ATLAS strips: Running Experience

VERTEX 2009 – Mooi Veluwe 14th September 2009

Manuel Kayl on behalf of the ATLAS SCT Collaboration

The ATLAS detector

The ATLAS Inner Detector

The SemiConductorTracker (SCT)

Silicon sensors

- Four layouts (one barrel, three end-cap)
- Two sensors glued back-to-back
- 40 mrad stereo angle
- p-in-n sensors (p strips on n Si)
- Strip pitch: 80 μm (barrel), 57 – 94 μm (end-caps)
- 768 active readout channels per side
- Signal read out

14/09/2009

NIKHEF

- Three bunch crossings of 25 ns at a time
- Six ABCD chips per side
- Binary readout (default threshold: 1fC)
- Operation conditions
 - 150 V reverse bias before irradiation
 - Up to ~ 10 W power per module
 - Evaporative cooling system with C₃F₈

at -25° C, design operation at -7° C

~ 12 cm

Tolerances and requirements on the SCT

- As-built tolerances per module
 - < 8 μm in-plane, achieved RMS: 2 μm
 - < 70 μ m out-of-plane (bowing and thickness), achieved: ~ 40 μ m
- SCT assembly
 - Mounting precision in z : 60 μm
 - No survey in r-phi

Physics requirements

- Resolution (x* y): 17 μm * 580 μm
- Alignment tolerances (x*y): 12 μm * 50 μm
- Noise occupancy: < 5 * 10⁻⁴
- Efficiency: > 99%
- Radiation : ~ 2 * 10¹⁴ Neq cm⁻² over 10 years

LHC beam and the SCT: Beam splash

Running the SCT: cosmic data taking

- By far largest amount of real data
- Useful for calibration, trigger, alignment and tracking performance
- ~ 2M tracks recorded with SCT in 2008 (B field-on and B field-off)
- Extensively analysed, cross-checked with 2009 cosmic data
- Differences from collision tracks:
 - Low statistics in end-caps
 - Track parameter spectra

14/09/2009

Running the SCT: cosmic event

NICEF 14/09/2009

SCT in operation: timing and occupancy

Timing studies

SCT performance: hit efficiencies

SCT in magnetic field: Lorentz Angle

SCT operation: room for improvements

<u>Cooling</u>

- Shared system with Pixel detector
- Problems occurred: leaks in cooling pipes and failures of compressors, design temperature will not be reached
- Talk by Koichi on Thursday

Off-detector system

- Optical transmission system for module communication
 - → Failure of VCSELs in data acquisition rack
 - Accessible, all links replaced in May and August 2009
- Several HV trips during operation, needs reset of modules during operation

SCT Alignment results

- Obtained with mixed B field on and off data
- Barrel resolution improves from 123 μm (nominal) to 30 μm (aligned)
- End-cap alignment difficult (not on module level)
 - still considerable improvements achieved
- Width of residual distributions consistent with random misalignment of O(20 μm)
- More on alignment in Tuesday afternoon session

14/09/2009

Readiness for physics: tracking performance

- Tracking performance variables like impact parameter resolution can be studied using cosmic tracks split up in upper and lower half tracks
 - → Two separate "collision-like" tracks
 - Constrain tracks close to interaction region
 - Estimate track parameter resolutions from distributions of difference in track parameters T:

$$\sigma_{\tau} = \frac{T_{upper} - T_{lower}}{\sqrt{2}} = \frac{\Delta T}{\sqrt{2}}$$

Hit distributions in x-y plane for tracks split in upper and lower half

Transverse impact parameter resolution

- Comparison of Si-only, full ID (incl. TRT) tracks with full ID simulation • At low p_{T} dominated by multiple scattering, at high p_{T} by intrinsic
 - detector resolution (left plot)
- Dips in resolution if d₀ equals radii of Pixel layers (right plot)
 - --> short extrapolation distance to perigee point
- Understood in great detail, difference to simulation indicates remaining misalignments

Bias in impact parameter resolution

- Mean of the Δd_0 distribution versus p_T and d_0 itself
- Bias of up to 15 μ m visible at higher p_T and small d₀
- Not observed in simulation
 - Real effect, no shortcoming of method
 - Shows how well detector is already understood
- Possible systematic distortion of detector, crucial for further understanding of interplay between tracking and alignment

14/09/2009

Relative momentum resolution

Relative momentum resolution and mean of the relative momentum

- Comparison of Si-only, full ID (incl. TRT) tracks with full ID simulation At high p bigger lover arm with TDT improves the resolution
- At high p_{τ} , bigger lever arm with TRT improves the resolution
- $_{\bullet}$ Bias at high $p_{_{T}},$ not observed in simulation
 - → probably correlated with d₀ bias
- Understood in great detail, difference to simulation indicates remaining misalignments

Conclusions

- Successful operation of SCT in 2008 (and 2009)
- 99% of barrel modules operational, 97% in end-caps (99% barrel and endcap in 2009)
- Problems with evaporative cooling and optical connectors
- In-depth calibration of SCT with cosmic data Lorentz-angle, hit efficiencies, occupancy, ...
- Alignment with cosmic data performed up to module level
- Resolutions of tracking parameters demonstrate readiness for physics measurements of SCT

Conclusions II

Acquired a lot of experience with a very complex system!

Track parameters in cosmic data

Typical (asymmetric) distributions for track parameters in cosmics events

High level commissioning: Alignment

NICEF 14/09/2009

Angular resolutions

- $_{\bullet}$ Azimuthal angle resolution versus ${\rm p_{\tau}}$ and polar angle resolution versus η
- Azimuthal angle resolution dominated by multiple scattering at low p₁
- Polar angle resolution improves at larger η due to broader clusters that allow a more precise hit position measurement
- No contribution from TRT due to two dimensional measurement

Behaviour as expected

