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The production of charmed and beauty hadrons in proton-proton and proton-antiproton
collisions at high energies are analyzed within the modified quark-gluon string model
(QGSM) including the internal motion of quarks in colliding hadrons. We present some
predictions for the future experiments on the beauty baryon production in pp collisions
at LHC energies. This analysis allows us to find interesting information on the Regge
trajectories of the heavy (bb̄) mesons and the sea beauty quark distributions in the proton.

1 Introduction

Various approaches of perturbative QCD including the next-to-leading order calculations (NLO
QCD) have been applied to construct distributions of quarks in a proton. The theoretical
analysis of the lepton deep inelastic scattering (DIS) off protons and nuclei provides rather
realistic information on the distribution of light quarks like u, d, s in a proton. However, to find
a reliable distribution of heavy quarks like c(c̄) and especially b(b̄) in a proton describing the
experimental data on the DIS is a non-trivial task. It is mainly due to small values of D and B
meson yields in the DIS at existing energies. Even at the Tevatron energies the B- meson yield
is not so large. At LHC energies the multiplicity of these mesons produced in pp collisions will
be significantly larger. Therefore one can try to extract a new information on the distribution
of these heavy quarks in a proton. In this paper we suggest to study the distribution of heavy
quarks like c(c̄) and b(b̄) in a proton from the analysis of the future LHC experimental data.

The multiple hadron production in hadron-nucleon collisions at high energies and large
transfers is usually analyzed within the hard parton scattering model (HPSM) suggested in [1, 2].
This model was applied to the charmed meson production both in proton-proton and meson-
proton interactions at high energies, see for example [3]. The HPSM is significantly improved by
applying the QCD parton approach [4, 5], see details in [6] and references therein. Unfortunately
the QCD including the next-to-leading order (NLO) has some uncertainties related to the
renormalization parameters especially at small transverse momenta pt [6].

In [6, 7] we studied the charmed and beauty meson production in pp and pp̄ collisions at
high energies within the QGSM [8] or the dual parton model (DPM) [9] based on the 1/N
expansion in QCD [10, 11]. It was shown that this approach can be applied rather successfully
at not very large values of pt. In this paper we investigate the open charm and beauty baryon
production in pp collisions at LHC energies and very small pt within the QGSM to find new
information on the Regge trajectories of the heavy (cc̄) and (bb̄) mesons and the sea beauty
quark distributions in the proton.
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2 General Formalism for Hadron Production in pp

Collision within QGSM

Let us present briefly the scheme of the analysis of the hadron production in the pp colli-
sions within the QGSM including the transverse motion of quarks and diquarks in colliding
protons [12]. As is known, the cylinder type graphs for the pp collision presented in Fig. 1
make the main contribution to this process [8]. The left diagram of Fig. 1, the so-called
one-cylinder graph, corresponds to the case where two colourless strings are formed between
the quark/diquark (q/qq) and the diquark/quark (qq/q) in colliding protons; then, after their
breakup, qq̄ pairs are created and fragmented to a hadron, for example, D meson. The right dia-
gram of Fig. 1, the so-called multicylinder graph, corresponds to creation of the same two colour-
less strings and many strings between sea quarks/antiquarks q/q̄ and sea antiquarks/quarks q̄/q
in the colliding protons. The general form for the invariant inclusive hadron spectrum within

Figure 1: The one-cylinder graph (left diagram) and the multicylinder graph (right diagram)
for the inclusive pp→ hX process.

the QGSM is [13, 12]
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σn(s)φn(x, pt) , (1)

where E,p are the energy and the three-momentum of the produced hadron h in the laboratory
system (l.s.) of colliding protons; E∗, s are the energy of h and the square of the initial energy in
the c.m.s of pp; x, pt are the Feynman variable and the transverse momentum of h; σn is the cross
section for production of the n-Pomeron chain (or 2n quark-antiquark strings) decaying into
hadrons, calculated within the “eikonal approximation” [14]. Actually, the function φn(x, pt)
is the convolution of the quark (diquark) distributions in the proton and their fragmentation
functions (FF), see details in [8, 9, 6, 12]. To calculate the interaction function φn(x, pt) we
have to know all the quark (diquark) distribution functions in the nth Pomeron chain and
the FF. They are constructed within the QGSM using the knowledge of the secondary Regge
trajectories, see details in [8, 13].

3 Heavy Baryon Production within QGSM

3.1 Sea Charm and Beauty Quark Distribution in the Proton

Now let us analyze the charmed and beauty baryon production in the pp collision at LHC
energies and very small pt within the soft QCD, e.g., the QGSM. This study can be interesting
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for it may allow predictions for future LHC experiments like TOTEM and ATLAS and an
opportunity to find new information on the distribution of sea charmed (c) and beauty (b)
quarks at very low Q2. According to the QGSM, the distribution of c(c̄) quarks in the nth
Pomeron chain (Fig. 1, right) is, see for example [12] and references therein,

f
(n)
c(c̄)(x) = C

(n)
c(c̄)δc(c̄)x

acn(1 − x)gcn (2)

where acn = −αψ(0), gcn = αρ(0) − 2αB(0) + (αρ(0) − αψ(0)) + n − 1; δc(c̄) is the weight of

charmed pairs in the quark sea, C
(n)
c(c̄) is the normalization coefficient [13], αψ(0) is the intercept

of the ψ- Regge trajectory. Its value can be −2.18 assuming that this trajectory αψ(t) is linear
and the intercept and the slope α′

ψ(0) can be determined by drawing the trajectory through the
J/Ψ-meson mass mJ/Ψ ' 3.1 GeV and the χ-meson mass mχ = 3.554GeV [15]. Assuming that
the ψ-Regge trajectory is nonlinear one can get αψ(0) ' 0, which follows from perturbative
QCD, as it was shown in [16]. The distribution of b(b̄) quarks in the nth Pomeron chain (Fig. 1,
right) has the similar form

f
(n)

b(b̄)
(x) = C

(n)

b(b̄)
δb(b̄)x

abn(1 − x)gbn (3)

where abn = −αΥ(0), gbn = αρ(0) − 2αB(0) + (αρ(0) − αΥ(0)) + n− 1; αρ(0) = 1/2 is the well
known intercept of the ρ-trajectory; αB(0) ' −0.5 is the intercept of the baryon trajectory,
αΥ(0)) is the intercept of the Υ- Regge trajectory, its value also has an uncertainty. Assuming
its linearity one can get αΥ(0)) = −8,−16, while for nonlinear (bb̄) Regge trajectory αΥ(0) ' 0,

see details in [17]. Inserting these values to the form for f
(n)
c(c̄)(x) and f

(n)

b(b̄)
(x) we get the large

sensitivity for the c and b sea quark distributions in the nth Pomeron chain. Note that the
FFs also depend on the parameters of these Regge trajectories. Therefore, the knowledge of the
intercepts and slopes of the heavy-meson Regge trajectories is very important for the theoretical
analysis of open charm and beauty production in hadron processes.

Note that all the quark distributions obtained within the QGSM are different from the
parton distributions obtained within the perturbative QCD which are usually compared with
the experimental data on the deep inelastic lepton scattering (DIS) off protons. To match these
two kinds of quark distributions one can apply the procedure suggested in [18]. The quantities
gcn or gbn entering into Eq. (2) and Eq. (3) are replaced by the following new quantities
depending on Q2

g̃cn = gcn

(
1 +

Q2

Q2 + c

)
; g̃bn = gbn

(
1 +

Q2

Q2 + d

)
(4)

The parameters c and d are chosen such that the structure function constructed from the
valence and sea quark (antiquark) distributions in the proton should be the same as the one at
the initial conditions at Q2 = Q2

0 for the perturbative QCD evolution. A similar procedure can
be used to get the Q2 dependence for the powers acn and abn entering into Eqs. (2) and (3) [18].
Then, using the DGLAP evolution equation [19], we obtain the structure functions at large Q2.

3.2 Charmed and Beauty Baryon Production in pp Collision

The information on the charmonium (cc̄) and bottomonium (bb̄) Regge trajectories can be found
from the experimental data on the charmed and beauty baryon production in pp collisions at
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Figure 2: The differential cross section dσ/dx for the inclusive process pp → ΛcX at
√
s =

62 GeV.
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Figure 3: The differential cross section dσ/dx (left) and dσ/dP 2
t (right) for the inclusive process

pp→ ΛbX at
√
s = 4 TeV.

high energies. For example, Fig. 2 illustrates the sensitivity of the inclusive spectrum dσ/dx
of the produced charmed baryons Λc to different values for αψ(0). The solid line corresponds
to αψ(0) = 0, whereas the dashed curve corresponds to αψ(0) = −2.18. Unfortunately the
experimental data presented in Fig. 2 have big uncertainties; therefore, one cannot extract the
information on the αψ(0) values from the existing experimental data. A high sensitivity of the
inclusive spectrum dσ/dx of the produced beauty baryons Λb to different values for αΥ(0) is
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presented in Fig. 3 (left). The pt-inclusive spectrum of Λb has much lower sensitivity to this
quantity, according to the results presented in Fig. 3 (right). Actually, our results presented in
Fig. 3 could be considered as some predictions for future experiments at LHC, see Fig. 4.

Now let us analyze the production of the beauty hyperon, namely Λ0
b , at small scattering

angles θΛ0
b

in the pp collision at LHC energies. This study would be reliable for the future

forward experiments at LHC. The produced Λ0
b baryon can decay as Λ0

b → J/ΨΛ0, and J/Ψ
decays into µ+µ−, its branching ratio (Br = Γj/Γ) is 5.93± 0.06 percent, or into e+e− (Br =
5.93 ± 0.06%), whereas Λ0 can decay into pπ− (Br = Γj/Γ = 63.9± 05%), or into nπ0 (Br =
35.8± 0.5%), see Fig. 4.

Figure 4: The decay Λb → JΨ Λ0 → µ+µ−(e+e−) pπ−(nπ0).

dσ

d3p1dM34
=

∫
dσ

dM12dM34
(5)

δ(3)(p1 + p2 − p12)dM12 ,

where

dσ

dM12dM34
=

∫
d2ptΛb

dσpp→ΛbX

dxd2ptΛb

BrΛb→J/ΨBrJ/Ψ→µ+µ−BrΛ0→pπ
π3

2M2
effM12M34

λ1/2(M2
eff ,M

2
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2
34)λ

1/2(M2
12,M

2
1 ,M

2
2 )λ1/2(M2

34,M
2
3 ,M

2
4 ) ,

BrΛb→J/Ψ = (4.7 ± 2.8) · 10−4; BrJ/Ψ→µ+µ− = (5.93± 0.06)%; BrΛ0→pπ = (63.9 ± 0.5)%.
Here λ(x2, y2, z2) = ((x2 − (y + z)2)((x2 − (y − z)2)
One can get the following relation

d3p1 =
1

2
pξpdφ1dξpdtp , (6)

where ξp = ∆p/p is the energy loss, tp = (pin − p1)
2 is the four-momentum transfer, φ1 is the

azimuthal angle of the final proton with the three-momentum p1.
Experimentally one can measure the differential cross section

dσ

dξpdtpdMJ/Ψ
=

1

2
pξp

∫
dσ

d3p1dM34
dφ1 (7)
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This distribution could be reliable for the TOTEM experiment, where J/Ψ decays into µ+µ−

and Λ0
b decays into π−p or for the ATLAS forward experiment, where Λ0

b decays as Λ0
b →

J/Ψ Λ0 → e+e− π0n (Fig. 4).
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Figure 5: The distributions of θJ/Ψ (left) and ξp (right) for the inclusive process pp→ ΛbX →
µ+µ−pπ−X at

√
s = 4TeV

In Fig. 5 the distributions over θJ/Ψ (left) and ξp (right) are presented at different values
of the intercept αΥ(0) = 0 (solid line), αΥ(0) = −8 (dashed line) and αΥ(0) = −16 (dotted
line), where θJ/Ψ is the scattering angle for the final J/Ψ. Fig. 5 shows a sensitivity of these
distributions to the intercept of the αΥ Regge trajectory. Actually, the result presented in
Fig. 5 is a prediction for future LHC experiments on the heavy flavour baryon production at
the LHC energies.

4 Conclusion

It was shown [6, 7] that the modified QGSM including the intrinsic longitudinal and transverse
motion of quarks (antiquarks) and diquarks in colliding protons allowed us to describe rather
satisfactorily the existing experimental data on inclusive spectra of heavy hadrons produced in
pp and pp̄ collisions It allows us to make some predictions for future LHC forward experiments on
the beauty baryon production in pp collisions which can give us new information on the beauty
quark distribution in the proton and very interesting information on the Regge trajectories of
(bb̄) mesons.
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