nondimensional height of model's top

HQ nondimensional heating scale height

Fx friction in x-direction

Fy friction in y-direction

1f Rayleigh friction relaxation time

Tr Newtonian cooling relaxation time

S static stability [= S(z)]

Q, QT total diabatic heating per unit mass

QL latent heating per unit mass

QR radiative heating per unit mass

X(x) x-structure of diabatic heating

Y(y) y-structure of diabatic heating

Qo(z) z-structure of diabatic heating
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L a constant length scale

So a constant static stability scale

Q0 a constant diabatic heating scale

Ro Rossby number

m wavenumber in the x-direction

Ms critical wavenumber [= (6/U0)1/2

Y, order of Hermite function

k vertical level

M truncation wavenumber of Fourier series in x

L truncation number of modes of Hermite function in y

-Hermite function of order k

X arbitrary independent variable

Xm, spectral coefficient of order m, x

k
Xm, spectral coefficient of order m,x at level k

k,-r
Xm, spectral coefficient of order m,x at level k and time T

-- total derivative [E - + u - + v - + w -]
dt at ax ay az

a+ a
V horizontal gradient [s - i + -- j]

a a
V. horizontal divergence [E - + - ]

ax ay

2 a2  a2
V horizontal Laplacian [ - 2 + 21

ax ay

Cm,,(X) spectral representation of tridimensional advection

CHm,2,(X) spectral representation of horizontal advection

X time mean
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Cm,X(X) spectral representation of tridimensional advection

CHm,z(X) spectral representation of horizontal advection

X time mean

X' departure from time mean

[X] zonal average

X * departure from zonal average
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APPENDIX I

LIST OF FIGURES

Figure 1.1

Figure 1.2

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Zonally averaged rainfall (thick line) and corresponding
standard deviation (thin line) as a function of latitude
for a) DJF, b) MAM, c) JJA, and d) SON; units in mm/day
(map prepared at GLAS based on data from Jaeger, 1976).

Same as Figure 1.1 but for the annual rainfall.

Satellite-derived tropical cloudiness for each season (adapted
from U.S. Department of Commerce and U.S. Air Force, 1971).

Global annual precipitation in mm/day (map prepared at GLAS
based on data from Jaeger, 1976).

Same as Figure 2.2 but for seasonal precipitation: a) DJF,
b) MAM, c) JJA, and d) SON.

Normal sea-level pressure distribution for a) January and
b) July; 1000 mb subtracted from the actual pressure values
(after Godbole and Shukla, 1981).

Long-term 850 mb tropical flow, a) December-February and
b) June-August (after Sanders, 1975).

Same as Figure 2.5 but for 200 mb flow.

Isopleths of the northern winter (a) and northern summer
(b) mean velocity potential at 200 mb, and streamlines of the
divergent part of the wind shown with arrows (after
Krishnamurti et al., 1973 and Krishnamurti, 1971).

Isopleths of the July mean vglgcity potential at 850 mb (a),
and at 200 mb (b) (units: 10 m s-1, interval every 10 units)
(after van de Boogaard, 1977).

Segsanal mean velocity potential at 200 mb (a) (units:
10 m s-1), and seasonal mean divergent part of the wind at
200 mb (b) (units: ms-1) during southern summer (after Virji,
1979).

Zonal circulations in January as deduced from calculations of
vertical motion patterns by Boer and Kyle (see Chapter 9 of
Newell et al., 1974; after Newell, 1979).

Intensity of east-west circulation, IE, at 200 mb, as a
function of longitude, and a schematic diagram of east-west
cells on mass continuity; C and D indicate regions of upper
tropospheric convergence and divergence, respectively (after
Krishnamurti et al., 1973).

Figure 2.12 Diabatic heating distribution at 400 mb for Jan-Feb, 1979
(units: K/day, interval every unit).
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Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17a

Figure 2.17

Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Vertically averaged diabatic heating distribution for Jan-Feb,
1979 (units: K/day, interval every unit).

Vertically and latitudinally averaged diabatic heating (thick
line, units: K/day) and vertical omega velocity (thin line,
units: 10-3 mbs- 1 ) for Jan-Feb, 1979; zonal averages of
diabatic heating (thick straight line) and vertical omega
velocity (thin straight line) are indicated.

Vertical omega velocity at 400 mb for Jan-Feb, 1979 (units
10-3 mbs- 1, interval every 0.50 units).

Average effective cloud top pressure, weighted by cloud
fraction, retrieved by GLAS for January 1979. (After Susskind
et al., 1982).

Geographical distributions of a) rawinsonde stations reporting
at 0000 GMT 9 January 1979, b) satellite temperature
soundings per day for the period 5-21 January 1979, and
cloud-track winds per day for the period 5-21 January 1979,
c) low-level (below 700 mb) winds, d) high-level (above
400 mb) winds (after Halem et al., 1982).

Zonal velocity at 200 mb (b) and 850 mb (c) for Jan-Feb, 1979
(units: ms- 1, interval every 5 units for (b) and every 2.5
units for (c)).

Meridional velocity at 200 mb (a) and 850 mb (b) for Jan-Feb,
1979 (units: ms- 1, interval every 2.5 units).

Geopotential height at 1000 mb (a) and 200 mb (b) for Jan-Feb,
1979 (units: ms-1, interval every 25 units for (a) and every
50 units for (b)).

Temperature at 850 mb (a) and 300 mb (b) for Jan-Feb, 1979
(units: K, interval every 2 units for (a) and every 1 unit for
(b)).

Vorticity at 850 mb (a) and 200 mb (b) for Jan-Feb, 1979
(units: 10-6s-1 , interval every 5 units for (a) and every 10
units for (b)).

Streamfunction 3at2850 mb (a) and 200 mb (b) for Jan-Feb, 1979
(units: 4 x 10 m s-1, interval every 0.10 units for (a) and
every 0.01 units for (b)).

Divergence at 700 mb (a) and 200 mb (b) for Jan-Feb, 1979
(units: 10-6 s-1, interval every 2.5 units).

Velocity potential gt 100 mb (a) and 200 mb (b) for Jan-Feb,
1979 (units: 4 x 10 m s-1, interval every 0.10 units for (a)
and every 0.20 units for (b)).

Global distribution of uv at 200 mb for Jan-Feb, 1979 (units:
m s-2, interval every 50 units).
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Figure 2.26

Figure 2.27

Figure 2.28

Figure 2.29

Figure 2.30

Figure 2.31

Figure 2.32

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Global diitribution of u'v' at 200 mb for Jan-Feb, 1979
(units: m s-2, interval every 20 units).

Zonally averaged fluxes of horizontal momentum by the MMC
(thick line), TE (thin line , and SE (dashed line) at 200 mb
for Jan-Feb, 1979 (units: m s-2); climatological values from
Oort (1982) are indicated.

Zonally averaged divergence of horizontal momentum fluxes by
the MMC (thick line), TE (thin line), and SE (dashed line) at
200 mb for Jan-Feb, 1979 (units: 10-3 cms- 2).

Mean January 1979 streamfunction at 200 mb a)2and mean
February 1979 streamfunction (b) (units: 10 m s-1, interval
every unit) (from ECMWF FGGE data analysis).

Sage js Figure 2.29 but for velocity potential (units:
10 m s-1, interval every unit).

Mean July 972 streamfunction at 200 mb (a) and 850 mb (b)
(units: 10 m s-1, interval every unit) (from ECMWF FGGE
data analysis).

Save is Figure 2.31 but for velocity potential (units:
10 m s-1, interval every unit).

Vertical structure of prescribed heating given by
Qo(z) = sin kz where k = ff/Htop.

Longitudinal structure of forcing. Scales are approximately
a) 36*, b) 450, c) 60*, and d) 90*.

Zonal (a) and meridional (b) velocities, geopotential (c) and
vorticity (d) for forcing (a) of Figure 3.2.

Geopotential and wind corresponding to forcings with zonal
scales of 360(a), 450 (b), 600(c), and 900(d) (see Figure 3.2).

Horizontal structure of diabatic heating forcing (a) and
associated response; b) zonal wind, c) meridional wind, and
d) vorticity.

Geopotential and wind vectors for a) forcing at 120S,
b) forcing at the equator (contour interval every 0.5 units
for (a) and every 0.25 units for (b)).

Horizontal structure of southern hemisphere "realistic"
diabatic heating forcing.

a) zonal wind, b) meridional wind, c) vorticity, and
d) geopotential and wind vectors for forcing of Figure 3.7.
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Figure 3.9

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figures 5.2

Geopotential and wind vectors for the forcing of Figure 3.2a
at the equator when the basic state wind U0 takes the
following values: a) -10 m/s, b) -5 m/s, c) -2 m/s, d) no
mean wind, e) + 2 m/s, f) +5 m/s, and g) +10 m/s.

Vertical distribution of prescribed diabatic heating.

Five-layer model.

Time evolution of zonal wind at 700 and 300 mb, geopotential
at 1000 and 300 mb and temperature at 300 mb for the model's
integration with sinusoidal forcing.

Latent heating distributions at 500 mb used in the nonlinear
integrations: a) one heat source at the equator, b) three
heat sources at the equator and c) one heat source at 10*S.

through 5.25 a) Linear solution at 300 mb, b) and 700 m, and
c) nonlinear solution at 300 mb and d) 700 mb for zonal wind,
meridional wind, vertical wind, and geopotential and wind
vectors, respectively, for Cases I through IV.

Figures 5.26, 5.27 and 5.28 Zonal momentum, meridional momentum, and
thermodynamical balances for Case III, respectively, at 300 mb
and 700 mb.

Figures 5.29 and 5.30 Advection of zonal momentum and temperature for
Case III, respectively, at 300 mb and 700 mb.

Figures 5.31, 5.32 and 5.33 Zonal momentum balances, meridional
momentum balances, and advection of zonal momentum,
respectively, for Cases I, II and III at 300 mb.

Figure 5.34 Meridional momentum balances for Cases IV and V at 300 mb.

Figures 5.35, 5.36 and 5.37 Zonal momentum balances, advection of zonal
momentum, and meridional momentum balances, respectively, for
Case VI at 300 mb and 700 mb.

Figure 5.38 Latitudinal profiles of u, v, w, j and T' zonally averaged
solutions of Case III, linear and nonlinear, and for nonlinear
solution of 2-D version of the model.

Figure A.1 Basic X-structure of idealized forcing.

Figure A.2 X-structures of forcing. One heat source (a), 2 heat
sources (b), and 3 heat sources (c).
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Figure B.1

Figure F.1

Figure G.1

First four normalized hermite fuctions given by

-x 2/2
Hn(X) e

Yn(x) =
(2nn! n1/2)1/2

Shapiro filter response function for various spectral
truncations.

Wavenumber 1 sinusoidal latent heating forcing at 500 mb.

Figure G.2 through 6.7 Zonal wind, meridional wind, vertical wind,
geopotential and wind vectors, divergence, and vorticity,
respectively, for the sinusoidal forcing case at 300 mb and
700 mb.
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