

Early ATLAS B physics with the first 10 - 100 pb⁻¹

Dimos Sampsonidis Aristotle University of Thessaloniki

On behalf of ATLAS Collaboration

IL-PHYS-SLIDE-2009-261 September 2009

SEPTEMBER 7TH - 11TH 2009, HEIDELBERG UNIVERSITY, GERMANY

Beauty 2009, Heidelberg, Sept 7-11

The ATLAS detector and the Trigger system

B-physics program with early data

- B-physics trigger
- Total and differential cross sections of Exclusive channels
- Heavy quarkonia physics.
- Polarization measurements
- B masses and lifetime measurements

Summary

The ATLAS Detector

Inner Detector

(High granularity, tracking coverage: | η | <2.5)

•Si pixel detector

•SCT (strip detector)

- •TRT (transition radiation)
- Point resolution of Pixel Detector
 (10x100)μm (φ-z)

•3 silicon layers, innermost @ 5cm

See talk of Sofia Chouridou

Muon Spectrometer

Fast trigger chambers RPC, TGC (<10 ns time resol)
High resolution tracking detectors: MDT, CSC (40 µm spatial resolution)

hardware

software

Three stage system

Level1: Hardware, High Level Trigger: (LVL2+EF) Software

► LVL1

 hardware-based, identifies Regions of Interest (Rol) for further processing, Total rate 75 kHz

➢ <u>LVL2</u>

- Confirmation of LVL1 data using precition detectors
- Muon tracks extrapolation to inner detector
- Track reconstruction in ROIs
- Total rate 2 kHz

► <u>EF</u>

- refines LVL2 selection using offline-like algorithms
- Vertexing, transverse decay length cut, angular distribution cut, full event, alignment and calibration data available

Total rate 200 Hz → to tape (5-10% dedicated to B-Physics)

$L_{int} = 10 - 100 \text{ pb}^{-1}$

> Detector & trigger understanding : calibration with J/ψ , Y and exclusive Bchannels as a tester, alignment, material, field, reconstruction.

Physics

- cross section measurements at new energy in order to test QCD predictions.
- Prompt $J/\psi \rightarrow \mu\mu$ and $Y \rightarrow \mu\mu$ differential production cross-sections
- Polarisation of J/ψ and Y as a function of quarkonium transverse momentum
- $\chi_c(nP) \rightarrow J/\psi(\mu\mu)\gamma$ cross-section(s)
- Mass and lifetime measurements.
- > Large b cross section allows extraction of exclusive decays like $B^+ \rightarrow J/\Psi K^+$, $B_d \rightarrow J/\psi K^*_0$, $B_s \rightarrow J/\psi \phi$, which serves as reference channels for the muonic rare decays.
- Use measurement of well known B-physics quantities to test and monitor the detector performance, later with increasing integrated luminosity improve precisions of these.

The B physics Di-muon triggers

- B-physics has an efficient, fast and clean trigger based on muons Many B-physics channels involve a di-muon signature, $(B \rightarrow J/\psi(\mu\mu)X, b \rightarrow s\mu\mu, B \rightarrow \mu\mu$ etc)
- The most effective trigger for such events uses the di-muon signature from the lowest trigger level.

•Selection and reconstruction of events Di-μ J/ψ trigger (μ6μ4)

•First reconstruction of J/ ψ by combining 2 μ •p_T1(2)> 6(3) GeV, common vertex, ±120 MeV around m_{J/ ψ}, Proper decay length λ > 0.1 mm, Fit a common vertex of K+ and J/ ψ candidate \Rightarrow B+ candidate

for L=10 pb⁻¹ efficiency: 29.8±0.8 % *uncert.* :M(B+)~0.02%, σ(B+)~3.5%

•Width σ and efficiency \mathscr{A} for various p_T bins and for $p_T{>}10$ GeV for the total cross-section:

p_T range [GeV]	$p_T \in [10, 18]$	$p_T \in [18, 26]$	$p_T \in [26, 34]$	$p_T \in [34, 42]$
A [%]	20.1±1.0	37.3±1.7	45.0±3.1	51.6±4.7
$\sigma(B^+)$ [MeV]	38.5±2.0	42.3 ± 2.1	46.1±3.2	46.6±4.0

total cross-section		
\mathscr{A} [%]	29.8±0.8	
$\sigma(B^+)$ [MeV]	42.2±1.3	

Statistical and systematic uncertainties (for \mathcal{L} =10 pb⁻¹)

Statistical uncertainty <5% for total and ~10% for differential cross-section measurement
Systematic uncertainty includes the uncertainties from the luminosity (~10%) and the BR (~10%)

p_T range [GeV]	$p_T \in [10, 18]$	$p_T \in [18, 26]$	$p_T \in [26, 34]$	$p_T \in [34, 42]$	$p_T \in [10, \inf)$
stat. + A [%]	7.7	6.9	10.5	13.9	4.3
total [%]	16.1	15.8	17.6	19.8	14.8

Heavy Prompt Quarkonia motivation

- Production was described via the Color Singlet Model (CSM).
- Inconsistency with the Tevatron Xsection
 =>Color Octet Model suggested (COM).
- COM failed to predict quarkonia polarization dependence on its P_T.
- Alternative suggestions k_T factorization.

ATLAS is capable of detail checks of the predictions of various models and the degree of polarisation of J/ψ and Y

Heavy Prompt Quarkonia, background separation

- > J/ψ from B-decays form significant background to prompt J/ψ , in addition to muons from b-quark decays
- > Measurement of prompt J/ψ to indirect cross-section relies on separation (and understanding of separation) of these two processes
- > Prompt J/ ψ typically have zero proper time while Indirect J/ ψ have positive proper time
 - Cut on pseudo-proper time to separate indirect/prompt
 - Pseudo-proper time' cut of <0.2 ps gives prompt J/ψ efficiency of 95% with 5% contamination

D.Sampsonidis

Beauty 2009, Heidelberg, Sept 7-11

Heavy Prompt Quarkonia, Invariant mass

Dedicated J/ ψ and Y trigger signatures >Seeded by Level1 Di- μ trigger ($\mu 6\mu 4$)

- •µ tracks from primary vertex,
 - pseudo-proper time < 0.2 ps (background suppression)

≻150 000 J/ψ and 25 000 Y for 10 pb⁻¹ using di-µ trigger (µ6µ4)

>S/B (at peak) = 60 (J/ ψ), 10 (Y)

Spin-alignment measurement

Angle defined between positive muon direction in quarkonium <u>rest frame</u> and quarkonium direction in <u>lab frame</u>.

Dimuon triggers: little or no information for high cosθ*

Using di-muon trigger, both muons from J/Ψ must have relatively large p_T .

=> affects the polarization angle distribution.

Single µ10 trigger:

- Second track can be reconstructed offline (>0.5 GeV p_T)
- > $|\cos \theta^*| \sim 1$ corresponds to a configuration where one muon is fast, the other slow
- Provides similar p_T range of onia to µ6µ4 configuration and similar rates!

Single-μ trigger => larger background Still: S/B = 1.2 (J/ψ) and 0.05 (Y)

Measurements using $\mu 6\mu 4$ and $\mu 10$ trigger have to be combined to achieve full coverage in $\cos\theta^*$

Spin-alignment measurement

Combined and corrected distributions in J/ ψ polarisation angle $\cos\theta^*$, for various p_T slices, for Longitudinal (α_{gen} =-1, dotted line) and Transversely (α_{gen} =1, dashed line) polarised

Combined and corrected distributions in J/ψ polarisation angle $\cos\theta^*$, for various p_T slices (unpolarised data)

$$\frac{dN}{d\cos\theta^*} = C \frac{3}{2\alpha+6} \left(1 + \alpha\cos^2\theta^*\right)$$

J/ψ and Y polarisation and cross sections measured in various p_T slices, for 10 $pb^{\text{-}1}$

We can expect cross-section measurement precision in bins of p_T of the order of 1% (dependent on the polarisation)

The precision of the J/ψ polarisation measurement can reach 0.02-0.06, while the expected error on Y polarisation is unlike to be better than 0.2.

D.Sampsonidis

Beauty 2009, Heidelberg, Sept 7-11

χ decays $\chi_c \rightarrow J/\psi + \gamma$ events

• For J/ ψ s, ~30% of total cross-section comes from $\chi_c \rightarrow J/\psi + \gamma$

Interested in χ_c decays to J/ψ or Υ and a soft photon.

Low χ reconstruction efficiency due to the difficulty in retrieving this photon.

Preliminary studies suggest we can recover few % of those χ_c events from reconstructed J/ ψ 's

- 1. Have a J/ψ candidate
- 2. Look in narrow cone (cos θ >0.98) around quarkonium momentum direction for photon (reduces combinatorics)
- 3. $\mu\mu\gamma$ - $\mu\mu$ invariant mass difference shows peaks where χ_{c0} , χ_{c1} or χ_{c2} was reconstructed
- 4. A simultaneous fit of three Gaussians and quadratic background, can find the three peaks with a typical resolution of 40 MeV

>Studies on-going to include photon conversions using ID tracks, which should have better resolution, at the price of much reduced efficiency.

D.Sampsonidis

$B_d \rightarrow J/\psi K_0^*$

It will be possible to measure the masses and proper lifetimes for these decays with sufcient precision to allow them to be used for detector performance checks.

- > $B_d \rightarrow J/\psi K_0^*$ vertex reconstructed from two muons, one kaon and one pion track: this channel allows sensitive performance tests from 10pb⁻¹
- In early data, loose cuts will be used (No vertex displacement cut)
- Simultaneous fit to mass and decay time used to extract signal mass and lifetime from data

400	ATLAS	10 ³		bb $\rightarrow J/\psi X$
350		Ē		$\bigotimes pp \to J/\psi X$
300		10 ²		$B_d\to J/\psi\;K^{0^\star}$
250				
200				L
150		10		
100		Ē		
50	[] of [] for the safe for	1		
490	0 5000 5100 5200 5300 5400 5500 5600 57			
	Mass (MeV)	<u>-</u>	•	Decay time (ps)

Parameter	Simulated value	Fit result with statitical error	
Γ, ps ⁻¹	0.651	0.73 ± 0.07	\triangleright
m(<i>B</i>), GeV	5.279	5.284 ± 0.006	
σ, ps		0.132 ± 0.004	
σ_m , GeV		0.054 ± 0.006	-

- Mass can be measured with a precision of $\sim 10^{-3}$
- B-Lifetime can be measured with a precision of $\sim 10\%$ with 10 pb⁻¹.
- Measurement of resolution possible with 10 pb⁻¹ allowing for ID tests stability.

- total and differential cross sections of B-hadrons and onia
- Polarization measurements
- Mass and lifetime measurements
- An efficient, fast and clean di-muon trigger will allow to collect large samples of Bhadrons and Quarkonium throughout the lifetime of the experiment.
- Already with the first pb⁻¹,
 - mass and lifetime measurements of exclusive channels will serve to validate and monitor ID performance and alignment
 - J/ψ and Upsilon resonances will provide calibration points

Waiting for the data ... its going to be interesting!

Thank you!