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Abstract. The construction of low-dimensional models of the flow, containing only
reduced number of degrees of freedom, is the essential prerequisite of closed-loop con-
trol of that flow. Presently used models usually base on the Galerkin method, where
the flow is approximated by the number of modes and coefficients. The velocities
are computed from a system of ordinary differential equations, called Galerkin Sys-
tem, instead of Navier-Stokes equation. In this paper, reduced order models of the
flow around NACA-0012 airfoil are presented. The chosen mode sets include POD
modes from Karhunen-Loeve decomposition (which require previous direct numerical
simulation), as well as different eigenmodes from global stability analysis of the flow.

Key words: Galerkin method, Reduced Order Models (ROM), Proper Orthogonal

Decomposition (POD), mode interpolation, stability, control.

1 Introduction

The one of the most challenging areas of fluid dynamics is the control of the
flow. Separation in the bluff body wakes, and resulting coherent structures
are the source of negative mechanical, environmental and economical effects,
especially in aerospace and automotive industry. The examples are increased
drag, generated noise, reduced lift force and efficiency [1]. Modification of the
state of the flow, e.g. its stabilization, allows the reduction of these effects.

There are two kinds of control techniques. Passive control is based on
the modification of flow domain, and requires no external energy source and
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usually utilizes some kind of splitter plates, control cylinders, wake disruptors
or riblets to influence the vortex generation [3, 9]. The second possibility is
active flow control, where there are external energy sources, called actuators.
If the actuation is independent on the state of the flow, it is called open-loop
control, while closed-loop or feedback flow control requires information about
the up-to-date flow state. It is measured by a certain number of sensors and
processed by a controller. Usually the controller design requires some kind of
mathematical model of the flow. The Navier-Stokes equations after e.g. Finite
Element Discretization, can be considered as the high-dimensional flow model
– it contains thousands or millions of degrees of freedom.

The flow model, to be suitable for real-time, closed-loop control appli-
cations, must contain only a few degrees of freedom, so model reduction is
required. One of the most popular ways of Reduced Order Model (ROM)
construction is the Galerkin method [4, 7], described in Section 3.

2 Problem Description – NACA-0012

To compare the model reduction techniques, two-dimensional flow around
NACA-0012 airfoil at angle of attack AoA = 30o have been chosen (Fig. 1).

Figure 1. Computational domain with NACA-0012 airfoil, discretized with the finite
element method.

In this case, at the Reynolds number Re = 100, the separation and vortex-
street are visible and the comparison between reduced order models and the
Direct Numerical Simulation (DNS) is simple. NACA-0012 have been chosen
due to its common usage as the test case in CFD-application development and
its application in rotor blades.

For the configuration described above, period of the flow computed by DNS
is T = 68.5. Streamlines of one of the snapshots, steady solution us, time-
averaged solution ū and computed shift-mode for this flow are presented on
Fig. 2.

3 Low Dimensional Modelling – Galerkin Method

Flow model reduction is based on the assumption, that the state of the flow
u can be approximated by a base flow u0 (e.g. steady or mean solution) and
a sum of products of modes uj and Fourier coefficients αj , describing the
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 Steady solution  DNS
 t = 0.000T

 Time-averaged solution  Shift mode

Figure 2. Streamlines of flow around NACA-0012 airfoil at Re=100: steady solution
(left-top), time-averaged solution (left-bottom), one of the DNS snapshots (right-top) and
shift-mode (right-bottom).

disturbance

u[N ] = u0 +

N
∑

j=1

αjuj =

N
∑

j=0

αjuj , α0 ≡ 1. (3.1)

The use of limited number of modes means, that the right-hand-side of ap-
proximated Navier-Stokes equation is equal to residual R[N ], depending on the
number of used modes N

u̇[N ] + ∇ · (u[N ]
⊗ u[N ]) + ∇p[N ]

−
1

Re
△u[N ] = R[N ] (3.2)

To obtain the coefficients in every time step, one has to make a projection of
approximated Navier-Stokes equation onto space spanned by selected modes
(so called Galerkin Projection).

In Hilbert space, it is done by computing the inner products of residual
R[N ] and each of the modes ui, and equating them to zero:

(

ui, R
[N ]

)

Ω
=

∫

Ω

uiR
[N ]dΩ = 0.

This approach leads to the system of ordinary differential equations (the
Galerkin system), linking the Fourier coefficients α, their time derivatives α̇

and constant parameters lij , qij :

α̇i =
1

Re

N
∑

j=0

αj lij +
N

∑

j=0

N
∑

k=0

αjαkqijk, (3.3)

where:

lij =
(

ui,△uj

)

Ω
, qijk = −

(

ui,∇ · (ujuk)
)

Ω
.

Set of modes used for low-dimensional modelling can be obtained mathemati-
cally, physically or empirically [8].
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4 Reduced Order Models of the Flow

In this paper, empirical and physical modes will be used. In first case, the
Karhunen-Loeve or Proper Orthogonal Decomposition (POD) of unsteady flow
will be performed. In second case, global stability analysis with various base
solutions and continuous mode interpolation will be used.

4.1 POD Galerkin models

The most common set of modes for model reduction results from POD [2].
It is based on the assumption, that snapshots vi (of size N) of the flow from
successive M time-steps are correlated.

The first step in POD is the computation of time-averaged solution ū and
the centering of the flow vectors, by subtraction v́i = vi − ū. Resulting vectors
v́i describe the fluctuations in the flow. This data is required to compute the
autocorrelation matrix C of size N × N :

C =
1

M
SST , where S = [v́1, v́2, ....v́M ].

Eigenvectors u of standard eigenproblem Cu = λIu, related to eigenvalues λ

of largest magnitude, are the POD modes used in model reduction (Fig. 3).

 POD mode 1  POD mode 2

 POD mode 3  POD mode 4

Figure 3. The first four POD modes used in Galerkin modelling.

In this paper two empirical ROMs are presented: one using 2 POD modes
and one using 8 POD modes (Fig. 4). In both cases, additional shift-mode
(defined as difference between steady and time-averaged solution, Fig. 2) have
been used to stabilize the models [8]. Next the flow have been reconstructed
and the mean square errors (MSE) for limit cycles of each model and DNS
have been computed.

For POD-2 Galerkin model, the percentage time-averaged residual (defined
as relation of MSE to integral of original flow) is equal to res = 5.77%, and
for POD-8 GM res = 2.79%. As can be seen on the right side of Fig. 4,
with POD modes it is possible to reconstruct precisely the attractor of Navier-
Stokes equations (limit cycle), but these modes do not suffice to create a model
of the flow preserving low dimensionality and expected dynamical properties
at the same time. In the transition from steady state to limit cycle oscillations,
the kinetic energy of the flow is overestimated – especially in POD-2 Galerkin
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model. What is more, before the model reduction the DNS computations of
the unsteady flow in the given configuration are required.
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Figure 4. POD-based models characteristics: Fourier coefficients α1 and α2 as a function
of time (left) and shift-mode coefficient αshift as a function of disturbance kinetic energy
(right).

4.2 Stability-mode Galerkin models

To overcome the problem dealing with the accuracy of transients modelling,
more POD modes can be used. While low dimensionality of the model is one
of the most important of its properties, another mode sets, resulting from
stability analysis, have been used.

 EigS mode 1  EigS mode 2

 EigM mode 1  EigM mode 2

Figure 5. The most dominant eigenmodes based on the steady solution (top,
λ = −0.147 ± 0.720ı) and time-averaged solution (bottom, λ = 0.018 ± 0.915ı).

Global, linear stability analysis of incompressible flow is based on the as-
sumption, that the unsteady solution V might be written as a sum of base
solution V̄ and a small disturbance Ṽ which allows to linearize the equations
and leads to formulation of generalized differential eigenvalue problem

λṼi + Ṽj V̄i,j + V̄j Ṽi,j + P̃,i −
1

Re
Ṽi,jj = 0 or Ax − λBx = 0.

This eigenproblem has been solved using the algorithms and techniques pre-
sented by Morzynski et al. [5]. In the modelling only the most unstable pairs
of modes have been used (see Fig. 5).

Math. Model. Anal., 13(1):113–122, 2008.



118 W. Stankiewicz, M. Morzyński, B.R. Noack and G. Tadmor

GM-EigS-2
GM-EigM-2

-3
-2

-1
 0

 1
 2

 3

α1
-3

-2
-1

 0
 1

 2
 3

α2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

αshift

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3

α s
hi

ft

TKE

GM-EigS-2
GM-EigM-2
DNS (theor.)

Figure 6. Eigenmode-based models characteristics: Fourier coefficients α1 and α2 as a
function of time (left) and shift-mode coefficient αshift as a function of disturbance kinetic
energy (right).

The models based on the stability eigenmodes reconstruct the transition
from the steady solution to the limit cycle better (see, Fig. 6) than POD
Galerkin models, but are much worse in attractor reconstruction - the distur-
bance kinetic energy of periodic flow is underestimated. In case of the model
based on two steady-solution-eigenmodes we have that res = 15.08%, and for
the model based on two averaged-solution-eigenmodes, res = 10.10%.

4.3 Hybrid Galerkin model

The numerical experiments presented in previous sections lead to conclusion,
that POD modes should be used in limit-cycle modelling, and stability eigen-
modes - in modelling of flow states close to fixed point of Navier-Stokes equa-
tions (steady solution). The idea of using both empirical and physical modes,
proposed by Noack et al. for circular cylinder case [7], leads to hybrid model,
allowing reconstruction of both limit cycle and dynamical properties of the
flow. On the Fig. 7 the characteristics of model of flow around NACA-0012,
based on 2 POD modes, 2 eigenmodes and the shift-mode are presented. In
this case, the percentage time-averaged residual res = 8.44%, and accuracy of
transients modelling is better than in pure POD models.
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Figure 7. Hybrid model characteristics: Fourier coefficients α1 and α2 as a function
of time (left) and shift-mode coefficient αshift as a function of disturbance kinetic energy
(right).
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4.4 Low-dimensional modelling with mode interpolation

One more idea of models adjustable to different operating conditions has been
presented by the authors in [6]. The solution of interpolated eigenproblem Â

Â(κ) = (1 − κ)AS + κĀ,

where AS and Ā are two different eigenproblems, leads to the set of modes con-
tinuously changing with operating conditions and interpolation parameter κ.
The resulting Galerkin model is described by a system of ordinary differential
equations:

α̇κ
i =

1

Re

N
∑

j=0

ακ
j lκij +

N
∑

j=0

N
∑

k=0

ακ
j ακ

kqκ
ijk . (4.1)

The value of interpolation parameter κ depends on the state of the flow. In
this paper, it is related to the shift mode amplitude (coefficient) αshift:

κ(t) =
max(αshift) − αshift(t)

max(αshift) − min(αshift)

As can be seen on Fig. 8, model based on continuous interpolation between
POD modes and stability eigenmodes, based on steady solution, reconstructs
the limit cycle oscillations with accuracy of empirical models. It allows ac-
curate modelling of transition from steady state to limit cycle, and remains
low-dimensional – it has only one degree of freedom more (κ parameter) than
POD-2 Galerkin model.
Mode interpolation can be also used to create a priori model of the flow, requir-
ing no empirical data. Extrapolation of two mode sets resulting from global
stability analysis (based on steady and time-averaged solutions), with κ > 1,
leads to modes that can mimic POD modes [6]. Model using such modes is
presented on Fig. 9 and has similar accuracy to hybrid model presented be-
fore. Its percentage residual res = 9.37%, is smaller than residuals of pure
stability-based models.
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Figure 8. Interpolated model characteristics: Fourier coefficients α1 and α2 as a function
of time (left) and shift-mode coefficient αshift as a function of disturbance kinetic energy
(right).
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Figure 9. Extrapolated model characteristics: Fourier coefficients α1 and α2 as a function
of time (left) and shift-mode coefficient αshift as a function of disturbance kinetic energy
(right).

5 Summary

In this paper, a number of Galerkin models of flow around NACA-0012 have
been compared, the results are presented in Fig. 10. In each case, shift mode
was used to stabilize the model. Performed numerical simulations have proven,
that empirical models (dotted lines on Fig. 10) are very fragile to the change of
operating conditions, allowing the accurate reconstruction only for the state,
for which POD analysis has been done. Transients modelling requires large
number of empirical modes, what makes the dimension of the model to large
for feedback control applications.

Eigenmodes resulting from global stability analysis (linearization around
steady solution) are not enough to construct accurate Galerkin model of wa-
ke/separated flow (see lowest dashed line on Fig. 10), but are very important in
construction more advanced models: hybrid, extrapolated and with continuous
mode interpolation.

The least stable eigenmodes of Navier-Stokes equation linearized around
time-averaged flow are much more similar to POD modes than the ones corre-
sponding to steady solution, and the accuracy of resulting Galerkin model is
much higher. Stability eigenmodes extrapolation allows even further increase
of accuracy and is a step towards a priori modelling of the flow.

The best results of transition and limit cycle oscillations reconstruction
have been obtained for the models using both POD modes and eigenmodes of
global stability analysis. First of them is hybrid model proposed by Noack et
al. [7]. Another choice is to use continuous mode interpolation, that allows
to change the coherent structures with the change of operating condition. It
is shown, that interpolated modes allow accurate, least-dimensional Galerkin
approximation of Navier-Stokes equation (thin continuous line on Fig. 10),
what is important in control design process. Compared to POD models, one
additional equation is required to specify the value of interpolation parameter.

Presented methods are instantly applicable to 3D and other geometries.
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Figure 10. The variation of disturbance kinetic energy (TKE) for different Galerkin models
and interpolation parameter κ in function of time, for transition from steady state to the
limit cycle oscillation.
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