Commissioning of the ATLAS Pixel Detector with Cosmic Ray Data

Beniamino Di Girolamo - CERN on behalf of the ATLAS Collaboration

9th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors 30 September - 2 October 2009, Florence, Italy

Outline

- ATLAS and its Inner Detector
- The ATLAS Pixel Detector and its commissioning
 - Calibration and Cosmic ray data taking
 - Threshold, noise and masked pixels
 - Time-over-Threshold and timing
 - Resolution, efficiency and noise occupancy
 - Lorentz angle
- Status and expectations
 - Readiness for collisions and long term operations

The ATLAS Detector

The ATLAS Inner Detector

- 2 T solenoidal magnetic field
- Acceptance |η|<2.5 (transition radiation tracker |η|<2)
- Momentum resolution $\sigma(p_T)/p_T = 0.05\% p_T [GeV/c] \oplus 1\%$
- Impact parameter resolution (0.25< $|\eta|$ <0.5) $\sigma(d_0) = 10 \ \mu m \oplus 140 \ \mu m / p_T [GeV/c]$

The ATLAS Pixel Detector

Page 5

- Requirements:
 - Position resolution in rφ-direction < 15 μm
 - 3 track points for $|\eta| < 2.5$
 - Time resolution < 25 ns</p>
 - Hit detection efficiency > 97%

- Basic Properties:
 - 1744 Pixel Modules on three barrel layers and 2 x 3 disks
 - 80M readout channels
 - Innermost layer at 5 cm
 - Radiation tolerance
 500 kGy / 10¹⁵ 1 MeV n_{eq}cm⁻²
 - Evaporative C₃F₈ cooling integrated in local support structure → Module temperature below 0 °C

How close to the beam pipe? See next slide

430mm

End-cap disk layers B. Di Girolamo - Commisioning of the ATLAS Pixel Detector - RD09 30 September 2009

Barrel Layer 1

Barrel Layer 0 (b-layer)

Barrel Layer 2

The ATLAS Pixel Module

The Pixel Detector commissioning

August-December 2008 Functionality checks, calibrations and cosmic ray data 240 k tracks with field off, 190 k tracks with field on May-July 2009 Short calibration period and cosmic ray data 90 k tracks with field off, 180 k tracks with field on Restarted mid-August 2009 5 weeks for calibration and very soon in continuous cosmic ray data taking until beam comes

Threshold and Noise: Masked Pixels

- □ Threshold setting: 4000 e⁻
- Threshold tuned pixel by pixel, threshold dispersion ~ 40 e⁻
- \Box Fraction of masked pixel $\sim 0.02\%$

Time over Threshold

- □ FE Chips provide Time over Threshold information for each hit
 - Nearly linear dependence on deposited charge
- □ Pixel-by-pixel tuning; chosen tuning: 30 BC for 20 ke⁻
- Calibration by means of test charge injection

Time over Threshold and Resolution

- Charge measurement with ToT in cosmic ray data taking
 - "Landau" peak at 18300 e⁻ (Simulation 19000 e⁻): Confirms ToT Calibration
- Impact on resolution: still limited by statistics, but noticeable

Tracks

- Track with 8 pixel hits on track (2 x 2hits in module overlap regions)
- Red: hits on track
- Green: isolated hits (noise)
- Noise occupancy:
 - ~ 10⁻¹⁰ hits/pixel/BC

Timing

- Each hit has to be assigned to the correct bunch crossing (25 ns)
- Module clocks have to be precisely aligned with the bunch crossing clock
- In cosmic ray data taking: readout of 8 consecutive BCs (plot shows hit time w.r.t. beginning of readout window)
- Correction of propagation delays:
 - First step: time alignment of readout crates (oscilloscope measurements)
 - Second step: time alignment of modules (using cable length data)
- Remaining effects:
 - Trigger jitter
 - Random phase of cosmics
 - □ Timewalk; "in-time" for less than ~5000 e⁻
- Plan to start data taking with 5 BC, later reduce readout window to 3 BC and 1 BC

Alignment

Page 17

- Alignment of pixel barrel modules from cosmic data
 - Beam data needed for end-cap alignment
- Alignment not yet perfect due to limited statistics, but large improvement w.r.t. nominal geometry and good starting point for alignment with beam:
 - Precision direction: 128 μ m \rightarrow 24 μ m

beam direction: 282 $\mu m \rightarrow$ 131 μm

Efficiency and Noise Occupancy

- After alignment measured efficiency is > 99.7% for active modules
 - □ Noise occupancy after masking of noisy pixels: $\sim 10^{-10}$

Fraction of masked pixels: 10⁻⁴

Lorentz Angle Measurement

- $\hfill\square$ Cluster size vs. track angle with and without magnetic field \rightarrow Measurement of the Lorentz angle
- Measured value close to expected value (225 mrad)
- Theoretically expected dependence on mobility can be nicely seen when including modules of different temperature
 - Measured: (-0.78 \pm 0.18) mrad/K, expected: -0.74 mrad/K

Status and expectations

Page 20

- □ The ATLAS Pixel Detector has been commissioned in a relatively short time
- Noise ~ 200 e⁻, threshold tuned at 4000 e⁻ with a dispersion ~ 40 e⁻, m.i.p. signal at ~19000 e⁻
- The cosmic data taking has been extremely useful
 - Timing already in good shape: plan to reduce the readout window rapidly
 - $\blacksquare~$ Resolution \sim 24 μm in the precision direction, efficiency > 99.7 %
 - **D** Noise occupancy $\sim 10^{-10}$, 10^{-4} fraction of masked pixels
- □ Starting from this year all cooling loops are operated
 - Modest amount of coolant leak: studying the effects under irradiation
- □ 1.6 % of the detector is not functional due to on-detector failures
- Tuning at lower thresholds for beam related studies

<u>The Pixel Detector with \geq 98% working modules is ready for LHC</u>

