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ABSTRACT 

A new mesoscale modeling technique for the thermo-mechanical behavior of amorphous metals 

is proposed.  The modeling framework considers the shear transformation zone (STZ) as the 

fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an 

ensemble of STZs on a mesh.  By employing finite element analysis and a kinetic Monte Carlo 

algorithm, the modeling technique is capable of simulating processing and deformation on time 

and length scales relevant to those used for experimental testing of an amorphous metal.  The 

framework is developed in two and three dimensions and validated in both cases over a range of 

temperatures and stresses.  The model is shown to capture the basic behaviors of amorphous 

metals, including high-temperature homogeneous flow following the expected constitutive law, 

and low-temperature strain localization into shear bands.  Construction of deformation maps 

from the response of models, in both two and three dimensions, match well with the 

experimental behaviors of amorphous metals.  Examination of the trends between STZ 

activations elucidates some important spatio-temporal correlations which are shown to be the 

cause of the different macroscopic modes of deformation.  The value of the mesoscale modeling 

framework is also shown in two specific applications to investigate phenomena observed in 

amorphous metals.  First, simulated nanoindentation is used to explore the recently revealed 

phenomenon of nanoscale cyclic strengthening, in order to provide insight into the mechanisms 

behind the strengthening.  Second, a detailed investigation of shear localization provides insight 

into the nucleation and propagation of a shear band in an amorphous metal.  Given these 

applications and the broad range of conditions over which the model captures the expected 

behaviors, this modeling framework is anticipated to be a valuable tool in the study of 

amorphous metals. 
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1. Mechanical behavior of a metallic glass 

1.1. Introduction 

While amorphous materials have existed for a long time, amorphous metals, also known as 

metallic glasses, were discovered about a half-century ago by Klement et al., who rapidly 

quenched a mixture of gold and silicon to form an alloy with amorphous structure [1].  This rapid 

quenching caused the melt to kinetically bypass crystallization through limited atomic mobility, 

thereby freezing the system into a meta-stable configuration with no long range order.  Since this 

time, the formability of metallic glasses has been improved through complex alloying 

compositions to form larger samples or bulk metallic glasses (BMGs) at slower cooling rates [2, 

3].  BMGs have sparked scientific interest for many reasons, but a significant portion of this 

interest originates from the impressive suite of mechanical properties they possess [4]. 

For example, BMGs often exhibit yield strengths and elastic limits in excess of their 

polycrystalline counter-parts of similar composition, as illustrated in Figure 1.1.  These 

properties, among others, would suggest that metallic glasses might be good candidates for use 

as structural materials, but at ambient temperatures they exhibit very little plasticity before 

failure through shear localization [5, 6].  While this poor ductility precludes their immediate 

application as a structural material, their high temperature response, which is homogeneous in 

nature, suggests the possibility of using BMGs in certain shape-forming operations. 

 
Figure 1.1 Ashby plot comparing several materials classes 

The range of strength and elastic limit for several materials classes are 

compared where glassy alloys, or metallic glasses, exceed the properties of 

other structural metals.  Figure taken from [4]. 
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1.2. Deformation Mechanisms 

Central to understanding the diverse modes of deformation observed in amorphous metals are the 

microstructural mechanisms whose collective action yield the responses measured on a 

macroscopic level.  In spite of the large body of literature devoted to studying metallic glasses, 

no single unifying theory or microscopic mechanism has been identified and confirmed to be 

‗the‘ unit of deformation [7, 8].  In contrast, polycrystalline materials benefit from the well 

established theory of dislocation motion to describe atomic behavior, a theory which becomes 

useless in BMGs where no long range order exists.  This lack of long range order makes it 

difficult to define a unique unit process across an extensive range of metallic glass alloying 

compositions where local environments can vary significantly.  The difficulty in identifying a 

unit process is magnified by the fact that the nature of metallic bonding allows bonds to be so 

easily broken and reformed. 

Although the exact nature of the microscopic mechanisms that lead to deformation in metallic 

glasses are not known, two proposed mechanisms have received general acceptance as suitable 

pictures of the atomic motion.  The first is known as the shear transformation zone (STZ) of 

Argon [9] where several dozen atoms deform inelastically in response to an applied shear stress, 

which is illustrated in Figure 1.2(a).  The second mechanism involves the redistribution of free 

volume as proposed by Spaepen [10] where a single atom jumps from an area of low free volume 

 

Figure 1.2 Microscopic mechanisms for deformation in a metallic glass 

Schematic of mechanisms proposed by (a) Argon, where atoms shear 

inelastically in response to an applied shear, and (b) Spaepen, where an 

atom jumps from an area of low free volume to an area of higher free 

volume. Figure taken from [7]. 
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to an area of higher free volume, as illustrated in Figure 1.2(b).  Both of these events are viewed 

as stress-biased, thermally activated events, permitting simple rate laws for activation to be 

written in terms of state variables, including stress, temperature, and local structural order 

parameters such as free volume.  To give an adequate description of each, both of these 

mechanisms are discussed in more detail in the paragraphs that follow. 

Argon originally proposed the STZ after observing collective motion in amorphous bubble-raft 

experiments which were placed under shear [11].  This initial model proposed a high temperature 

STZ mechanism where the shear was accommodated in a more diffuse fashion over several 

dozen atoms, while a low temperature STZ mechanism would operate by concentrating the shear 

into a small disc which can be imagined to include only the atoms which touch and are of 

differing color in Figure 1.2(a) [9, 12].  Although the high and low temperature mechanisms 

were proposed differently, later work by Argon, and Bulatov, employed the high temperature 

mechanism to model and simulate deformation at both low and high temperatures [13-15].  In 

general, STZs have been modeled and expected to behave much like the diffuse high temperature 

mechanism where the shear strain is uniformly applied to the STZ, with typical values of the 

shear strain of ~10% [7, 13].   

As a result of the elusive nature of the STZ, the measurement of the volume of an STZ has 

proven difficult.  In one case however, researchers fitted data from several different studies in 

order to come up with STZ volumes in the range from 0.5-3.7 nm
3
 [16].  These STZ volumes are 

in line with that predicted and observed by Argon [11, 12], and others [17].  An important 

distinction of the STZ, however, is that it is not a permanent feature of any glass structure, which 

stands in stark contrast to easily identifiable dislocations in a crystalline material.  STZs are in 

fact a transient event which can only be observed by comparing atomic positions before and after 

microscopic deformation.  This transient property of STZs makes it difficult to confirm their 

existence because in almost all cases, imaging at atomic length-scales typically precludes in-situ 

measurement, thus preventing a before and after atomic picture of microscopic behavior.  

Argon‘s model of the STZ is treated in the context of an Eshelby inclusion problem [18].  In fact, 

Argon used the Eshelby solution to determine part of the activation energy barrier for an STZ to 

move from the unsheared state to the sheared state [9, 12], as illustrated in Figure 1.2(a).  In the 

Eshelby solution, an STZ undergoes a stress-free strain transformation, after which both the STZ 
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and surrounding matrix are forced to elastically accommodate the transformation strain.  The 

entire activation energy barrier for this event, as determined by Argon [9, 12], is 
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where the first term in the solution represents the strain energy of an STZ sheared by the 

characteristic shear strain, o (~0.1).  The second term represents the strain energy for a 

temporary dilatation to allow the atoms to rearrange into the sheared position where   (~1) 

represents the ratio of STZ dilatation during transformation to the characteristic shear strain o .  

The third term represents the energy required to freely shear an STZ, with ̂  equal to the peak 

interatomic shear resistance between atoms.  The material properties   and  T  represent 

Poisson‘s ratio and the temperature-dependent shear modulus, respectively, of both the STZ and 

surrounding matrix.  Finally, the STZ volume is given by o  with the product oo   equal to 

the activation volume of the STZ. 

A contrast to the STZ picture of deformation in metallic glasses is Spaepen‘s model which 

describes deformation in terms of the redistribution of free volume in the glass through atomic 

jumps [10].  Spaepen‘s model is an application of the ―free volume‖ model of Turnbull and 

Cohen [19, 20] and provides a convenient way to incorporate free volume as a state variable [21] 

to define the deformation behavior of a glass.  While the derivation proved useful in developing 

a deformation map for metallic glasses, a single atomic jump cannot relax local shear stress.  

Furthermore, as will be discussed in section 1.4, atomistic simulations observe the concurrent 

and collective motions of several dozen atoms, not successive atomic jumps.  For these reasons, 

the author prefers the use of the STZ model to represent the microscopic motion of a metallic 

glass. 

In either case, both of these microscopic deformation mechanisms are two-state models with 

associated rate laws and provide a convenient simplistic picture of deformation.  Thus, while the 

exact picture of atomic motion is not resolved, these two generally accepted microscopic 

mechanisms can be used to describe a range of observed deformation behaviors in metallic 

glasses [7]. 
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1.3. Deformation Behavior 

The deformation behavior of metallic glasses, as alluded to previously, can be separated into a 

homogeneous response observed at high temperatures and an inhomogeneous response observed 

at low temperatures and high stresses.  Because of the very different nature of these modes of 

deformation, they will be discussed separately.   

At temperatures above approximately 80% of the glass transition temperature, or 0.8 Tg, glasses 

behave as super-cooled liquids and display homogeneous deformation that is Newtonian at low 

stresses, but becomes Non-Newtonian at higher stresses [22].  This response can be described in 

terms of the microscopic STZ mechanism if one assumes that STZs are activated independently 

of one another.  This results from the fact that the thermal energy is sufficient to bias the random 

activation of STZs above any localization that might occur from localized internal stresses.  A 

simple analytical solution to this situation exists, with the assumption of a two-state STZ that 

shears forward or backward to contribute to the overall shear deformation.  In this case, the shear 

strain rate yields the following hyperbolic-sine stress dependent function 

 
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This equation provides remarkably good agreement with experimental results shown in Figure 

1.3 for data obtained by Lu et. al. over several decades of strain rates and stresses and a range of 

temperatures spanning the glass transition temperature [22].  In this figure, the data are plotted as 

points and the solid lines are fitted in a form similar to Equation 1.2.  The fitting of these data 

   

Figure 1.3 Rheological data for a metallic glass 

Data taken from Lu et. al. [22] for the glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 

deformed at various temperatures over several decades of strain rates and 

stresses. Figure taken from [7]. 
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with Equation 1.2 are a convenient way to determine the activation energy and activation volume 

for STZ operations.  In the case of this data for the glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 the activation 

volume was determined to be ~0.75 nm
3
 and the activation energy was determined to be ~4.6 eV 

[7]. 

While the data from Lu et. al. [22]  represent the steady-state response of a metallic glass to a 

given load, BMGs also exhibit a transient portion to a given applied loading or unloading 

condition.  For example, when loading from an a unloaded state, a glass will often exhibit a peak 

stress where it deviates from elastic behavior and then ―soften‖ or drop off to a lower stress 

where it reaches a steady-state strain rate [22]. 

BMGs, in most cases, behave very predictably when deformed at high temperatures; the more 

interesting behavior and considerable scientific interest lies in the low temperature regime where 

deformation is inhomogeneous in nature.  This inhomogeneity stems from the fact that nearly all 

the plastic strain is localized into nano-scale ―shear bands‖ that are only tens of nanometers in 

thickness [23, 24].  While thin, the shear bands can have offsets, also known as slip steps, that 

measure on the micrometer scale when the shear bands exit the material [25, 26].  Both of these 

features, the shear band thickness and slip steps, can be observed in Figure 1.4(a) where a BMG 

has been subjected to bending and the shear bands are clearly observable in the scanning electron 

microscope (SEM) micrograph [26]. 

While it is believed that STZs are still the fundamental unit of deformation at low temperatures 

[27], it is more difficult to attempt to postulate how these STZs interact to cause the observed 

localization.  This again stems from the transient nature of the STZs and lack of long range 

order, which make it difficult to identify any microstructural changes resulting from the 

operation of a shear band.  Current microscopy capabilities cannot provide the necessary 

techniques to image or track the flow in the highly localized shear band.  In addition, mechanical 

testing methods don‘t have the resolution to capture shear band propagation.  For example, in the 

nanoindentation of a BMG one will observe sudden accelerations of the indenter into the sample, 

called pop-ins, which are associated with the appearance of individual shear bands which 

surround the indentation [28].  These pop-ins appear in a single measurement step, meaning that 

the entire shear band forms and propagates faster than can be measured [28].  Additional studies 

confirm the formation of shear bands on timescales of 10
-5

-10
-3

 s [5, 29].  Thus with the disparity 
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in the length-scales of the shear band width and slip step, and the appearance of a shear band on 

timescales below the resolution of the measurement tool, it is not currently possible to measure 

how shear bands nucleate or propagate.  This unanswered question of localization remains one of 

the most important problems to be solved in order to understand the low-temperature mechanics 

of BMGs. 

While the localization of shear bands is obviously affected by the local stresses and available 

thermal energy, numerous other factors can affect localization in BMGs as well.  A study by 

Schuh et al. showed the effect of temperature and loading rate on the shear banding behavior in a 

metallic glass [31].  Their study showed that lower loading rates lead to a higher degree of flow 

serration than the higher loading rates, while higher temperatures produced more flow serration 

than low temperatures during the indentation tests.  The reduction of the flow serration in both 

cases indicates a shift toward a higher density of shear bands that carry less plasticity [31].  So, 

while still inhomogeneous, this behavior trends toward a homogeneous region in the deformation 

map at low temperatures with little to no flow serration  [31].  A pressure and normal-stress 

dependence have also been reported in metallic glasses [32, 33], indicating a possible need to 

modify the STZ model to incorporate the normal stress or pressure dependence of the local 

environment during STZ activation.   

Another interesting behavior which has been observed in some BMGs is that during the 

propagation of a shear band, what is believed to be the internal friction between atoms can lead 

(a)  (b)  

Figure 1.4 SEM micrographs of localization phenomena 

Part (a) shows a BMG after bend test, illustrating the high degree of 

localization or shear banding that occurs in confined volumes, taken from 

[26] and part (b) shows beading of a tin coating on slip steps of shear bands 

indicating that the temperature rise present in shear band operations was 

sufficient to cause the coating to melt, taken from [30]. 
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to a rise in temperature of several hundred degrees.  While simulated [34] and measured by other 

means [35], one study measured this temperature rise by coating the glass 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 with tin and observing that the tin beaded up on the slip steps of the 

shear bands following deformation.  A micrograph of these tests can be seen in Figure 1.4(b),  

where the temperature rise was a minimum of 200 °C in order to melt the tin [30].   

Also demonstrated in recent nanoindentation experiments is an apparent strengthening of a 

metallic glass at the nanoscale when cycled under spherical contact at very low loads [36].  This 

nanoscale strengthening contrasts the macroscopic behavior of a metallic glass where the elastic-

viscoplastic nature of metallic glasses usually leads to softening of a glass under a load [7].  Of 

primary scientific interest in this case is the fact that the cyclic loading which leads to this 

strengthening occurs well below the load typically required to initiate a shear band.  

Furthermore, if the indenter were to be removed following the cyclic loading, no visible remnant 

of the cycling would be visible on the surface of the sample.  Because this strengthening occurs 

in the regime corresponding to the elastic material response, it indicates that the strengthening 

must occur through some microscopic mechanism for plasticity which is not measureable by the 

current limitations of nanoindentation equipment [36]. 

All these different temperature, pressure, strengthening and heat evolution effects that alter the 

low temperature deformation behavior of a metallic glass are of fundamental scientific interest 

because each has a significant and very different effect on the nature of shear localization.  

Resolving the microscopic details of these behaviors is essential to their clear understanding and 

in properly characterizing the entire range of deformation behaviors observed in glasses. 

1.4. Modeling and Simulating Deformation in Metallic Glasses 

In an effort to better understand and predict the deformation behavior in metallic glasses, the 

scientific community has developed and applied a number of different modeling and simulation 

techniques.  One of these methods, which was already mentioned and played a key role in the 

development of the STZ model, is the bubble raft experiments of Argon and coworkers [11, 37].  

Argon created an amorphous raft of bubbles with two different bubble sizes atop a supporting 

solution, and then subjected the cell of bubbles to shear.  By imaging these bubbles Argon was 

able to watch the individual bubble motions and used this information to develop his picture of 

the fundamental nature of the STZ.  In his development of the STZ, Argon also developed 



 16 

several analytical expressions to predict the different forms of observed behaviors in amorphous 

materials [9, 12]. 

Since this time numerous atomistic simulations have been developed to test a wide range of 

responses, conditions and properties of amorphous metals.  One of the primary reasons for using 

atomistic simulations is that they provide exquisite tracking of individual atomic motions in 

order to properly study the microscopic mechanisms.  In addition, no preconceived notion of the 

collective motion of the atoms is required; the simulation of atomic motion proceeds as 

determined by the model and the behavior can be analyzed subsequently.  The development of 

accurate atomistic simulations is not easy, however, and much thought must be put into selecting 

the interatomic potentials, boundary and initial conditions, and step size of the simulations, 

among other important parameters, in order to provide a realistic outcome.  The costs for being 

able to observe atomic motions are the limited length and time scales which are characteristic for 

atomic simulations.  Simulation sizes vary widely, but don‘t usually exceed hundreds of 

nanometers, and with times that are typically around the nanosecond scale, strain rates are 

generally very high at 10
6
-10

9
 s

-1
 [38-40]. 

To date, the majority of atomistic simulations are performed on monoatomic glasses or binary 

alloys of glasses, many with very similar potential functions.  This simplified structure is in stark 

contrast to the many complex BMGs that are studied experimentally.  This is indicative of the 

difficulty in accurately and efficiently modeling the atomistic behavior of metallic glasses. 

One of the major emphases in atomistic simulations has been on molecular statics or atomic 

interactions at zero-temperature, quasi-static conditions.  This approach permits the study of the 

system as it moves through different states, always relaxing the atoms between each step to allow 

the system to reach an energy minimum.  This removes all thermal energy from the system so 

that thermal fluctuations don‘t move the system between states.  The reason this is advantageous 

is that one can study the structure of a glass as it moves through the different states driven by 

external conditions.   

In these static simulations, small increments of strain are often imposed on the system in steps, 

with relaxations between each step.  The system initially behaves in an elastic fashion with a 

linear relation between the stresses and the imposed strain.  During some strain increments 

however, large drops in the stress are accompanied by significant changes in the glass structure 
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[41].  When these stress drops are observed, two different trends are observed in the non-affine 

displacement fields of the atomic motions, as shown in Figure 1.5.  First, rearrangements in 

atoms occur that are quadrupolar in nature [27, 41-44], which is what would be expected from 

the Eshelby solution [18] for a sheared STZ.  The second trend which is observed is that in a 

single strain increment, a large number of atoms, usually spanning the entire simulation cell, will 

displace to form an elementary shear band with little to no indication of individual STZ 

operations [41].  

In contrast to the zero-temperature simulations are finite temperature molecular dynamics (MD) 

simulations which incorporate thermal fluctuations to allow the system to access more states.  

These MD simulations are an important addition to the analysis techniques because they not only 

incorporate thermal fluctuations but can track elapsed time as well, allowing one to study the 

evolution of a system at finite temperatures on real time scales. 

One MD study by Deng et al. focused on several features of the glass behavior including the 

melting, glass transition, structural relaxations, kinetics of structural relations and most 

importantly, plastic deformation via STZ-like operations [38, 45-47].  These STZ operations 

always lowered the free energy in the system regardless of the direction in which the atoms 

sheared, and in many cases retained a shear-induced dilatation [38].  These studies by Deng et al. 

are complimented by several other early studies where localized atomic motions are linked to 

measures of the stress distributions [48-51]. 

(a)  (b)  

Figure 1.5 Non-Affine displacement fields of atomic simulations 

These displacement fields are associated with large stress drops in a 

statically strain atomic simulation, taken from [41].  (a) Displacement field 

similar to that expected from an individual STZ operation and (b) a 

displacement field for a less localized event spanning a larger distance.  
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Falk and Langer saw similar STZ operations in an amorphous MD simulation deformed at low 

temperatures, and developed a theoretical model with state variables to aid in explaining the 

history dependence of loading in metallic glasses [21, 52].  By incorporating the local free 

volume as a state variable, Falk and Langer were able to show how the creation and destruction 

of free volume along with the activation of STZ operations can predict a wide range of 

phenomena observed in metallic glasses [21]. 

While many of the simulations discussed thus far focus on the microscopic mechanisms 

associated with metallic glass deformations, additional MD simulations have studied localization 

on larger scales through simulated nanoindentation [39, 53], as seen in Figure 1.6(a), and 

shearing of the simulation cell [41], among other techniques [54-57].  One nanoindentation study 

by Shi and Falk [53] shows the same type of rate dependence observed in experimental tests by 

Schuh et. al. [31].  While Shi and Falk observe the formation of the shear bands, their study 

focuses more on the changes in structure upon shear banding while providing little discussion on 

the path taken by different shear bands [53], although they do suggest that the path could be a 

percolating backbone of clusters of short-range order [58].  Simulations also indicate a change to 

the structure in the region where localization has occurred, or that the nature of the deformation 

changes based on the structure that results from solidification from the melt at different rates [39, 

58, 59].  The pressure dependence of atomistic motions have also been shown to match the 

Mohr-Coulomb yield criterion [60], to which the failure criterion of metallic glasses conforms. 

Over the past 30 years, the ability to perform faster and larger atomic simulations has increased, 

and a wealth of knowledge has been obtained.  Yet, the exact fundamentals of the microscopic 

mechanisms of deformation in amorphous metals remain elusive, which is a testament to the 

difficulty of the problem to be solved, and indicates that different approaches may provide 

answers that atomic simulations aren‘t currently able to provide. 

If one chooses to ignore atomistics altogether, one can treat the material as a continuum and 

thereby access significantly longer time and length scales.  In this case, the material‘s mechanical 

behavior can be governed by constitutive relations that are designed to specifically model the 

deformation.  While metallic glasses have an elastic-viscoplastic response, the localized nature of 

the plasticity at low temperatures precludes the use of typical constitutive metal plasticity 

models, requiring the derivation of a new constitutive model for metallic glasses.  In any case, 
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the implementation of any constitutive relation means that it can only model the behavior that it 

has been designed to capture.  Thus, every time a new deformation behavior is to be captured, 

the constitutive equations must be altered or reworked to include the desired effect. 

In spite of this, continuum simulations are able to accurately simulate the behavior of very large 

systems on experimental timescales.  Some examples of these successful implementations are 

continuum simulations in which the material behavior has been modeled at low temperatures, in 

indentation [61, 62], at high temperatures [63, 64], in thermoplastic forming [64] and other 

applications [62, 65].  Other simulations even incorporate local structural changes to more 

accurately model the behavior [66, 67], or derive and apply constitutive laws for the local 

motions observed in atomic simulations [68-70].  Complementary constitutive-based phase-field 

models have also been employed to examine localization through the use of an order parameter 

to represent structural relaxation [71].  In the few cases where finite element results have been 

compared to experimental results, the simulated results show good agreement with the 

experimental data [61, 72].  This agreement is shown for indentation of a metallic glass where 

the experimental response, Figure 1.6(b), can be compared to the simulated response, Figure 

1.6(c).  Thus, while continuum simulations may miss the microscopic physics of deformation, 

they do have the advantage of simulating at time and length scales that would otherwise be 

unattainable through atomistics.   

Another approach to modeling which is intermediate to atomistic and constitutive-based 

continuum simulations is a coarse-grained approach of mesoscale simulations.  In this approach, 

one takes a characteristic event, such as an STZ, and uses this as the fundamental unit of 

(a)  (b)  (c)   

Figure 1.6 Comparison of simulated and experimental indentation 

Results from (a) MD simulation of indentation in a metallic glass with high 

regions of localized strain highlighted, illustrating the shear bands, taken 

from [53].  (b) Micrograph and (c) continuum simulation of plane strain 

cylindrical indentation of a metallic glass, showing the resultant shear 

bands, taken from [61] 
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deformation.  The reason that mesoscale models are so appealing is that they can resolve the time 

and length scales larger than atomistic modeling while still capturing the fundamental physics of 

deformation with the characteristic event, which constitutive based continuum simulations miss 

[8].   

Bulatov and Argon performed simulations of this nature in the early nineties and observed good 

agreement with the expected modes of deformation of a metallic glass [13-15].  By creating a 

fixed lattice of potential STZs and using Green‘s function to solve the stress and strain 

distributions in the system they were able to calculate the rate of STZ activations.  A kinetic 

Monte Carlo (KMC) algorithm was then used to determine which STZ to activate and to 

increment time in the simulation based on the current rate of STZ activation.  In this manner, an 

ensemble of STZs was used to evolve a system on significant length and time scales.  This 

approach observed both the homogeneous deformation at high temperature and inhomogeneous 

deformation at low temperatures solely by changing the temperature or thermal energy available 

to move between states [13].  In addition this model was used to study the kinetic behavior of the 

glass transition and structural relaxation that occurs during cooling [14].  Lastly, they studied the 

effects of structure on the plastic response of the system which leads to strain softening and other 

strain rate, pressure and temperature effects [15]. 

Lastly, numerous numerical models have also been developed to predict the macroscopic 

response of a material based on general conditions, and as such they cannot all be listed here.  

The most notable of these numerical models include the original STZ model by Argon [9, 12], 

the redistribution of free volume by Spaepen [10], the STZ model of Falk and Langer using free 

volume as a state variable [21], the cooperative shear model by Johnson [73, 74], and lastly, the 

two-state STZ dependent shear strain rate given in Equation 1.2.  These have all been created to 

predict the response of the glass, given general state parameters and testing conditions.  While 

many of these models accurately capture and predict some specific features of the mechanical 

behavior of metallic glasses, they only provide a general picture of the microscopic deformation, 

if at all, making it difficult to link the expected microscopic deformation to that observed on a 

macroscopic level. 
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1.5. Open areas of research in modeling 

While a great deal of insight into the mechanical behavior of metallic glasses has been gained 

through the different modeling techniques described above, there is a significant lack in the 

capabilities of the methods described above.  Specifically, none of the techniques preserve the 

fundamental physics of deformation at a microscopic level while modeling experimentally 

relevant conditions.  Atomistics are too limited in their time and length scales and represent very 

driven systems, continuum simulations miss the fundamental physics of microscopic 

deformation and the current implementations of the mesoscale techniques, such as that by 

Bulatov and Argon [13], cannot explore the spatial evolution of deformation nor the complex 

loading conditions through which metallic glasses are actually tested.  As such, the field is in 

need of a method with these capabilities. 

A method with the capability to model experimentally relevant conditions that retains the 

fundamental mechanism for microscopic deformation would also allow the resolution of some 

important questions regarding the mesoscopic details of deformation in amorphous metals.  For 

example, if the fundamental deformation mechanism in amorphous metals is the rearrangement 

of dozens or hundreds of atoms, as seen in atomistic simulations [41, 42, 44], how do these 

individual events interact to effect macroscopic deformation?  What spatial and temporal 

correlations exist between these individual events?  How are these correlations affected by the 

local environment (e.g. stress, temperature, free volume)?  Do STZs interact at all at high 

temperatures where metallic glasses exhibit stable viscous flow and common constitutive laws 

assume independent STZ activation [7, 22]?  More importantly, what sequence of events leads to 

shear localization, where the micrometer material displacements develop over millisecond time 

scales in the confined nanometer-sized shear bands [5, 23-26, 29]?  Is this localization the result 

of cascades of correlated STZ activity or do smaller pockets of localized shear connect in a 

percolative fashion to form the shear bands [55, 58]?   

Additionally, the application of a modeling framework with the ability to model the relevant time 

and length scales could provide significant insight into behaviors without a clear mechanistic 

understanding, such as the apparent nanoscale strengthening observed under cyclic 

nanoindentation [36].  Specifically, one could verify whether the conditions of the cycling in the 
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elastic regime are sufficient to induce local deformation immeasurable be current 

nanoindentation techniques, such that the glass could be strengthened.  

Finally, proper connection with the experimental literature requires models that accurately 

capture the complexities of the experiments by which metallic glasses are actually tested.  While 

three-dimensional models are better suited to account for the complexities of the experimental 

tests, their computational costs often limit their applications.  This limited application is 

illustrated by the small number of studies which employ a fully three-dimensional (3D) 

framework in atomistics [53, 54, 56, 58, 59, 75] and continuum simulations [72, 76].  Yet, these 

3D studies still have the same limitations discussed in section 1.4, and we are unaware of any 

mesoscale model for glass deformation in 3D.  Therefore, a method which can access the 

appropriate time and length-scales and resolve the complexities of stress, strain and deformation 

in 3D would be extremely valuable in studying the mechanics of a glass under realistic 

conditions. 

1.6. Layout of this thesis  

As revealed in Section 1.5, there are a number of questions about the behavior of metallic glasses 

at the mesoscale that can be addressed uniquely with a new modeling technique based on the 

STZ and controlled through a kinetic Monte Carlo algorithm.   

Chapter 2 addresses the development and validation of such a mesoscale model in two 

dimensions (2D) and then provides comparison of results of the technique with the behaviors 

observed in experimental testing of a metallic glass.   

While chapter 2 focuses on the macroscopic model response, chapter 3 provides an in-depth 

analysis of the connection between the microscopic STZ activity and the macroscopic response 

of the system under different conditions.  Specifically, this analysis details the energetics of the 

STZs selected through the KMC algorithm as well as the spatio-temporal correlations between 

STZ activations that lead to different modes of macroscopic deformation.   

In chapter 4 the modeling framework is then applied to the phenomenon of nanoscale 

strengthening of a metallic glass under cyclic contact to provide insight into the mechanisms 

leading to the strengthening.  



 23 

Finally, the modeling framework is extended to three dimensions in chapter 5 and the 3D 

framework is tested under experimentally relevant test conditions to once again validate the 

model against the observed behaviors of a metallic glass. 

The thesis is then closed in chapter 6, with remarks on the modeling framework and its 

applications, along with recommendations for future work. 
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2. Development and validation of STZ Dynamics framework
1
 

2.1. Introduction  

As discussed in sections 1.4 and 1.5 a great deal of insight into the behavior of amorphous metals 

has been gained through a combined approach of different modeling techniques.  However, the 

limitations of the atomistic and continuum techniques suggest that the addition of a mesoscale 

model may provide new insight into the mesoscopic details of deformation in a metallic glass.   

The purpose of this chapter is to develop a new mesoscale modeling technique that we term 

―STZ Dynamics‖ modeling.  In this approach, STZ activation is considered as a stochastic, 

stress-biased, thermally activated event which obeys a specific rate law, and the kinetic Monte 

Carlo algorithm is employed to control the evolution of the system.  FEA is used to solve the 

elastic strain distribution in the system, by which the STZs communicate with one another.  In 

this manner, we are able to access longer time and length scales than those associated with 

atomic motions.  Our model takes its inspiration from the lattice model of Bulatov and Argon 

[13], but expands upon it in the sense that our use of FEA permits arbitrary shape changes, 

complex geometries and boundary conditions, greater freedom in the definition and activation of 

STZs, and a close connection to experimental conditions.  This contrasts the model of Bulatov 

and Argon [13], where the fixed lattice and Green‘s functions limited the ability of their model to 

explore both the spatial evolution of the system and complex loading conditions.  In this chapter, 

we present our basic methodology, and then proceed to develop a specific two-dimensional 

implementation as a demonstration of the method.  We explore the thermal response and effects 

of processing, the rheological nature of deformation at high temperatures, and shear localization 

at low temperatures.  Lastly, a compilation of data from many simulations is used to construct a 

deformation map for a model metallic glass. 

2.2. Modeling Framework 

2.2.1. Shear Transformation Zones 

We model an amorphous material as an elastic continuum consisting of an ensemble of potential 

STZs defined on a mesh.  In essence, we substitute a continuum mesh, shown schematically in 

Figure 2.1, for a collections of atoms, shown schematically in Figure 1.2(a).  We treat the 

shearing of an STZ as an Eshelby inclusion problem [18], as proposed by Argon in his 

                                                 
1
 The contents of this chapter have been published previously as Ref. [77] 
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calculation of the activation energy barrier for shearing of an STZ [9, 12].  In this approach, an 

STZ undergoes a stress-free strain transformation, after which both the STZ and surrounding 

matrix elastically accommodate the transformation strain.  The activation energy barrier as 

determined by Argon [9, 12] is given in Eqn. 1.1, but for the purposes of these simulations, we 

choose to represent the intrinsic activation energy barrier solely as a function of the temperature-

dependent shear modulus by combining all the other terms into a constant 

    TFTF o  . (2.1) 

In our approach, the finite element mesh and the definition of the STZs on the mesh are selected 

with the following characteristics in mind:  

 The geometrical shape of the STZ in the mesh should resemble that observed in 

simulations and models, roughly spherical in three dimensions or circular in two [9, 11, 

17, 27, 60]. 

 Each individual STZ should be represented by a sufficient number of elements to 

accurately resolve the stress and strain distributions in the mesh. 

 Elements that belong to one STZ should be able to participate in other potential STZs, 

just as atoms may participate in various different STZs. 

One simple implementation that achieves these criteria in two dimensions is a triangular mesh 

with STZs bound to the nodes and elements of the mesh.  For example, STZs may be centered on 

nodes of the mesh, and incorporate a number of surrounding elements extending radially 

outwards.  This is illustrated in Figure 2.2(a) where 6, 24 and 54 element STZs are defined on a 

central node and include respectively, one, two and three elements extending radially outwards. 

 

Figure 2.1 Schematic representation of finite element STZ 

Shows the schematic motion of a finite element mesh associated with the 

atomic motions of an STZ. 
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Alternatively, STZs may be centered on a single element and incorporate elements extending 

radially outwards.  An example is shown in Figure 2.2(a) for a 13 element STZ extending one 

element radially outwards to include elements which share common nodes.  The details of the 

STZ definition become important in the accuracy of stress and strain field calculations, and will 

be discussed in a later section.  Finally, while in principle one might define an ensemble of STZs 

with different characteristic volumes, 
o , based on the local size of the elements included in 

each potential STZ, the simplest approach is to assign a single value of 
o  to all the STZs in the 

mesh, as we shall do in the present implementation. 

The last desired STZ characteristic that is satisfied by the STZs defined on the triangular mesh is 

that elements in the mesh will be able to participate in multiple STZs.  Provided that STZs 

comprise more than a single element, this condition is naturally achieved, as illustrated in Figure 

 

Figure 2.2 Representation of STZ defined on a finite element mesh 

Part (a) shows several possible STZ definitions on a triangular lattice. Part 

(b) shows an irregular triangular mesh with 13-element potential STZs 

highlighted and denoted by A,B and C; B and C show how individual 

elements in the mesh can be activated by different STZs. 
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2.2(b), where 3 potential STZs, each of 13 elements, are highlighted on an irregular triangular 

mesh.  At any given time step, the elements in the overlap region between potential STZs B and 

C can participate in either event (and others not shown). 

2.2.2. Kinetic Monte Carlo 

The activation rate law of a single potential STZ is given by 

 
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where s  is the STZ activation rate, F  is the local energy given in Equation 2.1 for an STZ 

shearing in the fashion shown in Figure 2.1.  The local shear stress and temperature are 

represented by   and T, respectively. Boltzmann‘s constant is given by k and 
o  represents the 

attempt frequency along the reaction pathway, which is of the order of the Debye Frequency.  

The activation rate defined in Equation 2.2, however, only gives the rate for an STZ attempting 

to shear in one direction.  In two dimensions, the rate for an STZ attempting to shear in N 

different directions around a circle is given by 
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where max  is the maximum in-plane shear stress and   is the angle to the current stress state in 

Mohr space for the given STZ.  If Equation 2.3 is simplified and the discrete summation is 

converted to a continuous integral by letting N go to infinity, we have 
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which evaluates to a modified Bessel function of the first kind, of order zero 
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Equations 2.4 and 2.5 integrate the value of the shear stress as we traverse the circle in Mohr 

space for the given value of the shear stress as defined by    sinexp max   for   on the interval 

[0°, 360°).  Thus, Equations 2.4 and 2.5 are able to determine the rate for shearing a single STZ 

in a continuum of directions around a circle, based upon the local stress and temperature of the 
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STZ.  The form of Equation 2.5 is especially convenient for evaluating the integral 

computationally.   

The kinetic Monte Carlo (KMC) algorithm [13, 78, 79] can be used to evolve an ensemble of 

STZs governed by Equations 2.1 and 2.5, where each STZ may experience a different local 

temperature and stress state, by repeating the following steps:  

1. Calculate and form a list of activation rates, 
is , for each of the i = 1…N STZs in the 

ensemble, based on the current state of the system. 

2. Calculate the cumulative activation rate, Ts , for all STZs and normalize each individual 

rate by Ts , 

Tii ss   (2.6) 

such that 

 1
i

i . (2.7) 

3. Generate two random numbers, 1  and 2 , uniformly distributed on the interval [0,1). 

4. Update the elapsed system time with the residence time for the current configuration 

calculated according to 

 Tst 
1ln  . (2.8)  

5. Select a single STZ by first defining the cumulative fraction of STZ rates up to and 

including the rate of STZ j by 

 



j

i

ij

1

 , (2.9) 

and then using the random number, 2 , to find the STZ which satisfies 

kk   21  . (2.10) 

When listed in a successive fashion, 2  falls on the subinterval k  in the list of 

normalized STZ rates, as illustrated in Figure 2.3(a). 
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6. To select the angle at which to shear the STZ, we first define the value  , which 

represents the magnitude by which 2  overlaps the subinterval of the selected STZ, k , 

as illustrated in Figure 2.3(b), 

12  k . (2.11) 

The overlap,  , is then used to determine the integration limit which satisfies the 

equality  
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7. The integration limit    from Equation 2.12 and the angle to the current stress state   

can then be used to define the angle of shear in real space, relative to a state of pure 

shear, by 

  2  . (2.13) 

8. Apply a shear shape distortion to the selected STZ of the form 

   

Figure 2.3 Schematic of the kinetic Monte Carlo STZ selection procedure 

Part (a) shows how the random number 2  can be used to select a single 

STZ for activation from a list of normalized individual STZ rates, 

I ...,, 321  and  part (b) illustrates the determination of the overlap, 

 , between 2  and j  (as defined in Equation 2.11), which selects the 

angle of shear of the STZ. 
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and subsequently calculate the stress and strain distributions of the new configuration. 

The KMC algorithm can be repeated for an arbitrary number of STZ operations and is efficient 

because every iteration guarantees a transition.  The stochastic nature of the processes will 

produce a realistic outcome if the rates governing the individual events are correct.  

While most of the steps listed above are standard to any KMC algorithm, steps five and six 

deserve further explanation.  In the list of normalized STZ rates of Figure 2.3(a), some 

subintervals are larger than others, since some STZs experience higher stress than others.  

Strictly speaking, such STZs experience higher values of : 
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which governs the STZ activation rate (cf. Equation 2.5) and dictates the width of the subinterval 

i .  Thus, when selecting the STZ with the random number 2 , the larger subintervals have a 

higher probability of being selected, giving preference to events that occur on shorter time scales. 

The value of  also impacts the choice of the STZ shearing angle, as a result of the exponential 

dependence of  in Equation 2.4.  This is illustrated by the non-uniform subintervals in Figure 

2.3(b).  A more accurate representation of this effect can be seen by calculating the values of   

as determined for different ratios of   where the integral Equation 2.12 is evaluated from 0 to 

   for a range of    on the interval [0°, 360°).  The result is plotted as a function of the 

integration limit    in Figure 2.4(a), where the arrows on the plot point from smaller to larger 

values of   (i.e., from states of lower stress/higher temperature to states of higher stress/lower 

temperature).  It can be seen that for small values of   the curve is linear, meaning that a 

random number will uniformly select the angle   ; at high temperatures or low stress levels there 

is no preference for the shearing direction of the STZ.  For large values of  , however, the trend 

in Figure 2.4(a) is sigmoidal, and most randomly selected numbers will preferentially select 

shearing angles near 90°— the angle of maximum shear in Mohr space. Thus, at low 

temperatures and/or high stresses, the local stress state biases the STZ into shearing in the 
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direction of maximum shear.    This is illustrated for the case of uniaxial tension in Figure 2.4(b), 

where 2   because   is zero.  Several potential shear shape distortions are shown 

beneath Figure 2.4(a) to illustrate how the integration limits relate to each distortion.  At very 

high values of   the preferred shear shape distortion is in the direction of the uniaxial tension 

(shear at 45° to the tensile axis) providing maximum extension for a single STZ activation.   

2.2.3. Finite Element Analysis 

With an ensemble of STZs defined on the mesh and the KMC algorithm to evolve the system, 

there remains only the matter of identifying the local states of these potential STZs, i.e., the local 

stress and temperature that will govern their activation.  In our model, FEA is used to determine 

the stress and strain distributions in the system at every KMC step.  When an STZ is to be 

activated or sheared, an increment of strain, as given in Equation 2.14, can be applied to the 

 

Figure 2.4 Representative selection of STZ shearing angle 

Part (a) shows the evaluation of Equation 2.12 as a function of   , in 

degrees, for several different values of  . The arrows point from smaller to 

larger values of  , illustrating the drive for the system to shear at the angle 

of maximum shear for large values of  . Part (b) illustrates the shearing of 

an STZ for different values of   for a state of pure tension, where the 

different STZs have been lined up under part (a) to illustrate how the value 

of   influences the probability of observing each type of shear event. 
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elements belonging to that STZ and the FEA solver can then recalculate the stress and strain 

distributions.   

For all the simulations discussed in this paper, we employ the commercial finite element package 

ABAQUS as our FEA solver, with plane-strain quadratic triangular elements.  We apply the STZ 

shearing strains through the use of ABAQUS User Subroutines, and since all plasticity occurs 

through these local STZ shape change events, we only require a linear elastic solver to determine 

the stress and strain fields.  For simplicity in this paper, we require the entire system to have a 

uniform temperature distribution. 

We explore the issue of mesh resolution by considering the shearing of a single STZ located in 

the center of a triangular mesh.  The analysis is performed with eight different STZ definitions, 

seven centered on a node and including from one to seven elements along the STZ radius, as well 

as a 13 element STZ centered on an element; some of these STZ definitions are shown in Figure 

2.2(a).  In each of the eight cases, the STZ is sheared in a variety of different directions to obtain 

a measure of error on the calculation.  As this situation closely resembles the Eshelby inclusion 

problem [9, 18], we use the analytical solution obtained by Eshelby for shearing of a circular 

long fiber in a matrix (plane strain) as a point of comparison.  The percent error of the 

calculation relative to the Eshelby solution (based on the total system strain energy) is plotted in 

Figure 2.5 as a function of the size of the STZ relative to the mesh.  As these data show, 

convergence is achieved quite quickly, with STZs containing 13 or more elements exhibiting 

 

Figure 2.5 Convergence of FEA solution with refinement of mesh 

Plot of the percent error between the strain energy determined by FEA 

methods and the Eshelby solution, as a function of the size of the STZ.   
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about 1.5% error or less.  However, each time the number of elements along the STZ radius is 

doubled, it quadruples the number of elements required to simulate the same system size, and 

thus roughly quadruples the computational time; accordingly, we identify the 13 element STZ as 

a reasonable compromise between accuracy and computational speed.  All the computations 

described in the remainder of this paper are carried out with 13-element STZs defined on an 

irregular triangular mesh, as schematically illustrated in Figure 2.2(b).  For comparison, we also 

conducted many simulations using the 6-element STZs as well as a number of simulations 

involving a perfect triangular mesh, both of which give similar results in qualitative and 

quantitative sense.  

It is important at this point to discuss mesh distortion that can occur through severe deformation, 

which leads to errors in the solutions of the stress and strain distributions.  This problem can be 

circumvented by periodically checking for distortion of the mesh and remeshing if necessary, 

which requires mapping the elastic fields onto the new mesh.  Solution mapping can contribute 

to error accumulation as well, so it is important to take care that the error accumulated by 

solution mapping is smaller than that accumulated by simply ignoring the mesh distortion.  In 

this paper, we limit our discussion to cases in which the mesh distortion was sufficiently low that 

there is no concern about the solution accuracy.  However, remeshing is, in general, an important 

aspect of our modeling approach, especially for situations involving localization. 

2.2.4. Material Properties 

Our model requires several material properties including Poisson‘s ratio,  , and the temperature 

dependent shear modulus,  T  which is defined relative to its value, o , at T = 0 K as  

   T
dT

d
T o


  . (2.16) 

For the sake of simplicity, we neglect the abrupt changes in modulus which are experimentally 

observed near the glass transition temperature, and assume the linear relationship above to be 

valid over the range of temperatures considered in this paper.  The Debye temperature, D , of the 

material, which is related to the Debye frequency, is required for the rate calculations.  Finally, 

two geometrical properties of the STZs are required; the STZ volume o and the number of 

atoms in that volume based upon the material chemistry.  In this paper we have used material 

properties derived from experiments on Vitreloy 1, Zr41.2Ti13.8Cu12.5Ni10Be22.5, as listed in Table 
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1.  In addition, we take the value of ̂ , from Equation 2.1, to be equal to the athermal shear 

stress. 

2.3. Model Output 

To demonstrate the ability of this modeling framework to simulate the wide range of behaviors 

exhibited by glasses, we perform a series of simulations on a plane strain 2-D irregular triangular 

mesh based on 13-element STZs.  Using the material properties from Table I, this domain has 

approximate dimensions of 34.8 nm wide by 57.7 nm tall.  In all cases the mesh is subjected to 

boundary conditions in which top and bottom surfaces are constrained in the y-direction and the 

bottom left node is fixed.  

In order to implement the framework in a computationally efficient manner, we have integrated 

several different software packages and coding languages.  MATLAB is used as a wrapper to 

control and call the different packages and processes; MySQL is used for efficient data storage 

and data recall; Python is used to interact with ABAQUS CAE; Fortran is used to code the User 

Subroutines in ABAQUS; and C++ is used to post process the ABAQUS output files.  Finally, 

the parallel processing capabilities of ABAQUS are employed to reduce the computation time of 

the simulations. 

2.3.1. Thermal Response and Processing 

We begin by first studying the effects of processing of a metallic glass by applying various 

thermal loads in the absence of external forces, and allowing the system to relax through 

sequential STZ operations.  Two types of thermal response tests are performed: (i) equilibration 

(relaxation of the glass) at a fixed temperature, and (ii) cooling simulations where the glass is 

relaxed over a finite time determined by an applied cooling rate in the range 10
1
 to 10

4
 K/s.  All 

Table 1 List of material properties for Vitreloy 1, Zr41.2Ti13.8Cu12.5Ni10Be22.5 

Property Value Reference 

o    GPa 73  [80] 

dTd    KGPa 100.4 3  [80] 

  352.0  [80] 

D    K 273  [81] 

o    nm 6.1 3  Adjusted from [16] 

oF    PaJ 10175.1 29   
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the thermal response simulations are started from a system which is first equilibrated at a 

temperature of 1000 K which is just above the melting temperature of Vitreloy 1 at 993 K [22].   

We begin by first examining the results of our equilibration simulations.  Figure 2.6(a) shows the 

characteristic relaxation curves obtained in these simulations, where the instantaneous elastic 

strain energy density in the system is plotted as a function of time.  The use of a semi-log scale 

permits all the equilibration curves to be presented on a single figure, but renders it difficult to 

 

Figure 2.6 Simulated thermal processing of a metallic glass 

(a) Plot of elastic strain energy density as a function of elapsed time for 

simulated equilibration of a metallic glass at different temperatures.  The 

semi-log scale allows comparison of the different simulations but obscures 

the convergence of the value to a steady-state, which is shown in the inset 

for linear axes. (b) Plot of elastic strain energy denstiy as a function of 

temperature for simulated cooling of a metallic glass at different rates (10
1
, 

5×10
1
, 10

2
, 5×10

2
, 10

3
, 5×10

3
, 10

4
 K/s), where each curve represents the 

average of three simulations.  In addition, the equilibrium cooling curve is 

plotted for comparison, which remains linear to room temperature and in 

principle to 0 K. 
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clearly observe that each of the systems has actually reached an equilibrated state.  An example 

demonstrating the convergence to a steady-state value is shown in the inset of Figure 2.6(a), for 

the simulation at 400 K; all of these simulations show a similar convergence when plotted on 

linear time scales or as a function of the KMC time steps.   

In Figure 2.6(a), all of the data shown are for equilibration at temperatures below the 1000 K 

starting state, and thus all the simulations shown involve an energy reduction.  However, the 

steady-state is independent of prior history, and the equilibrated elastic strain energy density is in 

fact a simple function of temperature.  We find that the elastic strain energy density is 

proportional to the temperature with a slope of 5.27x10
-4

 eV/nm
3
·K.  This linear trend is shown 

over a small range of temperatures in Figure 2.6(b), but remains linear for the range of 

temperatures simulated in this paper, and in principle remains linear to 0 K.   

We now turn to the data obtained in the fixed cooling rate simulations, which are shown in 

Figure 2.6(b).  Here each curve represents the average of three simulations at the same cooling 

rate, and plots the average elastic strain energy of the system as a function of temperature.  As 

expected, the cooling experiments tend to track the equilibrium condition reasonably closely at 

first, until the temperature falls below a certain point; with further cooling the elapsed time of 

each KMC step rises quickly, and the system becomes kinetically trapped.  The magnitude of 

relaxation achieved is greater for the slower cooling rates, in which a larger number of STZ 

operations are allowed. 

It is interesting to note that the KMC approach, by permitting arbitrarily long time scales, can 

yield states not seen in experiments or other simulations.  For example, our equilibrium elastic 

strain energy density trend in Figure 2.6(b) differs from prior suggestions that the energy 

associated with the fluctuations of atomic level stresses should depart from linearity for values 

below the glass transition temperature, Tg [48, 50, 82].  While such a departure from linearity is 

clearly possible when short time scales produce kinetically metastable structures (as in our 

cooling simulations in Figure 2.6(b)), the KMC algorithm allows the system to visit states that 

wouldn‘t be accessible on reasonable time scales, e.g. 10
30

 s (cf. Figure 2.6(a)).  Thus, in our 

equilibrated structures we observe a linear reduction of system energy as temperature decreases 

well below gT . 
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2.3.2. High Temperature Rheology 

The high-temperature deformation of a metallic glass provides a convenient validation point for 

our model, since at sufficiently high temperatures (small ), thermal energy dominates STZ 

activation, the local stress state becomes less important, and STZs are expected to act essentially 

independently of one another.  Under such conditions, an analytical expression for the glass 

rheology is possible.   

In the classical one-dimensional model, as described in section 1.3, STZs may shear either 

forward or backward, and combining the rates of these two processes yields the hyperbolic-sine 

stress dependent phenomenology in the steady state given in Eqn. 1.2 [9, 10].  This approach is 

readily expanded to a two-dimensional case where STZs can shear in any direction in the plane, 

which is more relevant for comparison with our model.  In this situation the average strain rate is 

found by considering the contribution of strain from shear in STZ in any direction around the 

orientation circle.  The derivation is very similar to that used to obtain Equation 2.4, and yields: 

 






 







 


kT
I

kT

F o
oo

2
exp2 0

1


 . (2.17) 

where I1 is a modified Bessel function of the first kind, of order one.  Equations 1.2 and 2.17 

predict remarkably similar strain rates for the same temperature and stress, with only subtle 

differences between them.  For example, at low stresses, Equation 2.17 predicts a slightly faster 

strain rate (by a factor of ~2.2 at 50 MPa and Tg) because the extra degrees of freedom allow 

STZs that shear at off-angles to contribute to the forward strain rate.  At high stresses, however, 

the extra degrees of freedom in Equation 2.17 actually predict a slower strain rate (by a factor of 

~0.27 at 1 GPa and Tg) than Equation 1.2 because the off-angle STZ shearing events predict a 

slower strain rate than having all forward flips as in the one-dimensional model. 

We study the rheological behavior of our simulated glass over a range of stresses at different 

constant temperatures near and above 623 K, the glass transition temperature of Vitreloy 1 [22].  

We explore deformation in three different classes of structures: 

 Equilibrated structures which are first equilibrated without an applied load at the test 

temperature, followed by application of a load at the same temperature. 
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 Cooled structures which are cooled from the equilibrated structure at 1000 K at a rate of 

10 K/s to 300 K (cf. Figure 2.6(b)), prior to the application of a load at a different 

temperature. 

 Unequilibrated structures which comprise an undeformed mesh, free from any prior STZ 

operations, with no internal stress distribution prior to loading at the test temperature. 

In all cases, temperature and stress (in a loading state of pure shear, with displacement along the 

x-axis) are fixed at constant values, and the KMC algorithm evolves the system through 

sequential STZ operations.   

Typical shear strain-time data for the three different structures are shown in Figure 2.7(a), for a 

load of 400 MPa at 623 K.  The responses for the cooled and equilibrated structures are very 

similar, exhibiting almost instantaneously a constant steady-state strain rate. On the other hand, 

the unequilibrated structure exhibits a significant transient region, during which the structure is 

developing the beginnings of a steady-state internal stress distribution that permits more rapid 

deformation; the first few STZ operations are large perturbations in the unequilibrated system, 

and require longer times to occur.  After the conclusion of the transient, however, the steady-

state strain rate is essentially the same as that seen in the other two structures.  The deformation 

in all the structures is also uniform, or homogeneous in nature, as expected.  An illustration of 

the observed deformation is provided for the unequilibrated structure at a time intermediate to 

the final deformation, with the magnitude of the STZ strains shaded, which can be seen in the 

inset of Figure 2.7(a).  All the high temperature deformation tests showed a similar uniform 

distribution of STZ strains and homogeneous deformation. 

The steady-state strain rates of all three structures are plotted as a function of the applied load in 

Figure 2.7(b), for a variety of test temperatures.  As expected based on our above discussion, we 

see that all three structures exhibit similar rheology in the steady-state condition.  What is more, 

the shape of the datasets in Figure 2.7(b) is typical of homogeneous glass flow, exhibiting 

weakly rate-dependent near-Newtonian flow at low stresses, and a gradual increase in rate 

sensitivity with increasing stress.  The predictions of Equations 1.2 and 2.17 are also plotted in 

Figure 2.7(b), both of which agree closely with the simulation results without the use of any 

adjustable parameters; this close agreement suggests that the assumption of independent STZ 

operation is well-founded at these temperatures near the glass transition. We also observe that 
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while the two-dimensional model of Equation 2.17 does provide somewhat improved predictions 

in some cases, the simpler one-dimensional model of Equation 1.2, with its classical hyperbolic-

sine stress dependence, provides surprisingly accurate results with an error on average ~5% 

smaller than Equation 2.17. 

2.3.3. Low Temperature Deformation 

We now consider deformation of the same three structures at two temperatures, 300 and 400 K, 

well below the nominal glass transition temperature of Vitreloy 1 at 623 K.  Typical strain-time 

data are shown in Figure 2.8(a) for the three different structures loaded at 1 GPa and 300 K,  

 

Figure 2.7 High temperature rheological response of simulations 

(a) Typical strain-time data for the three different structures deformed at 

high temperatures (in this case 400 MPa and 623 K), which exhibit similar 

steady-state strain rates and overall shear strain.  A snapshot is provided 

for the unequilibrated structure at the marked point, where the inset shows 

the physical deformation along with the magnitude of the plastic STZ 

strains, which are shaded.  (b) Steady-state homogeneous flow data for 

several high temperature simulations of the three structures, plotted along 

with the predicted strain rates of Equations 1.2 and 2.17. 
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where it can be seen that once a certain strain level is achieved, all three structures exhibit about 

the same strain rate.  However, the three different structures exhibit very different initial 

responses to the applied load, where the cooled structure shows no transient region, the 

    

Figure 2.8 Low temperature response of simulations 

(a) Typical strain-time data for the three different structures deformed at 

low temperatures (in this case 1 GPa and 300 K), which exhibit similar 

steady-state strain rates and overall shear strain, although they exhibit 

different transients. Markers (b), (c) and (d) correspond to snapshots of the 

unequilibrated structure at different times during deformation, illustrating 

the localization that proceeds formation of an elementary shear band.  

Marker (e) corresponds to a single snapshot of the equilibrated structure 

near the end of loading illustrating the homogeneous nature of the 

deformation. 
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equilibrated structure shows a small transient region and the unequilibrated structure once again 

shows a very significant transient region.  The lack of a transient in the cooled structure can be 

attributed to the higher strain energy density that is frozen into the system, which is ~2.5 times 

greater than the strain energy density in the equilibrated structure.  Thus in comparing the cooled 

and equilibrated structures, the higher stresses in the cooled structure make it more readily able 

to deform than the equilibrated structure which requires a transient region to initiate rapid 

deformation. 

The significant transient region in the unequilibrated structure can again be attributed to the 

development of an internal stress distribution that facilitates deformation, where the first STZ 

operations represent large perturbations to the system that require a long time to occur.  What is 

more, these first few STZs are spatially clustered, as shown in Figure 2.8(b), and ultimately 

assemble into the nucleus of a shear band as in Figure 2.8(c).  Once this assemblage of STZs 

spans the specimen as in Figure 2.8(c), the stress state of the system is sufficiently perturbed to 

permit rapid shearing on this plane, which accumulates strain quickly as in Figure 2.8(d). 

At low temperatures and high loads (large λ), a glass generally deforms inhomogeneously with 

the majority of plastic strain confined to very localized volumes, exactly as seen in the example 

of Figure 2.8(b)-(d).  However, while this behavior was observed in the unequilibrated structure, 

the equilibrated and cooled structures deformed in a homogeneous fashion with no sign of 

localization in over 40 unique simulations, despite identical loading conditions.  This 

homogeneity (or lack of inhomogeneity) in the equilibrated and cooled structures can, we 

believe, be attributed to the system size; the small physical size of the simulation cell falls in the 

reported range of the width of a fully developed shear band at 10
-8

 – 10
-7

 m [5, 29].  This may 

simply be too small to allow a shear band to develop in the complex stress field of an amorphous 

solid.  The localization of the stress and strain distributions which give rise to shear banding 

requires a perturbation of sufficient size.  In the unequilibrated structure, the perturbation is 

provided by thermal activation of the first few STZs, which generate stress and strain 

distributions of a large magnitude in an otherwise stress free mesh.  Subsequent STZs are 

strongly biased by the perturbation, leading to the autocatalytic assembly of a shear band as in 

Figure 2.8(b)-(d).  However, in the systems with pre-existing structural noise, a single STZ 

operation does not provide a sufficient perturbation to trigger shear banding, because stresses of 

similar magnitude are already distributed through the system; a larger perturbation is apparently 
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required, involving multiple STZ operations.  In a small system such as ours, the probability for 

observing a perturbation of sufficient size is reduced.  The role of large stress fluctuations 

inhibiting inhomogeneous deformation has been explored previously in Ref. [71] with a different 

model, and similar physics may be at work here. 

In future work we will explore in more detail the conditions required to cause localization in 

these simulations.  In addition to issues of scale, we also intend to incorporate local state 

variables, including structural parameters (such as free volume) and local temperature; these will 

permit additional perturbations in the local state and are known to generally lead to (or influence) 

localization [21].   

2.3.4. Deformation Map 

As a final illustration of the general capabilities of this model, we assemble in Figure 2.9 a 

deformation map derived from simulations on the unequilibrated structure.  The map includes: 

Contours of steady-state strain rate as a function of temperature and stress, for rates ranging from 

10
-10

 to 1 s
-1

.  The material response at strain rate values much slower than 10
-10

 s
-1

 are assigned 

as nominally ―elastic‖; these data points are marked by an x rather than a square. 

Local values of the strain rate sensitivity, m, defined as 

 




ln

ln

d

d
m  . (2.18) 

As the stress is increased, the value of m decreases from unity (Newtonian flow), and trends 

toward zero, which is associated with non-Newtonian flow and instabilities [83].   

Regions to denote which samples deformed in a homogeneous manner and which samples 

deformed in an inhomogeneous manner. 

The general features of the deformation map match well with expectations for metallic glasses 

[7, 10].  With the ability to reproduce the basic features of deformation of glass, we anticipate 

that the present STZ-dynamics model will be able shed new light on more obscure details of 

deformation that are not captured on the deformation map.  
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2.4. Conclusions  

In this chapter, we have developed a new meso-scale modeling technique for the mechanical 

behavior of metallic glasses, based on shear transformation zone dynamics.  The important 

features of this modeling framework include the following: 

 A model material is coarse-grained and mapped onto a mesh to form an ensemble of 

shear transformation zones (STZs), which are the fundamental units of plastic 

deformation. 

 Finite element analysis and a kinetic Monte Carlo algorithm are used together in this 

model, the former to permit STZs to interact via their stress and strain fields, and the 

latter to permit time evolution of the ensemble.   

 

Figure 2.9 Deformation map constructed from simulated material response 

The deformation map represents the material response of Vitreloy 1 

constructed from the data obtained through loading the unequilibrated 

structure over a range of stresses and temperatures.  The colored lines 

represent contours of different steady-state strain rates, where strain rates 

slower than 10
-10

 s
-1

 are considered to be elastic and are marked with an ‘x’. 

Other data points are shaded according to their respective strain rate 

sensitivity, m, as indicated by the color bar above the map.  Further regions 

marked as Newtonian (lightly shaded) and non-Newtonian are 

differentiated.  Samples which deformed inhomogeneously are marked in a 

darkly shaded region while the rest of the samples deformed 

homogeneously. 
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The result is a model that can access significantly larger time and length scales than those 

typically available via atomistic modeling, with complex geometries and boundary conditions.  

These larger time and length scales are necessary to understand how microscopic deformation 

leads to macroscopically and experimentally observed behaviors. 

We have presented a specific implementation of the modeling technique in two dimensions, to 

model a metallic glass over a range of thermal conditions and mechanical loads.  Salient results 

from this exercise include the following: 

 In equilibrium, there is a linear relationship between the stored elastic strain energy 

density and temperature.  Cooling the system at a finite rate leads to a deviation from 

equilibrium and the entrapment of a kinetically metastable state with higher stored elastic 

strain energy density. 

 Deformation of the system at high temperatures and at a constant load leads to steady-

state strain rates regardless of the processing history (pre-existing internal stress 

distributions), although the processing history can affect the transient approach to steady-

state.  The steady-state rheology conforms well to simple analytical models that assume 

independence of STZs from one another.  Both Newtonian and non-Newtonian flow are 

observed, in line with expectations. 

 While deformation at high temperatures is observed to be homogeneous, at low 

temperatures inhomogeneous flow (i.e., shear banding) is observed in initially noise-free 

(unequilibrated) structures.  In such systems, the first STZs that operate provide a 

perturbation that leads to autocatalytic shear band assembly.  In contrast, systems with a 

thermal/processing history with significant pre-existing internal stress distributions 

deform in a homogeneous manner. 

With the results obtained from numerous simulations, we assembled a deformation map for 

metallic glasses that is in line with expectations from the literature.  As will be shown in the 

following chapters, the STZ dynamics model can be applied to understand more subtle details of 

glass deformation under complex boundary conditions. 
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3. Activated States and Correlated STZ Activity
2
 

3.1. Introduction 

The effort to answer questions surrounding the mesoscopic details of deformation in amorphous 

metals, as discussed in section 1.5, is facilitated through the use of mesoscale models because 

these models bridge the microscopic and macroscopic scales, both in terms of space and time.  

The purpose of this chapter is to revisit the results obtained in Chapter 2 with a goal of better 

understanding the conditions surrounding the selection and activation of STZs through additional 

analysis.   Of particular emphasis is the way in which STZs communicate with one another via 

the redistribution of stress fields, which leads to spatial and temporal correlations between 

activated STZs.  Although spatio-temporal correlations have been studied at the atomic [8, 41, 

42, 85] and continuum [86] scale, this is the first study to explicitly explore such correlations 

among STZs in a mesoscale model of a deforming glassy system. 

The analysis in this chapter is focused on the results obtained from the unquilibrated structure, 

described in sections 2.3.1 – 2.3.3, which is a model glass free from any pre-existing stresses and 

strains.  The evolution of the system, containing more than 16,000 potential STZs, was followed 

over the course of more than 5,000 STZ activations for 60 combinations of applied stress, in the 

range of 10 MPa to 4.75 GPa, and temperature, in the range of 300 to 800 K.  In what follows we 

analyze the STZ activity in these 60 simulations. 

3.2. The Activated State 

3.2.1. Calculating the Activated State 

The KMC algorithm requires a model with which to calculate the activation energy, G ,  of a 

transition or activated state.  For an STZ Dynamics model, the activation event corresponds to a 

local traversal between STZ configurations, as shown schematically in Figure 3.1(a).  The model 

of G  for such a process must satisfy detailed balance [78, 79, 87], and the calculations should 

also be efficient.  Bulatov and Argon [13] proposed a model for G  that satisfies both these 

requirements for the case of STZ activation.  This model was given implicitly in chapter 2 but is 

presented explicitly here as 

 ooFG  2
1  (3.2) 

                                                 
2
 The contents of this chapter have been published previously as Ref. [84] 
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where, again, the intrinsic barrier height for the reaction, F , is biased by the local shear stress 

 , which is obtained by volume averaging the stress over the elements which comprise each 

potential STZ.  This model is not immediately intuitive, so we provide some details here, along 

with points of contrast with respect to more traditional approaches used in KMC. 

Consider an elementary reaction, the simple shearing of an STZ through a defined increment of 

strain o , as shown in Figure 3.1(a).  The value of the local plastic strain p  (defined parallel to 

a given shear plane) is incremented as 

 o

I

p

F

p    (3.4) 

where the superscripts I and F represent the initial and final values, respectively.  There is a 

corresponding variation in elastic energy from the energy in the initial state, IE , to the energy in 

the final state, FE .  This variation in elastic energy, which is a quadratic function of p  [88], 

can be calculated analytically for an idealized STZ using the Eshelby solution for an elastic 

inclusion [18], or can be evaluated numerically by visiting the final state following the transition. 

A traditional KMC model uses the energy change to model the activation energy, G , by adding 

a barrier of fixed height, F , to the average of IE  and FE , as illustrated in Figure 3.1(b).  This 

approach satisfies detailed balance for the reaction because a forward transition traverses the 

same activated state as the reverse transition: 

 IF

F

FI

I GEGE   . (3.5) 

with   FEEG IF

FI   2  and   FEEG FI

IF   2 .  However, this conventional 

approach of calculating G  is not well suited to an STZ Dynamics model; it requires calculation 

of the energy in the final state, which is both computationally expensive for a large number of 

possible transitions, and essentially impossible for continuously distributed shearing angles as 

used in the present model.  Bulatov and Argon [13] exploited the property that the elastic energy, 

and therefore the total energy as well, is a quadratic function of p  to provide an alternate 

formulation for ΔG.  This quadratic variation in energy is shown in both Figure 3.1(b) and Figure 

3.1(c), illustrating that the system evolution is independent of the model for the activated state.  
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It can be shown that the local shear stress resolved in the shear plane of p  is given by the slope 

of the variation in energy, 

 
 
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p

po

EE




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











1
. (3.6) 

Given Equation 3.6, G  for the transition, as defined in Equation 3.2 and illustrated in Figure 

3.1(c), is determined by projecting with the slope, 
I , from the energy of the initial state to the 

 
Figure 3.1 Potential energy landscape models for STZ activation 

(a) Representation of the two states before and after the activation of an 

STZ. Illustration of the energy landscape and the method of identifying the 

activated state of an STZ in a (b) traditional KMC model where the 

activation energy, G , is obtained by adding the fixed energy barrier F  

to the average of the initial and final states, and (c) the energy landscape for 

the model proposed by Bulatov and Argon [13] where G  is obtained by 

adding F  to the projection of the slope (equal to the local shear stress) at 

the initial and final states.  The variation in energy between the two states is 

given by the dashed line and is the same in both (b) and (c). 
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midpoint of the reaction, o2
1 (energy variation 002

1   I ), and then adding the fixed barrier 

height, F .  Detailed balance for this model of G  is satisfied because  

     oo

FF

oo

II FEFE   2
1

2
1 , (3.7) 

which follows a property of quadratic functions that 

            22 IFFFIFII EEEE   .  This is illustrated in Figure 3.1(c) by 

the fact that the tangents to the variation in energy at the initial and final states, I  and F  

respectively, cross exactly at o2
1 .   

This model for G  is efficient because it only requires knowledge of the initial condition, and 

the contribution of continuously distributed shear planes to the STZ activation rate can be 

considered in a mathematically convenient form (Equation 2.5). 

3.2.2. Statistics of the Activated State 

At each of the KMC steps in the simulation, the algorithm has more than 16,000 potential STZs 

from which to choose to evolve the system.  The statistics of these potential transitions are 

available in the density of potential activation energies, )( G , and the corresponding 

probability density distribution, )( Gp  , defined as  

     






 


kT

G
G

Z
Gp exp

1
  (3.8) 

where Z is the partition function.  Both )( G  and )( Gp   are averaged over all the KMC steps 

to smooth out the effects of individual transitions that might be more abundant at different steps.  

We will also consider )( GS  , the energy distribution of the transitions selected in the course of 

simulations.  Figure 3.2 presents the measured distributions of )( G  and )( GS   along with 

)( Gp   calculated according to Equation 3.8 for four simulations which cover two temperatures, 

300 and 623 K, and two applied shear stresses, 100 MPa and 1 GPa. 

It is important to recall that our KMC algorithm allows each STZ to shear in any direction, thus 

creating a continuum of transition states for each potential STZ.  This is incorporated into the 

rate equation by calculating the maximum in-plane shear stress, max , and then modulating that 



 49 

 

value by the sine of the angle relative to the direction of max  as defined by  

 ooFG   sinmax2
1 . (3.9) 

It follows that the distributions of )( G  are symmetric about the intrinsic barrier height, F , 

and the contribution of each potential STZ is limited to oo  max2
1 , where energies below 

F  are for transitions in the direction of the local  max , and those above ΔF are opposed to it. 

In calculating the distributions of )( G  in Figure 3.2, we have used 360 uniform increments of 

  on the interval   , , and a bin size on G  of 0.025 eV.  Therefore, at the lower applied 

stress of 100 MPa, the range of ooF  max2
1  is small and the distributions of )( G  at 

both temperatures, 300 and 623 K, are narrow and appear unimodal, obscuring the tendency to 

see an increased number of states at the limits.  For the higher applied stresses of 1 GPa however, 

)( G  appears bimodal on account of the increased magnitudes of max  which result in a spread 

of the data, accentuating the increased number of transitions with energy close to the limiting 

values of ooF  max2
1 . 

 

Figure 3.2 Statistics of the activated states for STZ transitions 

Statistics of the density of activation energies,  G , and the 

corresponding probability density distribution,  Gp  , alongside the 

density of selected activation energies, )( GS  , for four different 

simulations carried out under a combination of temperatures, 300 and 623 

K, and applied stresses, 100 MPa and 1 GPa 
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While the temperature dependence of F , defined in Figure 3.2, can be seen by the slight 

decrease in F  at higher temperatures, the temperature effects are more noticeable in the 

broadening of )( G  at higher temperatures.  The greater thermal energy available at these 

higher temperatures allows more transitions to take place, creating different states and more 

potential transitions of varying energies during the course of the simulation. 

While )( G  gives the distribution of all potential transitions that are enumerated in the KMC 

algorithm, the probability, )( Gp  , for picking a transition with energy G  is a competition 

between the number of transitions at that energy, )( G , and the available thermal energy, kT, 

as in Equation 3.8.  In these simulations, the available thermal energy is small in comparison 

with the energy of the transitions, in the range of ~ 0.02 – 0.07 eV, making the lowest energy 

transitions the most likely to be selected.  And indeed, in Figure 3.2 it can be seen that although 

)( G  spans a large range of energies, only the transitions corresponding to the lower portion 

of this range are probabilistically relevant.  At 100 MPa and at both temperatures, )( Gp   is only 

relevant over the lower half of the range of )( G , which corresponds to shearing an STZ in the 

general direction of max .  At 1 GPa, however, only the transitions very close to the direction of 

max  are likely to be selected.  In all cases, the probability for picking an STZ opposed to the 

direction of max  (where FG  ) is near zero, because the thermal energy required to activate 

these ‗backward‘ processes is too large.   

As expected, the transitions selected, )( GS  , closely match the expectations based on )( Gp  , 

as shown by the virtually perfect overlap of these curves for all conditions in Figure 3.2. 

3.3. STZ Correlations 

Having detailed the activated state and the conditions that lead to the probabilistic selection of 

STZs, we turn our attention to an analysis of the correlations between the STZ activations in both 

space and time.   

An irregular triangular mesh with several potential STZs highlighted; each is centered on an 

element and includes all surrounding elements.  Overlap between STZs is denoted by the darker 

shading, and circles with radii equal to 1, 2.5 and 5 times the STZ radius are centered on STZ 

‗D‘ to indicate the distance between potential STZs. 
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An illustration of our approach can be seen in Figure 3.3, where the highlighted STZs can be 

thought of as being activated or sheared in alphabetical order.  We analyze the distance, r, 

between the center of each selected STZ and the following j
th

 subsequent STZ activation.  Our 

unit of distance is the average radius of an STZ, and a reference for gauging the distance r 

between STZ ‗D‘ and the j
th

 activation (i.e., E, F, G…) that follows is given by the circles 

centered on ‗D‘ with radii of 1, 2.5 and 5 times the average STZ radius. 

In some cases it is instructive to use the time and distance between activations to simply 

calculate the number fraction of sequential STZ events that occur within a given radius of a 

previous STZ activation.  In other cases a richer view is offered by inspecting the time-dependent 

radial distribution function (TRDF) of STZ activations.  The TRDF is given by 

  
 

)(

,
,

rq

jrn
jrg   (3.10) 

where  jrn ,  is constructed by binning the number of sequential activations as a function of r 

and j, and )(rq  is defined as  

 
Figure 3.3 Illustration of distance between STZ activations 

From the highlighted STZs defined on an irregular triangular mesh and 

activated in alphabetical order, one can gauge the distance of correlations 

between activations.  The circles defined in blue have radii equal to 1, 2.5 

and 5 times the STZ radius from the STZ centered on STZ ‘D’. 
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where 
STZ  represents the overall density of STZ activations., i.e., the total number of STZ 

activations per unit area. The normalization quantity )(rq  represents a uniform STZ activation 

density and the piecewise form of Equation 3.11 is introduced to prevent the divergence of 

 jrg ,  as r  0 for discrete systems such as ours.  The size of the bins, dr, for the TRDFs 

analyzed here is approximately equal to half of the STZ radius.   

3.3.1. General STZ Correlation Behaviors 

An analysis of the 60 different simulations reveals three basic types of behavior that manifest 

under different combinations of applied stress and temperature.  These behavior types are 

cataloged in Figure 3.4 by the characteristic form of the TRDF they exhibit, and are described 

below. 

 ‗Nearest-Neighbor STZ Activation‘, which is observed for the simulations deformed at 

high applied stress and low temperatures, is illustrated in Figure 3.4(a). This behavior is 

characterized by an early, broad peak spanning roughly r = 1 to 5, centered between 

about 2 and 3.  As shown by the circles in Figure 3.3 (which are located at r = 1, 2.5, and 

5), the peak breadth corresponds to activations in the immediate neighborhood of the first 

STZ, centered on what may be called the nearest-neighbor distance.  The peak in the 

TRDF is generally three to five times the value for a uniform distribution, and persists 

only for early times from the first STZ activation ( 31j ) indicating that the frequency 

for immediate subsequent activation of a neighboring STZ is higher than that for uniform 

activation throughout the simulation cell (cf. STZs D, F and G in Figure 3.3).  For values 

of r less than 1, however,   0~1,rg  indicating that the frequency for activating STZs that 

spatially overlap the original STZ (or for reactivating the original STZ itself) in 

subsequent steps is nearly zero (cf. STZs D and E in Figure 3.3). 

 ‗Independent STZ Activation‘, which occurs under conditions of high applied stress and 

high temperatures, is illustrated in Figure 3.4(b).  In this behavior the TRDF once again 

shows no preference for re-activation of STZs atop the first one, since again   0~, jrg  
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at 1r .  However, at higher temperatures the tendency for activation of neighboring 

STZs is lost; there is no longer a discernible peak elsewhere in the TRDF, which is 

valued near unity for all 1r  and 1j .  This constant value of the TRDF indicates that 

all STZs throughout the simulation cell are equally likely to activate; there is no 

correlation among STZs. 

 ‗Self STZ Activation‘, which dominates at low applied stress and any temperature, is 

illustrated in Figure 3.4(c).  Unlike the previous behaviors, Figure 3.4(c) exhibits an 

extremely pronounced and sharp peak in the TRDF at 0r  and for early times (j < 4).  

The spatial extent of the peak is limited to 1r , indicating a large preference for a 

second STZ activation atop the first.  For all other 1r  and all j,   1~, jrg  indicating 

zero preference for correlated STZ activity at large distances. 

The three behaviors identified in Figure 3.4 coincide with three different types of macroscopic 

deformation that are easily identifiable on a deformation map.  Namely, the ‗Nearest-Neighbor 

STZ Activation‘ occurs under conditions which lead to inhomogeneous deformation, 

‗Independent STZ Activation‘ occurs under conditions which lead to homogeneous deformation, 

and ‗Self STZ Activation‘ occurs, in general, under conditions which are identified with 

nominally elastic behavior, of which the macroscopic behaviors are described in chapter 2.   

The connection between ‗Nearest-Neighbor STZ Activation‘ and macroscopic inhomogeneous 

deformation mode is relatively straightforward.  At high stresses, the system is most likely to 

activate all STZs in the direction of the applied stress.  Once one STZ is activated, it raises the 

stress in all neighboring STZs, and where the available thermal energy is low at low 

temperatures, the frequency for ‗Nearest-Neighbor STZ Activation‘ is increased, leading to 

localized deformation.  For ‗Independent STZ Activation‘, which occurs at high applied stress 

and high temperature, the available thermal energy is now sufficient to enable STZ activation at 

other positions even though the stress in the neighboring STZs is high.   

‗Self STZ Activation‘ is linked to the elastic regime for two reasons.  First, at low temperatures, 

there is insufficient thermal relaxation to accommodate a single STZ operation, and at low 

stresses, there is insufficient tendency for a single STZ to trigger nearest-neighbor activations; 

thus, the most likely response of the system is for each STZ activation to be nearly 

instantaneously reversed.  Second, the activation energy associated with most of these transitions 
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is very large, and when little thermal energy is available, this leads to large KMC step times, and 

thus extremely slow strain rates, which are not experimentally relevant.  Thus, when ‗Self STZ  

 

Figure 3.4 General behaviors in the TRDFs of STZ activation 

The three behaviors and their corresponding conditions are (a) Nearest-

Neighbor STZ Activation: high stress and low temperature, (b) 

Independent STZ Activation: high stress and high temperature, and (c) Self 

STZ Activation: low stress and any temperature.  The shading of all three 

surfaces uses the same color scheme, permitting comparison of the 

magnitudes of the different trends. 
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Activation‘ behavior is observed, the system evolves very slowly, and the effect of forward 

plastic events is quickly diminished by backward ones at essentially the same location, indicating 

that the system is more likely to remain effectively elastic. 

While the general types of STZ activity identified in this section are instructive, neither all of 

their features nor the transitions between them are well defined as yet.  A more detailed analysis 

follows, in which we find it useful to decompose the observed correlations into the spatial and 

temporal components.   

3.3.2. Spatial Correlation Analysis 

To better understand the spatial component of the STZ correlations identified as ‗Self STZ 

Activation‘ and ‗Nearest-Neighbor STZ Activation‘, the values for the TRDF of STZ activity 

may be plotted as contours over the range of available temperatures and applied stresses.  These 

contour plots of  jrg ,  are presented in Figure 3.5 where Figure 3.5(a) corresponds to the value 

of the ‗Self STZ Activation‘ peak at 0r  and Figure 3.5(b) corresponds to the value of the 

‗Nearest-Neighbor STZ Activation‘ peak at 5.2r .  In both cases, we consider only 1j  to 

focus solely on the first subsequent STZ activation.  We observe that the ‗Self STZ Activation‘ 

behavior is dominant at low stress, and while it extends over the entire temperature range 

covered in Figure 3.5(a), it is especially important at low temperatures where the magnitudes of 

the contours are significantly higher.  These observations are in good agreement with the 

proposed connection between this STZ behavior and the elastic range, which is indeed prevalent 

at low stresses and temperatures.  The extension of this behavior to the higher temperatures is 

somewhat unexpected because in this range creep-like homogeneous flow is expected.  This 

issue can be resolved by examining the number fraction of subsequent STZ activations that can 

be identified with ‗Self STZ Activation‘. 

The number fraction of subsequent STZ activations that are associated with ‗Self STZ 

Activation‘ and ‗Nearest-Neighbor STZ Activation‘ are shown in Figure 3.5(c) and Figure 

3.5(d), for events which fall in the range 10  r  and 51  r , respectively.  Now, by 

comparing Figure 3.5(c) and Figure 3.5(a), we observe that although the peak in the TRDF for 

‗Self STZ Activation‘ persists to high temperatures at low stresses, the fraction of events 

contributing to that peak is very low indeed.  The reason for the apparent discrepancy is that the 
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TRDF tends to accentuate information near the origin (r = 0), where very few events are needed 

to cause a peak to emerge.  In contrast, Figure 3.5(b) and Figure 3.5(d) for the ‗Nearest-Neighbor  

 

Figure 3.5 Spatial correlations of STZ activation 

Contour plots of several different statistical measures that capture STZ 

correlations over a range of applied stresses and temperatures: (a) the 

TRDF values of ‘Self STZ Activation’,  1,0  jrg  and (b) of ‘Nearest-

Neighbor STZ Activation’  1,5.2  jrg  ; (c) number fraction of 

subsequent, 1j , ‘Self STZ Activation’ events within the range 

10  r ; and (d) number fraction of subsequent ‘Nearest-Neighbor STZ 

Activation’ events within the range 51  r .   Contour plots of the 

probability of (e) ‘Self STZ Activation’ and (f) ‘Nearest-Neighbor STZ 

Activation’ following the activation of a single STZ in a simulation cell over 

a range of temperatures and applied stresses. 
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STZ Activation‘ behavior show a closer agreement to one another.  In this case, larger values of 

r are of interest, and the TRDF accordingly requires larger numbers of events before a peak 

emerges. 

As an additional point of reference for establishing the regions for the different behaviors of 

correlated STZ activity, a simple simulation was carried out to calculate the probabilities for 

‗Self STZ Activation‘ or ‗Nearest-Neighbor STZ Activation‘ following the activation of a single 

STZ.  In other words, a single STZ was activated in a simulation cell with no internal structure 

(no stress distribution), and afterwards, the probability for activating that same STZ or a nearest-

neighbor STZ was calculated over a range of temperatures and applied stresses.  These 

probabilities can be seen in Figure 3.5(e) and Figure 3.5(f), for the ‗Self STZ Activation‘ and 

‗Nearest-Neighbor STZ Activation‘ probabilities.  It is noted that the probabilities for these 

regions are higher than the observed fractions in Figure 3.5(c) and Figure 3.5(d); however, this 

can be attributed to the fact that the probabilities are calculated for a cell in which there is only 

one STZ activated.  On the other hand, when a distribution of stresses and strains is present due 

to a prior history of STZ activity, the competing probabilities of many other possible events 

decreases the relative probability for correlated STZ activity; it does not, however, remove it 

altogether. 

One final point of interest in Figure 3.5(b), Figure 3.5(d) and Figure 3.5(f) is that the 

probability/frequency for ‗Nearest-Neighbor STZ Activation‘ drops off at very high stresses.  

This results from the fact that the magnitude of the stresses resulting from individual STZs is 

small in comparison to the very high applied stress, removing the preference for ‗Nearest-

Neighbor STZ Activation‘. 

3.3.3. Temporal Correlation Analysis 

In examining the general behaviors of correlated STZ activity in Figure 3.4, it can be seen that 

where there is a significant peak,   2, jrg , in the TRDF, there is also a time dependence to the 

peak.  These peaks appear to exhibit a general first-order decay, and as such, the time 

dependence of the correlations can be quantified with a first-order time constant.  The time 

constant   is measured in KMC steps, j, and gives the number of subsequent STZ activations 

over which the likelihood of correlated STZ activity decays by 1-e
-1

.   



 58 

Because temporal correlations only exist when a peak is evident in the TRDF, we focus our 

measurements of   on two values of r, 0 and 2.5, which correspond to the ‗Self STZ Activation‘ 

and ‗Nearest-Neighbor STZ Activation‘ behaviors, respectively.  In order to find the best fit for 

 , an exponential function is set to match the initial peak height at 1j  and the average peak 

height at 2520 j  and then a least-squares method is used to determine an appropriate value 

for  .  Those values of   obtained from reasonable exponential fits ( 8.02 R ) are presented in 

Figure 3.6, and labeled with the behavior corresponding to the position of the fitted peak, ‗Self 

STZ Activation‘ (r = 0) and ‗Nearest-Neighbor STZ Activation‘(r = 2.5).  As expected, the 

regions enclosed by the two different behaviors shown in Figure 3.6 match reasonably with those 

shown in Figure 3.5.  In all cases, the value of   is always less than five STZ activations, 

indicating that the lifetime for correlations between STZ activations is very short-lived.   

Physically this short life span of correlated STZ activity implies that the probability of observing 

a large string of correlated events is negligible.  Indeed in all of the 60 simulations, a string of 

more than two sequential nearest-neighbor STZ activations was rarely observed.  The reason for 

this lies in the fractions and probabilities for ‗Nearest-Neighbor STZ Activation‘ shown in 

Figure 3.5(d) and Figure 3.5(f), respectively, where the probability for activating a nearest-

 

Figure 3.6 Temporal correlation of STZ activations 

Contour plot of the time constant,  , which measures the time decay of the 

TRDF correlation peaks at 0r  for the ‘Self STZ Activation’ correlation 

and at 5.2r  for the ‘Nearest-Neighbor STZ Activation’ correlation.  

Regions not enclosed by the contours did not provide a satisfactory fit for 

 . 
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neighbor STZ is systematically less than 10%.  This means that the probability to observe a 

string of three correlated events is approximately 1% or less.   

3.3.4. STZ Correlation Map 

An STZ correlation map can be compiled from the above analysis to illustrate how the general 

STZ correlation behaviors are governed by the externally imposed applied stress and 

temperature.  This map can be seen in Figure 3.7, where the different regions denote the 

conditions under which ‗Self STZ Activation‘, ‗Nearest-Neighbor STZ Activation‘ and 

‗Independent STZ Activation‘ are most likely to occur.  As can be seen in Figure 3.5 and Figure 

3.6, none of the regions corresponding to the different STZ correlations match exactly, so 

qualitative boundaries for these regions have been identified in Figure 3.7.  Furthermore, Figure 

3.7 is provided in normalized units for comparison to a wider range of metallic glasses, with the 

stress normalized by the temperature-dependent shear modulus,  T , and the temperature 

 

Figure 3.7 STZ correlation map  

The different regions delineating the ‘Nearest-Neighbor STZ Activation’, 

‘Independent STZ Activation’ and ‘Self STZ Activation’ correlation 

behaviors are matched with the corresponding macroscopic modes of 

deformation, named in parentheses. 
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normalized by 623gT  K, a glass transition temperature close to that of many Zr-based BMGs 

[80].  As mentioned previously, these regions coincide well with the different modes of 

macroscopic deformation that were observed in chapter 2, and are commonly observed in 

experiments of metallic glasses, namely elastic, inhomogeneous and homogeneous, respectively.  

Of course, the boundaries between these regions are not rigid, and there are occasional correlated 

events that occur outside the defined regions of correlated STZ activity.  However, in general the 

regions delineated in Figure 3.7 accurately capture the microscopic STZ correlations (and align 

with the macroscopic modes of deformation) observed in the simulations. 

3.4. Macroscopic Inhomogeneity 

The macroscopic nature of deformation in an amorphous metal is typically easy to discern in the 

limiting cases of localized shear and perfectly homogeneous deformation.  However, not all 

cases of deformation fall cleanly into one of these two categories, and an objective measure to 

assess the degree of localization would be helpful.  To do so here, we adapt an analysis approach 

useful for quantifying the size of deformation and relaxation events in atomistic simulations, 

called the participation ratio, which gives the fraction of atoms that participate in any given 

process [75, 89].  We introduce a quantitative measure termed the ‗localization index‘, which 

while inspired from and similar in form to the atomistic participation ratio, can be used to 

quantify localization on a macroscopic level: 
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where n  is the plastic strain accumulated through STZ activity in each of the N mesh elements 

of the simulation cell following deformation.  The localization index,  , identifies the fraction of 

the cell that participates in the overall deformation, thus giving an objective measure for the 

degree of localization or inhomogeneity.  The value of   will range from unity if all the strain is 

concentrated on an infinitely thin shear band to zero for deformation that is perfectly uniformly 

distributed across the entire simulation cell.  We find that values below about 0.5 correspond to 

very homogeneous flow, with a superimposed background of noise (as expected in a disordered 

solid). 
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The value of   obtained by analyzing the 60 simulations is plotted in contours for fractions of   

greater than 0.5 in Figure 3.8.  The value of n  in this case is the effective plastic strain [90] (in 

2-D) in each element, defined as 

  2

122
12

22

2

113
2  eff , (3.13) 

 

where 
11 , 

22  and 
12  represent the plastic strain in the x and y directions and the plastic shear 

strain, respectively.  (Since the former two strains are small, using only the component 
12  in the 

direction of the applied stress yields nearly identical results.)  As expected, the region of 

correlated ‗Nearest-Neighbor STZ Activation‘ (cf. Figure 3.5, Figure 3.6 and Figure 3.7) is 

enclosed in a region of high  .  This confirms that local correlations in STZ activity lead to 

localization on larger scales where visible regions of inhomogeneous deformation can be 

identified, even if no large chain of sequential events is ever observed. On the other hand, the 

region of high   at low stresses and temperatures may seem unexpected since it corresponds to 

the elastic response of the material.  The reason for this apparent discrepancy is that the nature of 

the inhomogeneity at low stresses is different than that at high stresses.  At low stresses, the high 

value of   is due to small pockets of high strain in a sample that is otherwise uniformly 

 

Figure 3.8 Contour plot of the localization index 

The localization index,  , is plotted in contours for samples deformed at 

different combinations of applied stress and temperature.  The region 

enclosed at high temperature and low applied stress corresponds to 

localization in large visible bands of concentrated shear, while the region 

enclosed at low applied stress is exhibited by small pockets of large strain in 

an otherwise uniformly deformed sample. 
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deformed; these pockets are also the result of STZ activations that occur on unreasonable time 

scales, leading to apparently elastic deformation.  Furthermore, it is noted that the high value of 

  at low stresses may be due to the fact that the magnitude of overall shear strain that has 

accumulated during the simulations is small, and a nominally homogeneous sample may look 

heterogeneous when observed on short timescales. 

3.5. Effects of pre-existing structure 

In the above discussion, all of the simulations began from a homogeneous, undeformed 

simulation cell (which we called ‗unequilibrated‘ in chapter 2).  We now consider the effects of 

pre-existing structure, by analyzing the same set of conditions on model glasses subjected to the 

simulated thermal processing prior to loading discussed in chapter 2.  These structures were 

formed by either (a) cooling at a rate of 10 K/s from an initial temperature of 1000 K, or (b) 

equilibrating the system at the same temperature as the simulated mechanical test, as described in 

chapter 2.  Both these treatments have the effect of freezing in a distribution of stresses, with the 

‗cooled‘ structure having the highest magnitude of residual stresses, and the ‗equilibrated‘ 

structure having a lower magnitude of residual stresses.   

These two thermally processed structures were subjected to the same 60 combinations of pure 

shear stress and temperature as the ‗unequilibrated‘ structure discussed above and followed over 

the course of 5,000 STZ activations.  In the analysis in chapter 2, the ‗cooled‘ and ‗equilibrated‘ 

structures exhibited roughly the same overall strain rates as the ‗unequilibrated‘ structure, but the 

‗cooled‘ and ‗equilibrated‘ structures never showed any macroscopically inhomogeneous 

deformation like the ‗unequilibrated‘ structure did.  We performed the same analysis as provided 

in sections 3.2-3.4 on the ‗cooled‘ and ‗equilibrated‘ structures.  This analysis led to almost 

identical results for the two, so here we discuss only the results for the ‗cooled‘ structure.  

The distribution of pre-existing stresses in the ‗cooled‘ structure has the effect of broadening the 

distributions of )( G  for the combinations of applied stress and temperature shown in Figure 

3.9.  The distribution of )( Gp  , however, seems to be narrower for the ‗cooled‘ structure at 

lower energies when compared with the ‗unequilibrated‘ structure, which results from the long 

non-zero tails in the )( G  distribution where the thermal energy dominates the probability for 

activating these lower energy transitions.  Once again )( GS   matches )( Gp   almost exactly.  

However, the most important note to be made about the activation energies shown in Figure 3.9 
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is that there is almost no change in the distributions from 623 to 300 K at the same applied stress.  

This means that the distribution of pre-existing stresses swamps out any low energy transitions 

that might be created after the activation of a previous STZ, which would manifest more  

prominently in )( Gp   at 300 K.  In comparing these distributions at the two temperatures, there 

is little indication that the two simulations should behave differently as a result of the change in 

temperature. 

The correlations in STZ activity for the ‗cooled‘ structure follow the same general trends that 

were seen in Figure 3.4 for the ‗unequilibrated‘ structure.  Figure 3.10(a) and Figure 3.10(b) 

show the magnitude of  jrg ,  in an analogous manner to Figure 3.5; comparison of these figures 

shows that the magnitudes for the peaks of the TRDFs of the ‗cooled‘ structure are much smaller 

than the peaks of the ‗unequilibrated‘ structure, although the same general regimes of behavior 

exist.  The fraction of subsequent ‗Self STZ Activations‘, 1j , that occur within one STZ 

radius can be seen in Figure 3.10(c), where it is noted that the region enclosed by the contours is 

much smaller than in Figure 3.10(c); the distribution of pre-existing stresses (which are of a 

similar magnitude to those resulting from any single STZ activation) suppresses local self-

 

Figure 3.9 Activation energy statistics for a thermally processed glass 

Statistics of the density of activation energies,  G , and the 

corresponding probability density distribution,  Gp  , alongside the 

density of selected activation energies, )( GS  , for four different 

simulations with pre-existing stresses (from a ‘cooled’ structure), carried 

out under a combination of temperatures, 300 and 623 K, and applied 

stresses, 100 MPa and 1 GPa. 
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activations.  Similarly, the fraction of subsequent ‗Nearest-Neighbor STZ Activation‘ events in 

the range of r = 1 to 5, shown in Figure 3.10(d), reflect a suppressed likelihood of observing 

correlated STZ activity in the presence of pre-existing stresses.  Nevertheless, these correlations 

do exist at low temperatures in spite of the fact that the activation energy distributions suggest 

that the simulations should behave identically when deformed at the same stresses, no matter the 

temperature.  

Perhaps the most interesting effect of the pre-existing stresses in the ‗cooled‘ structure is the lack 

of any macroscopic shear localization or inhomogeneous deformation, as mentioned previously 

and discussed in chapter 2.  There are small pockets of large strain throughout the structure 

 

Figure 3.10 Spatial correlation of STZs in a thermally processed glass  

Contour plots of several different statistics of STZ correlations over a range 

of applied stresses and temperatures for a ‘cooled’ structure with pre-

existing stresses: (a) the TRDF values,  jrg ,  , of ‘Self STZ Activation’ 

( 1,0  jr ); (b)  jrg ,  of ‘Nearest-Neighbor STZ Activation’ 

( 1,5.2  jr ) ; (c) number fraction of subsequent, 1j , ‘Self STZ 

Activation’ events within the range 10  r ; and (d) number fraction of 

subsequent ‘Nearest-Neighbor STZ Activation’ events within the range 

51  r . 
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following deformation, but nothing that would indicate a large degree of localization.  In 

examining the value of the localization index,  , over the range of applied stresses and 

temperatures, it is nearly constant around 0.6, which is why it is not shown here.  This lack of 

inhomogeneous response is consistent with the suppression of correlated STZ activity detailed in 

Figure 3.10 for the ‗cooled‘ structure; we are now able to conclude that a significant internal 

stress distribution has a homogenizing influence on deformation at the level of individual STZs, 

and consequently can suppress the formation of shear bands at larger scales.  These results 

confirm the speculations proposed in chapter 2 for the homogenizing effects of pre-existing 

stresses which make it difficult to observe perturbations of sufficient size that lead to 

localization.  Similar effects are observed in atomistic simulations where differing pre-existing 

stress distributions can lead to or inhibit shear localization [55].  The results also rule out another 

possibility suggested in chapter 2 that the small system size used in these simulations might in 

and of itself tend to suppress localization in a system with pre-existing perturbations.  We believe 

that in order to observe localization in STZ Dynamics simulations with realistic internal stress 

distributions, a local structural state variable, such as the free volume, is likely required.  Recent 

results from atomistic simulations also suggest the need for a state-variable beyond the stress 

state to more accurately account for the localized motion in metallic glasses [91].  This approach 

is frequently employed in mechanical models of amorphous systems [66], and provides a 

memory of the state (activation barriers) beyond the redistribution of stresses as is considered 

here.  The development of such a model is left for future work.   

3.6. Conclusion 

An analysis was performed on STZ Dynamics simulation results from chapter 2 for deformation 

of a model amorphous metal.  The goal of this analysis was to understand how shear 

transformation zones (STZs) interact with one another at a microscopic level, and how their 

collective operation combines to effect deformation on a macroscopic level.  A statistical 

analysis of the activation energies of the ensemble of potential STZs and their corresponding 

probabilities illustrates the influence of applied stress and temperature on the transitions that are 

most likely to be activated.  Specifically, a trend from allowing STZs to shear in a number of 

directions at high temperatures and low stresses transitions to a trend for STZs to shear in only 

one direction at low temperature and high applied stress.  Finally, a comparison of the 
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probabilities of the potential transitions with the transitions which were selected during the 

simulations shows excellent agreement.  

An analysis of the distance and time between STZ activations elucidates three general behaviors, 

identified as ‗Nearest-Neighbor‘, ‗Independent‘ and ‗Self‘ STZ activation.  The ‗Nearest-

Neighbor STZ Activation‘ behavior occurs at low temperature and high applied stress and 

indicates that a subsequent STZ activation is likely to occur in the immediate neighborhood of 

the first.  The ‗Independent STZ Activation‘ behavior occurs at high temperatures and any 

applied stress and indicates that the preference for activating any one of the potential STZs is 

independent of its location relative to previous activations.  Finally, the ‗Self STZ Activation‘ 

behavior occurs at low temperatures and low stresses and predicts that a subsequent STZ will 

have to activate in very close proximity to (i.e., atop) the previous STZ to relax the system 

locally.  The temporal components of the STZ correlations are found to be short-lived, always 

falling off after about five STZ activations. 

These three behaviors have been mapped onto an STZ correlation map and matched with their 

corresponding macroscopic mode of deformation, which are inhomogeneous, homogeneous and 

elastic, respectively.  These regions are also corroborated by macroscopic observations of the 

degree of homogeneity in the deformation, which we quantify with a ‗localization index‘.  

Interestingly, we find that having pre-existing structure in the simulation cell, in the form of a 

distribution of internal stresses and strains such as are expected for amorphous materials, 

diminishes the ability of the STZs to communicate with one another through stress redistribution.  

As a result, both microscopic and macroscopic localization are suppressed in such systems, and 

true localization (i.e., shear banding) only occurs in systems without pre-existing structure. 
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4. Insight into Nanoscale Cyclic Strengthening of Metallic 

Glasses
3
 

4.1. Introduction 

Thus far, the modeling framework has demonstrated its ability to capture the general mechanical 

behaviors expected of a metallic glass as well as its ability to resolve the microscopic 

correlations which lead to macroscopic deformation.  Having demonstrated these abilities, the 

model can now be employed to gain insight into experimentally observed behaviors which lack a 

clear mechanistic understanding.  For example, in the observed nanoscale strengthening of a 

metallic glass, which was mentioned in section 1.3, certain mechanisms (termed 

‗microplasticity‘) were speculated to lead to the nanoscale strengthening, yet no specific 

evidence was given to confirm their existence [36].  As such, the STZ Dynamics framework is 

employed to gain insight into the microscopic mechanisms and conditions behind this 

strengthening.  However, a more thorough discussion of the strengthening phenomenon is 

helpful before getting into an investigation of the details behind this strengthening. 

During nanoindentation of a metallic glass the first measurable plastic event reveals itself as a 

pop-in or rapid excursion into the sample, as discussed in section 1.3.  This is illustrated in the 

inset of Figure 4.2 where the load-displacement curve shows a sudden deviation from the 

                                                 
3
 The contents of this chapter have been published previously as Ref. [92] 

 

Figure 4.1 Nanoscale strength distribution of a metallic glass 

Explain more here Figure taken from Ref. [36]. 
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Hertzian contact prediction, which is plotted as the solid black line.  By performing a large 

number of nanoindentation tests, and determining the load for the first pop-in of each test, one 

can generate a nanoscale strength distribution.  A distribution of this type is plotted in a 

cumulative fashion for an iron-based metallic glass, Fe41Co7Cr15Mo14C15B6Y2, in Figure 4.2, for 

tests using a loading rate of 2.5 mN/s and a spherical indenter with a radius of ~1100 nm [36]. 

To strengthen a glass at the nanoscale, Packard et al. discovered that one can use a load function 

of the type illustrated in the inset of Figure 4.2(a) [36].  In this load function, the indenter is 

cycled to a specific load in the elastic regime a number of times before indenting to a load high 

enough to induce a pop-in or plastic deformation.  The resulting load-displacement curve for this 

load function is illustrated in the Figure 4.2(a).  The apparent strengthening can be observed in 

Figure 4.2(b) where the cumulative distribution of loads for the first pop-in events shifts to 

higher values with increased numbers of cycles in the elastic regime prior to inducing a pop-in at 

a higher load.  While it can be seen that one cycle seems to sharpen the distribution, no 

 
Figure 4.2 Nanoscale strengthening of a metallic glass 

(a) Representative load-displacement curve for nanoindentation of a 

metallic glass when a load function of the type illustrated in the inset to (a) 

is used.  The cyclic loading at low loads nearly perfectly tracks the Hertzian 

elastic prediction and the first pop-in is observed in the deviation from the 

Hertzian curve.  (b) Cumulative distributions illustrating the loads for the 

first pop-in event of different types of nanoindentation tests.  The uncycled 

distribution represents the strength distribution for monotonic loading 

while the cycled distributions represent a load function with the 

corresponding number of cycles in the elastic regime prior to the first pop-

in.  The shift in the distributions to higher loads shows the trend of 

nanoscale strengthening.  Figures taken from [36]. 
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significant shift in the distribution to higher loads is detected.  However, for five and ten cycles, 

it can be seen that the increased number of cycles represents a definite shift in the distribution. 

Following the discovery of this nanoscale strengthening, a possible origin for the hardening was 

proposed involving Packard and Schuh‘s slip-line theory for propagation of a shear band [93].   

In this theory, shear bands do not form in the area of the highest shear stress, rather they form 

along a trajectory where the entire shear band path exceeds the macroscopic yield stress.  As 

such, the area of maximum shear stress can be well in excess of the macroscopic yield stress 

before any pop-ins are observed.  Thus, Packard et al. concluded that this area of high stress 

during the cycling could induce structural rearrangements, which accumulate over time through 

to-and-fro STZ activity leading to hardening of a glass, in such a subtle way that it is not 

observable within the resolution of the instrumentation [36].   

Additional nanoindentation tests involving three different glasses, Pd40Ni40P20, 

Fe41Co7Cr15Mo14C15B6Y2 and Pd40Cu30Ni10P20, confirm the generality of the strengthening 

phenomenon for metallic glasses while also providing insight into the requirements and 

characteristics of the strengthening [92].  Specifically, these additional tests indicate that it is the 

act of cycling, and not just the presence of a stress, which leads to this strengthening.  

Furthermore, the amplitude of the cycling load must be above a threshold value in order to 

induce the strengthening.  Finally, these tests reveal an apparent saturation in the strengthening 

of the glass, beyond which further cycling does not provide additional strengthening. 

These effects generally align with the mechanism used to described the strengthening observed 

by Packard et al. [36].  Hardening is indeed caused by cycling, and accumulates gradually, which 

is in line with local to-and-fro STZ activation that is kinematically irreversible.  Assuming a 

natural bias for STZ activation at the weakest sites in the stressed volume, a back-and-forth cycle 

would be expected to ratchet local regions of material into lower energy states, so cyclic loading 

can lead to exhaustion of fertile sites for microplasticity.  The saturation of hardening can then be 

interpreted as the system gradually shaking down to an ―ideal glass‖ configuration of higher 

structural order than the as-cast material.  This may or may not be similar to the configurational 

state of lower free volume and higher chemical order achieved in well-annealed glasses.  It is 

possible that cycling may cause the glass to reach configurational states inaccessible by thermal 

relaxation alone (including, possibly, nanocrystallization) and may include anisotropic changes 
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in the local resistance to plastic flow, delaying shear band formation along the slip lines required 

by the indenter geometry.  Finally, the observation of an apparent threshold cycling amplitude is 

intuitively reasonable, since sufficiently low applied loads would be unable to trigger STZ 

activity at all, or at least unable to restructure the glass in the vicinity of the eventual yield shear 

band.  

Thus, all of the experimental observations described above at least qualitatively conform to the 

proposed mechanism of cyclic microplasticity.  However, the above arguments are strictly 

qualitative.  It remains to be established that, in the complex stress field beneath the contact: 

(i) Microplasticity, i.e., confined STZ activity (which would tend to redistribute stresses), is 

energetically plausible, 

(ii) Such local STZ activity can occur in a significant volume of material without being 

globally perceptible in the P-h curve,  

(iii)The low-temperature kinetics of STZ activation are commensurate with the timescales of 

cycling experiments (which span several seconds), and 

(iv) To-and-fro STZ activity can lead to hardening. 

Resolving these issues requires a model that captures both the complex stress field created by the 

test geometry (which evolves when local STZ activity accommodates strain and restructures the 

stress field), and the corresponding global load-displacement response of the indenter tip.  To 

establish the kinetic plausibility of the mechanism requires a model incorporating stress-biased 

thermal activation of STZs.  In the following section, the STZ Dynamics modeling framework 

developed in chapter 2 is used to simulate indentation in metallic glasses, and applied, 

specifically, to the case of cyclic loading.  Although we cannot make direct predictions 

pertaining to point (iv), we verify points (i)-(iii) above. 

4.2. Nanoindentation model details 

The simulated nanoindentation problem addressed here is carried out on a two-dimensional 

simulation cell comprised of plane-strain elements, with approximate width and height of 100 

and 35 nm, along the x- and y-axes respectively.  The indenter is modeled as a rigid surface with 

a tip radius of 40 nm and in all cases the indentation displacement rate is set at 1 nm/s along the 
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y-direction
4
.  The bottom edge of the cell (along x) is fixed, rendering the geometry equivalent to 

that of a film atop a substrate of infinite stiffness.  Periodic boundary conditions are applied at 

the lateral edges (along y).  The top surface (along x) is free, but subject to the constraint of 

frictionless hard contact with the indenter.  Similar boundary conditions and test geometries have 

been employed for simulated nanoindentation by molecular dynamics [53].  The material and 

geometric STZ properties employed for these simulations are the same as those used in chapters 

2 and 3, as taken from Table 1.   

The KMC algorithm of section 2.2.2 has been slightly adapted to more efficiently simulate 

nanoindentation, during which the stress state (and thus the STZ activation rate) varies quite 

dramatically.  Specifically, we enforce here a maximum elapsed time per KMC step of 5 ms.  If 

during that time the KMC algorithm predicts a transition, it is allowed; otherwise the STZ 

activation is suppressed and the system evolves by 5 ms.  In either case the indenter tip is moved 

by an appropriate distance to effect a constant displacement rate. 

For purposes of comparison with experiment, it is important to note that the indentation rate used 

here (1 nm/s) is closely matched to that in the experiments (~5-40 nm/s), and many orders of 

magnitude slower than typically used in atomistic simulations of indentation (~5.4×10
8
 nm/s 

[53]).  In terms of micromechanics and kinetics of STZ activity, we can therefore expect to make 

reasonable qualitative comparisons with the experiments.  However, we emphasize that a 

quantitative comparison between model and experiment is not possible or appropriate. The 

simulations employ a model glass and test conditions that are somewhat different from the 

experiments (displacement- vs. load-controlled, plane strain vs. axisymmetric).  More 

importantly, the present STZ Dynamics model does not specifically incorporate a structural state 

variable (such as free volume or an order parameter).  As such, the model cannot explore the 

complex reaction pathways that lead to intrinsic structural hardening or softening, such as those 

apparently sampled in the experiments.  Thus, the model is not capable of directly modeling 

cyclic hardening, but it may be used to validate the concept of microplasticity upon cyclic 

loading.  We limit our attention in what follows to focus on the latter aspects of the problem 

(surrounding the potential for microplasticity) that are accessible with the present model.  

                                                 
4
 The system size and tip radius were found to have a negligible effect on the overall nature of deformation by 

running a monotonic loading test using an indenter radius of 100 nm and a system size of 250 by 100 nm (data not 

shown).  
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4.3. Monotonic loading 

To begin, we consider conventional monotonic nanoindentation tests.  As a baseline for our 

subsequent analysis, we first conduct an ideal elastic indentation, i.e., one in which the energy 

barrier for STZ activation was increased to infinity, and thus plasticity was suppressed.  The P-h 

curve resulting from this simulation is shown in Figure 4.3, as a solid black line.  This curve also 

matches the expectations of the Hertzian contact solution (which, for the plane-strain cylinder-

on-plate geometry, does not have a closed analytical form [94]).  When the same simulation is 

conducted with STZs allowed to activate, the result is shown in Figure 4.3 as the blue data 

points; the response initially follows the elastic curve exactly, but at a depth of about 2 nm 

begins to noticeably depart from the elastic curve as plastic flow sets in.   

Snapshots showing a portion of the simulation cell during the indentation are provided in the 

bottom panel of Figure 4.3, corresponding to the marks ‗A‘, ‗B‘ and ‗C‘ on the P-h curve.  In 

each of these snapshots, a red solid line denotes the outer envelope of material in which the local 

deviatoric (von Mises) stress exceeds the nominal yield stress of the model glass (taken as 3.27 

GPa from pure shear simulations at 10
-3

 s
-1

 in chapter 2).  Similarly, the load at which the yield 

 

Figure 4.3 Simulated monotonic nanoindentation of a metallic glass 

The graph shows the load-displacement curve for a single monotonic 

indentation test, in comparison with results for a purely elastic contact for 

comparison.  Snapshots of the system during the simulation are provided 

below the graph as marked by ‘A’, ‘B’ and ‘C’.  The red contour on the 

snapshots shows the region of material that has exceeded the yield stress, 

while the gray regions denote the operation of STZs. 
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stress is first reached at any point beneath the contact is marked by the solid horizontal red line 

on the P-h curve.  It is interesting to observe that high deviatoric stress is not necessarily 

correlated to the activation of STZs, as there is a significant regime at loads where some portion 

of the material reaches the yield stress, but before the first STZ activity is observed.  In this 

regime, the stress field still matches the Hertzian elastic prediction exactly and therefore the 

yield envelope is symmetric as in panel ‗A‘.  It is only at a somewhat higher load that STZs 

activate, with local spatial correlations along slip lines (panel ‗B‘).  At this point, the stress and 

strain field is no longer simple, being perturbed and redistributed by virtue of the STZ activity, 

and the envelope in which the nominal yield stress is exceeded is asymmetric and irregular as a 

result.  An important point to note, however, is that at ‗B‘, despite the activity of numerous STZs 

and the appreciable volume of material above the nominal yield stress, the global P-h curve is 

still in excellent agreement with the elastic curve.  Significantly beyond point ‗B‘, the departure 

of the response from the ideal elastic curve is unambiguous, and the extent of plastic deformation 

is large (panel ‗C‘).  In this regime the distribution of plastic strain beneath the point of contact is 

quite reminiscent of that expected from slip-line field theory, as also seen in experiments on 

metallic glasses [28, 95].  

4.4. Cyclic loading 

We now turn our attention to cyclic indentation simulations, which were conducted at 

displacement amplitudes of 1.2, 1.6, 2.0, 2.4, and 2.8 nm.  The P-h curves from these simulations 

are shown in Figure 4.4.  As expected based on the above discussion, at low amplitudes of 1.2 

and 1.6 nm, the stress levels achieved are below that necessary to trigger STZ activity on the 

time scales of the test, and the response is perfectly elastic.  On the other hand, for the largest 

amplitude of 2.8 nm, copious STZ activity occurs below the indenter, and measurable dissipation 

occurs after the first cycle.  Obvious plastic (residual) displacement is accumulated after the first 

cycle, with subsequent cycles appearing essentially perfectly elastic.  At intermediate 

displacement amplitudes of 2.0 and 2.4 nm, we see the interesting behavior of most direct 

relevance to this work: in this range we see significant STZ activity beneath the indenter, but 

relatively little permanent deflection in the P-h curves.  If we assign a displacement resolution 

similar to that in nanoindentation (~0.2 nm, twice the width of the data points in Figure 4.4), 

these simulations appear in the P-h curves as essentially perfectly elastic.  In fact, for the 2.0 nm 

displacement amplitude, with a resolution (and data point size) of 0.1 nm, we can detect no 
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hysteresis or dissipation in the P-h curve in Figure 4.4.  However, despite the appearance of 

elastic conditions, Figure 4.5 shows that in these two cases, there is significant STZ activity 

beneath the indenter.   

The behavior captured in Figure 4.4 and Figure 4.5, for displacement amplitudes of ~2.0 nm, 

corresponds to the speculative ―microplasticity‖ that is believed to occur during cyclic 

indentation experiments, as originally proposed in Ref. [36].  These simulations confirm that 

under the mechanical load of an indenter, and at time scales relevant to the experiments, it is 

plausible that the applied stress field significantly exceeds the yield stress of the material in local 

regions beneath the indenter, and leads to local microplastic events sufficiently small and 

localized so as to be transparent to the global P-h measurement.  What is more, these simulations 

reveal that this STZ activity can occur progressively over the course of several load cycles; close 

inspection of Figure 4.5 reveals that at 2.0 nm amplitude, new STZ activity occurs on cycles 1, 3, 

and 5, while at 2.4 nm amplitude there is evolution on each and every cycle.  In addition, STZ 

activations are observed on both the downward indentation into the sample as well as during the 

retraction of the tip from the sample in response to the local and evolving stress landscape.  

 

Figure 4.4 Load-depth curves for simulated cyclic nanoindentation 

The limiting amplitude of the cycling depth is marked by each curve, 

ranging from 1.2 – 2.8 nm.  The elastic reference is plotted with each 

cycling simulation for comparison.  Cycling at depths where the load does 

not reach the minimum load for STZ activation, 1.2 and 1.6 nm, results in a 

perfectly elastic material response.  Cycling above the minimum load for 

STZ activation leads to plasticity through STZ activity in all cases, 2.0 – 2.8 

nm, although the hysteresis in the load-depth curve is not immediately 

apparent in all cases. 
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Figure 4.5 Snapshots of the indentation damage during cycling of a glass 

The snapshots show a portion of the 2.0 and 2.4 nm cycled systems below 

the surface after each of the five cycles, illustrating the progressive nature 

of the structural change.  The gray regions show the local plastic strains 

accumulated by STZ activation.  In addition, it can be seen that the sample 

surface remains relatively smooth in spite of the fact that significant plastic 

structural change has occurred below the surface. 

4.5. Conclusion 

At least qualitatively, the observations from our simulations line up well with those from the 

experimental work, and most importantly, they validate the plausibility of microplastic structural 

rearrangements.  Cycling can indeed cause undetected microplasticity, and structural change via 

STZ activation can occur progressively over the course of several load cycles.  As already noted 

earlier, the present model does not include a mechanism for hardening in the region affected by 

microplasticity.  However, we note that the amount of material deformed on cycling is fairly 

significant, and is located in the regions that experience high stresses.  If this material has been 

locally ―aged‖, ―annealed‖, or otherwise restructured by virtue of local STZ activity, then this 

affected volume could be stiffer or stronger than the surrounding material.  Upon further loading, 
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it could preferentially bear load, shedding it from the virgin glass, or directly impede the 

formation of a shear band attempting to traverse it.  While many details of this cyclic hardening 

phenomenon remain to be clarified, the present simulations support the notion of microplastic 

structural rearrangement as a root cause of it. 

The ability of the STZ Dynamics framework to provide this level of insight into the behavior of a 

metallic glass signifies its utility as a modeling tool.  Specifically, the simulations were able to 

provide detailed information about the structure of the glass during deformation, while 

preserving the fundamental physics of microscopic deformation.  Furthermore, the simulations 

were able to capture the behavior at experimentally relevant time and length-scales.   
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5. Development and validation of 3D STZ Dynamics framework 

5.1. Introduction 

While the utility of the STZ Dynamics method has been illustrated in the previous chapters, all 

the implementations discussed above have been limited to 2D in-plane simulations.  However, 

the complexities of real experiments cannot always be captured by 2D models.  This chapter 

extends the STZ Dynamics modeling framework to 3D to provide insight into the mechanical 

behavior of an amorphous metal on under fully three-dimensional, experimentally relevant 

conditions. 

In what follows, we detail the development of the 3D model and present results of simulated 

tensile creep tests over a range of stresses and temperatures.  The results are compared against 

the high temperature rheology and low temperature shear localization expected of a metallic 

glass and the general response of the modeling framework is compiled into a deformation map.  

A detailed study of the localization for a model in tension provides insight into the nucleation, 

propagation and growth of a shear band at low temperatures.  Finally, a simulated 

nanoindentation test in 3D is presented to show the flexibility of the modeling framework. 

5.2. Modeling Framework  

The three-dimensional STZ Dynamics framework is comprised of four essential parts: the STZ 

representation, the STZ activation rate, the KMC algorithm and the model parameters.  The 

following sections detail each of these four components and their incorporation into the overall 

framework. 

5.2.1. Shear Transformation Zone Representation 

Similar to the 2D framework, the 3D framework models the mechanical behavior of an 

amorphous metal as a linear elastic continuum with the STZ acting as the sole mechanism for 

plasticity.  In 3D, we coarse-grain the system and replace a collection of atoms, such as that 

represented in Figure 5.1(a), with a finite-element mesh, an illustration of which is shown in 

Figure 5.1(b).  To properly define an STZ based on features of a 3D mesh we insist on the same 

requirements as those listed in section 2.2.1, which are (i) conformity to the generally equiaxed 

shape of an STZ, (ii) accurate resolution of the stress and strain distributions associated with the 

STZ shearing behavior and (iii) overlapping of STZs to mimic atomistic behavior.   
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From among the common finite-element mesh types used in 3D (quadrilateral, tetrahedral and 

wedge-shaped elements or combinations thereof), we find that a collection of 20-30 tetrahedral 

elements that all share one common node provides a consistent approximately spherical STZ 

representation (see Figure 5.1(b)) when an exclusively tetrahedral mesh is used (and is free from 

large distortions).  We note that in this definition, STZs may overlap, which is consistent with 

individual atoms having the ability to shear with numerous potential STZs.   

To assess the accuracy of resolving the stress and strain distributions, just as in section 2.2.3 we 

examine the convergence of the strain energy associated with the shearing of an STZ represented 

by tetrahedral elements which share a common node.  We again compare to the Eshelby 

inclusion problem [9, 18] and in FEA solutions, it is found that the elastic strain energy of the 

linear and quadratic tetrahedral element-based STZs, with one and four integration points per 

element, respectively have 30% and 2% error, when compared with the Eshelby solution.  As a 

result of the higher accuracy provided by the quadratic solution, we employ quadratic tetrahedral 

elements which share a common node to represent potential STZs in 3D. 

5.2.2. STZ Activation Rate 

Generalization of the activation rate given in Equation 2.2 to 3D requires the identification and 

description of all possible shear planes and directions, or shear states, by which an STZ may 

 
Figure 5.1 Representation of STZ in three dimensions 

(a) Atomistic and (b) finite element representations of a 3D STZ before and 

after an increment of strain, 
o . 
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evolve and which may contribute to the overall STZ activation rate.  This results in the following 

generalized 3D STZ activation rate 
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where   represents the local stress state and  g,  represents the shear stress for the shear 

state labeled g, belonging to the set of all possible shear states, G.  Equation 5.1 is similar in 

form to the STZ activation rate given by Equation 2.5 for shearing an STZ in 2D, with the 

exception that the integral includes the additional degrees of freedom for the third dimension.  

For the purposes of these simulations, the evaluation of the integral in Equation 5.1 must be 

computationally efficient; we take the approach of tabulating it.  The following paragraphs 

describe our procedure for the accurate and efficient evaluation and tabulation of Equation 5.1.  

First, we identify the symmetry present in the space of shear states to ensure that no particular 

shear state g is double-counted, missed or given unequal weight in the evaluation of Equation 

5.1.  This is accomplished by defining a representative volume element with a non-zero 

component of the shear stress, corresponding to a stress state associated with the shearing of an 

STZ.  For the purposes of this derivation we arbitrarily select 12  for our shearing stress (without 

loss of generality) and illustrate this stress state in Figure 5.2.  To the right of the stress state in 

Figure 5.2, we show all symmetrically equivalent coordinate systems for this shear stress, of 

which there are four (i.e., the representation of the 12  shear stress in any of these coordinate 

 
Figure 5.2 Symmetry of representative three-dimensional STZ shear state 

A representative stress state from which the STZ activation rate can be 

calculated is shown alongside all coordinate systems for which the shear 

stress, 12 , is mathematically identical. 
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systems is mathematically identical).  The symmetry operators, or point operators, relating these 

four coordinate systems are  

  baz CCCES 222 ,,, . (5.2) 

In this set, E represents the identity operator, and the other three point operators are given by 

rotations of π about the  001 ,  110  and  011  axes, respectively. 

The different shear states identified by the variable g represent the coordinate transformation of a 

given stress state  , into another coordinate frame where the shear stress 12  can be calculated 

for its contribution to the overall STZ activation rate.  For reasons of simplicity and efficiency, 

we set the initial stress state,  , to be given only by the principal values,  321 ,,  , in the 

principal frame and calculate 12  in the transformed coordinate system.   

The coordinate transformations identified by g can be effected using any of several common 

rotation parameterizations, including Euler angles, quaternions, axis-angle parameters and 

Rodrigues vectors [96, 97].  In 2D, a single Euler angle can be used easily (see section 2.2.2), but 

in 3D we find it more convenient to work in Rodrigues vectors, which are scaled vector 

representations of an axis-angle coordinate transformation.   The vector components are defined 

as 

 ii nr 









2
tan


 (5.3) 

for a rotation of   about an axis with vector components ni, as illustrated in Figure 5.3(a).  

Because of the divergence of the tangent, rotation space as represented by a Rodrigues vector is 

infinite in all three dimensions.  However, the application of the symmetry operators in Equation 

5.2 gives a reduced set of coordinate transformations, G, that identify the unique shear states for 

12 ; these fall within a rotated cube in Rodrigues space, as illustrated in Figure 5.3(b).  This cube 

is centered on the origin, has an edge length of 2 and is rotated by π/4 about the 3r -axis.   
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The integral in Equation 5.1 for coordinate transformations, g, represented by Rodrigues vectors 

becomes 
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where   is the shear stress for the shear state transformed by the Rodrigues vector ri and the 

bracketed term in the integral which follows the exponential is the required integration factor for 

the Rodrigues parameterization [98].  For simplicity,   is given as a function of the axis-angle 

parameters,  in, , of the Rodrigues vector  
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Together, Eqs. 5.4 and 5.5 give the STZ activation rate for shearing an STZ in 3D. 

The integral in Equation 5.4 can be shown to be a function of only two independent variables, 








 

TT
s oooo  21 , , by scaling the stress as shown and taking advantage of the fact that the 

activation rate is only dependent upon the deviatoric component of the stress where 

 
Figure 5.3 Parameterization tools for three-dimensional STZ activation rate 

(a) Representation of an axis-angle rotation, on which the scaled Rodrigues 

vector is based.  (b) Representation of the reduced Rodrigues space 

representing all unique shear states, G, contributing to the STZ activation 

rate. 
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 213 , f .  This is illustrated in Figure 5.4, where contours of constant STZ activation rate 

are plotted in the π-plane, 213   , as viewed down the 111-axis.  As is immediately 

obvious in Figure 5.4, six-fold symmetry is present in the contours of s  because of the symmetry 

in the deviatoric stress as a function of the principal stress values, further reducing the region for 

tabulation of  s  to where 
321   . 

The shapes of the contours in Figure 5.4 provide insight into the behavior of the STZ activation 

rate as a function of the applied stress.  The smaller contours take the shape of a circle, indicating 

that at low scaled stresses, the different shear states contribute equally to the activation rate 

(analogous to  von Mises yielding, which considers the contribution of all shear stresses and 

gives a circular shape to the yield criterion in the π-plane).  At larger scaled stresses the contours 

transition from circular to hexagonally-symmetric, and eventually (not shown) to a nearly perfect 

regular hexagon.  This suggests that at a higher scaled stresses activity on a single shear plane 

 
Figure 5.4 Contour of constant STZ Activation rate 

The contours are viewed down the 111-axis in the principal stress space.  

The region between the 1  axis and the shaded line represent the ordered 

principal values, 
321   , where the STZ activation rate is 

tabulated. 
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dominates the activation rate (more akin to Tresca yielding).  For the simulations in this work, 

the conditions are such that the activation rate is usually calculated at larger scaled stresses 

where the activation rate is dominated by specific shear planes. 

As we are not aware of an analytical solution for the integral in Equation 5.4, we ensure 

convergence and accuracy of numerical integration by increasing the number of evaluations 

within G.  Figure 5.5 plots the percent error relative to the converged value as a function of the 

number of evaluations along each edge of G in Rodrigues space for the two extreme cases of 

high temperature/low stress and low temperature/high stress.  In both cases, the error quickly 

falls below 0.01%, showing that extreme refinement of the numerical integration is not required.  

For efficiency, a resolution of 101 x 101 x 101 (just more than one million equal volume 

partitions) is used in our evaluation of the integral in Equation 5.4.   

The STZ activation rate has been tabulated over the two independent variables in the π-plane 

where 321    for 512 by 4096 entries.  During the simulations, the STZ activation rate can 

be interpolated from the tabulated data with less than 20 queries on the table.  For any given 

value obtained from the table, the error is consistently less than 0.1% when compared with the 

value obtained by high resolution numerical integration.   

Because Rodrigues space is non-uniformly populated with rotations (see the integration factor in 

Equation 5.4), our approach actually represents a linear partition scheme for a non-linear space.  

 
Figure 5.5 Convergence of numerical integration of STZ activation rate 

The convergence of the STZ activation rate is shown by the reduced error 

with increased resolution along the edge of G for numerical integration of 

Equation 5.4. 
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While the integral is calculated accurately, a scheme for equal probability and equal volume 

partitions is not immediately obvious.  However, with the 101
3
 partitioning scheme the 

maximum and minimum misorientation angles between any two coordinate transformations are 

2.27° and 0.81°, respectively.  Given this small degree of misorientation between possible 

coordinate transformations and the fact that the integration factor in Equation 5.4 accounts for 

the non-linearity of the space, we judge that the system is not significantly limited by the manner 

of partitioning and integration of the STZ activation rate evaluated in Rodrigues space. 

5.2.3. Kinetic Monte Carlo Algorithm 

To employ the KMC algorithm in the 3D framework, we adhere to the same steps as those laid 

out in section 2.2.2, except that specific adaptations must be made for the selection and 

application of the shear state to the selected STZ based on the STZ activation rate in 3D.  For the 

selection of the shear state, it must be recalled from section 2.2.2 that one must define the 

overlap or residual of the random number used to select a given STZ, given here as  .  The 

activation rate is then integrated for the selected STZ until the following equality is true 
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  (5.6) 

where 
ks  is the total activation rate for the selected STZ.  The limits of the integral in Rodrigues 

space which satisfy the equality in Equation 5.6 can then be used to determine the shear state for 

the selected STZ.  For the numerical integration of Equation 5.6, this is analogous to summing 

the Rodrigues partitions of G with the appropriate integration factor until the equality becomes 

true; the partition at which this occurs represents the shear state for the transition of the selected 

STZ. 

The final adaptation of the KMC steps outlined in section 2.2.2 involves the calculation of the 

actual strains to be applied to the selected STZ, which must be given in the sample coordinate 

frame.  Therefore, the strain state in the coordinate frame of the selected shear state 

corresponding to the 12  shear stress used to calculate the STZ activation rate, 
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must be transformed.  However, the strain in Equation 5.7 must first be transformed into the 

intermediate coordinate system of the principal stress state, from which the STZ activation rate 

was calculated, after which it can be transformed into the sample coordinate frame where it will 

be applied.  Using the coordinate transformation for the selected shear state, g, and the 

Eigenvectors of the principal stress state, V, the strain to be applied to the selected STZ can be 

given in the sample coordinate frame as  

 TT gVeVge  . (5.8) 

Similar to the 2D framework, the stochastic nature of the KMC algorithm is manifested by the 

probabilities for the different events, where STZs with higher stress will have a higher STZ 

activation rate resulting in a higher probability of being selected.  The same principle applies to 

the different potential shear states, where different shear states will have varying magnitudes of 

shear stress; shear states with higher shear stress will have a larger contribution to the STZ 

activation rate and therefore a higher probability of being selected. 

To illustrate the selection of a shear state, we examine an STZ within a material under a large 

uniaxial tensile stress along the x-axis.  While all possible shear states have a finite probability of 

being selected, we focus our attention on a representative set of shear states with the highest 

probabilities of being selected.  Figure 5.6 plots the STZ strain components in the sample 

coordinate frame which would result if any of these highest probability shear states were to be 

selected.  It can be seen that the 11  strain component is nearly constant at 0.05, indicating that 

the high probability shear states will achieve the maximum extension in the direction of the 

tensile stress for the strain increment of 1.0o .  The 22  strain component varies between 0 

and -0.025 while the 33  component varies between -0.025 and -0.05; these are out of phase with 

each other by π radians while the 23  component is out of phase by ±π radians and varies 

between 0.025 and -0.025.  This results from the fact that the applied shear states are volume 

preserving shear distortions, such that an expansion in one direction requires a contraction in a 
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perpendicular direction.  The last two shear components of the strain, 12  and 
13 , both vary 

around zero with values that also satisfy the volume-preserving shear-distortion requirement.   

We note that the representative set of transitions examined here does not include all shear states 

which allow maximum extension in the direction of the uniaxial stress; specifically it is missing 

the states where 22  varies between -0.025 and -0.05 and 33  varies between 0 and -0.025.  The 

reason these states do not show up in the representative set of highest probability shear states is 

that their individual probability of being selected is much lower.  This lower probability results 

from the nonlinearity of Rodrigues space, where shear state partitions of G closer to the origin 

represent a larger population of shear states and therefore have higher activation rates than shear 

state partitions at a large distance from the origin.  However, what the shear state partitions at a 

large distance from the origin lack in local activation rates, they make up for in their numbers.  In 

fact, it can be shown that the other population of shear states ( 05.0025.0 22    and 

025.00 33   ), not shown in Figure 5.6, have an equal net probability of being selected as do 

the set of shear states shown in Figure 5.6. 

Therefore the STZs that maximize the extension in the direction of the tensile stress are 

preferred, while, in the absence of any other stresses, contraction can occur in any direction 

 
Figure 5.6 Possible strain states of an STZ activated in uniaxial tension 

The plastic STZ strain components are associated with a representative set 

of high probability transitions for an STZ under uniaxial tension. 
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normal to the tensile stress.  This is exactly what is expected from an STZ embedded in a 

material under uniaxial tension, and illustrates that the KMC algorithm is capable of 

appropriately selecting the shear states for activating an STZ in 3D. 

5.2.4. Model Parameters 

In general, the same material parameters for Vitreloy 1 used in the 2D STZ Dynamics 

simulations are used here (see Table 1).  However, the intrinsic barrier height, F , and STZ 

volume, 
o , have been refitted from experimental data of Vitreloy 1 [22, 99] using a least-

squares fit of Equation 1.2, but which has been adapted for uniaxial tension, the mathematical 

definition of which will be given in the following section.  From the fit of the experimental data, 

these values are obtained as       PaJ10822.0 29 TTF    and  3nm 0.2o .   

5.3. General STZ Dynamics Response 

To test the general response of the 3D STZ Dynamics framework, we perform a number of 

simulated uniaxial constant-stress tensile creep tests on cylindrical simulation cells with a 

diameter of 10 nm and a height of 20 nm.  We consider 6 equally spaced temperatures in the 

range of 300 – 800 K and 7 magnitudes of the tensile stress in the range of 100 MPa – 4 GPa.  

The boundary conditions for these tests include fixing the bottom surface in the loading direction 

(z-axis) and allowing the top surface to move vertically as a plane.  All the nodes on the top and 

bottom surfaces are allowed to move radially in the r-θ plane.   

5.3.1. High temperature model response  

Two datasets, representative of the high temperature tensile test simulations, are shown in Figure 

5.7 for one simulation at 700 K and 600 MPa and another at 800 K and 300 MPa.  Figure 5.7 

shows the evolution of the simulations under the constant applied tensile stress by presenting the 

uniaxial strain as a function of the elapsed time, along with snapshots of the systems at specific 

intervals during the simulation.  The upper row of snapshots show a perspective view of the 

outside of the cells with the plastic strains accumulated through STZ activity shaded in red 

according to the legend, while the lower row shows a semi-transparent profile view of the cells 

such that STZ activity can be seen through the thickness.  The transient response typical of the 

2D STZ Dynamics simulations can be seen in the strain-time graph in Figure 5.7(a), where this 

transient response is common for STZ Dynamics model systems without any pre-existing stress 
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distributions.  In this transient region, the stress distribution is developed to the point where more 

steady-state accumulation of strain can be observed.   

A snapshot of the simulation at 800 K and 300 MPa at a strain of 15% is plotted in Figure 5.7(b) 

where it can be seen that in the steady-state regime, the model exhibits stable homogeneous flow 

with a strain rate of 6.6 s
-1

.  In this case, the homogeneous flow is due to a fairly uniform 

distribution of STZ activity as can be seen in the semi-transparent view of Figure 5.7(b).  For the 

simulation at 700 K and 600 MPa, however, it can be seen that after the transient region the 

sample begins to neck, the beginnings of which can be seen in Figure 5.7(c) at 5% strain in the 

semi-transparent profile view.  The faster accumulation of strain in this case, steady at about 2.2 

s
-1

, is due to unstable inhomogeneous flow, exhibited through necking.  This necking becomes 

 
Figure 5.7 Representative high temperature model response 

This high temperature response is presented for two simulations, both 

under a constant tensile stress; one at 700 K and 600 MPa and another at 

800 K 300 MPa.  (a) Strain-time evolution during the course of the 

simulations with the strain rate measured in the steady state.  A snapshots 

of the 800 K and 300 MPa system at 15% strain is provided in (b) while 

snapshots of the 700 K and 600 MPa system are provided at 5 and 15% in 

(c) and (d), respectively.  The upper row of snapshots gives a perspective 

view of the outside of the simulation cells with the plastic STZ strains 

shaded according to the legend.  The lower row of snapshots provides a 

semi-transparent profile view of the cells for viewing through the thickness. 
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more pronounced as the simulation evolves, a snapshot of which is provided at 15% in Figure 

5.7(d), and is due to more localized STZ activity, which can be seen in the semi-transparent 

profile view. 

The measured strain rates for each of the high temperature simulations (≥600 K) are plotted 

against the applied tensile stress and labeled according to the temperature of the simulation in 

Figure 5.8.  While it is obvious that there are some very clear trends in the data, not all the 

simulations at low stress reached a convincing steady state, even after extended runs.  In Figure 

5.8, we therefore collect the most recently measured strain rate for each of these simulations, and 

include arrows indicating an expected shift to higher strain rates for simulations that did not 

reach a convincing steady-state condition. 

For high temperature experimental tests of a metallic glass, the steady-state data is frequently 

fitted and described using the classic one-dimensional model given in Equation 1.2, but which 

has been adapted here for uniaxial test conditions [7].  This model is given as  
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Figure 5.8 High temperature rheological response 

The rheological response illustrates the trends in the steady-state strain 

rates measured from the different simulations.  Simulations which did not 

yet reach a steady state include arrows to illustrate the shift to the expected 

steady state strain rate.  The data are plotted alongside the predicted rates 

for the classic constitutive model (Equation 5.9) commonly used to describe 

experimental data. 
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and predicts the uniaxial steady-state strain rate,  , for a sample under a uniaxial stress,  .  As 

seen in Figure 5.8, the strain rates measured from the simulations are faster than that predicted by 

Equation 5.9 at lower stress but then begin to match the prediction at higher stress.   

The 2D rheology, discussed in section 2.3.2, matched the constitutive law quite well, and it is 

therefore somewhat surprising that the 3D simulations do not match the predicted behavior over 

the entire range of stresses and temperatures shown in Figure 5.8.  However, the STZ activations 

for the 2D simulations were shown to be independent of one another in section 3.3, as expected 

by the constitutive law.  An analysis of the STZ correlations in the 3D simulations shows a trend 

of nearest-neighbor correlated STZ activity, even in the simulation at 800 K and 300 MPa, which 

deformed homogeneously.  As such, it is not surprising that the measured strain rates for the 3D 

simulations are faster than that predicted by Equation 5.9.  When STZs activate in a more 

localized fashion, the increased stress from previous activations in the surrounding neighborhood 

raises the rate for subsequent local STZ activations.  This leads to faster overall strain rates than 

purely independent STZ activations.  However, the rate increase from correlated STZ activity is 

reduced at higher stress because the higher externally imposed stress diminishes the effect from 

neighboring STZ activity, thereby allowing the measured strain rates to more closely match the 

predicted rate.  It is expected that the correlated STZ activity under these circumstances is due 

partially to the values used for the intrinsic barrier height, F , and STZ volume, o .  In the 3D 

simulations the value for F  is lowered by about 30% and the value for o  is larger 25%, when 

compared with the values used in the 2D simulations.  The change in F  and o  have the 

combined effect of increasing the STZ activation rate for a given stress when using the 3D values 

as compared with the 2D values.  Therefore, these changed parameters are likely contribute to 

the deviation of the measured strain rates in the 3D simulations from the expected constitutive 

law.  

As noted above, some of the low stress simulations never reached a steady flow state, or only did 

so after an exhaustive number of STZ activations.  This is due to the fact that the system cannot 

easily accommodate the large increase in energy from a single STZ activation at low stresses, so 

subsequent activations are required to relax the system locally.  This means that the simulations 

spend a lot of time trying to accommodate a local increment of strain through many STZ 

activations.  Similar behavior was observed in the 2D simulations discussed in chapters 2 and 3 
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and this behavior may indicate that, under these conditions, a smaller increment of strain for the 

STZ activation may be more appropriate.  Practically, a material would most likely find the new 

lower energy state, associated with a small increment of strain, without having to pass through 

several high energy equilibrium states first, as these simulations are doing. 

5.3.2. Low temperature model response 

The representative low temperature response of the modeling framework at high stresses (≥ 

1GPa) is presented in Figure 5.9 for a simulation at 300 K and 3 GPa.  Under these conditions, a 

metallic glass is expected to exhibit little to no plasticity prior to the rapid emergence of a shear 

band and subsequent failure of the sample along the shear plane [100].  In Figure 5.9, the 

expected response of the system is captured reasonably well.  The strain-time data in Figure 

 
Figure 5.9 Representative low temperature model response 

The data shown is for a simulation under a constant tensile stress of 3 GPa 

at 300 K.  (a) Strain-time evolution during the course of the simulation 

showing the abrupt and nearly instant accumulation of strain.  Snapshots of 

the system at strains of 4, 7 and 18 % are provided in (b), (c) and (d), 

respectively.  The upper row of snapshots gives a perspective view of the 

outside of the simulation cell with the plastic STZ strains shaded according 

to the legend.  The lower row of snapshots provides a semi-transparent 

profile view of the cell for viewing through the thickness. 
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5.9(a) shows that very little STZ activity occurs over a long period of time while a nucleation site 

for the shear band is developed.  Then in the region between Figure 5.9(b), 4% strain, and Figure 

5.9(c), 7% strain, the system concentrates nearly all the STZ activity in further developing and 

thickening the shear band.  And interestingly enough, it can be seen in the transparent snapshots 

of Figure 5.9(b) and Figure 5.9(c) that the system made a failed attempt to initiate a shear band in 

a plane perpendicular to the propagating shear band through localized STZ activity.  Finally, the 

system rapidly accumulates over 18% strain, shown in Figure 5.9(d), from 7% strain in less than 

0.13 seconds.  The localization illustrated in Figure 5.9(b) and Figure 5.9(c) pertains to what is 

expected for the propagation of a shear band and strains in the band exceed 25%. 

Figure 5.9(d) illustrates severe necking occurring after the shear band has formed and 

propagated, which is not expected.  In experimental settings, tensile fracture would occur at this 

point, and in the present case we believe the necking is an artifact due in large part to the 

boundary conditions of the simulations; eventual slip along the band is restricted by the imposed 

boundary conditions which only allow radial movement of the nodes on the top and bottom 

surfaces.  The combination of the slip and the boundary conditions leads to unphysical stress 

concentrations there and thus to the development of an unphysical strain distribution in the form 

of a neck.  This situation is exacerbated in Figure 5.9(d) where the shear band impinges on the 

bottom surface.  

At low temperatures and low stresses (< 1GPa) the simulations actually accumulate very little 

plastic strain during the course of the simulations; in most cases, much less than 1%.  Detailed 

analysis of these simulations shows the emergence and disappearance of pockets of strain during 

the course of the simulation.  Furthermore, a long time increment is typically seen before a given 

STZ activation, and then in the next step, the same STZ is nearly instantly and completely 

reversed, allowing little accumulation of plastic strain.  This type of behavior was observed in 

the 2D simulations in chapters 2 and 3 and was associated with the elastic response of the 

material because there is so little motivation for the system to evolve, no matter what time scales 

are involved.  

5.3.3. Deformation Map 

The insight gained into the general response of the STZ Dynamics framework can be represented 

well by building a deformation map to capture the important features of the results discussed 
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above for testing over a wide range of conditions.  This deformation map is provided in Figure 

5.10 where the tensile stress is normalized by Young‘s modulus and the temperature is 

normalized by the glass transition temperature of Vitreloy 1, Tg = 623 K [22].  The 

characteristics of the general response captured in this map include: regions to delimit the 

different macroscopic modes of deformation observed in the simulations, contours of constant 

strain rate to gauge the timescales involved and values of the strain rate sensitivity to gauge the 

stability of flow. 

The contours of constant strain rate range from 10
-10

 to 1 s
-1

 and simulations with a measured 

strain rate less than 10
-10

 s
-1

  are said to exhibit negligible flow and lie within the elastic regime.  

Simulations associated with the elastic response of the material are marked with an ‗x‘ while all 

other simulations are marked with a square. 

 
Figure 5.10 Three-dimensional STZ Dynamics deformation map 

The deformation map is created from results of tensile creep simulations of 

a model metallic glass conducted over a range of stresses and temperatures.  

The colored lines represent contours of steady-state strain rates; 

simulations with measured rates less than 10
-10

 s
-1

 are deemed as exhibiting 

negligible flow and identified with the elastic material response.  The 

remaining simulations are marked with squares and shaded with their 

respective values of the strain rate sensitivity, m, as given in the legend 

above the map.  Shading distinguishes the simulations deemed as 

homogeneous and inhomogeneous, which is further divided into the samples 

which exhibited shear banding and necking. 
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The strain rate sensitivity defined in Equation 2.18, and measured from the data in Figure 5.8, is 

presented by shading the interior of the squares identifying each simulation.  The color bar above 

the deformation map provides the values of the strain rate sensitivity associated with the shading 

in each square. 

Finally, the different regions of the observed macroscopic deformation are clearly delineated.  

Those samples which deformed in an inhomogeneous manner are clearly marked on the map and 

are further distinguished between shear localization, in the form of shear banding, and necking.  

In general, the features of the deformation map match well with what is expected of a metallic 

glass [7].  This provides confidence that this modeling framework will be able to present a 

detailed view of the microscopic nature of deformation in a metallic glass on experimentally 

relevant time and length scales. 

5.4. Detailed investigation of shear localization 

In an effort to better understand the nature of shear localization in a metallic glass we present 

here a detailed analysis of localization observed through the STZ Dynamics framework.  

However, prior to analyzing and discussing these results, we review the current understanding of 

this phenomenon as presented in the literature. 

First of all, we look at the results from modeling of shear localization, with a particular emphasis 

on atomistic simulations.  In early athermal quasistatic simulations, Srolovitz et al. suggested that 

stress concentrations incite localization [27] although more recent work disputes this [42, 91] and 

Tsamados et al. suggest that further description of the local state is required to identify 

instabilities.  Maloney and Lemaitre suggest that the onset of an irreversible plastic event is 

associated with the divergence of the elastic constants [43].  Furthermore, this critical mode is a 

collective property of the system and not a local quantity, although it can be associated with the 

motion of a specific cluster of atoms at the onset of plasticity [42].  Once the onset of plasticity 

has been initiated, two types of events are observed: local STZ-like quadrupolar motions with 

large displacements and cascade-like displacements which are smaller in magnitude and which 

span the simulation cell [41, 42].  Finally, these events, whether in a single cascade or in 

correlated succession of individual events, lead to macroscopically observable deformation [42, 

58, 65, 75].  Shi and Falk go on to suggest that localization may be along a percolating path of 

short range order and detail the breakdown of local short range order in the region of localized 
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deformation [58].  Therefore, the structure resulting from varied processing of the glass can have 

a large effect on the nature of localization [55, 58, 59]. 

In experimental attempts to measure shear localization, a number of approaches have been used.  

From high speed cinematography [5, 101], to infrared cameras used to measure the heat release 

of shear bands [102, 103] and even using high-sensitivity strain gauges [104].  In all these cases, 

the results are analyzed when the sample is deforming in the steady state such that data can be 

captured from a number of individual serrations in the stress-strain curve.  From these 

experiments, a great deal has been learned about the nature of the serrated flow and a number of 

estimates have been made for the minimum velocity of shear bands in the steady state.   

Thus, we can see that the atomistic simulations provide a great deal of detail about the process of 

shear banding, but cannot capture this detail on experimentally relevant scales.  The 

experimental techniques actually capture real glass behavior, but the temporal and spatial 

limitations of the data acquisition frustrate the ability to provide a detailed study of the 

nucleation and propagation of individual shear bands.  As such, the STZ Dynamics framework is 

an attractive method to study this behavior because of its ability to capture the microscopic 

behavior on scales which are experimentally relevant. 

We study the nucleation and propagation of a shear band during a tensile creep test of a 

simulation cell with a diameter of 20 nm and a height of 60 nm, under a constant tensile stress of 

1.7 GPa and a temperature of 300 K.  The boundary conditions for this simulation are identical to 

those employed for smaller simulation cells presented in section 5.3.  Snapshots of the evolution 

of the model through the course of the simulation are shown in Figure 5.11 where we present 

only the semi-transparent profile and top views of the cell, which are labeled by the accumulated 

plastic strain and the number of STZ activations in the simulation up to that point. 

As can be seen by the first snapshot after 50 STZ activations, STZs are activated throughout the 

simulation cell giving little indication as to where localization may initiate.  However, in the next 

two snapshots, after 150 and 200 STZ activations, three regions, labeled ‗a‘, ‗b‘ and ‗c‘, begin to 

show increased local STZ activity.  After 250 STZ activations, it can be seen that the region 

labeled as ‗b‘ in the previous snapshot shows the beginnings of localization along a plane 

propagating nearly halfway through the width of the simulation cell.  This region continues to 

propagate with little to no STZ activity occurring outside this region, as can be seen in the 
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snapshot after 350 STZ activations.  By the time 450 STZs have been activated, the region of 

localized shear has propagated across the entire simulation cell, although it can be seen in the top 

view of the 450 STZ activation snapshot, that the STZ activity does not provide complete 

coverage of the localized shear plane.  With all subsequent STZ activity concentrated along the 

shear plane, the band thickens and provides uniform coverage across the plane, as can be seen in 

the snapshot after 550 STZ activations.  In subsequent steps the band continues to thicken and 

the resulting deformation can be seen in the snapshot after 1850 STZ activations, where the 

simulation was terminated after over 5000 CPU-hours. 

The onset of plasticity for these simulations is, of course, the activation of an STZ, whose only 

bias for activation is the local stress state.  However, under these conditions singular STZ 

activation is insufficient to nucleate any significant shear localization.  Rather, a region must 

incubate and collect sufficient plasticity through STZ activity such that future activations are 

 
Figure 5.11 Detailed visualization of shear localization 

The snapshots of shear localization are shown in semi-transparent images 

of the plastic (STZ) strains.  The accumulated plastic strain is given as a 

percent above each snapshot, with the number of STZ activations in the 

simulation up to that point listed in parentheses.  Specific regions of STZ 

activity are encircled and labeled as ‘a’, ‘b’ and ‘c’ for discussion in the 

text. 
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biased to be in the immediate surroundings.  In the case of these simulations, the incubation sites 

of localized STZ activity are all on the free surfaces, where they can be accommodated with a 

reduced energy penalty. 

It is not until we see the advancing front of shear localization from one of these sites at the free 

surface that we can claim nucleation of a shear band.  Once the shear band nucleates however, it 

leads to auto-catalytic activation of STZs for the propagation and thickening of the shear band.  

While the advancing shear band front is dominated by STZs, a single layer thick, not all STZ 

activity is focused on advancing the front.  Rather, the shear band makes a small advance in a 

certain region, and then follows up by thickening that region as well as thickening the band 

behind the front.  Thus, the region following the front is thicker and more developed, until the 

shear localization spans the simulation cell.  At this point STZ activity is distributed throughout 

the band to allow it to thicken and carry more shear, leading to macroscopic slip. 

Discussing these results in the context of what is observed in the atomistic simulations, the 

model does not, at present, attempt to find transitions other than the standard increment of strain 

for all possible transition states and the model does not account for any description of the state 

beyond the local stress.  As atomistics suggest the importance of these, it is possible to adapt the 

model accordingly, however, it is desirable that these details be better resolved in atomistic 

simulations prior to their implementation in this framework.  Also, without a state variable to 

describe the local structure, we cannot comment on the structural dependence of a shear band 

path.  From these simulations we can confirm, however, that the nucleation of a shear band is 

impossible to identify until is already propagating.  And, the propagation of a shear band is not 

instantaneous; it has an advancing front which precedes the more developed portion of the shear 

band. 

5.5. Simulated nanoindentation 

As a demonstration of the flexibility of the STZ Dynamics modeling framework, we examine the 

simulated response of a model glass to nanoindentation.  This simulation examines a cylindrical 

sample with a diameter of 30 nm and height of 11 nm using a spherical indenter with a radius of 

12 nm, tested at a temperature of 300 K.  Frictionless hard contact is assumed between the 

indenter and the surface of the simulation cell and indentation is carried out at a constant 

displacement rate of 1 nm/s.  The nodes on the bottom and sides of the cylinder are fixed in all 
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three spatial coordinates, allowing only the top surface to move freely.  The KMC algorithm is 

adapted slightly for the simulated nanoindentation on account of the large variation in the applied 

stresses, leading to large variations in the elapsed time for any given step.  Therefore, to ensure 

that the algorithm only considers events on relevant timescales, a maximum time increment of 5 

ms is imposed for each KMC step.  Therefore, in a given step, an STZ activation with a time 

increment less than the maximum allowed time increment is accepted; otherwise, the STZ 

activation is suppressed for that step and the system time is incremented by the maximum 

allowed.  In either case, the indenter displacement is advanced by the appropriate amount and the 

KMC algorithm is repeated. 

The model response to the simulated nanoindentation is plotted in Figure 5.12 where the graph in 

the figure shows the load-displacement curve for the indentation, with three snapshots of the 

system identified by (b), (c) and (d).  The snapshots show the semi-transparent view of the model 

as seen from the side, in the upper row of snapshots, and from above, in the lower row of 

snapshots.  These snapshots also include the surface of the indenter in the side view and the 

contact periphery in the top view.  The snapshot shown in Figure 5.12(b) shows the resulting 

strains in the system following the first significant load drop.  As can be seen in the figure, the 

principal STZ activity is located at the surface contacting the indenter, however this activity does 

occur at the location of the maximum shear stress, which is at a depth of half the contact radius 

for Hertzian contact.  Subsequent STZ activity continues to concentrate near the sample surface 

as the indenter is pushed deeper into the sample, as shown in Figure 5.12(c) and Figure 5.12(d).    

Discrete bursts of correlated STZ activity are observed in the simulations, leading to load drops 

in the load-displacement curve, expected for a displacement controlled indentation test.  

However, each of these correlated bursts only involve a small number of STZ activations, 

illustrated by the small magnitude of the load drops, and is therefore insufficient to be associated 

with any significant shear localization. 

The abundance of STZ activity located at the sample surface is not surprising considering the 

small indenter radius, and corresponding contact radius.  Experimental nanoindentation is 

frequently carried out with tip radii >100 nm, pushing the STZ activity much deeper into the 

sample, allowing for individual shear band activity to be identified [93, 105].  In fact, Packard et 

al. developed a slip-line theory for a shear band path in indentation that suggests shear bands 
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may develop below the area of maximum shear [93].  Corroborating this theory, are results from 

simulated nanoindentation results from atomistics where the shear band passes below, and not 

through, the area of maximum shear [53]. 

 The simulated nanoindentation carried out in chapter 4 employed a larger tip radius of 40 nm 

and exhibited clearer slip lines of STZ activity, resulting from the 40 nm tip radius.  The success 

of the 2D work in chapter 4 indicates that a larger radius, and a correspondingly larger 

 
Figure 5.12 Three-dimensional simulated nanoindentation of a model glass 

The simulated nanoindentation is carried out at 300 K.  The load-

displacement curve is provided in (a) with the model response given by the 

data points.  The purely elastic reference curve is also plotted, providing 

easier identification of the deviation from elasticity.  Snapshots showing the 

semi-transparent view of the plasticity of the system at specific intervals are 

provided in (b), (c) and (d), at the intervals labeled in (a).  The upper row of 

snapshots shows the side view of the model along with a surface 

representing the indenter.  The lower row of snapshots shows the top view 

of the model, with the contact area outlined. 
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simulation cell, may be all that is required to observe STZ activity more characteristic with that 

observed experimentally.  At present, the current computational capabilities available to the 

authors are insufficient for the requirements of a significantly larger simulation cell. 

5.6. Conclusions 

The STZ Dynamics modeling framework, which has proved to be a powerful tool for 

investigating the mechanical behavior of metallic glasses, has been extended to three dimensions.  

The framework coarse-grains a model glass into shear transformation zones and considers the 

stress-biased thermal activation of these zones through the kinetic Monte Carlo algorithm.  The 

derivation of the activation rate for shearing an STZ in three dimensions has been presented 

alongside a method for coarse-graining the STZs on a finite element mesh. 

Salient results from tensile creep tests of the framework over a range of stresses and 

temperatures include the expected high temperature steady-state accumulation of strain, 

rheological flow data which conform to the trends of the classic constitutive model for metallic 

glasses and shear localization evident in the form of a nascent shear band at low temperature 

followed by an unexpected necking due to boundary conditions.  The results from numerous 

simulations have been used to construct a deformation map for the model response which 

generally aligns with a deformation map created from experimental testing of a metallic glass. 

The utility of the method is demonstrated in two additional applications of modeling framework.  

First, detailed investigation of shear localization reveals the elusive nature of the nucleation of a 

shear band and confirms the auto-catalytic and progressive propagation of a shear band.  Second, 

simulated nanoindentation carried out in three dimensions shows STZ activity occurring in the 

region of maximum shear, although the limited simulation size precludes comparison to 

experimental results. 
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6. Closing remarks 
The effort to model the mechanical behavior of amorphous metals by various techniques have 

provided a wealth of information about the microscopic and macroscopic nature of deformation.  

However, the inability to model certain phenomenon on the appropriate time and length scales 

has left some very important and puzzling questions regarding the true nature of deformation in 

these metals.  This thesis has focused on the development of a meso-scale model capable of 

resolving the microscopic nature of deformation in a metallic glass while preserving the 

efficiency to model the behavior on experimentally relevant conditions.  The major results and 

implications are summarized below. 

6.1. Development and validation of STZ Dynamics framework 

The new meso-scale modeling technique for the thermo-mechanical behavior of metallic glasses 

considers the shear transformation zone (STZ) as the fundamental unit of deformation, and 

coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh.  By 

employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique 

is capable of simulating glass processing and deformation on time and length scales greater than 

those usually attainable by atomistic modeling.  The description of framework is presented, 

along with a specific two-dimensional implementation for a model metallic glass.  The model is 

shown to capture the basic behaviors of metallic glasses, including high-temperature 

homogeneous flow following the expected constitutive law, and low-temperature strain 

localization into shear bands.  Details of the effects of processing and thermal history on the 

glass structure and properties are also discussed. 

Implication for future work: Given that this framework can capture the basic behavior of a 

metallic glass on experimentally relevant scales while preserving the fundamental nature of 

deformation, the technique can now be used to investigate specific phenomena of metallic 

glasses.  Furthermore, the use of FEA in the framework presents possibilities to investigate 

important phenomena, such as the redistribution of free volume, by tracking state variables, 

volume, or the effect of adiabatic shear banding, by solving the heat flow from STZ activity.   

6.2. Activated States and Correlated STZ Activity 

Insight into the collective aspects of the microscopic events underlying deformation in a model 

metallic glass is studied by analyzing the activated states of STZs in such a model, as well as the 
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statistics of their activation and how these are affected by imposed conditions of stress and 

temperature.  The analysis sheds light on the spatial and temporal correlations between the 

individual STZ activations that lead to different macroscopic modes of deformation.  Three basic 

STZ correlation behaviors are observed: uncorrelated activity, nearest-neighbor correlation, and 

self-reactivating STZs.  These three behaviors correspond well with the macroscopic 

deformation modes of homogeneous flow, inhomogeneous deformation, and elastic behavior, 

respectively.  The effect of pre-existing stresses in the simulation cell is also studied and found to 

have a homogenizing effect on STZ correlations, suppressing the tendency for localization.  

Implication for future work: Experimentally observed behaviors in metallic glasses often lack a 

detailed picture of the microscopic activity, however, the qualitative and quantitative correlations 

detailed by this work may prove useful in the future discussions of these phenomena.  

Furthermore, the tools developed to investigate these behaviors are designed for general 

statistical analysis of discrete microscopic activity.  

6.3. Insight into Nanoscale Cyclic Strengthening of Metallic Glasses 

The application of the STZ Dynamics framework to simulated nanoindentation provides insight 

into the microscopic mechanisms which lead to the experimentally observed nanoscale 

strengthening under cyclic contact in the elastic regime. The simulations expose the local STZ 

operations that occur beneath an indenter during cycling and reveal a plausible mechanism for 

the observed cyclic hardening: local regions of confined microplasticity can develop 

progressively over several cycles, without being detectable in the global load-displacement 

response.  It is inferred that significant structural change must attend such microplasticity, 

leading to hardening of the glass.  

Implication for future work: The success of the model‘s ability to investigate specific and 

unexplained phenomena in a metallic glass bodes well future applications of the framework.  

Also, as the results from this work confirm the plausibility of the micro-plasticity mechanism 

leading to hardening, the extension of the model to account for structural relaxation will be 

invaluable in further establishing this mechanism and the exact nature of the nanoscale hardening 

in a metallic glass. 
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6.4. Development and validation of 3D STZ Dynamics Framework 

The extension of the modeling framework to three dimensions builds largely upon the 2D STZ 

Dynamics framework but requires a 3D coarse-grained ensemble of STZs as well as an adapted 

derivation of the STZ activation rate which allows an STZ to shear in 3D.  The description of the 

updated framework is provided along with validation of the model over a wide range of 

conditions.  The 3D model captures the same general expected behaviors of a metallic glass 

observed with the 2D model, while also examining the stability of flow at high temperatures.  

Additionally, the 3D framework is used to perform a detailed investigation of shear localization 

as well as preliminary examination of the contact testing capabilities. 

Implication for future work: The ability of the framework to now account for multi-axial stress 

states and complex test conditions on the appropriate time and length-scales opens up a wealth of 

possibilities for study in a metallic glass.  In fact, the flexibility of the framework and the level of 

detail gained from examination of shear localization have inspired new tests, to be completed by 

the author, to study shear localization under constant strain rate, where the system can identify 

the yield stress and the corresponding time-scales for localization. 
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