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Abstract. We work out the ground-state diagram of weakly-repulsive penetrable bosons, using mean-field
theory with a Gaussian ansatz on the single-particle wave function. Upon compression, the fluid transforms into
a cluster supersolid, whose structure is characterized for various choices of the embedding space. In Euclidean
space, the stable crystals are those with the most compact structure, i.e., triangular and fcc in two and three
dimensions, respectively. For particles confined in a spherical surface, as the sphere radius increases we observe
a sequence of transitions between different cluster phases, all having a regular or semiregular polyhedron as
supporting frame for the clusters. The present results are relevant for the behavior of ultracold bosons weakly

coupled to a Rydberg state.

1 Introduction

The ground state of a collection of N non-interacting iden-
tical bosons is a product of single-particle states, all equal
to the ground state of one particle only. We say that the
system state is a perfect condensate. The condensate is a
phase-coherent state, since the wave function of an indi-
vidual particle is in phase with the wave function of other
particles. Upon heating, phase coherence is reduced and
eventually destroyed by thermal fluctuations, as first pre-
dicted by Einstein for an ideal gas of bosons almost a cen-
tury ago.

The concept of condensate can be extended to interact-
ing many-body systems, if the highest eigenvalue of the
one-body density matrix is a macroscopic number; then,
there is a single-particle wave function that is occupied in
a macroscopic way (a property equivalent to off-diagonal
long-range order) [1]. For example, in simple models of
bosons on a lattice, when the tunneling/hopping term dom-
inates the interaction term in the Hamiltonian, then the
system has a ground state consisting of every particle in
the same state spread across the entire lattice.

We hereby focus on the behavior at zero tempera-
ture (T = 0), where many condensed quantum systems
may still undergo (quantum) phase transitions driven by
a non-thermal control parameter, such as pressure, mag-
netic field, or chemical composition. A simple example
is the freezing of an ultracold fluid of soft-core bosons, as
could be realized in bosonic atoms dressed with Rydberg
states [2, 3]. In purely classical terms, an interaction that is
everywhere finite can stabilize cluster crystals at low tem-
perature and high density (see, e.g., [4]). Indeed, it may
be energetically more convenient to form isolated blobs of
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particles than having them distributed homogeneously in
space [5, 6]. Clusterization also occurs in quantum sys-
tems, as first shown theoretically by Pomeau and Rica in
1994 [7].

In the weak-interaction limit, an effective approach to
the physics of ultracold bosons is mean-field theory (MF),
which assumes that the many-body state is a perfect con-
densate. The “best” single-particle state ¢ (that is, the
one of minimum energy) obeys the Gross-Pitaevskii (GP)
equation [1],
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where u is the pair potential and A is the La-
grange multiplier enforcing the normalization condition
J;/ d?x |lﬁ(x)|2 = 1 (in d dimensions, denoting V the sys-
tem volume). For the penetrable-sphere model (PSM) po-

tential,
r<o

u(r) = { o o)

, >0,

Kunimi and Kato [8] have solved the GP equation in two
dimensions, showing that the high-density phase is a trian-
gular cluster crystal. Macri and coworkers [9] have tested
MF results against Monte Carlo simulation of a weakly-
interacting PSM system, finding that the exact freezing
point lies indeed extremely close to the theoretical esti-
mate.

However, solving the GP equation for a three-
dimensional (3D) crystal is not as easy as in two dimen-
sions, since the computational effort is much greater. This
is a severe problem when many different crystalline struc-
tures compete for the ground state. A cheaper strategy,
which we pursue here, is to take a reasonable form of con-
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densate wave function, dependent on parameters, and op-
timize its shape by minimizing the MF energy functional.
We have checked in a few two-dimensional (2D) cases that
the best variational state reproduces the GP wave function
and energy very accurately [10]. Then, by examining a
wide spectrum of 3D lattices, we have identified stable and
metastable solid phases and characterized their melting be-
havior.

2 Three- and two-dimensional systems

The MF energy functional reads:
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representing the sum of zero-point kinetic energy and po-
tential energy per unit particle. When the density is low,
energy is minimized by spreading the wave function ¢
over the system volume, and the stable phase is then fluid.
On the contrary, for very high densities the energy is lower
for a strongly inhomogeneous ¢ peaked at the sites of a
crystalline lattice (at least provided that the bounded po-
tential u is “fatter” than Gaussian).

Within the variational method, we write the conden-
sate wave function as a sum of Gaussians:

1 x-R )2
Y(x) = Co—re Y e CF) “
w3
where the R’s are direct-lattice vectors, while a and a are
adjustable parameters. Clearly, @ = O corresponds to the

fluid phase. The normalization constant in (4) is given
by [10]
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where vy is the volume of the primitive cell. To allow for
the possibility of cluster crystals, the lattice constant @ and
the number density p are taken as independent variables.
Denoting N, the number of lattice cells, the number of par-
ticles per cell is on average N/N. = (N/V)(V/N.) = puvog.
If in equilibrium pvy > 1, then the solid phase is a cluster
crystal.
On the other hand, ¥ can also be written as a Fourier
series,
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where the G’s are reciprocal-lattice vectors. The Fourier
coefficients of  are given by [10]
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Unless « is exceptionally large, the Fourier series is better
suited for the computations than the original ¥ expression.

The main advantage of the Gaussian ansatz is an an-
alytic simplification of the energy functional, allowing a
considerable speed up in the numerical calculations [10].
Indeed, the kinetic energy admits a closed-form expres-

sion:
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where ey = /?/(mo?) is a natural energy unit. At variance
with Eyip, the formula of the potential energy is explicitly

lattice-dependent. For the triangular lattice, we find:
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where u(k) is the real-valued Fourier transform of u. In
the first sum, only even-even combinations of reciprocal-
lattice basis vectors by and b, do occur; the other G’s are
exclusively involved in the second sum. Finally,
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An expression similar to (9) holds for any Bravais or
non-Bravais lattice, both in two and in three dimensions.
Choosing the pressure P as the control parameter, the most
stable phase at 7 = 0 is the one with the lowest enthalpy.
We confirm that, in two dimensions, the fluid freezes
into a triangular cluster crystal (the coexistence densities
are pr = 12.315 and p, = 13.131, with p,vy = 25.8 [10]).
In three dimensions, the only relevant zero-temperature
PSM phases besides the fluid are the compact cubic crys-
tals (fcc, bee, and hep), see Fig. 1. Loosely packed crys-
tals, such as the simple-cubic crystal and the diamond
crystal, melt continuously at a common pressure P. that
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Figure 1. Enthalpy / (units of ¢y) for each solid phase, see leg-
end, plotted as a function of P (units of e2e”'o™), taking the
fluid as reference. Left: 2D case. The arrows mark the transition
into the triangular crystal (left) and into the square crystal (right).
The transition pressure for the honeycomb and striped crystals is
the same as for the square crystal [10]. Right: 3D case. The ar-
rows mark the transition into the fcc crystal (left), the sh crystal
(middle), and the sc crystal (right). The transition pressure for
the diamond crystal is the same as for the sc crystal [10].
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is much larger than, say, the fcc melting pressure. The
fluid freezes into a fcc crystal (ofo€e/ey = 14.294 and
prCO'3 €/ep = 16.599 are the density values at coexistence,
with pgcvo = 36.7 [10]), but the difference in enthalpy be-
tween fcc and hep is very small. As the pressure increases,
the hcp crystal eventually prevails, and a fcc-to-hep transi-
tion then takes place.

The MF spectrum of fluid excitations can be obtained
by solving, in the amplitude-phase representation, the
time-dependent GP equation for a condensate wave func-
tion that deviates only slightly from homogeneity. It turns
out (see e.g. [10]) that the perturbation has the form of
plane waves with a dispersion relation of Bogoliubov type,

21,2 21,2
oo = \/_(_ e

2m \ 2m

In particular, if u(k) is negative in a range of k values then
the fluid phase exhibits superfluid behavior (by Landau’s
argument). For the 3D PSM fluid, w(k) shows a roton min-
imum for high enough densities (see Fig. 2). The roton
minimum becomes unstable exactly at the transition den-
sity for continuous freezing, which will thus coincide with
the upper stability threshold of the fluid.

A further outcome of our theory is the supersolid char-
acter of the crystalline phases. A supersolid phase accom-
modates both diagonal and off-diagonal long-range order,
meaning that particles are arranged in a crystalline struc-
ture but, at the same time, can flow without dissipation.
Like a superfluid, also a supersolid can be characterized by
the nature of its response to uniform axial rotations. Un-
der a slow rotation, a fraction of the supersolid stands still,
as witnessed by the value of its moment of inertia / be-
ing smaller than the value [ expected classically [11]. We
have shown [10] that in MF theory the superfluid fraction
1-1/I, has a characteristic lower bound, > /¢, where
Ymin and Y. are the minimum and maximum value of
¢ in a cell. In our variational theory this lower bound is
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Figure 2. Dispersion relation of collective excitations for the
PSM fluid, plotted for three values of g = pu(0)/eo (see legend).
The r.h.s. of Eq. (11) is positive up to g = 90.9542 . . ., which cor-
responds to the same reduced density (21.7137...) where contin-
uous freezing takes place in three dimensions.

strictly positive, implying that the crystal is supersolid at
every pressure. In fact, above a certain pressure the value
of i in the interstitial region is so small that phase coher-
ence will be destroyed by quantum fluctuations, and the
system then enters a “normal” solid phase (see, e.g., [12]).

3 One-dimensional system

In the one-dimensional (1D) case, which we treated in
Ref. [13], the analytic simplifications introduced by the
Gaussian ansatz are even stronger than in higher dimen-
sions. The only problem with MF theory is that a rig-
orous result by Pitaevskii and Stringari rules out, at zero
temperature, any form of long-range order (including off-
diagonal long-range order) in 1D bosonic systems with
continuous group symmetries [14]. However, if we add
a trapping potential in the axial direction, both the ampli-
tude and phase fluctuations are suppressed at low 7' and
one has a true condensate in one dimension, at least pro-
vided that N is large enough [15].

Another issue concerns the range of validity of the MF
approximation. A hand-waving argument goes as follows:
MF theory is expected to hold when the healing length
1/ AJmpu(0) (with u(0) ~ o?e), fixing the length scale
above which collective physics dominates over single-
particle physics, is much larger than the average inter-
particle separation p~'/¢. In equivalent terms, one might
say that MF theory is valid whenever the kinetic energy
per unit particle due to localization, #2p*“ /(2m), is much
larger than the interaction energy u(0)p. In three dimen-
sions, this leads to poe/ey < (ep/€)?, which corresponds
to a density range that is wider the weaker the interaction
strength. However, in one dimension the MF regime is
rather poe/ey > (e/ ¢0)?, and the approximation improves
with increasing density.

4 Soft-core bosons on a sphere

Finally, we have extended our theory to the case of parti-
cles embedded in a spherical surface. The systems which
more closely conform to this setting are ultracold bosons
trapped in a thin spherical shell, which will be the sub-
ject of upcoming experiments under microgravity condi-
tions [16].

Spherical boundary conditions are often employed in
simulations as a means to discourage crystalline ordering
at high density (as is well known, triangular order is frus-
trated on a sphere [17-20]). In practice, the curvature im-
poses a distinct excess of fivefold disclinations over sev-
enfold ones, which considerably complicates the search
for optimal packings, even for small radii. Franzini and
coworkers [21] have studied by density-functional theory
a classical system of soft-core particles on a sphere, find-
ing arich catalog of cluster (pseudo)phases as a function of
the sphere radius R (the suitability of the thermodynamic
formalism is justified a posteriori by the large size of the
system near the transition point). We expect the same to
occur in a system of softly-repulsive bosons, which will
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also clusterize at high density, becoming solid-like inho-
mogeneous. As for the classical system, numerous struc-
tures would compete for stability, and the natural candi-
dates for the dense phases are highly symmetric packings
of clusters. Considering that for the 2D PSM the edge of
the triangular lattice is about 1.510 at the melting point,
it is likely that the supporting frame of the clusters for a
given R will be found among the regular or quasi-regular
polyhedra with edge ¢ = 1.51¢. For instance, since the ra-
dius of the sphere circumscribing the regular icosahedron

equals
¢
R:Z\/10+2\/§, (12)

an icosahedral cluster phase is most likely to occur for R ~
1.440.

Expanding the condensate wave function in spherical
harmonics,

00 [
P =) > (@ with Y lenl =1, (13)

=0 m=-I Im

the specific energy & is again written as the sum of two
terms [22],

K2 2
Euin = 5 %} I+ Dleml (14)

and
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where P;(x) are Legendre polynomials and dj,, are the
Fourier coefficients of ||>. In practice, the / sum must be
truncated, i.e., [ < [,ax, Where /.« 1 chosen in accordance
with the spatial resolution adopted for the description [23].

We have first provided an analytic proof of clusteriza-
tion for R = 1.450, i.e., where we expect that the symme-
try of the stable phase is icosahedral. We employ a vari-
ational wave function that is a weighted sum of the two
simplest icosahedral harmonics [24],

1
with 8 a parameter to optimize. For this ¢ the calculation
of (14) and (15) is an analytic tour de force [22], and a
graphical demonstration of the existence of the transition
for the PSM fluid is provided in Fig. 3.

Clearly, choosing the icosahedron as scaffolding for
the clusters is just one possibility; as R increasingly de-
parts from 1.450, other polyhedra will be better suited
than the icosahedron for matching the condition ¢ =
1.510. We have considered ten circumscribable polyhedra
(see Table 1), and for each of them computed the grand
potential as a function of R (for fixed radius and chemical
potential, the stable phase is the one with the lowest grand
potential). A one-parameter i adequate to represent the
high-density patterns is a sum of Gaussians centered at the
vertices Ry (k = 1, ..., n) of the given polyhedron:

n A 2
() =Co ). exp{—a(Rr ; Rk) } .an

k=1

¥ = Cy(T) + BTY) with Cp = (16)

Figure 3. Energy (units of ¢;) of the PSM solid relative to the
fluid, plotted as a function of 8 for R = 1.450 and three densities
o (units of o?ey/€): from top to bottom, p = 14.5 (black), 15
(blue), and 15.5 (red).

The fluid ground state ( = 1/ VA4r) is recovered as a limit-
ing case, that is for @ = 0. We have followed two different
but equivalent routes to compute the grand potential [22]:
either i) a direct Monte Carlo estimate of the integrals orig-
inally defining &y, and Epy; or ii) the calculation of a large
number of Fourier coefficients for i and y/?.

The resulting ground-state diagram of the PSM fluid,
plotted in Fig. 4, includes as many as seven supersolid
cluster phases in the R range from 0.60" to 2.50. All transi-
tion lines are first-order, except for a portion of the melting
line for the tetrahedral phase (marked as dashed in Fig. 4)
which is second-order. Each cluster phase spans a certain

Table 1. Edge length ¢ in units of the circumscribed radius R for
the polyhedra analyzed in this work (the five regular solids,
three Archimedean solids, and two Catalan solids). For the

snub-cube case, 3t = 1 + i/19— 3V33 + i/19+3\/§and

¥? =26 + 6 V33. In the last two lines, the quoted £/R refers to
the biscribed form of the polyhedron, and in this case ¢
represents the short edge.

polyhedron t/R
tetrahedron 2+42/3=1.632...
cube 2v3/3=1.154...
octahedron V2=1414...
dodecahedron 4/(V3+ V15)=0713...

\J10+2v5=1.051...

icosahedron 4/
cuboctahedron 1
rombicuboctahedron 2/+5+2V2=0714...
B _
snub cube e = 0.744 .
tetrakis
hexahedron 6(3 - \/§)/3 =0919...
dodecahedron 15 =0 e
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Figure 4. PSM bosons on a sphere: T = 0 phase diagram ac-
cording to our theory, choosing the radius R and the chemical
potential ¢ as control parameters. As R increases, the cluster
phase changes accordingly, successively assuming the symmetry
of a tetrahedron (T), octahedron (O), cube (C), icosahedron (I),
tetrakis hexahedron (TH), snub cube (SC), and pentakis dodeca-
hedron (PD).

interval of R; when more phases compete for stability, the
phase with the lowest value of grand potential turns out to
be the one providing the most efficient occupation of the
surface, or, equivalently, the highest coordination number.

5 Conclusions

We have used the variational method to evaluate, within
MF theory and a Gaussian ansatz for the condensate wave
function, the average quantum energy of a collection of
fully penetrable bosons in spaces of various dimensional-
ity. Using this information, we have identified the zero-
temperature phases of the PSM system and clarified the
nature of the pressure-induced freezing transition. In the
dense phase particles are invariably gathered in clusters
centered at the sites of a crystalline lattice. For the special
case of particles embedded in a spherical surface, clus-
ters instead fall at the vertices of a regular or semi-regular
polyhedron inscribed in the sphere. Within our MF de-
scription, the dense phases are all supersolid, i.e., they are
characterized by non-classical rotational inertia.
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