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Abstract

Upper-level waves of synoptic scale are important dynamical entities at midlatitudes. They often
induce surface cyclogenesis (cf. Peterssen and Smebye, 1971), and their life duration is typically

longer than time scales for disruption by the ambient shear (Sanders, 1988). The objectives of the
present thesis are to explain the maintenance and genesis of upper-level synoptic-scale waves in the
midlatitude flow.

We develop an analytical model of waves on generalized Eady basic states that have uniform
tropospheric and stratospheric potential vorticity, but allow for the decay of density with height. The
Eady basic state represents the limiting case of infinite stratospheric stability and constant density.

We find that the Eady normal mode characteristics hold in the presence of realistic tropopause and
stratosphere. In particular, the basic states studied support at the synoptic scale upper-level normal
modes. These modes provide simple models for the dynamics of upper-level synoptic-scale waves,
as waves supported by the large latitudinal gradients of potential vorticity at the tropopause.

In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-
level normal mode solutions no longer exist, as was demonstrated in Green (1960). Disappearance
of the normal mode solution when a parameter changes slightly represents a dilemma that we seek
to understand. We examine what happens to the upper-level normal modes in the presence of
tropospheric gradients of potential vorticity in a series of initial-value experiments. Our results
show that the normal modes become slowly decaying quasi-modes. Mathematically the quasi-
modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and
their decay proceeds as the modes interfere with one another. We repeat these experiments in basic
states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and
similar results are obtained. Basic states with positive tropospheric and stratospheric gradients of
potential vorticity are found to support upper-level synoptic-scale waves for time scales consistent
with observations.

Following Farrell (1989), we then identify a class of near optimal initial conditions for the excita-
tion of upper-level waves. The initial conditions consist of upper-tropospheric disturbances that lean
against the shear. They strongly excite upper-level waves not only in the absence of tropospheric
potential vorticity gradients, but also in their presence. This result demonstrates that quasi-modes
are as likely to emerge from favorably configured initial conditions as real normal modes, although
their excitation is followed by a slow decay.
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Thesis Supervisor: Dr. Brian F. Farrell
Associate Professor of Dynamic Meteorology



FACTION

On a decidi de faire la nuit

Pour une petite itoile problimatique
A-t-on le droit de faire la nuit
Nuit sur le monde et sur notre coeur

Pour une itincelle

Luira-t-elle
Dans le ciel immense du disert

On a decidi de faire la nuit
Pour sa part
De ldcher la nuit sur la terre

Quand on sait ce que c'est

Quelle bite c'est
Quand on a connu quel disert
Elle fait a nos yeux sur son passage

On a decide de ldcher la nuit sur la terre

Quand on sait ce que c'est
Et de prendre sa faction solitaire

Pour une itoile
encore qui n'est pas sire

Qui sera peut-etre une itoile filante

Ou bien le faux iclair d'une illusion

Dans la caverne que creusent en nous

Nos avides prunelles.

SAINT-DENYS GARNEA U
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Chapter 1

Introduction

1.1 Intent

At midlatitudes in the troposphere and lower stratosphere, the atmospheric

circulation consists of a zonal upper-tropospheric jet with horizontal and ver-

tical shears in thermal wind balance with latitudinal temperature gradients.

This jet constitutes a reservoir of potential and kinetic energy; it is modulated

by quasi-stationary planetary waves and by the moving train of synoptic-scale

waves.

Upper-level waves are important at the synoptic scale. They are ubiqui-

tous, and often induce surface cyclogenesis, a mode of development known as

"type B" in contrast to "type A" development where no upper-level predeces-

sor is supposed to play an active role (cf. Peterssen and Smebye, 1971).

The intent of this thesis is to develop simple models for the dynamics of



upper-level synoptic-scale waves in order to understand their maintenance in

the midlatitude flow, and their genesis. By upper-level waves we mean waves

with maximum amplitude in the upper troposphere, and we use the height

perturbation on a constant pressure surface as a measure of their amplitude.

The expression "synoptic scale" refers here to horizontal scales from two to

three thousand kilometers.

Upper-level waves are maintained dynamically against disruption by the

ambient shear. Characteristic time scales for disruption by the horizontal and

vertical shears at midlatitudes are less than a day. However, the recent study

by Sanders (1988) has shown that the life duration of upper-level troughs is

typically much longer. In this thesis we explain the maintenance of upper-level

waves by finding upper-level wave solutions to basic states representative of

the midlatitude flow.

The genesis of upper-level waves is a problem that can be approached in

many ways. In this thesis, following Farrell (1989), we study initial conditions

that strongly excite upper-level waves.

1.2 Background

1.2.1 Observations

The importance of upper-level air processes at the synoptic scale has long been

recognized. Synopticians interested in development of surface cyclones realized



early that they have to be associated with horizontal divergence at upper levels

(Brunt, 1930). There followed recognition of the relationship between upper-

level patterns of convergence-divergence and trough-ridge (Bjerknes, 1937;

Bjerknes and Holmboe, 1944): for synoptic-scale waves, divergence (conver-

gence) is found downstream (upstream) of troughs. In 1971 Peterssen and

Smebye observed that a preferred mode of development involves a preexisting

upper-level trough, commonly called a "short wave" by synopticians. Fig-

ure 1.1, extracted from Palmen and Newton (1969), represents the pattern of

convergence-divergence in an upper-level wave.

More recently Sanders (1988) assembled a body of observations of midlat-

itude upper-level mobile troughs. He considered the 552-decameter contour

at the 500-millibar level as indicative of the major band of circumpolar West-

erlies, and followed on that contour mobile troughs during the cold season

from 1976 to 1986. He noted trough positions every day and dates of first

appearance (birth) and last appearance (death). He found an average life

duration of 12 days, characteristic eastward phase speed of 15 m/s, and wave-

length of 2500 km. In the plane transverse to their direction of propagation

troughs appear to be trapped in the. jet. In the vertical the disturbances have

maximum amplitude at the tropopause with a secondary maximum often seen

at the surface. The vertical structure is primarily equivalent barotropic, but

some upstream tilt is often present near the surface. Figure 1.2 displays a

composite vertical along-stream cross section of upper-level mobile troughs

for days subsequent to the day after initiation. Solid lines represent 12-hour

height changes and dash lines 12-hour temperature changes. Notice the dipole



structure in the temperature field around the height extrema. The amplitude

of the height perturbation is 8 dm and that of the temperature perturbation

is 3* K.

Recent case studies of extratropical cyclogenesis have confirmed the impor-

tance of the upper-level predecessor (Bleck and Mattock, 1984; Uccellini et

al., 1986; Davis, 1990). In his study Davis emphasized the Ertel potential vor-

ticity on isentropic surfaces as a useful diagnostic because of its properties of

conservation and invertibility (cf. Hoskins et. al., 1985). Figure 1.3 shows an

example of an upper-level wave before it induces surface cyclogenesis. Notice

in the top panel the lowered tropopause, which we define as the 1.5 PVU con-

tour, in the trough, and the raised tropopause in the ridge. The amplitude of

the tropopause deviation is 2.5 km with an accompanying height perturbation

of 9 dm, and a propagation rate of about 20 m/s. The bottom panel shows the

vertical velocity field: upward motion is found downstream of the trough with

an amplitude of 3 cm/s.

It is of interest to examine the flow environment in which upper-level waves

propagate. Relevant dynamical quantities are wind and potential temperature,

and important derived quantities are static stability and potential vorticity.

Previous studies have concentrated on zonally and seasonally averaged data

(cf. Fullmer, 1982a, 1982b). In his recent work Davis (1990) has calculated

for a case of cyclogenesis the zonal "local" average of dynamical quantities.

Averages were computed in a zonal domain determined by the observed wave-

length of the wave. We expect this method of averaging to give a better



approximation to the basic flow "felt" by the wave.

An upper-tropospheric jet with zonal winds in excess of 30 m/s, intense

vertical and horizontal shears, and a half-width of 1000 km can be seen in the

bottom panel of figure 1.4. Notice in the top panel that the static stability in

the region of the jet is larger in the lower troposphere than in the upper tro-

posphere, and reaches large values in the stratosphere. The tropopause, which

we define as the 1.5 PVU contour, slopes down with latitude. A dynami-

cal quantity of interest is the latitudinal gradient of Ertel potential vorticity

along isentropes. Charney and Stern (1962) have shown that it corresponds to

the more familiar latitudinal gradient of quasi-geostrophic pseudo-potential

vorticity (QPV) in the limit of small isentropic slopes. In the jet region we

observe large positive gradients in the neighborhood of the tropopause and

considerably smaller positive gradients in the tropospheric interior. A good

upper bound for tropospheric gradients is 1 PVU per 10000 km. For an aver-

age tropospheric lapse rate of .06* K / mb, it corresponds to a QPV gradient

comparable to the midlatitude gradient of planetary vorticity, #', (at midlat-

itudes 0' = 1.6 - 10~" /ms). Note finally the strong temperature gradients at

the surface in the jet region.

1.2.2 Theory

In parallel with the observational studies, theoretical models were developed

to explain characteristics of upper-level waves. Following Rossby (1939) and

Bjerknes and Holmboe (1944), Peterssen (1956) derived an expression for the



propagation rate of "short waves". He recognized as determining factors the

basic state wind profile, the meridional gradient of planetary vorticity, P, and

the wavelength of the wave.

With the advent of the theory of baroclinic instability (Charney, 1947;

Eady, 1949), theoretical efforts focussed on unstable modes of midlatitude

flows. This theory regards extratropical cyclones as unstable modes growing

from infinitesimal beginnings in the flow. The Charney basic state has sur-

face temperature gradients and interior potential vorticity gradients, and the

instability can be viewed as an interaction between the surface temperature

perturbation, the potential vorticity perturbation in the vicinity of the critical

level, and their associated circulations. In the Eady basic state there exist

temperature gradients at each boundary, and the interior potential vorticity

is uniform. We can understand the instability as the interaction of the two

surface temperature perturbations and their associated circulations. Both the

Charney and Eady unstable modes are characterized by fixed structures that

grow in amplitude and propagate in phase.

Simmons and Hoskins (1976) examined basic state flows on a sphere, and

found unstable modes resembling the Charney modes. The modes grow at

the expense of the potential energy of the basic state. Baroclinic instability

associated with the vertical shear is the important mechanism; the barotropic

shear mainly determines the latitudinal location and modifies the structure

of the modes. In the absence of Ekman damping, the zonal wavelength of

maximum instability is 4000 km, the e-folding time scale is on the order of 2



days, and the phase speed is just below 10 m/s. The perturbation fields have

maximum amplitude at the ground. In a later work Simmons and Hoskins

(1977) found that the effect of a more realistic tropopause is to enhance the

signature of the fields at upper levels.

Farrell (1985) suggested that the extratropical atmosphere was not signifi-

cantly baroclinically unstable because of Ekman pumping at the lower bound-

ary. Following his work a number of authors have studied the baroclinic in-

stability problem in the presence of friction at the lower boundary (Valdes

and Hoskins, 1988; Lin and Pierrehumbert,1988). Their results show that

the modes with wavelength of 4000 km remain unstable with e-folding time

scales not shorter than 3-4 days, even if those with shorter wavelengths are

stabilized, for values of the damping parameter characteristic of the oceans.

Following the linear studies, the unstable modes were used as initial con-

ditions to examine the life cycle of baroclinic waves in the nonlinear regime

(Simmons and Hoskins, 1978). The simulations show first the growth of a

low-level perturbation comparable to a Charney mode. Then a low-level equi-

libration takes place, resulting in upper-level growth, which is followed by a

barotropic decay. Recently, using a model with high resolution, Thorncroft

and Hoskins (1990) found that after the larger-scale cyclogenesis, troughs and

cutoff cyclones at upper levels are able to interact non-modally with surface

frontal zones and to induce strong cyclogenesis.

The baroclinic instability and the life cycle studies offer a series of well-

controlled experiments that simulate many dynamical features existing in the



extratropical atmosphere: the low-level and upper-level growth, the forma-

tion and motion of frontal zones, the barotropic decay by shearing, and the

nonlinear formation of cutoff cyclones and troughs at upper levels. In general

the cyclones generated in these studies tend to have too large horizontal scales

and too small growth rates, but the addition of moisture may resolve these

discrepancies as pointed out in Emanuel et. al (1987). "Type A" development

is described in the simulations in the scenario of low-level growth followed

by upper-level growth. "Type B" development is also pictured in the high-

resolution simulations as secondary cyclogenesis involving troughs or cutoff

cyclones at upper levels and surface frontal zones.

To present simple models of "type B" development, a number of authors

have examined solutions to carefully chosen initial-value problems, in which

perturbation fields are not constrained to behave modally. Farrell (1984)

showed that substantial growth can occur above the short-wave cutoff of the

Eady basic state, when an upper-level disturbance is located upshear of a

low-level one. More recently Rotunno and Fantini (1989) demonstrated that

the interference between two neutral Eady waves above the short-wave cutoff

can lead to a development similar to "type B".

The theories presented so far give insight into the important dynamical

mechanisms involved in midlatitude cyclogenesis. The focuses of the present

thesis are the maintenance and genesis of upper-level synoptic-scale waves.

The problem of the maintenance has never been addressed directly in the

literature. Rotunno and Fantini (1989) used an upper-level neutral Eady



mode in their initial-value experiments. We believe that these modes are

simple and useful models for the dynamics of upper-level waves at midlati-

tudes. As will be shown in chapter 3, the rigid lid that seems unrealistic in the

Eady basic state corresponds to the limit of infinite stratospheric stability, and

upper-level wave solutions still exist in the presence of realistic tropopause and

stratosphere. The upper-level waves are then tied dynamically to the large

potential vorticity gradients present at the tropopause in the jet region (re-

member figure 1.4). Figure 1.5 displays the zonal-vertical cross section of an

upper-level neutral Eady wave solution at the synoptic scale. Note the max-

imum amplitude at the upper lid, the cold troughs and warm ridges, and the

upward (downward) motion taking place downstream (upstream) of troughs.

There is a clear resemblance between the tropospheric fields depicted in figure

1.5 and those shown in figures 1.2 and 1.3.

Some answers to the question of the genesis of upper-level waves can be

found in the theories mentioned earlier. Upper-level growth occurs after low-

level equilibration in the life cycle experiments. This result is in line with

recent studies of baroclinic instability, which show that basic state flows with

baroclinicity concentrated in the upper troposphere lead to upper-level unsta-

ble modes (Snyder and Lindzen, 1988; Whitaker and Barcilon, 1990). In this

thesis we take the initial-value approach that allows consideration of non-

modal perturbations. Following Farrell (1989), we identify a class of near

optimal initial conditions for the excitation of upper-level waves.



1.3 Outline of the thesis

This thesis is organized as follows:

In chapter 2 we present the theoretical framework: the equations, the

mathematical problems considered, and their numerical solutions. Chapter 3

contains a discussion of waves on generalized Eady basic states, with an em-

phasis on upper-level neutral wave solutions. In chapter 4 we explain what

happens to upper-level synoptic-scale waves in the presence of positive tro-

pospheric gradients of potential vorticity, thus resolving a dilemma noticed by

Green (1960). We study in chapter 5 upper-level wave solutions on basic state

flows with a smooth tropopause and a stratosphere, and we also examine their

excitation from a class of near optimal initial conditions. Finally we discuss

in chapter 6 the general significance of the results presented in this thesis.

milli
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Figure 1.1: Vertical along-stream cross section of the divergence at intervals

of 2 - 10-1/s in an upper-level wave. The ridge line (dash - dot line) and the

trough line (dot line) are indicated. From Palmen and Newton (1969).
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Figure 1.2: Composite vertical along-stream cross section of 12-hour height
change (solid lines) at intervals of 2 dm and of 12-hour temperature change of
mean temperature between standard levels (dashed lines) at intervals of 1* K
for days subsequent to the day after initiation. From Sanders (1988).
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Figure 1.3: Height-longitude cross section of the following fields, November
9 1988, 12 GMT. Top panel: Ertel potential vorticity (solid lines) and potential
temperature (dash lines). The contour intervals for the Ertel PV are .1 below .5,
.25 for values between .5 and 1.5, and 1.5 for values above 1.5. The units are PVU
introduced in Hoskins et. al (1985). The contour interval is 5* K for the potential
temperature. Middle panel: Height perturbation field at intervals of 2 dm. Bottom
panel: Vertical velocity perturbation field at intervals of 1 cm/s. From Davis (1990).
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Figure 1.4: Height-latitude cross section of the fields averaged from 120 to
80 deg longitude East, November 9 1988, 12 GMT. Top panel: Ertel potential
vorticity (solid lines) and potential temperature (dash lines). The contour intervals
for the Ertel PV are .1 below .5, .25 for values between .5 and 1.5, and 1.5 for
values above 1.5. The units are PVU introduced in Hoskins et. al (1985). The
contour interval is 50 K for the potential temperature. Bottom panel: Zonal wind
at intervals of 5 m/' 2rom Davis (1990).
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Figure 1.5: Midchannel x - z cross section of the inviscid upper-level neutral
Eady wave solution at k = 2.3 and I = 1.4 for the Boussinesq basic state
(S1,a = 0, N 2 = oo): (a) streamfunction, (b) potential temperature, and (c)
vertical velocity. The contour interval is .1 in (a), .5 in (b), and .1 in (c),
and the streamfunction amplitude is fixed to unity at the upper lid. The
nondimensionalization is as in chapter 2 and parameter values as in chapter 3.
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Chapter 2

Theoretical framework

2.1 Equations

We present here the equations used throughout this thesis. The quasi-geostrophic

(QG) set of equations is chosen to model the dynamics of upper-level synoptic-

scale waves. The QG approximation stems from the primitive equations in the

limit of small aspect ratio, that is the ratio of the vertical to the horizontal

scale; small Rossby number, that is the ratio of the relative to the planetary

vorticity; and large Richardson number, that is the square of the ratio of the

static stability to the vertical shear. QG motions are characterized by hydro-

static and geostrophic balances, and therefore by thermal wind balance. The

Richardson number constraint also implies small isentropic slopes, and con-

sistency of the QG approximation requires a static stability that varies only

vertically. For reference see Pedlosky, 1979, chapter 6, or Charney, 1973, pp

226-236.



At midlatitudes in the region of the jet, the Rossby number can be of

order unity, the Richardson number can be small, and moreover the stability

typically varies horizontally. Nevertheless, the QG equations provide a useful

qualitative model of synoptic-scale dynamics.

2.1.1 Quasi-geostrophic dynamics in a basic state flow

Let us consider perturbations [q, 9, u, v, w, 0] (x, y, z, t)-

in a basic state flow [Q, I, U, 0](y, z),

where Q + q is the total QG pseudo-potential vorticity (QPV), T + 4 the

geostrophic streamfunction, U+u the zonal geostrophic wind, v the meridional

geostrophic wind, w the vertical velocity, ( +0 the potential temperature, and

where (x, y, z, t) are the zonal, meridional, vertical, and time coordinates. The

nondimensional equations for the basic state are:
r 2 1a

= 82--- +)U ~ (2.1)*Y 8y p az N2z '9

U = T - , (2.2)ay
0= -; (2.3)z;

and for the perturbation fields:

- - ( q = -Q,-, (2.4)

+U-+J(,) 0 = -N 2 w- - (2.5)
whr8x +x

where q = H2 + $,(2.6)



u = - -= (2.7)

J (A,B) = AxB, - ABx,

2 a2 92
VH 2 2

N 2(z), p(z) are the reference static stability and density profiles, and p the

latitudinal gradient of planetary vorticity. (2.4) expresses the conservation of

total QPV following geostrophic motions: the meridional advection of basic

state QPV, Q, modifies the eddy QPV ,q, following geostrophic motions. The

thermodynamic equation, (2.5), relates changes in eddy potential tempera-

ture, 0, following geostrophic motions, to adiabatic warming or cooling, and

meridional advection of basic state potential temperature, e.

Choosing a vertical scale, H, a horizontal scale, L = NoH/fo, a velocity

scale, Uo, a reference static stability, potential temperature, and density, re-

spectively No, 00, po, and an average planetary vorticity, fo, it is possible to

recover the dimensional variables and parameters (that are primed):

/ /= H \ l L(x', y', z') = L (x, y,+z), t' = t

N' = NoN, p' = PoP,

(Q', q') = Rofo(Q, q), (',0') =UoL(I, @),

(U', u', V') = Uo(U,u,v), (0',') = o (, 0),

H flU0w' = Ro HUw, p' - L (2.8)
L L

where Ro is the Rossby number, Ro = Uo/Lfo.

In this thesis we are concerned with synoptic-scale motions in the region of



Table 2.1: Dimensional and nondimensional variables a

(X',y') = 900 km (x, y)
(z') = 9 km (z)
(t') = .39 day (t)
(Z'(z = 1)) = 24dm (#)
(P'(z = 0)) = 24 mb (s#)
( U',u',v') = 27 m/s (U,u,v)
(0 ',') = 8.10 K (0,o)
(w') = 8.1 cm/s (w)
a Z' is the height at a pressure surface typical of the

tropopause, and P' is the pressure at the ground.

the jet. We choose: fo = 10- /s, g = 10m/s 2 , N0 = 10-2 /S2, ' = 1.6- 10-11

/ms, and H = 9 km that is roughly the tropopause height in the middle of

the jet. This value of H implies a Rossby radius, L = 900 km. Also, let

us consider Uo = 7 oH, where yo is an average tropospheric shear so that

fixing -to = 3 (m/s)/km yields Uo = 27 m/s. For these parameter values

the nondimensional beta and the Rossby number are: # = .5 and Ro = .3.

As noted in chapter 1, this value of # corresponds to a reasonable upper

bound for the value of QPV tropospheric gradients. Table 2.1 summarizes the

correspondence between dimensional and nondimensional variables.

2.1.2 Linear waves in a zonal channel

We consider linear waves confined in a zonal channel, in basic state winds

with no meridional dependency. Such basic state flows lead to a mathematical

problem for the perturbation fields that is separable in y and z. As was noted

in the introduction, actual studies of unstable waves on basic state winds



with meridional dependency have shown remarkable similarities with studies

of artificially confined unstable waves (Simmons and Hoskins, 1976; Ioannou

and Lindzen, 1986; Lin and Pierrehumbert, 1988; Valdes and Hoskins; 1988).

The presence of barotropic shear usually acts to confine the perturbation in

the jet axis, and to slightly reduce the instability.

Let us assume a density profile that decays exponentially with height

throughout the domain,

p = exp[-sz]. (2.9)

From (2.1),(2.2), and (2.3), the basic state equations are:

QY 0= 1 d ( p dU\
S pdz N2 dz

SNdU 1 d2 U
N2 dz N2 dz'2 ,

T = -U(z) y, (2.11)

a - , (2.12)
az

1 dN2

where SN = + dz (2.13)
N2 dz

For perturbation fields of the form,

[q, 4p, v, w, 6](x, y, z, t) = Re ([4,4, , tI7, i](z, t)eikx) sin ly,

u(x,y,z,t) = Re(fi(z,t)eik"x)cosly, (2.14)

where l = 7r/Ly, k = 27r/Lx, L, is the channel width, and Lx the zonal

wavelength, the linear equations are [from (2.4),(2.5),(2.6),(2.7)]:

[ + ikU 4 = -ikQ,4, (2.15)

-+ ikU] 0- -N 217V - ik,4, (2.16)



whereq = 2 _N 2 (2.17)

= l = -ike, el = (2.18)

and K is the total horizontal wavenumber, K 2 - k2 + 12.

The equations presented so far need to be completed by suitable boundary

conditions in the vertical: at the upper lid, z = zu,

w2 (p + )(2.19)

and at the lower lid, z = zj,

2 =T1 VH (+ ,(2.20)

where i, , are some boundary layer parameters. We discuss in Appendix A

values for nj that are characteristic of the extratropical atmosphere. Substi-

tuting ii, from (2.16) yields:

+ ikU + ike,4 - ijN2K2? = 0 at z = zi, (2.21)

+ ikU] - + ikQy + iuN 2K 2 ' = 0 at z = zu. (2.22)
6t az

In the following chapters we are also going to consider semi-infinite verti-

cal domains, and use approximate boundary conditions. Derivation of these

boundary conditions can be found in Appendix B.

This system has the interesting property that the basic state flow and the

perturbation can exchange energy. Let us define the total perturbation energy,

ET, as the sum of the potential and kinetic energy,

ZF -d2, 2 + 2ET dy dzd (2.23)
12IJ 2 Ox B9y N2 OZ

Iml 19111



where ( )-dx( ). (2.24)
L, o

From (2.4) and (2.5) we obtain in the absence of friction:

d ET z L pUz (90 av#-- = ' - dy dz .(.5dt i NU aX oaZ (2.25)

When the perturbation streamfunction tilts upshear with height in average,

the right-hand side of (2.25) is positive and the perturbation energy increases

with time, whereas when it tilts downshear, the perturbation energy decreases

with time. Obviously when the perturbation gains or loses energy, the mean

flow accordingly loses or gains energy, but this feedback is not considered in

the linear problem.

2.1.3 The normal mode approach

It is possible to find normal mode solutions [q, V$...] that are of fixed structure,

and that grow and propagate at fixed rate and speed. For the system of

equations presented in this section, the discrete normal modes are the only

physically acceptable modes that satisfy these conditions.

Let us express

O(z,t) = (z)e-ikct,

where c is complex, c = c, + ici. From (2.15),(2.17), (2.21), and (2.22) (in

the case of lower and upper rigid boundary conditions), we get an eigenvalue

problem for O(z) and c:

1 d12 SN K2iA+ Q= (
(U - c) 1Nd z K2 0 + , = 0, (2.26)



dA K2

with (U - c)7-+0 6,+ i- 2N = Oat z = zi, (2.27)
dz k

d4k K 2 2(U - c) - +0 V7P - i-.N2 = 0 at z = z,. (2.28)

The system of equations (2.26), (2.27), and (2.28) admits two different classes

of solutions: the discrete normal modes and the continuous spectrum of singu-

lar neutral modes. See for reference, Drazin and Reid, 1981, pp 147-153. Each

singular mode has a discontinuous derivative at the height of the domain, ze,

where (U(ze) - c) vanishes. A single singular mode is then not a physically

acceptable solution. A superposition of singular modes may represent an ac-

ceptable solution, but its vertical structure generally changes with time as the

different modes interfere with one another. The discrete normal modes are

hence the only physically acceptable modes of the problem, and are usually

referred to as the normal modes of the problem.

From equations (2.15) to (2.18), the normal mode solutions for the other

perturbation fields are:

q = U- co, (2.29)

U = -l1, 1 = Z'ik#b, = -, (2.30)

A i k d 0W - N2 Goy + (U - c) . (2.31)

There exist many theorems concerning the properties of normal mode so-

lutions, among which the Charney-Stern theorem is probably the best known

(cf. Charney and Stern, 1962). It states that a necessary condition for instabil-

ity in the inviscid limit is that the meridional QPV gradient with contributions



from the boundaries,

Q, + Y (6zi) - b(zu)),

changes sign over the domain. Note that the absence of normal mode insta-

bility does not rule out the possibility of transient growth associated with less

constrained perturbations.

2.1.4 The initial-value approach

The interest of the initial-value approach lies in the fact that it goes beyond

some limitations of the normal mode approach. It is possible in an initial-

value problem to study the evolution of arbitrary initial disturbances, which is

not possible with the normal mode solutions that do not form a complete set

(cf. Pedlosky, 1964). Also the initial-value approach allows the examination

of less constrained perturbations, which do not have fixed structure, growth

rate, and phase speed. As mentioned in chapter 1, it was used with success

to model "type B" development (Farrell, 1984; Rotunno and Fantini, 1990).

In the initial-value approach, (2.15), (2.17), (2.21), and (2.22) are integrated

forward in time, for a given initial condition, @o(z).

Let us examine further the properties of the modes that determine the

mechanisms present in the initial-value problem. It is possible to rewrite

(2.26), (2.27), and (2.28) in a matrix form:

[A] |0j >= c lij > . (2.32)

where [A] is a matrix for a finite-difference scheme at a certain truncation,



N, and becomes a differential operator in the continuous limit; |iki > is the

jth eigenvector among the totality of eigenvectors that encompasses both the

singular and the discrete ones, and c3 is its associated eigenvalue. We have

used here the ket and bra notation where a vector |#1 > has a conjugate

transpose < #1j (cf. Cohen-Tannoudji et al, 1977).

The matrix [A] is not Hermitian (or self-adjoint in the continuous limit)

in the general case with shear. This implies that the modes, li#) >, are not

orthogonal, and that quantities quadratic in b, such as energy, are not neces-

sarily conserved (Held, 1985). This is consistent with (2.25).

Let us look at the Hermitian transpose linear system,

{A]', 1 >= dm|1 >,

where [A]H is the Hermitian transpose of [A], and dm the eigenvalue associated

with the mth eigenvector, |1 >. The Hermitian transpose matrix corresponds

in the continuous limit to the adjoint operator. See Ince (1926) for a discussion

of differential operators and their adjoint. It is easy to show that

dm = CM,

where the * refers to the complex conjugate, and that a special biorthogonality

relationship links the modes of the system and its Hermitian transpose,

< V)_|__ >= Sm, (2.33)

where bmj is the function of Kroenecker. This result also holds in the contin-

uous limit.



Once both the modes of the system and of its Hermitian transpose are

known, the initial-value problem can easily be solved. The modes |i > form

a complete set, and the solution can be expressed as

N

10(t) >= E a|10 > e- . (2.34)
j=1

For a given initial condition, l0o >, the coefficients a3 can be determined with

the biorthogonality relationship,

_< p11p0 >

Farrell (1982, 1989) used this technique to solve the initial-value problem. The

important mechanism in (2.34) is the interference between the nonorthogonal

modes. The total energy is then not the sum of the individual modal energies.

Effects of this kind are discussed in Lindzen et. al (1982), and Rotunno and

Fantini (1989), where the interference takes place between two discrete modes.

2.2 Numerical implementation

We explain in this section the numerical techniques used to solve the mathe-

matical problems encountered in the thesis. Let us introduce a new variable,

e-sz/ 2

=(2.35)veNi

which simplifies the equations in the vertical direction.



2.2.1 The discrete eigenvalue problem

The set of equations solved for the discrete eigenvalue problem consists of

the interior equation, (2.26), completed by boundary conditions at the lower

boundary, either (2.27) or (B.4), and at the upper boundary, either (2.28) or

(B.2). Since in the case of the discrete eigenmodes there is no singularity at

the critical level, the equations can be divided by U - c. We can then express

them in the following manner:

d 2
,2 + = 0,

dz
- DEW = 0 at z = zi,

dzd4
-z+ A, = 0 at z = z,,

[1d21nN 2 S2 2 Q
whereD= [ - 2 _ N 2(K2 Q ,

12 dz2 A U- C

and where DI and D, depend on the type of boundary conditions used.

This set of differential equations can be written as a matrix equation with

the fourth-order discretization scheme described in Appendix C:

[C(c)]Iq4 >= 0, (2.36)

where [L(c)] is an N x N tridiagonal matrix, and 14 > the eigenvector at a

certain truncation N. We solve the matrix problem (2.36) using a shooting

method proposed by Kuo (1979). The calculations are performed in double

precision, and we verified the accuracy of the scheme with a known analytical

solution, the low-level edge wave. Both the errors in the eigenvalue c and in

the modified streamfunction 14 > were found to go as (Az)4 .

AMUNIM141WhI10191111000 INIM INIIINUMN INNIIIIIIIIM 11141 i'111011H WiliIIIII'AW11'. 14



Diagnostics

From the eigenvalue c and eigenvector 14 >, it is easy to compute the growth

rate, Q = kci, and phase speed, c,.;the streamfunction, 1b >, with (2.35); and

the QPV, Iq >, from (2.29). The potential temperature field is calculated with

the fourth-order compact scheme (Haltiner and Williams, 1980, p.137):

3
Ok+1 + 40k + 0 k-1 = Z (0k+1 - Ik-1)-

The values of 01 and ON can be calculated from the boundary conditions.

We then have a tridiagonal N - 1 x N - 1 matrix equation that is easily

solved by Gaussian elimination. Once both the streamfunction and potential

temperature fields are known, it is easy to compute 1w > with (2.31).

2.2.2 The full eigenvalue problem

We seek here to calculate the full spectrum of eigenmodes, discrete and con-

tinuous. The set of equations solved is the same as for the discrete eigenvalue

problem. However, the equations cannot be divided by U - c; they take the

following form:

c +M) = U() ( + M ) + QN 2 ,

c( + Mis = Ui( +MA +Ni atz=zi,

-+ M ) =-+ )+Ns atz=zu,( dz + = dzA A

1 d2In N 2 S2
where M = - - -- N , (2.37)

2 dz2 4



and MI, AN, M., and Af. depend on the type of boundary conditions used.

We discretize this set of equations with the scheme described in Appendix C,

and we obtain the following matrix equation:

[ T||4i >= cj[3||4; >,

where both [S] and [T] are N x N tridiagonal matrices, 1j > is the jth

eigenvector, and ci its associated eigenvalue.

We solve the matrix problem by first calculating the inverse of [S], [S)]1.

We are then left with a typical eigenvalue problem,

[F]|45 >= cj%4 >,

where [F] = [S]-[T]. We calculate the adjoint modes |4ja > with the help of

the biorthogonality relationship for 4:

< 0;k1 0,k >= ' 3k.

Let us define the matrix [E] as the matrix of eigenvectors,

[E] = {|01 >, ... ,|410 >, ...,i IN >}-

Then the rows of its inverse, [E]-', are simply the adjoint eigenvectors, 10; >.

The numerical calculations are performed in double precision and errors

greater than 10-10 are not tolerated. IMSL routines LEQT1B and EIGRF

are used to calculate respectively inverses of matrices and solutions to the

eigenvalue problems.



Diagnostics

The only diagnostics we calculate in the case of the full eigenvalue problem

are | 1 > and l# >. The former is calculated with (2.35), and it is easy to

show that the latter corresponds to:

,-sz/2

2.2.3 The initial-value problem

The initial-value problem consists of solving (2.15) and (2.17), completed by

boundary conditions, (2.21) or (B.12), and (2.22) or (B.10). We express the

equations in terms of 4 and p, where

p = v/Nie-'z/2q. (2.38)

The equations take the following form:

=p -_ikUP - ikN 2Q, q, (2.39)at

+ Mil = -ik [U1r -+ Mi +N iJL at z = z1, (2.40)Ot oyz / oz/ 9]

a a+ Mu -ik U -+M u) +A.;j atz=z,(2.41)

a2
where p - 2Z + MO, (2.42)

M is as defined in (2.37), and MI, M, Mu, and K. depend on the type of

boundary conditions used.



We start the time integration with the initial conditions Ipo >, |40o >,

(+ M Zjq) , and (N + Mu ) . (2.39), (2.40), and (2.41) are

integrated forward in time with the Euler modified scheme (Method B in

Young, 1968). This scheme slightly amplifies in time the amplitude of a neutral

wave, and overestimates its propagation speed. The vertical scheme described

in Appendix C is used to solve (2.42) for 1k >. The total scheme is then second-

order accurate in time and fourth-order accurate in the vertical direction.

Calculations are performed in double precision, and we verified the orders of

accuracy with a known analytical solution, the low- level edge wave.

Diagnostics

At each time step of the integration, 14 >, Ip >, and the boundary terms are

known. From them it is easy to calculate 1$ > with (2.35), and |q > with

(2.38). The potential temperature field, 1 >, is computed with the same

method that was used in the case of the discrete mode (remember section

2.2.1).

We calculate the vertical velocity field by solving a modified w-equation.

Let us define a new variable,

= e/sz2 1,

which obeys the following relation:

2(
-+ V0 = W, (2.43)

az2



where V = -N 2 K 2 _ ,2/4, and W = ike-z/ 2 (# - 2K2UI) .

Once 1@ > and 10 > are computed, the right-hand side of the equation is

defined. The values of C at each boundary are needed to close the problem.

In the case of rigid boundary conditions the values at the boundaries are

simple functions of 1b > from (2.19) and (2.20). In the case of approximate

boundary conditions for semi-infinite domain it is more difficult. Remember

that the vertical velocity field can be expressed as

-1 [ao ~ ~-
>~N2 t +ikt U-Uz)J-

Once 10 > and 1# > are calculated, only the first term of the right-hand side

remains unknown at the boundaries.

We evaluate this term in the following manner. The Euler modified time

scheme is a two-step process, and the values of boundary potential tempera-

ture fields from the middle of the time step can be calculated. We can then

approximate the boundary terms a with a first-order backward Euler time

scheme, and this allows us to get & at each boundary.

The modified w-equation (2.43) is then discretized with the scheme de-

scribed in Appendix C. Once the values at the boundaries are known, we are

left with an N - 1 x N - 1 tridiagonal matrix problem that is easily solved by

Gaussian elimination.

In the initial-value simulations we also calculate two scalar diagnostics, the

total perturbation energy, ET, and the phase speed at a given height, c|29. ET

46



is defined in (2.23). After integrating in the x and y directions and changing

the variables, (2.23) becomes:

~ 2

ET = -y- dz K2N2 +I - + SN -
8 2,I OZ

This integral is evaluated with the second-order accurate trapezoidal rule. We

calculate the phase speed at a given height, z,, using the values of the phase of

4(z.) at the present time step and at the previous one. A first-order backward

Euler time scheme then allows us to evaluate c|" .



Chapter 3

Waves on generalized Eady
basic states

3.1 Introduction

This chapter examines the normal mode characteristics of the generalized

Eady basic states that have uniform tropospheric and stratospheric quasi-

geostrophic pseudo-potential vorticity (QPV), but allow for the decay of den-

sity with height. Such basic states contain salient features of the extratropical

atmosphere: a vertical wind shear and its associated temperature gradient, and

a QPV distribution with gradients concentrated at the tropopause. However,

they still lead to tractable and elegant normal mode solutions.

The interest of flows with piecewise uniform QPV (or vorticity in the

barotropic case) has long been recognized (Maslowe, 1981). In each region

of constant QPV analytical solutions to the normal mode equation (2.26) can

be found. Then, appropriate matching conditions at interfaces between regions



lead to normal mode dispersion relations in closed form.

The basic state QPV gradients, Q,, of generalized Eady basic states are

concentrated at the tropopause and ground, where the temperature gradient is

equivalent to a thin sheet of infinite Q, (Bretherton, 1966). Hence the pertur-

bation QPV, 4, is also concentrated at the ground and tropopause [remember

(2.29)]. In the potential vorticity perspective put forward in Hoskins et al.

(1985), the actors present in the normal mode problem are the eddy perturba-

tion QPV, 4, at the ground and tropopause and their associated circulations

that advect the nonzero Q,, present along the two surfaces.

Since the original work of Eady (1949), the Eady problem has become a

standard model of baroclinic instability (Pedlosky, 1979; Gill, 1982). Its ba-

sic state is a special case of those examined here: the stratospheric stability

is infinite, and the shear and density are constant. In the limit of vanishing

horizontal scales the two boundary QPV perturbations are independent and

the normal mode solutions consist of two edge waves, one at each boundary.

At large enough horizontal scales the normal mode wave grows or decays ex-

ponentially with time because of the interaction and locking of the two QPV

perturbations.

Since 1949, different authors have investigated changes in the Eady normal

mode characteristics introduced by a number of physical effects. Eady (1949)

himself discussed the effects of a flexible tropopause and of a density decaying

with height, while Williams (1974) looked at Eady basic states with height-

varying shear and stability. The inclusion of these effects did not markedly



change the wave solutions. Subsequently, Williams and Robinson (1974) stud-

ied the effect of adding Ekman friction at the boundaries. The presence of

friction at the lower boundary only reduces the instability at large horizon-

tal scales, but destabilizes the upper-level waves and removes the short-wave

cutoff.

In this chapter we study waves on generalized Eady basic states because

this approach leads to simple upper-level wave solutions of interesting heuristic

value. The basic states considered here are more general than the Eady one.

First, the rigid lid is replaced by a finite rather than infinite jump in static

stability, i.e. a flexible tropopause. Second, the tropospheric stability or shear

varies with height and third, the effect of boundary layer friction is considered.

In general our normal mode solutions have the same qualitative character

as those of the Eady basic state, and the effect of friction is as depicted in

Williams and Robinson (1974). Our presentation includes a comprehensive

discussion of the upper-level normal modes. Contrary to the general belief

(Green, 1960), they have counterparts in linear models with interior positive

tropospheric QPV gradients, as will be shown in Chapter 4. It also contains a

clear presentation of the effects of a flexible tropopause. Even if mentioned in

Eady (1949) and Gill (1983), it is not widely recognized that the Eady normal

mode characteristics do not hold only for an unrealistic rigid lid, but also for

a realistic tropopause.

In section 3.2 we formulate and solve the problem mathematically. Section

3.3 contains a discussion of the individual edge wave solutions. Section 3.4 and



3.5 display the character of the inviscid and viscid normal modes, and finally

we discuss in section 3.6 the significance of our results.

3.2 Formulation

3.2.1 Basic states

Let us assume no meridional gradient of planetary vorticity, # = 0. In each

region we suppose uniform QPV and it follows from (2.10) that

1ld (pUiz
1dz= 0, for i = 1, 2
p dz N2

(3.1)

where the subscript 1, 2 refers respectively to the troposphere and the strato-

sphere.

In the stratosphere we pose constant zonal wind and stability,

U2 = constant, N2 = constant, for z > 1.

In the troposphere let us express

U12(z)

U1(z)

and NJ(z)

= exp a(z - ),

= exp a(z - ) -exp - ),

= exp [-b(z - 1)], for z < 1,

(3.2)

(3.3)

(3.4)

and the constraint of uniform QPV becomes:

s - a - b = 0. (3.5)



Figure 3.1 displays vertical profiles of U(z) and N 2 (z) for different parameter

values.

At the tropopause we can write from (2.10):

1+ U 1+_ U12(1)

fQudz - --
N 2  2 N(1)

and hence: Q = Lz(z - 1)- -(z 1).

Following Bretherton (1966), we have at the ground:

U eQ,=- 6(z) = 6(z).
N, N

When the shear is positive in the troposphere, the Q, distribution of our

generalized basic states is identical to that of the Eady one with sheets of

positive and negative infinite Q, at the tropopause and ground. The necessary

condition for instability stated in the Charney-Stern theorem is fulfilled. Then,

we can calculate the eddy QPV from (2.29):

A(0) = 1 --- (z), A(1) = -l 0 ( -1)

N (U - c) N (U - c .

Since c generally has a value typical of interior tropospheric wind, positive

(negative) q's are colocated with negative (positive) 's.

It is possible to calculate the tropopause height variation with latitude. Let

us consider the tropopause as a frontal interface where winds and temperatures

are continuous but not their gradients. From Palmen and Newton, 1969, page

170, the slope of the frontal surface must then satisfy:

dz -Ro = -Ro 2 , at z=1. (3.6)
(dy) (N - N)
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The decrease of the tropopause height with latitude corresponds to a Rossby

number correction. In the limit of infinite stratospheric stability, N2 -+ 00,

the slope vanishes. Figure 3.2 shows the meridional distribution of isentropes

for a particular basic state.

3.2.2 Perturbation equations

In each region the equation for the eddy streamfunction is from (2.26)

d2 - [-b(z - 1)]K2 01 = 0, (3.7)
2 da x

I -d N2K2 42 = 0. (3.8)
dz dz

It follows from (2.27) that we have as boundary condition at the ground

(U 1 - - U + i 2  
1=0 at z =0, (3.9)

(Ul d~zl- U 1 +Tn0 =

while as an upper boundary condition we impose

b2 bounded as z -- oo. (3.10)

These equations are completed by matching conditions at the tropopause.

Let us introduce a new perturbation field,

h'(x', y',t') = RoHh(xy,t),

that represents the tropopause deformation associated with the wave. It is

a Rossby number correction to the basic state tropopause height, and as in

chapter 2 primes refer to dimensional quantities. We consider the tropopause



as a material surface that separates low tropospheric from high stratospheric

potential vorticity air. Fluid parcels at the interface stay there; then, the

matching conditions are (from Gill, 1982, page 86):

- [z + Ro (gy - h)] = 0, 1 = # 2 , at z = 1 + Ro(h-cy), (3.11)
Dt

where D/Dt is the Lagrangian derivative. After linearizing about the basic

state, taking the limit Ro -* 0, and considering normal mode solutions, the

matching conditions become:

# 1 (1) = 0 2(1), (3.12)

= W2(1), (3.13)

or, from (2.31):

N 2 (U CdO2 (U Cdy1 UJ

-2-(U-c)-- (U-c) -U 1 251 , at z= 1.
N2 dz dz

3.2.3 Perturbation tropopause motion

From (3.11) it is possible to express h as:

h +0) at z = 1 (3.14)
ik(U - c) '

or using (2.31), as:

A A 1 d02
h ( 2 - at z=1. (3.15)

(U -c) N22 dz,, '

In the rigid lid limit, NJ -> oo, the perturbation tropopause deformation van-

ishes since z^(1) = s = 0. For the waves considered in this chapter, U(1)--c > 0



and the streamfunction decays with height in the stratosphere. Therefore, h

and 02 are generally correlated, with depressions (anticyclones) having low

(high) tropopauses. When the wave is unstable, there is an added phase shift

and the tropopause perturbation is located upstream of the streamfunction

perturbation. In the context of the linear QG equations this deformation does

not feed back on the wave characteristics.

3.2.4 Solutions

We introduce two classes of analytical solutions, S1 and S2, to the system

of equations (3.7), (3.8), (3.9),(3.10), (3.12), and (3.13). The S1 solutions

have basic states with a = s in (3.2) and b = 0 in (3.4): in the troposphere

the wind shear increases exponentially with height and the stability remains

constant. The basic states of S2 solutions are characterized by a = 0 and b = s:

the tropospheric stability decreases exponentially with height while the shear

remains constant. Such stability profiles are representative of the extratropical

atmosphere where moist processes lead to temperature lapse rates smaller at

lower levels than aloft, as was noted in chapter 1 (remember figure 1.4).

For both S1 and S2 solutions we have in the stratosphere from (3.8) and

(3.10)

t02(Z) = A2 exp [ -!P2 (z -1)],
2

where p = ae + , a2 = N2K 2.

For S1 solutions we can express the solution in the troposphere as [from



(3.7)]:

where pi

= exp (Z) [A1c cosh(piz) + A1, sinh(piz)],
= 2

22 2= K2.
=a 1 +4a K

For S2 solutions we have:

where ((z)

a2a18

= AiIo [((z)] + A1KKO [((z)],

2a=exp -

= exp(s)K 2

and Io, Ko are modified Bessel functions of the second kind.

Substituting these solutions into the matching and boundary conditions

(3.12), (3.13) , and (3.9) leads to a quadratic expression for c:

Ac2 +Bc+C = 0.

For S1 solutions:

A = pF1

B = - [U(1) (p 1 F1
- ) + U12(1)

C = (U1 (1)G 1 - U12 (1)S)

= p2- )
C,

G1 = 2 -

+ + piSi,
2

2

+ G1 U1 2(0) -I

where F

f-.L C, )
2

Ulz(O) - i qla 1
k



C1 = cosh pi, S1 = sinh p1 .

For S2 solutions :

A = a1,[IoVi+KioW]

B = - [a, (I10V + K10W1 ) - a1 , (IioKoi + Kiolo1)

+ (1 - k (I - KoW1)

C = 1- [(100% - KooW 1 ) + (Koolo1 - Koioo)]

-Koi s \ ri, x -s K1where V, - (p2 - 2) +

- p - a 1, exp - 11,
- 'N 2 (12 - S) - 1x z. i

N2 2 2

Ijo = I; [ (O)], K = K; [ (O)],

I;1 = I; [((1)], Kit= K; [ (1)].

This expression for c also determines 4'1(z) through the boundary and

matching conditions. The other perturbation fields can be calculated using

the formulas presented in section 2.1.3.

3.2.5 Parameter values

We consider in this chapter a channel with I = 1.4, i.e. of nondimensional

and dimensional widths L, = 2.8 and L', = 2000 km(from table 2.1). This

implies a tropospheric potential temperature change across the channel of



LO = QL, = 2.8 (dimensionally A' = 180 K). The basic state zonal

wind maximizes at the tropopause where -it is unity (27 m/s). We fix the

upper tropospheric stability to unity N12(1) = 1 (10-4 /S2) while in most cases

N22= 4. When we consider density inhomogeneity in section 3.4, s = 1, which

corresponds to a density scale height of 9 km. The boundary layer parameter

?1; takes values typical of oceanic, flat landmass and mountainous landmass

terrains, ql = 0.04,0.08,0.12, as discussed in Appendix A.

3.3 The inviscid edge wave solutions

We discuss in this section the edge wave solutions that arise in the limit of

small horizontal scales. Even if they strictly apply in that limit only, they are

interesting because of their simplicity and because their dynamics characterizes

a wide range of scales.

In the limit of small horizontal length scales the vertical depth of the per-

turbation becomes much less than the tropopause height and than the density

scale height. Then, the perturbation QPV q's at the ground and tropopause

do not "feel" each other via their associated circulation and we have two edge

wave solutions, one at each boundary. Mathematically we take the limits

s,a,b--+0 and K2 = k2 + 12 > 1.

Then, after taking the additional inviscid limit, 771 -4 0, we get for the edge

wave at the ground:

U12 (0)
0 1(z) = exp(-Kz), c K



A comprehensive discussion of this solution is given in Gill, 1982, pp 550-555.

It is an interesting case of a wave that remains neutral in the presence

of available potential energy in the basic state flow. The phase lines of eddy

fields are vertical, therefore the wave does not transport heat meridionally

and does not grow. It is called a boundary or edge wave since it decays

away from the ground. The wave translates with speed c, i.e. with the basic

state wind one Rossby height (or an e-folding scale HR = 1/K) above the

surface. Low (high) pressure perturbations are colocated with warm (cold)

temperature perturbations. The vertical velocity field is 900 ahead of the

streamfunction field with upward (downward) motions ahead of low (high)

pressure perturbations.

The upper-level edge wave solution is not discussed thoroughly in Gill's

book even if mentioned shortly. Taking the same limits as previously, we get

an interfacial edge wave solution at the tropopause with:

# 1(z) = exp K(z - 1), #2(z) = exp -N 2K(z - 1),

C 1 U12(1)

K(1+ N2~')

From (3.15) and (3.6), it is possible to calculate the amplitude of the pertur-

bation tropopause deviation:

|h| = K+- .
( W 1 1 W

As shown in figure 3.3, when the stability increases in the stratosphere, the

phase speed and the amplitude of the tropopause motion decrease. At k = 2.3,



c = .75 and Ihl = 2.2 for N2 = 4. Using table 2.1, these numbers correspond

to a zonal wavelength of 2500km, to a steering level located at 6.7 km with

basic state wind speed of 20 m/s, and to a tropopause deviation of 1.2 km for

a perturbation height of 5 dm.

Figure 3.4 displays characteristics of the wave solution at k = 2.3. They are

very similar to those of the lower-level edge wave. Above the tropopause the

relative phase and vertical profiles of most perturbation fields such as stream-

function, temperature, and vertical velocity are the same. Low (high) pressure

perturbations have associated warm (cold) temperature perturbations. Below

the tropopause the relative phase of the perturbation potential temperature

is different, with cold (warm) air embedded in cyclones (anticyclones). In fig-

ure 3.4 the vertical velocity does not vanish at the ground since in the limit

taken at the beginning of this section, the ground and the tropopause are con-

sidered to be much further apart than the depth of the wave. The solution

then describes a wave that propagates in presence only of QPV gradient at

the tropopause. For an upper-level wave of amplitude .2 at the tropopause

(dimensionally 5 dm), the amplitude of the temperature perturbation is of

.85 (7 * K) in the stratosphere and of .55 (4.5 * K) in the troposphere. The

maximum meridional wind speed is then .46 (12 m/s) and the vertical wind

speed attains .3 (2 cm/s).

Notice that at the tropopause the potential temperature perturbation is

discontinuous. This peculiarity can be explained by looking at the vertical

profiles of particle trajectories and of isentropes. For the upper-level edge



wave solution the vertical and meridional velocities are in phase, therefore it

is possible to write the particle trajectories in the y - z plane as

bz w
-= Ro-,by) V

and the isentropic slope is

(Sz O-z =-Ro -.Y
byo , N2

As shown in figure 3.5, the slope of the basic state isentropes changes abruptly

at the tropopause. Following the trajectories in the figure, above the tropopause,

particles previously warmer than their surroundings find themselves colder

than their surroundings. Another way to explain the discontinuous temper-

ature profiles is to examine the thermodynamic equation, (2.5). Above the

tropopause the dominant process is adiabatic warming or cooling, whereas

below it is advection of basic state potential temperature.

3.4 The total inviscid solutions

Let us now keep the interaction between the two boundary QPV perturbations

that was absent in the previous section, and look at the total inviscid solutions.

At large enough scales the phase of perturbation fields is no longer vertical and

the normal modes can release the available energy of the basic state.

Figures 3.6 to 3.8 display propagation and instability characteristics of the

normal modes, and the structure of most unstable modes for four different basic

states. Let us first examine the effects of a realistic tropopause on solutions



and concentrate on basic states with constant density. The solid and small

dash lines represent respectively the rigid lid limit (the Eady basic state) and

a realistic tropopause. As shown in figure 3.6(a) that displays the growth

rate (Q = kc;), the passage from a lid to a tropopause moves the normal

mode instability toward larger scales and decreases the maximum growth rate.

The maximum growth rate is reduced by a factor of 1.4, from .2 to .14 (that

correspond to e-folding times of 2.0 and 2.7 days), and moves from k = 1.3 to

k = 1, (L' = 4300 and 5700 km). Also the phase speeds of unstable modes and

of neutral upper-level modes generally increase when the tropopause becomes

more flexible [see figure 3.6(b)]. The tropopause motion vanishes in the rigid lid

limit but is present with a realistic tropopause. As shown in figure 3.7(b), the

perturbation tropopause motion moves slightly upstream of the streamfunction

wave when the wave grows. The structure of the most unstable mode is also

altered with a realistic tropopause: the perturbation streamfunction is less

developed at upper level, and the phase lines are more vertical [look at figures

3.8(a) and (b)].

Let us now look at the effects of density stratification that is accompanied

by vertical variations of wind U and stability N2 in the basic states studied

here. For that purpose we focus our attention on solutions with basic states

that have a realistic tropopause but different profiles of tropospheric stabil-

ity, wind, and density. The effect of density and shear variations in the S1

solutions tends to decrease the phase speeds of unstable modes and of upper-

level neutral modes [compare the long dash and the small dash lines in figure

3.6(b)]. It also causes most unstable modes to be more developed at upper



levels [see figure 3.8(a)]. S2 solutions display only marginal instability at very

large horizontal scales [see long dash - short dash line in figure 3.8(a)]; the

presence of increased stability close to the ground efficiently stabilizes the flow

to normal mode instability.

Figures 3.9 and 3.10 display characteristics of the upper-level normal mode

at k = 2.3 for the Boussinesq basic state and for the basic state with increased

low-level stability. It is interesting to compare figure 3.9 with figure 3.4,

which represents the upper-level edge wave solution at the same scale (in the

absence of the lower boundary). At upper levels most characteristics of the two

solutions, such as the amplitude and phase of different fields, are remarkably

similar. The dynamics of the normal mode solution at this scale must then

be very similar to that of the edge wave. The presence of the ground however

creates secondary extrema in the streamfunction field. As seen in figure 3.9(a),

the amplitude at the ground is about one fourth of that at the tropopause.

So, for a perturbation amplitude of .2 (5 dm) at the tropopause, a surface

pressure perturbation of 1.5mb is expected. The fields depicted in figure 3.10

are less developed at lower levels than those shown in figure 3.9, because of

the increased basic state stability.

3.5 The effect of boundary layer friction

Let us examine here the effect of friction at the lower boundary. Figure 3.11

shows the growth and decay rates of normal modes for four values of the friction



parameter r/. The presence of friction reduces the instability at large scales,

damps very strongly the lower-level wave solutions, and slightly destabilizes

the upper-level wave solutions. For r/j = .12, a value typical of mountainous

terrains, the growth rate of the upper-level wave is .005 at k = 2.3, which

corresponds to a an e-folding time of 80 days; for the lower-level wave, the

decay rate is .33, which corresponds to an e-folding time of 1.2 day.

Let us try to understand how the friction at the lower boundary acts on

lower-level and upper-level waves. In the formulation presented in section

2.1.2, friction induces convergence and divergence in areas of low and high

pressures. Within the QG system this creates adiabatic cooling and warming

in low and high pressure areas. Then, the friction tends to destroy lower-level

waves that have warm depressions, and slightly destabilizes upper-level ones

that have cold depressions. It is interesting to note that this destabilization

of upper-level waves does not need the presence of a temperature gradient

(or equivalently Qy) at the ground. Also, it is quite possible that ageostrophic

mechanisms, such as latent heat release, may act to reverse the effect of friction

at lower levels, since convergence would then induce heating and destabilize

the lower-level wave.

Figure 3.12 displays characteristics of the upper-level wave solution at

k = 2.3 for a friction parameter typical of mountainous landmass. Comparing

figures 3.12 and 3.9, we notice that the fields at upper levels are mainly un-

changed. At lower levels, there exists upshear tilt in the streamfunction field,

while the temperature and vertical velocity fields show downstream tilt.



3.6 Discussion

In this chapter we have shown that the Eady normal mode characteristics

hold for realistic tropopause and stratosphere. Let us remember the physical

significance of normal mode solutions. The normal modes are the only linear

modes of fixed structure; they represent a manner by which perturbation en-

ergy within a basic state flow can either be maintained, in the case of neutral

modes, or increased, in the case of unstable modes. Note that individual nor-

mal modes that have vertical phase lines are also nonlinear solutions of the

QG system since both J(#, q) and J(#, 0) vanish [remember (2.4) and (2.5)].

This suggests the robustness of neutral normal modes above the short-wave

cutoff, and their validity as models for synoptic-scale waves.

It is interesting to compare the structure of upper-level normal modes pre-

sented in this chapter with that of observations of midlatitude upper-level

waves. Remember chapter 1 where figures 1.2 and 1.3 display characteristics

of upper-level waves, extracted from Sanders (1988) and Davis (1990). The

upper-level wave solutions depicted in this chapter share many characteris-

tics with the observations: the maximum streamfunction amplitude at the

tropopause and the secondary maximum at the ground, the dipole structure

in the temperature field, the magnitude of the phase speed, and the relative

phase and amplitude of the different perturbation fields. Even the magnitude

of the tropopause deformation is comparable. From section 3.3 a height per-

turbation of 10 dm is associated with a tropopause deviation of 2.4km, and

this compares rather well with observations displayed in figure 1.3, where a



deviation of 2.5 km accompanies a height perturbation of 9 dm. Furthermore

the effect of friction at the lower boundary does not damp but slightly destabi-

lizes upper-level wave solutions, and can also explain the low-level upstream

tilt present in the observations.

Like the extratropical atmosphere the generalized basic states examined

here have profiles of QPV with gradients concentrated at the ground and

tropopause, and they lead to elegant normal mode solutions. We think that

both the neutral lower-level and upper-level modes are of dynamical signifi-

cance, and we will show in the next chapter that upper-level modes have coun-

terparts in models with positive tropospheric QPV gradients. The upper-level

normal modes share much of the characteristics of observations of upper-level

waves in the jet. They provide a simple model for their dynamics, as waves

basically supported by the gradient of QPV at the tropopause.
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Figure 3.1: The vertical profiles of basic state (a) wind U(z) and (b) static

stability N2 (z) with N2 = 4 for different values of a and b [a, b = 0 (solid line),
a, b = .5 (short dash line), a, b = 1 (long dash line) and a, b = 1.5 (long dash -
short dash line)].
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Figure 3.2: Meridional-height cross section of basic state isentropes with s =
a = b = 0 and N22= 4. The basic state has uniform shear and static stability
in the troposphere.
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Figure 3.3: (a) Phase speed c and (b) tropopause motion amplitude |Njl of
the upper-level edge wave solutions as a function of k for different values
of N22 (N2' = 2 (solid line), 4(short dash line), oo (long dash line)). The
streamfunction amplitude is fixed to unity at the tropopause.
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Figure 3.4: Midchannel x - z cross section of the upper-level edge wave at

k = 2.3 with N = 4: (a) streamfunction, (b) potential temperature, and (c)

vertical velocity. The contour interval is .1 in (a), .5 in (b), and .1 in (c), and

the streamfunction amplitude at the tropopause is fixed to unity.
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Figure 3.5: Particle trajectory of the upper-level edge wave and basic state
isentropes in the y - z plane at k = 2.3 with N2 = 4. The line with the arrows
represents the particle trajectory, while the two other lines are isentropes.
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Figure 3.6: (a) Growth rate Q and (b) phase speed c,. of inviscid solutions as

a function of k for four different basic states [(Sl,a = 0, N2 -+ oo) (solid line),
(S1,a = 0, N2 = 4) (small dash line), (S1,a = 1, N2 = 4) (long dash line), (S2,b = 1,
N2 = 4) (long dash - small dash line)]. The solid line corresponds to the Eady basic
state; the small dash line to a Boussinesq basic state with uniform tropospheric
shear and stability; the long dash line to a non-Boussinesq basic state with shear

varying in the troposphere; and the long dash - short dash line to a non-Boussinesq

basic state with the static stability varying in the troposphere.
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Figure 3.7: The tropopause deviation h (a) amplitude and (b) phase of inviscid
solutions as a function of k for four basic states represented as in figure 3.6.
The streamfunction amplitude at the tropopause is fixed to unity.
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solution at k = 2.3 with N2 4 for the Boussinesq basic state (S1,a=
0, NT2 = 4): (a) streamfunction, (b) potential temperature, and (c) vertical

velocity. The contour interval is .1 in (a), .5 in (b), and .1 in (c), and the

streamfunction amplitude is fixed to unity at the tropopause.
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solution at k = 2.3 with N2 = 4 for the non-Boussinesq basic state with tro-
pospheric variation of static stability (S2,b = 1, N 2 = 4): (a) streamfunction,
(b) potential temperature, and (c) vertical velocity. The contour interval is .1
in (a), .5 in (b), and .1 in (c), and the streamfunction amplitude is fixed to
unity at the tropopause.
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streamfunction amplitude is fixed to unity at the tropopause.





Chapter 4

Waves on basic states with
interior tropospheric potential
vorticity gradients

4.1 Introduction

This chapter addresses a question that has been left unanswered in the history

of dynamical meteorology. What happens to the upper-level Eady normal

modes in the presence of positive basic state gradients of quasi-geostrophic

pseudo-potential vorticity (QPV)? Green (1960) examined the effect of a pos-

itive meridional QPV gradient on the Eady normal modes, and stated without

providing any explanation that the upper-level wave solutions no longer exist.

It is the purpose of this chapter to show that the upper-level Eady normal

modes have counterparts in models with QPV gradients.

To simplify things as much as possible we consider in this chapter a semi-



infinite domain representative of the troposphere bounded by a rigid lid that

corresponds to an infinitely stable stratosphere. Non-Boussinesq effects are

not included. We examine in an initial-value problem the evolution of upper-

level edge wave solutions in basic state flows identical to the Eady one except

that the meridional gradient of planetary vorticity, P, is nonzero. As noted

in section 3.2 the temperature gradient at the rigid lid is equivalent to a thin

sheet of infinite positive QPV gradient, Q,. Then, the Qj, distribution is one-

signed and positive throughout the domain when the contribution of the lid is

included.

For the basic states examined here the Charney-Stern theorem excludes

the possibility of unstable normal modes (see section 2.1.3). Furthermore an

argument presented by Bretherton (1966) also rules out the existence of neutral

normal modes. As stated in the paper neutral modes cannot be supported in

monotonic basic state winds with a one-signed Q, distribution. At the critical

level, where the phase speed equals the basic state flow speed, there is then a

meridional flux of perturbation QPV, q, that cannot be balanced.

Even in the absence of neutral and unstable normal modes, we show in

this chapter that the basic states examined here supports quasi-modes. These

quasi-modes consist of a superposition of singular neutral modes with a dis-

tribution sharply peaked in the phase speed domain [remember (2.34)]. The

decay of the streamfunction does not proceed as 1/t, as would be the case for

a flat distribution (Case,1960). Instead, the streamfunction field, as well as

other perturbation fields, display behaviors typical of slowly decaying normal



modes. In the limit P -+ 0, the distribution becomes a delta of Kronecker and

corresponds to a neutral normal mode solution. As # increases from 0, the

distribution widens, and the streamfunction amplitude and total perturbation

energy decay with time.

We examine in this chapter the parameter dependency of the exponen-

tial decay rate of quasi-modes, A. The following proportionality relationship

holds, A a #3k/(k 2+ 2). Meridionally elongated waves decay faster than zonally

elongated waves. This result is consistent with the fact that the meridional

QPV gradient, Q,, is only dynamically active when advected by the meridional

wind. The effect of decaying quasi-modes on the mean flow is also studied. In

contrast with low-level Charney waves that tend to erase both meridional gra-

dients of surface temperature and interior QPV in the middle of the channel,

quasi-modes also act to erase interior QPV gradients, Q,, but act to enhance

temperature gradients at the upper boundary.

In section 4.2 we present the mathematical formulation and solution of

the problems addressed in the chapter. Section 4.3 displays the results of a

series of initial-value experiments. In section 4.4 the concept of quasi-modes

is discussed in details. Section 4.5 presents the effect of quasi-modes on the

mean flow, while we discuss in section 4.6 the overall significance of our results.
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4.2 Formulation

4.2.1 Basic states

We consider in this chapter a Boussinesq fluid, s = 0 and p = 1, and basic

states with linear shear, U(z) = z, and constant static stability, N 2  1.

Then, from (2.10) the meridional QPV gradient reduces to the form: Qy = #.

We assume a semi-infinite domain bounded by an inviscid rigid lid at z, = 1.

Figure 4.1 displays the vertical profiles of basic state wind and meridional QPV

gradient. Remember from sections 1.2.1 and 2.1.1 that # = .5 corresponds to

an upper bound for midlatitude tropospheric QPV gradients.

4.2.2 Integral equations

Let us present some integral relationships that reveal important aspects of

the dynamics studied here. See Pedlosky, 1979, chapter 7, pp.426-440, for

details on their derivation. For the type of flows considered in this chapter the

meridional eddy flux of QPV has to be balanced by the meridional eddy flux

of heat at the boundary:

(iz1 dz T, (4.1)

where the notation is the same as in section 2.1.2. This relation allowed

Bretherton (1966) to develop his argument for the nonexistence of neutral

modes. The left-hand side (LHS) of (4.1) can be rewritten as

(iil = (2/2 , (4.2)
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where ( represents the meridional displacement, while in the case of neutral

modes propagating with phase speed c, we can express the right-hand side

(RHS) as

dziq = dz

= -#7rk (- , (4.3)
(U2

where ze is the height of the critical level, U(ze) = c. To obtain (4.3) we took

the physical limit of viscosity going to zero from positive values. Comparing

(4.2) and (4.3) we understand that in the case of a neutral mode there is a

QPV flux at the critical level that cannot be balanced because the temperature

flux at the boundary vanishes.

In section 4.5 of this chapter we examine the effect of decaying quasi-

modes on the mean flow, where the mean refers to the zonal average. We more

specifically look at the temperature gradient at the upper boundary, 8,(y, z =

1, t), and at the vertical profiles of meridional QPV gradient, Q,(y, z, t). These

two relations hold:

a ( = -_l 2RE [(i6* 21 cos 2ly, (4.4)

aQ~at = 12 RE [bq*]cos 21y. (4.5)at
From (4.1) we must also have

-= dz
When the wave transports heat southward at the upper boundary,

RE [(e*j 21 < 0, the magnitude of the temperature gradient (that is nega-



tive) increases in the middle of the channel and decreases on its sides. When

the wave transports QPV southward, RE [i9*] < 0, the gradient U is en-

hanced at the sides of the channel, but erased in its middle.

4.2.3 The decay rate in the normal mode limit

From (4.1), (4.2), and (4.3), we can calculate an approximate expression for the

decay of upper-level edge waves in the normal mode limit where the QPV flux

is nonzero at the critical level only. As noted in Tung (1983), the normal mode

limit is never reached in an initial-value experiment with nonsingular initial

conditions. However, it is interesting to compare this approximate normal

mode limit with the decay rate associated with initial-value experiments.

Let us approximate the streamfunction field as

e~z t)A NEz6Ant ikcst
O(lt VkE(Z)e- feEI

where A, is the decay rate in the normal mode limit, and #E(z) and cE are re-

spectively the streamfunction field and phase speed associated with the upper-

level edge wave solution,

1E(Z) = exp[K(z - 1)], CE = 1 - 1/K, (4.6)

(see section 3.3). Then, through (4.2), the LHS of (4.1) can be approximate

as

(o IzE1 S2n _sn1=i 2

2 (1 - CE) 2 2(1 - CE) 2



since ( = (vjc), while the RHS reduces to

/1/#7rk
dz vqi ---- sin 2 lY.

J-oo 2e 2

These lead to a decay rate,

A =2#r = .42 k (4.7)
e2(k2 +12) k2 +12

4.2.4 Solution to the initial-value problem

In this chapter we solve the initial-value problem that consists of integrating in

time (2.15), completed by (2.17), by an inviscid rigid lid boundary condition

at z,, = 1, [rju = 0 in (2.22)], and by an approximate boundary condition

for trapped waves at z = zi [(B.12) in Appendix B]. We solve this problem

numerically, and the details of the initial-value model are presented in section

2.2.3. It is fourth-order accurate in height and second-order in time. For most

simulations the time step is fixed to At = .05 and the vertical resolution to

Az = .025, and the fictitious lower boundary is located at zi = 0. We test

the validity of the results by performing experiments with finer height and

time resolutions, and with a fictitious lower boundary that we move to smaller

height, z, < 0.

The initial condition consists of the inviscid upper-level wave solution for

# = 0. We did not use the analytical formula (4.6) to compute the initial

condition at grid points. Instead, we computed the vertical structure of this

eigenmode numerically with a technique presented in section 2.2.1, in which the

vertical scheme is the same as the one used to solve the initial-value problem.



The advantage of this approach is that it produces an initial condition that is

a numerical mode of the vertical scheme.

In the initial-value experiments we look at a number of diagnostics. We

produce time series of scalar diagnostics that are computed at each time step.

This is the case for the streamfunction amplitude at the lid, the total pertur-

bation energy [remember (2.23)], and the phase speed at the lid, Il, Er,

and c|"'. Also at specified times, we examine perturbation fields of stream-

function, QPV, temperature, and vertical velocity. We also compute changes

in Q, and Q, induced by the wave. (4.4) and (4.5) are integrated in time

during the simulation to produce a time series of A(9, "= (t), and also the

vertical profiles of A,(z) at specified times. Details of computations of the

diagnostics can be found in section 2.2.3.

4.2.5 Modal decomposition

In section 4.4 we calculate the singular modes [remember (2.32)] associated

with the basic states examined here. The modes 1j > and j > are computed

numerically with a technique described in section 2.2.2. The solution to the

initial-value problem can then be expressed as in (2.34):

N

kb(t) > =I ajl@k > eikcat
j=1

< <lk itkE >
where a -=

and where JOE > represents the upper-level wave solution at a certain trun-

cation. In this chapter we are interested specifically at the time evolution of



the streamfunction amplitude at the lid:

N

|@(1, t) > = F-ikct , (4.8)
j=1

where Fj = ail|b(1) > .

In section 4.4 we examine idealized distributions F that lead to analytical

solution to (4.8). We also look at distributions Fj for a number of initial-

value experiments performed in section 4.3.

4.3 Initial-value experiments

We perform in this section a series of initial-value experiments with the initial

condition consisting of the upper-level edge wave solution for # = 0. We

vary the three free parameters, P, k, and 1, in order to find the parameter

dependency of the decay rate and propagation speed of quasi-modes.

4.3.1 Varying #

We vary P but keep k and 1 constant: k = 2.3, 1 = 1.4. Figure 4.2 displays

the time series of Ibz, c|" , and ET for five different experiments. When

# = 0 (solid line), the streamfunction amplitude at the lid and the perturba-

tion total energy remain constant, while the mode propagates at a fixed rate,

c = .6292 (which is close to the analytical value c = .6286). As # increases,

the streamfunction amplitude at the lid decays in time with an exponential

behavior (notice the straight lines on log-linear plots). The total perturbation
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energy evolves similarly but the decay proceeds at a faster rate. Small oscil-

lations around that exponential behavior are visible especially at # = 1 (long

dash - short dash - short dash line). The propagation speed at the lid lowers

as # increases, and oscillates in time when # becomes large, i.e. at # = .75

and # = 1.

In figure 4.3 we show the time evolution of perturbation fields of stream-

function and QPV for # = .5. At the initial time, the eddy QPV is null in

the interior, which is a characteristic of the upper-level edge wave solution.

As time marches, the eddy QPV is both generated by the advection of # by

the meridional wind and sheared by the basic state wind [remember (2.15)]. It

maximizes in the critical region where the flow speed equals the "phase speed",

i.e. around z = .6 [c| 1 = .58 from figure 4.2(b)]. The streamfunction dis-

plays slight downstream tilt that becomes more and mode localized around

the critical region as time progresses.

Figures 4.4 display perturbation fields 7k, 4, 0, and tb, for # = .5 at time=10.

It is interesting to compare this figure with figure 4.5 that exhibits the same

perturbation fields with the same parameters, but for the lower-level Charney

normal mode. The lower-level mode propagates at a phase speed, c, = .328,

and grows at a fixed rate, Q = kc; = .064. It was calculated numerically

using the technique presented in section 2.2.1. The streamfunction and vertical

velocity fields display upstream tilt with height, which is indicative of a growing

mode, while the QPV field shows large downstream tilt around the critical level

where it sharply peaks. The perturbation fields of the initial-value experiment



are oppositely tilted, with the streamfunction and vertical velocity leaning

downshear, but the QPV field still shows downshear tilt in the critical region

where it maximizes.

Even if the perturbation fields of initial-value experiments, especially QPV

and temperature, do not have fixed structure, decay rate, and phase speed,

they show a lot of behaviors typical of modes. The streamfunction field keeps a

distinct maximum at the lid, which propagate at a fairly steady rate for small

f. As the Charney modes that become lower-level Eady modes in the limit of

s, # -+ 0, they can be thought of as quasi-modes that reduce to upper-level

Eady modes. This concept will be clarified in section 4.4.

4.3.2 Varying k and I

We examine the evolution of the initial-value problem varying k, but keeping

# and (k2 + 12) constant : # = .5 and (k2 + 12) = 7.25. Figure 4.6 shows time

series of | Iz=1 , ET, and cjz" 1 for five different experiments. As k increases,

both the streamfunction at the lid and the total perturbation energy decay at

faster rates. However, changes in k do not affect the propagation speed at the

lid.

We also study the initial-value problem, varying k and 1, but keeping #

and #k/(k 2 + 12) constant: P = .5 and #k/(k 2 + 12) = .159. As shown in

figures 4.7(a) and (c), the decay of the streamfunction at the lid and of the

total perturbation energy proceeds at the same rate for the three experiments.



However the propagation speed at the lid decreases as (k2 + 12) decreases.

The results presented so far suggest the parameter dependencies for the

decay rate, A = g (#k/(k 2 + 12)), and for the propagation speed change,

Ac|" = f (#, (k2 + 12)), where Acl"= is the propagation speed at the lid

minus that of the original edge wave solution.

4.3.3 The decay rate and the propagation speed change

We present here approximate expressions for the decay rate and the propaga-

tion speed change that can be inferred from initial-value experiments. We are

interested in the decay rate of the streamfunction amplitude at the lid and in

the propagation speed at the lid. Since the amplitude of perturbation stream-

function maximizes at the lid, we think it is a proper way to characterize the

quasi-modes.

Let us first evaluate the decay rate A,

= I~l,1t=O -At.

In initial-value experiments we evaluate A from the decay that occurs between

time=4 and 20:
1 bIz=1,t=20

A = -- ln z I.16 kIkzli /
Figures 4.8 (a) and (b) show that the decay rate depends linearly with # and

k. A linear regression on the five points of figure 4.8 (a) leads to the relation:

A = .45 (4.9)
(k2 + 12)

, I , , ,. W " 1, " , , I I I, i I I I I .' 111 111 Ll ' I



where the correlation coefficient is greater than .999. A regression on the

five points of figure 4.8(b) leads to the same result within one percent. The

relationship (4.9) holds for the parameter range explored in initial-value exper-

iments: 0 < / < 1, 0 < k < 2.5, and 4.7 < (k2 + 12) < 7.3. It is interesting to

compare this rate with the approximate decay rate in the normal mode limit,

An, evaluated in (4.7). The approximation derived in section 4.2.3 does very

well: the parameter dependency is the same and the rate is slightly smaller

than the rate of initial-value experiments. The initial-value experiments show

that nothing singular happens at the critical level even if a maximum of |qi is

generated in the region. This small discrepancy is therefore not surprising.

Now we evaluate the change in propagation speed at the lid. It is obvious in

the initial-value experiments that the propagation speed at the lid fluctuates

with time, especially at large horizontal scales, i.e. small (k 2+12), and large P.

We solve this problem by calculating average of c"1 from time=4 to 20 for

each experiment. We then compute A cj"= 1 by subtracting from the average

the numerical value of the phase speed of the edge wave solution, c = .6292.

Figure 4.9 displays the dependency of Ac|2- 1 with respect to P. A linear

regression using the five points of figure 4.9 yields the relation:

A cl1z = -. 105#. (4.10)

where the correlation coefficient is greater than .999. The linear relation (4.10)

is valid in the parameter range 0 < P < 1, 0 < k < 2.5, and (k2 + 12) = 7.25.

In the extratropical atmosphere a realistic upper bound for tropospheric

Q, corresponds to # = .5. For k = 2.3 and I = 1.4, which correspond to
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a channel width of 2000 km and a zonal wavelength of 2500 km, the stream-

function amplitude at the lid decays by an exponential factor in td= A-', 14

time units (dimensionally 5.5 days), and the propagation speed is cl'= = .58

(dimensionally 15.6 m/s).

4.4 Propagating quasi-modes in shear

In this section we clarify the mathematical definition of quasi-modes. Nei-

ther neutral nor unstable modes are supported by the basic states studied in

this chapter. However, they support decaying quasi-modes that consist of a

superposition of singular modes sharply peaked in the phase speed domain.

Let us examine two distributions F that lead to analytical solutions to

(4.8). First, we study a case with uniform Fi,

F = 1 in the domain [ci, c2],

= 0 elsewhere.

Then, changing the summation for an integral in (4.8) yields

|10(1, t) > = j2dee'ct,

= -exp ik t] sink (C 2 -C)t.
kt 2 2

The streamfunction decays as 1/t, and this result is consistent with the more

general results presented in Case (1960).
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Let Fj take the following form,

Fj = ,C (4.11)
(cj - co)2 + w2

where co is the location of the peak and w the half-width. After changing the

summation to an integral in (4.8), and assuming that Fj has significant values

only in the range of phase speeds supported by the basic state, we arrive at

the expression,

lx 
Ke-ikct

|#(1, t) >= 1-0dc (C-C 2 -2

A change of variable, c' = c - co, yields

10(1,t)> = Ke-ikcot L dc'
I_-0 C'2 + W2

7~r e-ikcot dc'etk'w

The streamfunction wave at the lid propagates with speed co and decays ex-

ponentially at a rate, A = wk. The decay proceeds as the singular modes

interfere with one another.

These two examples can help to clarify the concept of a quasi-mode, as

a sharply peaked distribution of singular modes. When the distribution is

sharply peaked, the decay of the streamfunction does not happen as 1/t, thus

depending only on the shear, but proceeds at a rate determined by the width

of the peak. Quasi-modes behave essentially as slowly decaying modes.

Figure 4.10 displays the distribution Fj for an initial-value experiment

with # = .25 (solid line), and Fj calculated from expression (4.11) (dash line).

In (4.11) the parameters are fixed by the results of initial-value experiments



presented in section 4.3. From these the decay rate, A, and the propagation

speed change, A c21 , are known. We can then compute co by adding A c'

to the phase speed of the original edge wave solution, .6292, and w with the

expression w = A/k. The two distributions are remarkably similar. It is

therefore not surprising that initial-value experiments display the exponential

decay of the streamfunction at the lid (remember figure 4.2, the dash line

corresponds to the case illustrated in figure 4.10).

Figure 4.11 displays the distributions F for different values of P. When

# = 0, the distribution is simply a delta of Kronecker (solid line). As #

increases, the distribution F widens, and its peak moves toward smaller phase

speeds. Notice that it also becomes more asymmetrical with respect to the

peak, with amplitudes larger on the side of larger phase speeds.

4.5 Wave-mean flow interaction

We examine in this section the effect of decaying quasi-modes on the mean

flow. Figure 4.12 depicts changes in the midchannel mean temperature gra-

dient at the lid induced by quasi-modes for initial-value experiments with

parameters as in figure 4.2. Each curve represents a different value of #:

# = .25, .5, .75, 1., while k and I are fixed to 2.3 and 1.4. The magnitude of the

midchannel mean temperature gradient at the lid increases as quasi-modes

decay. This enhancement proceeds at a rate that increases as P increases.

Remember that it is accompanied by a reduction of the gradient on the sides



of the channel [see (4.4)].

We show in figure 4.13 changes in the midchannel mean QPV gradient

for initial-value experiments with # = .5 and P = 1. Each curve refers to a

different time in the simulation. The large numbers present in the abscissae of

figure 4.13 are due to the fact that in the initial-value experiments the initial

streamfunction amplitude at the lid is fixed to unity (this is also the case in

figure 4.12). For both cases, the quasi-mode acts to erase basic state QPV

gradients that are positive. As time progresses, changes peak in the critical

region. When # = 1, changes do not become as sharply peaked as when

# = .5. The quasi-mode simultaneously induces an increase in the mean QPV

gradient on the sides of the channel [remember (4.5)].

It is interesting to evaluate a time scale for the erasing of the interior QPV

gradient by upper-level waves. Let us consider here realistic values for the

parameters and for the perturbation amplitude. To calculate a time scale we

consider an initial perturbation amplitude of |kl Z1,t0 = .2, # = .5, k = 2.3

and I = 1.4. These numbers correspond to an initial perturbation of 5 dm

and 12 m/s at the tropopause, with a zonal wavelength of 2500 km and a

channel width of 2000 km. For these parameter values, from figure 4.13(a),

the midchannel mean QPV gradients in the critical region are erased after 8

time units (dimensionally 3.1 days). This is accompanied by a doubling in

the mean QPV gradient on the sides of the channel. Also, from figure 4.12

(the large dash line represents the case with # = .5), the mean temperature

gradient at the lid is then increased by a fifth in the middle of the channel,



and decreased by a same amount on the sides.

4.6 Discussion

In this chapter we showed that the upper-level Eady normal modes have coun-

terparts as decaying quasi-modes in models with interior tropospheric QPV

gradients. The quasi-modes consist of a distribution of singular modes sharply

peaked in the phase speed domain, and their decay proceeds as the singular

modes present interfere with one another. The concept of quasi-modes is im-

portant since quasi-modes represent a manner by which perturbation energy

can be maintained in shear flows, not for an infinite time like neutral normal

modes, but for a considerable time. Stationary quasi-modes in shear flows

have been discussed previously in Held et al. (1985). This chapter presented

the first study on propagating quasi-modes.

For parameter values typical of synoptic-scale waves at midlatitudes and

for a realistic upper bound of tropospheric QPV gradients, the quasi-modes

were found to have marginal decay rates that correspond to exponential decay

times of six days. Furthermore, our results showed that quasi-modes act to

erase the critical region mean QPV gradients after three days, thus enhancing

the mean temperature gradient at the lid. Their net effect is to create a mean

flow that supports them. These results suggest that perturbation energy can

indeed be maintained at the tropopause even in the presence of initial interior

tropospheric QPV gradients. Sanders (1988) found that the life duration of
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upper-level mobile troughs at midlatitudes is typically 12 days. Our decay

time scale of 6 days seems too small to account for the observations, but

remember that it is associated with an upper bound value for tropospheric

Q,, and that nonlinear eddy transports were found to erase Q, in the middle

of the channel.

In this chapter we examined simplified basic state flows in order to explain

clearly the concept of quasi-modes. In the following chapter we study not only

the maintenance of upper-level waves, but also their excitation from favorably

oriented initial conditions, in less constrained basic state flows that contain a

stratosphere.
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fixed to unity at the lid, and ET is normalized by its initial value.
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Figure 4.3: Time evolution of the midchannel perturbation streamfunction and
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tion, (b) QPV, (c) potential temperature, and (d) vertical velocity. Maximum
streamfunction amplitude is fixed to unity. The contour interval is .1 in (a),
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Figure 4.6: Time series of (a) ItI zl (b) cl"z, and (c) ET for initial-value
experiments with #3 = .5, K 2 = 7.25, and variable k and 1. k = 1, 1 = 2.5

(solid line), k = 1.4,1 = 2.3 (short dash line), k = 1.9,1 = 1.9 (long dash line),
k = 2.3, 1 = 1.4 (long dash - short dash line), and k = 2.5, 1 = 1 (long dash
- short dash - short dash line). Initial streamfunction amplitude is fixed to
unity at the lid, and ET is normalized by its initial value.
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Figure 4.7: Time series of (a) 11z1| , (b) ci"~-, and (c) ET for initial-value
experiments with # = .5, #k/K 2 = .159, and variable k and 1. k = 2.3, 1 = 1.4

(solid line), k = 2,1 = 1.518 (short dash line), and k = 1.5,1 = 1.574 (long

dash line). Initial streamfunction amplitude is fixed to unity at the lid, and
ET is normalized by its initial value.
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Figure 4.10: Distribution F as a function of ci, for an initial-value experiment
with # = .25, k = 2.3, and I = 1.4 (solid line), and for an idealized distribution

of the form (4.11) with parameters specified in the text (dash line).
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Figure 4.11: Distributions F as a function of c3, for initial-value experiments
with k = 2.3 and I = 1.4. # = 0 (solid line), .25 (short dash line), .5 (long
dash line), .75 (long dash - short dash line), and 1 (long dash - short dash -
short dash line).
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Figure 4.12: Time series of changes in the midchannel mean temperature
gradient at the lid for initial-value experiments with k = 2.3 and I = 1.4.
# = .25 (short dash line), .5 (long dash line), .75 (long dash - short dash line),
and 1 (long dash - short dash - short dash line). The initial streamfunction
amplitude at the lid is fixed to unity in each experiment.
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nel QPV gradient for initial-value experiments with k = 2.3 and I = 1.4.(a)
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Chapter 5

Waves on basic states with
interior tropospheric and
stratospheric potential vorticity
gradients

5.1 Introduction

In this chapter we examine upper-level waves in the presence of interior tropo-

spheric and stratospheric potential vorticity gradients. Furthermore, whereas

previous chapters only addressed the problem of the maintenance of upper-

level waves, this chapter also addresses their excitation and identifies favorable

initial conditions from which upper-level waves can emerge.

We consider here a semi-infinite atmosphere with a lower rigid boundary.

The basic states are similar to those associated with S2 solutions in chapter

3. As was presented in section 3.2.4, S2 basic states have a density profile
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that decays exponentially with height, a static stability that decreases with

height in the troposphere and jumps to a typical stratospheric value at the

tropopause, and a wind with constant shear in the troposphere and no shear

above the tropopause. In the basic states considered here the density decays

exponentially with height and unlike the S2 profiles, the profiles of wind shear

and static stability remain continuous with height. Furthermore, the plane-

tary gradient of potential vorticity, 0, is included. For such basic states, the

meridional gradient of quasi-geostrophic pseudo-potential vorticity, QJ,, has

strong positive values in the neighborhood of the tropopause and reduces to

# in the tropospheric and stratospheric interiors.

When P vanishes, the basic state supports at the synoptic scale neutral

upper-level wave solutions that share much of the characteristics of the so-

lutions presented in chapter 3. When # is nonzero, the basic states support

slowly decaying quasi-modes with characteristics comparable to those found

in chapter 4. The presence of stratospheric Q, and of a rigid lower boundary

does not modify the overall characteristics of the results presented in chapter

4.

Farrell (1989) found that the adjoint of a given mode is the optimal per-

turbation to excite that mode in the total perturbation energy (ET) norm.

Following a procedure like that of Montgomery and Farrell (1990), we calcu-

late near optimal initial conditions for the upper-level wave solution when #

is zero. These initial conditions have a streamfunction and QPV fields that

are concentrated in the upper troposphere and that lean against the shear.
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The amount by which perturbation fields lean against the shear determines

the time scale and magnification associated with the excitation. For excitation

with time scales of 4 days, ET grows by a factor of 70 and the streamfunction

amplitude by 10.

When # is nonzero, the basic states no longer support neutral upper-level

wave modes but slowly decaying quasi-modes. However, the excitation of

quasi-modes proceeds in a manner similar to that of neutral modes, and for

a reasonable #, magnification of the same order of magnitude is observed. At

# = .5, which corresponds to an upper bound for the tropospheric QY, ET

grows by a factor of 30 and the streamfunction amplitude by a factor of 10 for

an excitation time of 4 days. Following the excitation, there is an interval of

growth after which the quasi-mode decays slowly with time.

In section 5.2, we present characteristics of the basic states, and the meth-

ods of solution to the mathematical problems encountered in this chapter.

Section 5.3 discusses the upper-level wave solutions and section 5.4 their ex-

citation from favorable initial conditions. A discussion of the results is found

in section 5.5.
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5.2 Formulation

5.2.1 Basic states

We assume in this chapter a semi-infinite atmosphere with a rigid lower bound-

ary at z = 0. The density decays exponentially with height at a constant rate,

s = 1. The basic state wind takes the following form,

z < zt - b", U(z) = z,

z > Zt - b, U(z) = (zt - 6.) + 6tanh (z -u .

We set the tropopause height to unity, zt = 1, and bu = .15. The static

stability profile is

2() NJ + N2 z - zeZZtN2(z)= 2 )1 + tanh ( N )] + N, (e-("-") -

We fix the tropospheric and stratospheric static stability: N, = 1 and N2 =

4.5, and 6 N = .05. For these profiles of wind and static stability, all basic state

quantities that enter the equations to be solved are continuous, because N 2 and

all its derivatives are continuous, and U and its first and second derivatives

are also continuous. Figure 5.1 displays the vertical profiles of U and N2 .

Note the increased stability close to the ground that is characteristic of the

extratropical atmosphere where lapse rates at lower levels are generally smaller

than at upper levels.

The vertical profiles of Q, for different values of # are shown in figure 5.2.

It strongly peaks at the tropopause and reduces to P in the troposphere and
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stratosphere. The temperature gradient at the lower boundary is equivalent

to a thin sheet of infinite negative Q, (Bretherton, 1966). The necessary

condition for normal mode instability of the Charney-Stern theorem is then

satisfied (remember section 2.1.3). In this chapter we consider fixed zonal and

meridional wavenumbers, k = 2.3 and I = 1.4, which correspond to a zonal

wavelength of 2500 km and to a channel width of 2000 km. At that horizontal

scale the basic state with # = 0 does not support any normal mode instability;

when 0 < P < 1 however, there exist low-level modes of marginal instability.

5.2.2 Solutions to the eigenvalue and initial-value prob-
lems

In this chapter we solve numerically a number of eigenvalue and initial-value

problems. We consider a lower inviscid rigid boundary condition, [r7, = 0 in

(2.21)], at zi = 0, and an approximate boundary condition for trapped waves,

(B.10), at a fictitious upper boundary located at z, = 1.6.

In section 4.3 we calculate numerically the upper-level normal mode as-

sociated with the basic state that has zero P. Because the vertical structure

of the mode has a strong maximum in the middle of the domain, we could

not calculate it with the shooting method presented in section 2.2.1. Instead

we computed the total spectrum of modes with a method presented in sec-

tion 2.2.2. The vertical resolution was fixed to Az = .02, and a test of the

convergence was done with Az = .016.

In section 4.3 we also calculate numerically the lower-level unstable modes
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for basic states with nonzero P. Since the modes decay monotonically with

height, it was possible to compute them with the technique described in section

2.2.1. We used the same vertical resolution as for the calculation of the upper-

level mode.

In sections 4.3 and 4.4 we present solutions to initial-value problems. Nu-

merical details on the method of solution and the calculation of diagnostics

can be found in section 2.2.3. The time step is set to At = .05, and the ver-

tical resolution to Az = .02. Experiments are also run with At = .025 and

Az = .016 to test the convergence of the results.

In section 4.3 the initial condition consists of the upper-level modal solution

for basic state with zero P that is computed numerically. In section 4.4 the

initial conditions are near optimal perturbations given by

Ono = U . (5.1)
U(z) - (CUL - ie)'

as in Montgomery and Farrell (1990). PUL and CUL are the streamfunction

field and the phase speed associated with the upper-level mode for basic state

with zero fl. c is an arbitrary factor that controls the amount by which the

perturbation fields lean against the shear. When e = 0, Ono is simply the

adjoint of the mode and would be the optimal perturbation in the ET norm

for basic states with constant stability and density (Farrell, 1989). The fact

that CUL is real for strictly neutral modes causes these adjoint modes to be

singular. For that reason, we consider here resolvable near optimal excitations

with c = .1, .15, and .3.
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5.3 The upper-level wave solutions

Figure 5.3 displays the character of the neutral upper-level wave solution for

the basic state with P = 0; perturbation streamfunction, QPV, potential tem-

perature, and vertical velocity fields are shown. It is interesting to compare

this figure with figure 3.10 that represents the fields associated with the neu-

tral upper-level wave solution for a basic state that has concentrated QV at the

tropopause. The perturbation fields of streamfunction, potential temperature,

and vertical velocity are remarkably similar in the two cases, qualitatively and

quantitatively. The perturbation QPV field in figure 5.3 is sharply peaked

at the tropopause rather than being concentrated in a thin sheet of infinite

magnitude. The upper-level wave solution displayed in figure 5.3 propagates

at a phase speed, c = .73, which is slightly less than that associated with the

upper-level normal mode for the S2 basic state.

In a series of initial-value experiments that resemble those performed in

chapter 4, we examine what happens to the neutral upper-level wave solution

in the presence of stratospheric and tropospheric Q,. Figure 5.4 displays the

time series of 101"k , cr", and ET for experiments with # = 0, .25, .5, and

.75. When # is nonzero, the streamfunction amplitude at z = 1 and the

total perturbation energy decay with time, and the decay rate increases as #

increases. The propagation rate at the tropopause decreases as # increases. At

# = .5, the exponential decay rate for the streamfunction amplitude at z = 1

is .064 which corresponds to a time scale of 16 units ( dimensionally 6.1 days

). This decay time scale compares well with that of 5.5 days found in chapter
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4 at # = .5 for the same horizontal scale.

Figure 5.5 displays the time evolution of ef and q, for # = .5. At the

initial time the streamfunction field corresponds to the neutral upper-level

wave solution. The phase lines are vertical. At later time, eddy QPV is

generated in the stratosphere and the troposphere, and the streamfunction field

acquires a downshear tilt in the troposphere. The magnitude of the QPV and

streamfunction extrema at the tropopause decreases, and another extremum in

the QPV field is generated in the critical region below the tropopause, around

z = .7. This time evolution is very similar to that represented in figure 4.3

which depicts the case with a rigid tropopause and no lower boundary. The

results of chapter 4 are robust, and hold in the presence of the ground and

the stratosphere. Figure 5.6 depicts the change in QPV gradient, AQ,(z),

induced by the wave transport. In the middle of the channel the wave acts to

erase the gradients in the critical region around z = .7, and to enhance the

gradients above around z = .9.

In the initial-value experiments with # > 0 presented in this section,

we do not observe a rapid development of lower-level waves. The presence

of enhanced stability at the ground causes the lower-level waves to be only

marginally unstable. For instance at # = .5, their growth rate is .027, which

corresponds to an exponential time scale of 15.9 time units (dimensionally, 6.2

days).
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Table 5.1: Magnifications for a basic state with P = 0

5.4 The excitation of upper-level waves

Figure 5.7 displays the character of the near optimal initial condition for an

intermediate value of c, f = .15; perturbation streamfunction, QPV, temper-

ature, and vertical velocity fields are shown. All fields possess a pronounced

maximum amplitude just below the tropopause and a marked upshear tilt with

height. From table 2.1, a height perturbation of 1 dm would have associated

temperature and vertical velocity perturbations of 2* K and .4 cm/s.

When e is smaller, the disturbances possess a larger amount of upshear tilt

and are more concentrated around the critical level of the upper-level neutral

normal mode [remember (5.1)]. At equal amplitudes in the streamfunction

and vertical velocity fields, they also have stronger amplitudes in the QPV

and temperature fields. Since the excitation of the upper-level mode takes

place as the shear acts on the initial condition, near optimal conditions with

smaller e and larger amount of upshear tilt lead to longer excitation times

and larger growths, and the opposite is true when e is larger. For values of c

considered here, .1, .15, and .3, the excitation time scales are approximatively

of 15, 10, and 5 time units (dimensionally, 6, 4, and 2 days).
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Table 5.2: Magnifications for a basic state with # = .5

e b=,max z=1,t=o Ernax/Et=o
22.4 81.1

.15 9.4 31.2
2.9 6.1

Let us now examine the excitation on a basic state with # = 0 and which

supports an upper-level normal mode. Figure 5.8 shows the time evolution

of 10|1", c|" 1 , and ET for near optimal initial conditions with different val-

ues of e. The streamfunction amplitude at z = 1 and the total perturbation

energy first increase with time and then remain constant. When e is smaller,

the growth is larger and takes longer to occur. Table 5.1 contains the mag-

nifications in |0|"1 and ET for the different experiments. At e = .15 the

amplitude is magnified by a factor of 15 and the energy by 74. Figure 5.9

displays the time evolution of the streamfunction and QPV fields for E = .15.

The shear acts on the initially tilted disturbance and excites the upper-level

normal mode.

Now we look at the same excitation, but on a basic state with # = .5 and

which does not support an upper-level normal mode but a quasi-mode. Figure

5.10 shows the time evolution of the same diagnostics as in figure 5.8 for such

a basic state. As in figure 5.8, the streamfunction amplitude and the energy

first increase with time, but the excitation is followed by a slow decay. Table

5.2 contains the magnifications for the basic state wtih P = .5. At e = .15, the

amplitude grows by a factor of 9 and the energy by 31. These magnifications
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are of the same order of magnitude as those for the basic state with zero

P. Figure 5.10 shows the time evolution of # and < for e = .15. Even in the

absence of an upper-level normal mode, the excitation of the upper-level wave

takes place.

5.5 Discussion

The first series of results presented in this chapter confirms the robustness of

upper-level wave solutions at the synoptic scale. We first showed that the

overall characteristics of the neutral upper-level wave solution presented in

chapter 3 also extend for basic states with a smooth tropopause. Note that

the neutral upper-level wave solution for basic state with # = 0 studied in

this chapter is a nonlinear solution of the quasi-geostrophic equations. When

# is nonzero, we demonstrated that the slow decay of the upper-level wave

proceeds as in chapter 4 even in the presence of a lower boundary and the

stratosphere.

The second series of results concerns the excitation of upper-level wave

solutions. We identified disturbances concentrated in the upper troposphere

with strong upshear tilt as near optimal conditions for the emergence of upper-

level waves. We further showed that the excitation takes place in a similar

manner on basic states with zero and nonzero #. This result is new and

important since it signifies that quasi-modes that consist of a superposition

of singular modes are as likely to emerge from an initial condition as strict
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normal modes.

It is interesting to compare the development scenario proposed in this chap-

ter with the observational work of Sanders (1988). In his paper he shows com-

posite maps of perturbation fields of geopotential and temperature, for the day

before initiation of upper-level mobile troughs. There is no clear correspon-

dence between these and the near optimal initial conditions described in the

present chapter. However, the near optimal initial conditions represent a pow-

erful mechanism for the excitation of upper-level waves. More observational

studies are needed to assess its importance in the midlatitude flow.
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Figure 5.1: The vertical profiles of basic state (a) wind U(z) and (b) stability
N2 (z).
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line).
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Figure 5.3: Midchannel x - z cross section of perturbation fields for the upper-
level normal mode at k = 2.3, 1 = 1.4, and # = .0. (a) Streamfunction, (b)
QPV, (c) potential temperature, and (d) vertical velocity. The contour interval
is .1 in (a), 5 in (b), .5 in (c) and .1 in (d). Negative values are dashed. A full
zonal wavelength is represented.

128



1.0

CL

0.80

0.75

-0.70 - ---- -- - --- -

0.65 -_-

0.60

LU- 0. 10

0.01
0. 4. 8. 12. 16. 20.

TIME

Figure 5.4: Time series of (a) |ki;|"l, (b) c|", and (c) ET for initial-value
experiments with k = 2.3, 1 = 1.4, and variable #. # = 0 (solid line), .25
(short dash line), .5 (long dash line), and .75 (long dash - short dash line).
The initial condition consists of the upper-level normal mode for the basic
state with zero f. Initial streamfunction amplitude is fixed to unity at the
tropopause, and ET is normalized by its initial value.
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Figure 5.5: Time evolution of the midchannel perturbation streamifunction and
QPV fields for the initial-value experiment with k = 2.3, 1 = 1.4, and 6#= .5.
Time=0 (a), 4 (b), 8 (c), 12 (d), 16 (e), and 20 (f). The initial condition
consists of the upper-level normal mode for the basic state with zero 8. The
contour interval is .1 for the streamfunction, and 5 for the QPV. Negative
values are dashed. A full zonal wavelength is represented.

130



TIME= 12.0

0 0.0

0.0
0.0

00.

TIME= 16.0

1.6

1.2

r4 0.8

0.4

0.0

1.6

1.2

N 0.8

0.4

0.0

1.6

1.2

rw 0.8

0.4

0.0

131

TIME= 20.0

lwwlllfil 111011111" lilld



DQY

1.6

1.2

0.8-

0.4 .8

0.0
-180.-120.-60. 0. 60. 120. 180.

DQY

Figure 5.6: Time evolution of the vertical profiles of changes in the midchannel
QPV gradient for the initial-value experiment with k = 2.3, 1 = 1.4, and

# = .5.Time=4 (small dash line), 8 (long dash line), 12 (long dash - small
dash line), 16 (long dash - small dash - small dash line), and 20 (very small
dash line). The initial condition consists of the upper-level normal mode
for the basic state with zero #. The initial streamfunction amplitude at the
tropopause is fixed to unity.

132



1.2

~ - --- -... d -f4

0.8

40
-R)

O

1.2

0.8-

B.

0. -

.o --------------

1.2 --- 40-

-c-

~ -- -- - - -

oo -- --- o0.I 8

CA 400

~D)

0.0 7

Figure 5.7: Midchannel x - z cross section of the perturbation fields for the

near optimal initial condition at k = 2.3, 1 = 1.4, and # = 0., for e = .15. (a)

Streamfunction, (b) QPV, (c) potential temperature, and (d) vertical velocity.

The contour interval is .02 in (a), 2 in (b), .1 in (c) and .02 in (d). Negative

values are dashed. A full zonal wavelength is represented.

133



10.00

1.00

0.10

-B)

0.78

0.76

U

0.72

1.00

0.10 -

0.01

0. 4. 8. 12. 16. 20.

TIME

Figure 5.8: Time series of (a) IOfz , (b) c1", and (c) ET for initial-value

experiments with k = 2.3, 1 = 1.4, # = 0, and variable e. e = .1 (solid line),

.15 (short dash line), and .3 (long dash line). The initial conditions consist of

the near optimal disturbances for the basic state with zero #.
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Figure 5.9: Time evolution of the midchannel perturbation streamfunction

and QPV fields for the initial-value experiment with k = 2.3, 1 = 1.4, # = 0.,

and e = .15. Time=0 (a), 4 (b), 8 (c), 12 (d), 16 (e), and 20 (f). The initial

condition consists of the near optimal disturbance for the basic state with

zero #. The contour interval is .1 for the streamfunction, and 5 for the QPV.

Negative values are dashed. A full zonal wavelength is represented.
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Figure 5.10: Time series of (a) 14,1Z1 (b) cl'", and (c) ET for initial-value
experiments with k = 2.3, 1 = 1.4, P = .5, and variable e. e = .1 (solid line),
.15 (short dash line), and .3 (long dash line). The initial conditions consist of
near optimal disturbances for the basic state with zero fl.
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Figure 5.11: Time evolution of the midchannel perturbation streamfunction
and QPV fields for the initial-value experiment with k = 2.3, 1 = 1.4, # = .5,
and e = .15. Time=O (a), 4 (b), 8 (c), 12 (d), 16 (e), and 20 (f). The initial
condition consists of the near optimal disturbance for the basic state with
zero #. The contour interval is .1 for the streamfunction, and 5 for the QPV.
Negative values are dashed. A full zonal wavelength is represented.
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Chapter 6

Conclusions

In this thesis we proposed simple dynamical models for the maintenance and

excitation of midlatitude upper-level synoptic-scale waves. We developed

an analytical model of waves on generalized Eady basic states with realistic

tropopause and stratosphere. We showed that the Eady normal mode charac-

teristics hold in the presence of these generalizations. In particular, the basic

states support at the synoptic scale upper-level neutral normal modes, which

are also nonlinear solutions of the governing equations. These modes share

many characteristics with midlatitude upper-level synoptic-scale waves and

provide a simple model for their dynamics, as waves supported by the large

latitudinal gradient of potential vorticity at the tropopause in the jet region.

Moreover, we demonstrated that contrary to the general belief (Green,

1960), these modes have counterparts as slowly decaying quasi-modes in basic

states with positive potential vorticity gradients. Mathematically the quasi-

modes consist of a superposition of singular modes sharply peaked in the phase
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speed domain; their decay proceeds as modes interfere with one another. With

parameter values corresponding to a realistic upper bound for tropospheric

potential vorticity gradients, upper-level waves are maintained for time scales

consistent with observations.

We also studied the excitation of upper-level waves. Upper-tropospheric

disturbances that lean against the shear were found to strongly excite upper-

level waves even in the presence of tropospheric and stratospheric potential

vorticity gradients, a circumstance precluding the existence of upper-level nor-

mal modes. This result is important mathematically because it demonstrates

that quasi-modes are as likely to emerge from favorably configured initial con-

ditions as real normal modes. We believe that more observational work is

needed to assess the importance of this excitation mechanism for upper-level

waves.

A limitation of this study is that we did not consider the effects of barotropic

shear and of along-stream variations in the basic state flow. Thorncroft and

Hoskins (1990) showed that the location of upper-level disturbances with re-

spect to the barotropic shear is a factor determining their subsequent evolution.

The importance of confluence and diffluence in the basic state flow has long

been recognized as a factor in the development or decay of synoptic-scale per-

turbations (Bjerknes, 1954; Farrell, 1989). We believe that both the barotropic

shear and the along-stream variations in the flow may influence the evolution

of upper-level synoptic-scale waves, and propose inclusion of these effects in

future studies of their dynamics.
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Appendix A

The effect of friction at the lower boundary

We discuss in this appendix the evaluation of the boundary parameter r/1 for

the extratropical atmosphere [remember (2.20)]. To evaluate rlj a standard

approach is to use an Ekman layer formulation:

LO= , (A.1)

where v is the eddy viscosity of the air in the boundary layer (cf. Pedlosky,

1979, pp 338-340). From model simulations of boundary layers, Lin and Pier-

rehumbert (1988) found that appropriate values for v range from 1 m2/s for

oceanic boundary layers to 5 and 20 m2/s for flat and mountainous landmass

boundary layers respectively. For these values of v r, varies from .03 and .06

to .12. In the atmosphere v depends also on the stability profiles, with v

decreasing as the stability increases.

Another approach introduced by Emanuel (private communication) is to

directly integrate the Reynolds equations from the top of the surface layer to

that of the boundary layer (see Pedlosky, 1979, pp 170-174). After assuming
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the presence of vertical shear forces only, and a balance between Coriolis,

pressure gradient, and Reynolds stress forces, we get an expression for w' at

the top of the boundary layer, z'= z'. Dimensionally,

pofo

where i is the total stress at the top of the surface layer, = (rTr+ rYj),

V' is the gradient operator, %, J, and k the unit horizontal and vertical vectors,

and where x represents the vector product. We then pose as an upper bound

for f,

7 = pOCGU, (U' + U)

where U, is a scale for the horizontal velocity at the top of the boundary layer,

and CG the geostrophic drag coefficient.

This yields an expression for the equivalent eddy viscosity, vE,

2c 2U2
VE = (A.2)

fo

and for w',

wI= CG UO 1r '(1 IF'+ 0').fo

After proper nondimensionalization we have:

CGNOU,
- foUo (A.3)

From Garratt(1977) reasonable values for CG are 10-' for oceanic boundary

layers, 2 10-3 and 3. 10- 3 for flat and mountainous landmass boundary layers.

Using U, = 10 m/s, the resulting values for qp are then .04, .07 and .11, which

correspond to equivalent eddy viscosities of 2,8, and 18 m2/s from (A.2). The
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two approaches give similar parameter ranges for the boundary layer parameter

ryl. However, the evaluation of a realistic lower bound for the midlatitude

boundary layer parameter still represents a matter of debate.
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Appendix B

Approximate boundary conditions for semi-
infinite domains

We consider in this thesis vertical domains of semi-infinite extent. For in-

stance in chapter 4 the vertical domain consists of a semi-infinite troposphere

bounded by a rigid lid, whereas in chapter 5 it consists of a semi-infinite at-

mosphere. We then need boundary conditions both at the upper and lower

boundaries. We present here the development of boundary conditions at the

upper boundary, and the conditions at the lower boundary follow easily.

Standard methods to deal with semi-infinite domains in a numerical model

include setting the vertical velocity to zero at a large enough height, or intro-

ducing a sponge layer above the domain of interest. Both methods introduce a

computational burden because of the added grid points, and the first method

also creates spurious downward reflections. We present here exact radiation

and boundedness conditions that apply in eigenvalue models. Furthermore,

we show that exact conditions in initial-value models are Fourier transforms

of conditions in eigenvalue models. We then develop approximate boundary
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conditions for initial-value models. See for references Rasch (1986) and B6land

and Warn (1975).

Eigenvalue models

Figure B.1 displays the geometry of the computational domain and of the

dummy domain where basic state fields are assumed to be constant. In the

dummy domain the quasi-geostrophic equation takes the form from (2.26):

2 -sN- N [K2 + 1 0 =0, for z > zu.
dz2  dz U-c]

A change of variable, 4, = JJe'Nz/2 d, yields:

d 20 [cRu~~ c
d2 [X 2 - = 0 , (B .1)

dz U

where CRu = Uu - , and X = N K 2 + 2 /4.
K2 + s2/(4N2)1

CRu represents the phase speed of free barotropic Rossby waves in the dummy

domain. (B.1) implies that in the range c < cRu or c > U., the solution is

exponential-like, and in the range cRu < c < Uu it is wavelike.

In the range c < CRu or c > U, the proper boundary condition consists in

keeping the bounded solution i.e. the exponential decaying with height. We

then have as upper boundary condition:

d p dp
-p = 0, or (s/2 - p) A =0(B.2)

z dz 

where p 2 = X2 CU. - C'
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In the range cRu < c < U, the solution is wavelike and we keep the wave

with energy that propagates outside the computational domain. From Ped-

losky, 1979, p.433, the vertical group velocity, c,2, obeys the following relation:

c,, a #dz, where the overbar refers to an average over a zonal wavelength. After

rewriting 4 as

0 = eimzei(kx-ct),

we find that c, a m, being positive for positive m. This implies that the proper

radiation boundary condition is:

d4 d$ MU

- -im or -d (s/2 0, (B.3)dz d

where m =-p.

The suitable radiation and boundedness conditions at the lower boundary

easily follow:

d d$

- - pdz = 0, or -(s/2 + pi) = 0, for c < c or c > U1, (B.4)
dz dz,

+ imlq = 0, or (s/2-iml)0=0, for CR < C< U1, (B.5)dz dz

wherej =I 2 1 U- C

2 2

2 2 2 /4, = -
=- NK + S/,CR= U K 2 +s 2 /(4N 2 )

and U1, N2 are the values at the lower boundary. The boundary conditions

(B.2), (B.3), (B.4), and (B.5) are easily implemented in eigenvalue models.
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Initial-value models

In initial-value models we only look at approximate boundedness boundary

conditions, because for the range of parameters explored in this thesis, the

solution is mostly exponential-like at the boundaries. For example, let us

calculate the range of c for wavelike solutions for typical parameter values:

k = 2.3, 1 = 1.4, # = 1, s = 0, Uu = 1, and U1 = 0. Then at the lower

and upper boundaries we have the following range of c for wavelike solutions,

c [cRU: at z = zu, c e [.86, 1], and at z = zt, c c [-.14, 0]. In initial-value

simulations we usually have phase speeds in the range c e [.3,.8], i.e. outside

these propagating ranges.

The solution to the initial-value problem can be expressed in terms of

O(z, t) (remember section 2.1.2). Taking the Fourier transform in time, we

rewrite 4(z, t) as

(z, t) = (21r)-1/ 2 L dwq (z, w) ei. (B.6)

Replacing c by -w/k in (B.2) yields a boundedness condition for 0,:

~___1/2(B)--- + XU 4.R, 12 = 0. (B.7)
oz IkU,, + wI

An exact boundedness condition for q(z, t) can be obtained by taking the

Fourier transform (B.6). However, this approach leads to an expression that

involves a convolution in time, which is inconvenient because the values of the

fields at previous times have to be stored. We prefer to find an approximate

form for (B.7) that leads to a condition for q(z, t) not involving a convolution

in time.
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Let us make the following approximation in (B.7):

kcRu + W]
kU +w'

U. - CR. 112

U"+w/k]
U. -CRu

2(Uu +w/k)'

This approximation is good when IUu - CRu I <I |Uu - cI. (B.7) then becomes:

- - + p"o = 0,az (B.8)

where pa = XU (1 -
Uu - cRu

2(Uu + w/k))

After taking the Fourier transform (B.6), we get this expression for q(z, t) at

z = zu:
a 0)

and for (Z,t):

- -ikUu -( z
ik+3N 2

+ " ; (B.9)

a s
S(s/2

- Xu)# 
of= -ikUu T (s/2
I z xu>k] ikN2

+ 2 Xu

These represent approximate boundedness boundary conditions for the tran-

sient problem.

Following a similar procedure, we get the approximate boundary conditions

at the lower boundary, z = zi:

a (&&00oz

- (s/2 + xi)

= -ikU ( z
[a= -ikUj a
az

-(s12 - xi)

ikflN?-ikN,
2x 0

ikpN2

2XI

It is interesting to look at the properties of these approximate boundary

conditions, and compare them with the properties of rigid boundary condi-

tions. To do so we assume constant N 2 and U in the computational domain
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as well. In the range of wave solution we compute a reflection coefficient r,

which is the ratio of the outgoing to the incoming wave streamfunction, and

in the range of exponential solution a transmission coefficient Ct, which is the

ratio of the unbounded to the bounded solution.

Let us first calculate ct and r for the approximate boundary condition at

the upper lid. From (B.8) the solution in the dummy domain can be expressed

as

0 = ADez/2e- Uz

For exponential-like solution (c < CRu or c > Uu) the solution in the compu-

tational domain is from (B.2):

V = Acesz/2 [e--" + cteUz]

The two solutions are matched by equating the impedance at z = zu (Gill,

1982, p.147), which leads to the following expression for ct:

- pa

ct = 1" (B.13)
p. + p

In the case of the exact boundedness conditions p is simply p. and ct is zero.

For wavelike solution (cRa < c < Uu), the solution in the dummy domain is

from (B.3)

= Acesz/ 2 imuz + re-imu] . (B.14)

Matching solutions at z = zU leads to the following expression for r,

r = - . (B.15)
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The coefficients c and r of the approximate conditions at the lower bound-

aries have the same parameter dependencies as those at the upper lid, except

that p pi, and m, replace p1, p, and m, in (B.13) and (B.15).

In the case of the rigid boundary condition, r = 1 at both the lower and

upper boundaries in the range of wavelike solution. In the range of exponential

behavior at the lower boundary,

Ct = ,1 + s12 (B.16)
P1 - s|21

and at the upper boundary,

Ct = - s12 (B.17)
P1 + s|2

Figure B.2 displays the logarithm of the magnitude of cj and r for ap-

proximate boundary conditions at the upper and lower boundaries for typical

parameter values. In the propagating ranges the magnitude of r is unity as

can be seen in (B.15). Notice the sharp decrease in the magnitude of ct around

the propagating range. For the same parameter values as in figure B.2, the

magnitude of r and ct for the rigid condition at both boundaries is simply

unity since s = 0 [remember (B.16) and (B.17)]. The approximate boundary

conditions represent a definite advantage over the rigid conditions outside the

propagating ranges. For example, at k = 2.3 and c = .6,which are typical

values for upper-level waves, ct 5 10-3 at the lower boundary, and ct 2 10-2

at the upper boundary. Using approximate boundary conditions allows us to

consider vertical domains of smaller vertical extent than would be possible

using rigid boundary conditions.
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Dummy domain DD.

N, U.

z = zu

Computational

N2 (Z),

domain

U(z)

Figure B.1: Geometry of the dummy domain (DD) and the computational
domain (DC) at the upper boundary.
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at the upper lid, and (b) at the lower lid. (s = 0,/# = .5, 1 = 1.4, U, = 1,
N 2 = 4, U, = 0, and N2 = 1).
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Appendix C

A fourth-order vertical discretization

In this appendix we present a fourth-order discretization of the following set

of equations and boundary conditions:

d24

d#
Tz+ L#

d#

= R(z), (C.1)

= R, at z =zj,

= Ru, at z = zu.

It is possible to derive a fourth-order scheme with a near Galerkin method

(cf. Staniforth and Mitchell, 1977). Let us define the Chapeau functions,

ek(z)
z - Z f-1

- Az for Zk1< Z <Zk,

zk+1 - Z

= Az for zk < z < Zk+1,

where 0 < k < N, and A z = "-. Multiplying (C.1) by ek(z) and integrat-

ing over the domain yields:

I [ek ekL# + ed -o
ZI [zeR O dz J SkN (Ru - Lu#)+k1 (Ri - L#) = 0.
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Following a strict Galerkin method involves expanding 4 in terms of Cha-

peau functions, and it would lead to a second-order scheme. The approach

taken here is to use second-order polynomials for the quadrature of integrals,

and this gives rise to a fourth-order scheme.

In the interior the scheme is:

1
(Rk-1 + 1ORk + Rk+1)

Ok-1

Az2

[1
Ok+1 2 -I AZ

7
+ -Lk-1

120

+ Lk-1
20

Lk-1

40

Lk
+ 20

+ 11LA
15
Lk
+20

Lk+1 +
40

-Lk+1 1
20 1

7 1j~
120

At the lower boundary:

[ 494[ 240
13

120
L3\

- Az-
1
-+ LI +ALZI

L2
6

L3
240)

A Z).

At the upper boundary:

7RN-24 RN-1
RN-2 )AzN+ R.=

dN-1 [(0LN

N -49$N LN

LN1

13- LN-1
-120

LN-2 )

+ 48 )
1z + + LAz+-+LI-
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7 A z
24)

LN1 LN-2

240 )
Az] +

L3 +
40)Az

0213 L+

#2 L 1+

ON-2 [N+



With this scheme the discretized problem can be expressed as a matrix

equation,

[LI| >= IR >,

where [L] is an N x N matrix, 14 > the vector at the truncation N, and IR >

the right-hand side. The advantage of this discretization is that it reaches

fourth-order accuracy with only a tridiagonal matrix.
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