
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-045 September 18, 2010

Learning Solutions of Similar Linear
Programming Problems using Boosting Trees
Ashis Gopal Banerjee and Nicholas Roy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4423007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning Solutions of Similar Linear

Programming Problems using Boosting Trees

Ashis Gopal Banerjee and Nicholas Roy

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
ashis,nickroy@csail.mit.edu

Abstract. In many optimization problems, similar linear programming
(LP) problems occur in the nodes of the branch and bound trees that
are used to solve integer (mixed or pure, deterministic or stochastic)
programming problems. Similar LP problems are also found in problem
domains where the objective function and constraint coefficients vary due
to uncertainties in the operating conditions. In this report, we present a
regression technique for learning a set of functions that map the objec-
tive function and the constraints to the decision variables of such an LP
system by modifying boosting trees, an algorithm we term the Boost-LP
algorithm. Matrix transformations and geometric properties of boosting
trees are utilized to provide theoretical performance guarantees on the
predicted values. The standard form of the loss function is altered to
reduce the possibility of generating infeasible LP solutions. Experimen-
tal results on three different problems, one each on scheduling, routing,
and planning respectively, demonstrate the effectiveness of the Boost-LP
algorithm in providing significant computational benefits over regular op-
timization solvers without generating solutions that deviate appreciably
from the optimum values.

1 Introduction

Optimization plays an important role in many scheduling, planning, control, and
navigation problems for autonomous systems. Various optimization techniques
are used extensively in a wide variety of settings, ranging from flexible man-
ufacturing systems and warehouse operations to guidance of unmanned aerial,
ground, and underwater vehicles. Solving some form of a linear program, where
both the objective function and the constraints are linear functions of the deci-
sion variables, lies at the core of a large number of such techniques.

Even while solving optimization problems that cannot be directly cast in lin-
ear programming (LP) form, relaxed LP versions of the problems are typically
used in the nodes of the branch-and-bound (BAB) or branch-and-cut (BAC)
trees to solve integer linear programming (ILP), mixed integer linear program-
ming (MILP), as well as stochastic integer linear programming (SILP) problems.
Relaxed LP problems often share multiple common constraints and always con-
tain the same objective function and number of decision variables. Uncertainties

in the operating conditions may change some of the objective function and con-
straint coefficient values and result in the generation of some new constraints
and/or deletion of old ones without altering the number of decision variables.
Henceforth, we refer to problems that contain the same number of decision vari-
ables, similar objective function coefficients, and similar constraint coefficients
with some variation in the number of constraints as a set of similar LP problems.

Although many commercial solvers such as CPLEX, MATLAB etc. as well
as open-source software libraries like COIN-OR [4] provide efficient and robust
implementations, it takes a fair amount of time to compute the solutions of
ILP, MILP, and SILP problems involving tens of thousands of decision variables
and comparable number of constraints. Usually, it takes few seconds to solve a
particular LP problem; consequently, few minutes or even hours are needed to
compute a solution to the overall IP problem. Moreover, the solution needs to
be recomputed whenever even one of the coefficient value changes. This makes
IP problems computationally intractable for large-scale, real-time systems.

We observed that the solutions of similar LP problems are usually quite
similar themselves in the sense that most of the optimum decision variable values
do not change much. Hence, we believe that supervised machine learning, and
more specifically, regression, can be used to learn from the solutions of given
LP problems to predict the solutions of new but similar LP problems. Fast
inference can then be performed over such regression models at run-time to
quickly estimate the LP solutions instead of computing them using standard
optimizations solvers. This provides an alternate and practically useful route for
solving large-scale optimization problems.

In this report, we present a boosting tree-based approach, named as the
Boost-LP algorithm, to learn a set of functions that map the objective function
and constraints to the individual decision variables of similar LP problems. Thus,
the predictor variable vector consists of the objective function and constraint
cofficients and the response variables are the decision variables themselves.

We provide absolute performance guarantees on the objective function and
the decision variable values. Our prediction error bounds are based on a matrix
transformation of the system of inequality constraints to a vector having the
same dimensionality as that of the decision variables, and geometric properties
of the axis-aligned hyperbox arrangement of the predictor variable space created
by the boosting trees. The bounds consist of a parametric vector that can be
chosen appropriately by generating additional training data points to restrict
the errors within pre-defined thresholds, which can be lowered up to a certain
limit as determined by the LP system parameters.

However, boosting trees in their standard form, cannot ensure that the pre-
dicted solution to the LP problem satisfies all the problem constraints. In order
to bias the boosting trees to avoid predicting infeasible solutions, we modify the
standard loss function to penalize selecting response values that lie outside the
feasible region of the training set LP problems as the constant modeled value
inside the boosting tree regions.

Our algorithm is tested on three real-world problems involving scheduling of
aicraft deck carrier operations, vehicle routing with time window constraints, and
vehicle planning and control respectively. Boosting trees are found to perform
significantly better than many other standard regression techniques and achieve
marked computational speed-up (up to almost 100 times) as compared to the
conventional optimization solvers. Infeasible solutions are only generated in a
tiny fraction (1-2)% of the cases and are avoided completely by switching over
to actually solving the LP whenever such a situation occurs. Promising results
are obtained in terms of the overall ILP, MILP, and SILP solutions, where the
predicted values never deviate by more than 5% of the actual. We also observe
that our approach is quite robust to variations in the problem parameters; how-
ever, the performance degrades as the number of distinctly different constraints
increases for a fixed training set size.

2 Related Work

Relatively little work has been done in applying machine learning, especially
non-evolutionary techniques, to combinatorial optimization problems. Zhang and
Dietterich [17] applied temporal difference learning to job shop scheduling us-
ing a time-delay neural network architecture to learn useful search heuristics for
obtaining better schedules in shorter periods of time as compared to other algo-
rithms. Lee et al. [9] used decision trees for scheduling release of jobs into the
shop floor and a genetic algorithm (GA) for allocating jobs to the machines and
obtained promising results as compared to the conventional single release and al-
location approach. Telelis and Stamatopoulos [13] showed that kernel regression-
supported heuristic methodology performed better than problem-specific heuris-
tic search techniques in knapsack and set partitioning problems. More recently,
Vladušič et al. [16] employed locally weighted learning, näıve Bayes, and decision
trees for job shop scheduling over heterogenous Grid nodes to obtain improve-
ments over random, round-robin, and first available algorithms.

Evolutionary techniques have been popularly used for solving vehicle rout-
ing problems (VRP), where a number of cities have to be traversed just once
by one or more vehicles, all of which must return to the originating cities. The
optimum solution is the set of routes that minimizes the total distance trav-
eled. We only discuss a few representative papers here for the sake of brevity.
Louis et al. [10] modified the merge crossover operators in a GA to achieve good
performance in the multiple VRP (involving multiple vehicles) with clustered
customer locations. Bell and McMullen [1] modified the standard ant colony
optimization (ACO) technique to search for multiple routes of the VRP. They
obtained solutions that were very close to the optimum in the case of small prob-
lems; however, the performance was worse as compared to single route-searching
ACO for large-scale problems. Nallusamy et al. [11] recently applied k-means
clustering to first convert the multiple VRP into individual VRPs and then used
a GA along with heuristics to solve each instance separately. In terms of per-

formance, their approach provided a trade-off between optimality and usage of
computational resources.

Thus, we can see that the existing machine learning-based approaches have
had mixed success in terms of solving NP -hard optimization problems. In this
report, we present an alternative constrained regression-based technique that
enables us to come up with performance guarantees as opposed to heuristic and
evolutionary approaches. Recently, Nguyen et al. [12] applied such a constrained
regression technique for calibrating cost models. They obtained promising results
as compared to standard least squares, lasso, and ridge regression techniques,
which motivated us to follow a similar approach.

3 Boosting Tree-Based Learning Approach

3.1 Problem Formulation

We are given a set of N Linear Programming (LP) problems {LP1, . . . , LPN} and
their solutions {x∗1, . . . , x

∗

N}, where any LPk can be represented in the generic
form as:

max zk = cT
k x, (1)

s. t. Akx ≤ bk, x ≥ 0 (2)

Here, ck, x ∈ IRn, Ak ∈ IRmk,n, and bk ∈ IRmk ∀k. So all the LP problems are
similar in the sense that the decision variable vector x and the objective function
vector ck have identical dimensionality n. However, no restrictions are imposed
on the number of constraints mk in the different LP problems.

As discussed in Sect. 1, we are interested in developing a regression model
of this LP system in order to predict the solution of any new but similar LP
problem. A separate regressor function is used for inferring each component
of the vector x to avoid the computational complexity associated with learning
multiple response variables simultaneously. The inter-dependence of the decision
variables is captured by incorporating all the problem constraints in the predictor
variable vector (given by (5)) and also by modifying the loss function suitably
(discussed in Sect. 3.2).

Thus, we want to learn a set of n functions

fi : (As, bs, cs) 7→ xi, 1 ≤ i ≤ n (3)

which are used to estimate the optimum x for any test LP problem. Any regres-
sion model requires a set of predictor variables (vectors denoted by v) and a set
of response variables (scalars denoted by y). In our case, the optimum value of
each LP decision variable x∗i acts as the training set response variable for the
corresponding function fi. In order to generate the predictor variable vector for
the training set, we first transform the first system of inequalities in (2) to a

slightly different form as given by A′

kx ≤ b′k, where A′

k ∈ IRm′

k,n and b′k ∈ IRm′

k

represent truncated forms of Ak and bk that only contain the m′

k active con-

straints at the optimum solution x∗k. By introducing a new matrix Wk, we can
transform the matrix constraint on x to a vector constraint that is given by

x ≤ (WT
k A′

k)−1WT
k b′k = dk (4)

where Wk ∈ IRm′

k,n should be non-negative and the product matrix WT
k A′

k must
be non-singular. The form of (4) is similar to a least square solution of (2); Wk

is used instead of Ak to avoid the problem of singularity for non-unique x∗.
In order to construct the matrix Wk, let us represent it as {w1, . . . , wm′

k
}T

and A′

k as {a1, . . . , am′

k
}T . We select each wi = eqi

, where eqi
∈ ℜn is a unitary

vector and qi ∈ [1, n] denotes the position of the unity element such that eT
qi

ai 6=

0∀i. This ensures that WT
k A′

k is strongly non-singular as all of its principal
submatrices are non-zero.

If multiple choices of qi exist, then we select it in such a manner that at least
one non-zero entry exists in every column of Wk. Ties are broken randomly. This
heuristic enables us to associate relevant constraints for every xi (constraints
where coefficients of xi in A′

k are non-zero), weigh the corresponding relevant
constraint coefficients equally by unity, perform matrix division, and utilize the
obtained value as the predictor variable vector value for the particular problem
LPk. If a column only contains zero elements, we eliminate this particular column
from both Wk and A′

k and put di,k = 0, which takes care of the non-singularity
problem for non-unique x∗. This is referred to later as Condition 1 and is useful
in bounding the LP solution prediction errors in Sect. 4.

Given the transformation (4), the common predictor variable vector vk for
all the functions f in a problem LPk is formed by augmenting ck with dk. Thus,
effectively, we are learning fi : v 7→ xi, 1 ≤ i ≤ n, where a specific training
problem predictor variable vector instance is given by

vk = [c1,k, . . . , cn,k

...d1,k, . . . , d1,n]T (5)

Clearly, the size of vk is always equal to p = 2n for any value of k. Thus,
transformation (4) not only provides a compact way of encoding all the LP
problem parameters A, b, and c, it also results in a constant predictor variable
vector size that is independent of mk, 1 ≤ k ≤ N . The set of active constraints
is, however, unknown for the test LP problem. So, the the entire matrix A and
vector b is used for generating d. We also assume that the test LP problem
parameters are such that all the components of the corresponding v vector lie
within the range defined by the training set problems. If this is not the case,
it is hypothesized that the LP problem is potentially infeasible and a standard
optimizer is invoked to validate the hypothesis and obtain a feasible solution if
necessary.

3.2 Algorithm Description

We have developed a modified version of the standard boosting tree algorithm,
referred to as the boost-LP algorithm, to learn each regressor function fi. For the

sake of completeness, we first present the standard boosting tree algorithm [8].
The multivariate regressor function is represented as a sum of trees T (v;Θm),
each of which is given by

T (v;Θm) =

J∑

j=1

γjmI(v ∈ Rjm) (6)

where Θm = {Rjm, γjm} encodes the parameters of the m-th regression tree
having terminal regions Rjm, j = 1, . . . , J , and the indicator function I is defined
as

I(v ∈ Rjm) =

{
1 if v ∈ Rjm,

0 otherwise.
(7)

It can be seen from (6) that the response variable y is modeled as a constant
within every tree region Rjm. Using the additive form, the overall boosted tree
can then be written as the sum of M regression trees

fM (v) =

M∑

m=1

T (v;Θm) (8)

Two child regions R1 and R2 are created at every internal parent node of a
tree by selecting a splitting variable o, 1 ≤ o ≤ p and a split value s that define
a pair of half-planes

R1 = {v | vo ≤ s}, R2 = {v | vo > s} (9)

where vo represents the the oth component of the vector v. We select o and s
using a greedy stategy to minimize the residual sum of squares error that solves

min
o,s

[min
γ1

∑

vk∈R1

(rk − γ1)
2 + min

γ2

∑

vk∈R2

(rk − γ2)
2] (10)

where vk is the predictor variable vector corresponding to LPk and rk is the tar-
get value in each tree region. rk can be either chosen as the response variable itself
or the negative gradient of the loss functional that is given by−∂L(yk, f(vk))/∂f(vk).
For any choice of o and s, the inner minimization in (10) is solved by

γ̂1 =

∑
vk∈R1

rk

N1

, γ̂2 =

∑
vk∈R2

rk

N2

(11)

where N1 and N2 denote the number of training data points in R1 and R2

respectively. Each regressor tree is grown by binary partitioning till the number
of leaf nodes equals or exceeds the fixed size J that is chosen a priori. If required,
the tree is then pruned using the technique of cost-complexity pruning described
in [8] to reduce the number of leaf nodes to J .

In order to prevent overfitting, we consider a slightly modified version of (8)
in an iterative form as

fm(v) = fm−1(v) + ν

J∑

j=1

γjmI(V ∈ Rjm),m = 1, . . . ,M (12)

where ν ∈ (0, 1) is the shrinkage parameter that controls the learning rate; the
modeling variable is given by

γjm = arg min
γ

∑

vk∈Rjm

L(yk, fm−1(vk) + γ) (13)

Here, L(y, f(v)) denotes any of the standard loss functions, such as L2 or the
squared-error loss, L1 or the absolute-error loss, or the more robust Huber loss
LH that is given by [8]

LH =

{
[y − f(v)]2, if |y − f(v)| ≤ δ,

2δ(|y − f(v)| − δ2), otherwise.
(14)

Let us now present a couple of well-known concepts before discussing the modi-
fications.

Definition 1. A p-dimensional convex polytope (or p-polytope) is defined as the
bounded solution set (intersection) of a finite system of linear inequalities that
represent closed half-spaces:

P = {x ∈ IRp | Ax ≤ b} (15)

Remark 2. The solution of an LP problem as given by (1-2) lies on the boundary
of a convex polytope whose facets are defined by the linear inequality constraints.
The corresponding polytope is known the feasible region of the given LP problem.

In the Boost-LP algorithm, we consider a modified form of the standard
loss functions that heavily penalizes selection of any γjm that lies outside the
common feasible region of all the given LP problems for which v lie in Rjm. We
refer to this as the penalization loss Lp and represent it as

Lp = L(y, f(v)) + hγ′jm (16)

Here, h is a very large positive number and γ′jm = {y : y 6∈ Pc}, where Pc

is the common feasible region of all the LPs whose v ∈ Rjm. Although this
modification cannot guarantee generation of feasible solution for any new LP
problem, it significantly increases the possibility of doing so (shown in Sect.
5.1). Infeasibilities are detected by looping through all the constraints and are
handled by discarding the predicted values and actually solving the LPs using
any standard optimizer.

If the range of di is large in the training data set, then more problems need to
be generated so that solutions for additional values of those widely distributed
parameters are utilized for learning. If the absolute difference between two con-
secutive values of di, 1 ≤ i ≤ n, is greater than a pre-defined threshold ζi,
a minimum number of ds

i are added with uniformly spaced values in between
those points such that the new value of the absolute difference is less than or
equal to ζi. Henceforth, N refers to the total number of training data points that
includes both the original as well as the newly added ones.

Now, in order to generate complete LP problems corresponding to the newly
created di values, we select the average values of the two original extreme points
for all the other components of v excepting di. Although this directly generates
the c vector, it does not yield a unique solution for A′ and b′. This is taken care
of by selecting the A′ matrix and the corresponding W matrix for the lower di

valued point and then solving for b′ using (4). It may be noted that different
threshold values can be selected for the different components of d and this choice
is domain-dependent.

4 Theoretical Results

In this section, we present an absolute performance guarantee on the overall
LP objective function in the form of Theorem 8. This result is based upon the
performance guarantee for the individual decision variables (response variables
of the Boost-LP algorithm) that is obtained in Lemma 7. The result also utilizes
a geometric property (given by Remark 4) of the arrangement created by the
boosting trees that is described in Lemma 5. Lemma 7 again builds upon the
result derived in Lemma 6 on the existence of a non-negative vector that provides
an upper bound on the difference between the vector d (given by (4)) and the
response variable for any training set problem and uses Lemma 5.

Definition 3. The outer j-radius Rj of a p-dimensional convex polytope P is
defined as the radius of the smallest j-dimensional ball containing the projection
of P onto all the j-dimensional subspaces, whereby the value of Rj is obtained
by minimizing over all the subspaces. It may be noted here that Rp is the usual
outer radius or circumradius.

Remark 4. Let B be a p-dimensional box (or p-box) in Euclidean space Ep with
dimensions 2a1×2a2×. . .×2ap, such that {x ∈ Ep | −ai ≤ xi ≤ ai, i = 1, . . . , p}.
It can be assumed without any loss of generality that 0 < a1 ≤ a2 ≤ . . . ≤ ap.
Then Rj is simply given by [3]

Rj =
√

a2
1 + . . . + a2

j (17)

Lemma 5. Boosting trees transform the LP problems present in the training
data set to an arrangement of higher-dimensional, axis-aligned boxes.

Proof. Combining the 2nd system of inequality in (2) and (4), it can be written
that

0 ≤ d < ∞ (18)

Thus, the irregularly-shaped convex polytopes that represent the feasible regions
of the LP problems are transformed into axis-aligned boxes in the completely
positive 2n-ant of the n-dimensional predictor variable space. The RHS inequal-
ity in (18) is required to prevent the decision variables from assuming infinite
values, resulting in unbounded LP solutions (from (1)).

The predictor variable vector v of the boosting tree also includes the compo-
nents of the objective function vector c. As both the minimum and maximum
values of ci must be finite ∀i, (infinite values will again lead to unbounded LP
solution as given by (1)) c forms another axis-aligned box of dimensionality n.
Thus, the overall v space is also a box B of higher dimensionality p = 2n. Since
each node in a regressor tree is formed by performing binary partitioning of the
v space, every terminal tree region corresponds to a p-dimensional box B′ ⊆ B,
thereby creating an arrangement of boxes.

⊓⊔

Lemma 6. If Wk is chosen as E′

k (Condition 1), then there exists a vector ǫ
with all non-negative components such that di,k − yk ≤ ǫi, 1 ≤ i ≤ n, for any
value of k and ǫ is solely a function of the system parameters, i. e. Ak, bk, and
ck of the LP problems present in the training data set.

Proof. Irrespective of whether mk ≤ n or mk > n in any given problem LPk,
the number of active constraints m′

k at the optimum solution x∗k cannot exceed
n, as otherwise the system will not have any solutions. Thus, the first system of
inequalities in (2) can be reduced to

A′

kx∗k = b′k (19)

where A′

k ∈ IRm′

k,n and b′k ∈ IRm′

k .
The general solution xk of the above system of equations is given by Remark

2.1. in [7] as:
xk = xm′

k
+1 + HT

m′

k
+1qk (20)

where xm′

k
+1 is the exact solution of (19) and qk ∈ IRn is an arbitrary vector.

The Abaffian matrix Hm′

k
+1 is again given by

Hm′

k
+1 = I −A′T

k (E′

kA′T
k)−1E′

k (21)

Now, from the basic definition of general solution, xk will lie in the feasible
region of LPk, and without any loss of generality we can assume that xm′

k
+1

represents x∗k. Based on this observation, (20) and (21) can be combined to yield

xk = x∗k + (I −A′T
k (E′

kA′T
k)−1E′

k)T qk

= x∗k + (I − E′T
k (E′T

k A′

k)−1A′

k)qk (22)

Hence,

qk = (xk − x∗k)(I − E′T
k (E′T

k A′

k)−1A′

k)−1

= (xk − x∗k)(I + E′T
k (E′T

k A′

k + A′

kE′T
k)−1A′

k) from the Woodbury formula1

≤ εk(I + E′T
k (E′T

k A′

k + A′

kE′T
k)−1A′

k) = ηk (23)

as for any given LP problem, |xk−x∗k| ≤ εk, since the feasible region is bounded.

1 Also known as the Sherman-Morrison-Woodbury formula or the matrix inversion
lemma

Since dk = (E′T
k A′

k)−1E′T
k b′k from (4), we have,

(E′T
k A′

k)−1 = dk[(b′Tk E′

k)[(E′T
k b′k)(b′Tk E′

k)]−1] (24)

Abbreviating (b′Tk E′

k)[(E′T
k b′k)(E′

kb′Tk)]−1 as F ′

k and substituting this in Equation
(22), we have,

xk = x∗k + (I − E′T
k dkF ′

kA′

k)qk (25)

Rearranging terms and using basic matrix operations, we get,

dk = [(E′

kE′T
k)−1E′

k][qk−(xk−x∗k)][(qT
k A′T

k F ′T
k)((F ′

kA′

kqk)(qT
k A′T

k F ′T
k))−1] (26)

Now, since qk − (xk − x∗k) ≤ ηk + εk, the above equation can be re-written as

dk ≤ [(E′

kE′T
k)−1E′

k](ηk + εk)[(qT
k A′T

k F ′T
k)((F ′

kA′

kqk)(qT
k A′T

k F ′T
k))−1] = ǫ̃k (27)

The above equation holds as all the matrix product terms in the RHS are
non-singular; the rank of the Gramian matrix E′

kE′T
k is same as that of E′

k,
which again must be equal to m′

k from its basic construction.
Here, ǫ̃k solely depends on the LP problem parameters Ak, bk, and ck as A′

k

and b′k, and, hence, E′

k, F ′

k, ηk, and εk all depend on those parameters. We can
re-write the vector (27) in its component scalar form as

di,k ≤ ǫ̃i,k, 1 ≤ i ≤ n (28)

Since the boosting tree response variable yk = x∗i,k is constant for any component
of x in a given data set, we can re-formulate the above equation as

di,k − yk ≤ ǫi, for any k and 1 ≤ i ≤ n (29)

where ǫi = max{ǫ̃i,1 − x∗i,1, . . . , ǫ̃i,N − x∗i,N}. Thus, ǫi is just a function of the
system parameters Ak, bk, and ck as both ǫ̃k and the solution x∗k depend only
on them. Moreover, ǫi ≥ 0, 1 ≤ i ≤ n from (4), and, hence, the lemma follows.

⊓⊔

The absolute performance guarantee of the Boost-LP algorithm is measured
in two ways: firstly, by the maximum error that can occur in inferring an optimum
y∗ = x∗i , i = 1, . . . , n value for any arbitrarily new LP problem that is not
present in the training data set and, secondly, by the maximum error incurred
in computing the optimum z∗ = cT x∗ value.

Lemma 7. If xe
i denotes the predicted value of x∗i for any arbitrary LP problem

with parameters A, b, and c, then |x∗i−xe
i | ≤ (N−MJ+1)ζi+ǫi, where N ≥ MJ

and ǫi is obtained from Lemma 6.

Proof. From (6) and (8), it is evident that the maximum error in predicting any
x∗i will arise when the corresponding v vector lies in a region Rcrit

jm such that the

worst-case error in predicting the response variable by a constant value γcrit
jm is

the highest among all the tree regions. Mathematically speaking,

|x∗i − xe
i | = |y∗ − fM (v)| ≤ |ycrit − γcrit

jm | (30)

where

ycrit = arg max
y
|y − γcrit

jm | (31)

Clearly, at least one training data point needs to be present in every tree
region. Since the total number of regions is equal to MJ , in the extreme case it
may so happen that (MJ − 1) regions all have one data point and one region
has all the remaining (N −MJ + 1) points. Now, if we look at the nature of the
target values, rk can be either equal to yk, or it can be equal to (yk − fm(vk))
when the negative gradient of the L2 loss functional is taken, or it can be equal
to ±1 when the L1 loss functional is used. rk can also be equal to ±αt when the
t-th quantile is used for the Huber loss functional.

Thus, it can be seen that child regions are iteratively created according to
(9) and (10) to cluster the response variable based on similar values, similar
deviations from predictions (γjm), or similarities in terms of positive and negative
deviations from the predicted values. Hence, it can be concluded that boosting
tree always partitions the p-dimensional v-space into boxes (see Lemma 5) such
that the corresponding response variable values are naturally sorted, although
the exact arrangement as well as the constant predicted value inside a box varies
depending upon the nature of rk. Without any loss of generality, let us assume
that this sorting is being done in a non-decreasing order.

So, if we have a region containing Njm = (N − MJ + 1) data points, the
algorithm will model yl, . . . , yl+N−MJ response variable values by a single γjm

where 1 ≤ l ≤ MJ , such that yl ≤ . . . ≤ yl+N−MJ . Now from Lemma 6,
as (di,l − yl) ≤ ǫi when W = E′ for any value of l, for this region we have
γcrit

jm ≥ di,l − ǫi and ycrit ≤ dmax
i,l,N−MJ+1

= max{di,l, . . . , di,l+N−MJ}. Since,
|di,j+1 − di,j | ≤ ζi, 1 ≤ j ≤ N − 1, we have,

ycrit ≤ di,l + (N −MJ + 1)ζi (32)

As it can be easily seen that dmax
i,l,Njm

≥ dmax
i,l,N ′

jm
for any value of Njm > N ′

jm,

we can re-write (30) as

|x∗i − xe
i | ≤ (N −MJ + 1)ζi + ǫi

= di,crit (33)

Thus, the lemma follows.
⊓⊔

From (33), it can be seen that the maximum error in predicting any xi occurs
in a boosting tree terminal region Rcrit

jm such that the corresponding di lies within

a fixed range given by [di,lcrit−ǫi, di,lcrit +(N−MJ+1)ζi], where 1 ≤ lcrit ≤ MJ
represents the training data point corresponding to di,crit. This implies that Rcrit

jm

represents a p-box in v space, wherein di can only assume certain values and all
the other predictor variables (cj , 1 ≤ j ≤ n and dj , 1 ≤ j ≤ n, j 6= i) can take
any values within its overall range given by the minimum and maximum values
that occur in the training data set.

Theorem 8. If xe denotes the predicted x∗ for any arbitrary LP problem with
parameters A, b, and c such that the objective function values are given by ze

and z∗ respectively, then |z∗ − ze| ≤ ‖c‖2
√

Σn
i=1

[(N −MJ + 1)ζi + ǫi]2, where
N ≥ MJ , ζi is given by Lemma 7, and ǫi is obtained from Lemma 6.

Proof. The overall error in predicting the optimum z∗ by ze is given by

|z∗ − ze| = |cT x∗ − cT xe| = |c.(x∗ − xe)| (34)

Using Cauchy-Schwarz inequality, the error can be bounded by

|z∗ − ze| ≤ ‖c‖2‖x
∗ − xe‖2 (35)

Based upon our discussion of Lemma 7, if we consider the maximum predic-
tion error for all the components of x, then we can find n number of p-boxes,
each constrained only in terms of a particular di. Thus, the maximum error in
predicting the entire vector x will occur when c, A, and b are such that the
generated v lies in Rcrit

jm of each individual boosting tree. So, if we take the in-
tersection of all the critical regions corresponding to this worst-case scenario in
v space, we obtain a new p-box Bcrit where all the components of d must lie
within well-defined ranges as given by di,crit and c is fixed.

From Definition 3, the outer n-diameter of Bcrit provides an upper bound on
the Euclidean distance between any two n-dimensional points (d in this case) in
Bcrit. Utilizing this observation, we can combine (17) and (33) and substitute
the value for the 2nd L2 norm in the RHS of (35) to have

|z∗ − ze| ≤ 2‖c‖2

√
(
d1,crit

2
)2 + . . . + (

dn,crit

2
)2

= ‖c‖2

√
d2
1,crit + . . . + d2

n,crit (36)

Substituting for di,crit, we obtain the final form

|z∗ − ze| ≤ ‖c‖2

√
Σn

i=1
[(N −MJ + 1)ζi + ǫi]2 (37)

It may be noted here that the monotonically increasing assumption of box widths
in (17) is implicitly taken care of by considering all the box dimensions that have
non-zero widths. This concludes the proof of the theorem.

⊓⊔

Thus, from (37), it can be inferred that the LP solution performance guaran-
tee can be improved in two ways. This can be done by building a more complex
boosting tree model with higher number of regression trees (M) or terminal
regions in a tree (J), or may be both. This will increase the product factor
MJ , thereby, decreasing the maximum possible number of training data points
(N − MJ + 1) that are modeled by a constant response value in the critical
region. However, this may not be desirable as it will increase the inference time.
The other alternative is just to select a smaller value of ζi∀i such that the overall
LP prediction error is always less than a certain pre-defined value up to a certain
limit defined by ǫi. This is evident from the cross-validation errors obtained in
the next section.

5 Experimental Results

All the results presented in this section are obtained on a Quad-Core Intel Xeon
CPU, having 2.93 GHz processor speed and 3.8 GB of RAM, in Ubuntu 9.0.4
OS, using C++ as the programming language and COIN-OR Cbc version 2.0 as
the optimization solvers. M , J , and ν are always chosen to be 500, 8, and 0.1
respectively.

5.1 Aircraft Carrier Deck Operations

Our first problem is that of scheduling, where the objective function is to min-
imize the overall weighted time taken by a set of aircrafts (both manned and
unmanned) to complete a given set of tasks in naval carrier operations. Weights
are assigned based upon the aircraft priorities. For example, consider a set of
missions that need to be accomplished by the aircrafts without violating any
of the constraints in terms of the resources (landing strip, launching catapults,
weapons elevators, deck parking spaces etc.) that are available to accomplish any
particular task at any point of time. Certain other constraints like fuel emergen-
cies and flight times beyond the permissible limit for a day can force an aircraft
to land sooner than expected. The scheduler must then construct a new plan
to reduce the ensuing disruption in the existing schedule by again minimizing
the time taken to complete the set of tasks with newly enforced deadlines and
priorities. A screenshot of the carrier simulation environment is shown in Fig. 1.

Fig. 1. Screenshot of aicraft carrier deck simulation environment

In order to handle uncertainties corresponding to the various failure modes,
we cast the problem in a stochastic integer linear programming (SILP) form.
Currently, we consider uncertainties in resource availability, successful task com-
pletion (different for each aircraft), and completion rates. A disjunctive formu-
lation of the generalized Benders’ decomposition approach is adopted from [14]
to generate the training data set.

Table 1 presents a comparison of the average (taken over all the response
variables) 10-fold cross-validation error in predicting the solutions of all the re-
laxed LP problems in the BAB nodes of the SILP problem corresponding to

an operation involving 20 aircrafts (with identical priorities), 9 possible tasks,
a scheduling time horizon of 150, and 5 different failure modes using a number
of popular regression approaches and loss functions. The number of predictor
variables p is equal to 54,000 and the cardinality of the training data set N is
equal to 5,764. No additional training data points are generated and identical
ζ vector is chosen for all the approaches. Boosting tree regression significantly
outperforms all the other regression approaches irrespective of the nature of the
loss function being used. Although using polynomial (quadratic) regression im-
proves the performance both with and without support vector machines (SVM)
as compared to ridge regression, it is difficult to determine the most suitable
choice for the polynomial order without evaluating all of them explicitly on any
given problem.

Table 1. Average cross-validation error (in %) using different regression approaches

Approach L2 L1 LH Lp

Ridge 10.4 11.1 10.9 11.5
Polynomial 7.9 8.2 8.0 8.3

SVM + ridge 10.5 11.1 10.8 11.4
SVM + polynomial 8.0 8.2 8.1 8.3

Boosting tree 1.9 2.2 2.1 2.3

Table 2. Performance evaluation of different boosting tree approaches with and with-
out infeasibility avoidance and addition of new training data points (COIN-OR solver
takes 1032.14 s of computation time)

Performance metric
Infeasibility Infeasibility
not avoided avoided
LH Lp LH Lp

SILP prediction computation time (in s) 14.76 15.83 17.46 18.36
Training Speed-up 70X 65X 59X 56X

data points Average cross-validation error (%) 2.1 2.3 2.0 2.1
not added SILP solution estimation error (%) 4.2 4.0 4.1 3.9

No. of infeasible solutions2(%) 7.1 1.2 0.0 0.0

Training Average cross-validation error (%) 1.0 1.1 0.9 1.0
data points SILP solution estimation error (%) 3.3 3.5 3.1 3.2

added No. of infeasible solutions (%) 6.7 0.9 0.0 0.0

Table 2 evaluates the performance of the boosting tree algorithm without
and with avoidance of infeasibility (by using the modified loss function given
by (16)) and addition of new training data points for the same scenario as in
Table 1. The same problem is used both for training and testing. As expected,
the corresponding values for the average cross-validation and solution estimation
errors as well as the percentage of infeasible solutions are lower when additional
training data points are used. There is no change in the computation time in
the two cases as inference is done on models having identical complexities and
hence the values are shown only once in the table. By selecting ζ appropriately
during the learning phase, the cross-validation and solution estimation errors are
kept below pre-defined thresholds of 1.5% and 4.0% respectively when additional
training points are generated. It can also be seen that using penalization loss Lp

significantly reduces the percentage of generated infeasible LP solutions as com-
pared to the standard Huber loss function LH . Even though this issue is avoided
completely by actually solving the relaxed LP problem when the boosting tree
generates an infeasible value during the inference phase, it comes at the expense
of decreasing the speed-up factor.

5.2 Vehicle Routing with Time Windows

Our second example domain is taken from [15], where a set of vehicles, originat-
ing from a central depot, have to serve a set of customers with known demands
exactly once without exceeding the vehicle capacities. Additional constraints
in the form of allowable delivery times or time windows are imposed for certain
customers and the number of vehicles as well as the routes of the individual vehi-
cles have to be determined by the solver. We adopt the IP-based set partitioning
formulation of the problem given in [5].

Table 3. Performance evaluation on data sets with varying modes of time window
constraint generation

Performance metric C1 C2 R1 R2 RC1 RC2

COIN-OR computation time (in s) 283.58 578.98 307.46 883.10 144.72 312.05
Boost-LP computation time (in s) 4.75 9.78 5.22 15.07 2.40 5.28

Speed-up 60X 59X 59X 59X 60X 59X
Average cross-validation error (%) 2.0 2.1 2.4 2.4 2.2 2.3
ILP solution estimation error (%) 4.2 4.3 4.9 4.9 4.5 4.6

No. of infeasible solutions3(%) 1.4 1.4 1.6 1.7 1.5 1.5

2 Non-zero values do not imply that Boost-LP returns infeasible solutions; rather
infeasible solutions are detected and the corresponding LPs are solved using COIN-
OR - table entries show the cost and benefits of performing this additional step

Table 3 summarizes the results for 6 benchmark data sets, each containing
100 customers, using the Boost-LP algorithm without performing infeasibility
avoidance. Identical data sets were used in [15] and [5] and we obtained them on-
line at http://w.cba.neu.edu/~msolomon/problems.htm. The 2D coordinates
of the customers and the time windows are generated in a clustered way in the
data sets C1 and C2, randomly using uniform distributions in the data sets R1
and R2, and in a semi-clustered way in the other two data sets RC1 and RC2.
The data sets C2, R2, and RC2 also have longer scheduling horizons (allowing
more than 30 customers per vehicle) as compared to C1, R1, and RC1 respec-
tively (permitting 5-10 customers per vehicle). Each data set contains (8-12)
separate problems with different proportion of customers having time windows.
We use the last problem in every data set for testing the models learnt over the
LP problems occurring in the BAB nodes of all the other IP problems present
in that particular data set. It can be seen that although best performance is ob-
tained for the data set C1 and worst for R2, the change in performance quality
from one data set to another is relatively small. Thus, our approach is capable of
producing satisfactory results for problem domains with varying characteristics.

5.3 Vehicle Planning and Control

Our final problem domain is taken from robotics, where a vehicle equipped with
a three-motor omnidirectional drive needs to move to a goal location in 2D
without colliding with stationary, circular obstacles of known radius. While this
motion planning problem can be solved in many different ways, framing it as a
mixed integer linear programming (MILP) problem is common in the controls
community due to the ease of incorporating complex, time-varying dynamics
[2]. We compare the results for predicting the relaxed LP problem solutions in
the minimum-control-effort trajectory-generation problem with those obtained
by directly using the COIN-OR solver within the framework of the iterative
MILP time-step selection algorithm presented in [6]. 50 random instances of
the problem are generated with the same parameter ranges as given in [6] and
the last 10 instances are used for testing whereas all the others are utilized for
learning.

Table 4 shows that the average cross-validation error, average solution es-
timation error (taken over the 10 test problems), and the average percentage
of infeasible solutions increase non-linearly with the number of obstacles. Even
though different values of ζ are chosen, ǫ increases with additional constraints
in the form of obstacles such that the overall prediction error cannot be main-
tained exactly at the same level. Interestingly though, the average speed-up
factor (again taken over the 10 test problems) improves with the number of
obstacles. This happens because the complexity of the boosting tree model re-
mains unchanged in all the cases, thereby, keeping the inference time constant,
and reducing the rate of exponential growth in the computation time. We want

3 We intentionally suppress solving actual LPs just to show that even otherwise our
algorithm predicts infeasible solutions for few problems

Table 4. Performance evaluation on data sets with varying number of obstacles

Performance metric
Number of obstacles

5 10 15 20

Average COIN-OR computation time (in s) 20.27 48.25 196.98 1075.68
Average Boost-LP computation time (in s) 0.49 0.82 2.49 11.01

Average speed-up 41X 59X 79X 98X
Average cross-validation error (%) 0.2 0.5 1.1 2.0

Average MILP solution estimation error (%) 0.5 1.3 2.7 5.0
Average no. of infeasible solutions (%) 0.1 0.5 1.2 2.1

to add here that if the tree complexity is enhanced by increasing M and J to
keep the prediction errors nearly constant in all the cases, then this reduction in
exponential growth rate is no longer observed. Thus, for a given training data
set size, if additional constraints are introduced in the system, then there is a
trade-off between computational benefits and prediction accuracy.

6 Conclusions

In this report, we modify the standard boosting tree technique to develop an
approach, which we term as the Boost-LP algorithm, for learning the solutions
of similar LP problems. We provide absolute performance guarantees for both
the individual decisions variables as well as the overall LP solution. The expres-
sions clearly show that an user-defined vector can be adjusted to achieve better
performance up to a certain limit that is governed by the LP system parameters.
We conduct experiments in three different problem domains to highlight the fact
that the proposed algorithm is capable of inferring the solutions of ILP, MILP,
and SILP problems in a fraction of the time required by standard optimization
procedures, without significantly compromising the solution accuracy.

Directions for future work include investigating theoretical bounds on the
number of infeasible solutions and exploring the scalability of our approach in
inferring solutions of problems consisting of higher-dimensional decision variable
vectors. We also intend to quantify the robustness of our algorithm to variations
in the training data set parameters and validate it on more complex planning
domains consisting of dynamics constraints and polygonal obstacles.

References

1. J. E. Bell and P. McMullen. Ant colony optimization for the vehicle routing prob-
lem. Advanced Engineering Informatics, 18(1):41–48, 2004.

2. J. Bellingham, Y. Kuwata, and J. How. Stable receding horizon trajectory control
for complex environments. In Proceedings of the AIAA Guidance, Navigation, and

Control Conference, Austin, Texas, USA, 2003.

3. R. Brandenberg. Radii of regular polytopes. Discrete & Computational Geometry,
33(1):43–55, 2005.

4. COIN-OR. http://www.coin-or.org/index.html.
5. M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for

the vehicle routing problem with time windows. Operations Research, 40(2):342–
354, 1992.

6. M. G. Earl and R. D’ Andrea. Iterative MILP methods for vehicle-control problems.
IEEE Transactions on Robotics, 21(6):1158–1167, 2005.

7. H. Esmaeili, N. Mahdavi-Amiri, and E. Spedicato. Explicit ABS solution of a class
of linear inequality systems and LP problems. Bulletin of the Iranian Mathematical

Society, 30(2):21–38, 2004.
8. T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2nd edition, 2008.
9. C. Y. Lee, S. Piramuthu, and Y. K. Tsai. Job shop scheduling with a genetic

algorithm and machine learning. International Journal of Production Research,
35(4):1171–1191, 1997.

10. S. J. Louis, X. Yin, and Z. Y. Yuan. Multiple vehicle routing with time win-
dows using genetic algorithms. In Proceedings of the Congress on Evolutionary

Computation, Washington DC, USA, 1999.
11. R. Nallusamy, K. Duraiswamy, R. Dhanalakshmi, and P. Parthiban. Optimization

of multiple vehicle routing problems using approximation algorithms. International

Journal of Engineering Science and Technology, 1(3):129–135, 2009.
12. V. Nguyen, B. Steece, and B. Boehm. A constrained regression technique for CO-

COMO calibration. In Proceedings of the 2nd ACM-IEEE International Symposium

on Empirical Software Engineering and Measurement, Kaiserslautern, 2008.
13. T. Orestis and S. Panagiotis. Combinatorial optimization through statistical

instance-based learning. In Proceedings of the 13th IEEE International Confer-

ence on Tools in Artificial Intelligence, Dallas, Texas, USA, 2001.
14. S. Sen and H. D. Sherali. Decomposition with branch-and-cut approaches for two-

stage stochastic mixed-integer programming. Mathematical Programming:Series A

and B, 106(2):203–223, 2006.
15. M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with

time window constraints. Operations Research, 35(2):254–265, 1987.
16. D. Vladušič, A. Černivec, and B. Slivnik. Improving job scheduling in grid en-

vironments with use of simple machine learning methods. In Proceedings of the

6th International Conference on Information Technology: New Generations, Las
Vegas, Nevada, USA, 2009.

17. W. Zhang and T. G. Dietterich. High performance job-shop scheduling with a
time-delay TD(λ) network. In Advances in Neural Processing Information Systems,
Denver, Colorado, USA, 1996.

