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ABSTRACT

Organic Light Emitting Diodes (OLEDs) are small, optoelectronic devices that

can be used in the production of energy-efficient, high definition displays in cell

phones, computers, and televisions. These devices have great potential to replace light

emitting diodes (LEDs) completely because they are more environmentally friendly to

produce, they are more efficient, and they can create displays much thinner than current

LED displays. Moreover, OLEDs allow for the creation of brighter, flexible screens.

While these devices have great potential, it has not been realized yet due to cost and

difficulty in optimizing production processes. Many companies have been attempting to

produce affordable OLED displays for years, but have not been successful due to lack of

optimization of production processes. Work should continue to be done in economic

optimization of the processes and also optimization of energy efficiency of the devices.
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I. Introduction

Organic Light Emitting Diodes, or OLEDs, are a relatively new technology with

hope to be used in TV displays, computer monitors, and other products in the near future.

An OLED is composed of two organic semiconducting layers sandwiched between an

anode and a cathode. When a current is run through the device, energy is emitted in the

form of light photons, thereby making these devices excellent candidates for new display

technology. Current displays utilize technologies such as Light Emitting Diodes (LEDs)

and Liquid Crystal Displays (LCDs), which are both much lighter and more energy

efficient than previous technologies such as the Cathode Ray Tube. Even more promising

though, OLEDs have a number of advantages over LED and LCD technologies, which is

what makes it an attractive new technology for companies and consumers alike. For one,

OLED technology is much "greener" than other technologies. Since it uses organic

chemicals, it is much less toxic to the environment to produce or to dispose of. It is also

much more energy-efficient than other technologies, as it does not require a backlight like

LCD screens do. OLED screens and monitors are also very thin (on the order of

millimeters)-much thinner than any other technologies in use. Another very attractive

feature of OLED technology is that OLED materials can be painted onto bendable, thin

materials like plastic, thus making it theoretically possible to turn an entire wall into a

high quality TV screen that can be stored by simply rolling it up. Finally, OLEDs have



the possibility of producing much higher quality images than technologies currently in

use.

OLEDs use organic chemicals that emit lights of different colors based on the

electric current sent through them. They consist of a grid of rows and columns printed on

some flat substrate. On top of this substrate are usually a layer of some polymer to

promote adhesion to the substrate and then a layer of the chemicals themselves. While

OLEDs are much better candidates for displays in terms of efficiency than the technology

currently on the market, they go through a very complex manufacturing process, thus

making the final product economically unfeasible for most consumers. Currently, the

only affordable OLED screens being produced right now are, on average, only big

enough to be used as cell phone screens. Companies such as Sony and Samsung are

attempting to create bigger affordable displays out of OLEDs, but are having difficulty

creating a product cheap enough for mass consumption. Without economic optimization

of the production process, OLED displays may never succeed in the market. However,

OLED technology is a very promising field, and could greatly reduce power usage in

many everyday devices.

II. General Background

a. Light Emitting Diodes

LEDs are the primary technology currently being use in most color display

products on the market. LEDs have many advantages over previously used CRTs, such as

their low weight, higher brightness, and lower energy consumption. LEDs also have a



relatively long lifetime, they are durable, and they are very small (allowing high

definition displays). When they first entered the market in television screens, they were

very expensive, but now that processes have been improved and they are in full

production, the cost has gone down significantly. LEDs have also started to replace

regular incandescent light bulbs as a source of white light. LEDs have a much higher

ratio of light output to energy input than incandescent bulbs, and are therefore much more

energy efficient.

A Light Emitting Diode (LED) comprises two types of semiconductors bonded to

one another and attached to positive and negative electrodes. A semiconductor is a

material whose ability to conduct varies. Usually, semiconductors are poorly conducting

materials that have been doped (impurities have been added) to allow electrons to flow

more freely and thus increase the conduction capability of the material. There are two

types of semiconductors: N-type and P-type. An N-type semiconductor is one with a

surplus of negative particles (electrons), and a P-type semiconductor effectively has a

surplus of positively charged particles. This means that a P-type semiconductor has

"holes" in it, where any free electron can be caught. Electrons can jump from hole to

hole, from a more negatively charged area to a more positively charged one, effectively

moving the holes themselves from a more positively charged area to a more negatively

charged area. Since the electrons move from the negative side to the positive side,

electricity only flows in one direction.

When an N-type material and P-type material are bonded together, the extra

electrons from the N-type jump across the interface into holes in the P-type material. This



creates a small area in the middle of the two materials called the "depletion zone." This

zone has a balance of positive and negative charges, effectively returning it to its

insulating, un-doped state. To adjust this in order to promote the free flow of electrons

(electricity), the two semiconducting materials must be attached to positive and negative

electrodes. The negative electrode must be attached to the N-type material to repel the

extra electrons into the P-type material, and the positive electrode must be attached to the

P-type material to attract the electrons. Once the electrodes are attached, electrons may

flow freely throughout the material. In other words, some electrons have enough energy

to leave the valence electron shell of the atom/molecule they are in. When the circuit is

complete and the electrons are flowing freely, the electrons have the possibility of falling

into the holes and jumping from one hole to another. Falling into a hole means that the

electron falls from the conducting band into a lower orbital, releasing energy in the form

of a photon. If the photon's wavelength is within the visible spectrum (the wavelength

depends on the distance the electron has jumped, i.e. the width of the band gap), it

produces a specific color light. Figure 1 shows the movement of electrons from the N-

type material to the P-type material, resulting in the electron falling from the conduction

band to the valence band of a molecule, releasing energy in the form of light.
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Figure 1. This shows the general process of an LED. When a current
is applied, the electrons move from the N-type material to the P-type
material, filling holes by falling from the conduction band to the

valence band. When this happens, the electron sheds energy (whose
exact amount is determined by the width of the band gap) in the form
of light. http://en.wikipedia.org/wiki/LED.

The width of the band gap determines the amount of energy contained in the

released photon, and ultimately determines the wavelength of the light emitted based on

Equation 1:

E = hu (Equation 1)

where E is the energy contained in the photon (calculated), h is Planck's constant (6.626

x 10 -34 Js = 4.136 x 10-'5 eVs), and v is the frequency of the light (measured). Using

Equation 2:

v = c/X (Equation 2)

........ ...........................



where c is the speed of light (2.998 x 108 m/s) and k is the wavelength of the light. The

wavelength of the emitted photon determines the color of the light, illustrated in Figure 2

below. Photons with a lower wavelength (-350-450nm) lie in the purple-blue range of

the spectrum, while photons with a higher wavelength (-650-700nm) lie in the red range.

Any photon with a wavelength lower than -350nm or higher than -700nm is outside of

the visible spectrum, and cannot be seen with the naked eye. These types of photons lie in

the ultraviolet range or the infrared range, and are not useful for creating an LED display.

Instead, infrared and ultraviolet photons being emitted from an LED display decreases

the efficiency of the device because some of the energy used to run it is being released as

unusable energy. Because of this, when determining what materials to use for the

semiconductors in the device, the width of the band gap must be taken into account so

that the device emits photons in the visible range (thus creating a light display).
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Figure 2. This is the electromagnetic spectrum. Visible light photons have

wavelengths ranging from ~350nm to -700nm. The wavelength of the
photon determines the color of light.
http://www.psych.ndsu.nodak.edu/mccourt/Psy460/Light%20as%20a%20sti
mulus%20for%2Ovision/electromagnetic%20spectrum.JPG.

Since the color of the light emitted is determined by the wavelength, which is

determined by the band gap of the semiconductors, it can be concluded that the material

composition of the semiconductors determines the color of light produced.

Therefore choosing the right materials to be used as semiconductors is important in

creating a device with a large range of visible colors emitted. A variety of inorganic

materials are used as semiconductors in light emitting diodes, and the wavelength and

color of light emitted from them is listed in Table 1:

~"

-



MATERIAL WAVELENGTH (nm) COLOR

Gallium Arsenide (GaAs) X > 760 Infrared
Aluminum Gallium Arsenide (AlGaAs)

AlGaAs
Gallium Arsenide Phosphide (GaAsP) 610 <X < 760 Red

Aluminum Gallium Indium Phosphide (AlGaInP)
Gallium (III) Phosphide (GaP)

GaAsPGaAsP 590 < X < 610 OrangeA1GaInP
GaP

GaAsPGaAsP 570 < k < 590 Yellow
A1GaInP

GaP

GaP
AlGaInP

Indium Gallium Nitride (InGaN) 500 < k < 570 Green

Gallium (III) Nitride (GaN)
Aluminum Gallium Phosphide (AlGaP)

InGaN
Zinc Selenide (ZnSe) 450 < k < 500 Blue

Silicon Carbide (SiC)-substrate
Silicon (Si)--substrate

InGaN 400 < k < 450 Violet

Dual blue+red LEDsDual blue+red LEDs Various types PurpleBlue LED with red phosphor
White LED with purple casing

AlGaN X < 400 Ultraviolet
Diamond (C)

Aluminum Nitride (AIN)
Aluminum Gallium Indium Nitride (AlGaInN)

Blue or UV diode with yellow phosphor Entire spectrum White

Table 1. This is a table of inorganic materials used in LEDs and the wavelength/color of light they emit when
used in the devices. http://en.wikipedia.org/wiki/LED.



Some white LED displays, instead of using phosphor to convert blue or UV light

into white light, use RGB systems, or "Red Green Blue" systems. In these systems,

various materials are used to produce red, green, and blue light. Then, the colors are

mixed together to produce the full range of wavelengths, emitting white light. Since this

system requires a precise mixing of color photons, it is not used as often as the blue/UV

light and yellow phosphor system. In the phosphor system, a blue/UV LED is coated with

yellow phosphor. When the blue/UV waves pass through the yellow phosphor they

undergo a Stokes shift, increasing their wavelengths to lengths in the visible spectrum.

While this system is used more than the RGB LED, it is not as energy-efficient because

energy is lost in the form of heat during the shift.

LEDs in televisions are essentially tiny light bulbs. The diode is attached to a

positive and negative terminal and encased in a transparent plastic case to focus the

Figure 3. This is the structure of an LED. The diode is encased in a
transparent case used to focus the emitted light in one direction and
maintain efficiency. http://electronics.howstuffworks.com/led3.htm.

...............



emitted light in the forward direction (Figure 3). This focusing is important in the

conservation of energy, as less light is reflected back into the device as wasted energy.

b. Organic Light Emitting Diodes

Organic Light Emitting Diodes (OLEDs) work very much like LEDs, except that

the emissive (N-type material) and conductive (P-type material) layers are made from

organic materials. The fact that the materials are organic is important in the safe

production and disposal of the devices. A typical emissive layer is made from a polymer

such as polyfluorene (Figure 4), whereas a typical conducting layer is made from

polymers such as polyaniline (Figure 5). These two chemicals are prime candidates for

the semiconductors because the phenyl groups on each of them stabilize the radicals.

This is because the pi orbitals in the double bonds align parallel to one another, and

resonance between different conformations allows the electron clouds to mesh together.

Thus, when the N-type material gives up an electron and becomes unstable because

there is a free radical present in the molecule, the pi bonds are able to stabilize the free

radical by distributing the extra negative charge over all of the pi bonds that have been

meshed together. The same goes for the P-type material receiving electrons. When an

electron is received as a free radical, the pi bonds in the phenyl groups are able to

stabilize it.
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Figure 4. This is the structure of polyfluorene. The
fluorine molecules in polyflurorene are

connected at the 2 and 7 positions.
http://en.wikipedia.org/wiki/Polyfluorene.

H H

Figure 5. This is the structure of polyaniline. In this diagram, n+m=l--, and x is

the number of units in the chain (degree of polymerization).
http://en.wikipedia.org/wiki/Polyaniline.

Similar to semiconductors in an LED, the polymers used as semiconductors for

OLEDs must be doped to enable easier electron transport. There are two methods of

doping a polymer. In the first method, a polymer is exposed to either an oxidant or a

reduction agent. This will either add extra electrons to create an N-type doped polymer or

remove electrons to create a p-type doped polymer. The second method of doping

polymers involves an electrochemical reaction. In this process, an electrode coated with

polymer is placed in a solution with electrolytes in which the polymer is not soluble. The

rr!



solution should also contain other reference electrodes. When current is run through the

solution, a charge is created along with ions from the electrolytes, and the extra charge

either adds extra electrons to the polymer for an n-type doped polymer or removes

electrons for a p-type doped polymer.

A typical OLED's structure begins with the substrate, or the material used to

support the system. This material is usually something along the lines of a silicon or

glass slide. On top of this is the anode layer, which removes electrons from the P-type

material when a current flows. Next in the OLED are the conductive layer, and then the

emissive layer. Finally, the cathode is layered on top (Figure 6).

Figure 6. This figure shows the general structure of an OLED:
substrate, anode, conductive layer, emissive layer, cathode.
http://electronics.howstuffworks.com/oled .htm.

........................... ..............



Different voltages applied to the different areas cause current to flow from the

anode to the cathode through the two organic layers. When this happens, electrons are

removed from the conductive layer (leaving behind holes) and taken to the emissive

layer. This leaves behind many holes that need to be filled, so the holes jump to the

emissive layer to recombine with the surplus of electrons. The holes and electrons

recombine at the interface of the two layers when a free electron falls back into an

energy state in an atom that is missing an electron. When the electrons fall back into the

holes, they release energy in the form of photons in the visible spectrum. The

wavelength of the photon depends on the difference in the energy of the free electron

and that of the energy level the electron has just filled. More generally, the color of the

light emitted depends on the type of material in the emissive layer. In industry today,

manufacturers layer different organic polymers together to form the emissive layer and

create different colors of light. The intensity of the light is based on the amount of

current being passed through the organic layers-the greater the current, the brighter the

light emitted is. This whole process is called electrophosphorescence.

Most OLED devices utilize several types of doped polymers that create different

band gaps and emit different colors of light. More specifically, polymers that emit red,

blue, and green light are primarily used. Currently, most devices pattern the red, blue, and

green emitting diodes on the same plane. When they are patterned on the same plane,

however, the gap between pixels is still large and the definition of the display is not as



clear as it could be. Layering the red, blue, and green emitting diodes on top of each other

in a "Stacked OLED" has the potential to increase display definition and color depth.

While this is the typical structure and process of an OLED, there are different

types of OLEDs being researched today. These include the Passive-matrix OLED,

Active-matrix OLED, Transparent OLED, Top-emitting OLED, Foldable OLED, and

White OLED. Passive Matrix OLEDs are distinct in that they have strips of anode and

strips of cathode aligned 90 degrees perpendicular to one another. This makes a grid of

crossings, or "pixels," where different amounts of current can be sent, determining

whether the pixel remains off, turns on, and the intensity of the light emitted. The

Passive Matrix OLED requires external circuitry, which makes it more energy-intensive

and harder to manufacture than other types of OLEDs. Because of this, Passive Matrix

OLEDs are most suited for small displays, such as a cell phone or PDA display.

However, though they are more energy intensive than other types of OLEDs, they still

consume less power than LCDs in use today.

Active-matrix OLEDs have complete layers of everything (not strips), but there

is a thin-film transistor (TFT) grid overlaid by the anode. This is the grid that

determines which pixels get turned on and off, and the intensity of the light emitted.

Active Matrix OLEDs are less energy-intensive than Passive Matrix OLEDs because the

TFT array requires less power than the external circuitry of the Passive Matrix OLED,

so Active Matrix OLEDs are more suitable for large displays such as TV and computer



screens. Active Matrix OLEDs may even be used for things as big as electronic

billboards. The next type of OLED is the Transparent OLED. A Transparent OLED can

be either an Active Matrix OLED or Passive Matrix OLED, but the difference is that all

of the components of the structure (anode, cathode, emissive layer, and conducting

layer) are all composed of transparent materials. Because of this, light can be passed in

either direction. This type of OLEDs, therefore, would be especially suited for alert

systems on the front or rear windshield of a car.

A Top-emitting OLED, usually an Active Matrix OLED, and has emissive and

conducting layers that either reflect light or are opaque (transmitting very little light).

This type of OLED has the potential to work well in products like "smart cards," which

are cards much resembling a credit card but have a microprocessor instead of a

magnetic strip. A foldable OLED can be any of the above types, but is built on a

foldable substrate (such as plastic), and has potential uses in many things like clothing.

Finally, a White OLED simply emits white light that requires much less energy than

even fluorescent lights. The light emitted is also a much brighter, more uniform light.

White OLEDs have the potential to replace all fluorescent lights and reduce energy

costs drastically in buildings currently using fluorescent lights.



III. Production of Organic Light Emitting Diodes

In the production of OLEDs, layering the substrate, anode, and cathode is

simple. However, layering the organic materials is not. Currently there are three types

of production techniques in use for layering the organic polymers: Vacuum Deposition

or Vacuum Thermal Evaporation, Organic Vapor Phase Deposition, and Inkjet Printing.

Inkjet printing uses regular inkjet technology, and the organic molecules are sprayed

onto the substrate. Inkjet printing lets there be very large substrates (like for a big-

screen television) at a much-reduced cost from other methods of manufacturing. In

Organic Vapor Phase Deposition, the organic polymer is heated and evaporated. It is

then mixed with an inert gas and transported, in gaseous form, to a cold substrate. At

this point, the polymer cools down enough to condense on the substrate and form a

uniform layer. The inert gas remains gaseous and is not deposited on the film. This

process has excellent resolution over large areas. Vacuum Thermal Evaporation is a

process of depositing polymer on a substrate, and can create very thin (<100nm),

uniform layers. In Vacuum Thermal Evaporation, the organic polymer is heated and

evaporated and allowed to condense on the substrate (without the aid of a gas). The

resolution from this process is exceptionally good, and can create OLED displays with

an excellent resolution. However, the process itself is very expensive and inefficient.

Another method of producing OLEDs is very similar to Organic Vapor Phase



Deposition, but rather than mix the gaseous organic polymer with an inert gas, the

organic polymer is mixed with an inert gas jet. This allows for much more precise

deposition of the molecules onto the substrate.

IV. Uses

a. White OLEDs

As stated earlier, White OLEDs have the potential to be much more efficient

than regular LEDs and incandescent bulbs currently being used. However, the biggest

problem with White OLEDs right now is that the photons being emitted in the form of

light are not reaching the eye of the observer. In other words, the White OLED emits

enough photons to theoretically be much more efficient than regular LEDs and

incandescent bulbs, but not enough of the photons are leaving the OLED in the right

direction. As a result, the extra photons that could be increasing the efficiency and

intensity of light from the device are being wasted. This is because the substrates with

which most OLEDs are being made (plastic and glass) usually have a high index of

refraction, but open air has a low index of refraction. Therefore, the emitted photons

can easily pass through the OLED device, but once they hit the air interface most of

them are scattered and never reach the eye of the observer.



Efforts are being made to increase the efficiency of the White OLED by

reducing photon scattering at the interface. However, most methods, such as creating

gratings on the surface or coating the surface with a low-index of refraction substance,

cause the light emitted to either blur or change color when viewed from different

angles. The most promising method being tested right now is imprinting a grid of lens

shapes on the OLED (Figure 7) using imprint lithography. In this process, a pattern of

hemispheres is stamped into the polymer immediately after is has been layered onto the

device but while it is still liquid. The polymer then solidifies in this hexagonal array of

lenses. This research is being conducted at the University of Michigan under Stephen

Forrest. While the process has not yet been optimized, imprint lithography can be used

to create a grid of mounds in the organic substance that focus the light emitted in one

direction, rather than having it scatter in multiple directions and decrease the efficiency.

It is claimed that this process increases the amount of light put out by the device by a

full 70%. While the process has not yet been perfected, it is estimated that mass-

producing this technology will optimize the process and greatly decrease the overall

cost.



Figure 7. The pattern imprinted on the White OLED
to increase efficiency by focusing all emitted light in

one direction.
http://www.technologyreview.com/energy/17808/

b. Foldable OLEDs

Foldable OLED displays are created by producing the devices on flexible

substrates. Because the layers are so thin, bending the devices is easy. Flexible OLED

displays could vastly change technology in use today, and would make storing and

transporting high-definition displays feasible. They would also erase the need for certain

other technologies by condensing multiple technologies into one. For instance, projectors

would no longer be needed because the large screen that projectors shine images on now

would be able to produce the images itself and then roll up for easy storage. Technology

transportation would also be much easier, as the flexibility of the OLED displays would

be much more resilient than current rigid technology. Flexible OLED displays could



potentially be used in many other applications, from moving advertisements or flags to

clothing. In short, flexible OLED displays could change the very way we think of

technology. The possibilities are vast.

V. Company Research and Products Already on the Market

Various companies have begun exploring the uses of OLED technology as well.

In January of 2005, Samsung released the largest OLED television to date (21 inches).

Since then Samsung has introduced larger and larger OLED display televisions, and

most recently released a 40-inch OLED television. All of these televisions are high

definition displays, and are all very thin (much thinner than any displays currently on

the market, such as LCDs and LEDs). In October of 2008, Samsung introduced the

thinnest OLED display to date, 0.05mm thick. This display was also bendable. Samsung

has been predicting the use of OLED technology in everyday life as early as 2010, but

the production is still too expensive for the prices to compete with existing LED

technology.

Sony has also been experimenting with OLED technology in their products. This

was the first company to introduce an OLED screen to the public in 2004. Since then,

Sony has tried to incorporate OLED technology in more and more of their products, and

released research done with the Max Planck Institute in 2008 discussing the feasibility

of mass producing thin OLED bendable screens. In this research, they also discussed



the possibility of layering several OLED screens on top of one another to produce 3-D

images. These ideas are still in their beginning stages, and the company has not yet

produced anything that could create 3-D images. Sony has, however, begun to produce

OLED televisions on a regular basis. They use small molecule OLED technology as

opposed to polymer OLED technology, and they are marketing their 11-inch OLED

Digital Television for $2499.99 online.

Sony is also advertising on their website "What's Next for OLED?" In this

section, Sony describes what they plan to do with OLED technology in the future. Most

of the plans include making television displays even bigger and thinner, but Sony also

plans to focus on developing an offshoot technology from OLEDs-Organic Thin Film

Transistors. These organic TFTs can be layered onto flexible plastic substrates, creating

displays that can bend. Displays such as these would be able to display regular, full-

color, high definition, moving images while the display itself is bent. Looking even

further into the future, this technology could be used to create very large, very thin

televisions that can be rolled up for storage.

OLED technology has also been used in the production of the Optimus Maximus

keyboard, developed by the Russian Art. Lebedev Studio, led by Artemy Lebedev. This

keyboard uses small OLED displays in each of the keys, so the keyboard can change

depending on what the user is doing. In other words, the function of the key can change

depending on what is happening on the screen. This allows for rapid switching between



languages, and even shows small changes like showing all of the letters in upper case or

lower-case depending on whether or not the Shift key is being pressed. This product

was only on the market for a short period of time from 2007-2008, but is still being

researched. In fact, a patent application filed in early 2008 indicates that the company

Apple is also working on a similar product.

VI. Experimentation

To determine the efficiency of an OLED sample, a device allowing the input of

a known voltage must be used in order to measure the wavelength and intensity of

emitted light. Such an instrument is the Model PM100 Optical Power Meter System,

available from ThorLabs at MIT. This model has an S120uv sensor and has a range

from 200nm-1100nm. This allows for the measurement of wavelengths from the

ultraviolet range to the fiber optic range, which includes the visible spectrum.

Therefore, inputting a voltage would allow measurement of the wavelength of light. The

intensity of the light can also be measured. The energy efficiency of the sample can also

be determined by measuring the inputted energy and comparing it to the outputted

energy. Scanning electron microscopy can be used to determine the thickness and

uniformity of the layers.



VII. Costs

The costs for creating OLEDs are currently very high because the processes have

not yet been optimized and the market is still small. The materials being used are not

expensive themselves; instead, the production of the devices is the expensive aspect.

Starting at the first step of the process, synthesizing polyaniline and polyfluorene requires

time, energy, and special safety measures. Polyaniline is synthesized by exposing the

monomer (described earlier) to a strong oxidizing agent while dissolved in hydrochloric

acid. Strong safety measures must be taken with the oxidizing agent (usually ammonium

persulfate) and the hydrochloric acid. Also, the reaction is very exothermic, and must be

moderated closely. In the next step of production, if an electrochemical reaction is used to

dope the polymers, it requires energy input in the form of a current run through the

solution. While this would not require much energy or time for small samples, larger

samples require a voltage to be applied for a much longer period of time.

Next, the production processes such as Inkjet Printing, Organic Vapor Phase

Deposition, and Vacuum Thermal Evaporation have not yet been optimized, and are still

expensive. Vacuum Thermal Evaporation, especially, is very inefficient and expensive in

the production of OLEDs. This process technique requires a lot of energy input to heat

the polymers to their gaseous states and to keep the substrate at a cool temperature.

Similarly, Organic Vapor Phase Deposition (with and without the inert gas jet) requires a

substantial amount of energy input to heat the polymers to their gaseous states. It requires

even more energy to transport the gases to the substrate and to keep the substrate cool.

While inkjet printing requires that the polymers only be heated to their liquid phase, it



requires energy to keep the polymers at that liquid stage for a long enough period of time

to get them into the printer and stay liquid until they are deposited on the substrate.

Another problem with all of these processes is that they are not optimal for creating large

OLED displays. These techniques are only really useful for small samples, and larger

ones cannot be made without creating small sections one at a time. This requires a lot of

precision in moving from section to section and can end up in non-uniform layers across

the substrate.

Producing OLED displays will inevitably get cheaper as more and more

companies start to produce them. Right now a major factor in the cost is economies of

size-since the market is still small

VIII. Recommendations for Future Research

Future research should aim at optimizing two things: the energy efficiency of the

devices and the cost of producing them. More research should be done in looking at new

materials to use, possibly with lower melting and evaporation temperatures so the

production processes not as energy-intensive. The melting and evaporation temperatures,

however, should not be so low that the material cannot be used at room temperature.

These materials should be polymers that can be doped and that have phenyl groups to

stabilize free radicals.

Producing affordable OLED displays for consumption has been a long and

expensive process thus far, but continuing to produce these devices will most likely

decrease production costs. Once companies get past the high fixed costs of starting to



produce OLEDs, they will move into faster and cheaper production, resulting in a

cheaper final product. Because the best method of production is still unknown, fixed

costs have not yet come down. Finding the best way to produce the most efficient

products is very important in bringing down cost.

The most important thing to optimize, though, is the efficiency of these devices.

In a market with rising energy prices and depleting natural resources, it will soon be

important to save energy whenever possible, no matter what the cost, and these devices

could help immensely. More work should be done in optimizing the imprint lithography

process in creating more efficient white OLEDs. Laser etching may also be a possible

route of research in creating patterns on the OLEDs to make them more efficient.
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