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ABSTRACT

A numerical investigation of the predictability of ideal-

ized hydrodynamic flow is carried out using a model of two-

dimensional incompressible flow. The governing equation is

the forced, dissipative vorticity equation. The numerical

integration is carried out over a square grid with periodic

boundaries. The Coriolis parameter is taken as constant over

the domain. The initial state of pure zonal flow is perturbed

at random grid points and the evolution of the system is ob-.

served. Particular attention is paid to the existence of re-

gimes and transitions between various modes of the flow.

The system is determined to be almost-intransitive, with

two regimes of motion. The flow is characterized by persis-

tent patterns with rapid transitions in phase angle and less

frequent transitions between regimes.



No periodicities are found in the fluid motion and it is

determined to be unpredictable at extended range by any method

if errors exist in the initial data.

The mechanics of pattern persistence and transitions

between modes are explored analytically. Analogies with the

large scale atmospheric flow are made.

The role of transitions, regimes, and stability in

predictability is discussed.

This work was supervised by Professor Edward N. Lorenz,

Department of Meteorology, Massachusetts Institute of Tech-

nology, Cambridge, Massachusetts.



I. INTRODUCTION

Advances in the last two decades in our ability to meas-

ure the state of the atmosphere and predict its evolution

have encouraged consideration of extended range prediction.

Of particular interest is the ability to predict at long range

those atmospheric features associated with climatic change.

Much of the previous work in determining the practical

range of predictability has involved sensitivity studies of

numerical models, as described by Charney, et al. (1966).

These studies seek to determine the extent to which these

models are capable of predicting atmospheric motions at ex-

tended range, given that our knowledge of the initial state

is uncertain. The limits of predictability are determined in

these investigations by the growth rate of small errors intro-

duced in the data.

An investigation by Lorenz (1969a;1973a) looks for an-

alogues in the observed atmospheric states. This study de-

termines the limits of predictability on the basis of error

growth and the time required for similar states to evolve to

the point that they no longer resemble one another.

Studies by Lorenz (1969b) and Leith (1971) using two-

dimensional incompressible flow as a substitute for the act-



ual atmospheric equations estimate predictability limits by

examining the nonlinear transfer rates between different

scales of motion. These studies combine the estimated spec-

tral distribution of atmospheric energy with the dynamical

equations to produce a spectral distribution of errors as a

function of time.

With respect to long-range predictability and forecast-

ing climatic change, there remains the fundamental question

of whether large variations in the state of the atmosphere

are mainly the result of variations in the external forcing.

Lorenz (1976b) has hypothesized that long-period fluctuations

of the atmosphere-ocean-earth system may be the result of

nondeterministic factors, not changes in the external forcing.

The implication is that for a given forcing the observed cli-

mate need not be unique and that almost-intransitivity may

account for the long-period fluctuations.

It is the purpose of this paper to explore extended range

predictability with a model of two-dimensional incompressible

flow. Models of this flow have found favor in many theoret-

ical examinations of atmospheric motions (cf. Fjortoft, 1953;

Arakawa, 1966; Lorenz, 1969b; Batchelor, 1969; Leith, 1971;

Lilly, 1972; Knudsen, 1973). This is due in large part to

the realization by Fjortoft (1953) that the atmosphere on the

largest scales behaves roughly like a two-dimensional incom-

pressible fluid.

It should be noted that no attempt is made here to re-



produce observed atmospheric motions. It is our intent to

examine the kinematic behavior of the modelled flow, which

we believe is analogous to the atmosphere. The model pos-

sesses two important characteristics of atmospheric motions

in relation to predictability; nonlinearity and randomness.

In some respects, the model can be considered a more complex

form of the nonlinear functions used by Lorenz (1964;1976b).

These functions were used to mathematically illustrate poss-

ible climatic regimes and the difficulty in estimating long-

term statistical properties of a system which has nonperiodic

variations. The equations used here bear a closer resemblance

to those describing real fluid motion than those used by

Lorenz. Particular attention will be given in this invest-

igation to the existence of regimes, transitions, intransi-

tivity and almost-intransitivity that may occur in this sim-

ulated two-dimensional incompressible flow.



II, MODEL

The equation used to describe two-dimensional incompres-

sible flow in this investigation is the forced, dissipative

vorticity equation:

'T NFc41 (1)

where 7:

and = relative vorticity

= streamfunction

= two-dimensional Jacobian

= damping constant

= forcing function

The terms contributing to the local change of vorticity,

are:

the vorticity advection term,

the vorticity damping term, and

the vorticity forcing term.

The numerical method for integrating the vorticity equa-

tion involves making finite difference approximations to the

partial differential equation. The Jacobian is replaced by

the finite difference Arakawa Jacobian (Arakawa, 1966) which

conserves both the mean squared vorticity and kinetic energy.



The stream function used in evaluating the Jacobian is obtain-

ed by solving Poisson's equation, 9 1;/- , using a numer-

ical procedure for inverting del-square devised by Lorenz

(1976). The numerical time integration is carried forward

using the N-Cycle scheme (Lorenz, 1971) with N=8. The finite

differencing grid is rectangular with 32 by 32 points. Per-

iodic boundaries are used at all four sides,

We now rewrite (1) in dimensionless variables using ?' ,

which will be related to the integration time step, and A. ,

the grid-point separation.

where =

I,= t|/~

The values of V and 4 will be used later to make a rough

comparison between the model scale of motion and the atmos-

pheric scale of motion.

In this model, the forcing function, F(x,y), was chosen

as a periodic function of y (latitude), independent of x

(longitude). Specifically, F(x,y) = Acos(3y), where A is the

specified amplitude of the forcing. In discrete form, the

forcing function is r A* do(S
8



III. NUNERICAL EXPERIMNINT

The model in finite difference form was programmed to

run on an IBM 370/95, with all floating point values computed

to 16 decimal places. The amplitude of the forcing was set

to 0.25, the integration time step was 0.5t, and the Coriolis

parameter was taken as constant.

Initially all grid-point values of the vorticity and

streamfunction were set to zero. Since the forcing had a

zero mean, the vorticity had a zero mean throughout the in-

tegration as a result of the initial conditions.

During the integration, the intensity of the flow in-

creased initially due to the forcing. A steady state was

soon reached when the forcing and damping balanced. At this

time, the vorticity field was identical in form to the forcing

field and the stream field reflected the purely zonal flow

which had become established. The direction of the flow al-

ternated with the same period as the forcing.

Once the steady state had been achieved, perturbations

were introduced in the vorticity field. These perturbations

were made at six randomly chosen points. The perturbation

consisted of adding 0.1 at three of the points and subtract-

ing 0.1 at three of the points, keeping the mean vorticity



equal to zero. The size of the perturbation was approximate-

ten percent of the rms vorticity of the model.

Immediately following the perturbation, the amplitude

of the local disturbances grew until the shape of the flow

pattern was drastically altered from its previous form. The

integration was carried out for over 20,000 time steps, cor-

responding to a model time of 10,000T. A typical stream

field is shown in Figure 1.

10



IV. ATMOSPHERIC AND MODEL O3CALE COMPARI3ON

To establish a time scale comparison between the atmos-

phere and the model we examine the ratio of the typical wave-

length to the typical velocity in both cases.

For the atmosphere, the typical wavelength is on the

order of 6000 km and the typical wind speed is approximately

20 msec-1. Thus the atmospheric time scale is approximately

ta ~ 6000 km ~3.5 days.
20 msec- 1

For the model, the typical wavelength is on the order of

16 k . The typical velocity is determined from the mean ki-

netic energy, which is calculated periodically during the in-

te-ration. The mean kinetic energy per unit mass is approx-

imately 0.13 LI . Then the root mean square velocity is

approximately 0.5 L/t-. Thus, the time scale of the model is

t ~6L A.32r .

If we take 'C~ 0.1 days, we can consider our results as

roughly comparable to atmospheric scales of motion. Making

this correspondence between atmospheric and model time scales

means our integration was carried out for about 1000 "days"t .

Henceforth our reference to elapsed time in the model will be

in days with the understanding that the correspondence between



the model time and real time is based on the above scale

comparison.

12



V. RESULTS

Following the perturbation, a flow pattern became estab-

lished consistent with a stream function whose largest term

is of the form: 3cos2xcos3y. Throughout the integration, the

gross features of the flow pattern could be described by a

stream function of the form:

r( , e ) i"${)os(x + eidb) Cas S y 4 etrp+EG)c ! 3 )

with n = 1 or 2,

and where 1S() and Eed are time varying amplitudes, ({) is

the phase angle associated with zonal wavenumber n, and

is the meridional phase angle.

One of the noteworthy results of this investigation was

the relative immobility of an established pattern for extend-

ed periods of time, even though the forcing varied only with

latitude and presented no preferred longitude. What little

mobility a pattern did exhibit was mainly in the zonal dir-

ection. That is, in (3) the phase angle, f({e) , showed much

more variation than 4 (/) , which varied only slightly from

zero.

It was seen as convenient to describe the pattern mobil-

ity in terms of the phase angle P( i) alone. This was ac-

complished by a harmonic analysis of the meridional averaged

13



stream function. By doing so, the y-dependence of (3) was

removed; however, the loss in describing the pattern mobility

was considered minimal due to its relatively small meridional

motion. Figures numbered 5 through 10 show the time series

of the phase and amplitude of zonal wavenumbers 1 and 2,

which were dominant, and wavenumber 3, which is presented

for comparison.

In Figures 5, 6, and 7, a phase angle which is constant

for a long period of time is indicative of zonal immobility

of the pattern if the associated wavenumber has a dominant

amplitude. The length of time that a pattern was stationary

seemed to vary aperiodically.

The phase of wavenumber 1 (Figure 5) exhibits a station-

ary behavior for approximately 100 days, between Day 420 and

520. An examination of the amplitudes of the three wavenum-

bers shown in Figures 8, 9, and 10 shows that during this

time wavenumber 1 had the dominant amplitude, Thus, the flow

pattern during this time was characterized by a stationary

zonal wavenumber 1. Figure 2 illustrates the stream field

at a time when wavenumber 1 Is dominant.

Wavenumber 2 exhibited the greatest tendency to persist

without motion and to characterize the flow pattern. The

amplitude of wavenumber 2 usually dominated wavenumbers 1

and 3. Figure 3 shows the stream field for a pattern domin-

ated by wavenumber 2. The tendency for the phase of the dom-

14



inate wavenumber to be constant for a considerable time and

then suddenly change and become nearly constant again is

shown in Figure 6, between Day 770 and 1050. The rapid shift

of the pattern coincides with a sudden drop in the amplitude

of the dominant wavenumber. Figure 4 shows the stream field

during a transition in phase of the dominant wavenumber for

wavenumber 2.

Wavenumber 3, as well as larger wavenumbers, exhibited

amplitudes which were generally less in magnitude than wave-

number 1 or 2. The time series of the phase of wavenumber 3

shows no tendency for prolonged immobility of this wave.

An examination of the mean kinetic energy of the zonal

component as a function of time (Figure 12) reveals a marked

increase associated with a transition from one stationary

pattern to the next. During a transition, as shown in Figure

4, the zonal variations in the pattern become ill-defined and

the flow nearly returns to its initial, unperturbed state of

purely zonal flow. Within a few time steps, a new stationary

pattern has been established, 'coinciding with a noticeable

decrease in the kinetic energy of the zonal component.

From the harmonic analysis of the meridional averaged

stream function, we can conclude that the zonal wavenumber

possessing the greatest amplitude has a tendency to remain

stationary while those of lesser amplitude undergo nonperiodic

variations in phase and amplitude. davenumber 2 most often

characterized the pattern and exhibited a strong tendency

15



for prolonged immobility throughout the integration. There

was only one occurrence where wavenumber 1 was dominant and

characterized the pattern.

Two types of transitions were noted. One was the phase

transition in the dominant zonal wavenumber. The other was

a transition in dominant wavenumber from 2 to 1 and back to

wavenumber 2. Transitions in phase were rapid and the time

between occurrences appeared aperiodic. Transitions in dom-

inant wavenumber were less rapid and occurred only twice dur-

ing the integration.

To further examine the system for possible periodicities,

it is convenient to look at a quantity that characterizes the

entire system. The assumption is that if periodically the

system returns to the same state, it would be revealed by such

a quantity. The mean kinetic energy was taken to be an appro-

priate quantity for this purpose. A time series of the mean

kinetic energy was computed. Figures 11, 12, and 13 show the

results of this calculation, displaying the mean total kinetic

energy, mean kinetic energy of the zonal component, and the

mean kinetic energy of the meridional component respectively.

A casual inspection of these time series reveals no ob-

vious periodicity. A spectral analysis of the mean kinetic

energy of the zonal component based on 900 consecutive days

using a discrete Fourier transform, revealed a continuous

spectrum within the frequency resolution limits (0.5 day-1 ).

A measure of linear predictability one step ahead (cf.

16



Lorenz, 1973b) is the ratio of the a posteriori variance,

represented by the geometric mean of the spectral density

function, to the a priori variance, represented by the arith-

metic mean. For no error in prediction, this ratio is zero.

In this case, the arithmetic and geometric means of the spec-

tral density function of the time series of the mean kinetic

energy of the zonal component are 7.9 x 10~7 and 3.2 x 10

respectively. The ratio is of order lo-5, which indicates

only a small error in predicting the mean kinetic energy of

the zonal component one day ahead. However, if the series is

indeed nonperiodic, and not just apparently so from the sample,

the imperfect prediction one day ahead implies it would be

linearly unpredictable at extended range.

17



VI. DISCUSSION

Kinematically, the flow represented by the model bore

some resemblance to the atmosphere. The zonal flow alternat-

ed direction in latitudinal bands similar to the easterlies

and westerlies in the atmosphere. Zonal waves developed in

the flow, producing circulation centers with cyclonic and

anticyclonic fluid motions (in the atmospheric sense). The

absence of variation in the Coriolis force prevented Rossby

waves from developing.

There are four observed features of the flow which are

relevant to its predictability: (1) The presence of persis-

tent stationary patterns, (2) patterns which can be separated

according to the dominant zonal wavenumber into regimes, (3)

rapid transitions which occur between regimes with phase

transitions occurring within a regime, and (4) no observed

periodicity in the flow.

The mechanics of the observed persistent patterns can be

explained to some extent analytically. If the stream function

has the form

W?" r 0 CO en COS (^ + 0)(4)

with n and m integers, the vorticity advection, represented

by the Jacobian, W() , is identically zero. It can be

18



seen that (4) with m=3 is a special case of (3) with E d) =0.

When the stream field is described by (4), the local change

in vorticity given by (1) is a result of the forcing and damp-

ingz alone. Thus, when iL'), the amplitude of the zonal flow,

is near zero, there will be little tendency for alterations

in the shape of the pattern. The amplitude of the pattern,

represented by SO') in (3) will decrease with time due to the

damping. The forcing will tend to increase the amplitude of

the zonal flow, E66) in (3). When is no longer small in

comparison with M), (4) no longer applies and the nonlinear

advection term becomes nonzero.

The sequence of events in the transition from one mode

to another is the following. The features of the established

pattern deteriorate slowly while the intensity of the zonal

flow increases. The strength of the zonal flow is limited by

its instability with respect to perturbations by the existing

small scale motions. A new pattern is then established with

different phase or dominant wavenumber.

A preference for establishing patterns with zonal wave-

numbers 1 or 2 and not higher wavenumbers was observed. The

large number of -rid points would tend to partly eliminate

the truncation of higher wavenumbers as the source of this

phenomena. The preference seems to be inherent in the flow

and not a result of restricted spacial resolution.

It would appear that the selection of the dominant wave-

number following a transition is a stochastic process. A ran-

19



dom nonlinear interaction between motions of various scales

at the time of transition may determine the dominant wave-

number. Such a process may be not unlike the atmosphere.

This concept will be discussed further.

The large scale features of the flow pattern exhibited

two degrees of freedom zonally, the dominant wavenumber and

phase. Meridionally, the forcing "locked-in" the pattern

giving zero degrees of freedom. Essentially, the problem of

predicting the flow pattern reduced to predicting the dominant

wavenumber and phase. This is similar to predicting the dom-

inant Rossby wavenumber and the location of the troughs and

ridges in the atmosphere.

The persistent, stationary patterns may be analogous to

"blocking patterns" found in the atmospheric motions. Once

identified, they may be successfully used in a persistence

forecast. An important physical difference between the form

of the forcing in the model and in the atmosphere should be

noted. In the model, there is no longitudinal variation in

the forcing to favor a stationary pattern. Whereas, in the

atmosphere, considerable longitudinal variation exists due to

topography and thermal effects which may contribute to immobi-

lity of the pattern in a "blocking" situation.

As previously noted, the flow contained two regimes of

motion, even though the forcing was invariant throughout the

integration. The regimes are identified by the dominant zonal

wavenumber. The observed transitions between regimes are a

20



good example of an almost-intransitive system as defined by

Lorenz (1968). In such a system, a single solution will ex-

hibit different statistics within different segments of a

long time span. Clearly, the statistics of the model differ

when wavenumber 1 was dominant, Day 420 to 520, from a 100

day period when wavenumber 2 was dominant.

Almost-intransitivity in a hydrodynamic system has im-

portant implications in determing long term statistics, or

climate in the atmospheric case. In the model, with a sample

of nearly a thousand days, only for about one hundred consec-

utive days was the flow in the wavenumber 1 regime. If the

transition to this regime is considered stochastic, it is

fortunate that it was observed, even in this lengthy sample.

There may be regimes in the atmosphere which are likewise

relatively short in duration and infrequent in appearance.

Such regimes may easily be excluded in climatic statistics

through sampling inadequacies, such as insufficient record

length. So even without a forcing change, a significant

climatic change might be noted when the atmosphere enters a

regime that has not been previously observed and accounted

for in climatic statistics.

The lack of observed periodicity in the flow has definite

consequences relating to its predictability. The theory of

predictability for nonperiodic flow has been presented by

Lorenz (1963a; 1963b). Nonperiodic flow is linearly nonde-

terministic if the logarithm of the spectrum is integrable.

21



If we consider the kinetic energy of the zonal component as

a fundamental measure of the state of the system, then on the

basis of Figure 14 we can conclude that the flow is intrins-

ically linearly nondeterministic. While predictable with

errors at short range, linearly nondeterministic, nonperiodic

flow is unpredictable by linear means at extended range.

Furthermore, since the numerical solution found in this

integration is nonperiodic, it is unstable. A slightly dif-

ferent perturbation would yield a very different numerical

solution, From a different viewpoint, if this solution was

to be determined from measurements of some real fluid system,

an error in measuring the state would lead to a completely

different solution. Thus, accurate dynamical prediction at

extended range is dependent on error free measurements, which

are practically unobtainable.

22



VII. MODE TRANSITIONS AND PREDICTABILITY

The changes in regime or in phase within a regime may be

collectively referred to as mode transitions. Within a par-

ticular mode the statistics of the system are relatively in-

variant, but differ significantly from one mode to another.

The modes observed in the flow may be considered quasi-

stable. The stability of the modes was indicated by their

persistence even though perturbed by random small scale mo-

tions which were present in the flow. Changes in the stabil-

ity occurred with time as a result of the damping, forcing

and nonlinear interactions.

At some time a mode appeared to become very unstable and

the flow entered a transition period. It seems likely that

during transition, the nonlinear interactions between various

scales of motion determine the regime and phase that evolve.

It seems possible, though not explicitly investigated, that

the small scales may be equally important as the large scales

during transition in determining the state that evolves. From

this investigation, there appears to be little evidence that

the large scale motions by themselves determine the outcome

of the transition.

The average lifetime of a particular phase of a regime

23



was about 75 days. The lifetime of a particular regime was

about 100 days for wavenumber 1. Wavenumber 2 persisted about

400 days on the first occasion and at least 500 days on the

second. During a particular regime, a persistence forecast

could be quite accurate in prediction of the dominant wave-

number, though the accuracy of the phase prediction would

deteriorate more rapidly. Prediction of the following mode

during a transition does not appear possible unless the state

of the system is specified. without error.

Thus, there seems to be varying degrees of predictabil-

ity depending on the state of the flow. When a transition has

just occurred, it is possible to predict the regime for a con-

siderable time span. However, the exact length of time that

the regime will exist is not apparently predictable if mea-

surements are not exact. When the flow is entering a tran-

sition, there is essentially no predictability of the ensuing

states if there are measurement errors.

This situation can be described in terms of a phase space

where the points in the space correspond to states of the flow

(cf. Lorenz, 1963a). The space can be partitioned into re-

gions corresponding to the degree of stability of the flow.

In our case, the exhibited flow is presumed to be inherently

unstable due to its nonperiodicity. When the flow is in a

persistent regime, it would correspond to a region of quasi-

stability, i.e., low instability. A transition would corres-

pond to entering a region of high instability.

24



The degree of instability is measured by the growth rate

of small perturbations made in the flow. In the quasi-stable

region, the statistics of neighboring trajectories diverge

slowly. During transitions, the statistics of neighboring

trajectories diverge rapidly. This would also be an indica-

tion of the growth rate of measurement errors in a numerical

prediction of the flow. Trajectories in phase space enter

either region nonperiodically.

The indeterminacy of the state of the system due to

measurement errors translates into an uncertainty as to which

trajectory the system is following. This indeterminacy would

eventually result in a large departure in the predicted state

of the system from that observed. What is important to note

is that the rate at which the observed and predicted states

diverge is determined by the degree of instability, i.e., the

region occupied in phase space.

In this situation, a thorough knowledge of the large

scale motions may be sufficient to predict the flow at con-

siderable range with acceptable error during a quasi-stable

mode. The lack of information about or inability to faith-

fully represent small scale motions renders the prediction

scheme useless in predicting the length of the mode's exist-

ance and the evolution of the flow after entering a transition.

Given that measurement errors will occur, the accuracy of a

prediction scheme, in this case, is a function of the state

of the system. When in certain states, such as those follow-

25



ing a transition, the system is highly predictable. In other

states, such as those associated with transitions, predictabil-

ity is nonexistant.

Such a realization does not bode well for prediction at

ranges which span one or more transitions. The integration

of the governing equation of this model yielded two regimes,

the atmosphere, presumably, possesses many more. An accurate

prediction of the evolution of a system, such as modelled

here, requires the successful prediction of transition pro-

cesses. It is possible that successful prediction of tran-

sition processes, in this model or in the atmosphere, requires

an accurate knowledge of small scale motions. In practical

application, such as for the atmosphere, a model which faith-

fully represents the small scale motions requires observations

on a small scale, numerous grid points, and excessively long

computation time. This may not be feasible.

Thus, if a transition process similar to the one describ-

ed here exists in the atmosphere, and if the atmosphere pos-

sesses almost-intransitivity, it would seem that prediction

of the state or a statistic of the atmosphere at extended

range would not be practically possible by direct integration

of the governing equations.

Should the atmosphere possess a trajectory in phase space

with varying instability, it would be valuable to catagorize

the atmospheric states according to their stability. This

would allow a determination at the time of observation of the



degree of predictability that exists at that time. Forecasts

could be made to cover the indicated predictability limit.
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VIII. CONCLUSION

In this investigation, we have used a model of two-dimen-

sional incompressible flow, which kinematically resembles some

of the large scale features of the atmosphere, to examine ex-

tended range predictability. A sufficiently fine grid mesh

was chosen so as to minimize the effects of truncation in the

simulation.

After perturbing the initial zonal flow, we found with

fixed forcing that the flow exhibited almost-intransitive

behavior. There were two identifiable regimes within the

span of the integration. They were found to be highly per-

sistent. Within the regimes, the pattern movement was zonal

at irregular intervals. Transitions occurred rapidly between

regimes and between zonal phase of the pattern.

The tendency for persistence in a model possessing

almost-intransitivity was suggested by Lorenz (1976). This

simple model provides a vivid example of such behavior. This

work provides further evidence that models which contain mo-

tions resembling those of the atmosphere possess almost-

intransitivity. It does not, nor perhaps may any model which

deals with a continuous system as a set of discrete points,

establish the existance of almost-intransitivity of the atmos-

28



phere. However, it does suggest the possibility.

An examination of the time variations of the mean kin-

etic energy of the zonal component revealed no periodicities.

This was taken as an indication that the system itself was

nonperiodic. Examination of the motions of the patterns and

the period between transitions likewise evidenced no period-

icities. From a power spectrum analysis of the time varia-

tions in the mean kinetic energy of the zonal component, to-

gether with the assumption of nonperiodicity, it is concluded

that the flow is unpredictable by linear means at extended

range. Since nonperiodic flow is not uniformly stable (cf.

Lorenz, 1963a), it is unpredictable at extended range by any

method if errors exist in the measurement of the initial

state.

In referring to "extended range", it must be understood

to span one or more transitions. Certain features, such as

dominant zonal wavenumber were highly predictable for ranges

of 100 days and more que to persistence. However, no feature

of the flow was seen as practically predictable through a mode

transition.

It is suggested here that nonperiodic, almost-intransi-

tive fluid motion may possess variable range predictability,

depending on the state of the system. The critical factor in

the range of predictability is the relative stability of the

phase space trajectory with respect to small perturbations,

which are in effect measurement errors. From this investiga-
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tion, the trajectory stability is seen as variable along the

trajectory.

Whether active on seasonal or climatic time scales, the

existence in the atmospheric motions of a regime and transi-

tion mechanism similar to that suggested here would have a

profound effect on extended range predictability. At a time

when the atmosphere is "choosing" between various possible

regimes, the measurements must be most precise, if not exact,

to determine the subsequent behavior. Between transitions,

the regime motions might well be predictable with less accur-

ate measurements owing to its decreased instability compared

to transition periods. However, the determination of the

lifetime of a regime a priori might, like transition predic-

tions, rely on perfect or near perfect specification of the

atmospheric state.

Lorenz (1963b) found that two neighboring solutions of

nonperiodic flow must eventually diverge until no resemblance

between the two can be detected. What is suggested here is

that the difference between neighboring solutions may increase

almost discontinuously in conjunction with the occurrence of

transitions and much more slowly in between. A prediction

scheme which utilizes this information would endeavor to de-

termine the error growth rate for the observed state of the

system. Predictions could then be made at a range consistent

with the stability.
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This investigation indicates the difficulty of extended

range prediction of the instantaneous state of an almost-

intransitive system when knowledge of the initial state is

imperfect. It is suggested that this is due partly to the

transition mechanism. Furthermore, prediction of mean values

of the system at extended range would seem no easier than

prediction of the regime itself, since the statistics of each

regime would be considerably different for an almost-intransi-

tive system.
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FIGURES
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Figure 1. Typical stream field after perturbation. Day 885.
Contours in dimensionless units.
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Figure 2. Stream field, Day 495, showing the regime with zonal wave-
number I dominant. Contours in dimensionless units.
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Figure 3. Stream field, Day 65, showing the regime with zonal wave-
number 2 dominant. Contours in dimensionless units.



Figure 4. Stream field, Day 125, showing the strong zonal flow during
a phase transition. Contours in dimensionless units.
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Figure 5. Phase angle, $1, as a function of time, in days, for zonal
wavenumber 1.
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Figure 6. Phase angle, #2, as a function of time, in days, for zonal
wavenumber 2.
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Figure 7. Phase angle, #3, as a function of time, in days, for wavenumber 3.
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Figure 8. Amplitude time series for zonal wavenumber 1. Amplitude in

dimensionless units, time in days.
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Figure 9. Amplitude time series for zonal wavenumber 2.
dimensionless units, time in days.
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Figure 10. Amplitude time series for zonal
dimensionless units, time in days.
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Figure 11. Time series of the mean total kinetic energy per mass.
Kinetic energy in dimensionless units, time in days.
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Figure 12. Time series of the mean zonal kinetic energy per mass.
Kinetic energy in dimensionless units, time in days.
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MERIDIONAL KINETIC ENERGY
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Figure 13. Time series of the mean meridional kinetic energy per mass.
Kinetic energy in dimensionless units, time in days.
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Figure 14. Power spectrum of time variations in the mean kinetic energy
of the zonal component of the flow. Dashed lines indicate 90% confidence
limits.
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