A Mixed Joint Universality Theorem for Zeta-Functions

J. Genys ${ }^{1}$, R. Macaitiené ${ }^{1}$, S. Račkauskienėe ${ }^{2}$ and D. Šiaučiūnas ${ }^{1}$
${ }^{1}$ Šiauliai University
P. Višinskio 19, LT-77156 Šiauliai, Lithuania
E-mail(corresp.): siauciunas@fm.su.lt
E-mail: genys@fm.su.lt
E-mail: renata.macaitiene@mi.su.lt
${ }^{2}$ Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
E-mail: santa.rackauskiene@gmail.com

Received August 31, 2010; revised September 30, 2010; published online November 15, 2010

Abstract

In the paper, a joint universality theorem for the Riemann zeta-function and a collection of periodic Hurwitz zeta-functions on approximation of analytic functions is obtained.

Keywords: limit theorem, periodic Hurwitz zeta-function, Riemann zeta-function, space of analytic functions, universality.

AMS Subject Classification: 11M06; 11M41.

1 Introduction

In 1975, S. M. Voronin discovered [22] a very interesting property of the Riemann zeta-function $\zeta(s), s=\sigma+i t$. Roughly speaking, he proved that every analytic non-vanishing function on compact subsets of the strip $D=$ $\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$ can by uniformly approximated with desired accuracy by shifts $\zeta(s+i \tau)$. Now this property is called the universality of $\zeta(s)$. Later, it was observed that other zeta and L-functions are also universal in the above sense, for results and references, see $[1,3,4,12,15,19,20]$.

The first result on the joint universality also is due to S . M. Voronin. In [21], he obtained that a collection of shifts of Dirichlet L-functions with pairwise non-equivalent characters approximate simultaneously on compact subsets of D with a given accuracy a collection of arbitrary analytic non-vanishing functions.

It is known, see, for example, [12], that the Hurwitz zeta-function $\zeta(s, \alpha)$, $0<\alpha \leq 1$, with transcendental parameter α is also universal, however, in this case an approximated function can be not necessarily non-vanishing.

In [17], the universality of the periodic Hurwitz zeta-function which is a generalization of the function $\zeta(s, \alpha)$ was began to study. Let $\mathfrak{a}=\left\{a_{m}: m \in\right.$ $\left.\mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. Then the periodic Hurwitz zeta-function $\zeta(s, \alpha ; \mathfrak{a}), 0<\alpha \leq 1$, is defined, for $\sigma>1$, by

$$
\zeta(s, \alpha ; \mathfrak{a})=\sum_{m=0}^{\infty} \frac{a_{m}}{(m+\alpha)^{s}}
$$

In virtue of the periodicity of the sequence \mathfrak{a}, for $\sigma>1$,

$$
\zeta(s, \alpha ; \mathfrak{a})=\frac{1}{k^{s}} \sum_{l=0}^{k-1} a_{l} \zeta\left(s, \frac{l+\alpha}{k}\right) .
$$

Since the Hurwitz zeta-function $\zeta(s, \alpha)$ is meromorphic in the whole complex plane with a single simple pole at $s=1$ with residue 1 , the latter equality gives meromorphic continuation for the function $\zeta(s, \alpha ; \mathfrak{a})$ with possible simple pole at $s=1$ with residue

$$
a \stackrel{\text { def }}{=} \frac{1}{k} \sum_{l=0}^{k-1} a_{l} .
$$

If $a=0$, then the function $\zeta(s, \alpha ; \mathfrak{a})$ is entire.
For the statement of results, we use the following notation. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and, for $T>0$, let

$$
\nu_{T}(\ldots)=\frac{1}{T} \operatorname{meas}\{\tau \in[0 ; T]: \ldots\}
$$

where in place of dots a condition satisfied by τ is to be written.
The universality property of the function $\zeta(s, \alpha ; \mathfrak{a})$ is contained in the following theorem.

Theorem 1. [18] Suppose that α is transcendental. Let K be a compact subset of the strip $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$ with connected complement, and let $f(s)$ be a continuous function on K which is analytic in the interior of K. Then, for every $\epsilon>0$,

$$
\liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{s \in K}|\zeta(s+i \tau, \alpha ; \mathfrak{a})-f(s)|<\epsilon\right)>0
$$

A series of works $[5,6,7,8,9,10]$ and $[11]$ are devoted to the joint universality of periodic Hurwitz zeta-functions. The most general result is obtained in [10]. For $j=1, \ldots, r$, let $\alpha_{j}, 0<\alpha_{j} \leq 1$, be a fixed parameter, $l_{j} \in \mathbb{N}$, and, for $j=1, \ldots, r, l=1, \ldots, l_{j}$, let $\mathfrak{a}_{j l}=\left\{a_{m j l}: m \in \mathbb{N}_{0}\right\}$ be a periodic sequence of complex numbers with minimal period $k_{j l}$, and $\zeta\left(s, \alpha_{j} ; \mathfrak{a}_{j l}\right)$ denote the corresponding periodic Hurwitz zeta-function. Moreover, let

$$
\mathrm{L}\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\left\{\log \left(m+\alpha_{j}\right): m \in \mathbb{N}_{0}, j=1, \ldots, r\right\}
$$

and let k_{j} be the least common multiple of the periods $k_{j 1}, \ldots, k_{j l_{j}}, j=1, \ldots, r$. Define

$$
B_{j}=\left(\begin{array}{cccc}
a_{1 j 1} & a_{1 j 2} & \ldots & a_{1 j l_{j}} \\
a_{2 j 1} & a_{2 j 2} & \ldots & a_{2 j l_{j}} \\
\ldots & \ldots & \ldots & \ldots \\
a_{k_{j} j 1} & a_{k_{j} j 2} & \ldots & a_{k_{j} j l_{j}}
\end{array}\right), \quad j=1, \ldots, r .
$$

Theorem 2. [11] Suppose that the system $\mathrm{L}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is linearly independent over the field of rational numbers \mathbb{Q}, and that $\operatorname{rank}\left(B_{j}\right)=l_{j}, j=1, \ldots, r$. For every $j=1, \ldots, r$ and $l=1, \ldots, l_{j}$, let $K_{j l}$ be a compact subset of the strip D with connected complement, and let $f_{j l}(s)$ be a continuous on $K_{j l}$ function which is analytic in the interior of $K_{j l}$. Then, for every $\epsilon>0$,

$$
\liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)-f_{j l}(s)\right|<\epsilon\right)>0
$$

The aim of this paper is to consider the joint universality of the Riemann zeta-function $\zeta(s)$ and the functions $\zeta\left(s, \alpha_{j} ; \mathfrak{a}_{j l}\right), j=1, \ldots, r, l=1, \ldots, l_{j}$.

Theorem 3. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}, and that all hypotheses on $K_{j l}$ and $f_{j l}$ of Theorem 2 hold. Moreover, let K be a compact subset of the strip D with connected complement, and let $f(s)$ be a continuous non-vanishing on K function which is analytic in the interior of K. Then, for every $\epsilon>0$,

$$
\begin{aligned}
& \liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{s \in K} \mid \zeta(s+i \tau)-f(s)<\epsilon\right. \\
& \left.\sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)-f_{j l}(s)\right|<\epsilon\right)>0
\end{aligned}
$$

2 Limit Theorems

The proof of theorem 3 is based on a joint limit theorem in the space of analytic functions for the functions $\zeta(s)$ and $\zeta\left(s, \alpha_{j} ; \mathfrak{a}_{j l}\right), j=1, \ldots, r, l=1, \ldots, l_{j}$.

Denote by $H(D)$ the space of analytic on D functions equipped with the topology of uniform convergence on compacta, and let

$$
H^{\kappa}(D)=\underbrace{H(D) \times \ldots \times H(D)}_{\kappa}, \quad \text { with } \quad \kappa=\sum_{j=1}^{r} l_{j}+1
$$

Moreover, denote by γ the unit circle on the complex plane and define

$$
\hat{\Omega}=\prod_{p} \gamma_{p} \quad \text { and } \quad \Omega=\prod_{m=0}^{\infty} \gamma_{m}
$$

where $\gamma_{p}=\gamma$ and $\gamma_{m}=\gamma$ for all primes p and all $m \in \mathbb{N}_{0}$, respectively. By the Tikhonov theorem, with the product topology and pointwise multiplication, the
tori $\hat{\Omega}$ and Ω are compact topological Abelian groups. Therefore, on $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}))$ and $(\Omega, \mathcal{B}(\Omega))$ (where $\mathcal{B}(S)$ denotes the class of Borel sets of the space S) the probability Haar measures \hat{m}_{H} and m_{H}, respectively, can by defined. This leads to the probability spaces $\left(\hat{\Omega}, \mathcal{B}(\hat{\Omega}), \hat{m}_{H}\right)$ and $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$.

Now let

$$
\underline{\Omega}=\hat{\Omega} \times \Omega_{1} \times \ldots \times \Omega_{r}
$$

where $\Omega_{j}=\Omega$ for $j=1, \ldots, r$. Then by then Tikhonov theorem again, $\underline{\Omega}$ is a compact topological Abelian group, and we obtain a new probability space $\left(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_{H}\right)$, where \underline{m}_{H} is the probability Haar measure on $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}))$. Denote by $\hat{\omega}(p)$ the projection of $\hat{\omega} \in \hat{\Omega}$ to $\gamma_{p}, p \in \mathcal{P}, \mathcal{P}$ is the set of all prime numbers, and by $\omega_{j}(m)$ the projection of $\omega_{j} \in \Omega_{j}$ to $\gamma_{m}, m \in \mathbb{N}_{0}$. For brevity, let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right), \underline{\mathfrak{a}}=\left(\mathfrak{a}_{11}, \ldots, \mathfrak{a}_{1 l_{1}}, \ldots, \mathfrak{a}_{r 1}, \ldots, \mathfrak{a}_{r l_{r}}\right)$, and let $\underline{\omega}=$ $\left(\hat{\omega}, \omega_{1}, \ldots, \omega_{r}\right)$ be an element of $\underline{\Omega}$. On the probability space $\left(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_{H}\right)$, define the $H^{\kappa}(D)$-valued random element $\underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})$ by the formula

$$
\begin{array}{r}
\underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})=\left(\zeta(s, \hat{\omega}), \zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots,\right. \\
\left.\zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r l_{r}}\right)\right),
\end{array}
$$

where

$$
\zeta(s, \hat{\omega})=\prod_{p}\left(1-\frac{\hat{\omega}(p)}{p^{s}}\right)^{-1}
$$

and

$$
\zeta\left(s, \alpha_{j}, \omega_{j} ; \mathfrak{a}_{j l}\right)=\sum_{m=0}^{\infty} \frac{a_{m j} \omega_{j}(m)}{\left(m+\alpha_{j}\right)^{s}}, \quad j=1, \ldots, r, \quad l=1, \ldots, l_{j} .
$$

Denote by $P_{\underline{\zeta}}$ the distribution of the random element $\underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})$, i.e.,

$$
P_{\underline{\zeta}}(A)=\underline{m}_{H}(\underline{\omega} \in \underline{\Omega}: \underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A), \quad A \in \mathcal{B}\left(H^{\kappa}(D)\right) .
$$

Let

$$
\begin{aligned}
& \underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}})=\left(\zeta(s), \zeta\left(s, \alpha_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta\left(s, \alpha_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots\right. \\
& \left.\zeta\left(s, \alpha_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta\left(s, \alpha_{r} ; \mathfrak{a}_{r l_{r}}\right)\right)
\end{aligned}
$$

The main result of this section is the following statement.
Theorem 4. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}. Then the probability measure

$$
P_{T}(A) \stackrel{\text { def }}{=} \nu_{T}(\underline{\zeta}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}}) \in A), \quad A \in \mathcal{B}\left(H^{\kappa}(D)\right)
$$

converges weakly to $P_{\underline{\zeta}}$ as $T \rightarrow \infty$.
We start the proof of Theorem 4 with a limit theorem on the torus $\underline{\Omega}$. Define

$$
\begin{aligned}
& Q_{T}(A)=\nu_{T}\left(\left(\left(p^{-i \tau}: p \in \mathcal{P}\right),\left(\left(m+\alpha_{1}\right)^{-i \tau}: m \in \mathbb{N}_{0}\right), \ldots,\right.\right. \\
& \left.\left.\left(\left(m+\alpha_{r}\right)^{-i \tau}: m \in \mathbb{N}_{0}\right)\right) \in A\right), A \in \mathcal{B}(\underline{\Omega}) .
\end{aligned}
$$

Lemma 1. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}. Then the measure Q_{T} converges weakly to \underline{m}_{H} as $T \rightarrow \infty$.

Proof. The dual group of $\underline{\Omega}$ is isomorphic to

$$
\mathcal{D}=\left(\bigoplus_{p \in \mathcal{P}} \mathbb{Z}_{p}\right) \bigoplus_{j=1}^{r}\left(\bigoplus_{m \in \mathbb{N}_{0}} \mathbb{Z}_{j m}\right)
$$

where $\mathbb{Z}_{p}=\mathbb{Z}$ and $\mathbb{Z}_{j m}=\mathbb{Z}$ for all $p \in \mathcal{P}$ and $m \in \mathbb{N}_{0}, j=1, \ldots, r$, respectively. An element $\underline{k}=\left(\underline{k}_{\mathcal{P}}, \underline{k}_{r \mathbb{N}_{0}}\right) \in \mathcal{D}, \underline{k}_{\mathcal{P}}=\left(k_{p}: p \in \mathcal{P}\right), \underline{k}_{r \mathbb{N}_{0}}=\left(k_{j m}: m \in \mathbb{N}_{0}, j=\right.$ $1, \ldots, r)$, where only a finite number of integers k_{p} and $k_{j m}$ are distinct from zero, acts on $\underline{\Omega}$ by

$$
\underline{\omega} \rightarrow \underline{\omega}^{\underline{k}}=\prod_{p \in \mathcal{P}} \hat{\omega}^{k_{p}}(p) \prod_{j=1}^{r} \prod_{m \in \mathbb{N}_{0}} \omega_{j}^{k_{j m}}(m) .
$$

Therefore, the Fourier transform $g_{T}(\underline{k})$ of the measure Q_{T} is

$$
\begin{align*}
g_{T}(\underline{k}) & =\int_{\underline{\Omega}} \prod_{p \in \mathcal{P}} \hat{\omega}^{k_{p}}(p) \prod_{j=1}^{r} \prod_{m \in \mathbb{N}_{0}} \omega_{j m}^{k_{j m}}(m) \mathrm{d} Q_{T} \\
& =\frac{1}{T} \int_{0}^{T} \prod_{p \in \mathcal{P}} p^{-i k_{p} \tau} \prod_{j=1}^{r} \prod_{m \in \mathbb{N}_{0}}\left(m+\alpha_{j}\right)^{-i k_{j m} \tau} \mathrm{~d} \tau \tag{2.1}
\end{align*}
$$

where, as above, only a finite number of integers k_{p} and $k_{j m}$ are distinct from zero. It is well known that the set $\{\log p: p \in \mathcal{P}\}$ is linearly independent over \mathbb{Q}. Since the numbers $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}, hence it follows that the set

$$
\mathrm{L} \stackrel{\text { def }}{=}\left\{(\log p: p \in \mathcal{P}), \log \left(m+\alpha_{j}\right): m \in \mathbb{N}_{0}, j=1, \ldots, r\right\}
$$

is linearly independent over \mathbb{Q}. Really, if there exists integers k_{p} and $k_{j m}$ not all zeros such that

$$
\begin{aligned}
k_{1} \log p_{1}+\ldots+k_{n} \log p_{n} & +k_{1 m_{1}} \log \left(m_{1}+\alpha_{1}\right)+\ldots+k_{n_{1} m_{n}}\left(m_{n_{1}}+\alpha_{1}\right)+\ldots \\
& +k_{r m_{r}} \log \left(m_{r}+\alpha_{r}\right)+\ldots+k_{n_{r} m_{n_{r}}} \log \left(m_{n_{r}}+\alpha_{r}\right)=0
\end{aligned}
$$

we obtain that

$$
\begin{aligned}
& p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}\left(p_{1}+\alpha_{1}\right)^{k_{1 m_{1}}} \cdots\left(m_{n_{1}}+\alpha_{1}\right)^{k_{n_{1} m_{n_{1}}}} \cdots \\
& \left(m_{r}+\alpha_{r}\right)^{k_{r m_{r}}} \cdots\left(m_{n_{r}}+\alpha_{r}\right)^{k_{n_{r} m_{n_{r}}}}=1
\end{aligned}
$$

and this contradicts the algebraic independence of $\alpha_{1}, \ldots, \alpha_{r}$.
We find by (2.1) that

$$
g_{T}(\underline{k})= \begin{cases}1 & \text { if } \underline{k}=\underline{0} \\ \frac{1-\exp \left\{-i T\left(\sum_{p \in \mathcal{P}} k_{p} \log p+\sum_{j=1}^{r} \sum_{m \in \mathbb{N}_{0}} k_{j m} \log \left(m+\alpha_{j}\right)\right)\right\}}{T\left(\sum_{p \in \mathcal{P}} k_{p} \log p+\sum_{j=1}^{r} \sum_{m \in \mathbb{N}_{0}} k_{j m} \log \left(m+\alpha_{j}\right)\right)} & \text { if } \underline{k} \neq \underline{0}\end{cases}
$$

Thus,

$$
\lim _{T \rightarrow \infty} g_{T}(\underline{k})= \begin{cases}1 & \text { if } \underline{k}=\underline{0} \\ 0 & \text { if } \underline{k} \neq \underline{0}\end{cases}
$$

This and a continuity theorem for probability measures on compact topological groups, see, for example, [16], Theorem 1.4.2, prove the lemma.

Let $\sigma>1 / 2$ be a fixed number, and

$$
\begin{aligned}
& u_{n}(m)=\exp \left\{-\left(\frac{m}{n}\right)^{\sigma_{1}}\right\}, \quad m, n \in \mathbb{N}, \\
& u_{n}\left(m, \alpha_{j}\right)=\exp \left\{-\left(\frac{m+\alpha_{j}}{n+\alpha_{j}}\right)^{\sigma_{1}}\right\}, \quad m, n \in \mathbb{N}_{0} .
\end{aligned}
$$

From the periodicity it follows that the numbers $a_{m j l}$ are bounded. Therefore, a standard application of the Mellin formula and contour integration shows that the series

$$
\zeta_{n}(s)=\sum_{m=1}^{\infty} \frac{u_{n}(m)}{m^{s}}
$$

and

$$
\zeta_{n}\left(s, \alpha_{j} ; \mathfrak{a}_{j l}\right)=\sum_{m=0}^{\infty} \frac{a_{m j l} u_{n}\left(m, \alpha_{j}\right)}{\left(m+\alpha_{j}\right)^{s}}, \quad j=1, \ldots, r
$$

both are absolutely convergent for $\sigma>1 / 2$. For $m \in \mathbb{N}$, define

$$
\hat{\omega}(m)=\prod_{p^{l} \| m} \hat{\omega}^{l}(p),
$$

where $p^{l} \| m$ means that $p^{l} \mid m$ but $p^{l+1} \nmid m$, and let

$$
\zeta_{n}(s, \hat{\omega})=\sum_{m=1}^{\infty} \frac{u_{n}(m) \hat{\omega}(m)}{m^{s}},
$$

and

$$
\zeta_{n}\left(s, \alpha_{j}, \omega_{j} ; \mathfrak{a}_{j l}\right)=\sum_{m=0}^{\infty} \frac{a_{m j l} \omega_{j}(m) u_{n}\left(m, \alpha_{j}\right)}{\left(m+\alpha_{j}\right)^{s}}, \quad j=1, \ldots, r
$$

Since $|\hat{\omega}(m)|=\left|\omega_{j}(m)\right|=1$, the latter series are also absolutely convergent for $\sigma>1 / 2$. For brevity, let

$$
\begin{array}{r}
\underline{\zeta}_{n}(s, \underline{\alpha} ; \mathfrak{a})=\left(\zeta_{n}(s), \zeta_{n}\left(s, \alpha_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta_{n}\left(s, \alpha_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots,\right. \\
\left.\zeta_{n}\left(s, \alpha_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta_{n}\left(s, \alpha_{r} ; \mathfrak{a}_{r l_{r}}\right)\right)
\end{array}
$$

and

$$
\begin{array}{r}
\underline{\zeta}_{n}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})=\left(\zeta_{n}(s, \hat{\omega}), \zeta_{n}\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta_{n}\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots,\right. \\
\left.\zeta_{n}\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta_{n}\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r l_{r}}\right)\right) .
\end{array}
$$

On $\left(H^{\kappa}(D), \mathcal{B}\left(H^{\kappa}(D)\right)\right)$, define the probability measures

$$
\left.P_{T, n}(A)=\nu_{T}\left(\underline{\zeta}_{n}(s+i \tau), \underline{\alpha} ; \underline{\mathfrak{a}}\right) \in A\right)
$$

and, for fixed $\underline{\omega}_{0}=\left(\hat{\omega}_{0}, \omega_{10}, \ldots, \omega_{r 0}\right)$,

$$
\left.P_{T, n, \underline{\omega}_{0}}(A)=\nu_{T}\left(\underline{\zeta}_{n}(s+i \tau), \underline{\alpha}, \underline{\omega}_{0} ; \underline{\mathfrak{a}}\right) \in A\right) .
$$

Lemma 2. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}. Then the probability measures $P_{T, n}$ and $P_{T, n, \underline{\omega}_{0}}$ both converge weakly to the same probability measure P_{n} on $\left(H^{\kappa}(D), \mathcal{B}\left(H^{\kappa}(D)\right)\right)$ as $T \rightarrow \infty$.

Proof. Since the series $\zeta_{n}(s)$ and $\zeta_{n}\left(s, \alpha_{j} ; \mathfrak{a}_{j l}\right)$ converge absolutely for $\sigma>1 / 2$, the function $h_{n}: \underline{\Omega} \rightarrow H^{\kappa}(D)$ given by the formula

$$
h_{n}(\underline{\omega})=\underline{\zeta}_{n}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})
$$

is continuous. Moreover,

$$
\begin{aligned}
& h_{n}\left(\left(p^{-i \tau}: p \in \mathcal{P}\right),\left(\left(m+\alpha_{1}\right)^{-i \tau}: m \in \mathbb{N}_{0}\right), \ldots,\right. \\
& \left.\quad\left(\left(m+\alpha_{r}\right)^{-i \tau}: m \in \mathbb{N}_{0}\right)\right)=\underline{\zeta}_{n}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}}) .
\end{aligned}
$$

Therefore, we have that $P_{T, n}=Q_{T} h_{n}^{-1}$. This, the continuity of h_{n}, Lemma 1 and Theorem 5.1 from [2] show that $P_{T, n}$ converges weakly to $P_{n}=\underline{m}_{H} h_{n}^{-1}$ as $T \rightarrow \infty$.

Similarly, we find that $P_{T, n, \underline{\omega}_{0}}$ converges weakly to $\underline{m}_{H} g_{n}^{-1}$ as $T \rightarrow \infty$, where $g_{n}: \underline{\Omega} \rightarrow H^{\kappa}(D)$ is related to h_{n} by $g_{n}(\underline{\omega})=h_{n}\left(\underline{\omega} \underline{\omega}_{0}\right)$. Since the Haar measure \underline{m}_{H} is invariant, this implies the equality $\underline{m}_{H} g_{n}^{-1}=\underline{m}_{H} h_{n}^{-1}$, and the lemma is proved.

Furthermore, we need a metric on $H^{\kappa}(D)$ which induces its topology of uniform convergence on compacta. It is known, see, for example [13], that there exists a sequence $\left\{K_{k}: k \in \mathbb{N}\right\}$ of compact subsets of D such that

$$
D=\bigcup_{k=1}^{\infty} K_{k}
$$

$K_{k} \subset K_{k+1}$ for all $k \in \mathbb{N}$, and, for every compact $K \subset D$, there exists k such that $K \subset K_{k}$. For $f, g \in H(D)$, let

$$
\rho(f, g)=\sum_{k=1}^{\infty} 2^{-k} \frac{\sup _{s \in K_{k}}|f(s)-g(s)|}{1+\sup _{s \in K_{k}}|f(s)-g(s)|}
$$

Then ρ is a metric on $H(D)$ which induces its topology of uniform convergence on compacta. If, for

$$
\begin{aligned}
& \underline{f}=\left(f_{0}, f_{11}, \ldots, f_{1 l_{1}}, \ldots, f_{r 1}, \ldots, f_{r l_{r}}\right), \\
& \underline{g}=\left(g_{0}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r 1}, \ldots, g_{r l_{r}}\right) \in H^{\kappa}(D),
\end{aligned}
$$

$$
\begin{equation*}
\rho_{\kappa}(\underline{f}, \underline{g})=\max \left(\rho\left(f_{0}, g_{0}\right), \max _{1 \leq j \leq r} \max _{1 \leq l \leq l_{j}} \rho\left(f_{j l}, g_{j l}\right)\right) \tag{2.2}
\end{equation*}
$$

then ρ_{κ} is a metric on $H^{\kappa}(D)$ inducing its topology.
Now we will approximate the vectors $\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}})$ and $\underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})$ by $\underline{\zeta}_{n}(s, \underline{\alpha} ; \underline{\mathfrak{a}})$ and $\underline{\zeta}_{n}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})$, respectively.

Lemma 3. We have

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho_{\kappa}\left(\underline{\zeta}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 .
$$

Proof. It is known [3] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\zeta(s+i \tau), \zeta_{n}(s+i \tau)\right) \mathrm{d} \tau=0 \tag{2.3}
\end{equation*}
$$

Moreover, from [11] we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \max _{1 \leq j \leq r} \max _{1 \leq l \leq l_{j}} \rho\left(\underline{\hat{\zeta}}(s+i \tau, \underline{\alpha} ; \mathfrak{a}), \underline{\hat{\zeta}}_{n}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0, \tag{2.4}
\end{equation*}
$$

where $\underline{\hat{\zeta}}(s, \underline{\alpha} ; \underline{\mathfrak{a}})$ and $\underline{\hat{\zeta}}_{n}(s, \underline{\alpha} ; \underline{\mathfrak{a}})$ are obtained from $\zeta(s, \underline{\alpha} ; \underline{\mathfrak{a}})$ and $\zeta_{n}(s, \underline{\alpha} ; \underline{\mathfrak{a}})$ by removing $\zeta(s)$ and $\zeta_{n}(s)$, respectively. Therefore, the equality of the lemma is a result of (2.2)-(2.4).

Lemma 4. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}. Then, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho_{\kappa}\left(\underline{\zeta}(s+i \tau, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+i \tau, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 .
$$

Proof. In [3], it is obtained that, for almost all $\hat{\omega} \in \Omega$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\zeta(s+i \tau, \hat{\omega}), \zeta_{n}(s+i \tau, \hat{\omega})\right) \mathrm{d} \tau=0 \tag{2.5}
\end{equation*}
$$

Similarly [11], for almost all $\underline{\underline{\omega}}=\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega_{1} \times \cdots \times \Omega_{r}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \max _{1 \leq j \leq r} \max _{1 \leq l \leq l_{j}} \rho\left(\underline{\hat{\zeta}}(s+i \tau, \underline{\alpha}, \underline{\underline{\omega}} ; \underline{\mathfrak{a}}), \underline{\hat{\zeta}}_{n}(s+i \tau, \underline{\alpha}, \underline{\underline{\omega}} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 . \tag{2.6}
\end{equation*}
$$

Denote by $\hat{\Omega}_{0}$ a subset of $\hat{\Omega}$ for which the relation (2.5) holds. Then we have that $\hat{m}_{H}\left(\hat{\Omega}_{0}\right)=1$. Similarly, if $\Omega_{0}^{r} \subset \Omega_{1} \times \cdots \times \Omega_{r}$ is such that, for $\underline{\underline{\omega}} \in \Omega_{0}^{r}$, the relation (2.6) holds, then $\underline{\underline{m}}_{H}\left(\Omega_{0}^{r}\right)=1$, where $\underline{\underline{m}}_{H}$ is the Haar measure on $\Omega_{1} \times \cdots \times \Omega_{r}$. Now let $\underline{\Omega}_{0}=\hat{\Omega}_{0} \times \Omega_{0}^{r}$. Since the Haar measure \underline{m}_{H} is the product of \hat{m}_{H} and $\underline{\underline{m}}_{H}$, we have that $\underline{m}_{H}\left(\underline{\Omega}_{0}\right)=1$. This, (2.5), (2.6) and the definition of ρ_{κ} prove the lemma.

Define one more probability measure

$$
\hat{P}_{T}(A)=\nu_{T}(\underline{\zeta}(s+i \tau, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A), \quad A \in \mathcal{B}\left(H^{\kappa}(D)\right) .
$$

Lemma 5. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}. Then the probability measures P_{T} and \hat{P}_{T} both converge weakly to the same probability measure P on $\left(H^{\kappa}(D), \mathcal{B}\left(H^{\kappa}(D)\right)\right)$ as $T \rightarrow \infty$.

Proof. Define on a certain probability space $\left(\Omega_{0}, \mathcal{B}\left(\Omega_{0}\right), \mathbb{P}\right)$ a random variable θ uniformly distributed on $[0,1]$. Let $X_{T, n}$ be an $H^{\kappa}(D)$-valued random element on the probability space $\left(\Omega_{0}, \mathcal{B}\left(\Omega_{0}\right), \mathbb{P}\right)$ given by

$$
\begin{array}{r}
\underline{X}_{T, n}(s)=\left(X_{T, n}(s), X_{T, n, 1,1}(s), \ldots, X_{T, n, 1, l_{1}}(s), \ldots, X_{T, n, r, 1}(s), \ldots,\right. \\
\left.X_{T, n, r, l_{r}}(s)\right)=\underline{\zeta}_{n}(s+i \theta T, \underline{\alpha} ; \underline{\mathfrak{a}}) .
\end{array}
$$

Then, by Lemma 2,

$$
\begin{equation*}
\underline{X}_{T, n}(s) \underset{T \rightarrow \infty}{\stackrel{\mathcal{D}}{\rightarrow}} \underline{X}_{n}(s), \tag{2.7}
\end{equation*}
$$

where

$$
\underline{X}_{n}(s)=\left(X_{n}(s), X_{n, 1,1}(s), \ldots, X_{n, 1, l_{1}}(s), \ldots, X_{n, r, 1}(s), \ldots, X_{n, r, l_{r}}(s)\right)
$$

is an $H^{\kappa}(D)$-valued random element with the distribution $P_{n}\left(P_{n}\right.$ is the limit measure in Lemma 2), and $\xrightarrow{\mathcal{D}}$ means convergence in distribution. Since the series for $\zeta_{n}(s)$ and $\zeta_{n}\left(s, \alpha_{j} ; \mathfrak{a}_{j l}\right)$ converges absolutely for $\sigma>1 / 2$, we have that, for $\sigma>1 / 2$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\zeta_{n}(\sigma+i t)\right|^{2} \mathrm{~d} t=\sum_{m=1}^{\infty} \frac{u_{n}^{2}(m)}{m^{2 \sigma}} \leq \sum_{m=1}^{\infty} \frac{1}{m^{2 \sigma}} \tag{2.8}
\end{equation*}
$$

for all $n \in \mathbb{N}$, and

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\zeta_{n}\left(\sigma+i t, \alpha_{;} \mathfrak{a}_{j l}\right)\right|^{2} \mathrm{~d} t=\sum_{m=0}^{\infty} \frac{\left|a_{m j l}\right|^{2} u_{n}^{2}\left(m, \alpha_{j}\right)}{\left(m+\alpha_{j}\right)^{2 \sigma}} \leq \sum_{m=0}^{\infty} \frac{\left|a_{m j l}\right|^{2}}{\left(m+\alpha_{j}\right)^{2 \sigma}} \tag{2.9}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$.

Using the Caushy integral formula, contour integration, and (2.8), we find that, for $n \in \mathbb{N}$,

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sup _{s \in K_{k}}\left|\zeta_{n}(s+i \tau)\right| \mathrm{d} \tau \leq \hat{C}_{k}\left(\sum_{m=1}^{\infty} \frac{1}{m^{2 \hat{\sigma}_{k}}}\right)^{\frac{1}{2}} \tag{2.10}
\end{equation*}
$$

and similarly, by (2.9), for all $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sup _{s \in K_{k}}\left|\zeta_{n}\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)\right| \mathrm{d} \tau \leq C_{k}\left(\sum_{m=0}^{\infty} \frac{\left|a_{m j l}\right|^{2}}{\left(m+\alpha_{j}\right)^{2 \sigma_{k}}}\right)^{\frac{1}{2}} \tag{2.11}
\end{equation*}
$$

with some $\hat{C}_{k}>0, C_{k}>0$ and $\hat{\sigma}_{k}>\frac{1}{2}, \sigma_{k}>\frac{1}{2}$.
Let $\epsilon>0$ be an arbitrary number, and

$$
\hat{R}_{k}=\left(\sum_{m=1}^{\infty} \frac{1}{m^{2 \hat{\sigma}_{k}}}\right)^{\frac{1}{2}}, \quad R_{j l k}=\left(\sum_{m=0}^{\infty} \frac{\left|a_{m j l}\right|^{2}}{\left(m+\alpha_{j}\right)^{2 \sigma_{k}}}\right)^{\frac{1}{2}} .
$$

Then, taking $\hat{M}_{k}=\hat{C}_{k} \hat{R}_{k} 2^{l+1} \epsilon^{-1}$ and $M_{j l k}=C_{k} R_{j l k} 2^{l+1} \epsilon^{-1}$, we deduce from (2.10) and (2.11) that

$$
\begin{aligned}
\limsup _{T \rightarrow \infty} \mathbb{P} & \left(\left(\sup _{s \in K_{k}}\left|X_{T, n}(s)\right|>\hat{M}_{k}\right)\right. \\
& \left.\vee \exists j, l:\left(\sup _{s \in K_{k}}\left|X_{T, n, j, l}(s)\right|>M_{j l k}\right)\right) \\
& \leq \limsup _{T \rightarrow \infty} \mathbb{P}\left(\sup _{s \in K_{k}}\left|X_{T, n}(s)\right|>\hat{M}_{k}\right) \\
& +\sum_{j=1}^{r} \sum_{l=1}^{l_{j}} \limsup _{T \rightarrow \infty} \mathbb{P}\left(\sup _{s \in K_{k}}\left|X_{T, n, j, l}(s)\right|>M_{j l k}\right) \\
& \leq \frac{1}{\hat{M}_{k}} \sup _{n \in \mathbb{N}} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sup _{s \in K_{k}}\left|\zeta_{n}(s+i \tau)\right| \mathrm{d} \tau \\
& +\sum_{j=1}^{r} \sum_{l=1}^{l_{j}} \frac{1}{M_{j l k}} \sup _{n \in \mathbb{N}_{0}} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sup _{s \in K_{k}}\left|\zeta_{n}\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)\right| \mathrm{d} \tau \\
& \leq \frac{\hat{C}_{k} \hat{R}_{k}}{\hat{M}_{k}}+\sum_{j=1}^{r} \sum_{l=1}^{l_{j}} \frac{C_{k} R_{j l k}}{M_{j l k}}=\frac{\epsilon}{2^{l+1}}+\frac{\epsilon}{2^{l+1}}=\frac{\epsilon}{2^{l}} .
\end{aligned}
$$

This together with (2.7) leads, for all $n \in \mathbb{N}$, to the inequality

$$
\begin{equation*}
\mathbb{P}\left(\left(\sup _{s \in K_{k}}\left|X_{n}(s)\right|>\hat{M}_{k}\right) \vee \exists j, l:\left(\sup _{s \in K_{k}}\left|X_{n, j, l}(s)\right|>M_{j l k}\right)\right) \leq \frac{\epsilon}{2^{l}} \tag{2.12}
\end{equation*}
$$

Define a set

$$
\begin{aligned}
H_{\epsilon}^{\kappa}= & \left\{\left(g_{0}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r 1}, \ldots, g_{r l_{r}}\right) \in H^{\kappa}(D): \sup _{s \in K_{k}}\left|g_{0}(s)\right| \leq \hat{M}_{k},\right. \\
& \left.\sup _{s \in K_{k}}\left|g_{j l}(s)\right| \leq M_{j l k}, j=1, \ldots, r, l=1, \ldots, l_{j}, k \in \mathbb{N}\right\} .
\end{aligned}
$$

Then the set H_{ϵ}^{κ} is compact in the space $H^{\kappa}(D)$, and, in view of (2.12),

$$
\mathbb{P}\left(\underline{X}_{n}(s) \in H_{\epsilon}^{\kappa}\right) \geq 1-\epsilon \sum_{l=1}^{\infty} \frac{1}{2^{l}}=1-\epsilon
$$

for all $n \in \mathbb{N}$. This and the definition of $\underline{X}_{n}(s)$ shows that

$$
P_{n}\left(H_{\epsilon}^{\kappa}\right) \geq 1-\epsilon
$$

for all $n \in \mathbb{N}$. Thus, we obtained that the family of probability measures $\left\{P_{n}: n \in \mathbb{N}\right\}$ is tight. Therefore, by the Prokhorov theorem, it is relatively compact, and thus, there exists a subsequence $\left\{P_{n_{k}}\right\} \subset\left\{P_{n}\right\}$ such that $P_{n_{k}}$ converges weakly to a certain probability measure P on $\left(H^{\kappa}(D), \mathcal{B}\left(H^{\kappa}(D)\right)\right)$ as $k \rightarrow \infty$. In other words,

$$
\begin{equation*}
\underline{X}_{n_{k}}(s) \xrightarrow[k \rightarrow \infty]{\mathcal{D}} P . \tag{2.13}
\end{equation*}
$$

Let $X_{T}(s)=\underline{\zeta}(s+i \theta T, \underline{\alpha} ; \underline{\mathfrak{a}})$ be one more $H^{\kappa}(D)$-valued random element on the probability space $\left(\Omega_{0}, \mathcal{B}\left(\Omega_{0}\right), \mathbb{P}\right)$. Then, by Lemma 3 , we have that, for every $\epsilon>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho_{\kappa}\left(\underline{X}_{T}(s), \underline{X}_{T, n}(s)\right) \geq \epsilon\right) \\
& \quad=\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \nu_{T}\left(\rho_{\kappa}\left(\underline{\zeta}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}})\right) \geq \epsilon\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T \epsilon} \int_{0}^{T} \rho_{\kappa}\left(\underline{\zeta}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 .
\end{aligned}
$$

This, (2.13) and (2.7) together with Theorem 4.2 of [1] imply the relation

$$
\begin{equation*}
\underline{X}_{T}(s) \xrightarrow[T \rightarrow \infty]{\mathcal{D}} P \tag{2.14}
\end{equation*}
$$

which is equivalent to the weak convergence of P_{T} to P as $T \rightarrow \infty$. Moreover, it follows from (2.14) that the measure P is independent of the choice of the sequence $\left\{P_{n_{k}}\right\}$. Thus, we have that

$$
\begin{equation*}
\underline{X}_{n}(s) \xrightarrow[n \rightarrow \infty]{\mathcal{D}} P \tag{2.15}
\end{equation*}
$$

Now consider the measure \hat{P}_{T}. For this, define

$$
\underline{\hat{X}}_{T, n}(s)=\underline{\zeta}_{n}(s+i \theta T, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}})
$$

and

$$
\underline{\hat{X}}_{T}(s)=\underline{\zeta}(s+i \theta T, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) .
$$

Repeating the above arguments for the random elements $\underline{\hat{X}}_{T, n}(s)$ and $\underline{\hat{X}}_{T}(s)$, and using Lemmas 2 and 4 as well as (2.15), we obtain that the measure \hat{P}_{T} also converges weakly to P as $T \rightarrow \infty$.

In virtue of Lemma 5, for the proof of Theorem 4 it suffices to show that the limit measure P in Lemma 5 coincides with $P_{\underline{\zeta}}$. To prove this, we need some results from ergodic theory. Let $\underline{a}_{\tau}=\left\{\left(p^{-i \tau}: p \in \mathcal{P}\right),\left(\left(m+\alpha_{1}\right)^{-i \tau}\right.\right.$: $\left.\left.m \in \mathbb{N}_{0}\right), \ldots,\left(\left(m+\alpha_{r}\right)^{-i \tau}: m \in \mathbb{N}_{0}\right)\right\}, \tau \in \mathbb{R}$. Define $\underline{\Phi}_{\tau}(\underline{\omega})=\underline{a_{\tau}} \underline{\omega}, \underline{\omega} \in \underline{\Omega}$. Then $\left\{\underline{\Phi}_{\tau}: \tau \in \mathbb{R}\right\}$ is a one-parameter group of measurable measure preserving transformations on $\underline{\Omega}$. A set $A \in \mathcal{B}(\underline{\Omega})$ is called invariant with respect to the group $\left\{\underline{\Phi}_{\tau}: \tau \in \mathbb{R}\right\}$ if, for every $\tau \in \mathbb{R}$, the sets A and $\underline{\Phi}_{\tau}(A)$ may differ one from another only by \underline{m}_{H}-measure zero. The group $\left\{\underline{\Phi}_{\tau}: \tau \in \mathbb{R}\right\}$ is ergodic if its σ-field of invariant sets consists only of the sets of \underline{m}_{H}-measure zero or one.

Lemma 6. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}. Then the one-parameter group $\left\{\underline{\Phi}_{\tau}: \tau \in \mathbb{R}\right\}$ is ergodic.

Proof of the lemma is given in [9], Lemma 7.
Proof of Theorem 4. We fix a continuity set A of the limit measure P in Lemma 5. Then, by Lemma 5 and Theorem 2.1 of [2],

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \nu_{T}(\underline{\zeta}(s+i \tau, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A)=P(A) . \tag{2.16}
\end{equation*}
$$

Consider a random variable ξ defined on $\left(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_{H}\right)$ by

$$
\xi(\underline{\omega})= \begin{cases}1 & \text { if } \underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \mathfrak{a}) \in A \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, its expectation

$$
\begin{equation*}
\mathbb{E} \xi=\underline{m}_{H}(\underline{\omega} \in \underline{\Omega}: \underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A)=P_{\underline{\zeta}}(A) \tag{2.17}
\end{equation*}
$$

In view of Lemma 6 , the process $\xi\left(\underline{\Phi_{\tau}}(\underline{\omega})\right)$ is ergodic. Therefore, the BirkhoffKhintchine theorem, see, for example, $[14]$, implies that, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \xi\left(\underline{\Phi}_{\tau}(\underline{\omega})\right) \mathrm{d} \tau=\mathbb{E} \xi \tag{2.18}
\end{equation*}
$$

On the other hand, the definitions of ξ and $\underline{\Phi}_{\tau}$ yield

$$
\frac{1}{T} \int_{0}^{T} \xi\left(\underline{\Phi}_{\tau}(\underline{\omega})\right) \mathrm{d} \tau=\nu_{T}(\underline{\zeta}(s+i \tau, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A)
$$

Thus, by (2.17) and (2.18), for almost all $\underline{\omega} \in \underline{\Omega}$,

$$
\lim _{T \rightarrow \infty} \nu_{T}(\underline{\zeta}(s+i \tau, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A)=P_{\underline{\zeta}}(A) .
$$

Combining this with (2.16), we obtain that $P(A)=P_{\underline{\zeta}}(A)$ for all continuity sets A of the measure P. Hence, $P(A)=P_{\underline{\zeta}}(A)$ for all $\bar{A} \in \mathcal{B}\left(H^{\kappa}(D)\right)$ because the continuity sets form a determining class, see [2]. The theorem is proved.

3 The Support of $P_{\underline{\xi}}$

In this section, we give explicitly the support of the measure P_{ζ}. We recall that the support of $P_{\underline{\zeta}}$ is a minimal closed subset $S_{P_{\underline{\zeta}}}$ of $H^{\kappa}(\bar{D})$ such that $P_{\underline{\underline{\zeta}}}\left(S_{P_{\underline{\zeta}}}\right)=1$. We also note that $S_{P_{\underline{\zeta}}}$ consists of all points $\underline{g} \in H^{\kappa}(D)$ such that $\overline{P_{\underline{\zeta}}}(G)^{\underline{-}}>0$ for every neighbourhood G of \underline{g}.

Define $S=\{g \in H(D): g(s) \neq 0$ or $g(s) \equiv 0\}$.
Theorem 5. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are algebraically independent over \mathbb{Q}, and that $\operatorname{rank}\left(B_{j}\right)=l_{j}, j=1 \ldots, r$. Then the support of $P_{\underline{\underline{\zeta}}}$ is the set $S \times H^{r}(D)$.

Proof. We write

$$
H^{\kappa}(D)=H(D) \times H^{\kappa_{1}}(D)
$$

where

$$
\kappa_{1}=\sum_{j=1}^{r} l_{j} .
$$

Since the spaces $H(D)$ and $H^{\kappa_{1}}(D)$ are separable, it suffices [2] to consider $P_{\zeta}(A)$ with $A=A_{1} \times A_{\kappa_{1}}, A \in \mathcal{B}(H(D)), A_{\kappa_{1}} \in \mathcal{B}\left(H^{\kappa_{1}}(D)\right)$. Let $\Omega^{r}=$ $\overline{\Omega_{1}} \times \ldots \times \Omega_{r}$, where $\Omega_{j}=\Omega$ for all $j=1, \ldots, r$, and let m_{H}^{r} by the Haar measure on $\left(\Omega^{r}, \mathcal{B}\left(\Omega^{r}\right)\right)$. Then the Haar measure \underline{m}_{H} is the product of the Haar measures \hat{m}_{H} and m_{H}^{r}. Hence, we find that

$$
\begin{align*}
P_{\underline{\zeta}}(A) & =\underline{m}_{H}(\underline{\omega} \in \Omega: \underline{\zeta}(s, \underline{\alpha}, \underline{\omega} ; \underline{\mathfrak{a}}) \in A) \\
& =\underline{m}_{H}\left(\underline{\omega} \in \Omega: \zeta(s, \hat{\omega}) \in A_{1},\left(\zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots,\right.\right. \\
& \left.\left.\zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r l_{r}}\right)\right) \in A_{\kappa_{1}}\right) \\
& =\hat{m}_{H}\left(\hat{\omega} \in \hat{\Omega}: \zeta(s, \hat{\omega}) \in A_{1}\right) \\
& \times m_{H}^{r}\left(\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r}:\left(\zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots,\right.\right. \\
& \left.\left.\zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r l_{r}}\right)\right) \in A_{\kappa_{1}}\right) . \tag{3.1}
\end{align*}
$$

In [11], it is obtained that the support of the $H(D)$-valued random element $\zeta(s, \hat{\omega})$ is the set S, that is, S is a minimal closed set such that

$$
\begin{equation*}
\hat{m}_{H}(\hat{\omega} \in \hat{\Omega}: \zeta(s, \hat{\omega}) \in S)=1 . \tag{3.2}
\end{equation*}
$$

Similarly, in [11], under the hypotheses of the theorem, it was obtained that $H^{\kappa_{1}}(D)$ is a minimal closed set such that

$$
\begin{array}{r}
m_{H}^{r}\left(\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r}:\left(\zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{11}\right), \ldots, \zeta\left(s, \alpha_{1}, \omega_{1} ; \mathfrak{a}_{1 l_{1}}\right), \ldots\right.\right. \\
\left.\left.\zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r 1}\right), \ldots, \zeta\left(s, \alpha_{r}, \omega_{r} ; \mathfrak{a}_{r l_{r}}\right)\right) \in H^{\kappa_{1}}(D)\right)=1
\end{array}
$$

This, (3.1) and (3.2) complete the proof.

4 Proof of Theorem 3

A proof of Theorem 3 is based on Theorems 4 and 1 as well as on the Mergelyan theorem [23], and is standard.

First suppose that the functions $f(s)$ and $f_{j l}(s)$ have analytic continuations to the whole strip D, and the analytic continuation of $f(s)$ is non-zero. Define

$$
\begin{aligned}
G= & \left\{\left(g_{0}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r 1}, \ldots, g_{r l_{r}}\right) \in H^{\kappa}(D):\right. \\
& \left.\sup _{s \in K}\left|g_{0}(s)-f(s)\right| \leq \epsilon, \sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|g_{j l}(s)-f_{j l}(s)\right|<\epsilon\right\} .
\end{aligned}
$$

The set G is open in $H^{\kappa}(D)$. Therefore, Theorem 4 together with Theorem 2.1 of [2] (an equivalent of weak convergence in terms of open sets) implies

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \nu_{T}(\underline{\zeta}(s+i \tau, \underline{\alpha} ; \underline{\mathfrak{a}}) \in G) \geq P_{\underline{\zeta}}(G) . \tag{4.1}
\end{equation*}
$$

However, by Theorem $5,\left(f, f_{11}, \ldots, f_{1 l_{1}}, \ldots, f_{r 1}, \ldots, f_{r l_{r}}\right)$ is a point of the support of the measure $P_{\underline{\zeta}}$. Thus, $P_{\underline{\zeta}}(G)>0$, and the definition of G and (4.1) yield

$$
\begin{align*}
& \liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\epsilon\right. \\
& \left.\quad \sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)-f_{j l}(s)\right|<\epsilon\right)>0 \tag{4.2}
\end{align*}
$$

Now let the functions $f(s)$ and $f_{j l}(s)$ satisfy the hypotheses of the theorem. Then, by the Mergelyan theorem, there exist polynomials $p(s), p(s) \neq 0$ on K, and $p_{j l}(s)$ such that

$$
\begin{equation*}
\sup _{s \in K}|f(s)-p(s)|<\frac{\epsilon}{4} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|f_{j l}(s)-p_{j l}(s)\right|<\frac{\epsilon}{2} \tag{4.4}
\end{equation*}
$$

Since $p(s) \neq 0$ on K, we can define a continuous branch of the function $\log p(s)$ in K which will be analytic in the interior of K. By the Mergelyan theorem again, we can find a polynomial $q(s)$ such that

$$
\sup _{s \in K}\left|p(s)-\mathrm{e}^{q(s)}\right|<\frac{\epsilon}{4}
$$

This together with (4.3) shows that

$$
\begin{equation*}
\sup _{s \in K}\left|f(s)-\mathrm{e}^{q(s)}\right|<\frac{\epsilon}{2} . \tag{4.5}
\end{equation*}
$$

However, $\mathrm{e}^{q(s)} \neq 0$, therefore, the functions $\mathrm{e}^{q(s)}$ and $p_{j l}(s)$ satisfy all hypotheses under which (4.2) holds. So, we have that

$$
\begin{align*}
& \liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{s \in K}\left|\zeta(s+i \tau)-\mathrm{e}^{q(s)}\right|<\frac{\epsilon}{2}\right. \\
&\left.\sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)-p_{j l}(s)\right|<\frac{\epsilon}{2}\right)>0 . \tag{4.6}
\end{align*}
$$

Clearly, in view of (4.5) and (4.4),

$$
\begin{aligned}
\{\tau \in[0, T]: & \sup _{s \in K}\left|\zeta(s+i \tau)-\mathrm{e}^{q(s)}\right|<\frac{\epsilon}{2}, \\
& \left.\sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)-p_{j l}(s)\right|<\frac{\epsilon}{2}\right\} \\
& \subseteq\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\epsilon,\right. \\
& \left.\sup _{1 \leq j \leq r} \sup _{1 \leq l \leq l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i \tau, \alpha_{j} ; \mathfrak{a}_{j l}\right)-f_{j l}(s)\right|<\epsilon\right\} .
\end{aligned}
$$

This and (4.6) prove the theorem.

References

[1] B. Bagchi. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. PhD Thesis, Calcutta, Indian Statistical Institute, 1981. Doi:10.1007/s10625-005-0242-y.
[2] P. Billingsley. Convergence of Probability Measures. Wiley and Sons, New York, 1968. Doi:10.1007/s10625-005-0242-y.
[3] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, 1996. Doi:10.1007/s10625-005-0242-y.
[4] A. Laurinčikas. The universality of zeta-functions. Acta Appl. Math., 78(1-3):251-271, 2003. Doi:10.1007/s10625-005-0242-y.
[5] A. Laurinčikas. The joint universality for periodic Hurwitz zeta-functions. Analysis (Munich), 26(3):419-428, 2006. Doi:10.1007/s10625-005-0242-y.
[6] A. Laurinčikas. Voronin-type theorem for periodic Hurwitz zeta-functions. Matem Sb., 198(2):91-102, 2007 (in Russian) = Sb. Math., 198(2):231-242, 2007. Doi:10.1007/s10625-005-0242-y.
[7] A. Laurinčikas. On joint universality of periodic Hurwitz zeta-functions. Lith. Math. J., 48(1):79-91, 2008. Doi:10.1007/s10625-005-0242-y.
[8] A. Laurinčikas. The joint universality for periodic Hurwitz zeta-functions. Izv. RAN, Ser. Matem., 72(4):121-140, 2008 (in Russian) = Izv. Math., 72(4):741760, 2008. Doi:10.1007/s10625-005-0242-y.
[9] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. Izv. RAN, Ser. Matem., 74(3):79-102, 2010 (in Russian) = Izv. Math. 74(3):515-539, 2010. Doi:10.1007/s10625-005-0242-y.
[10] A. Laurinčikas and S. Skerstonaitė. A joint universality theorem for periodic Hurwitz zeta-functions. I. Lith. Math. J, 48(3):287-296, 2008. Doi:10.1007/s10625-005-0242-y.
[11] A. Laurinčikas and S. Skerstonaitė. Joint universality for periodic Hurwitz zetafunctions. II. In R. Steuding and J. Steuding(Eds.), New Directions in ValueDistribution Theory of Zeta and L-functions, pp. 161-170, Aachen, 2009. Shaker Verlag. Doi:10.1007/s10625-005-0242-y.
[12] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer, Dordrecht, 2002. Doi:10.1007/s10625-005-0242-y.
[13] J.B. Conway. Functions of One Complex Variable. Springer-Verlag, New York, 1973. Doi:10.1007/s10625-005-0242-y.
[14] H. Cramér and M. R. Leadbetter. Stationary and Related Stochastics Processes. Wiley, New York, 1967. Doi:10.1007/s10625-005-0242-y.
[15] S. M. Gonek. Analytic properties of zeta and L-functions. Ph. D. Thesis, University of Michigan, 1979. Doi:10.1007/s10625-005-0242-y.
[16] H. Heyer. Probability Measures on Locally Compact Groups. Springer-Verlag, Berlin, Heidelberg, New York, 1977. Doi:10.1007/s10625-005-0242-y.
[17] A. Javtokas and A. Laurinčikas. On the periodic Hurwitz zeta-function. HardyRamanujan J., 29:18-36, 2006. Doi:10.1007/s10625-005-0242-y.
[18] A. Javtokas and A. Laurinčikas. The universality of the periodic Hurwitz zetafunction. Integral Transforms and Special Functions, 17(10):711-722, 2006. Doi:10.1007/s10625-005-0242-y.
[19] K. Matsumoto. Probababilistic value-distribution theory of zeta-functions. Sugaku Expositions, 17(1):51-71, 2004. Doi:10.1007/s10625-005-0242-y.
[20] J. Steuding. Value-Distribution of L-Functions, Lecture Notes in Math, vol. 187\%. Springer-Verlag, Berlin, Heidelberg, New York, 2007. Doi:10.1007/s10625-005-0242-y.
[21] S. M. Voronin. On the functional independence of Dirichlet L-functions. Acta Arith., 27:493-503, 1975 (in Russian). Doi:10.1007/s10625-005-0242-y.
[22] S. M. Voronin. Theorem on the "universality" of the Riemann zeta-function. Izv. Akad. Nauk. SSSR, Ser. Matem., 39(3):475-486, 1975 (in Russian)=Math. USSR Izv., 9(3):443-453, 1975. Doi:10.1007/s10625-005-0242-y.
[23] J. L. Walsh. Interpolation and approximation by rational functions in the complex domain. Amer. Math. Soc. Colloq. Publ., 20, 1960. Doi:10.1007/s10625-005-0242-y.

