Prospects for Top Physics at the start-up LHC

Sascha Mehlhase DESY

on behalf of the ATLAS and CMS collaborations

WIN'09, Perugia/Italy September 15th 2009

ATL-PHYS-SLIDE-2009-275

Motivation for Top Physics at the LHC

- Precision measurement of Standard Model (SM) parameters
 - Top-pair cross-section measurements first stepping stone to new physics
 - Many models of beyond SM physics have same signatures
 - Single-top cross-section measurement gives direct handle on V_{tb}
 - Cross-section is proportional to V_{tb}^{2}
 - Mass measurement gives handle on SM Higgs mass
 - Via radiative correction in m_w term
- General interest
 - Top is a major background for new physics
 - New physics might manifest itself in top
 - Top topologies can be used to understand your detector

Top-Quark Production at the LHC

- Top-pair production via strong interaction
 - Cross-section: ~ 850 pb at 14 TeV, ~ 400 pb at 10 TeV
 - Rate: 1 Hz at 10³³ cm⁻²s⁻¹ (nominal low luminosity)

- Single-top production via electro-weak interaction
 - Cross-section: ~ 320 pb at 14 TeV (t-channel ~250 pb, W+t-channel ~ 60 pb, s-channel ~ 10 pb)
 - Direct sensitivity on V_{tb}

Sascha Mehlhase, DESY–Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 3

Top Reconstruction

• Top decay modes

- Main top-pair backgrounds
 - W,Z + jets (W,Z + heavy flavour)
 - Dibosons
 - QCD multijets
 - Single top

• Top-pair topologies

- Mostly top-pairs
- W,Z + jets (W,Z + heavy flavour)
- QCD multijets

Top Reconstruction

- General approach
 - Trigger on isolated, high p_T lepton
 - Add missing $\mathbf{E}_{\mathbf{T}}$ and/or $\mathbf{m}_{\mathbf{T}}^{W}$
 - Purify sample via
 - Second lepton
 - Tagged **b-jets**
 - Hadronic top decay $(N_{jets}, m_{jj}, m_{jij})$
- **Day 1 top-pair events** selection (10 TeV, 200 pb⁻¹)
 - 1 isol. electron/muon, $p_T > 20 \text{ GeV}$
 - $E_T^{miss} > 20 \text{ GeV}$
 - \geq 4 jets with $p_T > 20 \text{ GeV}, \geq$ 3 jets with $p_T > 40 \text{ GeV}$
 - $t_{had} = 3$ jets maximising p_T^{top}
 - $W_{had} = 2$ jets maximising p_T^W (in jjj rest frame)
 - Loose m_W constraint ($|m_{jj}-m_W| < 10 \text{ GeV}$)
 - No b-tagging required
 - $S/B = \sim 2, \epsilon_{sel} = \sim 10 \%$

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 5

<u>Top for Calibration</u> – b-tagging efficiency

- CMS (14 TeV, 1 fb⁻¹)
 - Using [semi-] leptonic channel
 - 2 [1] lepton(s), 2 [4] jets, E_T^{miss} , [1 b-tag]
 - Select b-enriched jet sample by
 - Event-by-event kinematic fit to match jets to partons, imposing m_w and m_t constraints
 - Likelihood ratio from fit and other variables
 - Get $\epsilon_{_{b}}$ as function of $E_{_{T}}^{_{jet}}$ and $\eta_{_{jet}}$

$$(\Delta \varepsilon_{\rm b} / \varepsilon_{\rm b})^{\rm barrel} \sim \pm 6\%$$

 $(\Delta \varepsilon_{\rm b} / \varepsilon_{\rm b})^{\rm end-cap} \sim \pm 10\%$

• ATLAS study at 14 TeV with 100 pb⁻¹ using semi-leptonic channel, fitting N_{b-tag} distribution to simultaneously get ε_{b} , ε_{c} and σ_{ttbar} suggests $(\Delta \varepsilon_{b} / \varepsilon_{b})^{l+jets} = (\pm 2.7_{(stat)} \pm 3.4_{(syst)})\%$

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 6

<u>Top for Calibration</u> – light jet energy scale (JES)

- ATLAS (14 TeV, 1 fb⁻¹)
 - Semi-leptonic channel
 - 1 isol. lepton pT > 20 GeV, 4 jets $p_T > 40$ GeV, $E_T^{miss} > 20$ GeV, 2 b-tags, 150 GeV < $m_t < 200$ GeV
 - Fit m_{jj} distribution to smeared templates of different energy scale α / resolution β
 - Compute each $\chi 2$ and find minimum in (α, β) plane
 - Estimated uncertainty on JES $(\Delta JES/JES)_{temp} = 1\%$

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 7

$\underline{Top \ Cross-section} - top-pair \ production$

- CMS (10 TeV, 10 pb⁻¹)
 - Di-leptonic channel (eµ-channel)
 - 2 isol. leptons of **opposite charge** $p_T > 20$ GeV, 2 jets $p_T > 30$ GeV, $(E_T^{miss} > 20/30$ GeV for $e\mu/ee+\mu\mu$)
 - Z-boson veto in ee and $\mu\mu$ channels ($|m_{jj}-m_z| < 15 \text{ GeV}$)
 - Counting experiment approach

- Combined uncertainty for ee+eµ+µµ $(\Delta \sigma / \sigma)^{\text{di-lep}} = (\pm 15_{(\text{stat})} \pm 10_{(\text{syst})} \pm 10_{(\text{lumi})})\%$
- First data approach using only the cleaner eµ-channel $(\Delta \sigma / \sigma)^{(e\mu)} = (\pm 18_{(stat)} \pm 10_{(syst)} \pm 10_{(lumi)})\%$

- D0 at 1.96 TeV with 1 fb⁻¹ $(\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}})^{\text{di-lep}} \sim_{-17}^{+20} \%$
- ATLAS study at 10 TeV with 200 pb⁻¹ leptonic channel with a counting/likelihood method, estimating a combined uncertainty for ee+eµ+µµ of $\Delta \sigma / \sigma = \begin{pmatrix} +4.1 & +9.6 & +26.2 \\ -4.0(\text{stat}) 8.7(\text{syst}) 17.4(\text{lumi}) \end{pmatrix}\%$

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 8

<u>Top Cross-section</u> – top-pair production

- ATLAS (10 TeV, 200 pb⁻¹)
 - Semi-leptonic channel (muon+jets)
 - 1 isol. lepton $p_T > 20 \text{ GeV}$, $\ge 4 \text{ jets } p_T > 20 \text{ GeV}$, $\ge 3 \text{ jets } p_T > 40 \text{ GeV}$, $E_T^{\text{miss}} > 20 \text{ GeV}$,

(two jets of had. top should fulfil $|m_{ii}-m_w| < 10 \text{ GeV}$)

Cut-and-Count method

Cut-and-Count method

$$\sigma_{\text{count}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{L_{\text{int}} \cdot \varepsilon_{\text{tot}}}$$

$$\left(\frac{\Delta \sigma}{\sigma}\right)_{\text{count}}^{(\mu + jets)} = \left(\pm 3_{(\text{stat}) - 15(\text{syst})} \pm 22_{(\text{lumi})}\right)\%$$

Likelihood fit method

$$\left(\frac{\Delta\sigma}{\sigma}\right)_{\text{fit}}^{(\mu+jets)} = \left(\pm 15_{(\text{stat})-15(\text{syst})} \pm 20_{(\text{lumi})}\right)\%$$

- CDF at 1.96 TeV with 2.8 fb⁻¹ $\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 9\%$
- CMS study at 10 TeV with 20 pb⁻¹ using semi-leptonic muon channel with a template method fitting m_{iii}, estimating an uncertainty $(\Delta \sigma / \sigma)_{M3'fit} = (\pm 12_{(stat)} \pm 25_{(syst)} \pm 10_{(lumi)})\%$

Sascha Mehlhase, DESY–Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 9

C4C5A3A4

<u>Top Cross-section</u> – single-top production

- CMS (10 TeV, 200 pb⁻¹)
 - T-channel (muon)
 - 1 isol. muon $p_T > 20$ GeV, veto on electrons $p_T > 20$ GeV,

2 jets $p_T > 30$ GeV, 1 b-jet, $M_T > 50$ GeV

 $M_{T} = \sqrt{(p_{T,\mu} + p_{T,\nu})^{2} - (p_{x,\mu} + p_{x,\nu})^{2} - (p_{y,\mu} + p_{y,\nu})^{2}}$

- Top (M_{1vb}) is reconstructed using b-tagged jet and by fixing M_T=m_W
- Cross-section is determined from binned likelihood fit to $\cos \theta^*_{ij}$ -distribution $(\Delta \sigma / \sigma)_{t-chan} = (\pm 35_{(stat)} \pm 14_{(syst)} \pm 10_{(lumi)})\%$
- At 14 TeV, 10 fb⁻¹

$$(\Delta \sigma / \sigma)^{14 TeV, 10 fb^{-1}}_{t-chan} = (\pm 2.7_{(stat)} \pm 8_{(syst)})\%$$

- Similar ATLAS study at 14 TeV with 1 fb⁻¹ in W+t channel with a MVA/BDT method, estimating an uncertainty of $(\Delta \sigma / \sigma)_{\text{Wt-chan}} = \pm 34_{(\text{stat+syst})}\%$
- Considering all channels » $\Delta |V_{tb}| / |V_{tb}| \sim 14\%$
- CDF at 1.96 TeV with 2.8 fb⁻¹ $\Delta |V_{tb}| / |V_{tb}| \sim 12\%$

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 10

A3 C5 T3

Top Mass

- ATLAS (14 TeV, 1 fb⁻¹)
 - Lepton+jets channel
 - 1 isol. lepton $p_T > 20$ GeV, 4 jets $p_T > 40$ GeV, $E_T^{miss} > 20$ GeV, 2 b-tags

 W_{had} via geometric (2 closest jets) or χ^2 -method, $t_{had} = W_{had} + closest$ (b-)jet

- Sample purity increased by add. cuts
 - $m_{inv}(W_{had}, b_{W-lep}) > 200 \text{ GeV}$
 - $m_{inv}(l, b_{W-lep}) < 160 \text{ GeV}$
- m_t from functional fit

 $\Delta m_{top} = (\leq 0.4 \text{ (stat)} \pm 3.5 \text{ (syst)}) \text{ GeV}, \Delta \text{ JES}(b\text{-jet}) = 5\%$ $\Delta m_{top} = (\leq 0.4 \text{ (stat)} \pm 1 \text{ (syst)}) \text{ GeV}, \Delta \text{ JES}(b\text{-jet}) = 1\%$

• Main uncertainty from JES and JES(b)

- CMS study at 10 TeV with 1 fb⁻¹ using fully-leptonic, writing event kinematics as a forth order polynomial containing m_t, weighted by SM expectation for p^v spectrum $\Delta m_{top}^{dilepton} = (\pm 1.5(stat) \pm 4.2(syst)) GeV$
- Combined Tevatron $\Delta m_{top} = (\pm 0.6(\text{stat}) \pm 1.1(\text{syst})) \text{GeV}$

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 11

A3

Top Charge

- ATLAS (14 TeV, 1 fb⁻¹)
 - Real top (2/3) or exotic object (4/3) at 173 GeV?

- Important to get **b-l-pairing** right
- Charge weight technique
 - correlates b charge and charges of tracks belonging to it

$$Q_{\text{bjet}} = \frac{\sum_{i} q_{i} |\vec{j}_{i} \cdot \vec{p}_{i}|^{\kappa}}{\sum_{i} |\vec{j}_{i} \cdot \vec{p}_{i}|^{\kappa}}, (\kappa = 0.5)$$

$$Q_{\text{b}} = -1/3 = C_{\text{b}} \cdot Q_{\text{comb}} = C_{\text{b}} \cdot Q(l) \cdot Q_{\text{bjet}}^{(l)}$$

$$Q_{\text{top}} = Q_{\text{lep}} + Q_{\text{bjet}} \cdot C_{\text{b}}$$

Discrimination between SM and exotic scenarios with well above 5σ is likely

Sascha Mehlhase, DESY–Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 12

Conclusion / Summary

- Already at 10 TeV the LHC will be a top factory
- ATLAS and CMS have shown similar projections in top quark physics
 - big efford on selection robustness and strategies for (first) data (data-driven techniques to measure efficiencies and background contributions)
- Wide range of studies have been performed at both experiments for 14 TeV running
 - Light jet energy scale to O(1 %) with 100 pb⁻¹
 - b-tagging efficiency uncertainty to ≤ 10 % with O(100 pb⁻¹)
 - Good top charge discrimination with 1 fb⁻¹
- Recent 10 TeV studies promise interesting/important results already in first year of data taking - O(100 pb⁻¹)
 - Rediscovery of the top quark $\sigma_{t\bar{t}}$
 - first measurements already at O(10 pb⁻¹)

<u>References</u>

- ATLAS
- A1 "Prospects for measuring top pair production in the dilepton channel with early ATLAS data at sqrt(s)=10 TeV", ATL-PHYS-PUB-2009-086
- A2 "Prospects for the top pair pair production cross-section at sqrt(s)=10 TeV in the single lepton channel in ATLAS", ATL-PHYS-PUB-2009-087
- A3 "Expected performance of the ATLAS experiment : detector, trigger and physics", CERN-OPEN-2008-020
- A4 "Prospects for associated single top quark production cross-section measurements in the dilepton decay mode with ATLAS", ATL-PHYS-PUB-2009-001
- CMS
- C1 "Expectations for observation of top quark pair production in the dilepton final state with early data at 10 TeV", CMS-PAS-TOP-09-002
- C2 "Prospects for the first Measurement of the ttbar Cross Section in the Muon-plus-Jets Channel at sqrt{s} = 10 TeV with the CMS Detector", CMS-PAS-TOP-09-003
- C3 "Expectation for a measurement of the t-tbar production cross section in the muon+jets final state using a multivariate technique", CMS-PAS-TOP-09-010
- C4 "Prospects for the measurement of the single-top t-channel cross section in the muon channel with 200 pb⁻¹ at 10 TeV", CMS-PAS-TOP-09-005
- C5 "CMS physics : Technical Design Report", CERN-LHCC-2006-001 & CERN-LHCC-2006-021

<u>References</u>

- Tevatron
- "Measurement of the production cross section and top quark mass extraction using dilepton events in collisions", Physics Letters B, Volume 679, Issue 3, 24 August 2009, Pages 177-185
- T2 "Combination of CDF top quark pair production cross section measurements with 2.8 fb-1", CDF-9448 (2008), and references therein.
- T3 "Combination of CDF and DØ Results on the Mass of the Top Quark", arXiv:0903.2503 (2009).

Backup Slides

ATLAS and CMS

<u>ATLAS</u>

- Pixel/Semiconductor Tracker (10-20 μm in r-φ)
- E-CAL (liquid argon, longitudinal segmentation)
- H-CAL calorimeter (scintillating tiles)
- Muon system (DTs and cathode stripes, standalone & combined μ tracking)
- TRT allows for e- π -separation ($|\eta| \le 2.0$)

<u>CMS</u>

- Central silicon detector (~ 10 μ m in r- ϕ)
- E-CAL calorimeter (lead tungstate crystal)
- H-CAL calorimeter (scintillating tiles)
- Muon system (DTs and cathode stripes, 4 barrel stations)

Jets	$ \eta_{jets} \le 5.0 \ (\le 2.5 \text{ for b-tag or mass resolution})$	
Electrons	$ \eta_{electron} \le 2.5$ (Inner Detector match)	
Muons	$ \eta_{muon} \le 2.5$ (Inner Detector match)	
Tracks	$ \eta_{tracks} \leq 2.5, p_T \sim 20 \text{ GeV}$	

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 17

Top Physics Overview

• ATLAS (14 TeV, 1 fb⁻¹)

Observables	Expected Precision
Top quark charge (2/3 versus -4/3)	\geq 5 σ
Spin Correlations:	
A	50%
A_{D}	34%
W-boson Polarisation:	
F_0	5%
$F_{ m L}$	12%
$F_{\rm R}$	0.03
Angular Asymmetries:	
$A_{ m FB}$	19%
A_+	11%
A_{-}	4%
Anomalous Couplings:	
$V_{\rm R}$	0.15
$g_{ m L}$	0.07
<i>S</i> R	0.15
Top quark FCNC decays (95% C.L.):	
$Br(t \rightarrow q\gamma)$	10^{-3}
$Br(t \rightarrow qZ)$	10^{-3}
$Br(t \rightarrow qg)$	10^{-2}
<i>tī</i> Resonances (discovery):	
$\sigma \times Br (m_{t\bar{t}} = 700 \text{GeV})$	\geq 11 pb

Sascha Mehlhase, DESY–Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 18

<u>Top for Calibration</u> (b-tagging efficiency)

- ATLAS (14 TeV, 100 pb⁻¹)
 - Using leptonic and semi-leptonic channels
 - Lepton $p_T > 20$ GeV, jet $p_T > 30$ GeV, 20/30 GeV range cuts on reconst. W/t mass
 - **Count events** with 0 to 3 b-tags
 - Get ε_{b} , ε_{c} and σ_{ttbar} from fit to N_{tag} dist.

Sascha Mehlhase, DESY– Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 19

<u>Top Cross-section</u> – top-pair production, dilepton channel

- ATLAS (10 TeV, 200 pb⁻¹)
 - 2 isol. leptons of **opposite charge** $p_T > 20 \text{ GeV}$, 2 jets $p_T > 20 \text{ GeV}$, $E_T^{\text{miss}} > 20 \text{ GeV}$
 - Counting/likelihood method

 $l = l(\sigma_{sig}, L, \alpha_j)$

• $(S/B)_{e\mu} = 5.5, \epsilon_{sel} = 26.5 \%$

$\Delta\sigma/\sigma$ (%)	ee channel	$\mu\mu$ channel	$e\mu$ channel	combined
Stat only	-7.5 / 7.8	-6.0 / 6.2	-4.0 / 4.1	-3.1 / 3.1
Luminosity	-17.3 / 26.3	-17.4 / 26.2	-17.4 / 26.2	-17.4 / 26.2
Electron Efficiency	-4.5 / 5.0	0.0 / 0.0	-2.2 / 2.4	-1.9 / 1.9
Muon Efficiency	0.0 / 0.0	-4.6 / 5.2	-2.1 / 2.2	-2.2 / 2.3
Lepton Energy Scale	-0.3 / 1.6	-2.4 / 2.0	-0.5 / 0.5	-0.8 / 0.8
Jet Energy Scale	-3.4/3.2	-3.0/4.5	-2.5 / 2.5	-2.8 / 3.0
PDF	-2.1 / 2.3	-1.4 / 1.6	-1.6 / 1.8	-1.7 / 1.8
ISR FSR	-4.0/4.2	-3.6/3.7	-3.5 / 3.5	-3.6/3.7
Signal Generator	-4.7 / 5.4	-4.6 / 5.4	-4.7 / 5.3	-4.7 / 5.3
Cross-Sections	-0.3 / 0.3	-0.3 / 0.3	-0.3 / 0.3	-0.3 / 0.3
Drell Yan	-1.4 / 1.3	-2.2 / 2.2	-0.5 / 0.5	-0.8 / 0.9
Fake Rate	-9.7 / 9.5	-1.1 / 1.1	-6.2 / 6.2	-4.0 / 4.0
All syst but Luminosity	-12.7 / 13.9	-8.9 / 10.2	-9.4 / 10.2	-8.7 / 9.6
All systematics	-21.0 / 30.3	-19.3 / 28.3	-19.5 / 28.5	-19.3 / 28.1
Stat + Syst	-22.3 / 31.3	-20.2 / 29.0	-19.9 / 28.8	-19.5 / 28.3

• Combined uncertainty for $ee + e\mu + \mu\mu$

 $\Delta \sigma / \sigma = \left({}^{+4.1}_{-4.0(\text{stat}) - 8.7(\text{syst}) - 17.4(\text{lumi})} \right) \%$

<u>Top Cross-section</u> – top-pair production, single lepton μ -channel

- CMS (10 TeV, 20 pb⁻¹)
 - Semi-leptonic channel (muon+jets)
 - 1 isol. lepton $p_T > 20$ GeV, 4 jets $p_T > 30$ GeV, no E_T^{miss} requirement
 - Template fit of M3' (M3 with minimal χ^2)

 $\chi^{2} = \frac{(m_{j_{1}j_{2}} - m_{W})^{2}}{\sigma_{jj}^{2}} + \frac{(m_{j_{1}j_{2}j_{3}} - m_{t})^{2}}{\sigma_{jjj}^{2}} + \frac{(m_{\mu\nu j_{4}} - m_{t})^{2}}{\sigma_{\mu\nu j}^{2}}$

and multivariate method using BDTs

$$\left(\frac{\Delta \sigma}{\sigma}\right)_{\text{M3'fit}} = \left(\pm 12_{(\text{stat})} \pm 19_{(\text{syst})} \pm 10_{(\text{lumi})}\right) \%$$

$$\left(\frac{\Delta \sigma}{\sigma}\right)_{\text{BDT}} = \left(\pm 9_{(\text{stat})} \pm 22_{(\text{syst})} \pm 10_{(\text{lumi})}\right) \%$$

M3 [GeV/ c^2]

<u>Top Cross-section</u> - top-pair production, single lepton μ -channel

- ATLAS (10 TeV, 200 pb⁻¹) (A2)
 - 1 isolated lepton, $p_T > 20 \text{ GeV}$
 - \geq 4 jets, $p_T > 20 \text{ GeV}$
 - \geq 3 jets, $p_T > 40 \text{ GeV}$
 - MET > 20 GeV
 - Likelihood fit (and counting method)

M_{iii} [GeV]

	Cut and Count method				Fit method		
Source	e-analysis		μ -an	alysis	e-analysis	μ-analysis	
	default	$+M_W$ -cut	default	+ M_W -cut	$+M_W$ -cut	$+M_W$ -cut	
	(%)	(%)	(%)	(%)	(%)	(%)	
Stat.	± 2.5	\pm 3.4	±2.3	± 3.1	± 14.1	± 15.2	
Lepton ID eff.	± 1.0	± 1.0	± 1.0	± 1.0	\pm 1.0	\pm 1.0	
Lepton trig. eff.	± 1.0	± 1.0	± 1.0	± 1.0	\pm 1.0	\pm 1.0	
50% W+jets	± 25.1	± 17.4	± 28.1	± 19.8	± 3.3	± 5.6	
20% W+jets	± 10.0	± 7.0	± 11.2	± 7.9	\pm 1.5	\pm 2.6	
JES (10%,-10%)	+24.8-23.4	+15.9-19.1	+20.5-22.3	+11.9-17.9	-14.4	-15.4	
JES (5%,-5%)	+12.3-11.9	+8.6-9.3	+10.4-10.9	+6.1-8.4	-3.7	-3.9	
PDFs	± 1.6	\pm 1.9	± 1.2	\pm 1.4	\pm 1.9	\pm 1.4	
ISR/FSR	+9.1-9.1	+7.6-8.2	+8.2-8.2	+5.2-8.3	-12.9	-12.9	
Signal MC	± 3.3	\pm 4.4	± 0.3	± 2.8	\pm 4.5	\pm 1.4	
Back. Uncertainty	± 0.6	± 0.4	± 0.5	± 0.4	-	-	
Fitting Model	-	-	-	-	\pm 3.3	\pm 4.7	
10% Lumi.	± 11.6	± 11.2	± 11.4	± 11.1	± 10	± 10	
20% Lumi.	± 23.2	\pm 22.3	± 22.8	± 22.2	± 20	\pm 20	
Tot. without Lumi.	+18.8-18.5	+14.4-15.2	+17.5-17.7	+11.9-14.7	+6.4 -14.9	+6.0 - 14.8	

Sascha Mehlhase, DESY– Prospects for Top Physics at the LHC – WIN'09 – September 15th 2009 – 22

A3 A4

<u>Top Cross-section</u> – single-top production

- ATLAS (14 TeV, 1 fb⁻¹)
 - Wt-dilepton-channel
 - 2 isol. leptons pT > 30 GeV, 1 jet $p_T > 15$ GeV and ≤ 1 jet $p_T < 20$ GeV*, $E_T^{miss} > 20/30$ GeV
 - Cut-based (* only here) and BDT analysis

Top Cross-section - single-top production

• ATLAS (14 TeV, 1 fb⁻¹)

Wt-dilepton-channel

		Analysi	s for 1 fb ^{-1}	Analysis f	sis for 10 fb^{-1}	
Source of uncertainty		Variatio	on $\Delta\sigma/\sigma$	Variation	$\Delta\sigma/\sigma$	
Data Statistics		15%		5%		
Monte Carlo Stat	istics		20%			
Luminosity		5%	26%	3%	15%	
JES		5%	26%	1%	4%	
Background Cross Sections		7.9%	22%	3%	8%	
Total		· 6	50%	5	19%	
s-channel						
Source of	Analysis fo	or 1 fb ^{-1}	Analysis for	r 10 fb ⁻¹		
uncertainty	Variation	$\Delta\sigma/\sigma$	Variation	$\Delta\sigma/\sigma$		
		CACI		20.07		

	64%		20%
	29%		
5%	31%	3%	18%
5%	44%	3%	25%
5%	25%	1%	5%
1%	6%	1%	6%
10.3%	47%	3%	16%
9%	52%	3%	17%
2%	16%	2%	16%
3.6%	19%	3.6%	19%
	95%		48%
	5% 5% 1% 10.3% 9% 2% 3.6%	$\begin{array}{c c} & 64\% \\ & 29\% \\ 5\% & 31\% \\ 5\% & 44\% \\ 5\% & 25\% \\ 1\% & 6\% \\ 10.3\% & 47\% \\ 9\% & 52\% \\ 2\% & 16\% \\ 3.6\% & 19\% \\ \hline \end{array}$	64% 29% 5% 31% 5% 44% 5% 25% 1% 6% 1% 6% 1% 3% 29% 3% 5% 25% 1% 3% 2% 1% 2% 3% 2% 16% 2% 19% 3.6% 95%

t-channel

Source	Analysis of 1 fb ⁻¹			Analysis of 10 fb ⁻¹		
	Variation	Cut-based	BDT	Variation	Cut-based	BDT
Data Statistics		5.0%	5.7 %		1.6%	1.8 %
MC Statistics		6.5 %	7.9%		2.0 %	2.5%
Luminosity	5%	18.3 %	8.8%	3%	10.9 %	5.2%
b-tagging	5%	18.1 %	6.6%	3%	10.9%	3.9%
JES	5%	21.6%	9.9%	1%	4.4 %	2.0%
Lepton ID	0.4%	1.5 %	0.7%	0.2%	0.6 %	0.3%
Trigger	1.0%	1.7 %	1.7%	1.0%	3.6 %	1.7%
Bkg x-section		22.9%	8.2%		6.9 %	2.5%
ISR/FSR	+7.2 -10.6%	9.8 %	9.4%	+2.2 -3.2%	2.7 %	2.5%
PDF	+1.38 -1.07%	12.3 %	3.2%	+1.38 -1.07%	12.3 %	3.2%
MC Model	4.2%	4.2 %	4.2%	4.2%	4.2 %	4.2%
Total		45%	22%		22%	10%

Sascha Mehlhase, DESY-Prospects for Top Physics at the LHC - WIN'09 - September 15th 2009 - 24

Top Mass

- CMS (10 TeV, 1 fb⁻¹)
 - Fully-leptonic channel
 - six unknown kin. quantities (neutrino momenta)
 - using m_W constraints and $m_{t1}=m_{t2}$
 - Obtain forth order polynomial containing m_t as parameter
 - All m_t combinations per event are weighted by SM expectation of the p^v spectrum » best kept
 - Fit Gaussian to signal
 - Systematics due to constraints above and detector effects

 $\Delta m_{top}^{dilepton} = (\pm 1.5(stat) \pm 4.2(syst)) GeV$

