

Sebastian Eckweiler - University of Mainz (on behalf of the ATLAS Collaboration)

- Introduction
- Examples of QCD studies
 - Minimum bias & underlying event
 - Jet-physics
 - W/Z + Jets
- Summary

Introduction

• The Large Hadron Collider

- p-p collision up to $\sqrt{s} = 14 \text{ TeV} (x7 \text{ wrt Tevatron})$
- Luminosities up to 10³⁴cm⁻²s⁻¹ (x30 wrt Tevatron)
- ~100 fb⁻¹ per year at design luminosity
- Huge QCD cross sections $\sigma_{jet}(E_T > 700 \text{ GeV}) \sim 0.1 \text{ nb}$

Current schedule

- Start-up by mid-November
- First physics run in 2010 at $\sqrt{s} = 7-10 \text{ TeV}$ and lower luminosity
- Aim to collect ~100pb⁻¹ in first physics run:

Determines possible first physics!

The Atlas experiment

What can be done with early data?

Process	σ(nb)	Ns⁻¹	∠=10pb ⁻¹	∠=10fb ⁻¹	Ofb ⁻¹
Minimum bias	m uhti ⁸ as	10 ^g	10 ¹²	~10 ¹⁵	0 ¹⁵
Inclusive jets – p _T >200GeV	^{1Si} ¥60 s – 0GeV	1 00	10 ⁶	~109	ل 0 9
$\mathbf{W} ightarrow \mathbf{e} \mathbf{v}$	→ ev ¹⁵	15	10 ⁵	~10 ⁸	1 0 8
$\mathbf{Z} ightarrow \mathbf{e}^+ \mathbf{e}^-$	e⁺e ^{.5}	1.5	10 ⁴	~107	L 0 7
Dibosons	0.2 sons	002 3	10	10 ⁴	04

(Numbers for $\sqrt{s} = 14 \text{ TeV}$)

Short term plans:

- Minimum bias & underlying event:
 - constrain uncertainties in MC generators from extrapolations to LHC energies in the very beginning
 - baseline for understanding of pile up corrections

• Jets:

- Angular de-correlation: early benchmark of MC generators
- Inclusive Jets: Reach beyond Tevatron energy regime already in first data
- Studies presented used $\sqrt{s} = 14$ TeV and full detector simulation

• Medium & long term plans:

- Use W, Z and top for calibration of detector and trigger
- Study W, Z, top and QCD multi-jets for proper background-estimation
- Improve current SM measurements to provide consistency tests of the underlying theory

<u>Minimum bias measurements</u>

- Experimental definition: any inelastic collision of two protons
- Usually also referred to as 'non-single-diffractive' (nsd):

- ,Removal' of σ_{sd} very difficult
- Extrapolations to LHC energies suffer from large energy gap in data
 - σ_{tot} ~ 102 118 mb
 - $\sigma_{nsd} \sim 65 73 \text{ mb}$
- Proper modeling of min. bias pile-up and underlying event requirement for high p_T physics!
- Minimum bias studies should be done at low luminosity to minimize effects from pile-up
- Statistics only limited by allocated trigger bandwidth!

<u>Minimum bias measurements</u>

- Reconstructing minimum bias events:
- Need to recover all charged particles
 -> main challenge: tracking!
- Default reconstruction only for track p_T > 500 MeV (lower energy particles curl up in magnetic field)

- Dedicated tracking software pushes low p_T limit to ~150 MeV
- Avoids large corrections in uncovered phase space
- Integrated luminosity << 1 pb⁻¹
- Study done for $\sqrt{s} = 14 \text{ TeV}$

<u>Minimum bias measurements</u>

- Charged particle multiplicity, pT > 150 MeV
- Corrections involve:
 - Track-to-particle correction
 - Vertex reconstruction correction
 - Trigger (in)efficiency
- Systematic uncertainties dominate:

Track selection cuts	2%
Mis-estimate of secondaries	I.5%
Vertex reconstruction bias	0.1%
Mis-alignment	6%
Beam-gas & pile-up	١%
Particle composition	2%
Diffractive cross sections	4%
Total:	8%

Underlying event

- Important check of MC generators
- ,jetty' environment understanding needed for jet energy corrections
- CDF-Data used to tune ATLAS monte carlo
 - currently relying on Jimmy4.3 and PYTHIA6.416 (appropriately tuned) to describe UE
 - both generators describe CDF data reasonably well

Underlying event

- Extrapolations to LHC (@ 14 TeV) energies differ
- Generators agree in $\langle N_{chg} \rangle$ in transverse region
- Disagreement in $\langle P_T \rangle$ in transverse region
- Validation needed with early data combined with minimum bias description

Dijet angular de-correlation

- Very early possible check of generators
- Sensitivity mainly to ISR / parton showering
- Uncomplicated measurement of $\Delta \phi = |\phi_{jet|} \phi_{jet2}|$
 - $\Delta \phi \sim \pi$: clean dijet event, small deviations due to soft radiation
 - $\Delta \phi < \pi$: increasingly harder radation
 - Probes transition from soft to hard radiation

 Analysis divided into regions of leading jet pT

Dijet angular de-correlation

- Very early possible check of generators
- Sensitivity mainly to ISR / parton showering
- Uncomplicated measurement of $\Delta \phi = |\phi_{jet|} \phi_{jet2}|$
 - $\Delta \phi \sim \pi$: clean dijet event, small deviations due to soft radiation
 - $\Delta \phi < \pi$: increasingly harder radation
 - Probes transition from soft to hard radiation

- Analysis divided into regions of leading jet p_T
- Again, extrapolations to LHC energies differ between generators

Dijet angular de-correlation

- Cone jet algorithm (R = 0.7), $|y_{\text{Jet}}| < 0.5$
- Defined two analysis regions:
 - Simulated 20k events for both regions: I.6 pb⁻¹ / 56 pb⁻¹ integrated luminosity
 -> expect ~50 fold / doubled statistics by end of 2010 run
 - $300 \text{ GeV} < E_{T,\text{Jetl}} < 600 \text{ GeV}; 600 \text{ GeV} < E_{T,\text{Jetl}} < 1200 \text{ GeV}$
- Only very few further selections applied: E_{T,Jet2} > 80 GeV

Sebastian Eckweiler - University of Mainz

- Jets above I TeV will be first ,new physics': O(100) Jets in 100pb⁻¹
- Di-jets provide easy access to x values of scattered partons
 -> constrain on PDFs esp. at high x and Q² possible
- Currently large uncertainties in high x gluon densities estimated impact of ATLAS jet data
 - Toy-study made using ATLAS pseudo jet data: incl. cross section in bins of $|\eta|$

- Important background in SM analysis & searches for physics beyond the SM
- Current MC generator and calculations differ by 10-60%
- Given 5% jet energy scale uncertainty, we'll be competitive with generator-differences!
 - reasonable goal for I fb⁻¹
- Comparably small PDF uncertainty

Sebastian Eckweiler - University of Mainz

<u>Jets in cosmic ray data</u>

Today's data - tomorrow's background

- Muons experiencing catastrophic energy loss are visible as ,jets' study properties for future background rejection
- Good agreement of cosmic monte carlo and data

- Examined jet cleaning cuts:
- Most muon showers either in em. or had. calorimeter
- Fraction of total energy in EM calorimeter: 0.2 < JetEMFraction < 0.97:
- Number of clusters:
 N_{Clus} > 6
- Rejection by factor ~1000

<u>Jets in cosmic ray data</u>

Today's data - tomorrow's background

- Muons experiencing catastrophic energy loss are visible as ,jets' study properties for future background rejection
- Good agreement of cosmic monte carlo and data

- Examined jet cleaning cuts:
- Most muon showers either in em. or had. calorimeter
- Fraction of total energy in EM calorimeter: 0.2 < JetEMFraction < 0.97:
- Number of clusters:
 N_{Clus} > 6
- Rejection by factor ~1000

Summary

- ATLAS studied a variety of QCD analysis
- Minimum bias and underlying event studies in early data will help to tune MC generators
- Angular decorrelation will discriminate between ISR models
- Early jet physics will reach beyond Tevatron's kinematic limit
- Ready for the re-discovery of the Standard Model

Jet calibration at ATLAS

- Focus on in-situ calibration procedures in early data
- Use y/Z+jet events to validate/set jet energy scale

- Longer term plans:
- Validate monte carlo based calibrations
- Based on energy density cell weighting
- Supposed to double energy resolution at high jet energies

Jet physics

- Jets above I TeV will be first ,new physics'
 - O(100) Jets in 100pb⁻¹
- Will provide test of pQCD in new energy regime
- Inclusive and multi jet cross section allows α_s measurement
- Multi-jets are significant background for several physics studies
- Statistical uncertainties will be small
- Systematic uncertainties:
 - Luminosity (if applicable): 5 10%
 - Jet energy scale conservative: 10-20% in first data
 - Jet trigger efficiencies
 - Underlying event
 - Theory: PDFs

