

Higgs Physics with ATLAS

08 September 2009-244

Tomáš Davídek (Charles University in Prague) on behalf of the ATLAS collaboration

Outline

- Higgs boson
- LHC and ATLAS experiment
- Current experimental limits
- Higgs boson cross-sections and branching ratios
- (Selected) Standard Model Higgs searches @ ATLAS
 - $H \rightarrow \gamma + \gamma, H \rightarrow \tau + \tau, H \rightarrow Z + Z^{(*)} \rightarrow 4I, H \rightarrow W + W^{(*)} \rightarrow 2I + 2v$
- MSSM Higgs bosons
 - $h/H/A \rightarrow \tau + \tau$, $h/H/A \rightarrow \mu + \mu$, charged Higgs boson searches
- Higgs properties measurements
 - spin & CP, couplings
- Conclusions

Higgs boson

- The goal is to understand the mechanism by which particles acquire mass
- Concept of the electroweak symmetry breaking in Standard Model via Higgs mechanism:
 - Introduce a doublet of complex scalar fields
 - One real scalar field is not absorbed in that mechanism (Higgs field) and corresponds to real particle (Higgs boson)
 - Its interaction with particles generates the particles' mass

Large Hadron Collider

design parameter	value	
CM energy	14 TeV	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	LHC - B CMS CMS CMS CMS CMS CMS CMS CMS
Bunch crossing spacing	24.95 ns	
Protons per bunch	1.15 × 10 ¹¹	
Beam radius	16.7 μm	
Main dipoles	1232	
Dipole field	8.33 T	
Smaller magnets	7000	
Stored energy	360 MJ/beam	

ATLAS detector

Muon spectrometer: Muon Detectors Tile Calorimeter Liquid Argon Calorimeter • air-core toroids: 0.5 T in barrel, 1 T in endcap momentum resolution: 2% @ 50 GeV, 10% @ 1 TeV (combined ID+MS) HCAL: • Fe+scint (barrel), Cu+LAr (endcap) • resolution $\sigma(E)/E \approx 50\%/JE + 3\%$ (ECAL+HCAL, barrel part) ECAL: **Toroid Magnets** Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker Pb+LAr technology

• resolution $\sigma(E)/E \approx 10\%/JE + 0.7\%$

Tracker:

- Si pixels, Si strips, TRT inside 2 T solenoid
- resolution: $\sigma(p_{\tau}^{-1}) \approx 0.36 + 13/(p_{\tau} \cdot \int \sin \theta) [\text{TeV}^{-1}]$

Further details in Ref: G. Aad et al., JINST 3 (2008) 508003

```
Tomas Davidek (HS'09)
```


95% CL

About results

- Studies presented in this talk were performed assuming
 - $\int s = 14$ TeV pp center-of-mass energy
 - lower luminosity L = 10^{33} cm⁻²s⁻¹
 - average number of pp collisions per bunch ~2.3
 - bunch spacing 25 ns

Most of the results are published in CERN-OPEN-2008-020, also available in arXiv:0910.0512

- However, the scenario for LHC running in 2009/2010 should be
 - start with $\int s = 7 \text{ TeV}$, hopefully go up to 10 TeV
 - luminosity from L = $5 \cdot 10^{31}$ cm⁻²s⁻¹ to L = few times 10^{32} cm⁻²s⁻¹
 - bunch spacing 450 ns to 75/50 ns

SM Higgs boson production and decay

depends on Higgs boson mass M_{μ}

- $H \rightarrow b+b: M_{H} < 130 \text{ GeV}$
- $H \rightarrow \gamma + \gamma$: $M_{_{H}} < 140 \text{ GeV}$
- $H \rightarrow \tau + \tau$: $M_{H} < 150 \text{ GeV}$
- $H \rightarrow Z+Z: M_{H} > 130 \text{ GeV}$
 - $H \rightarrow W+W$: 130 < M_{H} < 190 GeV, M_{H} > ~250 GeV

$H \rightarrow \gamma + \gamma \text{ (1)}$

- Decay via W/top-loop, very small cross-section (σ=0.08 pb)
- Full kinematics reconstruction $M_{yy}^{2} = 2 E_{1}^{2} E_{2}^{2} (1 - \cos \theta)$
- Trigger: at least 2 photons with p₁>17 GeV
- Selection criteria
 - 0<|n|<1.37 or 1.52<|n|<2.37 to avoid calorimeter crack region
 - isolation cut in a cone of R=0.3 around the EM cluster
 - momentum cut $p_T^{\gamma 1}$ > 40 GeV, $p_T^{\gamma 2}$ > 25 GeV

- Photon conversion in front of calorimeter (60% of events)
 - affects photon ID and energy resolution
 - need to recover high fraction
- Gaussian fit in asymetric range (mean-2σ,mean+3σ)

Tomas Davidek (HS'09)

$H \rightarrow \gamma + \gamma$ (2)

- Signal cross-section very small, huge background
 - irreducible background from p+p \rightarrow y+y + X (σ ~30 pb)
 - reducible background from $p+p \rightarrow \gamma+jet/jet+jet + X$ (σ ~1.8×10⁵ pb/ σ ~4.8×10⁸ pb), photons come from leading π^{0}

- Further improvement possible e.g. with H+jet(s) final states
 - require 1 or 2 high- p_{τ} jet(s) produced in addition to Higgs boson
 - gluon radiation patterns in GF or VBF strongly differ from that of background

$H \rightarrow \gamma + \gamma$ (3)

Tomas Davidek (HS'09)

Higgs Physics with ATLAS

11/38

$H \rightarrow \tau + \tau$ (1)

- Biggest BR (after $H \rightarrow bbbar$) in the low Higgs mass region
- Final state signatures depend on the T-decay
 - $H \rightarrow T+T \rightarrow I+2v+I+2v$ (II-mode), BR = 12%
 - $H \rightarrow T+T \rightarrow I+2v+h+v$ (Ih-mode), BR = 46%
 - $H \rightarrow T+T \rightarrow h+v+h+v$ (hh-mode), BR = 42%
- Dominant background from Z→TT+jets, W→lv+jets, ttbar+jets and QCD di-jets (especially for hh-mode)

- Difficult to select signal events, therefore exploit VBF signatures:
 - 2 forward tagged jets
 - no central color activity
 - \rightarrow rapidity gap

Tomas Davidek (HS'09)

- missing E_{τ} > 40 GeV (II, hh modes), missing E_{τ} > 30 GeV (lh mode)
- central jet veto
- b-jet veto on forward jets (important especially for II-mode where the largest background comes from ttbar+jets→lvblvb+jets)

Tomas Davidek (HS'09)

$H \rightarrow T + T$ (3)

- Cannot fully reconstruct the final state (≥ 2v), exploit collinear approximation:
 - assume neutrinos are almost collinear with original taus that are highly boosted in LAB
 - additional cut on visible $\tau\text{-products}$ (cos $\Delta\phi$ > -0.9) to avoid back-to-back taus
- Energy calibration of tau hadronic decays:
 - select $Z \rightarrow T + T \rightarrow I + 2v + h + v$
 - visible $M_{\tau\tau}$ is used to calibrate hadronic tau energy scale (and hence E_{τ}^{miss} scale)

• $Z \rightarrow \tau + \tau$ will be also used to commission tau-trigger and for cross-section measurements

$H \rightarrow \tau + \tau$ (4)

- Two methods of evaluating the signal significance
 - event counting in the Higgs mass window
 - fitting M₁₁ spectrum
- Background obtained from data driven analysis
 - shape of $Z \rightarrow \tau \tau + jets$ estimated using clean $Z \rightarrow \mu \mu + jets$ sample, then replace μ (data) $\rightarrow \tau(MC)$
 - normalization of $Z \rightarrow \tau \tau$ from Z-peak in $M_{\tau\tau}$ spectrum /

signal: VBF H→TT irreducible background: Z → TT+jets reducible background: W+jets, t+tbar+jets Tomas Davidek (HS'09) Higgs Physics with ATLAS

$H \rightarrow \tau + \tau$ (5)

- Signal significance and exclusion limits
 - Il and Ih-modes only, hh-mode under study

$H \rightarrow Z + Z^{(*)} \rightarrow 4I (1)$

- So-called gold-plated channel
 - very clean signature (l=e or μ), but efficiency $\epsilon_{\mu} \sim \epsilon_{l}^{4}$
 - full kinematics reconstruction possible
- Issues:
 - single lepton efficiency & rejection against jets
 - lepton energy resolution

• Event display of a high- p_{T} $H \rightarrow ZZ \rightarrow ee\mu\mu$ decay after full ATLAS simulatiuon & reconstruction (M_{μ} =130 GeV). Four leptons and recoiling jet (E_{T} =135 GeV) are displayed

$H \rightarrow Z + Z^{(*)} \rightarrow 4I$ (2)

- Electron identification criteria
 - loose
 - small hadronic leakage (low ratio E_T^{had}/E_T^{em})
 - EM shower shape measured in
 2nd radial EM calo compartment
 - medium
 - EM shower shape measured in 1st radial EM calo compartment
 - loose associated track quality
 - tight
 - isolation (high E_{τ} fraction in cone ΔR =0.2)
 - tight associated track quality,
 tight cluster-track position, ratio E/p

$H \rightarrow Z + Z^{(*)} \rightarrow 4I$ (3)

- Analysis cuts:
 - two opposite-charged leptons p_T
 > 20 GeV, |n|<2.5
 - other two opposite-charged leptons $p_{T} > 7 \text{ GeV}$, |n| < 2.5
 - electrons of "medium" (M_H<200
 GeV) or "loose" (M_H>200 GeV)
 quality
 - combined reconstructed muons (ID+MS)
 - at least one reconstructed Z (M_z constraint)
 - mass window around the Higgs peak

- Main background from ZZ, Zbb, tt; also Z+jet
- Extra cuts needed to further reduce the background:
 - lepton isolation (ID and calo)
 - impact parameter significance

(leptons from Zbb, tt originate most likely from displaced vertices, example shown for muons)

Tomas Davidek (HS'09)

$H \rightarrow Z + Z^{(*)} \rightarrow 4I (4)$

• Signal and background (M_{μ} = 130 GeV)

 Pile-up and cavern background lower the signal efficiency by ~10% (M_u= 130 GeV)

Total expected $H \rightarrow Z + Z^{(*)} \rightarrow 4I$ signal significance and exclusion limits

20/38

$H \rightarrow W + W^{(*)} \rightarrow 2I + 2v (1)$

- Main background from WW,tt, W+jets, Z→TT
- Event preselection:
 - 2 isolated high- p_{T} leptons and E_{T}^{miss} > 30 GeV
 - no jet (a) or 2 forward jets (b)
 - jet veto in central region, b-jet veto
- Higgs mass cannot be reco'ed, use transverse mass instead

$$M_T^2 = (E_T^{ll} + E_T^{miss})^2 - (\vec{p}_T^{ll} + \vec{p}_T^{miss})^2$$

- (a) H+Ojet (gg fusion)
- cuts on angular correlations (I-I) and p_T^{WW} to reduce QCD WW
 Tomas Davidek (HS'09)
 Higgs Physics with ATLAS

- (b) H+2jets (VBF)
 - neural net used for further event selection

$H \rightarrow W + W^{(*)} \rightarrow 2I + 2v (2)$

• This decay mode important especially for $2M_w < M_H < 2M_z$ (where other modes are suppressed), but high significance for broader range

 So far consider only eµvv in the final state, eevv and µµvv still being studied

Summary on SM Higgs boson searches

• Discovery:

• Exclusion limits:

23/38

MSSM Higgs bosons

- Minimal Supersymmetric Standard Model contains 2 Higgs doublets
 → 3 neutral Higgs bosons (CP-even h/H, CP-odd A), 2 charged (H[±])
- Several MSSM scenarios explored (non-mixing, M_h-max, gluophobic, small-a), Higgs sector usually described with 2 parameters: M_A, tanβ
- Higgs production modes:
 - neutral (φ=h/H/A) direct vs. associated b-quark production

• charged - light $(M_{H} < M_{\uparrow})$ vs. heavy $(M_{H} > M_{\uparrow})$

$h/H/A \rightarrow T+T \rightarrow 2I + 4v$ (1)

- Note: couplings to 3rd family fermions enhanced in MSSM
- Mode investigated for Higgs mass between 110 and 450 GeV, shown for M_h-max scenario
- Event selection:
 - two opposite-charged leptons, isolation around μ-track
 - p_{T}^{miss} > 20 GeV (ee/µµ), 15 GeV (eµ)
 - at least 1 b-tagged jet (b-quark associated production), <3 jets and M₁₁ < M₂ to suppress bckg

- Higgs mass reco'ed with collinear approximation ($\Delta \varphi_{\parallel} < 3$)
 - resolution improves with $p_{T}^{h/H/A}$

- Background sources
 - $Z \rightarrow \tau + \tau$, normalization & shape obtained from data
 - W+jets, t+tbar+jets

$h/H/A \rightarrow T+T \rightarrow 2I + 4v$ (2)

- Systematics uncertainties (energy & momentum resolutions for $e/\mu/$ $\gamma/jet)$ are conservative, for non-optimal detector peformance

$h/H/A \rightarrow \mu + \mu$

- Coupling suppressed wrt T+T mode
- Clean signature and full M_{μ} reco • allows for better mass determination

The two samples are uncorrelated, they are combined for the discovery and exclusion plots

Tomas Davidek (HS'09)

Higgs Physics with ATLAS

450

Charged MSSM Higgs boson searches

- Light H^{\pm} ($M_{H} < M_{\uparrow}$)
 - $H^{\pm} \rightarrow \tau^{\pm} + v$, final states explored:
 - $tt \rightarrow bH^{\pm}bW \rightarrow bT^{\pm}(had)vbqq$
 - tt→ bH[±]bW→bT[±](had)vblv
 - tt→ bH[±]bW→bT[±](lep)vbqq
 - $tt \rightarrow bH^{\pm}bW \rightarrow bT^{\pm}(lep)vblv$ (under study)
 - $H^{\pm} \rightarrow c+s$ (under study)

- Heavy H^{\pm} ($M_{H} > M_{\uparrow}$)
 - $H^{\pm} \rightarrow T^{\pm}+V$
 - $t[b]H^{t} \rightarrow bqq[b]T^{t}(had)v$
 - $H^{\pm} \rightarrow \pm b$
 - t[b]H[±] → bW[b]bWb → blv[b]bqqb
- Discovery and exclusion limits (M_h-max scenario)

Higgs Physics with ATLAS

Uncovered region for medium tanß - exclusion possible at least for light H[±]

Higgs boson properties

- Suppose Higgs-like particle was discovered → focus turns to its properties
- Briefly look at some of them:
 - spin, CP
 - couplings
- If only 1 Higgs boson is discovered, is it SM Higgs or MSSM one?

Spin & CP (1)

- Observation of $H \rightarrow \gamma + \gamma$ rules out S(H)=1
- Spin assumptions used e.g. in SM Higgs search H→ W+W^(*)→ 2l+2v
- $H \rightarrow Z + Z^{(*)} \rightarrow 4I$
 - lower Higgs mass spin sensitive to M_{*} (invariant mass of leptons from Z*)
 - $M_{H} > 2M_{Z}$ look at distributions in φ (angle between decay planes) and Θ (polar angle in Z rest frame)
 - $F(\varphi) = 1 + \alpha \cdot \cos(\varphi) + \beta \cdot \cos(2\varphi)$
 - $G(\Theta) = T \cdot (1 + \cos^2(\Theta)) + L \cdot \sin^2(\Theta)$
 - L, T stand for longitudinal and transverse Z polarization

hep-ph/07080458

Tomas Davidek (HS'09)

Spin & CP (2)

parameters a, β, R= (L-T)/(L+T) distinguish between several spin & CP

Tomas Davidek (HS'09)

200

250

300

Higgs Physics with ATLAS

m_H [GeV]

-0.1

-0.05

0.1

α

0.05

0

Couplings (1)

- Measure the rates in various search channels and then try to extract widths and couplings
 - some Higgs decay modes undetectable, others difficult ($H \rightarrow bb$)
 - relative uncertainties 10 100% depending on the channel
 - example for SM Higgs:

ATL-PHYS-2003-030

Couplings (2)

- Evaluate ratios of partial widths:
 - uncertainties reduce in the ratio
 - use Γ_w for normalization (measured most accurately)
- Extract the absolute couplings:
 - need few more theoretical assumptions
 - fix ratio $\Gamma_{\rm b}/\Gamma_{\rm r}$, or
 - assume $\Gamma_{w,z} \leq \Gamma_{w,z}^{SM}$
 - allow for undetectable decays (free parameter $\Gamma_{invisible}$), make global fit

Phys.Rev. D 70 (2004) 113009

SM vs non SM Higgs boson

- SM and MSSM predict different couplings for the Higgs boson(s), exploit BR to fermions and vector bosons
 - $R \equiv BR(H \rightarrow T+T)/BR(H \rightarrow WW)$
 - $\Delta \equiv (R(MSSM) R(SM)) / \sigma(R)_{exp}$
- example for M_h-max scenario:
 - using VBF production only
 - integrated luminosity 300 fb⁻¹

Conclusions

- - studies still ongoing in some cases, especially dealing with background estimation from data
- Measurements of the final states requires good undestanding of the detector physics performance and reconstruction of photons, leptons, jets and missing $\rm E_{\tau}$
- Combining all investigated SM Higgs decay modes
 - 5 σ discovery possible with 10 fb⁻¹ for $M_{\mu} \ge 125 \text{ GeV}$
 - expect 95% CL exclusion for $M_{\mu} \ge 115$ GeV already with 2 fb⁻¹ (remember LEP limit 114.4 GeV)

Thanks to K. Assamagan, J. Qian, C. Potter, W. Murray and others for help.

Backup slides

Comparison 14 TeV vs. 10 TeV

- Higgs cross-section is reduced by a factor of ~2 @ 10 TeV
- Significance decreases by ~1.5
 - need ~2x higher integrated luminosity to reach the same significance as at 14 TeV

Other SM Higgs boson searches

- $H \rightarrow W + W^{(*)} \rightarrow Ivqq$
 - important for $M_{\mu} \ge 250 \text{ GeV}$
 - studied for VBF (H+2jets)
 - full invariant mass reconstruction possible

• W+4jets background needs to be measured with first data

- Associated production channels:
 - $ttH, H \rightarrow b+b$
 - $t \dagger H, H \rightarrow W + W^{(*)}$
 - WH, $H \rightarrow W + W^{(*)}$
 - WH, $H \rightarrow b+b$
 - $ZH, H \rightarrow b+b$