Lateral Variation of P Velocity in The Himalayan Crust

and Upper Mantle

a study based on observations of teleseisms at the
Tarbela Seismic Array

by

William Henry Menke

S.B.,Massachusetts Institute of Technology

1976

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

at the

Massachusetts Institute of Technology
May, 1976

e

@5/0 3/ #

Signature of Author N R R RS <7 CeTsUFEO e
Plaﬁétary Science

Department

CertifiEd by #0000 T P OO0 00E00L0009 0080830000000 000c00c0c0csaRDTe
Thesis Supervisor

Accepted by S & @ 08 0 0 8 2 00 0 28 00 2 PO S B BSOSO 0N NP OO NS e e 0
Chazirman, Departmentsl Committee

Lindgren




Contents

Abstract ....veesovescscccseccsccasossosssssceces 1
Introduction c.ieecescsesnscccsscsconsassssnsocce 3
Discussion of Data .seececesccessccsveoccscsace 7
Calculation of Travel Time Residuals .eceseeeee 13
Preliminary Examination of Data seveevsecesess 18
Inversion of the Data .eeesscesveoscssssossess W
Implication to Geologic Structure ;........... Ly
CONClUSIiONS cesseesscsoeossassssssssasacacesscs 49
AppendiX ONE seecocesscescsstsssssscscacssones 50
Appendix TWO «euveveerensisescsesseironiooaans 61

ACKnOWIedgements 8 6 06 0 065 0 0 ¢ 00 9 T8 e sty e 0 71

Bibliography S 0 0 0 98 869 0 08 0 0 8 200000000 NB TSNNSO ?2



Abstract

Three dimensional geologic structures within the
earth give rise to P velocity distributions that depart
significantly from the simplistic plane layered models
often used by seismologists to describe them. These
Three dimensional velocity distributions are observable
even they occur to depths of several hundred kilometers,
and can be reconstruéted by inverting earthquake first
arrival data. From this reconstructed velocity distri-
bution an understanding of the nature of the geologic
structures can be obtained, eSpécialiy if other geologic
and geophysical constraints are available. -

A simple type of such an inversion developed by
K. Aki, et _al(1975) is used in this study to observe ge=-
ologic structufe in the vicinity of the Tarbela seismic
array in northern Pakistan to a depth of 125 kilometers,
Since this array is located at the western extreme of the
Main Boundary Fault of the southwestern Himalayas, con-
straints on the tectonics of the Indian-Eurasian plate
collision are obtained. N

Travel time residuals from 122 teleseisms are in-
verted to estimate velocity perturbations above and below
an initial plane layered model of the Tarbela array. The
‘main features of this inversion are a clear elongation of

velocity anomalies in the northwest direction and a general

2 to 3 percent decrease in velocity across any horizontal
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blayer té the northeast., These features are interpreted as
a 4 degree dip of geologic structures in the direction
N41°E , This direction is compatable with trends of
seismicity in the Tarbela area and with the trend of the
Main Boundary Thrust southeast of Tarbela, but not with
the trend of the fault trace nor the strike of geologic
structure in the Tarbela area. Locally the faults bend
sharply westward after a loop called the Hazara Syntaxis.
The author concludes that the westerln trending surface
fault trace and wester{ﬁ striking geology are both sur-
ficial and not representative of structures at greater
depth. These deep structures within the crust and upper
mantle preserve a strike similar to more eastern areas
along the Main Boundary Thrust. They are shown to be vol-

umetricly and tectonicly the more important features.



Introduction

The Himalayan mountains constitute an important
part of the collision zone between the Indian znd Eur-
asian plates.(see Figure 1). However because of their
physical inacessablilty, and other political and eco=-
nonic factors, detailed geophysical data for this region
are scarce. Features observable on the surface or on
satellite photographs, such as outcropping stratagraphic

study
units, fault traces and relief, can be used to the very

A
large scale ( 107 to 10" kilometers ) structural and dy-
namical features of this regioﬁ. ‘This has been shown,
for instance, by Molnar and Tapponnier (1975). However,
even with the most avid extrapolation, surface features
elucidate the medium scale (102 kilometers) structure
of only the first few kilometers of crust. In contrast,
plate tectonics suggests that dynamically evolving structures
exist to depths perhaps fifty times as great. To under-
stand the details of the structure of these plates, in the
region severely influenced by their collision, requires
reliance on this scace geophysical data.

Present sources of such data are limited to gravity
measurements, seismicity maps, refraction and surface wave
dispersion studies using nearby WWSSN seismic stations, and
similar seismic data from loczl short period instruments,

Gravity data do not extend throughout the entire Himalayan

range. They are limited to the southwestern half of a range
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that has a general northwest strike. Unfortunately
it is in thiéiuwamfh& region that major differences betwecn
several hypothetical plate geometries appear, as was
noticed by Warsi (197¢).

A lack of available seismic stations to the north
of the Himalayas makes hypocenter location and depth reso-
lution poor. Refraction and dispersion studies suffer from
the averaging effects of waves passing across the strike
of geologic structures from hypocenters in the Himalayas or
to their north to seismic stations located in the Indian
shield.

The bulk of short period data, for the western Hi-
malayas at least, comes from the Tarbela seismic array.
This array is located around the Tarbela damsite in north-
ern Pakistan, and is maintained by the Lamont-Doherty Geo-
logical Observatory of Columbia University. The array
site is a few kilometers south of the Hazara Syntexis, a
" loop in the Himalayan Main Boundary Thrust (see map of array
in figure 10). Since this region is seismically active it ..z
has been possible to produce three dimensional seismicity
maps and composite fault plane solutions for selected areas
in the array vicinity. Since the array alsc records tele-
seisms it is possible to observe changes imposed on the ray
parameter vector (ie. azimuth, ray parameter) and patterns
of travel time residuals caused by structures at depth, in

order to learn the nature of these structures.



The process and results of an investigation of local
array structure consisting of an examination of teleseismic
data will be described below, Constraints on the dip of the
Moho in this region are discussed. Lateral variations in
P velocity are defeamined up to a depth of 125 kilometers by
an inversion technique recently developed by K.Aki, et al.
(1975). While no strong claim can be made that these struc=-.
tures are typical of the Himalayas in general, or even other
parts of the kMain Boundary Thrust, a knowledge of the deep
structure of the Syntexis will help constrain models of the

tectonics of the western Himalayas as a whole.
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Figure t+ Map of India and Pakistan showing elevation
contours and some political features. The Tarbela array,
from which this study is based, is the diamond shaped
marking in the southwestern Himalayas, at the western ex-
treme of the Main Boundary Thrust. The 'Z' shaped ridge
near Quetta is the Baluchistan Arc.



Discussion of Data

The data used in this invesigation consist of arrival
times from 122 teleleseisms, from a wide range of distances
and azimuths, recorded by atleast five of the stations of
the Tarbela array. The average number of stations record-
ing any one event was about 8. The final data set con-
sisted of slightly over 1000 arrival times. These data were
collected by the author by examining the original Teledyne
Geotech Develocorder traces, using Preliminary Determination
of Epicenter (P.D.E.) monthly listings as a guide to when
potentially useful events occurred. Photocopies of these
events were made and referred to at various times during the
data reduction process. While the Tarbela array has been
ocperating for approximately thrce ycars, local noise levels
prevent records from about one third that time from pro-
viding useful teleseismic data. Never the less this period
constitutes sufficient time to gather good coverage from
eastern azimuths, which include Pacific Benioff zone events.
Coverage from northern and western azimuths is somewhat
less complete but still adequate., Coverage of southern az-
imuths is poor. Only a few events from the Indian rise and
Africa were recorded, A Mercator plot of epicenters of events
used in the study is provided in figure 3.

Arrival times for events, in order to contribute mean-

>
4

ingful data to this study, must be wmeosured

> within 0.1 second or better.

Since the record of first motion is often not clear on Tar-
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bela records, no effort was made to pick it. Rather a re-
ference point at the beginning of the P wave train, us-
ually a large peak or trough, was identified and measured

at each station., This was accomplished by either visually
selecting what appeared to be the appropriate peak, or in
more obscure cases by matching peaks by means of traced tem-
plates.

Some information about the loeval velocity structure
is lost when the first motions are not picked. In partic-
ular the vertical velocity gradient can no longer be resolved.
This can be understood by picturing a teleseismic wavefront
moving up through the lithosphere (see figure 2a), starting
as a plane wave at the bottom, but becomming increasingly
corrugated as it encounters inhomogeneties at shallower deptihs.
Since the travel time for any point on this wavefront is not
measured, no recovery of vertical structure can be made. But
the degree of corrugation, which reflects differences in
travel time across the array, is measured. Wwhile net, or
absolute travel time residuals can not be determined, these
relative residuals can be, Two different methods for deter-
mining these residuals will be discussed below.

Arrival data were cleaned by several methods to im=-
prove their internal consistancy. While it is possible that
such a process may introduce bias into the data, uncleaned
“data was found to contain too much noise %o produce interpre-

table results. 1in tnis sense cleaning was considered nec-



essary.

The first step in the cleaning process was to fit,
by the method of least squares, a plane wave to the arrival
data. HRay parameter vector data from this regression analysis
were conpared to theoreticl calculations to confirm that each
event was properly identified. Residuals relative to the
plane wave were then inspected. Where they exceeded 0,5
second they were suspected of being caused by picking a re=-
ference point one cycles off from the correct cne on the
original seismogram (a typical teleseismic cgc\e is
0.75 second). Records for thege»gvgnts were double checked
and corrected where it seemed advisable,

Relative travel time residuals for all events were
then plotted, station by station, against azimuth. 0f course,
since these residuals are being ascribed to three dimen-
sional velocity variations beneath the array, they are ex-
pected to be a function of angle of incidence also, Later
stages of analysis consider them to be such. Howewer, since
most of the data has an angle of incidence between 20 and
30 degrees, the azimuthal dependence is taken to be the
stronger of the iwo. Scatter around a general trend repre-
sents either errors in measuring arrival times or'mﬁpst of
unusual angle of incidence. The last part of the cleaning
process consisted of examining each point that fell far

som the general trend in the azimuth vs. residual plot,

ascriving the scatter to one of these two causes, and re-



moving it in the case of the former.
The final result was a data set of arrivals from
122 teleseismic events that displayed a high degree of

internal consistancy.
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Figure 3 : Map showing distribution of events used in study,



Calculation of Travel Time Residuals

Travel time residuals have been computed from the
arrival data by two methods which in general produce dif-
ferent results. The first, herein called the Preliminary
Determination of Epicenter - Jefferys-Bullen (P.D.E.-J.B.)
method, consists of calculating theoretical arrival times
for each event, using the P.D.E. hypocenter locations and
origin times , the J.B. travel time curves for P and PKP
phases, and elliptical earth geometry. These arrival times
were then subtracted from the observed arrival times to
produce residuals. Since first(métions are not picked, the
residuals are generally found to be negative and several sec-
" onds in magnitude. The mean residual is then subtractad
from the residuals for each event to produce a set of rel-
ative residuals that reflect the corrugation of the wave-
front. The ray parameter vector calculated by the F.D.E.-
J.B. method need not coincide with the vector as measured
at the array site ( by fitting a plane wave to the arrival
data ), If the difference, or residual ray parameter, is
attributable to velocity gradients within the Tarbela array,
thén this method provides useful information about those
gradients. If however they are due to source effects, or
to errors in computing the ray parameter from the travel time
. tables, then they bias any reconstruction of the local vel-
ocity structure.

The second metnod avoids problems associated with us-
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ing standard locations and travel times by, in effect, us-
ing the arrival data to calculate these quantities. The
ray parameter vector is .determined by fitting a plane wave
to the data by a linear regression. Residuals are measured
relative to this plane wave, and already have zero mean.

By this method no errors can be introduced by either source
effects or regional propagation effects, as long as these
do not corrugate the plane wave. Unfortunately the average
velocity gradient across the array may no longer be resol-
ved., Structures tnat shift a plane wave uniformly, such

as a dipping interface, are not seen by this method. 1In
contrast the P.D.E.~-J.B, method would detect them, Rel-

. ative residuals are plotted against azimuth in Figure 4,
The smaller magnitude of the residuals calculated by the
plane wave method is a result of losing two degrees of fre-
edom from the arrivak data when determining the components
of the ray parameter vector. Both methods of calculating

residuals are presented schematieally in Figure 2,
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Preliminary Examination of Data

The ray parameter vector information obtained through
the linear regression can be used to examine gross changes im-
posed on the ray parameter vector by structures under the
array. Such a method uses no complicated inversion tech-
niques, but rather consists of comparing, in some graphical
manner, the ray parameter vector for each event as obser-
ved by the linerar regression and as predicted by the F.D.E.-
J.B. method, Such a comparison is shown in Figure 5.

Any interpretation of Figure 5 must involve a careful
consideration of factors which may influence measurement of
the ray parameter vector. Since the Tarbela array is not
.located on a horizontal surface, but rather rests on terrain
whose elevation increases northeastward , elevation effects
must be removed from the arrival data in order ta correctly
determine the ray parameter vector. This in turn requires
a knowledge of the P velocity in the top kilometer of the
array, which in fact has not been determined in any exact
sense. Secondly the actual depth of the velocity gradients
responsible for changing the ray parameter vector can not be
determined. While the author shall argue that they are local,
resulting from a dipping lioho, one could equally wéll argue,
on the basis of these data alone, that much shallowee or
deeper gradients, or even source effects (as is argued by
Davies and Shéppard (1972) :in connection with the LASA array)

contribute significantly to the observed shifts,
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A crude idea of the near surface P velocity can be
obtained by examining the variation of the mean residual
for all events measured at one station as a function of the
elevation of that station. Although many factors, including
shallow inhomogeneties that effect only one station, may
contribute to the mean residual, elevation may reasonably
be expected to dominate the effect. A plot of mean station
residual vs. station elevation is shown in Figure 7. Con-

siderable scatter is present, but ,elatively high stations

tend to be relatively late. > This variation is

rd

more or less consistant with a velocity of 5 km/sec in the
upp;r kilometer of the crust. Certainly this is a simpli-
fication since the velocity under each station may vary
from station to station. ﬁever the less the effects of
a 5 km/sec layer has been removed from the arrival data.
Upon examining the array diagram in Figure 5, a con-
sistant shift in the ray parameter is discovered. In par-
ticular the ray parameter is shifted about 0,3650.05 sec/deg
in the direction N232°E;1°. As shown in Figure 6, such a
shift can result from a dipping interface, and is approx-
imately independent of the ray parameter vector of each
event. The author shall assume that this dipping inter-
face represents the iioho., Such an assumption is justifi-
able on the grounds that in general the largest_.velocity

contrasts are to be found at the Moho., It is also justi-

fiable on the grounds that a Moho dipping, as the data
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suggest, in the northeastern direction is compatable with
several recent tectonic models of the Himalayas which con-
sid=r portions of the Indian Plate'thrusting under the mat-
erial to the northwest. If the ioho velocity contrast is
assumed to be 6.4 to 7.8 km/sec, the observed shift in the
ray parameter corresponds to & dip of about 7 degrees.

Since no elevation corrections have b:en made to these
data, and since the slope of topography produce a shift in
the same direction as the dipping interface, a dip of 7
degrees should be considered a maximum dip. When the data
are corrected for elevation, the shift in the ray parameter
is smaller : 0.20%0,05 sec/deg in the direction N221°E%#1°,
This corrected shift leads to a best estimate of Moho dip
of 4 degrees in the direction N41©E, Since the choice of
a near surface velocity of 5 km/sec may have either over-
or undercompensated for the effect of station elevation, this
estimate should be viewed as heving an uncertointy or & or 3 dogrees .
Regardless of the actual magnitude of the dip, a dip in the
northeastern direction is compatable with the trend of the
Main Boundary Fault southeast of Tarbela, and with the trend
of the zone of high seismicity that occurs just to the north

of the array (see Figure 10),
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Figure 5 : Ray parameter residuals plotted against azimuth
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Inversion of the Data

The travel time residuals shown above have been
inverted by the method of K. Aki, et al (1976). Sol-
utions to the matr;x equaticns thﬁydertva have been
found by the damped least squares method of Levenberg
(1944), This method provides stable, although somewhat
smoothed solutions. The inversion yields a first order
estimate of the velocity perturbations necessary to min-
imize the summed squares of the travel time residuals,
when an initial plane layered model has been divided in-
to a number of blocks and the velocity of each block
allowed to vary independently. Because relative resid-
uals are used,the velocities in each layer are determined
only up to an overall additive constant.,

Only small (less than one percent) errors seem to
result from using an initizl model that departs from the
actual laterally average velocity structure by as much
as ten percent. It is nevertheless desirable to chioose
an initial model that is approximately correct for the
Tarbela area. For this purpose a set of velocity models
for the Himalayas were taken from the literature and com-
pared in Figure 8, This set includes five refraction
studies, two of which correspond to the southern Himalayan
. foothilis. and a structure currently used to locate events

around the Tarbela array by the Hypo '71 locaticn program,

- 24 -



The Tarbela structure was designed to adequately locate
both explosions at the Tarbela damsite and earthquakes
of known hypocenter outside the array. Since the Tarbela
structure closely resembles. the Himalayan foothill models,
the former was used as an initial model in the inversion.,
The crustal layers of this model were averaged into one
homogeneous crust, of velocity 6.1 km/sec overlying a man-
tle of velocity 7.8 km/sec. The Moho is taken to be at
a depth of 33 kilometers. Four layers were cut from this
initial model and further divided into 280 blocks each
20 x 20 kilometers in width. Velocity perturbations, in
per;ent above and below the average velocity of each layer
were determined for as many blocks as data*permitted. The
uppermost layer in the inversion is taken to represent the
crust, the lower three layers the upper 120 kilometers of
the mantle. The initial model is specified in Table 1.
The P.D.E.-J.B. and plane wave residuals were used
to construct two laterally varying Tarbela velocity struc-
tures. These are shown as three dimensional constructions
in Figure 9. Only the blocked in area of each layer has
been resolved, and within that area low velocity regions
have been shaded. Contour maps, correlatable with seismic-
ity and geologic maps have been provided in Figure 19, Each
contour corresponds to a one percent perturbation of the

"original velocity model. It should be noted that the edges

of the inversion do not correspond to the north and east

-

- 25 -



directions in the Tarbela area but are rotated 16 de-
grees counterclockwise with respect to them,

The two inversions shown in Figure 9 show consid-
erable similarity. Iost differences can be accounted
for by the different resolving powers of the two methods,
and by the difficulty in resolving average lateral grad-
ients by the plane wave method. The crustal layer. shows
a saddle shaped velocity structuze, with low velocity
regions in the northeast and southwest quadrants. The
maximum contrast occurs in the crustal layer, amounting
to somewhat more than 5 percent or 0.3 km/sec, in the P.D.E.-
J.B. inversion. As is to be expected by the smaller re-
siduals calculated by the plane wave method, contrasts in
‘the plane wave inversicn are smaller, about 2,5 percent
or 0.15 km/sec. The mantle layers show a velocity structure
that decreases in the northeastern direction. This struct-
ure is rather different from the crustal layer, although
the high velocity regions in the northwest quadrants of the
crust and upper mantle seem to be part of the same structur-.
al unit., A northwester{3 trending low velocity zone
appears in both inversions and in all three mantle: layers.
This structure is not vertical, but rather dipps to the
northeast af about seventy degrees. Since the inversion is
subject to some vertical smoothing, the actual vertical ex-
"tent of this structure 1is frobd\a less han ohserved | or abeuvt
88 Kmi . The fé?th layer of the inversion, although still

showing the same genéral trends of the upper two mantle
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layers, shows more small scale inhomogeneties. These are
taken to be noise.

By constructing a three dimensional laterally var-
ying velocity structure for the Tarbela area, 55 percent
of the observed data variance (the summed squared of the
travel time residuals) can be accounted for. This re-
duces the residuals to approximately the 0.1 second reso-
lution limit caused by limited accuracy in reading the or-
iginal seismograms.

Implications of this velocity structure to geologic
structure in the Tarbela area, and to Himalayan tectonics

<
will be discussed below. .
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Table One

The Initial Model Used in the Tarbela Inversion

Layer # Velocity Thickness Depth of Center
(km/sec) (lem) (km)
1 6.1 33 : 15
2 7.8 ko b5
3 7,8 ' 4o 85
N 7.8 Lo 125



3

Method # of events
" PDE - JB 122
plane wave 122

Table Two

The Results of the Inversions

# of obser- data variance residual
vations (sec?) variance
991 0,043 0.0192
991 0.021 0.0096

% improve- # of blocks
ment observed
55. 229
55 226
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Figure 8 + A comparison between some recent plane layered
Himalayan velocity mcdels and the initial model used in the

inversion,

Note the similarity between the Himalayan Foothill

and Tarbela area models, The initial model used in the in-
version is a simplified Tarbela area mcdel.



Kilometers

ne

Garbela array P- veloczz}y structure pé-sh

240 km.

Y

Tinirs

ns

vertical exaggera tion 2:1  contoured m percent
gf aue}‘a%e lader velocth

Figure + Final inversions of the F.D.E.-J.B. (this page)
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ual data. Triangles on the top of the inversion are the
stations used in the inversion., All contours are in per=-
cent above and below the average layer velocity (see table
one)., Velocity anomaly magnitudes for each layer are deter-
mined only up to a constant,
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Figure 10 (next 10 pages)

Final inversion of the Tarbela data contoured in per=-
cent above and below the average layer velocity. The
four layers of the P.D.E.-J.B. inversion are labled
with the letters PDE followed by the layer number. In
a similar manner the layers of the plane wave inversion
are labled with PW. These contour maps can be over-
layed on the geologic or seismicity maps.

Geology within the blocked in area of the map is taken

from a detailed map prepared by Calkins, et al (1972).

Formations ouside the blocked region have been sketched
off a much less accurate map of Himalayan geology pre-

pared by the United Nations (1971).

Triangles on the séismicity map show the loca*ions of
the stations of the Tarbela array., Small circles are
recent seismic events. The logp in the thrust fault is
the Hazara Syntexis. Note the correspondence of the
trend of the velocity anamalies in the inversions and
the trend of the zone of intense seismicity in the top
center of the map., These features are nearly parallel.
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Implication to Geologic Structure

In discussing the implication of the Tarbela in-
version to geologic structure in that area it is first

necessary to consider evidence that such an inversion

actually closely approximates the ?.existing
structure. While this is the original intent of the in-
version, the question is by no means unimportant or trivially
answered., A variety of factors, including assumptions
regarding the applicability of ray theory, the station con-
figuration, and the data quality are involved in providing

a satisfying answer. To examine the reliability of the

' inyersion method a series of experiments were performed
wherein data corresponding to a known structure were

inverted. s Such

an inversion was performed using a block configuration sim-
ilar to that used in the Tarbela inversion, using synthe-
tic data created for a Tarbela-like array. The method of
creating these data is given in Appendix One and the inversion
of it in Appendix Two, Satisfactory results were obtained
although some vertical smoothing of structures occurred.,
Granting that the velocity structure observed by the
larbela inversion closely resembles the actual Tarbela struc-
ture, it is necessary to consider the causes of observed in-
homogeneties., Four factors predominate in controling the

P wave velocity. These are the composition of the rocks,
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the number of cracks per unit volume, the temperature of
the rocks, and their degrée of weathering. Relatively
unconsolidated, cracked, hot, or weathered rocks have the
lower velocities. Of these four factors any one can have
a roll in determining or modifying the velocity of the
crust. The isolation of the mantle from the weathering
processes of tne surface and the pressure at that depth
suggest that weathering and cracks are of secondary impor-

tance there.

The Crust

In examining Figure 10, by overlaying layer 1 of the
P.D.E.~-J.B. inversion on the geologic map, little correspon-
dence can be found between the boundaries of geological
formations and the contours of the crustal inversion. Nor
is any single formation consistantly high or low, with the
. exception of the Tertiary granite which lies completely in
the northeastern, low velocity quadrant of the overall sad-
dle shaped crustal velocity structure. Although the age of
this granite suggests that it is cocl, the con-
sistant decrease in velocity toward the central portions of
the granite body could reflect residual heat in those porticns.
More probable9 as was suggested by Calkins, et al
(1972) this granite is associated with partial melting
above the thrust zone. It therefore ranges from zero thick-

ness at the fault trace to several kilometers thicK at the
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array edge. In this case the granite, as well as other
portions of the upper thrust sheet, contribute only
slightly to perturbations found in the crust. The inversion
is actually yielding information about the lower thrust
plate. The northwestern trend of the ridge of the saddle
is approximately parallel with the trend of the Main Bound-
ary lhrust southeast of the Hazara Syntexis, and with the
zone of intense seismicity northeast of the Syntexis. This
trend, and its counterpart in the mantle (which will be
discussed below) suggest that the overall tectonic picture
of the crust in the Tarbela area is much the same as for
regions to Tarbela's southwest. These features maintain

a northwest strike, unlike the surface features observed in

the vicinity of the syntexis.
The Mantle

The inversion of the P.D.E.-J.B. data (which con-
tains the most information of the two data reduction
schemes used) shows a general decrease in velocity across
the array area to the northeast. This trend is evident
in all three layers of the mantle inversion, although most
prominent in the upper two. The observed gradient is the
manifestation in the inversion of the regular shift in the
ray parameter vector, which has previously been inter-
'preted as a northeasternly dipping Bioho having northwest
strike. Since the lower thrust plate causes a thicken-

ing of the crust towards the northeast, and a depressing of

- 46 -



velocity contours in that direction, eash layer in the
inversion snows this decrease, although it is most prom-
inent in the uppermost layer. The elongated low velocity
anomaly that is clearly present in all three mantle layers
is a feature which also strikes in the nortnwest directiun.
Its relatively small horizontal width and considerable
vertical extent (at least 80 kilometers) raise difficult
questions as to its interpretation. One explanation is

to postulate a zone of nprmal faulting associated with the
downward flexing of the lithosphere in the area. The lack
of any seismic activity correlatable with this feature pro-
vidé; no supporting evidence for such a conjecture. iiore
likely is the possibility that this feature is due to a
high temperature zone assoéiated with magmatic intrusion in
this confined area. The seventy degree dip of the anomaly
implies either emplagement at that angle or deformation

of the lithosphere to produce such a dip from an originally
vertical one. Such deformation is to be expeeted in a down-
thrusting lithosphere, since the top surface, in exper-
iencing drag from the upper plate, is slowed down relative
to the bottom of the lithosphere, which is presumably closer
to the driving mechanism of the plate. Shear deformation

of the lithosphere takes place. In either case the suggestion
of magmatic intrusion at this depth is a2 suprising one
"since a source of heat and magma must be postulated below

the thrust zone of the Main Boundary Fault. One plausable
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source of such heat and macma is from motion (aseismic
motion in this region because of the constraints of local
seismicity) along a deeper thrust zone. Such a zone

would constitute the youngest of a series of three imbri-
cated thrusts, the other two of which outcrop to the

north : the Main Boundary and dain Central Thrusts., The

new thrust zone would presumable outcrop to the south

of Tarbela. No such outcrop is observed, but recent tec-
tonic models of the Himalayas (see for instance LeFort (197%))
as well as weak seismic evidence (see for instance kienke

and Jacob (1976)) suggest that the idea is viable. The
author daes not intend to assert that the observed velocity
anomaly is sufficient evidence to conclude such thrusting
and frictional melting is taking place., Yet it is plausable
that such melting would tend to occur at a specific depth
along the strike of the thrust, leading to a velocity anom-

aly of shape similar to the observed anomaly.
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Conclusions

Although surface geology suggests that the Main
Boundary Fault bends southward to join the strike-slip
faults of the Baluchistan Arc, the deep structure, as
learned through the Tarbela inversion.indicates that the
bulk of the lithosphere maintains the general northwest
strike found in more central parts of the Himalayas.

Since the Main Boundary Thrust is expected to eventually
join some northernly trending strike slip fault, we arc led
located
to gonclude that it must join such a faulé«consideraﬂy to
the northwest of Tarbela. A likely candidate is the Quetta
Chaman Fault, which is located several hundred kilometers
west of the Baluchistan Arc., Tectonic evidence, and to
a lesser extent seismic evidence (see for instance Molnar
and Tapponnier (1975)) suggest that considerable motion
takes place on this fault., The surface structures found
around the Tarbela area, and perhaps some of the northern
Baluchistan Arc as well, are to be understood as shallow
features not governed by the overall tectonics of the regicn.
They were formed by secondary processes perhaps including

gravity slumping from higher elevations to the northwest,
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Appendix One

Semi-Analytic Travel Time Residual Calculation for Simple

But Non-Trivial Geometry

An algorithm for calculating travel time residuals
for a plane wave impinging upon a sphere of radially sym-
metric velocity distribution imbedded in a homogeneous
half space is presented below, Such an algorithm, though
it can be thought of as modelling geologic structures such
as batholiths, is useful mainly in that semi-analytic sol-
utions to the ray path equations can be found, atleast for
specific (but non-trivial) velocitng}stributions. The
high accuracy and low cost of such a method make it useful
in providing synthetic data corresponding to a known struct-
ure, by way of which inversion procedures can be tested.

A test of the inversion method used in the Tarbela study
will be made below,

The chiéf virtue of choosing a spherically symmetric
velocity anomaly is that raypaths from a plane wave to
points (ie. geophones) above the sphere are cylindrically
symmetric about an axis which passes through the sphere's
center and which is also normal to the plane wave. Choosing
to work in this cylindrical coordinate system, whose or-
jentation is determined by the azimuth and ray parameter of
the plane wave, reduces the problem to one independent of

polar angle, and thus to a two dimensional problem.

- 50 -



After choosing the velocity to be continous across

the sphere's surface (which can always be done since a small

shell of the half space can be included as part of the vel-

ocity anomaly), the condition that a ray start normal to

the plane wave and pass through the point at which the geo-

phone is located is given by (see Figure 1) :

fe)=a + @) +AE@)-x =0

where A
1)

AR

These functions are,
theory :

(@) = - tan?

where 1 RS s

%5139 .

angle between the z axis and the
exit point of the ray from the sphere

angle of incidence of the ray with
respect to the sphere's normal

angle between the entry and exit
points of the rat and the sphere's
center, -

by simple geometry and spherical ray
Vb - Rs sin«

L9-Rs cos«

radius of the spherical velocity
anomaly

cylindrical coordinates of the
geophone,

S
A = 2p] (p-p) dr

where 4
n

C t
R

Ry °

Ry

ray parameter relative to the sphere
slowness

velocity

radial distance to sphere's center

bottoming radius of ray in sphere +

-
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and p= r‘l(Rs) 5tni(0()
n= R/C(R)
Rp= P C(R)

In the case of a monotonically increasing velo-
city distribution within the spheré, limits can be placed
on the parameter alpha. The minimum alpha is associated
with a line that is normal to the sphere and which passes
through the geophone., If the geophone is not geometrically
shaddowed by the sphere (ie. ry greater than Rg) the maximum
alpha is associated with a line that is tangent to the
sphere and which passes through the geophohé. In the case
where the geophone is shaddowed the maximum alpha is associ-
ated with a line that is parallel to the z axis and which

passes through the geophone (see Figure 2) . Then 1

Cmin = t“"'j{r’/%j)
(s (3/Rs) 1 4R

“myz <

Rs
’ 0 ‘-1 (] " Z R.s
Xymin +cOS (,9:.*2’3)/9 9
L -
If no zero to the function f can be found within the above

limits, then no ray passes through the sphere and connects

~the geophone to the plane wave.

Once the correct alpha has been found the travel time

through the sphere is given by :
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- R ‘
tok = 2 [ WdR/ROE-p1)™
Rp

The travel time for the entire 'refracted' ray is given

by adding the contribution of the top and bottom straight
ph' The starting time is
arbitrarily taken to be the time when the plane wave reaches

portions of the ray path to ts

the bottom of the sphere., Then:

tha = Rs [1"”5(""’“”13))/(:(“5)
tiop = [(29-Rseos™ (5 - Rysina)?] [C (Rs)
| trg-' = l'[,‘,t t lsph ¥ t{or l

In the case when rg is greater than the radius of the

sphere, no shaddowing of the geophone from a direct ray taxes

place. The travel time of the direct ray is given by 1

t’ - Rs"’ZJ
dir C(Rs)

The travel time for the first motion is given by the smaller

of the direct and refracted ray travel times,

Travel time residuals can then be calculated by a
method analagous to the P.D.,E.-J.B. method used in the Tar-
bela study. The travel time for the direct ray is cal-
culated from the expression given above whether or not it
- actually exists, and its time subtracted from thé actual

travel time. Relative-—residuals are then constructed by

~
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removing the mean residual. Plane wave residuals can also
be calculsed by fitting a plane wave to the arrival time
data.

If the velocity in the sphere is chosen to be

C(R)= a-bR*

where a, b are real positive constants, then rays passing

through the sphere have a constant radius of curvature

P> (),b,»)“1
P

Since at the exit pointAofthe ray from the sphere (see Fig-

given by

ure 3) the slope of the ray (in the cylindrical coordinate
system) is known (it is the same‘as the'slope of the straight
ray in the upper portion of the half space), the coordinates
of the circle's center can be calculated as a function of

alpha. The equation of the raypath through the sphere is

.
= - 2 _ T 5t KL
% = W= [p2-(Zp0)’)
The ray's cigfer of curvature is at (u,w). The ray's slope is:
A ”l - 11/)'
= & = (Zp-W(p2-(z7-
Y = dz lzp = (Rp~ W2 -(z0)’)
Since the slope at point P is known to be
»!' = (R sim()/( ~Rs cosx)
p T VIV Z3-Rs
the above equations can be solved to yield

U= [Qscosa(-);;f'(jﬁ;ﬁgfjﬁth
W= Rssind + [ p2 - (R cosa-u)?]

Then 3
% = ’tanal(;?) -«

Ry= (W)™ -p :

- 54 -

1/2



Since the function f now contains only elementary fun-
ctions of the parameter alpha, its zero can be calculated
by simple numerical methods.

One the appropriate alpha has been determined, travel
time through the sphere can be numerically determined by
intergrating the travel time ds/C(r), where ds is the arc
length, over small segments of the now known ray path. In
practice the raypath can be divided into many small arcs,
and the velocity over any arc taken to be the velocity at
the arc's midpoint.

Synthetic travel time residuals were calculated for
the stations of the Tarbela array by the method described
above., The half space was assigned a2 veloéity of 6,0
km/sec which increases quadratically to 6.6 km/sec at the
center of the anomalous sphere. 71his sphere was located
at a depth of 30 kilometers beneath the array's center and
had a radius of 25 kilometers. Graphs of residuals ¥s. az-
imuth are shown in Figure 4 for several choices of ray
parameter, The inversion of this synthetic data is dis-

cussed in Appendix Two,.
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Figure s Refracted ray reachlng geophone after passxng
through the spherlcal velocity anomaly.
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Figure 2 s+ Limits of the parameter alpha.
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Figure -3 3 When the velocity anomaly is spherically symmetric
and has a velocity distribution that quadratically increases
toward the sphere's center, the ray path is a circular arc
whose center, at (u,w) can be easily determined.as a function

of the parameter alpha.
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Appendix Two

Inversion of Synthetic Travel Time Residual Data

In order to examine the reliability of the inver-
sion method used in the Tarbela study, synthetic data
corresponding to a sphere imbedded in a homogeneous
half space was inverted for the station and block con-
figuration of the Tarbela network. Four tests of the
inversion were run, corresponding to processing the data
by the "P.D.E.-J.B." and plane wave methods for two choices
of data coverage. More information aﬁout this data is
given in Table 1 and in Appendix One. All data had one
of three ray parameters, corresponding to near, intermediate
and very distant (PKFP) events,

The most accurate inversion was obtained in Case A
(see Figure 1A and Table 2), where all synthetic data for
the "P.D.E.~J.B." case was used. Examination of Figure 1A
shows that the spherical velocity anomaly, 25 kilometers in
radius and centered at a dcpth of 30 kilometers, has been
sucessfully located on the first three layers of the model.
The maximum contrast is about 8 percent, somewhat lower than
the actual contrast of 9 percent, but reasonable since that
conteast is found at only a small volume at the séhere‘s
center. Layer four, which should be free of velocity con-

trasts since it is below the Xkevel of the sphere, shows a
pattern of residuals remanescent of the sphere, Structure

has been projected downward to this level. However con-

d

- 61 -



trasts on this. layer are smaller than on the upper three
layers, a maximum of about two percent. Layer five shows

no obvious structure and has very low contrast. The maximum
contrast on layer five is about one percent, but the average
is much closer to 0.5 percent. Layer five.contrasts are
taken to be within the noise level of the inversion method.

When data corresponding to the most shallow angles of
incidence (about 36 degrees or a ray parameter of 11 sec/deg)
were left out of the inversion, results were considerably
poorer., Little change takes place in fhe first three layers
of cgse B, which remain substantially unalteread from case A.
Layer four, however, is much more poorly r¢§olved. Some-
what more of the sphere is projected onto this layer. The
contrast on this layer is somewhat nigher tnan on layer four
of Case A 3 2,5 percent, but still substantially lower than
onthe layers where the sphere is actually located. Layer
five now shows some consistant structure but has very low
contrast.

When travel time residuals are calculated by the plane
wave method, calculated ray parameters and azimuths differ
from those of the actual plane wave used to generate the data.
These differences are a function of both the shape'ofthe ve-
locity inhomogeneitits and the station distribution. Because
rays are no longer traced along their cerrect paths, errors
-result in the final inversion, The causes of the travel time

residuals are assigned to the wrong blecks of the initial
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model., Two parameters, namely the plane wave's azimuth

and ray parameter must also be determined from the data

of each event, thus the degrees of freedom are reduced

by two. For this reason residuals tend to be smaller than
those computed by the "P.D.E.-J.B." method. As a conse-

' quence the inversion of the plane wave data is expected

to show less contrast in velocity perturbations, than does
its "P.D.E.-J.B." analogue., Examination of Figures 1C and
1D show both of these features. The maximum contrast is
lower than in Cases A and B s about 7 percent as compared to
8 percent, Regions of positive Yelocity perturbation occur
outSide the region occupied by the sphere, along the edges
of the resolved area. Once again the presence of data

with léfge ray parameter gfeatly increcses the depth resolution
of the inversion,

Although the considerable success of the inversion
method in inverting data for a spherical velocity anomaly
imbedded in a nomogeneous half space does not guarantee its
sucessful application to inverting Tarbela - or any other -
structure, it provides credibility toward the notion that
such an inversion can be used to study medium scale geologic
structures. Caution must be exé%ised in assigning minimum

4 sign freant
depths to the bottom of structures since aAdownward pro-
jection of structures occursunless events with large ray
parameters are used. The problem of downward projection of

structures is taken to be of secondary importance in the
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Tarbela inversion because the data used in that inversion

contains these. large ray parameters.
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ray parameter
(sec/deg)

Table One

Synthetic data used in Inversion

distance to angle of in- # of

event (deg) cidence (deg) events

11

110 10 25
60 22 50
20 36 20

azimuthal

spacing (deg)

144
7.2
18.0



Layer

[V, U~ W S T

Case

O Q w >

A.

B.

Table Two

Initial Model used in Inversion

box siz km

20 x 20
20 x 20
20 x 20
20 x 20
20 x 20

thicknesg {km)
20

20
20
30
Lo

Data for individual Inversions

method

"PDE~JB"
"PDE-JB"
plane wave

plane wave

ray parameter
(gec/deg)

3,7,11
3.7
37,11
3,7

initial velocity (km/sec)

——

6.0
6.0
6.0
6.0
6.0

% improvement in account-
ing for residuals

90
95
90
90
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the inversion scheme s+ its tendency to vertically smooth

structures.
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