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Abstract. The CMS Submission Infrastructure Global Pool, built on Glidein-
WMS and HTCondor, is a worldwide distributed dynamic pool responsible for
the allocation of resources for all CMS computing workloads. Matching the
continuously increasing demand for computing resources by CMS requires the
anticipated assessment of its scalability limitations. In addition, the Global Pool
must be able to expand in a more heterogeneous environment, in terms of re-
source provisioning (combining Grid, HPC and Cloud) and workload submis-
sion. A dedicated testbed has been set up to simulate such conditions with
the purpose of finding potential bottlenecks in the software or its configuration.
This report provides a thorough description of the various scalability dimen-
sions in size and complexity that are being explored for the future Global Pool,
along with the analysis and solutions to the limitations proposed with the sup-
port of the GlideinWMS and HTCondor developer teams.

1 Introduction

The CMS Global Pool is a dynamically sized and centrally managed HTCondor [1] pool, built
by the submission of GlideinWMS [2] pilot jobs (glideins) to the Computing Elements of the
multiple resource providers supporting CMS distributed across the Worldwide LHC Comput-
ing Grid [3] (WLCG), and extended to additional resources [4] as well, such as opportunistic
(e.g. grid sites not pledging CPU to CMS), Cloud, and allocations on HPC. The Global Pool,
making use of many of its HTCondor native features, such as partitionable slots, accounting
groups and priority handling, has become an essential tool for the successful operations of
CMS Computing.

As a unified pool [5], it joins geographically distributed resources together under control
of a single HTCondor Central Manager (CM) and also provides a single entry point for tasks
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with diverse resource requests (e.g. single-core and multi-core jobs [6], jobs with higher-than-
standard memory requirements, etc). It allows CMS policies such as workload prioritization
and fair-shares (e.g. production workflows vs. analysis tasks) to be centrally managed. The
Global Pool has also demonstrated flexibility to integrate non-pledged resources (e.g. oppor-
tunistic usage of the CMS High Level Trigger farm [7]). Finally, all of this is achieved while
ensuring a high level of efficiency in the utilization of the allocated CPUs [8].

Considering how successful such an infrastructure and its operation has been for CMS
during the LHC Run 2, and looking onwards to the coming years, the CMS Submission
Infrastructure (SI) team has been performing tests in order to explore the potential limitations
of our current model when increasing in size and complexity, which will be described in the
following sections.

2 Motivation for scale testing

The first driving motivation for the scale test activity is the steady increase in the size of the
Global Pool over the past several years, which is expected to continue. As the CMS CPU
needs have grown, more resources have been deployed by the grid sites, a trend shown in
Fig. 1, covering the last two years. The major component of the pool comes from multi-core
pilots running at both Tier-1 and Tier-2 CMS grid sites [9], while a remainder of single-core
pilots persists on smaller Tier-2 and Tier-3 sites. The size of the Global Pool is determined
both by resource deployments (which tend to happen later in the calendar year, as sites deploy
their pledged CPU), as well as resource requests (e.g. relatively low usage during 2016
and 2017 summer months is observed in Fig. 1). In addition to increasing pledged CPU
capacity, during the LHC Run 2 the CMS HLT farm was commissioned as opportunistic
resource (with peaks of 60k cores in 2018), which, together with additional HPC, Cloud and
grid opportunistic resources, have pushed the size of the pool to routinely reach 250k cores
nowadays. Extrapolating historical usage trends, by LHC Run 3 the CMS Global Pool must
be able to manage stably and efficiently 0.5M CPU cores, about a factor 2 higher than the
current size.

Figure 1. Global pool size in number of CPU cores over the last 2 years composed of multi-core pilots
at Tier-1 and Tier-2 CMS grid sites (in dark and light blue respectively), plus single-core pilots running
at smaller Tier-2 and Tier-3 sites (green)

Secondly, the need to evaluate the limitations of the Global Pool model comes from its
already increasing complexity. In the classical pilot-based pool, in use for most of the Run 2
years, upon detecting workload in a job submit node (schedd) queue, the GlideinWMS Front-
End (FE) triggers the submission of multi-core pilots from the factories to the matching grid
or cloud resources [2]. Each pilot creates a partitionable execute slot (startd), which registers
at the Global Pool collector and can be assigned workload by the negotiator (both daemons
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running in the CM). In the new extended model, as displayed in Fig. 2, new methods for
job submission and resource allocation have been incorporated, such as CMS Connect [10]
and DODAS [11]. The interconnection of multiple federated pools (referred in HTCondor
terms as "pool flocking") has also been now enabled. All these elements provide additional
flexibility to the infrastructure.

Figure 2. Extended schema of the CMS Global Pool, as described in the main text

One key element in the last part of the LHC Run 2 has been the redeployment of the CMS
Tier-0 resources from dedicated OpenStack VMs at CERN into slots in a Tier-0 dedicated
farm at CERN, shared with other LHC VOs. CMS decided to join all CERN HTCondor
resources, up to now split into partitions dedicated to Tier-0 and Tier-2 tasks exclusively, into
a single CERN pool (as shown in Fig. 3). This greatly increases the flexibility with which
CMS can utilize those resources, as tasks priorities and shares are subsequently fully under
CMS control. This new CERN pool is federated to the Global Pool, resulting in a more
complex picture from the point of view of the schedds, which now have to run negotiation
cycles with multiple negotiators over the two pools.

Figure 3. The new CMS CERN pool, deployed in 2018, reaching scales of about 50k CPU cores

In addition, the emergence of the HEPCloud [12] in the USA, designed to combine grid,
cloud and HPC resources under local control (potentially to be followed by similar initiatives
appearing in Europe), signals that our infrastructure could well be evolving into a model of
multiple federated pools, with centralized HTCondor schedds. How many pools (negotiators)
can a schedd efficiently interact with before reaching the limits of its capabilities is not known
at this point. It is worth mentioning however that CMS is already using three negotiators in
the Global Pool plus another one for the CERN pool.
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Finally, looking onwards to the HL-LHC era (around 2025), it is expected that CMS needs
for processing power will grow by a factor of 20 compared to Run 2 needs [13], resulting in
increasing number of jobs and CPUs to manage. As much of this is expected not to be
provided by traditional grid sites, this growth will also be a driver of the model complexity,
as CMS computing will depend in increasingly higher proportions on resources coming from
HPC sites and cloud resource providers.

3 Scale testing of the Submission Infrastructure

The Global Pool resources are configured as partitionable slot startds allowing dynamic pro-
visioning of slots (CPU, Memory, Disk). Partitionable slots can become fragmented into
lower core count dynamic slots, with the degree of fragmentation oscillating according to the
composition of the workload mix. CMS workload is dominated by single-core and 8-core
jobs, although intermediate values are allowed, as multi-core jobs can be resized at match-
making stage. As a consequence, even for a pool of a total stable size, the number of dynamic
slots can greatly oscillate, driving the load on the collector and negotiator. Typical values,
illustrated in the 30-day period shown in Fig. 4, average at about 110k slots, with peaks at
150k when the pool is dominated by single-core requests.

Figure 4. Fragmentation of the pool into slots of diverse number of cores (top) and total corresponding
number of dynamic and static slots (bottom)

In previous studies, CMS and OSG teams studied the scalability and stability of a single
HTCondor pool [14, 15], identifying bottlenecks in the I/O between and within pool compo-
nents, the combinatorics at matchmaking and in the speed and memory usage of individual
components. Increasing the use of multi-core workflows will provide some headroom for
further growth, but "single-core storms" still may expose setup vulnerabilities. Therefore,
exploring the limitations of the number of dynamic slots in a single pool is still relevant to
study. We are also interested in the additional scalability challenges introduced by working
with federated HTCondor pools, including schedulers interacting with multiple negotiators.
An assessment of the maximum schedd job start, submission and completion rates is needed
in order to determine how to profit from continuously growing resources. Finally, we are
interested in the exploring the capabilities of the multi-threaded negotiator algorithm.
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HTCondor pool [14, 15], identifying bottlenecks in the I/O between and within pool compo-
nents, the combinatorics at matchmaking and in the speed and memory usage of individual
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in order to determine how to profit from continuously growing resources. Finally, we are
interested in the exploring the capabilities of the multi-threaded negotiator algorithm.

A testbed to run scaling tests has been deployed at CERN, including a GlideinWMS
Front-End (24 cores, 46 GB, same as production, running with glideinWMS 3.2.21 and HT-
Condor 8.6.10), plus a dedicated factory. The test pool’s CM host is comparable to that of the
Global Pool (40 CPU cores and 120 GB, running HTCondor 8.7.8). A total of ten schedds
(32 cores, 60 GB, highIO disks, running HTCondor 8.6.11, as used in production) were em-
ployed.

Using so-called uber-glideins [15] allows to run multiple startds on one batch slot (e.g.
launching 32 slots per pilot allows the creation of 500K core pool on only 16K real batch
cores). Artificial workload can be used to simulate diverse scenarios, with job requests being
randomly generated (number of cores, memory, desired sites lists, etc).

4 Scaling tests results

The setup described in the previous section has been used to run successive test rounds in-
creasing workload pressure and targeting the maximum pool size. In total, up to two million
8-hour jobs were injected. All jobs were submitted as single-core to maximize the pool
fragmentation and stress on the pool’s CM. Figure 5 shows four trials, where the first and
second attempts found limitations per schedd to grow beyond 50k simultaneously running
jobs. Having submit capacity saturated with 6 schedds, the pool could not grow beyond 300k
slots. For the next rounds, the number of dedicated schedds grew to 10, which removed the
limiting factor from the submit side. With the increased capacity to run jobs, the maximum
scale achieved close to 350k dynamic slots in total. This scale represents about a factor 3 in
slots compared to the production Global Pool, which would be equivalent to a pool of 600k
cores, considering the present average cores to running jobs ratio. The following subsections
describe the limitations observed at each of the elements of the pool with the present setup
and software.

Figure 5. Maximum scales achieved with the scalability tests run in Summer 2018, with up to 2M jobs
in total and 350k running jobs simultaneously

4.1 GlideinWMS Front-End

At the scales of the test, a very slow FE matchmaking cycle was observed, requiring more
than 2 hours to complete compared to cycles typically lasting for 15 minutes in the Global
Pool. The main potential causes are inefficient queries (as highly loaded schedds are very
slow in reporting their queue to the FE) and insufficient parallelization to deal with the in-
creasing request to resource combinatorics. With respect to increasing FE parallelism, it
could be configured to use multiple workers in parallel (tested up to 8), but we ran into host
memory limitations in these scales (Fig. 6), when each worker was using about 4 GB. These
issues have been discussed with GlideinWMS developers to further understand and remove
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bottlenecks from the FE matchmaking cycle. In any case, CMS might need to run the FE in
a bigger host to speed up the FE performance, if we were to reach higher pool sizes in the
short term.

Figure 6. GlideinWMS FE host node memory usage increment during a matchmaking cycle, basically
saturating the host capacity

4.2 Schedds

The capacity of our schedds, running in hosts identical to production ones, has been explored
in terms of maximum numbers of jobs up to 50k jobs running and 150k jobs in queue at once.
Memory consumption has been measured to increase at about 1 MB per process tracking job
status (job shadow) when using the 32-bit binary version provided by HTCondor developers),
as seen in Fig. 7. Exploring the maximum sustainable rates for job submission, start, and
completion rates, the schedds achieved a total of 10k jobs started in 20 minutes statistics
collecting interval, therefore a O(10) Hz start rate seems feasible for jobs averaging 8 hours.

Figure 7. Schedd performance during the scale tests: memory usage (left) as a function of the number
of simultaneously running job-shadow processes (right)

4.3 Collector and Negotiator

Essential elements of the pool, such as the negotiator and the GlideinWMS FE (also
JobRouter-based algorithms and even monitoring tools) rely on the collector’s performance.
Its task is to collect and distribute information on workload and available resources quickly
and efficiently. In the last of the tests described in this report, the collector was fully stressed,
with slot update rates reaching above 400k per 20 minute accounting interval, saturating
communications buffers even after successive increments (from 128 MB up to 512 MB), and
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with duty cycle at 99.5% (Fig. 8). Parallelization was enabled by running multiple collector
workers (up to 8), but, as a result of applying it, memory consumption in the host registered
frequent spikes, such that the kernel’s out-of-memory killer started cancelling such processes.
At these scales and rates, the main collector thread was detected being killed when using 20
GB of RAM.

Figure 8. Collector performance during the scale tests: number of slot updates at the collector per 20
min. interval (top) and saturating collector duty cycle (bottom)

No real scalability issue was observed for the negotiators (the test pool runs with 3 ne-
gotiator instances, as in the production Global Pool), although the matchmaking cycle often
reached the target time limit at 600s. As Fig. 9 shows, the cycle time is about equally split
on the collection of slot updates and the matchmaking phases. In contrast, the production
pool cycle is dominated by matchmaking, generally driven by slow heavily loaded schedds
(dropped from the negotiation cycle after 60s). Speeding up matchmaking could benefit from
running forked negotiators (included in recent HTCondor releases). However, it was not em-
ployed in these tests, considering that memory on the CM host (120 GB, the biggest standard
VM available at CERN) was already saturated by running multiple collector workers.

Figure 9. Negotiator performance during the scale tests: time dedicated in the negotiation cycle for
each of its phases, the collection, filtering and sorting of slot classads, followed by the matchmaking
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5 Conclusions and Outlook

The CMS Submission Infrastructure team is analyzing the very successful Global Pool model
in order to preventively detect potential bottlenecks deriving from increasing scales or addi-
tional complexity. This is driven by the prospective of the LHC Run 3, and specially to the
HL-LHC, evolving towards a more heterogeneous mix of Grid, HPC and Cloud resources to
satisfy increasingly higher computing needs.

Our recent scale tests pushed the size of our pool using a configuration that maximizes its
fragmentation, to the point where it revealed scaling limitations on key components, such as
the GlideinWMS FE and HTCondor schedds and collector. Saturation was reached at about
350K slots, however, which represents a factor 3 in size with respect to the production pool
with an equivalent setup. Results indicate therefore that our infrastructure is far from reaching
an immediate scaling frontier. Nevertheless, the schedd capabilities need to be thoroughly
explored and the viability of a model based on federated pools needs to be further addressed.
In the longer term, we need to ensure the sustainability of HTCondor and GlideinWMS-based
infrastructure to serve our workload management needs in the future.

We wish to thank the development communities of HTCondor and GlideinWMS for their continued
support and close collaboration with CMS. This work was partially supported by the U.S. Department
of Energy and the National Science Foundation and Spain’s Ministry of Economy and Competitiveness
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