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Abstract. Luminous Blue Variable (LBV) stars are evolved massive objects,
previous to core-collapse supernova. LBVs are characterized by photometric
and spectroscopic variability, produced by strong and dense winds, mass-loss
events and very intense UV radiation. LBVs strongly disturb their surroundings
by heating and shocking, and produce important amounts of dust. The study of
the circumstellar material is therefore crucial to understand how these massive
stars evolve, and also to characterize their effects onto the interstellar medium.
The versatility of NIKA2 is a key in providing simultaneous observations of
both the stellar continuum and the extended, circumstellar contribution. The
NIKA?2 frequencies (150 and 260 GHz) are in the range where thermal dust
and free-free emission compete, and hence NIKA?2 has the capacity to provide
key information about the spatial distribution of circumstellar ionized gas, warm
dust and nearby dark clouds; non-thermal emission is also possible even at these
high frequencies. We show the results of the first NIKA2 survey towards five
LBVs. We detected emission from four stars, three of them immersed in tenuous
circumstellar material. The spectral indices show a complex distribution and
allowed us to separate and characterize different components. We also found
nearby dark clouds, with spectral indices typical of thermal emission from dust.
Spectral indices of the detected stars are negative and hard to be explained only
by free-free processes. In one of the sources, G79.29+0.46, we also found
a strong correlation of the Imm and 2mm continuum emission with respect
to nested molecular shells at ~1 pc from the LBV. The spectral index in this
region clearly separates four components: the LBV star, a bubble characterized
by free-free emission, and a shell interacting with a nearby infrared dark cloud.

1 Background

Luminous Blue Variable (LBV) stars are among the most massive objects, previous to core-
collapse supernova (SN). The evolutive path around this short-lived stage (some 10* yr) is not
totally well settled yet, being considered previous to Wolf-Rayet [1] and also direct precursors
of SN [2]. These stars develop strong and dense winds (up to 10™* M), and are among
the most intense sources, with luminosities up to several 10° Ly. LBVs are close to the
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Humphreys-Davidson limit [3] and experience several dynamical instabilities which, at the
end, result in violent outbursts of several solar masses.

The environs of LBVs are then heavily affected by copious UV radiation and the mass-
loss events. Almost all LBVs are surrounded by IR nebulae, composed by a rich mixture of
dust and CNO-processed neutral and ionized gas [4—6]. This circumstellar material (CSM) is
therefore the consequence of ionization, shocks, dust formation and a presumably complex
chemistry. The knowledge and characterization of the CSM linked to LBVs is therefore
crucial not only to learn about the chemical and dynamical evolution of the Galaxy, but also
to understand the physical processes which drive the massive star evolution.

Important efforts have been made in the study of the molecular structures around LBVs.
The best studied object is probably G79.29+0.46, where we discovered a number of con-
centric, shocked shells associated with mass-loss events developed in the last 10° — 10* yr
[7-10]. In MGE042.0787+00.5084 (hereafter MGE042), we also found a molecular torus in
slow expansion, with similar dynamical ages [11]. Recently,  Carina was also the subject of
molecular studies, where molecular material connected to the Homunculus and a more recent
outburst were discovered [12-16].

Dust structures and the ionized and molecular gas around these hot stars may extend
up ~ 1 pc from them. At the distances of galactic LBVs, these circumstellar features span
angular sizes typically between 20” and 2’. The large field of view of NIKA2 (6!5) permits
efficient and simultaneous observations of the stellar objects, their CSM and also the extended
emission arising from nearby clouds [17]. The observations are made in two key bands, where
both thermal dust and free-free emission of gas can compete.

NIKA?2 even has potential to detect non-thermal (synchrotron) emission from this kind
of sources. Although non-thermal emission has been traditionally studied in the radio (cm-
wavelengths) regime [18], it has been detected in several other massive stars, such as O-
type and Wolf-Rayet [19]. This emission is often associated to colliding winds in binaries,
where electrons are shocked, accelerated to relativistic velocities and later coupled to an
existent magnetic field [20]. The same physical processes may account in LBV stars, and the
possibility of this mechanism should not be easily discarded.

In this paper we report the first results and preliminary analysis of an observational cam-
paign in four fields around five confirmed or candidate LBVs.

2 Observations

The observations were made at the IRAM 30m radio telescope, during the first open pool
session of NIKA2 [17] which has been carried out in October 2017, during three consecutive
evenings. Four fields have been observed, enclosing 5 LBVs. All the observations were
performed in day time, with typical precipitable water vapour of 2mm, opacity 7 = 0.2
measured at 225 GHz by the taumeter of the 30m telescope and stable weather conditions.

A summary of the observations is presented in Table 1. For each field, number of scans,
integration time, typical elevations and rms are shown. Atmospheric opacity corrections are
applied to the observed scans by using the NIKA2 skydip procedure described in [17]. This
procedure uses NIKA?2 itself as taumeter providing an opacity correction per observing scan.
For all the scans, the opacities estimated varies between 0.17 and 0.24 for the 150 GHz band,
and between 0.30 and 0.39 for the 260 GHz band.

The maps were obtained by using NIKA2 IDL pipeline developed by the NIKA2 collab-
oration. In particular, we used an iterative method to subtract the correlated noise common
to all the pixels of the arrays of NIKA2. At each iteration we combine all the maps for the
different objects and we estimate the final averaged map. At the first iteration we subtract the
noise estimated using all those pixels which are off-source, i.e. they detect the signal from the
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Table 1. Summary of observations

Source scans  finr eV Oimm  02mm
hr ° mly/beam
G79.29+0.46 12 1.1 68 5.2 1.3
MGE042 60 20 56 1.6 0.5

HD168625® 24 1.0 36 21 0.6
MGE027¢*) 30 09 48 27 0.8

(*) HD168607 included in the same field of HD168625
(**) MGEO027 stands for MGE027.3839-00.3031 [5]

background which is a combination of atmospheric signal, electronic noise, cryogenic noise
etc. Performing the difference between two consecutive maps we obtain the noise map that
we subtract to the next iteration. At each iteration the signal to noise ratio increases, leading
to a gaussian noise which is consistent with a white noise.

On-the-fly maps have been performed in different directions to overcome any striping ef-
fect that could appear along the scan direction. Combining the maps with different directions
of scan we average this kind of effect and ease the offline data analysis processing.

3 Results

After combining individual scans and removing the background, we smoothed all images to a
common angular resolution of 20”. This resolution was chosen as a compromise to improve
the signal-to-noise ratio without sacrificing too much the level of detail in the maps, and
to avoid excessive dilution of the stellar sources. The final images are sketched in Fig. 1.
The emission at both bands arises not only from the stars, but also from some circumstellar
material and ambient clouds. The white contour is at approximately 5-sigma level, so all the
visible features are significant.

The G79.29+0.46 field is dominated by bright and intense emission running from south-
east to west. This emission corresponds to an infrared dark cloud (IRDC) linked to DR15,
which is known to host active star formation [21], probably induced by the close LBV [9, 10].
The star is detected at both bands, more clearly at 2mm. A shell structure of ~ 100 in radius
is also noted, especially at the 2mm band. The NIKA?2 shell is clearly correlated with an
infrared shell already reported [8]. This shell is also bounded by two concentric CO shells
related to past mass-loss events [7].

In the MGEO042 field we also note a rather extended molecular cloud to the north, not
clearly associated with the star. The LBV and a compact cloud = 30” to the south-east are
also clearly identified. It is noteworthy that the star is relatively more intense at 2mm, while
the compact cloud looks the opposite. The compact cloud is spatially almost coincident to
the densest part of the expanding CO torus [11].

The LBVs HD 168625 and HD 168607 are surrounded by extended features without a
clear morphological association. Contrarily to the previous two cases, part of this extended
emission is brighter at 2mm. HD168625 seems also immersed within a low-level emission
plateau, which is angularly correlated with a bright infrared nebula [4].

The LBV star MGEOQ27 is definitively not detected at the NIKA?2 frequencies. Its field is
dominated by extended, filamentary, and clumpy material.

The Fig. 2 shows a closer view of the four fields in both bands, in order to disclose the
presence of any extended, circumstellar emission around the LBVs. Cyan circles have widths
of 20” (the angular resolution after smoothing) and are centred on the stars. The contours are
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Figure 1. Final images in the four fields observed, smoothed to a HPBW of 20”. Top row contains
the images at 260 GHz, while the bottom row depict those images at 150 GHz. Sources are indicated
in the upper parts of the 260 GHz images. Colorbars are also depicted at the right of each image, in
mly. A diversity of features are seen, including the LBV stars themselves, but also some CSM and even
Galactic dark clouds. White contours are at approximately 5-sigma level.
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Figure 2. Details around the LBV stars, with colorbars in mJy at the right. Cyan circles indicate the
HPBW of the images and are centred at the star positions. White contours correspond to half the flux
density at the star position. Note a different range in right ascension for the third field from left, where
HD 168625 is in (0”,0”) and HD 168607 is ~ 70” west.

half of the peak fluxes on each star. In G79.29+0.46, we see that the contour matches the
circle almost perfectly, indicating that this emission arises only from the star and not from
possible circumstellar gas or dust. In MGEO042, the point source emission arises only at 2mm.
The compact cloud at south east is notoriously more intense at Imm. Both MGE(042 and the
close compact cloud are immersed within a tenuous plateau, which is more evident at Imm
band. HD 168625 displays some extended emission in both bands, while HD 168607 depicts
point source emission only at 2mm.
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The Table 2 sketches a quick glance of the features identified. We distinguish five differ-
ent components or sources of emission: (1) the LBV star; (2) some circumstellar material; (3)
more extended emission where the stars are embedded; (4) star-centred shell-like structure;
and (5) clouds without a clear morphological relationship to the LBVs. The circumstellar
emission appears very close to the stars, while the extended emission (or “plateau”) is de-
tached from the star emission. There are therefore complex and varied scenarios towards
different LBVs, possibly with different composition and excitation mechanisms.

Table 2. Morphology of the components

Field Star CSM Plateau Shell Cloud
Imm 2mm Imm 2mm Imm 2mm Imm 2mm Imm 2mm
G79.29+0.46 X X X b 4 ?
MGE042 X X X
HD168625 X X
HD168607 ? X X X
MGEO027 X X X X X b 4 X X

: detected. X: not detected. ?: doubtful.

4 About the emission mechanisms

NIKAZ? frequencies are especially suitable to gather first estimates about the excitation mech-
anisms of the detected material. Thermal dust is usually relevant at mid-infrared, and steeply
decreases when increasing the wavelength. Free-free emission normally from ionized hot
gas slightly increases with decreasing frequencies. Depending on the specific physical con-
ditions, both mechanisms may be significant at wavelengths of a few mm.

As we see in the previous section, LBVs are mm-wavelengths continuum sources. Their
ejecta are mainly made of ionized atomic gas. When this hot gas moves away from the star
it progressively forms molecules, which later may form copious amounts of dust at certain
distance. Therefore, we expect important contribution from both free-free gas emission and
thermal dust [22, 23].

The existence of non-thermal emission, often found in Wolf-Rayet and other massive
stars, should not be discarded. The non-thermal emission may have its origin in different
processes, such as the shocks of colliding winds in binary systems or the relativistic particle
acceleration due to magnetic fields [18]. The relative contribution of non-thermal emission at
mm-wavelengths is, however, hard to estimate [24].

We can make some guesses about the relative importance of thermal dust, free-free gas
and non-thermal processes by computing the spectral index «, defined as

S, o v* (1

where S, is the flux density at the frequency v. For a spherical expanding Hu region we
expect —0.1 < @ < 1.5 ([25] and references therein), while roughly @ = 0.6 is expected for
an evolved stellar wind [26], and @ > 0.6 if the wind is radiatively shocked [27]. We expect
a = 2 for ideal thermal black body emission, and @ = (2 +f) for a black body modified by the
frequency-dependent dust emissivity; S is the dust emissivity index, and takes typical values
between 1 and 2.7 ([28] and references therein).

We computed « in the four fields only for those pixels with flux densities above 2-sigma.
The result is shown in Fig. 3. The colour scale runs from —1 to 4 in the four panels; blue
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tones run approximately from —1 to 0.6, green tones from 0.6 to 2.3, and dark red tones from
23 to4.

These first results are striking. The spectral indices computed between the two NIKA2
frequencies outstandingly show three separate components, presumably related to different
physical conditions or excitation processes.

The stellar sources are clearly detached from their surroundings, as we can see in the
cases of MGE(042, HD 168625 and HD 168607; those stars and G79.29+0.46 have the lowest
a, with values well below those corresponding to pure Bremsstrahlung. Such highly nega-
tive values of the spectral indices are indicative of a significant contribution of non-thermal
processes.
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Figure 3. Spectral indices of and around the LBV stars observed. The same range is depicted in the
four fields.

In G79.29+0.46, the bubble enshrouded by the infrared/mm-continuum and CO shells
[7, 8] becomes evident, with values of « typical of free-free emission. It is noteworthy the
layered structure seen around the (100, —20) position, where it is clearly noted the bubble
in blue, the shell affected by a mass-loss process in red and the unaffected IRDC in red. The
lowest values of @ are consistent with non-thermal emission probably produced by the shocks
already discovered [9, 10]. On the other hand, most of the IRDC (related to DR15) depicts
values of a compatible with a cold cloud [28].

The CSM and the plateau identified in MGEO042 and HD 168625/HD 168607 fields are
mostly free-free. In addition, some of these components have values of @ compatible with
dark clouds.

The MGEO027 field is dominated by values of @ which are indicative of dark clouds, al-
though with “skins” of lower spectral indices (note that this skin is almost absent in the IRDC
of the G79.29+0.4 field). This behaviour may indicate that the dark clouds are immersed in
a tenuous ambient partly affected by free-free radiation. The non-detection of the star in this
case is indeed puzzling.
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5 Concluding remarks

NIKA2 has opened a new road to explore the physical processes associated with the massive
star evolution, improving our knowledge of the LBVs themselves and their CSM.

We report the detection of mm-continuum emission in four out of five of the observed
LBVs. In addition, some circumstellar material, a shell, and surrounding clouds have also
been detected.

First estimates of the spectral indices allowed us to disentangle the nature of the different
components. The lowest values of @ are found towards the stars and are hardly explained by
free-free emission only. We propose that there is some non-thermal contribution to the total
flux measured, especially at 2mm. MGE042, HD 168625, and HD 168607 are immersed
within material having values of a typical of free-free emission. G79.29+0.46 is completely
isolated; it is surrounded by a shell of free-free emission, which is clearly interacting with a
nearby IRDC. Contrarily, the field of MGEQ27 is dominated by a cloud apparently driven by
thermal dust emission, probably surrounded by tenuous gas.

The results gathered by these observations are relevant, but the whole work is far from
being concluded. In some cases (such as G79.29+0.46 at Imm or HD 168625 at 2mm) more
observations are needed to improve the signal-to-noise ratio. The sample may be enlarged to
more LBVs or candidates. Thorough modelling of the thermal and non-thermal processes in
each particular case would be made and later analysed. Better angular resolution would be
necessary to disclose material close to the star, presumably related to recent ejecta. Finally,
the polarimetric capabilities of NIKA2 would be useful to perform polarimetry studies in
these scenarios.
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