IOp Quark ralr proaucilon Cross-

awsection at LHC with ATLAS

Reconstructing top quark pairs is a big challenge for the reconstruction due to their complex final state. It involves jets, leptons and E_{T} miss. Presented here are commissioning analyses for $\sqrt{ } \mathbf{s}=10 \mathrm{TeV}$ that do not make use of b-tagging.

Single lepton

Branching ratio ~4/9

- 4 jets (2 b-jets)
- 1 lepton (e, μ)
- E_{T} miss (1 neutrino)

Top Pair Production
Alexander Doxiadis (adox@nikhef.nl)

Dilepton

Cut \& Count method

The hadronic topmass is reconstructed using the 3 jet invariant mass of the selected jets with the highest vector sum p_{T}. The cross section is then the number of observed events after selection minus the expected background events divided by the selection efficiency and the luminosity.

Selection Cuts:

- single high $-\mathrm{p}_{\mathrm{T}}$ lepton trigger
- exactly 1 isolated lepton(e, μ), $p_{T}>20 \mathrm{GeV}$
- $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}>20 \mathrm{GeV}$
- 4 jets $p_{T}>20 \mathrm{GeV}$
- 3 jets $p_{T}>40 \mathrm{GeV}$
- $\left|M_{W}-M_{i j}\right|<10 \mathrm{GeV}$

The main background for this analysis is W+Jets, which can be determined from data with $\mathbf{Z}+J$ Jets events using the fact that the \mathbf{W} to \mathbf{Z} ratio is predicted with small uncertainties. After selection S/B ~ 2. Largest expected systematic uncertainty in the cross section estimate, $\sim 10 \%$, comes from the uncertainty in the Jet Energy Scale (JES).

Likelihood fit

The Likelihood method uses the same events as selected by the Cut \& Count method. The $M_{i j i}$ distribution is modeled by a Gaussian (correctly reconstructed signal) on top of a Chebychev polynomial (background \& incorrect combination of jets). The cross section is then the number of events in the peak divided by the efficiency and the luminosity.
$\sigma=\frac{N_{\text {pak }}}{\mathscr{S} \times \varepsilon}$

Largest expected systematic, $\sim 13 \%$, comes from ${ }^{M_{I}(G e)}$ the uncertainty in the amount of Initial and Final State Radiation (ISR \& FSR).

Expected Results (muon-channel) ${ }^{\text {a }}$

Conclusion

o Cut\&Count:

$$
\Delta \sigma / \sigma=3 \text { (stat) }{ }^{+12}{ }_{-15} \text { (syst) } \pm 22 \text { (lumi) } \%
$$

o Likelihood:
$\Delta \sigma / \sigma=15$ (stat) ${ }^{+6}{ }_{-15}$ (syst) ± 20 (lumi) $\%$ o Variant Cut\&Count:
$\Delta \sigma / \sigma=3$ (stat) ${ }^{+20}{ }_{-20}$ (syst) ± 23 (lumi) \%

- Variant Template:
$\Delta \sigma / \sigma=6$ (stat) ${ }^{+9}{ }_{-15}$ (syst) ± 20 (lumi) $\%$

Branching ratio ~ $1 / 9$ a

\author{

- 2 b-jets
 - 2 leptons (ee, e $\mu, \mu \mu$)
 - $E_{T}{ }^{\text {miss }}$ (2 neutrinos)
}

Cuts

> The main backgrounds to the dilepton channel are events with real leptons and fake E_{T} miss and events with fake leptons. The selection cuts remove most of the Drell Yan, any remaining contribution will be estimated using data-driven methods. Fake leptons from jets will also be estimated using data-driven techniques.

> Selection Cuts:
> - single high- p_{T} lepton trigger (OR of muon and electron trigger in ep-channel)
> - 2 oppositely charged isolated leptons (e, μ) $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$
> - $\left|M_{z}-M_{l+1}\right|>5 \mathrm{GeV}(\mathrm{ee}, \mu \mu)$
> - $E_{T}{ }^{\text {miss }}>35 \mathrm{GeV}(e e, \mu \mu)$ $E_{T^{\text {miss }}}>20 \mathrm{GeV}(\mathrm{e} \mu)$ - 2 jets $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$

> After selection
> S/B~4-6 and the largest background is $\mathbf{Z}+\mathrm{Jets}(\mu \mu)$ and fake leptons from
> jets (ee,e $)$).

Cross section estimate

The method is a simple Cut \& Count, where the resulting cross section will be extracted using a maximum likelihood estimate of the familiar formula:

$$
\hat{\Delta}_{\text {sig }}=\frac{N^{\text {obs }}-\sum_{k \in \mid b l g\}} N_{k}^{\exp }}{\mathscr{Q} \Delta_{j, \text { sig }}}
$$

All the uncertainties are combined through a likelihood function for each channel. They were fit and the final sensitivity was obtained from a profile likelihood ratio.

For ee,ep-channel the largest expected systematic uncertainty, $\sim 6-10 \%$, is coming from the uncertainty in the fake rate.
In the $\mu \mu$-channel it's the muon efficiency and the uncertainty in the signal generator that give rise to the largest systematic uncertainty: $\sim 5 \%$ each.

The biggest systematic uncertainty, $\sim 12 \%$, comes from the JES.

Expected Results

o ee-channel:

$$
\Delta \sigma / \sigma=8(\text { stat }){ }^{+14}{ }_{-13}(\text { syst }){ }^{+26}{ }_{-17}(\text { lumi }) \%
$$

o un-channel:

$\Delta \sigma / \sigma=6$ (stat) ${ }^{+10}{ }_{-9}$ (syst) ${ }^{+26}{ }_{-17}$ (lumi) $\%$
o eu-channel:
$\Delta \sigma / \sigma=4$ (stat) ${ }^{+10}{ }_{-9}$ (syst) ${ }^{+26}{ }_{-17}$ (lumi) $\%$
o combined:
$\Delta \sigma / \sigma=3$ (stat) ${ }^{+10}{ }_{-9}$ (syst) ${ }^{+26}{ }_{-17}$ (lumi) $\%$

It has been shown that with a luminosity of $200 \mathrm{pb}^{-1}$ it is possible to measure the top quark pair production cross section with complementary analyses without making use of optimal performance of the detector, both in the single lepton and dilepton channel.
Understanding top quark production is a stepping stone towards understanding the ATLAS detector, the standard model and finally new physics.

