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I. INTRODUCTION

T he statistical hadronization m odel, rst introduced by Ferm i E| ]Jand H agedom B], hasbeen
rem arkably successfiil in the description of experin entally m easured average hadron production
yields in heavy ion collisions ranging from SIS B], and AGS u], over SPS B] to RHIC Q]
energies. O ver tin e this has led to the establishm ent of the “chem ical freeze-out line’ H],whjch
is now a vital part of our understanding of the phase diagram of strongly interacting m atter.
M odel predictions for the upcom ing LHC and future FATR [§,/9] experim ents largely follow
these trends.

Som ew here above this freezeout line In the phase diagram we expect, In general, a phase
transition from hadronic degrees of freedom to a phase of decon ned quarks and ghions, gen—
erally term ed the quark gluon plasn a; and m ore speci cally, a rst order phase transition at
Jow tem perature and high baryon cham ical potential, and a cross-over at high tem perature and
Jow baryon chem ical potential. In between, a second order endpoint or a critical point m ight
em erge. For recent review s see ,11].

F luctuation and correlation observables are am ongst the m ost prom ising candidates sug—
gested to be suitable for signaling the form ation ofnew states ofm atter, and transitionsbetw een
them . For recent review s here see ,,,].

T he statistical properties of a sam ple of events are, how ever, certainly not solely determ ined
by critical phenom ena. M ore broadly speaking, they depend strongly on the way events are
chosen for the analysis, and on the inform ation available about the system .

T he deal gas approxin ation of the statistical hadronization m odel w ill again serve as our
testbed . Its strong advantage is that it is sin ple, and to som e extent intuitive. G ven its sucoess
In describing experim entally m easured average hadron yields, and its ability to reproduce low
tem perature lattice susceptibilities ], the question arises as to whether uctuation and cor-
relation observables also follow itsm ain line. C ritical phenom ena (and m any m ore), how ever,
rem ain beyond the present study.

Conventionally in statistical m echanics three standard ensam bles are discussed; the m icro—
canonical ensemble (M CE ), the canonical ensem ble (CE ), and the grand canonical ensamble

(GCE). In the M CE! one considers an ensemble of m icrostates with exactly xed values of

! The tetm M CE is also often applied to ensam bles w ith energy but not m om entum conservation .



extensive conserved quantities (energy, m om entum , electric charge, etc.), with ‘a priori equal
probabilities’ of allm icrostates (see eg. ]). The CE introduces the concept of tam perature
by Introduction ofan in nite themm albath, which can exchange energy (and m om entum ) w ith
the system . The GCE introduces further chem ical potentials by attaching the system under
consideration to an in nite charge bath?. O nly if the experin entally accessibble system is just a
an all fraction of the total, and all parts have had the opportunity to m utually equilibrate, can
the appropriate ensam ble be the grand canonical ensam ble.

A statistical hadronization m odelM onte C arlo event generatora ordsusw ith the possibility
of studying uctuation and correlation obsarvables In equilbrium system s. D ata analysis can
be done in close relation to experim ental analysis technigues. Im posing global constraints
on a sam ple is aways technically a bit m ore challenging. D irect sam pling of M CE events (or
m icrostates) has only been done in the non—relativistic Iim it [18]. Sam ple and rejct procedures,
suitable for relativistic systam s, becom e rapidly ine cientw ith Jarge systam size. H ow ever, they
have the advantage of being very successful for sm all system sizes ,1201.

In this article we try a di erent approach: we sam ple the GCE, then re-weight events ac-
cording to their values of extensive quantities, and approach the sam plerefct Iimit M CE)
In a controlled m anner. In this way one can study the statistical properties of a global equi-
Ibrium system in their dependence on the size of their therm odynam ic bath. A s any of the
three standard ensam bles rem ain idealizations of physical system s, onem ight nd interm ediate
ensem bles to be of phenom enological interest too.

W e study the rstand, in particular, second m om ents of pint distribbutions of extensive quan—
tities. W e concentrate m ainly on particle num ber distributions and distributions of ‘conserved’
charges, and discuss the In uence of acceptance cuts in m om entum space, consaervations law s,
and resonance decay on the statistical properties of a sam ple of hadron resonance gas m odel
events. W e extend our previous studies of deal particle and antijparticle gases ,] and of
gases of altogether m assless particles 1.

The num erical code has been written for inclusion into the already existing THERM US
package 24]. W em ake frequent use of the functionality provided by the ROO T fram ew ork 1.

T he paper is organized as follow s: In Section [II the basic deas of this article are form u-
lated. The GCE M onte Carl sam pling procedure is described in Section [III. The rst and

2 Note that a system w ith m any charges can have som e charges described via the CE and othersvia the GCE.



second m om ents of the distrlbutions of fully phase space integrated extensive quantities are
then extrapolated to the m icrocanonical lim it in Section [IV]. Section [V] contains an analysis of
GCE momentum spectra. Them om entum space dependence of correlations between conserved
charges is studied in Section [V3. Section [V 11 then deals with multiplicity uctuations and
correlations in lin ited acceptance and their extrapolation to the M CE linit. A summary is

given i Section [ II1.

II. STATISTICAL ENSEM BLES W ITH FINITE BATH

W e start out as Patriha ], and Challa and H etherington ], but quickly take a di erent

route.

Let us de ne two m icrocanonical partition functions, ie. the number of m icrostates, for
two separate system s. The rst systam is assum ed to be enclosed in a volum e V; and to have
xed values of extensive quantities P; = (E1;Pxs/Pya1/P21), and Qi = (B1;51;01), whik
the second system is enclosed In a volum e V, and has xed values of extensive quantities
P, = (E,;PypiPyoiP.p),and Q) = (B,;S,;0,), where E is the energy of the system , Py, »
are the com ponents of its threem om entum ,and B , S, and Q , are baryon num ber, strangeness

and electric charge, regpectively. T hus we have:

Z (V1;P1;Q7) = Zy:(V1;Py Q1) ; and  Z(V2;P,;Q3) ; (1)
fog

where 7 i (V1;P, 50 i) denotes the num ber of m icrostates of system 1 with additionally xed
m ultiplicities N | of particles of species i. Suppose that system 1 and system 2 are subfct to
the follow Ing constraints:

Vg = Vi + Vy; (2)
P, = P, + P, ; (3)
0J =0+ 0J: (4)

W e can then construct the partition function 7 (V4 iPy ;0 g) of the pint systam as the sum s over

all possible charge and energy-m om entum  split-ups:

Z (VgiP, ;Q7) = Z (Vg Vi;P, PpiQJ Q1)Z (VP 07): (5)
£P, 9£0Jg



N ext we construct the distribution of extensive quantities in the subsystem V;. T his is given by

the ratio of the num ber of allm icrostates consistent w ith a given charge and energy-m om entum

solit-up and a given set of particle m ultiplicities to the num ber of all possible con gurations:

Z(V, ViiP, P, 0l Q1))
Z (V4iPq iQ3)

P(P,;QiN}) = Zo: (V1P Q17) : (6)

W e then de ne the weight factorW (V;P, ;Qf;\/g;Pg ;Qg) such that:
P(Py;01NT) = W (Vi;Py j07;VgiP, ;00) Zy: (V1P ;07) : (7)

By construction, the rstm om ent of the weight factor is equal to unity:
Wi= W (V1P jQ7iVgiPy iQ3) Zy: (V1P ;Q7)=1; (8)
fP, g £Q g‘ng ig
as the distribbution is properly nomm alized.

Theweight factorW (V;;P, ;Q Vg iP, iQ g ) generates an ensam ble w ith statistical properties
di erent from the lin iting casesVy ! Vi MCE),andV, ! 1 (GCE).Thise ectively allows
for extrapolation of G CE results to theM CE Iim it. In the them odynam ic lin it (V; su ciently
large) a fam ily of them odynam ically equivalent (sam e densities) ensam bles is generated. In
principle any other (arbirary) choice ofW (V1 ;P ;0O f Vg iPg ;0 ;') could be taken. In thiswork
we con ne ourselves, however, to the situation discussed above. P lease note that allm icrostates
consistent w ith the sam e set of extensive quantities (P, ;Q i ) have ‘a priori equal probabilities’.

In the large volum e Iim it, ensam bles are equivalent in the sense that densities are the sam e.
The ensambles de ned by Eq.(1) and Jater on by Eq.{I) are no exception. Ifboth V; and Vg
are su clently large, then the average densities in both system s w ill be the sam e, Q (;:Vg and

P, =V, respectively. The system in V; willhence carry on average a certain fraction:
Vi=Vq ; 9)
of the total charge Q } and fourm om entum P_, ie.:

ii= 0J; and MW;i= P, (10)

By varying the ratio = V;=Vy, while keeping D ii and hP, i constant, we can thus study
a class of system s w ith the sam e average charge content and fourm om entum , but di erent
statistical properties.



A . Introducing the M onte Carlo W eight W

Since Eq.{1) poses a form dable challenge, both m athem atically and num erically, we w rite

Instead:
Lo ; ; _ Co
PP, ;0N = W R1FeR5(v ;v 5 ;u; 5) PPy ;07N 5 5u ; 5); (11)

w here the distribution of extensive quantities P, ,Q ) and particle m ultiplicities N | of a GCE
system with tem peratureT = ', volum eV, ,chem icalpotentials ; and collective four-velocity
u isgiven by:

P, u

e eQij

2 (Vi su; 5)

Pgee (Py ;Q7N T ju ; ) Zy i (V1iPy Q1) (12)

where ;= (g5, s; o), summ arizes the chem ical potentials associated w ith baryon num ber,
strangeness and elctric charge In a vector. The nom alization in Eq.(I2) is given by the
G CE partition function z (V,; ;u ; 5), ie. the number of allm icrostates averaged over the
Boltzm ann weightse *1*  and CHE

X X X | _
. . . . — Plu Qi j . . . J .
Z (Vlr a oy j) - e e ZNll(Vl IP]_ IQ]_) . (13)

P 9f0lgfN g
The new weight factorw F: 'Qi‘Pg'Qé(Vl;ng ju ; 5) now reads:

e Pg Piu 03 o))

W RIFS RSV a5 = ZVe u g )

e Pgu  Dg j
Z(Vy Vi;Py PpiQg Q7)

; (14)
Z (V4iPg ;Q3)
In the case of an deal (non-interacting) gas, Eq.(14) can be w ritten Q,E] as:
i ; 7, Fq P, 03 0F Vi U o s
W P iQingrQ%(Vl;vgj ;U ; j) = 2 (Vy; ;u; j) (Vq 17 /Uy j) . (15)

775 25 (Vy; U ; )
T he advantage of Eq.(11]), com pared to Eq.{7), is that the distrbution Pye. (P, ;Qi;Nlij u o)
can easily be sam pled for Boltzm ann particles, while a suitable approxin ation for the weight
W P1R1Pg 03 (Vi;V4d ju ; 5) isavaikble.

A gain, by construction, the rstm om ent of the new weight factor is equal to unity:

X X X . ‘
. 3 3 , : .
Hi i = WS PIFe RSV Ve ju ;) Paee Py jQINTT ju ;o g)=11:  (16)

fP1 g fQ ig fN 1j'g



In principle, Eq.{d) and Eq.(1l) are equivalent. In fact, Eq.{d) can be obtained by taking
thelmit ( 5; s; o) = (0;0;0),u = (1;0;0;0),and ! 0 ofEq.{1]). However, as one can
already see, W "i6 HV "i. H igher, and in particular the second, m om ents of the weight factors
W and W are a m easure of the statistical error to be expected for a nite sam ple of events.
The larger the higher m om ents of the weight factor, the lJarger the statistical error, and the
slow er the convergence w ith sam ple size. P lease see also A ppendices[a] and [BI.

AsGCE and M CE densities are the same In the system V,, these values are e ectively
regulated by intensive param eters , 5 and u . In essence, if you want to study a system w ith
average hD fi, then sample the GCE with D ii and calculate the weight according to Eq.(13).
This will result In a low statistical error for nite sam ples (as shown in later sections), and
allow for extrapolation to theM CE lim it.

W ewillnow rstcalculate the weight factor Eq.(13) and then take the appropriate Iim its.
W ith the appropriate choice of , 5 and u the caloulation of Eq.(19) is particularly easy in
the large volum e 1in it 1.

B. Calculating the M onte Carlo W eight W

In this article, the total num ber of (potentially) conserved extensive quantities in a hadron
resonance gas isL = J+ 4= 34+ 4= 7, where J = 3 is the number of charges (B ;S;Q )
and there are four com ponents of the fourm om entum . Including all extensive quantities into
a single vector:

Q'= QP )= (BiS;QE iPxiPyiP.) ; (17)
the weight Eq.(19) can be expressed as:

79 21V, Vi; ;u ;o)

(18)
795 (Vg; ju ; 5)

WQ%:Q%(V.V'. s )= Z(Vy; o .
17Vgd 7U 7 5 l//u/j)

T he general expression for the partition function ZQI(\/‘; ;u 7 5) In the large volum e Im it

reads IE

1
\Y

w here:



and:

K = 5 : (21)
Here ; and , aretheGCE vector ofm ean valuesand the G CE covariancem atrix respectively.
Thevaluesof , ;andu arechosen such that:

@z 9’

—_— = 05: 22
QO oxol, ' 22

T he approxin ation {I9) gives then a reliable description of Z ®¢ around the equilbrim valie
Ql =V, 1,provided Vg is su clently large. The charge vector, Eq.([20), is then equal to the
nulkvector 1= 0; Q= Vg 7).

For the nom alization in Eq.(I8) we then nd:

7, ey s L
2% (Vg; ju ;i 5) p 2Vsi M7 3) o o) (23)
03=02,q (2 Vy)=2det
For the num erator we obtain:
Z (V. Vi; ;u ; - 1 1
7% 2LV, Vii ju i og) o 20 VBT ) e 2 A
01=01.4 (2 (Vg Vi))?det 2 (Vg Vi)
where in £Eq.(24) we w rite for the charge vector Eq.(20):
1
= (o) ! (25)
: k _ k _ k .
Then,usmgQg— Qgﬁq— Vg 7,we nd:
(02)=0Qy Q1) g Vi) ¥= @1 Vi, (26)

Substituting £Eq.(23) and Eq.(24) nto Eq.(I8) yieds:

WOIRS (Vv g s) , 2V )20V Vi ais)
0§=0Q4eq Z2 (Vg; u i 5)
(2 Vg2 det 1 1
s exp - ———— ' (@7)
(2 (Vg Vi))F=2det 2 (Vg Vi)

The GCE partition functions are multplicative in the sense that Z (Vi; ;u ; 5) 2 (Vq
Vi; ju; 5) = 2 (WVy; ;u; j), and thus the rst tarm I Eq.(2]) is equal to unity. Now

using Eq.{9), = V;=V,,we can rewrite Eq.(27) as:

1

WQ%'Q‘%(V VAR . ’ . . 28
17 qj a g j) _ exp 1 . ( )

N
'_l
<

=



M odel param eters are hence the intensive variables inverse tem perature , four-velocity u

and chem ical potentials 3, which regulate energy and charge densities, and collective m otion.
Provided V; is su ciently large, we have de ned a fam ily of them odynam ically equivalent
ensem bles, which can now be studied in their dependence of uctuation and correlation ob-
servables on the size of the bath V, = Vy; V;. Hence, we can test the sensitivity of such
observables, for exam ple, to globally applied conservation law s. T he expectation values h:::i
are then dentical to GCE expectation values, while higher m om ents w ill depend crucially on

the choice of

C. The Lin its ofW

The largest weight is given to states for which ', = 0, ie. with extensive quantities

Q7= Q7. Hence, them axin alweight a m icrostate (or event) at a given value of = V3=V
can assumejswrfifé(vl;\/gj jui 5)= (1 ) "7 Taking the Iim ¥sofEq.(28), it iseasy to
see that:

WO (Vi Ve u g og) = 1 (22)

1o

Ie. for = Owe sampl theGCE, and all events have a weight equal to unity. Hence, we also
nd W %i= 1 and therebre h( W )?%i= 0, mplying a low statistical error. For ! 1,we

e ectively approach a "sam plerefct" procedure, as (for instance) used in ,], and:

I W ORIVl u o) /0 Q7 Vip) (30)

However, as now not all events have equalweight, h( W ) 21 grows and so too the statistical

error of nite sam ples. A lso, the larger the num ber I of extensive quantities considered for
re-w eighting, the larger w ill be the statistical uncertainty.

IIT. THE GCE SAM PLING PROCEDURE

The M onte Carlo sam pling procedure for a GCE system in the Boltzm ann approxin ation
is now explhined. The system to be sampled is assumed to be In an eguilbrium state
enclosed in a volum e V; w ith tem perature T = ! and chem ical potentials 5= (87 s7 0)-
Additionally, the system is assum ed to be at rest. T he fourvelocity isthenu = (1;0;0;0) and
the fourtem perature is = ( ;0;0;0). In this case, m ultiplicity distributions are Poissonian,



while m om entum spectra are of Boltzm ann type.

The GCE sam pling process is com posed of four steps, each discussed below .

1. M uldplicity G eneration

In the st step, we random Iy sam ple m ultiplicities N ll of all particle species 1 considered
In them odel. T he expectation value of the m ultiplicity of therm al Boltzm ann particles in the

GCE isgiven by:

is 9iVi m; -
Wi = mi;TK — et : 31
1 2 2 i 2 T ( )

M ultiplicities fN fgn are random ly generated for each event n according to Poissonians w ith

m ean values HN ji:
. s\ LR
PN,) = ——e ™Mt (32)
N !

In the above, m ; and g; are them ass and degeneracy factor of a particle of species i respectively.
The chem ical potential ; = jqij = gb+ gsi+ og,where qf = (b;si;q) represents the

quantum num ber content of a particle of species i.

2. Momentum Spectra

In the second step, we generate m om enta for each particle according to a Boltzm ann spec—

trum . For a static them al source spherical coordinates are convenient:

dN ; 1V ) "
R (33)
dpj 2 2

T hese m om enta are then isotropically distrlbuted In m om entum space. H ence:

Pk = Pjsin  cos ; (34)

po= Pijsn sn 5)

P, = Pjcos ; (36)
pi

"—  pF+m?; (37)

where p,, p,, and p, are the com ponents of the threem om entum , " is the energy, and pj=

P
o2+ p§ + p? is the totalm om entum . T he polar and azin uthal angles are sam pled according

10



= cosiRx 05)]; (38)

=2 x 05); (39)

where x is uniform ly distrbbuted between 0 and 1. Additionally, we calculate the transverse
mom entum pr and rapidity vy for each particle:
q

Pr o+ P (40)

1. "tp
2 2

y = (41)

F inally, we distribute particles hom ogeneously in a sphere ofradius r; and calculate decay tim es

based on the BreitW igner w dth of the resonances.

3. Resonance D ecay

The thid step (if applicable) is resonance decay. W e follow the prescription used by the
authors of the THERM INATOR package ], and perform only 2 and 3 body decays, while
allow Ing for successive decay of unstable daughter particles. O nly strong decays are considered,
while weak and electrom agnetic decays are om itted. Particle decay is rst calculated In the
parent’s rest fram e, w ith daughter m om enta then boosted into the lab fram e. F inally, decay
positions are generated based on the parent’s production point, m om entum and life tin e.

T hroughout this article, always only the lightest states of the follow ing baryons:

and m esons:

¥ 0 K" K K ° (43)

are considered as stable. T he system could now be given collective velocity u .

4. Rewelghting

In the fourth step, we calculate the values of extensive quantities for the events gener-

ated by iterating over the particle list of each event. For the values of extensive quantities

11



Q7. = B12i810Q1niE1niPxaniPyiniPzan) I subsystem V; ofevent n we write:
) X
Qi = G, i (44)
particles i,
whereqy = (b, Sy, ;% ;"5 /P iPysi 7025, ) IS the ‘charge vector’ of particle 1 in eventn. Based

on Q 1, we caloulate the weight w, for the event:

:WQ%.n:Qév.v P e ) . 45
Wn ! (lrgj/u/])r ( )

according to Eqg.(28). P lease note that allm icrostates w ith the sam e set of extensive quantities

Q1,, are still counted equally.

Iv. EXTRAPOLATING FULLY PHASE SPACE INTEGRATED QUANTITIES TO

THE M CE

W e now attem pt to extrapolate fully phase space Integrated grand canonical results to
the m icrocanonical Iim it. For this we iteratively generate, re-weight, and analyze sam ples of
events for various values of = V;=V,. By construction of the webht factor W , Eq.(28),
we extrapolate In a system atic fashion such that, for instance, particle m om entum spectra
as well as m ean values of extensive quantities rem ain unchanged. On the other hand, all
variances and covariances of extensive quantities sub fct to reweighting converge linearly to
their m icrocanonical values.

This can be seen from the form of the analytical approxin ation to the grand canonical
distribution of (fully phase space Integrated) extensive quantities Py (Q %) (from Eqg.(19)):

1
1
che(Q 1) ! (2 Vl )L:2 det expP

Yy (46)

N

1
v
where the variable !isgiven by Eq.(20). Now taking the weight factorW ,Eq.(28), ( and
are the sam e In both egquations) we obtain for the distrlbbution P (Q %) of extensive quantities
Q1 in subsystem 1:

, 01 Qg
P Q) W Py (Q7) (47)
) 1 1 1 ) )
e}( — e —
2 (1 )V, )-=2det P v !

This is essentially the sam e m ultivariate nom al distrdbution as the grand canonical version

Pyee (Q 1), however Iinearly contracted. W e w ill com pare M onte C arlo results to Eq.(48).

12



The M onte C arlo output is essentially a distribution Py ¢ (X 1;X 5;X 3;:::) of a set of ocbserv-
ablesX ,,X,,X 3, etc. For all practical purposes this distribution is obtained by histogram ing
all events n according to their values 0fX 1, , X 25, X 35, etc. and thelr weight w, . One can
then de nem om ents of two cbservables X ; and X 4 through:

X

IS G Q] XX TPy (XX 4) (49)
XX

Additionally, we de ne the variance h( X i)Zi and the covariance h X ; X 4i respectively as:
2. 2. 2,
h( X ;)i X 71 X ;i® ; and (50)

In the follow Ing, we use the scaled variance ! ; and the correlation coe cient ;5 de ned as:

2

h( X ;)i
1 _— and (52)
hXil
hX ;X ji
i =i : (53)

h( X ;)*ih( X §)°i

Let us consider a static and neutral system with fourwvelocity u = (1;0;0;0), chen ical
potentials ;= (0;0;0), local tem perature T = 1= 0:160G eV ,and volum e V; = 2000fm >.
This is a systam large enough® for using the large volim e approxin ation worked out in Sec—
tion [TI.

In Figs.({) and (J) we show theresultsofM onteCarlo runsof2:5 1beventseach. Each value
of hasbeen sam pled 20 tin es to allow for calculation of a statistical uncertainty estin ate.
19 di erent values of have been studied. In this case study, the extensive quantities baryon
num ber B , strangeness S, electric charge Q , energy E , and longitudinal m om entum P, are
consdersd for re-w eighting. C onservation of transverse m om enta P, and P, can be shown not
toa ectthe pr,;and y; dependence ofmultiplicity uctuations and correlations studied in
the follow ing sections. Their vy ; dependence is, however, rather sensitive to P, conservation.
Angular correlations (not studied in this article), on the other hand, are strongly sensitive to
Pint Py and P, conservation Q, ]

3 G enerally it isnot easy to say when a system is ‘arge enough’ for the large volum e approxin ation to be vald.
Herewe nd good agreem ent w ith asym ptotic analytic solutions. C harged system s, or B oseE instein/Ferm i-
D irac system s, usually converge m ore slow Iy to their asym ptotic solution.

13
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FIG .1: M ean values (kft) and variances (right) of various extensive quantities, as listed in the legends,

as a function of

. Each m arker and its error bar represents the result of 20 M onte C arlo runs of

25 1B eventseach. 19 di erent equally spaced valuesof have been investigated. Solid lines indicate

G CE values (kft), or linear extrapolations from the GCE valie to theM CE lim it (right).
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FIG . 2: Covariances (keft) and correlation coe cients (right) between various extensive quantities, as

listed in the legends, as a function of

to theM CE lin it (left), or G CE values (right). The rest as in Fig.{).

. Sold lines indicate linear extrapolations from the GCE value

In Fig.[) (left) we show the results form ean values of baryon num ber 1B i, strangeness hS i,

electric charge D 1, energy hE i, and the m om enta hP,1 and hP,i. The solid lines represent
GCE values. Only the expectation value of energy is not equal to 0, as the system sam pled

is assum ed to be static and neutralwith T & 0. The evolution of the respective variances
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is shown In Fig.{d) (right). Varances of extensive quantities sub fct to re-weighting converge
Iinearly to 0 as goesto 1. Onenotes that h( P , )i rem ains constant (w ithin error bars), as
this quantity is not reweighted In this case study. P lease note that on m any data points the
error bars are an aller than the symbolused.

In Fig.(@d) (Jeft) we show the evolution of covariancesh B Si, hB Qi,h S Qi, and
h E Qi with the ‘size of the bath’. A s seen, the covariances between quantities considered
for reweighting also converge linearly to 0. In a neutral system , covariances between energy
and charge are equal to 0. As an example, we show h E Qi. In a static system , also the
covariances between m om enta and any other extensive quantity are equalto 0. A s an exam ple,
we show hE P ,i. The correlation coe cients, Eq.([53), on the other hand, rem ain constant
as a function of , as shown in Fig.(d) (right). The values of flly phase space integrated
correlation coe cients s, g ,and so can be com pared to the GCE results denoted by the
solid lines shown in Figs.(3 -[@) in Section [V 1.

T he variances and covardances converge linearly from their GCE values to their respective
M CE lim its in the large volum e Jin it. The dependence of h( X ;)?i,Eq.(8d),and h X ; X 51,
Eq.(5ll), on the size of the bath  is given by:

=
>
o
S
'_l

I

(1 HYh(X Vi +  h(X 1V ipe (54)

hX ; X ji = (1 )h X ; X jigce + hX ; X jj-mce: (55)

M ean valies X ;i rem ain constant. This In plies that the scaled variance ! of multiplicity

uctuations, Eq.(52), also converges linearly:

G o)
. H\Iii - gce smce 7

from #sGCE value ! g to theM CE lin it !y, o . P lease note that Egs.(54[53[58) are equivalent
to the ‘acceptance scaling’ approxin ation? used in Q, ,134]. For the correlation coe cient,

Eq.(53),

hX ;X si
P . .
h( X i)zl h( X j)zl

(57)

4 For the situation discussed here one could equivalently say that particles are random Iy draw n from coordinate
space of the totalvolum eV . For the derivation of the acceptance scaling form ula ]itwas, how ever,assum ed
that particles are random Iy drawn from a sam ple in m om entum space.
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the story ism ore com plicated. In case both X ; and X ; are reweighted and m easured n full

phase space, we nd:
WX :fine = X ¥ihe = hX 1 X jine = 0 (58)

and the correlation coe cient , Eq.(5]), is independent of the value of , see Fig.(d). Ih all
other cases, one nesds to extrapolate Egs.(24[59) separately, and then calculate the correlation
coe cient.

W e have therefore successively transform ed our M onte Carlb sample. As ! 1,we give
larger and lJargerw eight to events in the In m ediate vicinity of the equilibrium expectation value,
and an aller and sm aller weight to events away from it. T he distribbution of extensive quantities
considered for re-w eighting (a m ultivariate nom aldistribution in the GCE in the large volum e
Iim it) hence gets contracted to a -function w ith vanishing variances and covariances. Ie.,
we successively highlight the properties of events which have very sim ilar values of extensive
quantities. This will have a bearing on charge correlations and, in particular, m ultiplicity

uctuations and correlations discussed in the follow ing sections.

(wrm)

FIG . 3: First and second m om ent of the weight factor Eq.(28) as a function of . The rest as In

Fig.[d).

T he price we pay is that, as grows, so too does the statistical uncertainty. In the Im it
! 1,we approach a sam plerefct type of form alism . W e cannot, therefore, directly obtain
them icrocanonical lim it for the lJarge systam size studied here, as this is prohibited by available
com puting power. On the bright side, however, we can extrapolte to this lin it. In Fig.[d)
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we show the second m om ent of the weight factor, Eq.(28), as a function of . A large second
mom ent W i in pliesa large statisticaluncertainty and, hence, usually requires a larger sam ple.
W em ention in this context that the Intemm ediate ensam bles, between the lim its of GCE and

M CE ,m ay also be of phenom enological interest.

V. MOMENTUM SPECTRA

W enext considerm om entum spectra. In Fig.(4) we show transversem om entum and rapidity
Soectra of positively charged hadrons, both prin ordial and nal state, for a static themm al
system .

Based on thesem om entum spectra we construct acceptancebins pryzand yi,asin ,,
E] and Q,@]. M om entum bins are constructed such that each of the ve bins constructed
contains on average one fth of the total yield of positively charged particles. The values

de ning the bounds of them om entum space bins p ; and vy ; are summ arized in Tabk[l.

— final state

— final state

o
o
51
T
[ |

D
S
NG
— primordial Z‘I' 0.04 — primordial
S

0.03

0.02

0.01

e T — 0
0 0.5 1 15 2 25
pr [GeV]

'
w

FIG . 4: (Left:) Transverse m om entum spectrum of positively charged hadrons, both prin ordial and
nalstate. (Right:) Rapidity spectrum of positively charged hadrons, both prin ordialand nalstate.

2 10 events have been sam pled.

R esonance decay shifts the transverse m om entum distribution to lower average transverse
mom entum hpr i and widens the rapidity distribution of them al “ reballs’ ]. Final state
transverse m om entum bins are, hence, slightly ‘contracted’, while nal state rapidity bins get
slightly 4 ider’, when com pared to their respective prin ordial counterparts.

17



pPrp GeVlpre, GeV]lprs GeV]pry GeV]lprs GeV] prg [GeV]
prin ordial 0.0 022795 036475 0.51825 0.73995 50
nal state 0.0 0.17105 027215 038785 0.56245 50
Y1 Y2 Y3 Ya Ys Y6
prin ordial S50 04275 -0.1241 01241 04273 50
nal state S50 -0.5289 -0.1553 0.1551 0.5289 50

TABLE I: Transverse mom entum and rapidity bins prsz= [PrapPrar1land yi= [isvis1 ], both

prin ordialand nalstate, for a static neutral Boltzm ann system w ith tem perature T = 0:160G &V .

R esonance decay com bined w ith transverse aswell as longitudinal ow isbelieved to provide
a rather good description of experin entally observed m om entum spectra in relativistic heavy
Jon collisions at SPS and RH IC energies ,@,QL O ur spectra, on the other hand, contain
no ow and our results thus cannot be directly com pared to experim ental data or transport
sim ulations. However, qualitatively one m ight observe e ects of the kind discussed n the
follow ing.

V. THEMOMENTUM SPACE DEPENDENCE OF CORRELATIONS BETW EEN

CONSERVED CHARGES

An interesting exam ple of quantities for which the m easured value depends on the observed
part of the m om entum spectrum are the correlation coe cients between the charges baryon
num ber B, strangeness S and electric charge Q . Please note that also the variances and
covariances of the baryon num ber, strangeness, and electric charge distrbbution are sensitive
to the acceptance cuts applied. T heir values are additionally rather sensitive to the e ects of
globally enforced conservation law s. If the size of the ‘ath’ is reduced, a change in one interval
of phase gpace w ill have to be balanced (preferably) by a change in another interval, and not
by the fPath”’.
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A . Grand CanonicalEnsem ble

W e will now consider the correlation coe cients g5, sg,and 5o in lim ited acceptance
bins pryand yi,asde ned In Table[l, in the grand canonicalensam ble. Particles in onem o—
m entum bin are then essentially sam pled independently from particles in any otherm om entum
Space segm ent, due to the “in nite bath‘ assum ption. N evertheless, the way in which quantum
num bers are correlated is di erent In di erent m om entum bins, as di erent particle species
have, due to their di erent m asses, di erent m om entum spectra.

Let us rst make som e basic observations about the hadron resonance gas and the way
In which quantum num bers are correlated In a GCE . Charge uctuations directly probe the
degrees of freedom of a system , ie. they are sensitive to its particle m ass spectrum (and its
quantum num ber con gurations). W e rst consider the contribution ofdi erent particle species
to the covariance h X ; X 31, Eq.(51l), and hence to the correlation coe cient i, Eq.(53).

A Il baryons have baryon number b= + 1. Baryons can only carry strange quarks, ie. their
strangeness is always s 0. Antibaryons have b= 1, and s 0. Hence, both groups
contrbute negatively to the baryon-strangeness covariance,and soh B Si< 0, and therefore

5s < 0,as indicated by the sold Ines in Fig.(d).

Positively charged baryons and their antijarticles contribute positively to the baryon—
electric charge covariance h B Q i, while negatively charged baryons (and their antifparticles)
contribute negatively. T wo observations can be m ade on the hadron resonance gasm ass spec—
trum : there arem ore positively charged baryons than negatively charged ones, and their average
mass is lower. Ie.,,lnaneutralgas ( g = o = s = 0) the contrdbution of positively charged
baryons dom nates and thereforeh B Qi> 0Oand 5o > 0,as indicated by the solid lines in
Fig.(d).

M esons and their antigparticles alw ays contribute positively to the strangeness<lectric charge
correlation coe cient o . Electrically charged strange m esons are either com posed of a u-
quark and an s-quark, or of an u-quark and a s-quark (and superpositions thereof). Their
contrbution to h' S Q1 is In either case positive. On the baryonic side, only the T (as
well as its degenerate states and their regpective antijarticles) has a negative contribution to
h S Q i, whil all other strangeness carrying baryons have either electric chargeg= 1, or
g= 0. Therefore,we nd s, > 0,as Indicated by the sold Ihes in Fi.(q).

In Figs.(3f) we show the correlation coe cients s (baryon number - strangeness), BO
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(baryon num ber - electric charge), and 5o (strangeness —electric charge) asm easured In the
acceptance bins prsand vy ;de ned in Tabkl[l, both prim ordialand nalstate. T he average
baryon num ber, strangeness, and electric charge In each bin is equal to zero, as the system
is assum ed to be neutral. T he analytical prim ordial values (15 bins) shown in Figs.(3f]) are
calculated using analytical spectra. P lease note that, again, on m any data points the error bars
are an aller than the symbolused.

0.15 -0.05
— [ A final state —~ -
Q“ 02 } ¥ primordial > '0‘1; .- .
) Ak o _ 4 -
q 5 i * primordial, 15 bins ~ o15F
O 025F" Y, 0 TR
T 5 F
%) i A - A A
Q 5 ¥ Q -02F
g 03F L o N ¥
i I 0.25
-0.35 [ . B (] ]
[ o 03F -k~ A~ | A finalstate
04 } 777777 Voo E_ ,.,'; A ;',., ¥ primordial
[ 0.3 N " » primordial, 15 bins
0,45 e 5 \ \ \ [ T . . .
0 02 04 06 08 1 12 14 16 18 2 25 2 15 1 05 0 05 1 15 2 25
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FIG . 5: Baryon-strangeness correlation coe cient zg In the GCE In lm ited acceptance window s,
both prin ordialand nalstate. (Left:) transversem om entum bins p r;. (Right:) rapdiy bins vy ;.
H orizontal error bars indicate the w idth and position of them om entum bins (A nd notan uncertainty!).
Vertical error bars indicate the statistical uncertainty of 20 M onte C arlo runs of 10° events each. T he
m arker indicates the center of gravity of the corresponding bin. T he solid lines show the fully phase

space integrated GCE result.

In Tables[T to [[V] we summ arize the transverse m om entuim and rapidity dependence of
the correlation coe cients s, sg,and so . The statistical error quoted corresponds to 20
M onte Carl runs of 10° events each. The analytical values (5 bins) listed in the tables are
calculated using them om entum binsde ned in Table[d. M id di erences between M onte C arlo
and analytical results are unavoidable. T he analytical values are also not exactly sym m etric
n vy, as the exact size of the acceptance bins constructed is sensitive to the num ber of bins
used for the calculation of the m om entum spectra. T he values of the correlation coe cient
are also rather sensitive to exact bin size, and the fourth digit becom es som ew hat unreliable.

W e next attam pt to explain, in tum, the rapidity dependence of g5, 5o ,and sq . Strange
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FIG . 6: Baryon-electric charge correlation coe cient
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FIG . 7: Strangenesselctric charge correlation coe cient

so In the GCE In Iim ited acceptance

w Indow s, both prim ordialand nalstate. (Left:) transversem om entum bins p 1. (Right:) rapidity

bins y ;. Therestasin Fig.[H).

baryons are, on average, heavier than non-strange baryons, so their rapidity distributions

are narrower. The kaon rapidity distribution is then, com pared to baryons, again w der. A

change In baryon num ber (strangeness) at high j/jis less lkely to be accom panied by a change

In strangeness (baryon number) than at low j7j. The value of g, therefore, drops toward

higher rapidity, as shown in Fi.(H), (right). By the same argument, we nd a weakening



BS Pra Pr Pt Pra Prsis
;arjjfn 0:2479 022641 0:2864 0:3188 0:3839
prim 02248 0003 0:264 0003 0286 0003 0:319 0002 0:385 0002
final 0216 0:002 0220 0003 0:241 0004 0269 0003 0335 0:003
BS Y1 Y2 Y3 Y 4 Ys

;‘;]jfn 0:2407 0:3345 0:3536 0:3345 0:2408
prim 0241 0003 0:334 0003 0:353 0003 0:335 0003 02240 0003
final 0:191 0002 0:300 0002 0:328 0002 0299 0002 0:190 0002

TABLE II:Baryon-strangeness correlation coe cient g In the GCE in transverse m om entum bins

P14 and rapidity bins y ;,both prin ordialand nalstate. For com parison, analytical valies ;‘;}fn

for prim ordial correlations are included. T he statistical uncertainty corresponds to 20 M onte C arlo

runs of 10° events each.

BQ Pra Pri Pra Prsa Prs
;ar]fn 0:1120 0:1271 0:1420 0:1579 0:1781
prim 0:113 0002 | 0:126 0002 | 0:143 0:003 | 0:158 0:002 | 0178 0:003
final || 0112  0:003 | 0:120 0:003 | 0:138 0:003 | 0164 0:003 | 0221 0:003
BQ Y1 Y2 Y3 Y 4 Ys

;arjjfn 0:1160 0:1601 0:1658 0:1601 0:1160
prim 0116 0002 | 0160 0003 | 0:166 0:003 | 0:159 0:003 | 0117 0002
fina1 || 018 0:003 | 0192 0:003 | 0:202 0003 | 0:192 0:003| 0:119 0:003

TABLE III: Baryon-electric charge correlation coe cient pg in the GCE in transverse m om entum

bins pr; and rapidity bins y j, both prin ordialand nalstate.

of the baryon-electric charge correlation g, at higher rapdity (Fig.(d), (right)) as the
rapidity distribution of electrically charged particles is w der than that of baryons. For the
strangeness-electric charge correlation coe cientwe nd rstam id rise, and then a som ew hat

stronger drop of s, towards higher rapidity. A s one shifts ones acceptance w indow towards

higher values of jj, rst the contrbution of baryons (in particular * ) decreases and, as the
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S0 bPra Pr Prs Pra Prs
;‘ijjfn 02831 0:3033 0:3150 0:3185 0:3055
prim 0284 0:003| 0304 0003|0314 0:003 | 0:319 0002 | 0:305 0002
final || 0243 0003 | 02254 0:003 | 0276 0:003 | 0292 0:003 | 0:303 0:002
SQ Y1 Y2 Y3 Y 4 Ys
;‘;]jfn 02934 0:3137 0:3104 0:3137 02934
prim 0294 0003|0314 0003|0310 0:002 | 0:312 0003 | 0292 0002
final || 0255 0002 | 02299 0:003 | 0297 0:003 | 0298 0:003 | 0255 0:003

TABLE IV : Strangeness<electric charge correlation coe cient 5o in the GCE In transversem om en-—

tum bins p 1y and rapdity bins y i, both prin ordialand nalstate.

meson contrbution grows, so rises slightly. Towards the highest jj, pions again dom nate

and de-correlate the quantum num bers.

The transverse m om entum dependence can be understood as follow s: heavier particles
have higher average transverse m om entum hpr i and, hence, their In uence increases towards
higher pr . Heavy particles have a tendency to carry several charges, causing the correlation
coe clents to grow .

T he contribution of strange baryons com pared to non-strange baryons grow s tow ards higher
transverse m om entum , as strange baryons have on average larger m ass than non-strange
baryons. The correlation coe cient g thus becom es strongly negative at high pr . A s the
contribution of baryons com pared to m esons grow s stronger towards larger pr , a change in
baryon num ber (electric charge) is now m ore lkely to be accom panied by a change in electric
charge (baryon num ber) than at low pr ,and g, increaseswith pr (The resonances” ensure
it keeps rising). For the pr,; dependence of 5o, we nally note that one of the strongest
1672G eV . So after

contrbutors at higher p; is the ,with a relatively low m ass ofm =

arise, 5o dropsagain towards highest pr ,due to an increasing * contribution®.

(2420) .
(2030).

S Tncluded in the THERM U S particle table up to the
® cluded in the THERM U S particle table up to the
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Since resonance decay has the habit of dropping the lighter particles (m esons) at low pr
and higher j7j, whilke keeping heavier particles (baryons) at higher pr and at m d-rapidity,
none of the above argum ents about the transverse m om entum and rapidity dependence are
essentially changed by resonance decay. T he correlation coe cient g5 becom esm ore negative
towards higher pr , whilke becom ing weaker towards higher ¥j. Sin flarly, 5o grows larger at
high pr and drops towards higher y. T he larger contributions of baryons to the high pr tail
of the transverse m om entum spectrum , and their decreased contrilbution to the tails of the
rapidity distribbution, com pared to m esons, are to blam e. The bum p in the pr dependence of

so yPresum ably caused by the ' ,hasvanished,asthe ¥ isonly considered as stable in its
Ightest version with massm . = 1:189G&V . The snallbump in the y dependence of ¢,
how ever, stays. T he correlation is presum ably rst increased by a grow ing kaon contribution

and then again decreased by a grow Ing pion contribution at lJarger rapidities.

The values of after resonance decay are directly sensitive to how the data is analyzed.
In the above study we analyzed nal state particles (stable against strong decays) onlky. O ne
could, however, also reconstruct decay positions and m om enta of parent resonances and could
then count them as belonging to the acceptance bin the parent m om entum would 211 into. Tn
the situation above, however, this would again yield the prim ordial scenario. If reconstruction
of resonances is not done, one is sensitive to charge correlations carried by nal state particles.
A s In the prim ordial case, a lJarger acoeptance bin e ectively averages over an aller bins. H ow —
ever, the an aller the acceptance bin, the m ore inform ation is lost due to resonance decay. In
full acoeptance, nal state and prin ordial correlation coe cients ought to be the sam e, since

quantum num bers (and energy-m om entum ) are conserved in the decays of resonances.

B . Extrapolating to theM CE

W enext consider the extrapolation to theM CE lim it of variances and covariances and , hence,
correlation coe cients, of pint distrlbbutions of charges in lim ited acceptance. T he prim ordial
Pint baryon number — strangeness distributions in di erent transverse m om entum bins will
serve as exam ples. In this subsection, we use an extended data set of 20 8 i@vents.

In Fig.(8) we show the evolution of the variances of the m arginal prin ordialbaryon num ber
distrlbution h( B ) ?i (Jeft) and of the m arginal prin ordial strangeness distribution h( S) i
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FIG . 8: Evolution of the variance of the m arginal baryon num ber distribution h( B ) ?1 (left) and
the variance of the m arginal strangeness distribbution h( S) 23 (right) with for a prim ordial hadron
resonancegas in di erent p r; bins. Each m arker and its error bar except the last represents the result
of20 M onte C arlo runsof10° events each. 8 di erent equally spaced valiesof have been hvestigated.
T he last m arker denotes the result of the extrapolhtion. Solid lines Indicate extrapolations from the

GCE value to theM CE 1im it.
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FIG .9: Evolution of the covariance h B Si (left) and the correlation coe cient rs (right) of the
baryon num ber — strangeness distrbbution with  for a prin ordial hadron resonance gas in di erent

p 1 bis. Therestas in Fig.(8).

(right) in the transverse mom entum bins pr;, de ned In Tablk [@, as a function of the size

of thebath = V;=V,. 8 equally spaced values of have been Investigated. T he last m arker
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denotes the result of the extrapolation. In Fig.(d) we show the dependence of the prin ordial
covariance h B Si (kft) and the prim ordial correlation coe cient ss (right) of the pint
baryon num ber — strangeness distribution on the size of the bath

Let us rst comment on the GCE values of variances (the left m ost m arkers in Fig.(8)).
A seach of the 5 momentum bins holds one fth of the charged particle yield and, hence, less
than one fth of the baryonic contrbution in the lowest bin p 1 ;, and more than one fth
In the hghest bin prs,we nd the baryon num ber variance h( B ) 2i lJargest n  p T 5, and
anallestin pr;. Ifbinned n rapdity: vy 3 has the strongest baryon contribution, and, hence,
h( B ) i is Jargest there. T he sam e goes for the variance h( S) ?i of the m arginal strangeness
distrdbution. Strangeness carrying particles are on average heavier than electrically charged
particles and, hence, the strangeness contribution is strongest around m d—-apidity and towards
larger transverse m om entum  (ie. h( S) %iis largest in y 5 and P s, while being an allest n

Yir Yssand pra).
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FIG .10: M CE baryon num ber —strangeness correlation coe cient g in lim ited acceptance w indow s,
both prim ordialand nalstate. (Left:) transversem om entum bins p r;. (Right:) rapdity bins y ;.
H orizontal error bars indicate the w idth and position ofthem om entum bins (A nd notan uncertainty!).
Vertical error bars indicate the statistical uncertainty of the extrapolation of 8 20 M onte C arlo runs
of 10° events each. The m arker indicates the center of gravity of the corresponding bin. T he sold

lines show the fillly phase space integrated GCE result.

The pr,; dependence of the GCE covardianceh B Siand the GCE correlation coe cient

5s i Fig.(@) is explained by the argum ents of the previous subsection. Varying contributions
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of hadrons of di erent m ass (and charge contents) to di erent parts of m om entum space are
responsible.

W enow tum our attention to the extrapolation. M CE e ects on the baryonic sector are felt
m ost strongly In m om entum space segm ents in which the baryonic contrdbution is strong (eg.
see the evolution of the lastbin prs with in Figs.(8[)). The correlation coe cient is not
as strongly a ected, In general, by M CE e ects.

In Fig.(10) we show the results of the extrapolation to theM CE lin it of the baryon num ber—
strangeness correlation coe cient g In acceptance bins pr; and vy ;, both prim ordialand

nalstate. M CE values are closer to each other than corresponding G CE values, Fig.(H). The

In uence of globally applied conservation law s on charge correlations is less strong than for the
m ultiplicity uctuations and correlations discussed in the next section.

vIiI. MOMENTUM SPACE DEPENDENCE OF MULTIPLICITY FLUCTUATIONS

AND CORRELATIONS

M ultiplicity uctuationsand correlations are qualitatively a ected by the choice ofensam ble
and are directly sensitive to the fraction of the system observed. For vanishing size of ones
acoeptance w indow , one would Jlose all inform ation on how them ultiplicities of any two distinct
groups N; and N j of particles are correlated, and m easure ;5 = 0. This Inform ation, on the
other hand, is to som e extent preserved In 35, o ,and so,1ie. theway In which quantum
num bers are correlated, if at least occasionally a particle is detected during an experin ent.

We rst sample the sasme GCE system , which we have discussed In the previous sections,
and consider the e ects of resonance decay. Next the pint distrdbutions of positively and
negatively charged particles in mom entum bins pr,; and y; are constructed. Then we, In
tum, extrapolate the G CE prin ordialand nalstate results on the scaled variance ! ,Eq.(52),
and the correlation coe cient ,Eq.([E3),to theM CE lim it.

A . Grand CanonicalEnsem ble

In Fig.1d) we show the pr, (ft)and vy ; (right) dependence of the G CE scaled variance
!, of positively charged hadrons, both prin ordial and nal state. In the prin ordial Boltz-

m ann case one nds no dependence of m ultiplicity uctuations on the position and size of the
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acceptance w indow . T he observed m ultiplicity distribution is, w ithin error bars, a Poissonian
with scaled variance !, = 1. In fact, in the prim ordial GCE Boltzm ann case any selection of

particleshas ! = 1.
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FIG.1l: GCE scaled variance !, of multiplicity uctuations of positively charged hadrons, both
prin ordial and nal state, In transverse m om entum bins p 5 (kft) and rapidity bins y ; (right).
H orizontal error bars indicate the w idth and position ofthem om entum bins (A nd notan uncertainty!).
Vertical error bars indicate the statistical uncertainty of 20 M onte Carlo runs of 2 19 events each.
T he m arkers indicate the center of gravity of the corresponding bin. T he solid line indicates the nal

state acceptance scaling estin ate.

In Fg.(I2d) we show the pr; (kft) and vy ; (right) dependence of the GCE correlation
coe clent |, Dbetween positively and negatively charged hadrons, both prim ordial and nal
state. In the prim ordialB oltzm ann case one ndsalso no dependence ofm ultiplicity correlations
on the position and size of the acceptance w indow . T he observed pint m ultiplicity distribution
is a product of two Poissonians w ith correlation coe cient . = 0.

R esonance decay is the only source of correlation In an ideal G CE Boltzm ann gas. Neutral
hadrons decaying into two hadrons of opposite electric charge are the strongest contributors to
the correlation coe cient ., . The chance that both (oppositely charged) decay products are
dropped into the sam em om entum space bin is cbviously highest at low transverse m om entum
(le. the correlation coe cient is strongest in p 1;). The rapdity dependence is som ewhat
m ider again, because heavier particles (parents) are dom inantly produced atm d—apidity and

Soread their daughter particles over a range In rapidity. O ne notes that the scaled variances
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FIG .12: GCE multplicity correlations ; between positively and negatively charged hadrons, both
prin ordial and nal state, In transverse m om entum bins p r; (kft) and rapidity bins y ; (right).

The rest as in Fig.(I).

and correlation coe cients in the respective acceptance bins in F igs.([11[12) are generally Jarger
than the acceptance scaling procedure’ suggests, w ith the notable exception of , ( prs).

If one would construct now a larger and larger num ber of m om entum space bins of equal
average particle m ultiplicities, one would successively lose m ore and m ore inform ation about
how m ultiplicities of distinct groups of particles are correlated.

There is a sin ple relation connecting the scaled variance of the uctuations of all charged
hadrons ! to the uctuations of only positively charged particles !, via the correlation coef-

cient , between positively and negatively charged hadrons in a neutral system :

o=, @+ L) (59)

W e, therefore, nd the e ect of resonance decay on the p 7, dependence of ! to be consid-
erably stronger than on thatof !, ,and generally ! > !, ,as the correlation coe cient
rem ains positive in the nalstate GCE .Com pared to this, the nalstate valuesof! ,!, and

, ramain rather atwith y; in theGCE.

7 For the acceptance scaling approxin ation it is assum ed that particles are random Iy detected w ith a certan
probability g= 02, independent of their m om entum .
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B . Extrapolating to the M CE

In the very sam e way that we extrapolated fully phase space integrated extensive quantities
to theM CE lin it in Section[IV], we now extrapolatem ultiplicity uctuations !, and correlations
; In transversem om entum bins p,; and rapidity bins y ; for a hadron resonance gas from
the GCE ( = 0)totheMCE ( ! 1). Analytical prinordialM CE results are done in the
n nite volum e approxin ation ,]. W e, hence, have som e guidance as to further asses the
accuracy of the extrapolation schem e. For nal state uctuations and correlations in Iin ited

acoeptance, on the other hand, no analytical results are available.

M ean values of particle num bers of positively charged hadrons N , i and negatively charged
hadrons N i in the respective acceptance bins, de ned in Table[d, ram ain constant as  goes
from 0 to 1,while thevariancesh( N , ’iand h( N )?i,and covarianceh N , N i converge
Iinearly to their respective M CE 1im its. T he correlation coe cient , between positively and
negatively charged hadrons, on the other hand, will not approach its M CE valie lnearly, as
discussed In Section [IV].

1. Primordial

In Fig.(I3) we show the prin ordial scaled variance !, of positively charged hadrons in
transverse m om entum bins pr; (ft) and rapdity bins y; (right) as a function of the size
ofthebath = V;=V,,while in Fig.(I4) we show the dependence of the prin ordial correlation
coe clent , between positively and negatively charged hadrons in transverse m om entum
bins pr,; (ff) and rapdity bins vy ; (right) on

The results of 8 20 M onte Carlo runs of 2 1(events each are summ arized in Tabl [V].
The system sam pled was assum ed to be neutral 5= (0;0;0) and staticu = (1;0;0;0) with
Jocaltem perature ! = 0:160G eV and a system volim e of V; = 2000fm °. 8 di erent values
of have been studied. The last m arker ( = 1) denotes the result of the extrapolation. O nly
prin ordial hadrons are analyzed. Values for both pr,; and . bins are listed. Analytical
num bers are calculated according to the m ethod developed in ,], using the acceptance
bins de ned in Tabl[l, and are shown for com parison.

The e ects of energy-m om entum and charge conservation on prin ordialm ultiplicity uctua-—
tions and correlations In  nite acceptance have been discussed in ,22]. A few words attem pt
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FIG .13: Evolution of the prim ordial scaled variance !, ofpositively charged hadronsw ith the M onte
Carlo param eter = V1=V, for transverse m om entum bins p 1 (kff) and for rapdity bins y ;
(right). The solid lines show an analytic extrapolhtion from GCE results ( = 0) to the M CE lim it
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2 10 events. 8 di erent equally spaced valies of have been investigated. T he last m arker denotes

the result of the extrapolation.
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Let us rst attend to fully phase space Integrated results. The scaled variance of m ulti-
plicity uctuations is lowest In the M CE due to the requirem ent of exact energy and charge
conservation, som ew hat larger in the CE, and largest in the GCE , as now all constraints on
the m icrostates of the system have been dropped ,E,@ ]. The fully phase space integrated
M CE and CE correlation coe cients between oppositely charged particles are rather close to
1. Doubly charged particles allow form id deviation, as also the ¥ resonance is counted as
only one particle.

T he transverse m om entum dependence can be understood as follow s: a change in particle
num ber athigh transversem om entum nvolvesa large am ount ofenergy. Ie., In order to balance
the energy record, one needs to create (or annihilate) either a lighter particle w ith m ore kinetic
energy, or two particles at lower pr . T his leads to suppressed m ultiplicity uctuations in high

Pr,; bins compared to Iow pr,; bins. By the sam e argum ent, it seam s favorable, due to
the constraint of energy and charge conservation, to balance electric charge, by creating (or
annihilbting) pairs of oppositely charged particles, predom lnantly In lower pr; bins, while
allow Ing for a m ore un-correlated m ultiplicity distribution, ie. also lJarger netcharge ( Q =
N, N ) uctuations, in higher pr; bins.

For the rapidity dependence sim ilar argum ents hold. Here, however, the strongest role
is played by longitudinal m om entum conservation. A change in particle number at high y
nvolres now , In addition to a Jarge am ount of energy, a large m om entum p, to be balanced.
T he constraints of global P, conservation are, hence, felt least severely around Jj 0,and it
becom es favorable to balance charge predom inantly at m d-apidity ( . larger) and allow for
stronger m ultiplicity uctuations (!, larger) com pared to forward and backward rapidity bins.

In a som ewhat casual way one could say: events of a neutral hadron resonance gas w ith
values of extensive quantitiesB ,S,Q ,E and P, in the vicinity of D %ihave a tendency to have
sim ilar num bers of positively and negatively charged particles at low transverse m om entum pr
and rapidity y and less strongly so at high pr and /7.

T he statistical error on the data‘pointsgrowsas ! 1, ascan be seen from Figs.(I3[4).
T he extrapolation helps greatly to kesp the statistical uncertainty on the M CE lin it low , as
summ arized in Table [V], and can be seen from a com parison of the last two data points in
Figs.(13[14). The last point and its error bar denote the result of a Inear extrapolation of

variances and covariances, while the second to last data point and its error bar are the result
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prin ordial Pra Prpe Pra Pra Prs
19 1000 0:002 1000 0:002 1000 0:002 | 1:000 0:002| 1:000 0:002
1mee 0:889  0:007 0:880 0:007 0:869 0:007 | 0850 0:006| 0:798 0:007
e 0:8886 0:8802 0:8682 0:8489 07980
gee 0:000 0002 0:000 0002 0:000 0:002| 0000 0:002| 0000 0:001
mce 0094 0:005 0085 0006 0072 0006 | 0:056 0:006| 0:003 0:005
e 00935 0:0844 00730 0:0554 0:0040
prin ordial Vi Y2 Y3 Y Vs
1 9ee 1:000 0002 1:000 0002 1:000 0:003 | 1:000 0:002| 1000 0:002
1mee 0:795 0:006 0:835 0:007 0:853 0:008 | 0:834 0:006| 0:794 0:007
e 0:7950 0:8350 0:8521 0:8351 0:7949
ges 0000 0001 | 0000 0:002 0001 0002 | 0:000 0:002 0:000 0:002
mce 0013 0005| 0:040 0:006 0061 0006 | 0:041 0:006 0012 0006
e 0:0135 0:0406 0:0616 0:0406 0:0135

TABLE V:Summary of the prin ordial scaled variance !, of positively charged hadrons and the
correlation coe cient , between positively and negatively charged hadrons In transversem om entum
bins pr; and rapdity bins y i. Both theGCE result ( = 0) and theextrapoltion toM CE ( = 1)
are shown. T he uncertainty quoted corresponds to 20 M onte Carlo runsof2 10 events (GCE ) or is

the result of the extrapolation (M CE).AnalyticM CE results !} " and T “°” are listed too.

of 20M onte Carlo runswith = 0:875. The analyticalM CE values are well w ithin error bars
of extrapolated M onte Carlo results, and agree surprisingly well, given the large num ber of
\conserved" quantities (5) and a relatively amallsample size of 8 20 2 ¥ 32 10events.
In a sam plerefct type of approach this sam ple size would yield a substantially larger statistical
error, as only events w ith exact values of extensive quantities are kept for the analysis. A s the
system size is iIncreasad, a sam plerefct form alism , hence, becom es increasingly ine cient, while

the extrapolation m ethod still yields good results. For a further discussion see A ppendix [Al.
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2. FinalState

W e now attend to the extrapolation of nal state m ultiplicity uctuations and correlations
to the M CE lin it. An Independent M onte Carlo run for the sam e physical system was done,
but now with only stable nal state particles detected’.

In Fig.(I8) we show the nal state scaled variance !, of positively charged hadrons in
transversem om entum bins pr; (kff) and rapdity bins y ; (right) asa function of ,while n
Fig.(1d) we show thedependence ofthe nalstate correlation coe cient , between positively
and negatively charged hadrons in transversem om entum bins pr; (ft) and rapdity bins y ;
(right) on the size of the bath = V;=V,.
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FIG .15: Evolution of the nalstate scaled variance !, ofpositively charged hadronsw ith the M onte
Carlo param eter = V=V, for transverse m om entum bins pr; (lft) and for rapdity bins vy ;
(right). The solid lines show an analytic extrapolation from GCE results ( = 0) to the M CE lin it
(! 1). Each m arker except the last represents the result of 20 M onte Carlo runs of 2 18 events.
8 di erent equally spaced values of have been Investigated. T he last m arker denotes the result of

the extrapolation.

The pr;and y;dependenceon ofthe nalstateM CE scaled vardance !, isqualitatively
sin ilar to that of the prin ordial versions, Fig.(13), and is essentially also explained by the
argum ents of the previous section. The e ects of charge and energy-m om entum conservation
work In pretty much the sam e way as before, and it still seem s favorable to have events w ith
w der m ultiplicity distrdbutions at low pr and low y, and narrower distrlbbutions at larger pr
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FIG . 16: Evolution of the nal state correlation coe cient , Dbetween positively and negatively
charged hadrons w ith the M onte Carlo param eter = V,=Vy for transverse m om entum bins p

(left) and for rapidity bins y ; (right). The rest as in Fig.(I3).

and larger j/3. T he dependence of the nal state correlation coe cients , on ,Fi.(0d),is
a bit di erent to the prim ordialcase, F ig.(14). However, in theM CE I it, events still tend to
have m ore sim ilar num bers of oppositely charged particles at low pr and low vy, than at large
pr and large j73.

The e ects of resonance decay are qualitatively di erent in theM CE ,CE ,and GCE .Letus
again rst attend to fullly phase space Integrated m ultiplicity uctuations discussed in 341,
The nalstate scaled variance increases n the GCE and CE com pared to the prim ordial scaled
variance. M ultiplicity uctuations of neutral m esons rem ain unconstrained by conservation
law s. H owever, they often decay into oppositely charged particles, w hich increases m ultiplicity

uctuations ofpions, for instance. In theM CE ,due to the constraint of energy conservation, the
eventby-event uctuations of prim ordialpions are correlated to the eventby-event uctuations
of, in general, prin ordial parent particles, and ! f#al < I PH jspossible in the M CE.

In Fig.(17) and Fig.(18) we com pare the nalstate pr; (keft) and vy ; (right) dependence
of the M CE scaled variance !, and the M CE correlhtion coe cient , respectively to their
prin ordial counterparts. The resultsof 8 20M onte Carlo runsof2 1@vents each fora static
and neutral hadron resonance gaswith T = 0:160G &V are summ arized in Table 1.

A fow words to summ arize Figs.(I7[18): resonance decay and (energy) conservation law s

work in the sam e direction, as far as the transverse m om entum dependence of the scaled
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FIG.17: MCE scaled variance !, of multiplicity uctuations of positively charged hadrons, both
prin ordial and nal state, In transverse m om entum bins p r; (kft) and rapidity bins y ; (right).
H orizontal error bars indicate the w idth and position of them om entum bins (A nd notan uncertainty!).

Vertical error bars indicate the statistical uncertainty quoted in Table[V 1. T he m arkers indicate the

center of gravity of the corresponding bin.
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FIG. 18: M CE multiplicity correlation coe cient

+ between positively and negatively charged

hadrons, both primn ordialand nalstate, in transversem om entum bins p r; (kft) and rapidiy bins

y i (right). The rest as in Fig.({I17).

variance !, and the correlation coe cient

is concemed. Both e ects lead to increassd

m ultiplicity uctuations and an increased correlation between the m ultiplicities of oppositely
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nal state PTa Prp Pr3 Pry Prps
19 1031 0:002 | 1:026 0:002| 1:020 0:002| 1:015 0:002| 1:010 0:002
1mee 0:904 0:007 | 0:884 0:007| 0872 0:007 | 0:847 0007 | 0:778 0006
gee 0:163 0:001 | 0:07 0:001| 0:109 0:001| 0:075 0:002| 0:052 0:002
mee 0:143 0005 | 0:088 0:005| 0090 0:005| 0:049 0:006 0:010 0:006
nal state V1 Y2 Y 3 Y 4 Ys
1 9ee 1:017 0002 | 1:023 0:002| 1024 0:002| 1:023 0003| 1:017 02002
1mee 0:771  0:007 | 0840 0:006 | 0859 0:007 | 0:839 0007 | 0:770 0006
ges 0:100 0:001 | 0:116 0:001| 0:15 0:002| 0:115 0002 | 0:100 0:001
mee 0:027 0:005| 0:069 0:005| 0092 0006 | 0:069 0:006 0:027 0005

TABLE VI: Summary of the nal state scaled variance !, of positively charged hadrons and the
correlation coe cient , between positively and negatively charged hadrons In transversem om entum
bins pr; and rapdity bins y ;. Both the GCE result ( = 0) and the extrapolation to the M CE
( = 1) are shown. The uncertainty quoted corresponds to 20 M onte Carlo runs of 2 10 events

(GCE) or is the result of the extrapolation M CE ).

charged particles in the low pr region, com pared to the high pr dom ain.

Com pared to this, the M CE vy ;dependenceof !, and , ismainly dom inated by global
conservation of P, . Resonance decay e ects, see Figs.(11[12), are m ore equal across rapidity,
than in transverse m om entum .

Again,we nd the scaled variance of all charged particles larger than the scaled variance of
only positively charged hadrons ! > !, ,except forwhen , < 0, iewhen the m ultiplicities
of oppositely charged particles are anti-correlated, as or nstance in prs, vi,and ys. In
contrast to that,wenarrowly nd ! > 1 In the lowest transversemomentum bin prg.

T he qualitative picture presented In Fig.(17) could be com pared to sin ilar analysis of
UrOM D transport sin ulation data ], or recently published NA 49 data on multiplicity uc—
tuations In lim ited m om entum bins ]. W e, however, do not clain that the e ects discussed

above are the sole e ects leading to the qualitative agreem ent w ith either of the two.
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VvV III. SUMM ARY

W e have presented a recipe for a them alm odel M onte Carlo event generator capable of
extrapolating uctuation and correlation observables for Boltzm ann system s of large volum e
from their GCE values to the M CE Iim it. O ur approach has a strong advantage com pared to
analytical approaches or standard m icrocanonical sam ple-and—<+efct M onte C arlo techniques,
in that it can handle resonance decays as well as (very) large systam sizes at the sam e tin e.

To Introduce our scham e, we have conceptually divided a m icrocanonical system into two
subsystam s. T hese subsystem s are assum ed to be in equilibrium w ith each other, and sub jct to
the constraints of pint energy-m om entum and charge conservation. Particles are only m easured
in one subsystem , while the second subsystem provides a them odynam ic bath. By keeping the
size of the rst subsystem xed, while varying the size of the second, one can thus study the
dependence of statistical properties of an ensam ble on the fraction of the systam obsarved (ie.
assess their sensitivity to globally applied conservation laws). The ensam bles generated are
them odynam ically equivalent in the sense thatm ean values in the observed subsystem rem ain
unchanged when the size of the bath is varied, provided the com bined system is su ciently
large.

The M onte Carlo process can be divided into four steps. In the rst two steps prim ordial
particle m ultiplicities for each species, and m om enta for each particle, are generated for each
event by sam pling the grand canonical partition function. In the third step resonance decay of
unstable particles is perform ed. Lastly the values of extensive quantities are calculated for each
event and a corresponding weight factor is assigned. A 1l events w ith the sam e set of extensive
quantities hence still have ‘a priori equal probabilities’. In the lin it of an in nite bath, all
events have a weight equal to unity. In the opposite I it of a vanishing bath, only events
with an exactly speci ed set of extensive quantities have non-vanishing weight. Tn between,
we extrapolte in a controlled m anner. The m ethod is even rather e cient for large volum e,
dnaccessble to sam ple-and—refct procedures, and agrees well, where avaibble, w ith analytic
asym ptotic m icrocanonical solitions.

G wen the success of the hadron resonance gasm odel in describing experim entally m easured
average hadron yields, and its ability to reproduce low tem perature lattice susceptibilities, the
question arises as to whether uctuation and correlation observables also follow itsm ain line. Tn

particular, three e ects are nicely discussable: R esonance decay, conservation law s, and lin ited
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acceptance e ects. D ue to the M onte C arlo nature, data can be analyzed in close relation to
experim ental analysis technigques. T he hadron resonance gas is an deal testbed for this type of
study, In that it is sin ple and intuitive.

T he statistical properties of a sam ple of hadron resonance gas events show a system atic
dependence on what part of the m om entum distribbution and what fraction of the system is
observed. Two exam ples served to illustrate: grand canonical charge-charge correlations, and
m icrocanonical m ultiplicity uctuations and correlations. Tn the case of charge-charge corre-
lations, m om entum space e ects are caused by di erent m asses of hadrons and, hence, their
varying contribution to di erent parts of the m om entum spectra. A lthough m icrocanonical
e ects on the (co)variances of the pint baryon num ber — strangeness —electric charge distribu—
tion are considerable, they ram ain weak for the correlation coe cients between these quantum
num bers. Tn contrast to this, m om entum space e ects on m ultiplicity uctuations and correla—
tions arise due to conservations law s. For an deal prim ordial grand canonical ensam ble In the
Boltzm ann approxin ation (our starting point), m ultiplicity distrdbutions are jist uncorrelated
Poissonians, regardless of the acosptance cuts applied, as particles are assum ed to be produced
Independently. The requirem ent of energy-m om entum and charge conservation leads to sup-
pressed  uctuations and enhanced correlations between the m ultiplicities of tw o distinct groups
of particles at the high m om entum ”end of them om entum spectrum , provided som e fraction of
an isolated systam is observed. R esonance decay does not change these trends. T he argum ents
on which the explanation of this particular dependence are based seem generalenough to hope
that they m ight hold too in non-equilibrium system s, such as realheavy ion data or theoretical
transport sin ulations.

A direct com parison w ith experim ental data seem s problam atic at the m om ent. T he static
global therm al and chem ical equilibrium assum ption m ade here is certainly insu cient. The
m odel presented here is far from com plete. Several interesting aspects deserve attention. T hey
Include the sam pling of Ferm iD irac or BoseFE instein particles, for which low transverse m o—
m entum is particularly sensitive; nite volum e corrections could be done (possible if one has a
good approxin ation to W ); the convergence properties (at xed ,and asa function of ) 2ll
basically into the sam e direction; so farwe also have not derived a therm odynam ic potential for
our ensam bles; one could also consider m ore general form s of W ; one could ask how to couple

two systam s of di erent densities, or altogether depart from the local equiliorium assum ption.
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T here are also several interesting things that them odel could do in its present form . Exam ples
Include m ean transverse m om entum  uctuations, correlation between transverse m om entum
and particle num ber, or even 2 and 3 particle correlation fiinctions. T his should be the sub fct
of uture work.

A cknow ledgm ents

W ewould lke to thank F.Becattini, E . Bratkovskaya, W .Cassing,J.C leym ans,M .G azdz-
icki, M .G orenstein, J.M anninen, J.R andrup, and K .Redlich for fruitful discussions. Special
thanks goes to W . Broniow ski for his contribution to the very dea which started this pro gct.
T he com putational work was done on the CARM EN cluster of the UCT physics departm ent.
W e would also lke to thank G .de Vaux for valuable help with m any aspects of running the

code.

APPENDIX A:CONVERGENCE STUDY

Not only for the sake of com pleteness we discuss in this section the convergence of various
quantities w ith the sam ple size, ie. the num ber of events, N ¢yents , 1 our M onte C arlo schem e.
Herewe analyze nalstate (stable against electrom agnetic and weak decays) particlesonly. W e
m ainly take a closer look at the data sub-set 0o£20 2 I1@vents,with = V;=V,= 0875 for
the size of the bath, which already has been discussed in Section [V I1.

T here isa degree of freedom at so how to estin ate the statisticaluncertainty on them om ents
of a distrbution of cbservables ofa nite sam ple. T he approach taken here is straight forward,
but could, how ever, certainly be in proved.

In Fig.(I9) we show the evolution of them ean valuesN ; i (keft) and the variancesh( N , )i
(right) of the distrilbutions of positively charged hadrons for the 5 transverse m om entum bins

P r;,de ned in Tablkl[l, w ith the sam ple size. M ean values of particle m ultiplicities in respec—
tive bins are In rather good approxin ation equal to each other, but are, how ever, not dentical
due to nite resolution on the underlying m om entum spectrum , even for = 0875 (binswere
constructed using GCE events from an independent run). Variances converge steadily and
are di erent in di erent bins, see Section [WII. The event output was iteratively stored in

histogram s, which were then evaliated after stepsof 2 16 events.
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FIG. 19: Step histogram show ing the convergence of the mean valies I, 1 (kft) and variances

h(N . )2i (right) for positively charged nalstate hadrons in transversem om entum bins p r, fora

hadron resonance gasw ith = V=Vy = 0875.
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FIG .20: Step histogram show ing the convergence of the scaled variance !, (keft) of positively charged
hadrons and the correlation coe cient , between positively and negatively charged hadrons (right)

In transverse m om entum bins pr; fora nalstate hadron resonance gasw ith = V1=V, = 0:875.

In Fi.(20) we show the evolution of the scaled variance !, of positively charged nalstate
particles (left) and the correlation coe cient , between positively and negatively charged
particles (right). T he results for the respective transverse m om entum bins can be com pared to
the second to Jast m arkers F ggs.(13[14), Jeft panels, which denote the corresponding results of
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FIG .21: Histogram show ing the results for the scaled variance !, (left) of positively charged hadrons
and the correlation coe cient , Dbetween positively and negatively charged hadrons (right) in the
transverse m om entum bin p s fora nalstate hadron resonance gaswith = V,=Vy = 0:875. 200

M onte Carlo runsof 2 18 events each are analyzed.

grouping the sam e data into 20 M onte Carl sets of 2 19 events each.

In Fig.(2l) we show the distrrbution of scaled variances of positively charged particles !,
(Ieft) and correlation coe cientsbetw een positively and negatively charged particles , (right),
resulting from grouping again the sam e data set into 200 samples of 2 1H events each. W e
chose the transverse mom entum bin pr;s for a nal state hadron resonance gas with =
V=V, = 0:875.

M onteCarlo results for = 0:875 oftheanalysis shown in F ig.(2]]), are for the scaled variance
's (prs)= 08069 00514, and the corelation coe cient . (prs)= 0:0026 0:0421.
They are nicely scattered around the m ean values, denoted by the bottom lines in Fig.(20),
'y (prs)=08082,and , (prs)= 00028 respectively.

They are also compatble with the analysis shown in Figs.(I3[d), of Section W 1I,
' (prs)= 08081 00149,and . (prs)= 0:0022 00125, at the sam e value of
T he com paratively Jarge statistical error on the analysis in Fig.(21]) is due to the splitting up
Into m any am all sub-sam ples. The m ean values of di erent analyses agree rather well.

Lastly, we show in Fig.(22d) the results of additionalM onte C arlo runs for values of closer
to unity. This tin e we have perform ed 20 runsof 1 10 prim ordialevents for = 0:925,0:950,

and 0975. A s discussed above, error bars diverge, but convergence seem s to be rather good.
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FIG . 22: Evolution of the prim ordial scaled variance !, of positively charged hadrons (kft) and the
prin ordial correlation coe cient | between positively and negatively charged hadrons (right) w ith
theM onte Carlo param eter = V1=V in di erent rapidity bins y ;. The solid Iines show an analytic
extrapolation from GCE results ( = 0) to theM CE Im it ( ! 1). The 4 lefim ost m arkers and their
error bars represent the results of 20 M onte Carlo runsof 2 10 events. 3 additional valies of have
been investigated w ith 20 M onte C arlo runsof 1 10 events. T he rightm ost m arkers denote the results

of the extrapolation.

T he additional data has not been used for the extrapolation, so it can serve as an un-biased
cross—check.

APPENDIX B:THE CANONICAL BOLTZM ANN GAS

An analytical and instructive exam ple is the canonical classical relativistic particle anti-
particle gasdiscussed in , ,@ ]. W euse thisexam pl to show that, although the procedure
is form ally independent of one’s choice of Lagrange m ultipliers, it is m ost e cient for those
de ned by M axwell’s relations. W e start o with Egs.(dl), and then discuss, in tum, the rst
and second m om ents of the m ultiplicity distribution of particles, and the st fourm om ents of
the M onte C arlo weight factor.

T he canonical partition function Zy, (V1; ;Q1) of a systam with volum e V;, tan perature
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T = 1, charge Q 1, particle number N ; , and antiparticle nuimberM ; = N; Q, isgiven by:

vy )y )
Zy, (Vi; Q1) = N M, o B1)
T he single particle partition function isgiven by Eq.31), = 3% m* 'K, @ ). Thecanon-
ical partition function w ith arbitrary particle num ber, but still xed charge Q ;, is obtained by:
X
2 (Vi; Q1) = ZNl(Vl; Q1) = I, (2Vvy ) B2)
N1=0Q1

Here I, isamodi ed Bessel function. Tem perature is the sam e In both subsystan s; the bath
and the obsarvable part. T he partition function of the bath is therefore:

z(V2; iQ2) = I, 2Vy ) : (B3)

Im posing the constraints V, = Vg Vi,and Q, = Qg Q1,smilar to Eq.{4), we nd Q]ﬁar

the canonical partition fiunction, Eq.(3), of the com bined systam :

x
Z(Vg; ;Qg) = IQl (2vl ) :I:Qg 01 2(\/g vl) = IQg (2vg ) 7 (B4)
O1= 1

as required. T he weight factor is then:

W 01V s i) = B5
(\/l Ql g ng ) IQg (2Vg ) ( )

Analogous to Eq.{d) we nd for the pint particle m ultplicity and charge distribution:
PQ:;N1) = W (V1;Q1;V4iQqJ ) Zy, V1; Q1) : (B6)

1. M onte Carlo W eight

W e next introduce Eq.(I2), the pint G CE distrdbution of charges and particle m ultiplicity :

te
Pyee@Q1iN1) = ——— Zy, (V1; Q1) : B7)

z Vi i)
The M onte C arlo weight, Eq.(13), is then given by:
W 2R (Ve ;) W (Vi;Q015V5043 )2 (Vs 5 Ve @t (B8)
In accordance w ith Eq.{Idl), the distrbution Eq.(B6) is then equivalently w ritten as:
PQiNy) = W2PI(VVei ) ) Peee@1iN1) : (B9)

The GCE partition function is:

x
Z Wy ;) = et Z(Vy; ;0.) = exp Vi2cosh( ) : (B10)

Q1= 1

44



2. M om ents of D istributions

To de ne the m ultiplicity m om ents of the distributions Eq.@) or Eq.) we write:

D
IS\ [EiE NP (N;;Q1p) ¢ (B11)
Ni=0Q:= 1

Additionally we de ne the m om ents of the weight Eq.(B3):
Xt X h i,
i W (V1;Q1;Vg;Q43 ) Zn, Vi; Q1) (B12)
N;1=0Q1= 1

and of the M onte Carlo weight Eq.(Bg):

¥ ¥ b i,
W "4 W ORI (VVeF ) Pgee(Q1iN7) : (B13)
N;=0Q1= 1

W e rstattend to the rst two m om ents of the m ultiplicity distrdbution. Substituting Eq.(B6)
or Eq.(B9) nto Eq.(B11l) vieds:

2V
W,i= (V, M ; (B14)
L, (2Vg )
and
. I, 1 2vy ) > Io, 2 (2Vy )
Wi = — -2 4 — -2 B15
11 V1 ) Lo, 2V ) Vi ) . 2V, ) ( )

C anonical suppression of yields and uctuations acts on the globalvolm e V,. In the GCE the

rsttwomomentsare N ;i= V; e ,and WN7i= HN ;i + N i, respectively. The CE lim it is
obtained by V, ! V;,and Q4 = ;1. Substituting Eq.{&14) and Eq.(B19) into Eq.(52), and
using Eq.{9), = V;=V,,yilds:

b= et (1 ) !gce; (B1o)

where the CE scaled vardance ! of the com bined system is given by Q,@]:

IQg 1 (2Vg ) IQg 2 (2Vg )

e = 1 (Vg )
IQg (2Vg ) IQg 1 (2Vg )

; B17)

and !4 = 1 isthe GCE scaled variance, as the particle num ber distribution is a Poissonian.
W e next apply ourM onte C arl schem e to an observable subsystem of volum e Vi = 50fm 3

enbedded into a system of volme Vy = 75fm °, charge Q4 = 10,and tem perature T = ' =

0:160G €V . Particles and antiparticleshavem assm = 0:140G eV and degeneracy factorg= 1.
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T he average charge content in the observable subsystem is then Q.1 7 6667. The mean
particle m ultiplicity, Eq.(B14), is iN ;i ’ 7:335, and the scaled variance of particle num ber
uctuations, Eq.(B14),is ! / 0:3896. W ewill sam ple the GCE in V; for various values of 0
and use the M onte Carlo weight, Eq.(BH), to transform these sam ples to have the statistical
properties required by Eq.{BA) or Eq.(BY). For each value of , we have generated 50 sam ples

of 2000 events each to allow for calculation of a statistical uncertainty estim ate.
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FIG .23: The rstfourm om entsoftheM onte Carlo weight, Eq.(B8) (left) and the rsttwom om ents

of m ultiplicity distributions (right) , as described in the text.

Th Fig.(23) (right) we show , In open sym bols, them ean value N ; i and the variance h( N, )°i

of the particle m ultiplicity distrlbbution of the orighal GCE sam ples for di erent values of
chem ical potential , . The closed symbols denote m ean value and variance of these sam ples
after the transform ation Eq.(B8) was applied. Independent of the original sam ple the result
stays (w ithin errorbars) the sam e. H ow ever the statisticalerror is low est fora chem icalpotential

close to:
1 Qg
2Vy

o = T shh ; (B18)

ie. when the initial sam ple is already sim ilar (at least In termm s of m ean values) to the desired
sam ple. This is re ected in the m om ents of the M onte Carlo W eight factor, Fig.(23) (eft).

H igher m om ents have a strong m lninum around o = 0:1896G &V , ie. the weights are m ost
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hom ogeneously distributed am ongst events, and m ost e cient used ism ade of them .
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