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Abstract

The aim of this paper is to provide perceptual scientists with a quantitative framework

for modeling a variety of common perceptual behaviors, and to unify various perceptual in-

ference tasks by exposing their common computational underpinnings. This paper derives a

model Bayesian observer for perceptual contexts with linear Gaussian generative processes.

I demonstrate the relationship between four fundamental perceptual situations by expressing

their corresponding posterior distributions as consequences of the model's predictions under

their respective assumptions.

1 Introduction

Perception is the process of inferring scene properties that cannot be directly observed from the
observable sensory evidence they generate. There is substantial regularity in the structure of scenes
in the world, and sensations are generated by a consistent, yet noisy, process; modeling perception
as Bayesian inference is attractive because it o�ers principled, normative behavioral predictions
for perceptual tasks in this type of structured, uncertain world. Scientists compare these predic-
tions with experimental measurements to reveal an organism's internal computational procedures
responsible for its perceptually-guided behaviors.

However formulating and evaluating Bayesian perception models can be daunting due to their
mathematical complexities and algorithmic subtleties. This report aims to increase perception
scientists' access to Bayesian modeling by presenting a powerful class of models (linear Gaussian)
that naturally encompass an important range of perceptual phenomena. These models are easy to
construct, and can make exact, interpretable predictions.

Linear Gaussian models apply to perceptual situations in which the scene properties are apri-
ori Gaussian-distributed, and generate sensory evidence by a linear process corrupted by Gaussian
noise. They can also apply to log-Gaussian prior and noise distributions, with log-linear (multi-
plicative/divisive) sensory generative processes, and may be extended to more complicated genera-
tive processes for which Taylor series expansions provide good approximations. In practice, linear
Gaussian models can be applied to many common sensation/perception situations, like spatial
localization, temporal perception, size, lightness, and color constancy, and many others.

1



Section 2 presents the abstract linear Gaussian model and a deriviation of the posterior dis-
tribution over unobserved variables given observed variables. Section 3 tailors the framework to
modeling four qualitatively-distinct, elementary perceptual situations [10]. Section 4 brie�y outlines
a decision-making framework compatible with the perceptual inference framework.

2 Linear Gaussian Model

This section presents the linear Gaussian model, and derives the posterior inference formulae. The
derivation is based on general linear algebra rules, properties of Gaussians, and is examined in
greater depth by [13].

2.1 Derivation of posterior for linear Gaussian model

Consider latent random vector, L, that generates observable data vector, D, as:

D = GL+ Ω

where G is a matrix that represents the deterministic component of the observation transform, Ω
represents zero-mean (0), additive observation noise, and N (X;Y,Z) is a normal distribution over
X, with mean vector Y , and covariance matrix Z. Assume L and Ω have normal prior distributions,

Pr(L) = N (L;µL,ΣL)

Pr(Ω) = N (Ω; 0,ΣΩ)

By rules for linear transformations between normal random variables, the conditional and marginal
likelihoods of the data are,

Pr(D | L) = N (D;GL,ΣΩ)

Pr(D) = N
(
D;GµL, GΣLG

T + ΣΩ

)
Reformulating the conditional likelihood as an unnormalized distribution over L gives,

Pr(D | L) = c · N
(
L;
(
GTΣ−1

Ω G
)−1

GTΣ−1
Ω D,

(
GTΣ−1

Ω G
)−1
)

where c is a constant.
The joint distribution over L and D can be factored:

Pr(L,D) = Pr(D | L)Pr(L)

and Bayes' theorem de�nes the posterior:

Pr(L | D) =
Pr(D | L)Pr(L)

Pr(D)

=
c · k

Pr(D)
N (L;µpost,Σpost)
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where k and Pr(D) are constants (µpost and Σpost are de�ned next).
Because Pr(L | D) and N (L;µpost,Σpost) are both densities, constant c·k

Pr(D) must equal 1. So,

Pr(L | D) = N (L;µpost,Σpost)

Σpost =
(
GTΣ−1

Ω G+ Σ−1
L

)−1

µpost = Σpost
(
GTΣ−1

Ω D + Σ−1
L µL

)
=

(
GTΣ−1

Ω G+ Σ−1
L

)−1
GTΣ−1

Ω D +
(
GTΣ−1

Ω G+ Σ−1
L

)−1
Σ−1
L µL

If the posterior over only a subset of the elements of L is desired, because the posterior is normal
the undesired latent elements can be easily marginalized out by deleting their corresponding rows
(and columns) from µpost and Σpost.

3 Application to perceptual inference

This section considers several elementary perceptual situations, characterized by Kersten et al.
(2004) [10] (Figure 4), by de�ning their generative processes under linear Gaussian assumptions,
and their corresponding posterior inference rules. In each case, there are between 1 and 2 latent and
data elements, but this can be extended arbitrarily by adding elements to the L and D vectors, and
their respective parameter vectors/matrices. After each application, several references are provided
in which the authors explicitly or implicitly use some form of the model.

3.1 Basic Bayes

Consider an observer who wishes to infer latent scene property L = l from observed sensory data
D = d, with G = g, Ω = ω, µL = µl, ΣL = σ2

l , and ΣΩ = σ2
ω.

The posterior over L given D is:

Pr(L | D) = N (L;µpost,Σpost)

Σpost =

(
g2

σ2
ω

+
1

σ2
l

)−1

=
σ2
ωσ

2
l

g2σ2
l + σ2

ω

µpost =

(
g2

σ2
ω

+
1

σ2
l

)−1(
dg

σ2
ω

+
µl
σ2
l

)
=
dgσ2

l + µlσ
2
ω

g2σ2
l + σ2

ω

This model was used by [19] for modeling motion perception.
Using the common assumptions that g = 1 and σ2

l →∞ results in a simple perceptual inference
rule,

Pr(L | D) = N (L;µpost,Σpost) = N
(
l; d, σ2

ω

)
This special case has been used implicitly by too many authors to name, in a very broad number

of perception studies.
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3.2 Cue combination

Consider an observer who wishes to infer latent scene property L = l from two pieces of observed sen-

sory data D =

[
d1

d2

]
, with G =

[
g1

g2

]
, Ω =

[
ω1

ω2

]
, µL = µl, ΣL = σ2

l , and ΣΩ =

[
σ2
ω1

0
0 σ2

ω2

]
.

The posterior over L given D is:

Pr(L | D) = N (L;µpost,Σpost)

Σpost =

(
g2

1

σ2
ω1

+
g2

2

σ2
ω2

+
1

σ2
l

)−1

=
σ2
ω1
σ2
ω2
σ2
l

g2
1σ

2
ω2
σ2
l + g2

2σ
2
ω1
σ2
l + σ2

ω1
σ2
ω2

µpost =

(
g2

1

σ2
ω1

+
g2

2

σ2
ω2

+
1

σ2
l

)−1(
d1g

2
1

σ2
ω1

+
d2g

2
2

σ2
ω2

+
µl
σ2
l

)
=

d1g
2
1σ

2
ω2
σ2
l

g2
1σ

2
ω2
σ2
l + g2

2σ
2
ω1
σ2
l + σ2

ω1
σ2
ω2

+
d2g

2
2σ

2
ω1
σ2
l

g2
1σ

2
ω2
σ2
l + g2

2σ
2
ω1
σ2
l + σ2

ω1
σ2
ω2

+
µlσ

2
ω1
σ2
ω2

g2
1σ

2
ω2
σ2
l + g2

2σ
2
ω1
σ2
l + σ2

ω1
σ2
ω2

Using the common assumptions that g1 = g2 = 1 and σ2
l → ∞ results in a simple perceptual

inference rule,

Pr(L | D) = N (L;µpost,Σpost) = N
(
l;
d1σ

2
ω2

+ d2σ
2
ω1

σ2
ω1

+ σ2
ω2

,
σ2
ω1
σ2
ω2

σ2
ω1

+ σ2
ω2

)
This model was used by [9, 20, 7, 4, 2, 12, 8] and many more for modeling human cue integration.

3.3 Discounting

Consider an observer who wishes to infer latent scene properties L =

[
l1
l2

]
, from observed sensory

data D = d, with G =
[
g1 g2

]
, Ω = ω, µL =

[
µl1
µl2

]
, ΣL =

[
σ2
l1

0
0 σ2

l2

]
, and ΣΩ = σ2

ω.

The posterior over L given D is:

Pr(L | D) = N (L;µpost,Σpost)

Σpost =

 g21
σ2

ω
+ 1

σ2
l1

g1g2
σ2

ω

g1g2
σ2

ω

g22
σ2

ω
+ 1

σ2
l2

−1

µpost =

 g21
σ2

ω
+ 1

σ2
l1

g1g2
σ2

ω

g1g2
σ2

ω

g22
σ2

ω
+ 1

σ2
l2

−1  dg1
σ2

ω
+

µl1

σ2
l1

dg2
σ2

ω
+

µl2

σ2
l2


Using the common assumptions that g1 = 1 and σ2

l1
→∞,

Pr(L | D) = N (L;µpost,Σpost) = N
(
L;

[
d− µl2g2

µl2

]
,

[
g2

2σ
2
l2

+ σ2
ω −g2σ

2
l2

−g2σ
2
l2

σ2
l2

])
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If only l1 is relevant to the observer (i.e. l2 is a �nuisance� variable), then,

Pr(l1 | D) = N (l1;µpost,Σpost) = N
(
l1; d− µl2g2, g

2
2σ

2
l2 + σ2

ω

)
This model was implicitly used by [17, 16, 1], and many more, and can explain a variety of

human perceptual biases.

3.4 Explaining away

Consider an observer who wishes to infer latent scene properties L =

[
l1
l2

]
, from observed sensory

data D =

[
d1

d2

]
, with G =

[
g1,1 g1,2

0 g2,2

]
, Ω =

[
ω1

ω2

]
, µL =

[
µl1
µl2

]
, ΣL =

[
σ2
l1

0
0 σ2

l2

]
, and

ΣΩ =

[
σ2
ω1

0
0 σ2

ω2

]
.

The posterior over L given D is:

Pr(L | D) = N (L;µpost,Σpost)

Σpost =

 g21,1

σ2
ω1

+ 1
σ2

l1

g1,1g1,2

σ2
ω1

g1,1g1,2

σ2
ω1

g21,2

σ2
ω1

+
g22,2

σ2
ω2

+ 1
σ2

l2

−1

µpost =

 g21,1

σ2
ω1

+ 1
σ2

l1

g1,1g1,2

σ2
ω1

g1,1g1,2

σ2
ω1

g21,2

σ2
ω1

+
g22,2

σ2
ω2

+ 1
σ2

l2

−1  d1g1,1

σ2
ω1

+
µl1

σ2
l1

d1g1,2

σ2
ω1

+
d2g2,2

σ2
ω2

+
µl2

σ2
l2


Using the common assumptions that g1,1 = g2,2 = 1, σ2

l1
→∞, and σ2

l2
→∞,

Pr(L | D) = N (L;µpost,Σpost) = N
(
L;

[
d1 − d2g1,2

d2

]
,

[
g2

1,2σ
2
ω2

+ σ2
ω1
−g1,2σ

2
ω2

−g1,2σ
2
ω2

σ2
ω2

])
If only l1 is relevant to the observer (i.e. l2 is a �nuisance� variable), then,

Pr(l1 | D) = N (l1;µpost,Σpost) = N
(
l1; d1 − d2g1,2, g

2
1,2σ

2
ω2

+ σ2
ω1

)
A slightly more general assumption is that g1,1 = g2,2 = 1, σ2

l1
→∞ (σ2

l2
remains �nite),

Pr(L | D) = N (L;µpost,Σpost)

Σpost =
1

σ2
l2

+ σ2
ω2

[
g2

1,2σ
2
l2
σ2
ω2

+ σ2
l2
σ2
ω1

+ σ2
ω1
σ2
ω2
−g1,2σ

2
l2
σ2
ω2

−g1,2σ
2
l2
σ2
ω2

σ2
l2
σ2
ω2

]

µpost =

 d1 −
d2g1,2σ

2
l2

σ2
l2

+σ2
ω2

− µl2
g1,2σ

2
ω2

σ2
l2

+σ2
ω2

d2g1,2σ
2
l2

σ2
l2

+σ2
ω2

+
µl2

g1,2σ
2
ω2

σ2
l2

+σ2
ω2


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If only l1 is relevant to the observer (i.e. l2 is a �nuisance� variable), then,

Pr(l1 | D) = N (l1;µpost,Σpost) = N

(
l1; d1 −

d2g1,2σ
2
l2

+ µl2g1,2σ
2
ω2

σ2
l2

+ σ2
ω2

,
g2

1,2σ
2
l2
σ2
ω2

+ σ2
l2
σ2
ω1

+ σ2
ω1
σ2
ω2

σ2
l2

+ σ2
ω2

)

This model was used by [5, 3, 6, 11], and can be applied to the broad class of perceptual
constancy phenomena.

4 Perceptual decision-making

This section brie�y outlines Bayesian decision theory, and how to apply the inference rules from
Section 3 to make perceptual judgments. For a detailed treatment of Bayesian perceptual decision-
making, see [14, 15].

4.1 Bayesian decision theory

Bayesian decision theory (BDT) prescribes optimal decision-making based on inferred posterior
distributions over the state of the world. BDT de�nes a �risk� function, R(α,D), that represents
the expected reward (negative loss) for di�erent combinations of data D and actions α. The
risk function is an expectation over the observer's rewards, characterized by the reward (negative
loss) function Λ(α,L), under the information inferred about the environment, characterized by the
posterior Pr(L | D),

R(α,D) =

ˆ
L

Λ(α,L)Pr(L | D)dL

Optimal agents select actions with maximal expected reward by computing α̃ = arg maxα R(α,D).
Sometimes random components, ν, are included to characterize the e�ects of motor noise, decision
noise, etc., α̂ = α̃+ ν.

In normal psychophysical experiments, participants are typically asked to respond with an
indication of the L state, so the space of α is either equivalent to the L space, or some straightforward
function of it, f(·). In some cases they are assumed to place low, identical reward across all incorrect
answers, and greater, identical reward across all correct answers:

Λ(α,L) =

{
b ;α = f(L̄)

c ;α 6= f(L̄)

where L̄ is the true latent world state and b� c.
For standard discrimination tasks, f(·) may be:

f(L) =

{
0 ; lr ≤ θ
1 ; lr > θ

where lr is an element of the latent state relevant to the task and θ is some threshold value (e.g. lr
represents absence/presence, 0/1, of an auditory tone and θ is 0).
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For tasks that ask participants to produce a response, α, on some continuous axis, i.e. pointing,
grasping, etc., f(·) may de�ne a range, [−θ, θ], that constitutes �success�:

f(L) =

{
1 ;−θ ≤ lr ≤ θ
0 ; otherwise

In work from the cognitive psychology domain and more recent perceptual studies [21], it has
been suggested that humans sample from their posterior distributions, rather than computing de-
terministic functions of the distribution, to produce responses. Also, in some cases the perceptual
inference process may appear to depend on the task [18].

5 Conclusion

The bene�ts of a Bayesian framework for modeling perceptually-guided behaviors is that it explains
these behaviors as resulting from a principled inferential process, based on sensory input and the
observer's perceptual system's internal knowledge and beliefs, which is used rationally to acquire
reward and avoid penalty. The linear Gaussian model and its example applications provide an
accessible and useful model that can be used to model a broad set of perceptual behaviors. It may
help explain various cue integration, bias, constancy phenomena.

The problem of using this framework to design an experiment and analyze the resultant data is
beyond the scope of this article, but is an important element for leveraging this framework on typ-
ical perceptual science problems. In brief, by treating the experimental stimuli as L (Section 2.1),
and the recorded participant responses as α̂ (Section 4.1), the model parameters, (G,µL,ΣL,ΣΩν),
which encode the experimenter's hypotheses and assumptions about the observer's perceptual rea-
soning, can be estimated or inferred using standard statistical methods.

Acknowledgements

Paul Schrater, Frank Jaekel, and Dan Kersten provided helpful direction and criticism. Funding:
NIH Grant (NRSA) Number F32EY019228-02, and a UMN Doctoral Dissertation Fellowship.

References

[1] W.J. Adams, E.W. Graf, and M.O. Ernst. Experience can change the'light-from-above'prior.
Nature Neuroscience, 7(10):1057�1058, 2004.

[2] D. Alais and D. Burr. The ventriloquist e�ect results from near-optimal bimodal integration.
Current Biology, 14(3):257�262, 2004.

[3] P.W. Battaglia, M. Di Luca, M.O. Ernst, P.R. Schrater, T. Machulla, and D. Kersten.
Within-and Cross-Modal Distance Information Disambiguate Visual Size-Change Perception.
6(3):e1000697, 2010.

[4] P.W. Battaglia, R.A. Jacobs, and R.N. Aslin. Bayesian integration of visual and auditory
signals for spatial localization. Journal of the Optical Society of America A, 20(7):1391�1397,
2003.

7



[5] P.W. Battaglia, P.R. Schrater, and D.J. Kersten. Auxiliary object knowledge in�uences
visually-guided interception behavior. In Proceedings of the 2nd symposium on Applied percep-
tion in graphics and visualization, volume 95, pages 145�152. ACM, 2005.

[6] MG Bloj, D. Kersten, and AC Hurlbert. Perception of three-dimensional shape in�uences
colour perception through mutual illumination. Nature, 402(6764):877�879, 1999.

[7] M.O. Ernst and M.S. Banks. Humans integrate visual and haptic information in a statistically
optimal fashion. Nature, 415(6870):429�433, 2002.

[8] J.M. Hillis, S.J. Watt, M.S. Landy, and M.S. Banks. Slant from texture and disparity cues:
Optimal cue combination. Journal of Vision, 4(12), 2004.

[9] R.A. Jacobs. Optimal integration of texture and motion cues to depth. Vision Research,
39(21):3621�3629, 1999.

[10] D. Kersten, P. Mamassian, and A. Yuille. Object perception as Bayesian inference. Annu.
Rev. Psychol, 55:271�304, 2004.

[11] D.C. Knill and D. Kersten. Apparent surface curvature a�ects lightness perception. Nature,
351(6323):228�230, 1991.

[12] D.C. Knill and J.A. Saunders. Do humans optimally integrate stereo and texture information
for judgments of surface slant? Vision Research, 43(24):2539�2558, 2003.

[13] DV Lindley and AFM Smith. Bayes estimates for the linear model. Journal of the Royal
Statistical Society. Series B (Methodological), pages 1�41, 1972.

[14] L.T. Maloney. Statistical decision theory and biological vision. Perception and the physical
world: Psychological and philosophical issues in perception, pages 145�189, 2002.

[15] L.T. Maloney and P. Mamassian. Bayesian decision theory as a model of human visual per-
ception: Testing Bayesian transfer. Visual neuroscience, 26(01):147�155, 2009.

[16] P. Mamassian and R. Goutcher. Prior knowledge on the illumination position. Cognition,
81(1):B1�B9, 2001.

[17] P. Mamassian and M.S. Landy. Interaction of visual prior constraints. Vision Research,
41(20):2653�2668, 2001.

[18] P.R. Schrater and D. Kersten. How optimal depth cue integration depends on the task. Inter-
national Journal of Computer Vision, 40(1):71�89, 2000.

[19] A.A. Stocker and E.P. Simoncelli. Noise characteristics and prior expectations in human visual
speed perception. Nature Neuroscience, 9(4):578�585, 2006.

[20] R.J. van Beers, A.C. Sittig, and J.J. Gon. Integration of proprioceptive and visual position-
information: An experimentally supported model. Journal of Neurophysiology, 81(3):1355,
1999.

[21] E. Vul, N.D. Goodman, T.L. Gri�ths, and J.B. Tenenbaum. One and done? Optimal decisions
from very few samples. In Proceedings of the 31st Annual Meeting of the Cognitive Science
Society, Amseterdam, the Netherlands, 2009.

8




