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ABSTRACT

Lateral heterogeneity of the Earth has begun to be mapped extensively
by measurements of phase velocities of surface waves since the installation
of global digital network. The methods used in such studies are, however,
based on simple ray theory: observed phase delays are assumed to be
integrations of slowness along the great circles connecting sources and
receivers. On the other hand, wave theories for seismic body wave
propagation in a laterally heterogeneous medium have advanced remarkably.
Most of these theories are based on asymptotic ray theory. This study tries
to combine these two different developing fields: to improve the resolving
power of surface waves to the lateral heterogeneity of the Earth through an
inverse method based more closely on full wave theory (asymptotic ray
theory). We chose the Gaussian beam method and applied it to the surface
wave problem. This study consists of three principal parts: (1)
derivations of formulations, (2) forward modelling, and (3) inversions of
phase and amplitude data for phase velocity, including a non-linear
iterative method.

First, asymptotic ray theory is applied to surface waves in a medium
where the lateral variations of structure are very smooth. In such a medium
the formulation for points exactly on the ray has previously been given by
others. Using ray-centered coordinates, we obtain parabolic equations for
lateral variations while vertical structural variations at a given point are
specified by eigenfunctions of normal mode theory as for the laterally
homogeneous case. Following the paraxial ray approximations developed for
acoustic or elastic body waves, the formulation at points not only on the
ray but also in the neighborhood of the ray is successfully derived. Final
results on wavefields close to a ray can be expressed by formulations
similar to those for elastic body waves in two-dimensional laterally
heterogeneous media. The transport equation is written in terms of
geometrical-ray spreading, group velocity and an energy integral. For the
horizontal components there are both principal and additional components to
describe the curvature of rays along the surface, as in the case of elastic
body waves. With complex parameters the solutions for the dynamic ray
tracing system correspond to Gaussian beams: the amplitude distribution is
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bell-shaped along the direction perpendicular to the ray and the solution is
regular everywhere, even at caustics. Because of the similarity of the
present formulations to the original ones, most of the characteristics of
Gaussian beams for two dimensional elastic body waves are also applicable to
the surface wave case. At each frequency the solution may be regarded as a
set of eigenfunctions propagating over a two-dimensional surface according
to the phase velocity mapping.

Special attention to the following points is necessary for surface
wave synthesis: (1) the speed of the wavepacket along the ray is the local
group velocity even though the ray path itself is determined by the phase
velocity distribution in an isotropic or transversely isotropic medium; (2)
surface waves travelling on a spherical Earth may be mapped into Cartesian
coordinates (2-D) using the Mercator transformation including the effect of
ellipticity; (3) the weighting factors of each Gaussian beam for a
moment-tensor representation of an earthquake are equivalent to those of a
far-field radiation pattern in a laterally homogeneous model. Synthetic
seismograms of narrow bandwidth with several different center frequencies
are compared with real bandpass-filtered data to delineate the anomalies of
three dimensional structures.

The reliability of the above methods are checked by calculating
synthetic seismograms from simple to fairly complicated structures.
Although there are some ambiguities in the selection of parameters used to
synthesize seismograms by the Gaussian beam method, physically appropriate
values may be estimated, and the choice of these parameters is not critical
to the results. Several forward tests on regionalized models with periods
20-40 s show that this waveform synthesis is sensitive to slight variations
of laterally heterogeneous structure which conventional methods, using only
phase information, cannot resolve. Results of tests for heterogeneous
structure in the Pacific Ocean imply that this method may help to resolve
weak and small-scale velocity anomalies such as the Hawaiian hot spot or
details of lateral changes in seismic velocities near spreading ridges.

Finally, Reyleigh wave phase velocities at periods 30-80s in the
Pacific Ocean are calculated by inverting phase and amplitude anomaly data
using the paraxial ray approximation and the Gaussian beam method. The
model is divided into 50x50 blocks, and approximately 200 source-receiver
pairs from 18 well-studied events around the Pacific Ocean are used. First,
we calculate phase anomalies for the lithospheric age-dependent model.
Next, conventional phase data inversions are conducted assuming great circle
paths to reduce phase discrepancies to less than n. This procedure is
essential for later inversions using amplitude data. We then determine the
residuals of both amplitude and phase terms by calculating ray-synthetic
seismograms. Using the Born approximation for a 2-D wave equation, a
non-linear iterative inversion for phase velocities is performed with both
residuals. Frechet derivatives for the inversion consist primarily of two
wavefields: (1) the wavefield at the model point from the source, and (2)
the Green's function from the model point to the receiver. These wavefields
are also calculated by the paraxial ray approximation and Gaussian beam
methods. In the inverse formulations, the simple use of the conventional
Backus-Gilbert approach breaks down in the non-linear iterative case and an
extra term is necessary to control the model perturbations in order to



minimize departures from the a priori model. The use of this term guarantees
that we are able to obtain a fairly reliable phase velocity model even in the
present non-linear problem. In most cases residual variances are
significantly reduced after two or three iterations. Compared with the phase
data inversions, this inverse scheme gives more reliable resolution and shows
that some features obtained by phase data inversions are suspicious. The
resulting model displays some interesting deviations from the lithospheric
age-dependent model. For example, low velocity regions are correlated with
the Hawaii, Samoa, French Polynesia and Gilbert Islands hot spots.
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Chapter 1. Introduction

In a recent review paper, Chapman and Orcutt [1985] defined three eras

in the history of seismic body wave interpretation in a vertically

heterogeneous Earth: (1) observations of travel time, (2) direct array

measurements of the ray parameter, that is, travel time differences, and

(3) synthesizing seismograms to match waveforms. From the fact that a

historical review has come out on this subject, we judge that the active

research for one-dimensional structure may have been completed. Our

generation must go beyond it. Anisotropy and lateral heterogeneity are two

major targets. Studies on these subjects are not merely of theoretical

interest but aid in our understanding of complex source processes and

regional or global plate dynamics [e.g., Aki, 1981; Woodhouse and

Dziewonski, 1984; Tanimoto and Anderson, 1984].

If "history repeats itself", parallels may he drawn between the

investigation of one-dimensional structure as summarized by Chapman and

Orcutt [1985] and the history of studies on anisotropic and laterally

heterogeneous structures. Work marking the first era of seismology in a

laterally heterogeneous Earth has only recently heen completed. In this

work, data such as body wave travel times and surface wave phase velocities

are interpreted in terms of ray theory. The accumulation of a large amount

of digital data makes it practical to invert for detailed heterogeneous

structures, a procedure sometimes referred to as "seismic tomography".

Examples of this type of study are those by Nakanishi and Anderson [19831,

Woodhouse and Dziewonski [1984], Dziewonski [19P41, Clayton and Comer

[1983] and Tanimoto and Anderson [19841. Measurements of P wave travel

time anomalies have been performed in many areas since the study in NORSAR

by Aki et al. [19771. Since no particular parameter is any longer constant



along the ray or has significant meaning in the estimation of velocity, the

second era may not exist for laterally heterogeneous media. As exemplified

by the work on model resolution by Tanimoto [19851, we are now waiting in

the first two eras of research for better quality data and denser coverage

of stations to improve on the models.

If we consider only lateral heterogeneities, the third era, based on

the use of wave theory, is still at an early stage of development.

Conventional numerical methods, such as the finite-difference [e.g., Roore,

1972] and finite-element methods [e.g., Lysmer and Drake, 1972], require

prohibitively large computational times in order to study complex

heterogeneous structures even with supercomputers. The perturbation

methods described in Chapter 13 of Aki and Richards [19801 are powerful but

limited in application. For this reason, studies using synthetic

seismograms in laterally heterogeneous media are still rare.

Several powerful methods, based mainly on asymptotic ray theory, have

been developed recently to calculate body wave seismograms for laterally

heterogeneous media: for example, dynamic ray tracing [erven' et al.,

19771, Gaussian beam method [erven' et al., 1982], Maslov method [Chapman

and Drummond, 19821, phase front method [Haines, 19831, Kirchhoff integral

method [e.g., Scott and Helmberger, 19831, and so on. These newly-

developed methods may make it possible to study the laterally heterogeneous

Earth using full waveform data: that is, not only phase but also amplitude

information.

The first applications of synthetic seismograms to real data were not

for body waves but for long-period surface waves [e.g., Ewing et al., 19571

because the propagation of the latter is essentially restricted in 2-D



space as compared to the 3-D nature of the former, and the simpler structural

models can be used to synthesize longer period waves. Again, if "history

repeats itself," the theories for laterally heterogeneous structures should

be applied first to surface waves because of the greater simplicity. The

goal of the present study is to develop methods for modeling surface waves in

a laterally heterogeneous earth and to apply them to real data.

The approach during the first era of surface wave studies has basically

been the same in the early stages Fe.g., Dorman et al., 19601 as in the most

recent [e.g., Woodhouse and fziewonski, 19841. Heterogeneity is assumed to

be sufficiently smooth so that the earth can be approximated by a sum of

piecewise homogeneous regions. These conventional techniques rely on precise

measurements of the phase term of surface waves and are based on the

assumption that waves propagate along great circles. For a detailed study of

lateral heterogeneity, the phase velocity along each path must be measured

very precisely (e.g., better than 1% for surface waves with period longer

than 100 s). Therefore, for real data that suffer from noise or multipath

interference and with the usual ambiguity of source terms, the resolving

power of these techniques to reveal lateral heterogeneity is limited.

In the presence of lateral heterogeneity, packets of surface waves

propagate along paths deviating from great circles, and focusing (or

defocusing) and multipath interference are to he expected. The spatial

distribution of amplitudes is thus severely distorted from that predicted for

a laterally homogeneous model. As early as the 1950's, Fvernden [1953, 19541

demonstrated that, owing to lateral heterogeneity in the structure,

the propagation direction of Rayleigh waves may deviate markedly from the

great-circle path. Capon [19701 and Rungum and Capon [19741 found strong

evidence at the LASA and NORSAR arrays for the occurrence of significant



multipathing of Rayleigh waves through continental margins. McGarr [1969b]

observed amplitude anomalies for Rayleigh waves of 20-s period crossing the

Pacific Ocean for several events in the Tonga-Kermadec region (see examples

in Figure 1.1). Such remarkable anomalies are not ohserved for events at

slightly different azimuths, for example, those near the Solomon Islands.

McGarr suggested that such observations are due to zones of anomalously low

velocity, such as the Hawaiian Islands, a hypothesis we discuss later.

Even for surface waves with periods longer than 150 sec for which the

effects of lateral heterogeneity have been considered to be small, peculiar

amplitude anomalies are sometimes observed. For example, see the anomalous

R3/R2 observations (e.g., large R3 energy at station KMY) for the Akita-Oki

earthquake on May 26, 1983 given by Lay and Kanamori [19851 (Figure 1.2).

These data imply that we can no longer assume that the waves propagate

along great circles. In fact, the travel time calculations by Schwartz and

Lay [19851 for recent models such as those of Nakanishi and Anderson [19841

and Woodhouse and Dziewonski [19841 show that the travel times along actual

raypaths are sometimes longer than those along great circles (Figure 1.3).

If this is the case, this is against Fermat's principle (according to which

the travel time along the actual ray path is extreme, in this case,

minimum) on which most of the previous studies are hased. Thus, the

procedure of measuring velocity along great circles may not be justified.

This is why we need to study surface waves based on wave theories in

laterally heterogeneous media. Moreover, the amplitude of a propagating

wave is determined essentially by the second spatial derivative of

velocity, as will be shown below, whereas the phase term depends on the

velocity along the ray even though ray paths are determined by the first

spatial derivative of velocity. Therefore, to delineate laterally



heterogeneous structure, methods which incorporate waveforms are considered

to be more powerful than those involving only phase terms.

The Earth appears to be strongly stratified vertically, while the

horizontal variation in structure is much weaker and usually quite smooth.

For such a medium, we may not need to treat the heterogeneity in all

directions equally as in three-dimensional ray tracing. Instead, this

study aims at using the concept of ray theory only for the lateral

propagation of normal modes while the vertical structure, assuming lateral

homogeneity in the zeroth order approximation, is to he described by the

conventional normal mode theory for surface waves. This means that a ray

corresponding to a mode characterized by an eigenfunction determined for

the local vertical structure propagates horizontally like a two-dimensional

ray of a body wave. This approach is, in fact, not a new one. For

example, long-range, low-frequency acoustic waves propagating in the ocean

have been discussed in terms of normal modes in the vertical direction and

by ray theoretical approaches in the horizontal direction for nearly

horizontally stratified media [e.g., Pierce, 1965; Weinberg and .Burridge,

1974]. A good summary of this subject is found in Burridge and Weinberg

[1976]. For seismic surface waves, several theoretical works [e.g.,

Kirpichnikova, 1969; Gjevik, 1973; Woodhouse, 1974; Rahich et al., 1976;

Hudson, 19811 and numerical calculations based on the standard ray theory

for realistic Earth models rSobel and von Seggern, 1978; Wong and

Woodhouse, 1983; Lay and Kanamori, 19851 have been performed. However, the

standard ray theory requires a two-point ray tracing between source and

receiver. This requirement leads to large computation time and has

discouraged wide application of this approach.

In this study, to circumvent this problem, we apply one of the



recently developed methods, the Gaussian beam approach [eerveny et al.,

19821, to the surface wave prohlem. The Gaussian beam approach is an

extension of the paraxial ray approximation, which is based on the standard

ray theory [Ferveny et al., 19771. Tests and applications of the Gaussian

beam method to seismology have been conducted by Nowack and Aki [1984al,

Cormier and Spudich [19841, MUller [1984], and Madariaga and Papadimitriou

[1984].

We first derive the Gaussian beam formulations for surface waves in a

laterally slowly-varying medium in Chapter 2. These formulations are for

one beam. Then, in Chapter 3 we obtain the expressions for synthetic

seismograms by the summation of each Gaussian beam derived in Chapter 2.

We point out differences in these expressions between surface waves and

body waves obtained in previous studies. In Chapter 4, numerical testing

of the methods developed in the previous chapters is conducted by forward

modelling of Rayleigh waves for a heterogeneous Pacific Ocean structure.

Finally, in Chapter 5, we attempt to reach our ultimate goal: inversion of

both amplitude and phase data to obtain laterally heterogeneous structure

using the above methods. Rayleigh wave phase velocities in the Pacific

Ocean are inverted for comparison with the conventional pure path phase

velocity method. The inverse formulations are non-linear following

Tarantola [1984a,b]. The main conclusions and the implications for future

studies are summarized in Chapter 6.
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Figure 1.2. Anomalous R3/R2 observations at station KMY for the Akita-Oki
earthquake. Reproduced from Lay and Kanamori [1985].



Figure 1.3. The difference in travel times between great circle and actual
raypaths for ?00s Rayleigh waves from sources in Japan and North America
using recent models at Harvard FWoodhouse and fziewonski, 19R41 and CIT
rNakanishi and Anderson, 19R41. Reproduced from Schwartz and Lay
[19851.



Chapter 2. Gaussian Beam Formulations for Surface Waves

In this chapter, we shall derive the Gaussian beam formulation of

surface waves in a laterally-slowly.varying medium. A flat and isotropic

model with slight undulations of the free surface is assumed. Our

procedure follows earlier papers on Gaussian beams such as that on seismic

body waves by erven' and Plen~k [19831. The main difference in our

method is that the variations of medium parameters in the vertical

direction and in the horizontal directions are not treated equally. The

vertical variations are assumed to be much more rapid than the horizontal

ones, whose ratio is described by a small parameter c<<1. The main

features of the wavefield are followed by surface wave normal mode theory

with an averaged vertical structure, and the lateral heterogeneity gives

the modulation of such normal modes in a manner similar to two-dimensional

ray theory. The final formulations are equivalent to the previous work of

Woodhouse [1974], Babich et al. [19761, and Saastamoinen [19841. However,

our formulation gives a great advantage over those results because the

wavefields can be evaluated not only on the ray hut also in the

neighborhood of the ray in the sense of the paraxial approximation. In

this form, it can he naturally extended to the (aussian heam nethod

[ervenj et al., 19821 based on the more complete wave theory. In the

derivations of the formulation, we shall assume that parameters of the

medium are continuous functions of depth, hut the final results are also

valid in layered media whose interfaces have gradual lateral variations.

In section 2.1, the elastodynamic equations are derived for laterally

slowly-varying media. The horizontal variations in such media are much

smoother than the vertical ones. We shall change the horizontal scales by



introducing one small parameter so that all of the variables are of the

same order. In section 2.2, the trial form of the solution based on the

asymptotic ray theory is inserted into the elastodynamic equations obtained

in section 2.1. In the leading terms, the component perpendicular to the

ray is decoupled from both that along the ray and the vertical component.

This means that essentially there are two kinds of waves, Love and Rayleigh

waves, as for laterally homogeneous media. In section 2.3, for each one of

the above Love and Rayleigh waves, higher order equations are considered.

Eventually, we obtain the parabolic equations which have been studied

extensively in the literature on seismic body waves. Finally, in section

2.4, such parabolic equations are solved and we obtain two important

equations: the dynamic ray-tracing equation and the transport equation.

The final forms of the wavefields are then obtained. In section 2.5, we

shall interpret the physical meaning of each term in the final formulation.

2.1 Elastodynamic Equations of Motion in Ray-Centered Coordinates

The elastodynamic equations of motion in a general orthogonal,

curvilinear, right-handed coordinate system El. E2 and E3 with the

corresponding scaling factors hl, h2 and h3 are given in section 2.6 of Aki

and Richards [19801. Neglecting the body force term, the equation of

motion may be expressed as

32u -3 3
p W = hI - (p nphlh~h3/hq) (2.1)

3 p=l q=1 aEq

where u(E1,E2,E3 ,t) are displacement vectors in the coordinate system Ei,

p is density, t is time, Tpq are stress-tensor components, and n is the

unit vector normal to the surface Ep = const. We consider only an

isotropic medium, and the stress-strain relation is expressed in terms of

two Lame constants X and U:



3
pq = x6pq : err + 2pepq (2.2)

r=1

where opq is the Kronecker delta and the strain components epq are

expressed as

jr h R+~ a u 6 3 u ah(23
epqn = +()] + rT (2.3)

We consider a semi-infinite medium with axes El = x, E2 = y, and 3 = z, in

which the z-axis is directed downward (Fig. 2.1). In the remainder of this

section, the medium is considered to be flat and to be described in

Cartesian coordinates. The transformation between spherical and Cartesian

coordinates is discussed in Yomogida and Aki [19851 and in Chapter 3.

As we mentioned in the Introduction, vertical structure is treated

using normal mode theory, and we consider rays along the surface. For

horizontal directions, we introduce ray-centered coordinates (s,n) in the

following manner [Popov and Penlik, 19781. The coordinate system (s,n) is

connected with the ray as shown in Figure 2.2, where s represents the

arclength along the ray, and n measures length perpendicular to the ray at

the point s. On the ray, n is zero. We denote the unit vectors tangent

and perpendicular to the ray as t and n, respectively. The remaining

coordinate is the same as the original one, z, which is directed vertically

downwards (Fig. 2.1). Thus, we set (g1,&2,E3)=(s,n,z). In this study we

assume a medium with weak lateral heterogeneity. We define

nl = S = es, n2 = N = en, n3 = z and T = Et (2.4)

where e is a small parameter. Since the energies propagate mainly along

the rays (i.e., along the coordinate S), the time t should be measured with



the same scale as S. In this medium, elastic parameters and density have

the following orders:

= 0(1) , a = 0(1) and = 0(1) i=1,2,3. (2.5)

Also, the free surface, z = C(s,n) is allowed to have smooth undulations

with the magnitude

-C. = 0(1) . i=1,2 (2.6)
ani

The medium approaches lateral homogeneity as e + 0 [e.g., Woodhouse, 1974;

Babich et al., 1976). The infinitesimal length element dr is represented

in the ray-centered coordinate system by

dr2 = h2dS2 +dN2+dz 2  (2.7)

where the scaling factor h is given by

h(s,n) = 1 + C-IC n n = 1 + C-IC, N N (?.8)

aC-
and the phase velocity C and its first derivative Cn =- for the

corresponding normal mode are evaluated on the ray (at n=n), because alnng

the ray the phase front is propagating with the local phase velocity

[C(s,n)ln=0 - Fquation (2.7) shows that thp scaling factors hi for the

coordinate system (n10203) = (S, N, z) are

h, = h(s,n), h2 = h3 = 1- (2.9)

Hereafter, we shall consider the wavefield horizontally close enough to the

ray for the ray-centered coordinate system (s,n) to he regular [derveny et

al., 19821.

Using this coordinate system (S,N,z,T), the elastodynamic equations (2.1)



may be written as

2 82U 1E P 82 *= -T, -ill

+ 12 8h

2 1 +C p =~'~ -TS-'T21 +

+ h12) +

Til ah

1 E
2 82uz_1 66

C p -E 7 31 + e W(h32) + h ]33]

and the components of the stress tensor (2.2) are

ell = (X+2p)u + un h + E + X

L. bu + u h +a(u2)~ U
T22 = h[S un ] + e(X+2) Q + X ,

33 = C + un h + e a + (,+2p) , (2.11)

'c12 = T21 = E - h u

T23 = T32 = [ + W]

c31 = r13 = [ChE1 +

In order to simplify the above equations, we use commas before subscripts

to represent the partial derivative with respect to the subscripted

coordinate. For example, us,N = 6us/aN, us,TT = 32us/6T 2 , XS = bA/)S, and

so on. Inserting (2.11) into (2.10), we get

Ep(hiC2) + ] __ (2.10)



c2 p UsTT = eh2Xu)U 5 ,SS + (ui us , + ch1IX UZzS + ch-lxq~S Uz

+ ch1 luz UZ,S),Z + C2h-l(x+u) un,SN + £2h-lrh1(+2i)1S IS,S
1 1 1

+ £21i UsNN + c 2Ans Ufl,S + c 2Asn Us,N + c 2Ann Ufl,N
1 1

+ c2 B5 us + £2Bn Uf

e2 p Un,TT " e2h?1u UnSS + Ni Unz, + CA UZ,ZN + uB UZ,N).,Z

+ c2h-l(x+) us,SN + £2h-l(h-luj),S UnS + E2(X+iu) ufl,NN
2A u 4 2 22A2nnu,

+ezz zq + s s~ + c2  Sn us,N+ A2  UN

+ £2B2~ n + £2B2 s US 9 (2.12)

e2P Uz,TT =- e2h-2  uz,SS + U)X+2j)uz z1 z + ch1 l+j) usZS

+ ch 4 lX,z Us,S + cu un ZN + E~ Ufl,N),z + ch jj,S us,z

+ e2ii UZNN + IE2h 4 l(h-lu),S UZ,S + eA3 nz unaz

+ C20 zn UzN + cB3~ nUn

where

A1= h-2 (X+20)h, + h11.1,S + h-lph,

Ann = 4 ,

B s = - h-lUoh,N),N - h-2 Ph,N

B n = h-l~hl(x+u)h,N1,s
2

Azz = XN

A 5 2 h1A= OX h-2(X+3)h,

=n hu,.S

A = h1  'j, +2phl

n N 9hl(x -NNh h-2(x+211 )(h N)2

Bs 9 1h1 hN),9S

An 3 h1 (lh),N + h4lxhN
Az 9

zn hl(]lh),N

Rn (h1 l!N,,z

(2.13)



Equations (2.12) give the elastodynamic equations in ray-centered

coordinates.

To consider surface waves (i.e., normal modes), we need boundary

conditions in addition to the above equations. For z + *, displacements

must approach zero, that is, the radiation condition should be satisfied:

usun,uz + 0 as z + w . (2.14)

Also, at the surface z=C, any component of traction must vanish;

2
Ti3 - . i 0 (i=1,2,3) at z=c. (2.15)

Using the rescaled coordinate system (S, N, z) and (2.11), the above

conditions may be expressed as

y[ch-luz,S + us'zj - e 2 eh-1 (X+2y)u5  + uas

+ eXun,N + eD un) - E2!i yE1 = 0 , (2.16a)
3N

gun,z + Cyuz,N - E E2 - eCa F2 = 0 , (2.16b)

Eh"lAugS + (A+2y)uz - Ea UyCh~uzS + us'zl (2.16c)

+ Exun,N + E - E yE3 = 0

where
1 1

D = h-1(X+2u)h,N, E = us,N + h-lun,S- h-lh,N us

E2 = "s,N + h-lun,S + h-1 h,Ns '

F2 = Eh-xus,S + eh- 1 h,N un + E(X+2p)un,N + Xtz,z (2.17)

D3= h-Ixh,N 

3
E = un,z + CUz,N



Using the boundary conditions (2.14) and (2.16), we solve the equations

(2.12) in a manner similar to the solution for a laterally homogeneous

medium in the lowest order of e.

2.2 Laterally Slowly-Varying Approximation For Elastodynamic Equations

For acoustic waves or body waves, it has been assumed that solutions of

the elastodynamic equations are concentrated close to rays, or in other words,

"the high-frequency elastic wavefield propagates mostly along rays" [e.g.,

erveny et al., 1982]. In this study we also seek approximate solutions for

propagation along the ray in the direction of increasing s; however the

solutions are expanded in powers of the parameter e which has been introduced

to describe the ratio of horizontal variation to vertical heterogeneity

instead of the angular frequency w for body waves [ervenI and Penfk, 1983].

In the present study, the phase term cannot be expressed explicitly as a

time-harmonic e-iwt as in the case of body waves or surface waves in a

laterally homogeneous medium, because the phase velocity itself varies

spatially. Thus, following Woodhouse [19741, we introduce the trial form

(ansatz) of the solutions to equations (2.12) as nearly uniform harmonic

wavetrains expanded into asymptotic series in powers of e11 :

* k/2 k
uj(s,n,z,t) = ei4(st) Z E Uj(S,N,z,T) j=s,n,z (2.18)

k=O

where *(s,t) is the phase advance along the ray. We define wave number k

and angular frequency as

k= and W = - . (2.1)

Ray-tracing based on these definitions is slightly different from that for

non-dispersive waves [Yomogida and Aki, 19851. We assume that k and w are



slowly varying with respect to s and t:

k = k(S,T) = w(S,T)/C(S) and w = w(S,T) (2.20)

where we assume that phase velocity does not vary with time.

To use the asymptotic ray theory developed above, the following

conditions must be satisfied by analogy to the high-frequency approximation

[Kravtsov and Orlov, 1980]:

k = 'vy or p (2.21)

and (2.22)

where t is the characteristic scale length of heterogeneity, ' is the

distance from source to receiver, and V1 denotes the lateral gradient.

These conditions mean that the lateral variation of a medium must be small

within a wavelength and the receiver must be within the first Fresnel zone.

For surface waves, this means that coupling among different modes can be

neglected [e.g., Gregersen and Alsop, 19761. For example, k is -about 0.04

km- 1 for 40-sec Rayleigh waves. In oceanic regions a typical value for t

may be over 1000 km and the raypath length iT may not exceed 10,000 km.

Thus, the conditions given in (2.21) and (2.22) are satisfied if we avoid

paths crossing ocean-continent boundaries, where lateral variations of

structure are much stronger.

Following Babich and Buldyrev [1q721, the solutions concentrated close to

a thin 'boundary layer' (the scale of one wavelength) along a ray have a

scaling factor N = O(El/2), which is similar to n = 0(w-1/2) of the

high-frequency approximation for hody waves rderven' and Psencfk, 19831.

For consistency, the coordinate N should be replaced hy



V = N//c .(

By inserting (2.18) into equations (2.12) with v and neglecting all terms of

order higher than 0(c), we get the following equations. Hereafter, we use

lower-case characters (s,nt) for (S,N,T):

[pw2 - h-2 (A+2p)w2C-2 + a U3] (UsO + z1/2USl + CUs2)

+ iwC- 1h-1 [X a + y] (Uzo + CL/ 2Uzi + EUz 2 )

+ C1/2iwC-lh-1(x+y)(Unov + c1/2 U nIv)

+ c{2iwpUsoSt + ip awUsO + ih-2(X+2y)C-1 LwUs0at as +

+ iWCl[(2h-2(X+21 )U50 S - h-2(X+2u)Cg 5C1IU5 O + h1h1X2)9UO

+ h- 1 (AUz 0 ,z),s + h-(UUzo s)tz + yUs 09vv + iwC-lAnsUn}

[p2 - h-2p2C- 2 + y ] ( 0  + C1 / 2Un + 2)

+ el/ 2 {iWc-lh-1(x+y)(UsoIV + g1/2 UsIv)

+ (X A- + 31 y) (Uz0  + e:1/2 Iz ,v)}
az az 9vzA

+ e{ZiwpUn 0,t + ip -L- U 0 + ih-24C- 1 as n0

+j~iwpn i- at n h s +

+ iwC-1[2h 2 pU 0 ,s -h2
1 CC 0 0]

(2.24a)

= 0,

+ (X+2y)Unovv + iwC- 1Ass 2 USO + Azz 2 Uzo z} = 0 ,2

(2.23)

(2.24b)



[pW2 - h-2p 2C-2 + I (X+2p) '] (Uz0 + Cl/ 2Uzi + eUz 2 )

+ iwC-lh- 1 [L + L X] (JsO + C1/2UsI + elig2 )

+ pl/ 2 [1 .-- + a- X] (no v + E1/21jnI9v)
az az

+ e{2iwpUzO t + ip U0 + ih-2PC-l 3 U09 at zas

+ i1aC-l[2h- 2
1pU zs - h-2P CsC-Uz0 + h-'(h-ly)g,sUz0]

+ yaUz 0,vv + h-1 (xUsOs),z + h-1 (yUsOz),s + Anz 2 U n ,z + Bn3Un }

0 . (2.24c)

Equations (2.24) together with (2.18) and (2.23) describe solutions in

asymptotic forms.

Similar expansions should he applied to the boundary conditions at the

free surface (16). Taking the order only up to 0(e), the results may be

written as

y[iwC-1h-1 (Uz0 + el/2Uzi + £1z2 ) + (UIso,z + e/2 Is9z + 2,z))

+ e{h-lIUZ0  - - [iwC--1 (X+2y)U0 + XUz0 ,z)

- i C-Ih-lyn } = 0 , (2.25a)

an nw~1 iJ 0

y(Uno,z + CI/ 2 Un ,z + EUn 2 ,z) + el/ 2 (j zv + 6l/2UzI v)

- £ { yiwC-lh- 1 Uno + 3C [XiwC-lh-IUs 0 + =Uz",z]} 0 , (2.25b)as an

[iwC-lh-lx(Uso + C1 / 2 Us1 + £Us 2 ) + (X+2u)(Hz ,z + eI/ 2 Uzi z + £Uz 2 ,z)]

+ el/ 2x(Un0v + 1/2 I

+ e[h-IXUs 0 ,s - p (iC-lh-lIUzO + USO+z) + hih nxUn 0 - yn ,z

(2.25c)= 0



at z = c.

Now the problem is to solve equations (2.24) under the boundary condi-

tion (2.25) and the radiation condition that Uj + 0 (j=s, n, z) as z +..

2.3 Parabolic Equations for Surface Waves

We now discuss equations (2.24) with boundary conditions at the free

surface (2.25) in order to get solutions concentrated close to rays which

propagate with the local phase velocities of Love and Rayleigh waves. Then

we obtain the parabolic equations which give the dynamic ray-tracing

equations and transport equations. We shall find that the former are

exactly the same as those for body waves or acoustic waves [eerveny et al.,

1977;- erveny and Hron, 1980] and the latter are equivalent to those given

by Babich et al. [1976] or Woodhouse [19741. In equations (2.24), the

terms of order unity are equivalent to the characteristic equations of Love

waves (for UnO in equation (2.24b)) and Rayleigh waves (for UsO and Uzo in

equations (2.24a) and (2.24c)) in a laterally homogeneous medium. Thus,

under the assumption of this study (i.e., laterally slowly-varying media)

there are two types of surface waves: Love and Rayleigh waves which are

decoupled to the first order approximation. Each is discussed

individually.

a) Love waves

The non-vanishing component of the displacement vector for Love waves

is normal to the raypath along the surface in the zeroth-order

approximation. The zeroth-order solution has neither the component tangent

to the ray nor the vertical one. Thus, we shall consider the component tin

as a "principal component" [erven' and Plenlik, 19831.

To obtain solutions we take the phase velocity C in equations (24) as



that for Love waves in the local vertical structure at (s,n) (hereafter

referred to as a local Love wave). This means that component On must

satisfy the characteristic equations of local Love waves (see section 7.2

of Aki and Richards, 1980):

where CL(

should ta

[p0 2 - U462 CL- 2 (s,n) + a ] Un(s,n,z,t) = 0 (2.

s,n) is a local phase velocity. Under the above assumption we

ke
C(s) = CL(s,0).

26)

(2.27)

Then, CL(sn) is written in a Taylor series expansion in n as

CL(s,n) 2 C(s) + Cn(s) n +-1 C,nn(s)n2
a C L ~ s ~ n ans~2 C ( s

where
(2.28)

C S) CL(s~n) C 2 CL(-Sn)
an In=0' nn(s) an2  In=0

With (8), it is easily shown that

h-2 C-2(s) = CL- 2 (s,n) + C-3(s) Cnn(s)n2

and

h-1 C-1(s) = CL-1(s,n) + $ C-2 (s) Cnn(s)n2 .
Thus the leading term of order unity in (2.24h) may he written as:

[P2 j 2h-2C-2 (s) + a ]U[( az

[pW2- p 2CL2(sn) - W2C-(S)C~n()l +i-. a
[pw2 ~~ zi L 0,n -zaz

-yV2 C-3 Cnn n2 Un = -C P 2C-3Cnn V2 U n-

(2.29)

(2.30)

In equation (2.30), the coordinate v is used instead of n because, in

the vicinity of the ray, v is of order unity from the boundary layer

assumption (2.23). The Taylor series expansion (2.28) in n = el/ 2v is in

fact consistent with the expansion of each component by el/ 2, as in (2.18).



As shown in equation (2.30), the first term of (2.24b) is not of order

unity but of order r.

The terms of order unity in equations (2.24a) and (2.24c) are in fact

the characteristic equations for "local Rayleigh waves" except for the

appearance of the Love wave velocity. Unless the phase velocity of Love

waves is identical to that of Rayleigh waves, which is rarely the case, Uso

and Uzo must vanish in order that these terms be zero:

15so = 11z0  = 0 (2.31)

With (2.30), the terms of order E1/2 in equations (2.24a) and (2.24c) are

in fact written as

iwCL-1(x+y)Uno,v + [pW2 - (X+2y)w2CL- 2 + az p .L]Us1 + iwCL-l[ UzI

=0 (2.32a)

[y + X]Uno,v + [pW2 - U 2 C-2 + (X+2y) a ]Uz1 + iwCL-1[ + a X]Us1

=0 (2.32b)

Differentiating Un in (2.26) with respect to v and substituting into

(2.32a), we get

[p2C, + iWCL~I0sl) + [X -I- + y ]uz = 0.CL 3z+U ZX(2CL2  + iwLUj azz 9UZ9

(2.33a)

[p22 - U -2CL 2 + !-(X+2y) -] Uz1 + [y ( + { X](Un0 ,v + iwCL~1s 1) = 0.
(2.33h)

These are characteristic equations for local Rayleigh waves with Love wave phase

velocity. Using the same argument which led to (31), and putting CL ~ C,

UZ1  = 0 and Un 0 v + i C-Us = n , (2.34)

that is,

11s E1/ 2 jw-I C Un 0 ,v



Us is the "additional component" in the terminology of eerveny- and Plenlik

[19831; it is of higher order than the principal component lin by C1/2 and

related to the deviation of the real wavefield from the plane wave

perpendicular to the ray path. It is reasonable that there is no Uz

component under the above approximation because rays should propagate only

horizontally.

Now let us return to the equation for the principal component Un in (2.24b).

The term of order El/2 vanishes because of (2.31). Substituting (2.31) and

(2.34) into (2.24b), the next term of order e may be written as

2iukUnO,s + iak Un0 + ipskUn0 + [Un 0,vv - U(2C-3CnnV2Uno

+ 2ipwUn 0t + ip UnL = 0. (2.35)

This is the parabolic equation for the principal component Un0.

The boundary condition at the free surface z=g for local Love waves is (see

section 7.2 of Aki and Richards (1980))

aUn
= 0. (2.36)

Thus, in equation (2.25h), the first term should disappear. From (2.31),

and (2.34), the most dominant term is of order E, which is

ik $ yUn0 = 0 at z=c. (2.37)as

This condition will be used later to obtain the transport equation for Love

waves.

b) Rayleigh waves

The non-vanishing components of the displacement vector for Rayleigh



waves are tangent to the ray path along the surface and vertical to the

surface in the zeroth order approximation. Thus, components Js and l1z are

to be the principal components and Un the additional component. As in the

case of Love waves, we take the phase velocity C in equations (2.24) to be

the velocity of Rayleigh waves in the vicinity of the ray. That is, in the

zeroth order approximation, the components Us and Uz must satisfy the

characteristic equations of local Rayleigh waves:

[m2 - (x+2ya)W2CR- 2 + a L]Us + iwCR-1 [X + ]Uz = 0 , (2.38a)

p2 - yw2CR-2 + -(x+2) ]Uz + iwCR-1 [U + ]Us 0 (2.38h)
3z 3Jz +z (2.8X

where CR(s,n) is called a local phase velocity of Rayleigh waves. Using

the analogy of Love waves, C(s) is related to CR(s,n) as in equations

(2.27) and (2.28), replacing the subscript L with R.

Now, let us consider the terms of the zeroth order in equations (2.24a)

and (2.24c). With (2.29) (CR instead of CL) they are reduced to

[ - (X+2y)w2h-2 + a a ]US + iwh- 1 C-1  a +

[pW2 - (X+2y)w 2 {CR- 2 + C-3Cnnn2 }

a a L]Us + iw{CR-1 + C2 nnn2}[ + Uz

-(x+2y)w 2C-3C nnn 2Us + C-2Cnnn2 [X A + y]Uz~' n s 2 3z 3z

e{-(X+2y)w 2C-3Cnnv2tUs + - nC332Cn +z (2.39a)

and

e{-yw2 C-3Cnnv 2 Jz + C-2r nnV 2 [ + x]1s} (2.39h)

Like equation (2.30) for Love waves, the above terms are of order e rather



than order unity.

The terms of order unity in equation (2.24b) constitute the

characteristic equation for "local Love waves", hut with Rayleigh wave

phase velocity. Ry similar arguments in the case of Love waves, Ino must

vani sh:
Un0 = 0. (2.40)

Then, the leading term of order e1/2 may be written as

iwCR-1(x+y)Us09v + [X 3 + - ,] + [pW2 - ym2C-2 + Uz]Un = 0.

(2.41)

By differentiating (2.38a) with respect to v, we obtain the following from

(2.41):

[p2 - IJW2 CR- 2 + a n + i-az 3 Un' +iw-ICRUs 0
9 .]1

= 0. (2.42)

The operator in (2.42) is that for the characteristic equation for Love

waves, so putting CR ~ C,

Un' + iw-1CRIsO,v = 0

that is,

On 2-E 1,2iW-lCJsO, .

Likewise, the terms of order E1/ 2 in both equations (2.?4a) and

(2.24c) vanish and the leading terms of order E are now

?i(X+2i)ktls ,s + i(x+2yj) 1- Uso + i(X+2),kus 0 + ( sVVas

- (X+2y)w2C-3C,nnv 2Us0 + zC-2Cnnv2 [x L + a y]Uz0++ + 2pnnn + ip UsO = 0 ,

+ (XUZ0,9z),Is + (iUZ0,s),9z + 21pWAU S0,It + ip at() s 09

(2.43)

(2.44)



2igktizOs + iy UzO + iuskUz0 + IUzv - ii 2C-3Cnnv2 UzO +

+ fC-2Conn2 [y + ]Us + (yUs ,z), + (XUs 0 ,s),z

- iCM-[y1  L + X]Us,vV + 2ipa Uz09t + ip IIz = 0.

Equation (2.43) shows that the additional component Un is coupled to only

one of the principal components Us. The behavior of Uz is independent of

Un and is determined only from the local vertical structure along the ray

and not from neighboring structure, within the accuracy of the above

approximation.

Now let us find the boundary conditions at the free surface z=c. For

Rayleigh waves the boundary conditions are shown to be different from those

in the laterally homogeneous medium while they are the same for Love waves

(2.36). The boundary conditions at the surface for local Rayleigh waves

are written (see section 7.2 of Aki and Richards, 1980):

iwCR-(sn)Uz + Isz = 0 ,

(2.45)

(X+2y)Uzgz + )iwCR-1(s,n)Us = 0

with CR(s,n) the local phase velocity. Using (2.29), the terms of order

unity in equations (2.25a) and (2.5?c) are of order e but not of order

unity like the terms in (2.39). Then, the largest contribution comes from

the terms O(e) in (2.25a) and (2.25c), which are



'A C- 2 Cnnv2 Uz0 + yUJz 0
9s - {C I(X+2yi)i)C-U5 s0 + XUzOz} = 0

i C-2,v2Us0 - ik-IUsOv + xJs ,s - L (i C-luz + ,z) = 0
~ 2 nnIsO 91 0 s as UOC 1O + tJsO~z

(2.46)

2.4 Solutions of Parabolic Equations

For both Love and Rayleigh waves we obtained parabolic equations (2.35)

and (2.44) with the boundary conditions (2.37) and (2.46). Although there

are several differences between them and the parabolic equations for

acoustic waves [erveny et al., 19821 or for elastic body waves Feerveny

and Pencik, 1983] (especially for Rayleigh waves, because of the coupling

between components Us and Uz), we solve them by similar procedures.

a) Love waves

Following Babich and Kirpichnikova [19743, we assume solutions of the

form

Uno = A(s,t)xl(s,z) exp[ W(s,t)v 2M(s)] (2.47)

where ti(sz) is an eigenfunction of the local Love wave at a point (s,n=O)

(same notation as in section 7.2 of Aki and Richards F1980~) which is

normalized as t1=1 on the surface, and A(s,t) and M(s) are complex-valued

scalar functions. Note that we assume that M is not a function of t.

Substituting (2.47) into (2.35) yields

i[2yk(A11),s + P At1 + ysk At, + wMyAzi + 2wpA,til + -L pAti]as at
(2.48)

- v2At1 [uyk(wM),s + y212 + yw2C-3C,nn + pL M] = 0.



We multiply (2.48) by At and integrate with respect to z from the surface

c(s) to *. For convenience, we define the following energy integrals (see

section 7.3 of Aki and Richards [19801),

Ii(s) = f p(s,z)t1
2 (s,z)dz

(2.49)

1
12(s) = f y(s,z)t 2 (s,z)dz.

c(s)

Using integration by parts, equation (2.48) may be written as

i{ (kA 2 12) + wMA 2 12  + - (wA2 I,) + k yC U(At)2 z

(2.50)

- v2A2 [wkI2 (Ms + CM2 + C-2C nn) + M(k1 2 aw + W11  )] -- 0.

From boundary condition (2.37), the term evaluated at z=C in (2.50) should

vanish. Because the group velocity U is expressed by the energy integrals

as

H = 12/C11  (2.51)

(see equation 7.70 in Aki and Richards [19801), equation (2.50) may be

written as

i{L (wA21) + (UwA 2 1 i) + CIJwMA 2 I1 }

(2.52)

- v2 A2wIi[k(M's + CM2 + C- 2 C nn) + M(-- + H )] = 0.

Let us define the length of ray path as ds=udt (see Chapter 3). Since

(3s/at)w = -(3w/3t)s/ (3w/3s)t,



+ U = 0. (2.53)at as

Thus, for the left-hand side of (2.52) to be zero for any value of v, it is

clear that

(wA2 I) + (lwA 2 Il) + C[IwMA 2 I1  = 0 (2.54)

and

M,s(s) + C(s)M 2 (s) + C-2 (s) Cnn(s) = 0 (2.55)

The above equations deal with only the lowest-order solution like link

with k=0. In general , we might consider a solution with an infinite system

for kyl. Babich and Kirpichnikova [19741 and Klime [19831 showed that

general solutions of order k are represented by k-th order Hermite

polynomials: these solutions are called Hermite-Gaussian beams. Here only

the basic mode with k=0 will be discussed; higher modes are neglected.

Equation (2.55) is similar in form to the dynamic ray tracing equation

for acoustic waves or elastic body waves. It has the form of a first order

non-linear ordinary differential equation with respect to s of the Ricatti

type and can be transformed into two linear differential equations. Let us

introduce new complex functions q(s) and p(s):

M(s) = 1 dq(s) p(S) (2.56)
- C(s)q(s) ds ~ qTs).

Then, equation (2.55) nay he written as a system of two linear ordinary

differential equations:

A = C(s)p(s) ,ds
(2.57)

= - C-2 (s)Cnn(s)q(s).
ds



We may solve the differential equations (2.57) along the ray to get p and q

at any point on the ray. The above procedures are followed to evaluate

geometrical spreading in the conventional ray method [e.g., erveny et al.,

1977; Popov and Pen1k, 1978; eerven' and Hron, 19801. Using (2.54) and

the fact that q does not depend on t, equation (2.56) may be written as

a (A2 qI) + -L (UA2qIl) = 0. (2.58)at a

Like the continuity equation of fluid mechanics, this equation means that

A2qIiU = constant along rays *L- (2.59)

That is, the energy flow along the vertical column beneath the

two-dimensional ray tube on the surface is constant because q(s) represents

the horizontal geometrical spreading. The energy propagates along the ray

not with the phase velocity but with the group velocity, and i(s') denotes

the vertical energy profile. *L is a complex constant along the ray but

may differ for different rays and is a function of the azimuth of the

corresponding take-off angle.
1 0 0

By inserting equations (2.34) (Us = iw-C[n,v = - CMvIJn), (2.47), (2.56)

and (2.59) into (2.18) and transforming to the original coordinates (S + s,

N + n, T + t) (note that M should be also rescaled because of the term

ds in (2.56)), the final form for Love waves may be written as

__ __ L__ _ [ -np(s)C(s)

u(s,n,z,t) = [n -q s(s) tj]tI(s,z)

(2.60)

-exp i [*(sgt) + A ' (S n2]



with = -w and a= k = - The function ti is an eigenfunction on theat as
rays for local Love waves in the same sense as for the laterally

homogeneous medium.. Note that there is no vertical component. When the

variables p and q are real and on the ray (n=0), the results are equivalent

to those in the ray method [Babich et al., 1976; Woodhouse, 19741.

b) Rayleigh waves

As in the case of Love waves, we assume solutions of the form

Us0 = A(st)rl(sz)exp(j Wv2M(s))

(2.61)

UzO = A(s,t)ir 2(s,z)exp( 2v 2M(s)).

We put the imaginary unit i in Uz0 because there is a w/2 phase difference

between horizontal and vertical displacements for Rayleigh waves. The

eigenfunctions r, and r2 correspond to those in section 7.2 of Aki and

Richards [1980], normalized so that r2=1 on the surface. Substituting

(2.61) into (2.44) gives

i{2(A+2p)k(Ari),s + (X+2y) -k Ar1 + (x+2y),skAri + (X+2y)wMAri
as

(XAr2,z),s + [U(Ar2 ),s),z + 2atA,tr1 + pAr1}

- v2A{(A+2y)r 1[k(wM),s + W2M2 + w2C-3Cnn]

+ [(WM),s + wC- 2C nn][x a + { yj]r 2 + w a MpAr}= 0, (?.62a)



i{2uk(Ar2),s + U a Ar2 + PskAr2 + yiMAr2 - (uArl,z),s

[X(Ari),s),z - CMA[i + 2- X]rj + 2wpAtr2 + 3w pAr2 1

- v2A{yUr 2[k(M),s + W2M2 + W2 C-3Cnn]

- ~[(M),s + C-2C nn + 2wCM2 ][y a + - x]rl + w .L MpAr2}

Then we multiply (62a) and (62b) by Ar1 and Ar2, respectively,

integrate them with respect to z from ; to w, and sum the two equations.

Now we define the following energy integrals (see section 7.3 of Aki and

Richards [1980]),

Ii(s) =

21
12(s) 2

f p(rl2 + r22)dz

f [(X+2y)r, 2 + yr22]dz

13 (s) = 1 f (ATr1 - gr 2 - -- )dz

Using integration by parts and the radiation condition (2.1a), we get

i{-L [A2 (2kI 2 + 13)] + CMA2 (2kI 2+I3 ) + 2 (wA2 1 )
- jart)]

- A2[k((A+2y)rl2+y
2) ar2r22)-(r az

+ CMA2Arir
2 z= +

- 2 az a s

- pr1( Ar2) ,s]

= 0.

(2.62b)

(2.63)

+ A[XA( Arl) ,sr2



- v2A2{w(2kI 2+I3 )(Ms + CM2 + C-2Cnn) (2.64)

+ - M(2kI 2 +13 ) + 2w !- MI1

+ [(WM),s + WC-2Cnn + 2WCM2])xrir 2f

- [ (WM),s + WC-2C nnlurlr2 1 0

Next we consider the boundary conditions at the free surface z=C.

Inserting (2.61) into the two equations of (2.46), multiplying by r, and

r2 , respectively, and summing these two relations, we see that the terms

evaluated at z=C in equation (2.64) vanish. Also, using the equation for

group velocity (equation 7.76 in Aki and Richards F19801),

U= (2k1 2+13)/2wll , (2.65)

equation (2.64) becomes identical to equation (2.52) for Love waves. Thus,

with definition (2.53), we get both the dynamic ray tracing equations

(2.57) and the transport equation (2.59). We shall denote the constant in

(2.59) by OR in this case.

Finally, transforming back to the original coordinates, the vertical

and horizontal components of Rayleigh wave displacement may be written as

OR np(s)C(s)
u(s,n,z,t) = [rl(s,z)(t + (s) n) + ir2(s,z)z

exp i [ (s,t) + n2] (2.66)

where r, and r2 are eigenfunctions on the ray (s,O) for local Rayleigh

waves.



2.5 Properties of Gaussian Beams of Seismic Surface Waves

In this section we consider our results expressed in terms of

displacement vectors (2.60) and (2.66) and discuss their physical meaning.

Because the forms of the final results are similar to those for acoustic

waves or elastic body waves [erveny et al., 1982; erven- and Plenik,

19831, the common features will be mentioned hriefly and the differences

between them will be emphasized.

a) Paraxial ray approximation

Before proceeding to the properties of Gaussian beams, let us start

with a discussion of the formulations (2.60) and (2.66) with real variables

q and p. At the point on the ray n=0, (2.60) and (2.66) are the same as in

the standard ray formulation [e.g., Babich et al., 1976; Woodhouse, 1974]:

The phase is delayed by the integral of the slowness of phase velocity

along the ray, and the amplitude is proportional to [q(s)U(s)Ii(s)]- 1/2

where q (s) is the geometrical spreading, and the non-vanishing components

are normal to the ray for Love waves and tangential to the ray and vertical

for Rayleigh waves. In order to obtain the spreading q(s), dynamic

ray-tracing equations (2.57) must he solved along the ray numerically.

Equations (?.57) are mainly determined by the second spatial derivative,

normal to the ray, of the phase velocity distribution. This is why the

spreading, which is mainly related to the observed amplitude, is much more

sensitive to the velocity structure than the phase term, which is

determined only by the integrated effect of the phase velocity along the

ray path.

Equations (2.60) and (2.66) give the solutions not only along the ray



but also in the neighborhood of the central ray at n*0. In other words, we

can evaluate the wave field at points through which the ray does not pass

directly. It is necessary only for the ray to pass close enough to the

observation point so that the paraxial ray approximation, which we employed

to derive the formulations, is valid. Formulations (2.60) and (2.66)

contain the factor exp(iwpn2/2q), which is exactly the same as that for

two-dimensional elastic body waves (e.g., see equations (2.52) and (2.53)

in ervens and Penlk [1983]). The term p/q = M represents the second

derivatives of the travel-time field in the plane perpendicular to the ray

and is accurate to order n2 ; this term comes from the Taylor series

expansion of the eikonal equation Ederveno and Hron, 19801. The quantity

K(s) = C(s)M(s) = C p/q descrihes the curvature of the wavefront at the

point s on the ray (see Fig. 2.3). For example, if the curvature of the

ray K(s) is zero, the travel time or the phase delay of the wavefield on

the line perpendicular to the ray is constant, irrespective of the distance

n from the ray. Physically, this wavefield corresponds to a plane wave.

For another extreme case, K = ±w or q=O, the phasefront is concentrated to

a point, representing a line source at that point. That is a caustic where

the ray method breaks down because of the amplitude factor

[q(s)U(s)1(s)]-'/2.

The directions of the horizontal components of the displacement

vectors are

n - nKt and t + nKn (2.67)

for Love and Rayleigh waves, respectively. Since K represents the

curvature of the ray, the vectors (2.67) correspond approximately to the

tangent and normal, respectively, to the phase front at the point (s,n) in



the ray-centered coordinates. The additional components give the

corrections for the displacement vector tangent or perpendicular to the

phase front (see Fig. 2.3). Thus, it is reasonable that there is no z

component in the displacement vector of Love waves and the coupling is only

between horizontal components for Rayleigh waves, because the phase front

is restricted to the surface.

Since we are assuming a laterally slowly-varying medium, the

displacement vectors with respect to the vertical coordinate correspond to

local eigenfunctions of Love (zi(s,z)) or Rayleigh (ri(s,z) and r2(s,z))

waves. These are determined by the vertical structure at the point s on

the ray, assuming a laterally homogeneous model. In the paraxial ray

approximation, the eigenfunctions calculated at the point- (s,0) on the ray

can be used even if the wavefield is estimated in the vicinity of the ray

(s,n) where n*O. It is because of the above approximation that

eigenfunctions have only higher order terms with respect to n.

In summary, with the obtained formulation we can treat the wavefield of

surface waves using the local eigenfunctions determined by the local

vertical structure propagating two-dimensionally over the surface with a

given phase velocity distrihution. Therefore, the phase velocity mapped on

the surface plays the central role in determining the wavefield, which

gives a great computational advantage over body wave studies in which the

problem involves three-dimensional heterogeneity. The depth of a laterally

anomalous structure can be inferred by phase velocity maps at different

periods, because phase velocity at longer periods is affected by deeper

structure while relatively short-period surface waves are determined by

shallow structures. Even though our final goal is to obtain three-



dimensional Earth structure, ray-tracing or construction of the wavefield

is essentially based on a two-dimensional problem.

The paraxial ray approximation overcomes one major difficulty in the

calculation of the wavefield by the standard ray method, the need for the

ray to hit the observation point exactly, but there are still several

problems which may be encountered. First, there are points where the

geometrical ray spreading q(s) vanishes, producing4Infinite amplitudes.

This is not a problem with real data, however, because of the effect of

finite wavelength. Also, there are regions wheA the rays never penetrate,

such as a shadow zone, but where some contributi.ons are observed. These

singular regions-can be eliminated by introducing a better approximation,

closer to full wave theory. Second, the paraxial ray method is sensitive

to velocity information only along one or more ray paths which directly

connect the source and the receiver, but in reality the wavefield at the

receiver is affected not only by such rays but partially by contributions

from the wavefield over the whole region. These difficulties may be

overcome by employing the Gaussian beam synthesis method proposed by

erven et al. [19821, which requires only a small modification to the

paraxial ray approximation.

b) Gaussian beam method

So far, the discussion has been based on the assumption that the

variables p and q are real. In the Gaussian beam method, the quantities p

and q are considered to have complex values Fervpny et al., 1q821. This

is allowed because we have not employed any specifications or constraints

on variables p and q in deriving the formulations (?.60) and (?.66) from

the elastodynamic equations by using the paraholic equations. The

following procedures for the surface wave prohlem are exactly the same as



those for two-dimensional elastic body waves [eerven' and Penifk, 19831,

so only a brief review will be given here.

Since the dynamic ray-tracing equations (2.57) are two ordinary

first-order differential equations, any general solution is expressed as a

linear combination of two independent solution pairs. Following the

notation of erveny' et al. [1982], the general solutions may be written as

q(s) = eq(s) + q2(s)
(2.6P)

p(s) = Ep1(s) + pp(s)

where qi and pi (i=1,2) are a pair of independent solutions. These

solutions are real but the general solutions become complex with the choice

of a complex-valued coefficient e. The two independent solutions are

specified by the two different initial conditions at s =so:

qi(s.) = 1, pl(s) = 0

and (2.69)
q2(so) = 0, p2(so) = C-1(so)

The first solution pair (qi,pl) corresponds to a plane wave-like wavefield

at s=s, because of zero curvature: K(s0) = C(s0)p(so)/q(s0 ) = 0. The

second solution pair (q?,p 2) corresponds to line source-like wavefield at

s=so because of infinite curvature; K(s0 ) = c. Using the solutions based

on the WKRJ method [Chapman, 19781, Madariaga F1984l advocated another form

for the first solution pair if the source is located in a heterogeneous

region. However, numerical tests indicate that the question of which

initial conditions give the appropriate seismograms may require further

investigations Fe.g., Reydoun and Ren-Menahem, 19841. In the case of

surface waves, the lateral.heterogeneity at the source is fairly weak



compared to the seismic body wave problem, in which the vertical velocity

change may be very large. Thus, for the purpose of the present study, the

initial conditions given by erven et al. F19821, that is, (69), are

used.

The complex parameter e is chosen to satisfy the following conditions:

(i) q(s)#O, so that there is no singularity and the amplitude remains

finite at the caustics.

(ii) Im(p/q)>0, so that the solutions of the wavefield are concentrated

near the ray. This guarantees the existence of a solution

characterized as a beam.

Then the exponential factors in solutions (2.60) and (2.66) may be written

exp[i*(s,t) + 1 wn2  K(s) - L2(s) (2.70)

where

K(s) = C(s)Re[ ].3 , L(s) = { Im [ }}-1/2 (2.71)

n22

Because of the term expF- n and condition (ii), the amplitude of the
(s

solution decreases exponentially with increasing distance n from the

central ray. Since the shape of the exponential decay of the amplitude is

Gaussian, solutions with a factor such as (2.70) are called Gaussian beams.

K(s) corresponds to the curvature of the phase front of the beam at the

central ray, and L(s) is the effective half beam width, which depends on

frequency (Fig. 2.2).

Following erven' et al. F19821, the complex parameter e is written

as

E = SO - 2Cis) LM2 = So - iL0 (2.72)



In a homogeneous medium the quantities So and LM have the following

physical meaning. The half beam width L(s) varies hyperbolically along the

ray with a minimum at a certain point s=sMi. LM represents the half beam

width at the point s=sM for waves with w = 2w Hz and s, is the distance

between sM and the reference point so. erven' et al. [19821 showed that

the conditions to form (aussian beams are satisfied if we choose LM*O. The

frequency-independent parameter L., called "beamwidth parameter" in this

study, is used later on in the text.

The precise choice of si and LM is controversial. eerven9 et al.

[19821 suggested that beams have minimum width at s=so, that is,

s = 0 and =s LM2 (2.73)

They also recommended an optimal choice of LM so that heams have a minimum

value of the half beam-width L(s) at the receiver, for convenience of

computation. This means

2C(s0 ) iq2(s)jLM =)1/2 q2 (2.74)
W qi~s)

where qi and q2 are evaluated at the receiver. For detailed discussions on

this matter, readers are referred to erveny et al. [1q82] and Appendix 2

in Nowack and Aki [1984a].

With the complex coefficient e, q(s) never becomes zero with Ltj*O (for

the above condition (i)) because the Wronskian of the two independent

solutions, qj(s)p 2 (s)-q 2(s)p1 (s), is constant (= C-1(s,)) and this means

that qj(s) and q2(s) can never he zero simultaneously. Thus the Gaussian

beam is said to he regular everywhere Ederven' et al., 1qP21.

The horizontal components of (2.60) and (?.F6), n - np(s)C(s) t an

np(s)C(s) 
qs

t + n, now have the following physical meaning. With complex
q(s) Wtcope



variables p(s) and q(s), the real parts of the additional component and the

principal component give the normal and the tangential directions to the

phase front of the Gaussian beam at (s,n) for Love and Rayleigh waves,

respectively. The imaginary part of the additional component represents

the phase shift introduced by the finite width of the beam.

In summary, the final formulations of Love and Rayleigh waves in a

laterally slowly-varying medium are given in equations (2.60) and (2.66).

While the vertical profiles of wavefields are represented by the normal

modes of surface waves in a laterally homogeneous medium, the horizontal

ones are almost identical to the 2-dimensional seismic body wave

formulations. The minor differences are the factors, (group velocity) x

(energy integral), in the amplitude term. Thus, we can naturally extend

the formulation of the paraxial ray approximation into the Gaussian beam as

erven' and Psencik [19831 obtained the Gaussian beam formulation for

seismic body waves.
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Figure 2.1 A laterally slowly-varying medium with a slightly irregular free
surface in the coordinate system (x,y,z) and an eigenfunction of
normal mode theory propagating along the ray. Elastic constants
and density are weakly varying in the horizontal directions.



n

Figure 2.2 Ray-centered coordinates (s,n) and hasic unit vectors 1, n and
z. A Gaussian heam is shown with half hean-width L.
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Figure 2.3. Polarization vector at the point (s,n) for Love waves. n and
t are a principal component and an additional component,
respectively. The phasefront passing through the point on the ray
(s,0) is shown in the broken line whose curvature is given by
K = Cp/q.



Chapter 3. Waveform Synthesis by the Gaussian Beam Method

In the previous chapter, we have obtained the Gaussian beam

representations for surface waves in a laterally heterogeneous medium:

equation (2.60) for Love waves and (2.66) for Rayleigh waves with complex

variables p and q (2.68) in the dynamic ray-tracing equations. These are

expressions for a single Gaussian beam. Following erven' et al. [19821,

we are going to form synthetic seismograms by superposing many Gaussian

beams for a given problem. In this chapter several steps which are

required to obtain seismograms from many Gaussian beams will be discussed.

These procedures have been already discussed in detail for acoustic or

seismic body wave problems in the literature [e.g., erven' et al., 1982;

erveny, 1983; Madariaga and Papadimitriou, 1984], so here we emphasize the

modifications of these procedures for surface wave problems. These

modifications include the ray-tracing equations (section 3.1), the effect

of the sphericity of the Earth (section 3.2), the weighting factor for each

Gaussian beam for realistic sources (section 3.3), and the appropriate time

functions for seismograms (section 3.4).

3.1 Ray Tracing Equations for Dispersive Waves

For dispersive waves, such as surface waves, the ray tracing equations

must be modified, compared to those for non-dispersive waves (body waves)

because there are now two types of velocity: phase and group velocities.

Thus, it may he wrong to specify the phase term of the trial form (ansatz)

of the solution explicitly with time and space coordinates. Instead, we

should specify the phase term in a form like equation (2.18), with the

frequency and the wavenumber defined by equations (2.19):

a (x,t) + W(x, a) = 0 (3.1)



where u(x,k) is angular frequency, which satisfies the local dispersion

relation, and k (= a*/ax) is wave number vector. This is analogous to the

Hamilton-Jacobi equation in analytical mechanics. From classical mechanics

[Landau and Lifshitz, 19761, we obtain the canonical equations which

describe the ray tracing of surface waves. The results were given in

Rackus [196?1 and Woodhouse r19741. Wong and Woodhouse [19831 gave

elaborate forms for the ray tracing of multi-orbit surface waves on a

sphere. Here we derive compact ray tracing equations for dispersive

surface waves on a flat Earth, and in the next section the effect of the

sphericity of the Earth will be included.

The canonical equations for rays of general waves may be expressed

as [Landau and Lifshitz, 19751:

dx (x,k) , (3.2)
dt =3k 1

dk wai(x,k) i=1,2 (3.3)dt -

under the constraint dw/dt = 0. This expression is valid for a general

anisotropic and inhomogeneous medium and in the general coordinate system

if xi and ki are canonical conjugate variables. We assume a transversely

isotropic medium, where w = w(x,|k|). In this case Rayleigh and Love waves

are decoupled, and the direction normal to the wave frnnt is identical to

that of energy propagation [Takeuichi and Saito, 19721. That is, the

direction of the slowness vector of the phase velocity is the same as that

of the group velocity. In this case, formulations of raussian heams may be

identical to an isotropic case. This assumption for surface waves in the

real Earth may be approximately valid even though there appears to be weak

horizontal anisotropy of surface waves Fe.g., Forsyth, 1975, Tanimoto and

Anderson, 19841.



Since am/3|kj is the group velocity U,

dxj =300 Olk k*3|k|n
= k| ak 3 k UT nt (3.4)

where n is the slowness vector corresponding to the phase velocity C. w is

expressed as IkIC(x,lk|) in the transversely isotropic case. Since W is

constant along the ray, the equation of change of independent variables may

be written as

a|k|

x ).,xj= - (3y)ik|,xj/ (a* )x1,xj
j * i . (3.5)

Therefore, the second ray tracing equation (19) may be written as

d(k/w) dni 1 a k 1 ~ Ix
dt =~~~ - 3xi |k a x m ak|x =

== U [ ( )]

U k
W 3xi W

C2 3- (3.6)

because dw/dt=O.

Thus, the ray tracing equations for dispersive waves are of the form

dxi 11 C n ,
dt

dni 11 3C
= C2 3xi .

(3.7)

(3.8)

Defining the length of the ray path as ds=11dt (i.e., the coordinate moving

with the local group velocity), these equations may be expressed as

d = Cn ,

dn 1 3C
ds C2 3X .

(3.9)

(3.10)



These are the expressions in general coordinates. These ray tracing

equations for Cartesian coordinates can be used for the spherical Earth

after the coordinates and the velocity are transformed with the Mercator

projection as shown later. We obtain explicit forms for the spherical

Earth, following the notation and the transformation of section 13.1 of Aki

and Richards [19801. The above equations become

de = 1 cosc , (3.11)

d+= 1 sinC , (3.12)
ds R sine

dC = sinc 1 3C cosC 1 3C . sinC cote . (3.13)
ds R C 30 R-sine C a. R

where C now is the angle between the 0 axis and the projection of the ray

path into e- plane (0: colatitude, *: longitude) with radius R. There

is a discrepancy between these equations and those of Julian [19701 (shown

by equation 13.9 in Aki and Richards [19801): here ds=Uidt while ds=Cdt in

Julian [19701. This is because the dispersive character of surface waves

was neglected in Julian [19701. It should he noticed that the group

velocity appears in the formulation as the speed of propagation of the wave

packets and can be included in the length increment along the ray, ds.

Thus, for ray tracing we need only the phase velocity distribution. Also,

it should be emphasized here that for a transversely isotropic medium the

group velocity never appears in the frequency domain analysis except in the

amplitude factor U-1/ 2 in equation (2.60) or (2.66), because group velocity

in the ray-tracing system related only to the travel time as shown above.



3.2 Mapping into Cartesian Coordinates from the Spherical Earth

For the real Earth, surface waves propagate not on a flat surface but on

a slightly oblate spheroid. So far, we have developed the surface wave

formulations for the flat Earth in a Cartesian coordinate system. We must

now find a way to apply the above results to the case of a spherical

Earth.

We shall introduce the Mercator projection proposed by Jobert and

Jobert (19831 to transform the two-dimensional spherical coordinate system

into a Cartesian coordinate system in which we can use the previous

formulations. Jobert and Jobert F19831 employed the Mercator projection

for the two-dimensional wave equation. However, for seismic surface wave

prohlems an exact transformation does not exist.

The ray tracing equations in spherical coordinates are expressed as

equations (3.11)-(3.13). If we use ne and no given in (3.9) and (3.10)

instead of the angle C, they may be rewritten as

=o nCaB - Co

dot , nods Rsine
(3.14)

dne_ Ccote n02 - 1 3C
ds R n RC2  9

dn Ccoto 1 _

ds R n9n* RC2sine 30

Let us introduce the following new variable 0:

e = xn[tan (0/2)1 (3.15)

with new phase and group velocities, V and I

V(e, ) = C(e,g)/Rsine . (3.16)

li(eso) =_ U(ego)/Rs ino ,



Because this Mercator projection is a conformal mapping, the direction of

the corresponding slowness vector (W0,F*) in the 0- plane is preserved.

Denoting the increment of ray as ds' = Tidt = ds/Rsine, equations (3.14) may

be written as

d_- -

= V n ,

SI= V n#,
(3.17)

dn 1 aV
-H- 1 - VT

which means that we can treat equations in the coordinates e-* analogously

to those in two-dimensional Cartesian coordinates. To include the effect

of the ellipticity of the Earth, the transform may he modified slightly.

We briefly summarize here the formulation of the Mercator projection

from spherical coordinates to Cartesian coordinates, modified by

introducing the ellipticity of the Earth. For detailed discussions on

conformal mappings such as the Mercator projection, readers may refer to

books on mapping [e.g., Richardus and Adler, 19721.

Let us consider the ellipsoid, which is expressed in a Cartesian

coordinate x, y, z (see Figure 3.1) by

+ 2 + = 1 (3.18)

where a is the equatorial radius, b is the polar radius, and a>h. P is a

point on the ellipsoid. We define the distance from the center 0 as F=

r, ac as the angle between the z-axis and 7, called geocentric colatitude,

and longitude 0 as shown in Figure 3.1. By the relation between Cartesian

and spherical coordinates (r,ec,), (3.18) gives the expression of W as



ab b
r = ab_ _ b

/azcoszec+bzsinzac gi-ezsinzec (3.19)

a2-b2.
where e = a2  is the eccentricity. In geophysics, we usually use the

geographic colatitude e instead of the geocentric colatitude. 9 is defined

by the angle between the z-axis and the direction of PQ where 0 is a point

on the z-axis and PQ is the normal to the surface of the ellipsoid at point

P (see Figure 3.1). We denote P0 by N; this quantity is the radius of

curvature at P in the direction perpendicular to the meridian. On the

plane y=O, from equation (3.18) and the geometry,

dz h2 x b2
d = - a-z= - a tanec (3.20)

dz = - tane

Therefore, the relation between ec and e may be written

cotec = b2 cote . (3.21)

Also, it is easily obtained from Figure 3.1 that

r sinec = N sine (3.22)

Using (3.19), (3.21) and (3.2?), ~P is expressed in terms of 6 as

N = a2  a (3.23)
/a2sin2e+b2cos26 /1-e2cos2o

Next, from (3.1R)-(3.?3) and, the radius of curvature M at P along the

meridian is expressed as

M = F+(dz/dx)2 13/2  a2b2  a(1-e 2 ) (3.24)
d2z/dx 2  (a2sin 2e+h2cos 2e)3/2  (1-e2cos 26)3/2

Then, the elementary distance on the ellipsoid at P is given by



ds2 = M2de2 + N2 sin2ed* 2

= N2sin 2e (N n)2 + d#2] (3.25)

To transform into a Cartesian coordinate system, we may define the

following new variable e, where

de = M de = 1-e2  deNsinie (1-ezcosze)sine (3.?6)

This formulation may be modified for integration as follows

do - 1-e2cos 2e-e2sin 2e do(1-ezcosze)sine

_ do _ e 2esine do
ine 7 1-ezcosze

de e e(1+ecose)sine+e(1-ecose)sine
sine 2 (1-ecose) (1+ecose)2

1+ecose

(3.27)

Integrating (3.27) and setting the constant of integration to he zero

e = ln(tan ) - in s2 2 1+ecose

= lnftan - (1+ecose )e/22 1-ecose

(3.28)

Then, the elementary distance may be written from (3.25).

ds2 = N2sin2e(de2+d 2)

(3.29)
= a2sin 2o (d02+dO2 )

1-ezcoszO

Thus, the system (e,*) is the two-dimensional Cartesian coordinate system.

From the scaling factor in (3.29), the phase and group velocities in the

ray-tracing equation may be transformed by



V(e,*) = -ezcosze C(e,*) , 0(0,) = a1-ez sne 11(e,) . (3.30)a sine asn

The formulations (3.28) and (3.30) are the Mercator projection for the

ellipsoid.

Next, let us discuss the dynamic ray tracing equations (2.57). If

variables are real, q corresponds to geometrical spreading along the ray.

In spherical coordinates, the real variable q is

q = RE(.1 ) + sin2e( )2 1/2 (3.31)

where Eo is the azimuthal direction of the ray at the source. For the

Mercator projection, the spreading q is related to that in spherical

coordinates by

q= re 2 + (1) 2
1 / 2 = si n e 2 (4 )2 11/2 = q/Rsine. (3.32)

Similarly, for the Mercator projection p is related to that in the

spherical coordinate, p, as _p = p Rsine. Thus, the dynamic ray tracing

equations (2.57) are expressed as

ds V p
(3.33)

, - V -2  V , nn
ds'O

where V,nn is the second derivative normal to the ray in e-, plane. That

is, the dynamic ray tracing equations are also treated as in the

two-dimensional Cartesian case in the Mercator projection. It should he

noticed that the factor caused hy the paraxial ray approximation,

exp(2 W P n2), is invariant by this transformation.
2 q



For the complete formulation we must consider one more term in

equation (16), [q(s)U(s)I1(s)]. 1/2, which comes from the transport equation

in ray theory. Unlike the ray tracing equations, this term is not

invariant under transformation from spherical coordinates to Cartesian

coordinates. Thus, we should use the variables q(s), 11(s) and 11(s)

directly in spherical coordinates. Since the energy integral I(s) is

related only to the vertical profile of the eigenfunctions and is

normalized at the surface, there is no discrepancy hetween expressing it in

spherical coordinates and under the Mercator mapping. The group velocity U

under the Mercator mapping is easily transformed back into the spherical

case by multiplying by Rsine as with the variable q (equation (3.32)).

Thus, if we use all the variables under the Mercator mapping, the term

[q(s)U(s)I(s)]..1/2 in spherical coordinates should be expressed as

[q(s)U(s)I1(s)]-1/2(Rsine)-1.

In summary, by means of the Mercator projection, the displacement

components of surface waves on the spherical Earth may be rewritten from

(2.60) or (2.66) as:

u(s,n,z,t) = ) sin r(s,z) exp{iF(s,t) + n2 2
q~)1sI fs sinG0  2 2

(3.34)

where 90 and 9 are the colatitudes of the points so and s, respectively.

r(s,z) = ntl(s,z) for Love waves and rl(s,z)t+ir 2(s,z)z for Rayleigh waves.

oj (j=L or R) is constant along the ray, now given at s = s0.

Before concluding this section, we briefly mention another effect of the

sphericity of the Earth. In the above discussions, at one specific point on

the surface we have assumed that the eigenfunctions of normal modes and the

wave expansions in the vicinity of the ray are based on the flat Earth model.



This means that the effect of curvature of the Earth is being neglected for

small wave numbers. inder the laterally slowly-varying approximation, the

irregularity of the surface is expressed as in (2.6), and this must be

satisfied for the curvature of the surface of the Earth in the sense e<<1.

Since the wavelength of surface waves with period about 100 s is less than

500 km,, the flat Earth approximation is considered to be valid for waves

within this frequency range. When the period exceeds 300 s, the effect of

the curvature of the surface should be carefully treated using expansions in

ray-centered coordinates.

3.3 Superposition of Gaussian Beams

Since the elastodynamic equation is linear, synthetic seismograms may be

constructed by superposition of Gaussian beams. We shall discuss the flat

Earth model for simplicity, but it is easily extended to the spherical

Earth model by the Mercator mapping as shown in the previous section.

Let us write the formulations of the basic Gaussian beam solution

(3.34) for each Gaussian beam characterized by the ray parameter 6 (e.g.,

the distance from some reference point on the initial wavefront for plane

waves (Fig. 3.2) or the initial take-off angle for line sources (Fig.

3.3)), setting the weighting factor OL or OR equal to unity as:

U (s,n,z,t) = / qT )IJs is (n - np( (s) ;) t1 (s,z) (3.35)

exspIJ()j t 2 n }
expli[*(s,t) + !Ps nl}

for Love waves and



uR(S,n,z,t) = / ri(sz)(t+ npq(s)

+ ir2(s,z)z] exp{i[(s,t) + w n2]} (3.36)

for Rayleigh waves. Using the weighting factor OL(S) or *R() evaluated at

the reference point, s=so, the wavefield at an arbitrary point may be

written
61 j

uJ(s,n,z,t) = f *@j(8)I(s,n,zt)d (3.37)

where j denotes Love (L) or Rayleigh (R) waves. 6n and 61 give the range

of ray index parameter 6. The remaining part to he determined is the

weight factor ej(8). This is given in Nerven' [1982] for plane waves and

in Popov [19821 and ervens et al. [1982] for an acoustic line source. The

weight factor for a point force in a two-dimensional elastic medium is

given in Appendix C of Nowack and Aki [1984a]. Here we shall obtain it for

surface waves.

a) Plane waves

If the incident wave is a plane wave, the weighting factor *j(6) is

constant because of the independence of azimuth. The results are given in

ferven9 [19821 for acoustic waves, and they can be applied to surface waves

without any modification, so only a brief review is given here.

Let us consider surface waves which propagate in laterally homogeneous

media. At the reference point s=sO, the waves are assumed to behave like

plane waves horizontally, and the ray parameter 6 is chosen as shown in

Figure 3.2. The wavefield at the point (s,n) may he written:

uJ(s,n,z,t) = f j(6)JJ(s,n,z,t) d6 (3.38)

= r(s,z)elf



where tiJ is independent of n in this laterally homogeneous case. Since the

weighting factors are constant in terms of a for plane waves, tj(8)=#0 and

S=n, the integration of (3.38) may he written as

uJ = 00 / r ei* f exp(T- -q3- n2)dn (3.39)

= e1 re [ 2,q(s) 1/2
-lap(s)

because q, U and I, are constant and has a positive imaginary part

for Gaussian beams. This result is equal to the right-hand side of (3.38)

with q and p constant, so the weighting factor to is

t = -- p(s)~ (3.40)o2w1 q(sO)

Finally, for a laterally heterogeneous medium, the synthetic seismograms

for surface waves at the point D are expressed as

u (= /-D'. IIJ(s,n,z,t)dS (3.41)

w p(s0 )V-g-, Z UJ(s,n,,z,t)&S

that is, the superposition of Gaussian heams which are evaluated at the

receiver D for each beam. If we take the initial conditions given in

(2.69), p(so) = epl(s0 ) + P2(sO) = 1/C(sg) and q(so) = e, so

uJ(D,z,t) = / 1 I (s,n,z,t)A6 (3.42)
2wi /C(s0) 6



b) Point sources

We now consider a more important problem, that is, the formulation of

Gaussian beams for surface waves excited by a point source in a vertically

heterogeneous medium with an arbitrary configuration (i.e., general

representation of earthquake mechanisms). To get an excitation term, we

shall assume that the source is located in a laterally homogeneous medium; we

shall presume that the results are valid for a weakly heterogeneous case. As

discussed by Madariaga [19841, an excitation term in heterogeneous media has

not clearly been identified yet, but for surface wave excitation the

laterally homogeneous assumption is usually valid because any lateral

heterogeneity is likely to be weak in most cases. Like the case of plane

waves, the weighting factors oj(a) are to he obtained by .the formulation for

the laterally homogeneous case. Here the problem for a point source is that

tj(a) may depend on the azimuth 6, while tj( 6 ) is constant for a plane wave

source. This means that there is a radiation pattern for a general point

source.

As in appendix C of Nowack and Aki [1984a], we show that the radiation

pattern of a 2-D line source is exactly the same as that for a plane wave

decomposition. The Gaussian beam, which is essentially a linear combination

of a line source and a plane wave source, as shown in equation (2.68), should

share the same radiation pattern as these two extreme cases. For example, if

we assume the beam half-width L + -, the Gaussian beam summation (3.37)

becomes a plane wave decomposition, and a direct comparison between a

Gaussian beam summation and a plane wave decomposition can he made. This

concept has also been emphasized by Madariaga and Papadimitriou [19851, who

showed that the radiation pattern of shear dislocation sources is the same as

that given by Langston and Helmberger [19751. Similar results can he



obtained to general sources for either Love or Rayleigh waves.

Let us consider a displacement vector of a single Love mode excited by

a point force Fx at (0,0,h) directed in the x, (i.e., x) direction. It is

expressed as

u(x,w) = (z)F, 1(1) + Tk ]

(3.43)
= i1t( z)Fx [-sinH (kr)i + F H (kr)(cos8o+sinSj)]

that is,

uj(X.,) = izi(h)(z)Fx [(a -yy 1 )H (kr)

8CI 1 )i
+ 1 (2yj y1 -6 )H(' (kr)] j=1,2 (3.44)ji 1

where the azimuth 6, unit vectors I and P and the basic vector TM(ra)

are the same as given in section 7.4 of Aki and Richards [19801. yj = xg/r

are the direction cosines. Here we have used the relations of Hankel

functions H(1)(kr) = -H(l)(kr) and dH(l)(kr)/dr = kHIM(kr) - H()(kr)/r.
-1 1 1 0 1

Equation (3.43) or (3.44) is the expression for displacement in terms of

cylindrical waves.

In order to express these terms as a superposition of plane waves, the

following relation is used for integrating the Weyl integral (an expression

for spherical waves) with respect to one direction:

-H (kr) - f exp(iklxl+ikx? dk2  (3.45)
4 0 4w - -ki

where ki = + / - k Differentiating hoth sides of (3.45) with respect
C2 x

to x, and xj (j=1 or 2) , we get



ik2 {-yjyjH( )(kr) + 1 (25 y - )H ()kr)}

i W
= - - f kj exp(iklxl+1k2x2 )dkl (3.46)

by using the relations for Hankel functions given above. From (3.44),

(3.45) and (3.46), the displacements for Love modes may be written

uj = -i h) z)Fy [k - 8- exp(iklxl+ik 2x2)dk2  (3.47)

j=1,2

Since in laterally homogeneous cases kj = k cosa and k2 = k sinS, the

displacements u, and u2 are expressed as follows:

u1 a _w/2 itl(h)zj(z)F, (sin 26)exp{ik(x1cos6+x2sino)}d8w,/2 8wCUIj

uw/2 i2(h)-(z)Fx (-sinocos6)6exp{ik(xlcos6+x~sina)}d8 (3.48)u2 = r/w2 8wCOi 11

u3 = 0

Compared to (3.44), it is clear that the azimuthally dependent terms in

(3.48) for plane waves are exactly the same as those for a far-field term

(1)
(=H W (kr)) of a cylindrical wave representation (3.44).

Let us go back to the Gaussian beam representation of the wavefield

(3.35) and (3.37) for laterally homogeneous cases:

u= -/2 $L(6) / q(0-) t(z) exp(iks + 1W P- n2)d6 (3.49)w/ O6 q(s) 2 q

where q(s) = s+E = s+ 0 - i ?c Li and p/q = 1/C(s+E). In order to compare

this to the plane-wave representation (5?), we may put Lp+e. Then

u = f /?L(6) tl(z)exp{ik(xlcos6+x 2sin6)}d6 (3.50)
W/ L(z 1 -



Thus, from (3.48) the weight function *L(8) for a point force Fx directed

along the x-axis at a depth h is given by

l(6) = i(-sino) (3.51)

Similarly, the displacement vectors of Gaussian beams excited by any

arbitrary point force F = (FX,FY,Fz) located at r=O and z=h may be written

u w/2  it1 (h)(F cos8-Fysin8) UL
1 8 C-2 8wC (0)(0)Ii(0) ~t

for Love waves and

v/2 {F7r2(h)+i(Fcos6+F sin)r(h)} tU = f-w/ 8= (0) )IJ(01 I(s,n,z,t)d6 (3.53)

for Rayleigh waves. In the laterally heterogeneous medium, we approximate

the integral with respect to S by the summation of a finite number of

Gaussian beams.

For realistic earthquake sources, it is more convenient to express the

formulations using moment tensor notation Mij (ij = x,y,z) Fe.g., Saito,

1967; Mendiguren, 19771. Since the radiation pattern by a single force in

terms of Gaussian beams is equivalent to that for cylindrical waves, the

displacement vectors for a moment tensor expressed by Gaussian beams are

similar to cylindrical- waves (using the same notation as in section 7.5 of

Aki and Richards [19801):



UI2 81C(O)IJ(0) 11(0)

w/2

f { ik(O)ti(h)
-w/2

[MxxsinScos6 + Mxy(sin28-cos2S)

-Myysinocos6] - ?

I
8 C (0) U(

CMxzsino - Myzcos6] } U (s,n,z,t)

q(0)U(0)1 ,(0)
q(s)U(s)I (s)

MD2)i{Lyi t)

-*1(sz)-expi*(s,t) + i n2 1

for Love waves, where AS is the interval of take-off angle better each ray

and { } is the same as the braces of the first equation, and

2 ' 8wC(0)0)Ii(O)(O)

w/2

f { k(O)rj(h) [MxxcosS + 2MXysinocosS +
-ir/2

MYysin 26] + -k(O)(h)rj(h)+r4(h)
YY- X(h)+2-(h) Mzz + i [M(h) Mzcos6 + Myzsin6l I

(s,n,z,t) d6

1

8wC(O)II(O)11(0) 6

-[ri(s,z)(t +

{ I V

np(s)C(s)
q( s)

q(0)ll(0)II(0)

q s U9s)1(s)

n) + ir2(s,z)zl

-explip(s,z) + i ()n2- A

(3.54)

(3.55)



for Rayleigh waves, where { } is the same as the hraces of the first

equation. Equations (3.54) and (3.55) are the general representations for

synthetic seismograms of surface waves by Gaussian beams for arbitrary

source configurations in a laterally heterogeneous medium (under the

assumption of laterally slowly-varying media).

3.4 Wave Packets of Gaussian Beams

The final question in the synthesis of waveforms by superposition of

Gaussian beams is how to express the source time function. erveny [1983]

proposed that the wave-packet approach is the most efficient way to compute

body wave seismograms. The wavefield excited by a source is expressed by

wave-packets propagating along the corresponding ray. The seismogram at the

observation point is constructed by superposing these wave-packets in the

sense of Gaussian beams. erveno rl1931 demonstrated using of the Gabor

wavelet Ederveny et al., 19771 as a source time function for each beam:

f(t) = exp{-(Tgt) 2-iw0t-i* 0} (3.56)

where wo is a center frequency, to is an initial phase and y is a measure

of the frequency bandwidth. Then the seismogram is expressed as

N
u(x,t) = O s(61)g(x,t,61 )A6 (3.57)
~ ~w i=0~

where g(x,t,6 1) is a wave packet. It is obtained as a convolution with the

source time function (3.56) and the basic Gaussian beam representation

(3.35) or (3.36) with an initial take-off angle 6i. This formulation has

been used by several authors Fe.g., erveno, 1QP3; Nowack and Aki, 1984;

Cormier and Spudich, 19841. Madariaga and Papadimitriou r10841 used

another kind of source time function (equation (10) in their paper)



originally proposed by erveny [19831: a delta-function like wavepacket,

following Chapman's [19781 WKBJ method but with complex At. They

introduced this source time function in order to eliminate the singularity

which appears in the basic Gaussian beam formulation in the time domain.

Since seismic body waves are non-dispersive waves, that is, the velocity is

constant for all frequencies, waves of all frequencies generated at the

source should arrive simultaneously at the observation point. Therefore,

if the source process is simple, the observed seismogram has an

impulse-like shape. Since the Gaussian beam method is based in the

frequency domain, synthesizing isolated impulse-like waveforms such as body

waves necessitates the convolution of a wide range of frequencies -into the

time domain. Using either a Cerveny-type source time function (i.e., the

Gabor wavelet) or a delta-function like wave packet, truncation phases in the

synthetic seismograms are fairly prominent.

Now let us consider the appropriate source time functions for seismic

surface waves. In contrast to body waves, surface waves are dispersive, so

the observed seismograms usually show a long duration of wave trains in the

time domain. For surface waves it should he noticed that the ray paths are

varied for each frequency because the phase velocity distributions are

generally different for each frequency. Thus, the discussions of synthetic

and observed seismograms might he more appropriate in the frequency domain

than in the time domain. However, for real data the amplitudes and phases

in the frequency domain have large fluctuations because of contamination by

noise. Instead, it may he more stable and reliable to pick real data with

a small but finite range of frequencies. With such a small frequency

range, the phase velocity distributions can be assumed to be the same, and

we should perform ray tracing only once for the central frequency. Here we



shall use the Gabor wavelet (3.56) as a source time function. In the

frequency domain the Gabor wavelet (3.56) may be written

F(w) = v" e-i0 exp Y(-n) 12} >0 (3.58)

The parameter y dominates the range of sampling frequencies. To get a

narrow range of frequencies, a large value of y should be used. In order to

compare the synthetic Gaussian beam seismograms with real data, the data

are processed by a bandpass filter with the same characteristics as (3.58).

Since we study waves not of a single frequency but with a finite range

of frequencies, there are several points to be noted. As we saw in the

section on ray tracing equations for dispersive waves, the wavepacket

propagates with the group velocity along the ray. On the other hand, the

phase term is determined by the phase velocity. This situation is

illustrated in Figure 3.4. Second, with the Gabor wavelet it may be possible

to simulate the beating phenomena of surface waves due to multipath

interference or side-refracted waves, because two frequency peaks close to

each other produce the beating of waves. Finally, let us mention the results

for different frequencies. If the frequencies are significantly different

and the phase velocity mapping is no longer assumed to he the same, we may

conduct ray-tracing and construct synthetic seismograms separately for each

frequency band. As mentioned earlier, the variation in phase velocity

mappings with frequency reflects the depths of anomalous regions. This kind

of approach (i.e., making phase velocity mappings at several frequencies,

specifying the depths of anomalies, and constructing three-dimensional

structures) has already been employed for long-period surface waves [e.g.,

Nataf et al., 19841. In practice, it is fairly difficult and time-consuming

to make several phase velocity mappings. However, such phase velocity



mappings have a great advantage over strict three-dimensional modelling

because they are essentially two-dimensional problems. In this study, we

shall consider only a small number of frequencies. Studies utilizing many

different frequencies and directed at the investigation of three-dimensional

structures will be performed in future work.

To synthesize surface wave seismograms in a narrow frequency region,

it remains to state the final formulations. Except for the fact that we

must distinguish the group delay of the wave packet from the phase delay,

the formulation is exactly the same as those for body waves. The

wavepacket at the observation point for each Gaussian beam with the source

time -function given by (3.56) is expressed as

g(x,t,6) = ([3II{P. (0))1/2r exp{- (Ot9) 2- *n2R _ (4&n2B)2)

cos( tp + 0- arg( ) , (3.59)

where t t f - , t t - f- -, * = 1- ) and2' --- g 2 T

B = w0~1L~2 (for details, see erven', 1983). Multiplying by the weighting

factors, (3.40), or those given in (3.54) or (3.55), the seismograms at the

receiver are obtained by superposing a number of Gaussian beams of the form

of equation (3.54).

Let us summarize how to construct synthetic seismograms of surface

waves by the Gaussian beam approach. First, we must specify the model

structure. Following erven' et al. [19821, the model is divided into a

mesh. The phase velocities at the specific frequency are specified at mesh

points, and using bicu bic spline interpolation functions we may obtain



smooth values not only of phase velocity but also of the first and second

spatial derivatives at any point. This is important because the second

derivative of phase velocity dominates the results of dynamic ray tracing,

that is, the values of p and q. In these formulations, the derivatives of

group velocity at that frequency are not required, and simple linear

interpolation may he sufficient. Next, we conduct ray tracings from the

source using kinematic ray tracing equations (3.9) and (3.10) and we solve

the dynamic ray tracing equations (2.54) to calculate the complex variables p

and q. The interval of take-off angles should he small enough to sample the

laterally heterogeneous structure by a finite number of rays. Then, the

points on the rays which give perpendicular projections to the station are

identified so that we obtain p, q, C, U, I and * in ray-centered coordinates

(s,n) for each Gaussian beam. Finally, we sum weighted Gaussian beams at

points along the ray by equation (3.57) (see Figure 3.2 or 3.3).
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Figure 3.1. A cross section of the ellipsoidal Earth through a meridian,
showing geocentric colatitude ec and geographic colatitude, 6.
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Figure 3.2. Ray centered coordinates (s,n) and ray index parameter, 6, for

a plane wave source at s=s0.
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in order to produce seismograms at the station for the point source
problem.

=. EAS-u(i,



-t

Tg =
Tp= U

Tp: -d

Gabor Wavelet (large 'Y> 1 0)

-[e-T ) COSjw.(t-Tp)+4,l

Figure 3.4. Propagation of the Gabor wavelet for dispersive waves. T and
T g are phase and group delays, respectively.



Chapter 4. Forward Modelling and Tests of the Synthetic Waveforms

In this chapter we show several numerical examples applying the method

described in the previous chapter. Numerical tests concerning the validity

and precision of the Gaussian beam method have been conducted for seismic

body waves (e.g., erveny and Klimeg , 1984; Nowack and Aki, 1984a; Beydoun

and Ben-Menahem, 19851. In the Gaussian beam method there are several free

parameters: for example, the range of take-off angles of the rays, the

interval of take-off angles A6, and the beamwidth parameter LO. We must

assign these parameters carefully in order to produce reliable and accurate

results. Nowack and Aki [1984a] have checked these parameters extensively

for body waves, especially the sensitivity of the choice of the parameter

Lo. Their results show that the beamwidth parameter LO for plane wave

sources should be comparable or smaller than the optimal value, jq2/q11

evaluated at the receiver Ferven' et al., 19821. The initial beam width

for line sources, on the other hand, should he comparable or larger than

the optimal value to get stable results. While for seismic body waves the

Gabor wavelet with a small value for y (~4) has been used, a larger value

of y (>10) is used in this study for surface waves. In all of the examples

of this study, only vertical components of Rayleigh waves are considered.

Anelastic attenuation along the ray path is excluded, so that attention is

paid mainly to the effect of lateral heterogeneity in velocity.

4.1 Homogeneous and Non-dispersive Model

We begin by showing ray tracing of surface waves and generation of

synthetic seismograms in a laterally homogeneous spherical Earth model. A

source is located at 50*N, 0*E and there is a station at a distance of q0*

lying on the equator at O*N, 90*E (Figure 4.1). Roth the phase and group



velocities are set at 4.0 km/s, that is, dispersion is neglected for

simplicity. The position of the minimum waist of beams, So, in equation

(2.72) is set to zero, and the beamwidth parameter LO is a free parameter.

The ray paths in Figure 4.1(a) are calculated by using a path-increment,

ds, equal to 0.50. In this example the initial phase and the radiation

pattern of the source term are assumed to be constant with azimuth.

Because we are using the Mercator projection, the velocity field is

heterogeneous in the direction of a meridian even when the model is

laterally homogeneous. This example appears to be a fairly simple case,

but it gives a pathological test of the Gaussian beam method. For this

case, the wavefield at the source is that of a line source while it is a

plane wave at the receiver. Since the wavefield is essentially expressed

by a linear combination of line-source and plane-wave like equations (2.68)

and (2.69), this example gives an extreme case: one set of fundamental

solutions (i.e., q2 and P2 in (2.69)) at the source is changed to the other

set (i.e., qi and p1 in (2.69)) after propagation. This means that the

results are expected to be quite critical to the choice of parameter e, the

beamwidth parameter LO in (2.72). For example, the optimal beamwidth

parameter Lo = lq2/q1 1/2 evaluated at the receiver [erveny Pt al., 19P21

should be infinite in this case because q, = 0 at the receiver even though

q, may have a finite value in the numerical calculations (0.01, compared

to q2 = 1.0 in our calculation). Nowack and Aki F1Q84al discussed the

choice of c in synthesizing seismograms in the region of a caustic by the

Gaussian beam method (see Example E, especially Figure 10, in their paper).

In their case q2 = 0 at the receiver, while q, = () in our "ql-caustic"

case. Nowack and Aki [1984a] showed that with large LO the obtained

seismogram has a spurious truncation phase. Thus, we must check the choice



of e carefully in this example. Although the proper value of e is fairly

well-constrained in this case as shown below, in general cases the value

of e is not so critical because wavefields are usually expressed by a

combination of line source and plane wave source.

Figures 4.1b-f show Gaussian beam seismograms (right side) and the

contribution of each beam to the seismogram for different assumed values of

the beamwidth parameter LO. Table 4.1 lists the maximum amplitude of the

seismograms for different beamwidth parameters. Since we are using the

Mercator projection, the unit of length is the radian in the longitudinal

direction and also corrsponds to the length of a meridian between 0* and

45*N in the latitudinal direction. The exact solution is known in this

case because of lateral homogeneity of the model:

= i (1) wr -iwt4 0 C e

(4.1)

1 iwr/C + ii/4 -iwt

Thus, the amplitude for C = 4 km/s, w = 2w/40 sec-1 and r = 6378 km is

1.260 x 10-2, with a w/4 phase delay from the peak of the wavepacket. For

any choice of beamwidth parameter LO, the synthetic seismograms generated

with large y (=20) shown in these figures do not appear to be affected by

computational or truncation errors, and spurious truncation phases are not

apparent. With larger beamwidth parameter (e.g., Ln = 10), there are some

contributions from the beams away from the receiver, but most of them

cancel out because of the phase differences from the adjacent beams. The

effect of the finite aperture of rays is not obvious for seismograms with

large y because both ends of the wave packets gradually decay, thus, the

truncation of the beams from each side does not clearly appear. For LO

larger than 0.5, the amplitudes of the synthetic seismograms arp close to



the exact value with an accuracy better than 1% (Table 4.1). For smaller

Lo, beams are planar and wider, which may be the real property of the

wavefield in this case. However, the truncation of ray aperture makes the

amplitude of the seismogram at the receiver smaller than the exact value.

If the aperture of rays is wider, the results are valid even with smaller

Lo, so we must select a large aperture of rays. In any case the phase

delay of the seismograms is correct: about w/4 from the peak of

wavepacket.

In summary, the obtained seismogram is sufficiently precise if we

select the beamwidth parameter LO to have a value close to the optimal one

(~5.0) averaged over the group of rays. For large Lo, we must be careful

of small truncation phases, even though this is not as obvious as in the

case of elastic body waves with small y. For small Lo, the phase is

precise but the synthetic amplitude may be smaller than the real amplitude,

depending on the ray aperture.

4.2 Latitude Dependence and Polar Phase Shift

In this example, the model is the same as the previous one: a

homogeneous, non-dispersive and spherical Earth. The difference is that in

this case the source is at the equator (0*N, 0*E) and there are receivers

at a distance of 900 at different latitudes (0 '600N,900E) as shown in

Figure 4.2a. y is 15, hut the other parameters for ray tracing are same as

in the previous case. This example checks the validity of the Mercator

projection.

All of the receivers are at the same distance as in the previous

example, and the wavefields at the receivers are planar. Thus, the choice

of the beanwidth parameter Lo must he considered carefully. Figures 4.2b-e

show seismograms at each station for different beamwidth parameters LO. If



Lo is larger than 0.5, all of the seismograms are similar to the exact

solution with an amplitude of 0.0126 and a phase shift of -/4. For small

Lo, the beamwidths at receivers are wider and the wavefield is like a plane

wave, so the restricted ray aperture reduces the amplitudes of seismograms

as in the previous example (see station A in Figure 4.2b). If the ray

aperture is larger, we can still obtain good results at all receivers even

with a smaller value of Lo. On the other hand, with Lo close to the

optimal value (~10), beamwidths at the receivers are so narrow that only a

few of the closest beams contribute to the results and we cannot obtain a

stable solution with the interval of take-off angle assumed here (20). We

can avoid this problem by shooting a denser packet of rays. In Figures

4.2f and g, contributions of beams with Lo = 10 at receiver G are shown for

different intervals of the take-off angle, A8: 20 and 0.50. For large AS

(2*) only two beams contribute to the result and they give a wrong

amplitude. For small A6 (0.5*) there are contributions from a larger

number of beams and the amplitude of the seismogram is accurate. Since the

wavefield at the receiver is planar, the optimal beamwidth parameter Lo =

|q2/q1 |I/2 is large and the heamwidth at the receiver is very small; the

contribution from only two or three of the closest beams are important.

This. causes an unstable solution because the results depend on a small

change in the choice of take-off angles of individual beams. The Gaussian

beam method employs a summation of a finite number of beams to approximate

an integral of continuous functions of beams (3.41). A rule of thumb is

that more than about five beams are needed to yield an accurate result.

Thus, in this case (i.e., plane wave qj caustics) we should use a smaller

value of Lo so that the beams are wider at the receiver. Then we can get a

stable solution. Thus, as in the previous example, a careful choice of Lo,



a6 or ray aperture will yield synthetic seismograms that are reasonably

accurate for stations at any latitude.

Before proceeding to other tests, we wish to mention another feature

of the Gaussian beam method. Figure 4.2 shows a seismogram at a distance

of 270* along the equator compared to one at 90*, station G, for the same

model and with the same parameters (Lo = 1.0). The amplitudes at the two

distances should be similar because we do not include attenuation; as shown

in the figure, the amplitudes are equal to an accuracy better than 1%.

However, it should he noted that the phase of the seismogram at a distance

of 2700 is advanced by w/2 with respect to that at a distance of 900. This

is the well known "polar phase shift" of Brune et al. [19611. The CGaussian

beam method (with So = 0) includes a w/2 phase shift when the trace of q (=

-iLOqi + q2) crosses the real axis of the complex q plane (i.e., when rays

pass through q2-caustics, q2 = 0). This phase shift is tracked in the

Maslov method by Chapman and Drummond r1982] as the "KMAH index" in which

passages over caustics are counted. An advantage of the Gaussian beam

method with dynamic ray tracing is that there is no need for tracking and

counting as long as p and q are computed continuously.

4.3 Regionalized Model for the Pacific Ocean

Next, let us consider more concrete models. The survey area for this

preliminary study is the Pacific Ocean, an area whose gross structure has

been studied in detail using surface waves with period 10-100 s. We can

specify a fairly good initial model for the phase velocity mapping on the

basis of several studies [e.g., Knopoff et al., 1970; Leeds, 1q75; Forsyth,

1975; 1977; Mitchell and Yi, 19801. As may he illustrated hy two examples,

there is a clear difference in the complexity of structures between

continental and oceanic regions: Trshu et al. [19811 s.ucceeded in



retrieving the source mechanisms of earthquakes on the Mid-Atlantic Ridge

by a moment-tensor inversion of Rayleigh waves of period 30-60 s with a

simple regionalized phase velocity map of the Atlantic Ocean. Romanowicz

[1q821 showed, however, that with the same moment-tensor inversion a fairly

detailed phase velocity map was required to obtain reliable focal mechanism

solutions of continental earthquakes such as those in the Tibetan plateau.

Thus, for the study of an oceanic region we are likely to need only a

simple initial model of phase velocities for surface waves with periods

greater than 20 s.

There is one serious problem in the application of the above method

for surface waves: there are large lateral phase velocity gradients or

rapid structural changes at ocean-continent boundaries. The Gaussian beam

method is based on the assumption that the high-frequency approximation is

valid everywhere. In other words, the scale of lateral heterogeneities

should be much greater than the wavelength of the radiated waves [Kravtsov

and Orlov, 19801. Such an approximation may not hold in the vicinity of

ocean-continent boundaries, however, where the scale of lateral

heterogeneity in structure is small compared with the wavelength of the

surface waves under consideration (about 60~400 km for surface waves with

period between 20 and 100 s). uir method is based on the assumption that

each normal mode is isolated and that there is no energy conversion from

one normal mode to another [Yomogida, 19851. However, mode-mode

conversions do occur at sharp structural transitions such as ocean-

continent boundaries [e.g., Boore, 1970; Bullitt and Toksoz, 1985]. There

are several observations of mode-mode conversions of surface waves with

periods of 20-100 s propagating across the continental margins [e.g.,

McGarr, 1969a, Gregersen and Alsop, 19761. In particular, if waves are



obliquely incident on the boundary, the distortion of the wavefield is

far more complicated than expected from ray theory. This phenomenon may be

simulated by introducing reflection and transmission coefficients for the

surface waves. Here, we are going to avoid this difficulty by choosing

stations near a coastline and satisfying the criterion that rays cross

ocean-continent boundaries at nearly normal incidence.

We also need reliable source parameters (focal mechanisms) of

earthquakes in real data cases, as expressed by equation (3.54) or (3.55).

Because we are going to use the waveform to investigate lateral structure,

initial phases or seismic moment tensors must he known fairly accurately.

However, if we avoid stations along paths with azimuths at the source

within ~10* of nodal directions for surface wave radiation patterns the

effect of uncertainty in the focal mechanism on calculated seismograms is

not critical to our discussion. This is because the initial phases and

magnitudes of radiated amplitudes in the directions of the stations are

then smoothly varying function of azimuth.

We calculated synthetic seismograms of surface waves at coastal

stations for the Pacific Ocean sources using the Gaussian beam method and

starting with the regionalized model of Forsyth [1975, 1977] for Rayleigh

waves. Although Forsyth inverted his data by dividing the Pacific Ocean

into several discrete regions with oceanic lithosphere in different age

ranges, we allow the phase velocity to change gradually and continuously as

a function of lithospheric age (Figure 4.3). Even though it is an

extrapolation of the previously ohtained models, there is a strong

heterogeneity (low velocity) in the vicinity of spreading ridges such as

the East Pacific Rise or the Calapagos spreading center in this model. The

ages of oceanic lithosphere are taken from Sclater et al. F19811. The



phase velocities in the continents followed from Forsyth [19751. The phase

velocities are specified at 50x50 grid points except near ridges, where the

grid is 2.5*x2.5*.

Figure 4.4 shows ray tracing results (40 s) for an event on August 7,

1972, in the Tonga region (16.70S, 172.1 0E, Ms=6.0, thrust fault with

nearly N-S strike). The length of the ray-path increment ds is 0.50, and

the interval of initial take-off angles, a, is 20. There are no peculiar

distortions of ray paths, and this model does not predict any strong

amplitude anomalies at the stations near the western coast of the Americas.

This contrasts sharply with the results of Patton [19801, who performed ray

tracing for Rayleigh waves of the same period (40 s) for a regionalized

model of the Eurasian continent with an event in the Pamir Mountains which

showed large distortions of ray paths along some azimuths. The distortions

in Rayleigh waves for paths across Eurasia are due to strong lateral

heterogeneities such as the low-velocity region beneath the Tibetan

plateau. For 40-s Rayleigh waves, the phase velocity across the Tibetan

plateau is more than 15% lower than that associated with normal continental

crust, while the maximum velocity difference in the Pacific Ocean (i.e.,

between the youngest and the oldest lithosphere) is only 5% with the

resolution of surface waves at this period. Also, because the low-velocity

region near the ridges is fairly narrow compared with the Tibetan Plateau

and variations in phase velocity vary smoothly with age, rays are less

distorted.

In Figures 4.4bc and d, synthetic seismograms are shown at each of

the five WWSSN stations in Figure 4.4a; alternative seismograms are

depicted for several choices of Lo and So. The dependence of the results

on the beam parameters Lo and So is not strong, as long as we use a



beamwidth parameter LO close to an averaged optimal value for these

laterally heterogeneous cases. For small Ln, the beams are wide at the

receiver, and the waveforms are stable but have small amplitudes (e.g., at

College in Figure 4.4b) because of the limitation of the range of take-off

angles for ray shooting. Figure 4.5a exhibits the detailed ray

configuration for the station, COL. Ray-tracing is performed with As =

0.20. Figures 4.5b-d represent contributions of all the beams to the final

seismogram shown in the right of each figure. The effect of varying LO on

the results, as discussed above, is clearly observed in these figures.

Moreover, let us consider the effect of the location of So* As discussed

in erveny et al. [19821, So corresponds to the place where the beamwidth

is a minimum for a homogeneous medium. Since stations must be located in

the first Fresnel zone [Kravtsov and Orlov, 198Oi, Nowack and Aki [1984a]

showed in example G of their paper that So should be selected to make the

beam the narrowest in the region where the scale length of heterogeneity is

the shortest. This is because the heterogeneity must be smooth over the

beam width for the paraxial approximation to be valid. For the present

source-receiver pair, the main heterogeneity exists near coastlines and

solutions may be more stable if we set So to be about 1 or 1.5. If we set

So = 1.5, the maximum amplitude of the synthetic seismograms is not as

dependent on the choice of LO as in the case with So = 0 (Table 4.2).

Thus, an appropriate choice of So is also important to obtain stable

results with the Gaussian beam method.

In an oceanic area, the largest lateral heterogeneity is expected to

be contributed by a region of low velocity along oceanic ridges. In the

Pacific Ocean such areas correspond to the East Pacific Rise and the

Galapagos spreading center. If the source is located in these regions, the



wavefield may be strongly distorted, similar to the case for the event in

the Pamir Mountains given by Patton [1980). Figure 4.6 shows the results

of ray tracing and construction of synthetic seismograms at several

stations for a hypothetical event just south of the Galapagos spreading

center. Compared to the previous example, the rays are severely distorted

and large amplitude fluctuations are predicted to be present. The rays

passing through ocean-continent boundaries (e.g., west coast of North

America) show large deviations from a great circle path because of large

variations in phase velocity across these boundaries, as shown in examples

by Sobel and von Seggern [19781. However, as noted above, the

applicability of the present method to regions of rapid change in phase

velocity is questionable. Therefore, we should avoid the use of a station

like Matsushiro (MAT). On the other hand, we may deal with the distortions

of the rays occurring within oceanic regions, such as the rays passing

through the Galapagos Spreading Center. Because there are fairly large low

velocity regions (5% lower in phase velocity) along the ridge, rays

encountering these low velocity regions are distorted, and focusing

phenomena may be observed to the south of station GHA. Rays not

penetrating these regions but passing parallel to them are almost straight.

Another example of ray distortion is seen near the back-arc basin behind

the Tonga-Kermadec trench (Lau Rasin). Since the oceanic lithosphere near

the trench is fairly old, the phase velocity is high. In contrast, the Lau

Rasin is now actively spreading [e.g., Weissel, 1q771. Phase velocities at

periods near 40 s are expected to be fairly low, similar to regions near

oceanic ridges. Therefore, rays passing through this region are disturbed.

Synthetic seismograms at several WWSSN stations with different beam

parameters (Figures 4.6b and c) show that the results are not particularly



dependent on these parameters. Compared to the previous example, there are

large differences in amplitude. At GIIA the amplitude is nearly twice as

large as that at RAB or HNR because of focusing. Small truncation phases

are observed in some seismograms. These are caused by the finite interval

of ray take-off angle and the limited range of ray aperture. This example

implies that even in an oceanic area there is a possibility that large

amplitude anomalies may be observed in some specific station-receiver

pairs.

4.4 Sensitivity of Amplitude Anomalies: A Hot Spot Example

Since amplitude anomalies are determined essentially by the second

spatial derivative of the phase velocity in the direction perpendicular to

the rays (see equations 2.57), amplitude information is expected to be more

sensitive to short-wavelength lateral heterogeneity than phase information.

Here, we investigate such sensitivity problems with a simple model, based

on the same regionalized model of the Pacific Ocean as in the previous

example, but with the addition of a low velocity area around the Hawaiian

hot spot [e.g., Morgan, 19711.

The low velocity anomaly is assumed to be circular and centered at the

island of Hawaiia. Phase velocities within the anomaly are assumed to vary

according to a two-dimensional Gaussian distribution with a half width of

50*. The maximum velocity difference from the surrounding region is taken

to be variable (-0.05, -0.1 and -0.2 km/s) in order to check the

sensitivity of the method. Using conventional techniques (only phase

information) it is generally impossible to detect anomalies of such small

spatial extent using surface waves and the present network of stations.

Figures 4.7, 4.8 and 4.9 show the results of ray tracing and synthetic

seismograms at several stations for the above three models. Recause of the



lower phase velocities around the Hawaiian Islands, rays passing through

this region are curved toward the center of the low velocity area. Thus,

rays are focused near Vancouver Island while rays are sparse near the

stations Longmire and Corvallis. Since no stations are located near the

great circle connecting the station and the heterogeneity, conventional

phase velocity methods cannot resolve such a heterogeneity without

extremely dense path coverages. Figure 4.10 shows the variation of

Rayleigh wave amplitude predicted at Corvallis as a function of the maximum

anomaly at the Hawaiian Islands. As the anomaly becomes larger, the

amplitude decreases. Amplitudes at the stations Longmire and Corvallis are

reduced by half for models including a low velocity region with a maximum

phase velocity difference of -0.2 km/s or more, compared with a model

without such a heterogeneity. On the other hand, the phase terms of the

synthetic seismograms are nearly constant (differing by less than 1 s for

40-s surface waves) for these three models.

4.5 Large Amplitude Anomalies and Validity of the Method

Finally, we compare real data and synthetic seismograms. We attempt

to synthesize seismograms from the earthquake of August 7, 1972, off the

Tonga trench at the location used in the previous models. This earthquake

is associated with the bending of the lithospheric slab, and the focal

mechanism is considered to he quite simple on the basis of body wave

analysis [Forsyth, 198?1. However, we found a large amplitude anomaly in

Rayleigh waves at stations Longmire and Corvallis (see Figure 4.11). The

amplitude of 20 s Rayleigh waves at Corvallis, which is located less than

20 from Longmire, is larger by a factor of four while the amplitudes are

almost identical for 40 s Rayleigh waves. The nodes of the radiation

pattern for Rayleigh waves are directed nearly north-south, and the data at



other stations show no significant amplitude anomalies. Therefore, the

complexity of the source is likely to be a negligible contribution. This

is similar to the observations by McGarr [1969b1 (Fig. 1.1). Following

McGarr r1969bl, we presume that a low velocity area centered on the

Hawaiian Islands is responsible and we attempt to reproduce the amplitude

anomalies using Gaussian beams.

Waves of period 20 s showtclear beating at Longmire (Fig. 4.11).

Pilant and Knopoff [19641 suggested several reasons for the interference of

dispersive wave trains. Among them, we test the possibility that trains

"have travelled over paths of slightly different lengths", as they

described. In the previous synthetic examples (Figures 4.7-4.9) for 40 s,

large amplitude differences between the stations Longmire and Corvallis

were not observed with phase velocity anomalies as large as -0.2 km/s in

the Hawaiian Islands. For 20 s, we further reduced the velocity in this

region and checked the amplitude variations at both stations. Figures

4.12a and b show the results of ray tracing and synthesizing seismograms at

several stations for a model with a maximum phase velocity difference of

-0.4 km/s. Since rays passing the anomalous regions are distorted in a

complicated manner, amplitude anomalies must be treated carefully in these

examples. We found that the synthetic seismograms exhibited a large

difference in amplitude between Longmire and Corvallis, but in the opposite

sense from the observed data.

The amplitude pattern of Figure 4.12 arises from a combination of

focusing by the velocity anomaly in Hawaii and the effect of the low

velocity area along the Juan de Fuca Ridge. Our velocity model (Figure

4.3) does allow a fairly large ambiguity in velocity in young oceanic

lithosphere (ages less than 10 m.y.) because conventional pure-path



analysis cannot resolve such narrow regions. Thus, we also considered a

model in which the area around the Juan de Fuca Ridge has a phase velocity

equal to that of oceanic lithosphere 10 m.y. old. Figures 4.13a and b show

the ray tracing and the synthetic seismograms for this case. Without

strong velocity anomalies along the Juan de Fuca Ridge, rays are defocused

around Longmire and the amplitude at Longmire is half that at Corvallis,

more nearly consistent with the observations. Although this model is

neither unique nor correct, this example clearly shows that a slight change

of model can give a large variation in relative amplitudes and demonstrates

the sensitivity of the present method.

.Since these examples concern wavefields that are fairly disturbed, the

validity of the present method might be suspect. Thus, it is important to

check the above results. To do so, we employed reciprocal seismograms:

exchanging the source and the receiver and comparing them to the original

ones. The results of reciprocal ray tracing and seismogram synthesis for

the model in Figure 4.13 at stations Longmire and Corvallis are shown in

Figures 4.14 and 4.15, respectively. The amplitude of the reciprocal

seismogram for Corvallis (Figure 4.15) is larger than that for Longmire

(Figure 4.14) by a factor of two, similar to the seismograms in Figure

4.13. Therefore, we consider these results to be reliable with the present

choice of beam parameters. The contributions from each beam in Figures

4.14 and 4.15 show that the final seismograms are determined mainly by

direct waves and side-refracted waves produced by the low velocity areas.

The large differences in amplitude between these two stations may be caused

by interference between the above two wavetrains. If the phases of the two

waves are matched, amplitudes are enlarged. On the other hand, the

amplitude and energy are reduced if the phase difference between the two



wave trains is nearly an odd multiple of w.

So far we have concentrated on the effects of the phase velocity

distribution. We now consider the importance of the group velocity

distribution. We alter the model of Figure 4.13 by adding lower values of

group velocities around the Hawaiian Islands as was done for phase

velocities. We take the largest difference in group velocity from the

surrounding area to be -0.4 km/s. Figures 4.16a and b show the results of

ray tracing and seismogram synthesis. Because group velocity is not

included in the formulations of ray tracing, the ray paths are exactly the

same as those in Figure 4.13a. The amplitude factors [U(s 0)/U(s)]11/2 in

equation (3.34) are evaluated only at the source and the receiver, not

along the path, so the group velocity is included in the results only as

the propagation speed of the wave packets (see Figure 3.4). Comparing

Figure 4.16b with Figure 4.13b, we see that the only difference is that the

peak of the wave packet is slightly shifted by the low group velocity along

the rays. However, the amplitudes and phases are almost identical. Thus,

we conclude that the group velocity distribution is not as important as the

phase velocity distrihution in the synthesis of the final waveforms.

In summary, the methods developed in Chapters 2 and 3 are useful to

synthesize surface wave seismograms in a laterally heterogeneous Earth.

The main problem is the choice of beam parameters, especially the

beam-width parameter Lo. However, in most cases we can get satisfactory

results with an intuitively appropriate range of Lo, for example, by

assuming the beamwidth at the receiver does not exceed the ray apertures.

In the examples for the Pacific Ocean, the results indicate the good

sensitivity of the present method to the details of lateral heterogeneity.



Table 4.1. Effect of initial beam-width LO on synthetic
seismograms for the example of Figure 4.1

LO Max. Amp. (x10-2) Error (%)

0.1 0.4255 - 66.2

0.3 1.0187 - 19.2

0.5 1.2270 - 2.6

0.8 1.2669 + 0.5

1.0 1.2651 + 0.4

3.0 1.2601 - 0.0

5.0 1.2587 - 0.1

10.0 1.2568 - 0.3

exact 1.2604



Table 4.2. Effect of S0 on seismograms for a laterally

heterogeneous model (Figure 4.5).

Max. Amp. at COL (x10- 2 )
LO

SO = 0 S0 = 1.5

1.0 0.966 1.519

2.0 1.608 1.678

5.0 1.910 1.697
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Figure 4.1. a) Ray tracing for a laterally homogeneous, non-dispersive,
non-attenuating and spherical Earth model (C = U = 4 km/s). Source and
receiver (o) are'located at 50*N and 0*E and at 0*N and 90*E,
respectively. The interval of initial take-off angles of rays, A6, is
2*. b)-f) Contributions of each beam (A to B) to the synthetic
seismogram (on the right-hand side) are shown for different initial beam
half-widths, Lo (0.1, 0.5, 5 and 10, respectively). The period is 40 s,
y is 20, and So is 0 for all figures. Overall, the final results are
not so sensitive to the choice of LO-



Figure 4.2. a) Ray tracing for the same model as in Figure 4.1. Source is
at 0*N and 0*E and receivers are located along 90 *E and 60*N to 00 at
latitude intervals of 100. AS is 20. h)-e) Synthetic seismograms at
the seven stations for different assumed values of LO (0.1, 0.5, 1 and
5, respectively). The period is 40 s, y is 15, and So is 0 for all
seismograms. The seismograms at various latitudes are almost similar
and this shows the validity of the Mercator projection. f)-g) Effect of
AS (2* and 0.50, respectively) on synthetic seismograms when the beam
widths are narrow in the vicinity of the receiver. So is 0, and LO is
10. Contributions of each heam to the synthetic seismograms (right-hand
side) are shown. The scales are the same for both two figures. h)
Comparison of synthetic seismograms for stations at 0*N, 900E and 0*N,
270 0E. So is 0, and L0 is 1. Note the 1/2 phase difference between the
two seismograms.
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Figure 4.3. Phase velocity of Rayleigh waves versus age of oceanic
lithosphere, from the data of Forsyth [1975, 1977]. The dotted, solid
and broken lines are for periods of 20, 40 and 60 s, respectively.
The large variations exist in the young oceans.
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Figure 4.6 a) Ray tracing of 40-s Rayleigh waves for a hypothetical event
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seismograms at stations Matsushiro (MAT), Guam (GUA), Rabaul (RAB) and
Honiara (HNR) for different values of LO (1 and 2, respectively). So is
1.0, and y is 15. A6 is 0.50 in these figures. The small precursors
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expected because the rays pass in the young oceans.
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Figure 4.12. a) Ray tracing of 20-s Rayleigh waves for an event on August
7, 1972 off the Tonga trench with the model of Figure 4.3, adding a low
velocity region with a maximum phase velocity difference of -0.4 km/s
centered on the Hawaiian Islands. A is 1*. h) Synthetic seismograns
at stations of Port Hardy (PHC), Longmire (LON), Corvallis (COR) and
Byerly (BKS). So is 1, LO is 1, and y is 40. AS is 0.5*.
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Figure 4.13. Same as Figures 4.12 a)-b) except that the low velocity area
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Port Hardy represents the arrival time of the peak of the wavepacket.
The amplitude of COR is twice that of LON.
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Chapter 5. Inversions for Phase Velocity Anomalies in the Pacific Ocean Basin

So far, we have developed methods to synthesize surface waves in a

laterally heterogeneous Earth and checked their stability and accuracy. Our

results imply that these methods may resolve fine structure which cannot be

detected by phase information alone. In this chapter we shall apply these

methods to actual data. Specifically, we will invert both phase and

amplitude information to recover two-dimensional anomalies in phase

velocities. Since this study is one of the first attempts to invert

amplitude anomalies to resolve lateral heterogeneity in a medium, including

the literature of exploration geophysics (e.g., Thomson, 1983; Miller et al.,

1985), the target area should he a relatively simple one. As described in

Chapter 4, the Pacific Ocean is selected for this study. Unlike the linear

and stable behavior of phase variations, amplitude anomalies in some cases

can change extremely non-linearly or unstably as we observed in the previous

chapters. Thus, we must start the procedures with a fairly reliable initial

model. For this reason, the Pacific Ocean as viewed by surface waves with

periods 30-100 s is an appropriate subject because of the fairly simple

structure. We shall employ the method developed in the previous chapters to

conduct the forward modelling essential for inversion. While this is itself

fairly new, there is another new challenge in this chapter. Because of the

non-linear behavior of amplitude information, we must employ a non-linear

inversion scheme. Such schemes are fairly new to seismologists who so far

have dealt with only linear inverse problems such as the milestone works by

Backus and Gilbert F1967, 1968, 19701. For non-linear inverse problems,

direct inversions are -usually impossible and iterative schemes are used in

general. However, a simple-minded extension of the linear inverse scheme to
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a non-linear case may not work. Recently, Tarantola and his colleagues have

studied these topics extensively, and the subject of this thesis provides a

good opportunity to apply their methods to a real problem. In non-linear

inverse problems, the initial model has to be quite close to the true one,

because of the presence of many local minima to which the solutions may

converge. Both this local minimum problem and the notorious ill-posed

nature (i.e., small eigenvalues) of linearized schemes (e.g., Koch, 1983]

make the non-linear inversion difficult. Thus, in this study only one

example of such applications is given, and we shall pay attention

principally to the above methodological problems rather than to the

geodynamical or tectonic implications of the results themselves.

In section 5.1, we shall develop the inverse formul-ations for the

present problems. A form of the first Born approximation (i.e., weak

scattering) for two-dimensional acoustic waves is adapted to the surface

wave expressions. New aspects of this work are that the starting model is

laterally heterogeneous and that we shall calculate the Frechet derivatives

with the new methods developed in the previous chapters. In section 5.2, we

shall describe the data processing used for the inversions. Since the phase

differences hetween the initial model and the inverted model should be

small, at first we perform conventional phase velocity inversions with only

phase data in section 5.3. Finally, inversions of both amplitude and phase

hy the formulations developed in the previous sections are presented in

section 5.4. The effects of damping factors and source ambiguities and

error analysis are also discussed.
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5.1 Inversion Formulation

We shall apply to surface wave problems the linerized iterative inverse

scheme originally developed by Tarantola [1984a, 1984b] for acoustic wave

propagation in a heterogeneous medium. Although Tarantola [1984a, 1984b]

developed formulations for time-domain analysis, here a frequency-domain

analysis will be given. This is because we shall concentrate on making 2-D

maps of phase velocities at a single frequency rather than attempt to recover

the complete three-dimensional structure of the Earth by using several

frequencies simultaneously as in the study by Woodhouse and Dziewonski

[1984]. This reduction to a 2-D problem reduces computational time

enormously and makes the problem much simpler. Also, formulations in the

frequency domain can skip several time-convolution procedures which are

required in time domain analysis.

Although our problem is surface wave propagation in a laterally hetero-

geneous medium, for simplicity we employ for the sake of simplicity an

"acoustic wave approximation", that is, the two-dimensional acoustic wave

equation with a velocity equal to the surface wave phase velocity, in

developing the inverse formulation instead of the original elastodynamic

equations under the assumption of a laterally slowly-varying medium

[Yomogida, 19851. The two-dimensional acoustic wave equations whose velocity

v(r) corresponds to the phase velocity of surface waves c(r) of a given

frequency is

-2 c r + 1w(rt) = f(rt) (5.1)

where V2 is a two-dimensional Laplacian. In our case the Laplacian is

expressed by Cartesian coordinates e-f according to the Mercator projection

as shown in section 3.? Flohert and Johert, 1q831. w(r,t) represents the



111

vertical component of Rayleigh waves and f(r,t) is a source term.

For a single frequency w, the above equation may be expressed as

[ + v 2]w(r,w) = f(r,w) (5.2)

Let us introduce the Green's function G(r,w;r') which satisfies

[ 2 + v2 ]G(r,w;r') = - 6(r-r') . (5.3)

Then the solution may be expressed as

w(r,w) = - f dr'G(r,w;r')f(r',w) . (5.4)
v ~ ^

Now let us perturb the velocity field c(r) into c(r) + Sc(r), which

introduces a small change in w(r,w;rs) to w + 6w, where rs is a location of

the source. This corresponds to the Born approximation: the perturbed

wavefields are assumed to be determined by the response of the medium only

to the unperturbed wavefields. Then, equation (5.2) may be written as

2(c+c) + v2][w+&w] = f (5.5)

Neglecting higher order terms, we obtain

[ -y+ v2]6w(r,w;rs) = Af(r,w;rs) (5.6)

where Af(r,w;rs) is the equivalent source term of the medium parameter

perturbations:

Af(r,w;r) ~- c c(r) w(r w;Es) - (5.7)



112

Using the Green's function G and equation (5.4), the perturbation of the

solution may be expressed as

sw(rgg;rs) -= - f dr'G(rg,w;r')Af(r',A;rs) (5.8)

= f dr'{- c2r') G(r9,w;)w(' ,w;'s) } c(r')

Thus, the term within braces of (5.8) corresponds to Frechet derivatives:

aw(r 9 w;r s
F(rgw;rslr) 3 (r)

2= c G(rg w;r)w(,w'Es) - (5.9)

The Gaussian beam expression for the Green's functidn of the acoustic

wave equation (5.1) in a laterally heterogeneous medium is given in

ray-centered coordinates (i.e., r = (s,n) and r' = (s',0)) by

G(r,w;r') = s expri*(sw;s) + 2 2]nZJA (5.10)
4w c~s'-q~s) 2 2q

s d' evn ta.

where * is a phase delay along the ray, w = - c( [derveny et al.,

1981l. On the other hand, the vertical component of Rayleigh waves

observed on the surface (z=O) and excited by the point source with a step

time function, M(W) = Mo/(-iw), is given by

)1 l(s ' )Ij(s')q(s')
w ' C(S')U (S')II(s') 6 U(s)I(s)q(s) ('

exp[it(s,w;s') + n2]A62 q
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where {1 is a function of moment-tensor components, eigenfunctions of

Rayleigh waves, elastic parameters at the source location, and a take-off

angle of each ray given in equation (3.55). We have changed the sign from

the original formulation so that upward motion is positive. These

formulations imply that

2c(s')U(s')I1(s')W c(s')U(s')Ii(s') (5.12)
-i{}Mo c(s)U(s)Ii(s)

rather than w, obeys the two-dimensional acoustic wave equation. Our use

of the acoustic equation in the formulation of the inverse solution means

that the product c(s)U(s)Ii(s) varies only weakly as compared with the

amplitude variation caused by geometrical spreading and multipath

interference. In our calculations, we shall evaluate the above product at

a point near the receiver for each ray path.

Instead of the direct use of field variables and model parameters we

employed in this study a procedure linearized for the logarithms of both

field variables and model parameters. T.R. Madden Epersonal communication,

19851 has successfully applied this technique to electromagnetic problems.

The use of logarithms of field variables and model parameters may be more

natural and robust, especially in cases where the data contain

signal-generated noise as in the present study (see section 11.5.5 of Aki

and Richards [1980]) because this procedure corresponds to the

normalization of both field variables and model parameters. In fact, the

imaginary part of the logarithms of field variables constitutes the phase

term, so that using only imaginary parts for linearized inversions

corresponds to the simple travel time inversions which have heen

conventionally used in seismology. In this study we are going to use both

real and imaginary parts.
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Let us modify equation (5.8) into an inversion formulation for the

logarithms of field variables and model parameters of the acoustic wave

equation (5.2), similar to Rytov's method [Chernov, 19601. Substituting

* 3ln(w(r,w)) into (5.2), we obtain

V2# + (V#)2 + 2 = f.exp(-O) (5.13)
c(r)2

Perturbing the variables and the velocity fields, (5.13) becomes

v2 (+O+6*) + (v(+o+6,))2 + W2= f.exp(-*O) (5.14)
(c(r)+6c(r) )2

which gives for the first order perturbation equations:

V2(6#) + 2V 0 V-,(6$) = Sc(r) (5.15)

This equation can be linearized by suhstituting 6* = *1exp(-tO) and using

the logarithms of model parameters m(r) = ln c(r); i.e., (sm=ac./c),

V2$1 + 2 1 c 2= 2 exp(to)c(r)

=c22 2 w(r,w;rs)Sm(r) (5.16)
c(r)2

This is equivalent to equation (5.6). So with the Green's function for the

original equation from (5.3), the solution may be written as

w(r',w;r )
=(rgsmals) f dr' - h(rg"w;r) } r 6m(r') (5.17)

fC2(r') _F
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This corresponds to the Frechet derivatives for logarithms of field

variables and model parameters. Comparing (5.17) to (5.8), we notice

that the above Frechet derivatives are just the derivatives for the field

variables divided by w(rgw;rs)/c(r'). Thus, in this case the magnitude

derivatives are naturally normalized. Instead of (5.9), we shall use the

following derivatives:

3$(g~mIs) c(r) aw(r gqw;rs)
F([gam (-rs w(ggw;rs) ac(r)

2w2
= -c3() 9w; w( w;s)/w(.Cggw;rs) (5.18)C3( r) ~(.8

and the field variables are now

*(rg,w;rs) = lnw(rgw;rs)l

= InA(rg,w;rs) + i*(rggw;rs) (5.19)

where A is an amplitude of a field variable (in this study, vertical

component of Rayleigh wave) and * is a phase term. We are going to invert

for 6m(r) = 6c(r)/c(r) by using both 6(lnA) and 6*.

With the above derivatives we used the inversion formulation of

Tarantola and Valette [19821, which they term "Total Inversion":

m (r) = m (r) + (I+CmFk+Cg-Fk)~
k+1 k ~

{[Oo(r m;rs)-$k g,"sU-fokfr)-mo(r))} (5.20)

where mk(r) is the logarithm of the velocity field at the k-th step, Fk is

the Frechet derivative with mk(r) given by (5.17), C, and C are the

covariance functions of data and models, to(rg,w;rs) are the observations

(lnA or *) for a particular source-receiver pair, k(rgw;rs) are the

solutions of the forward problem for model ck(r), I is the unit operator,
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and the dagger (+) represents the adjoint operator, respectively. If we

specify a model with a finite number of model parameters, equation (5.20)

becomes a.matrix formulation. The use of Cm and C, constitutes the

introduction of damping factors; the solution philosophy is similar to that

of Marquardt [19611 in that at each iteration a solution intermediate between

a least-squares solution and a solution given by a steepest descent method is

obtained in order to ensure a stable and rapid convergence of solutions. For

detailed discussions on this subject, readers are referred to Tarantola and

Valette [19821 and Tarantola [1984a,b].

In this study the following points must be carefully treated. In the

present frequency domain analysis, there is essentially an ambiguity in the

phase term: we cannot distinguish phases which differ from each other by

multiples of 2w. As shown by Tarantola [1984a], in the inverse procedure

(5.20) we compare the following two wavefields at the model point r: 1) the

wavefield w(r,w;rs) at the model point r from the source rs and 2) the back

propagation of the data residual 6w(rgtw;rs) from the receiver rg to the

model point r using the Green's function rG(rg,w;r)=G*(r,w;rg). In the

frequency domain analysis we unwrap the phase term for w or G to compare

the phase differences between the above two wavefields and if the phase

difference between the above two wavefields is larger than w, we set the

Frechet derivative F to be small. This is because the fundamental concept of

ray or beam theory is that the energy is concentrated along rays and we can

neglect the energy in the wavefield at a distance farther than half a

wavelength (w-phase difference) from the ray (first Fresnel zone conditon

(2.22)). For simplicity we multiply the Frpchet derivatives by the

factor exp(-ItI), where A* is the phase difference of the above two

wavefields, so that the magnitude of the derivative smoothly decreases
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with distance from the actual rays. In the conventional travel time or

pure-path type inversion, contributions to data come only from the model

points along the ray. In the present method we incorporate some

contributions from points not only along the ray but also in the neighborhood

of the ray taking into account the finite wavelength [e.g., Woodhouse and

Girnius, 1982]. This is more realistic and may give more stable results for

our inversions.

We must also include the attenuation of surface waves to apply

inversions to the real data. Here we assume that the attenuation factors are

fixed. Before the inversions of phase velocities the data are corrected by

the attenuation factors of the initial model (the age-dependent model in this

study). After such corrections, we treat both synthetics and data as those

in a lossless medium.

In summary, we must conduct three kinds of forward modelling in (5.18)

at each iteration step: (1) *k = tn [w(rg,w;rs)l, the synthetics to be

compared with the data to obtain the data residuals for the k-th model,

(2) w(r,w;rs), which is a synthesis at a model point r from a source at rs,

and (3) G(rgw;r), which is the Green's function from a medium point r

to a receiver at rg. Synthetic seismograms are obtained by the Gaussian beam

method, and results are checked by the paraxial ray approximation. Their

generation consumes most of the computational time in the inversion.

Another difficulty arises from the calculation of the inverse matrix

(I + CmFk+C- 1F )-1 in (5.20). The dimension of this matrix corresponds to

the number of model parameters. In this study 567 model parameters are to he

inverted. Calculataing the inverse of matrix of this size may require a

fairly large computation time. Tarantola F1AP4al suggested approximating

the inverse by aI(O<a<1), where I is the identity matrix. However, such an
M ft
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approximation is similar to the use of a large damping factor or a steepest

descent method for non-linear inverse problems. That is, the results should

be extremely stable but with a poor resolution and a slow convergence of

iterations. This may eliminate the virtue of the good sensitivity of

non-linear inverse problems. Thus, in this study we solve this symmetric

inverse matrix (I+CmFk+C-Fk)-1 for 567 model parameters directly by the

Cholesky decomposition [Lawson and Hanson, 19741 even though it involves some

computation time. This problem on the shape of the inverse matrix (or

damping factors) will be discussed further in examples below.

The choices of the data and model covariance operators are the same as

those of Tarantola [1984a]:

C,(Lg,w;rsg',w;r s) = agsegg'oss' (5.21)

and
2 (r-r')2

Cm(rsx[') _e[_- ~ (5.22)
~ (2w)1/2 a 2 a2

where ogs represents the errors in the seismogram for the g-th receiver

from the s-th source, and the errors among different seismograms are

assumed to he uncorrelated. am represents the a priori estimate of error

in the model parameters, and a is the scale length within which the model

is expected to he smooth.

The form of the model representation of the phase velocity field is one

of the important factors for good inversion results. For describing lateral

heterogeneity in surface wave phase velocities, regionalized or spherical

harmonic models have been widely employed. Since the phase velocities at the

periods in this study show a good correlation with lithospheric age [e.g.,

Forsyth, 1975), we employ a regionalized oceanic model as an initial model.

We then invert the velocity perturbations to this initial model as in the
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study by Nishimura and Forsyth r19851. In order to avoid the bias in the

modelling and to get an improved resolution, the Pacific Ocean is divided

into 567 5*x5* meshes. This modelling might he too fine for the path

coverage of the present study, but such problems are overcome by the

introduction of smoothing by the Gaussian filter in the model covariance

matrix (5.22). The representations (5.21) and (5.22) are specified tinder the

assumption that errors follow a Gaussian distribution. While the errors in

the data, ogs, can be estimated, the errors in the model parameters, am, must

be assumed a priori. We shall vary the values of am and see how the

resolution or the speed of convergence changes. The ratio of am to ags is

directly related to the resolution and the speed of convergence of the

solutions.

5.2 Data

We collected vertical component Rayleigh waves from WWSSN stations for

18 events which occurred along the margin of or within the Pacific Ocean

basin. These events were selected by the criteria that the focal

mechanisms are known from previous studies that the source process seems to

be fairly simple. Source parameters used for the inversions are listed in

Table 5.1. Since we use data on both amplitude and phase in the sense of the

single-station method (e.g., section 11.2.5 of Aki and Richards [1980]), the

accuracy of these source parameters may affect the final results of the

structure significantly. These parameters were basically determined from the

first motion polarities of P and S waves or from waveform analysis of body

waves. The mechanisms were checked against the Rayleigh wave radiation

pattern using the data collected in this study. Some of the mechanisms

(e.g., April 8, 1973) in the references are inconsistent with the surface

wave radiation patterns. In these cases, we corrected some parameters,
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especially strike and depth, to fit the surface wave data. The observed

amplitudes and phases are both strongly sensitive to source parameters for

the case in which the azimuth of a path to a station is close to the nodal

direction for surface wave radiation. We therefore eliminated data at

stations within about 10* of the nodal azimuth in order to confine our study

to fairly reliable initial phases and radiated amplitudes. Also, we used

data only from propagation paths primarily within oceanic structure and paths

with large segments within continents, or along island arcs, trenches or

continental margins were avoided. (Such data were used nonetheless for the

checks on focal mechanism.) In Table 5.2, as one example, we list the

stations which were used for each event for the inversion of 40-s Rayleigh

waves.

All the digitized seismograms were interpolated at an interval of 1 s

[Wiggins, 1976]. Each digitized time series was then fast-Fourier-

transformed and corrected for instrumental response. To reduce the effect

of scattering by fine or complex lateral heterogeneities and of noise, the

amplitude and phase spectra were smoothed by taking running averages over

three adjacent points in the frequency domain. This procedure corresponds to

filtering the data in the frequency domain with a box-car function 3Af wide

where Af is the frequency interval of the data points in each spectrum. We

then discarded portions of some spectra by inspection if the spectra were not

smooth and appeared to suffer from severe multipath effects. In some spectra

there are holes at certain frequencies hecause the comhined effect of the

focal depth and source mechanism [e.g., Tsai and Aki, 19701. The parts of

spectra near such holes were not used because they are too sensitive to the

choice of source parameters. The fluctuations in the spectra at periods less

than about 25 sec are large in most of the data and the excitation of
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Rayleigh waves of periods longer than 100 sec are weak for earthquakes of the

size used in this study. The range of periods for inversions was therefore

between 30 and 80 sec. The number of data which were used to invert for

phase velocities at each period is summarized in Table 5.3. In the appendix

are given the data used for inversions and the radiation patterns of all

earthquakes included.

The Earth model used to calculate excitation functions is model 8099 of

Dorman et al. [1960] for all of the examples in this study. We adopted a

point source approximation and the step time function approximation which is

appropriate for the sizes of the earthquakes and the frequency range of this

study. In the period range of the present study (i.e., 30-80 sec) it is

sometimes difficult to resolve the phase ambiguities by 2w in the data.

Since we used data whose propagation paths are almost purely oceanic, for

most of the cases we could trace the phase cycles after path corrections with

the simple homogeneous 8099 model (see one example of the data in

Figure 5.1). If this procedure proved difficult, we discarded such a datum.

Figure 5.2 shows the path coverage of 40-s Rayleigh waves. The paths

used for inversions at different periods are very similar. Even though some

parts of the Pacific Ocean are not well covered (e.g., east of New Zealand),

overall the number of rays scanning each model block is considered to be

sufficient. Since amplitudes depend mainly on the spatial second-derivatives

of phase velocity perpendicular to the paths, a good azimuthal coverage for

each model block is important to achieve good resolution. From this point of

view, the present azimuthal coverage of ray paths seems also to be

sufficient. The resolution and the estimation of errors in the results will

be discussed later.
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5.3 Phase Data Inversions

As discussed before, phase differences between data and synthetics for

the initial model must he quite small (less than w) to get reliable solutions

from the inversion of both phases and amplitudes. With surface waves of the

periods in the present study, such phase differences after path corrections

with the initial regionalized model are sometimes large, even for an oceanic

region (see Appendix). Therefore, in an effort to reduce these

discrepancies, a conventional inversion of phase anomalies was attempted

first. Also, this gives a good comparison of the present method with the

conventional phase delay technique.

Model parameters for the initial regionalized model are summarized in

Table 5.4 and shown in Figure 5.3. Lithospheric ages are from Sclater et al.

[19811. For the phase data inversions, phase perturbations are expressed as

I c(r)
S$ = - f Sc dr8sg r c2 (r)

(5.23)

(- r) =c (- )(n c)

where r is the great circle connecting a source (s) and a receiver (g). The

summation of the second equation represents that over blocks through which

the great circle passes, and Arj is the path fraction through the i-th model

block. Thus, the Frschet derivative is -Ari/ci, and because of the linearity

of this method we need perform the inverse calculation (5.20) only once. We

chose the smoothing scale a of model parameters in (5.22) to be 10* of arc.

This value may be reasonable from the size of heterogeneity estimated in the

next section.

The data variance a (= a2gs) and model parameter variance am2 should

be different for each datum and each model parameter. Data covariances

are determined by the quality of data (i.e., signal-to-noise ratio) and the
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uncertainty of the source parameters. For this example, we simply assumed

that errors in the data are uncorrelated and are constant. The magnitudes of

errors in surface wave phase delays over the period range of this study have

been estimated by several workers [e.g., Forsyth, 1975; Patton, 1976];

overall the errors are around 5 sec, that is, w/4 for 40-sec Rayleigh waves.

As shown in the appendix, some of the phase anomalies relative to the initial

regionalized model are larger in magnitude than this value. In the later

error analysis, we shall use a constant value of the covariance of the data,

a2*, determined from the data residuals for the inversion solution.

Model covariances were estimated a priori. One way to estimate these

values is to draw a trade-off curve in error-residual space with various

values of model covariances and pick the optimal point closest to the origin

[Backus and Gilbert, 1970]. Since this procedure takes considerable time if

we do it for each point, we assumed instead a constant value of e2 = a*2/am2

and find an appropriate value by changing e2 in the simple diagram of model

norm versus residual norm instead of following the formal Rackus-Gilbert

procedure with calculation of resolution kernels [e.g., Tanimoto, 19841.

In Figures 5.4, results for velocity perturhations from the initial

model, Sc/c, are shown with various damping factors c2. Note that the

contour interval is variable. A plot of relative residual (solution norm)

versus model norm for various e2 at each period is shown in Figure 5.5. The

smaller the damping factor, the better the resolution obtained, but because

of the inconsistencies in the present data set many unstable features are

observed in the solutions for such cases. Also, in such cases, computational

errors may he severe. (At 40 sec the residual is slightly larger in the case

of e2 = 2 x 106 than i-n that with e2 = 3 x 106). On the other hand, with a

large damping factor the results show only the gross character of the
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velocity perturbations. Recause of the small values of both solution and

model norms, the results with c2 = 2~4 x 106 are judged to be the most

appropriate. The adopted values of e2 are marked with circles in Figure 5.5.

Standard errors of residuals for both the initial model, oo, and the

inversion solution, a, are summarized in Table 5.5. Variance reductions,

(02 012)/020, for the present inversions are also given in this table. In

the initial model, standard errors are larger at shorter periods, which

implies that variations of phase velocities at shorter periods are more

significant. After phase data inversions, standard errors are almost the

same at each period. Patton F19801 summarized standard errors of phase data

inversions in the present range of periods. Our standard errors are of

similar magnitude to those of Patton for Eurasia but larger than those of

Forsyth [19751 for the Nazca plate. Since areas in this study include the

marginal seas in the western Pacific where velocities are fairly different

from the neighboring subduction zones, our results may have a larger scatter

of data residuals. Another possibility is an error of source parameters.

The inversion solutions for phase velocity variations at 30, 40, 60 and

80 s are shown in Figure 5.6. From these solutions, we see that the marginal

seas in the western Pacific are slower than in the initial model while in the

western and southern Pacific basin velocity is faster. This is reasonable

because of systematic deviations obvious in the data, such as the Samoa

event, of September 27, 1972 (see Appendix): stations to the east of the

source show positive velocity anomalies while there are negative velocity

anomalies at stations west of the source. Low velocity in the vicinity of

the Hawaiian hot spot can also he detected. However, we need to check the

reliability of such an anomaly.

To check which parts of the solution are reliable, we estimated

uncertainties of the model parameters at each point. Since the present
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procedure is a kind of damped least-square method, the standard error of the

i-th model parameter, ai, is expressed by

y2 = [Cm(I+CmF+Cg -F)-]ii (5.24)

where [Cm(I+CmF+C'-lF)-]ii is the i-th diagonal component of Cm(I+CmF+Cg-F)-l

and F is the Frechet derivative matrix given by (5.23). Data variances a#2

at each period were calculated from data residuals and are given in Table 5.5.

Figures 5.6 give the reslts at each period. With the uncertainties we can

judge whether a specific anomaly in the results is reliable or not. Compared

with Figure 5.4c, Figure 5.6b shows that most features obtained in the

inversions are smaller than the size of the uncertainties. The low velocity in

the marginal seas of the western Pacific is still clear by this measure and may

be reliable. In the Pacific plate two low velocity areas are detected at each

period: one is just southeast of the Hawaiian Islands and the other is east of

Samoa. These are considered to be related to the upward flow of hot material

beneath hot spots. The low velocity area southeast of the Hawaiian Islands

provides fairly strong evidence for the hot spot hypothesis [Morgan, 1971].

Nishimura and Forsyth [1985] pointed out two low velocity areas in the Pacific

Ocean using Love waves: one is around French Polynesia and the other is at the

Gilbert Islands. Our results contain the latter anomaly. However, the former

anomaly may be identified but is fairly obscure. There is a suggestion of a

pattern of velocity variation aligned in the WNW-ESE direction, parallel to the

motion of the Pacific plate. However, the number of collected raypaths in this

direction is greater than that near the north-south direction (see Figure 5.1),

so such a pattern may be the result of sampling bias in our inversion.

In Figure 5.7, we show the resulting laterally variable phase velocity
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at each period from the phase data inversions, that is, the initial model

(Figure 5.3) plus perturbations (Figure 5.6). Hereafter, we shall call this

phase data model "model PP". Figure 5.8 shows an example of an improvement

in the discrepancy of the phase data before and after inversion. This model

PP is a starting model for amplitude-phase inversions with ray-tracing in the

next section. We must, of course, check whether or not this model can

predict the amplitude patterns in the data.

5.4 Amplitude-phase inversions

In the previous section, we assumed that the surface waves propagate

along great circles. That is, phases are determined by the integration of

slowness along great circles and amplitudes are calculated from simple

geometrical spreading: amplitudes decay as r 1/2, where r is a travel

distance. Even in this simple example of the Pacific Ocean the obtained

'model PP' contains some amounts of lateral heterogeneity and we need to

check the validity of the above assumptions. Hereafter, we shall investigate

the phase and amplitude variations with model PP as a starting model.

At first, let us compare the results obtained via the above simple path

corrections with more rigorous corrections; i.e., using phase and amplitude

calculations for model PP by the paraxial ray approximation or the Gaussian

beams method. Also, the attenuation factor, 0, is now varied as a function

of ocean lithospheric age as shown in Table 5.4. Figure 5.9 shows one

example of ray tracing (for an event on December 6, 1965 at 40 s period), and

a comparison of the results of the simple path correction with those of the

ray-traced correction is given in Figure 5.10. We notice that in some cases

ray paths deviate significantly from great circles. In this example

amplitudes and phases at the stations in South America (azimuth 120*-180*)

are not very different from those predicted with the simple path corrections.
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However, rays to stations in the southwestern Pacific are distorted in

complicated patterns. In fact, some large anomalies in the data, especially

in the amplitude data, are observed at such stations. In the comparison of

phase residual plots in Figure 5.10, all the phases are slightly advanced in

ray-traced paths (Figure 5.10 b) compared with great circle paths. Such a

tendency is observed in most of the other data except for a few data at

stations where ray paths are strongly distorted. This is reasonable because,

according to Fermat's principle, travel times (i.e., phase delays) along the

actual ray paths are extreme and usually minimum. This result is contrary to

that of a similar travel time comparison for longer-period surface wave

models by Schwartz and Lay [1985] as discussed in Chapter 1 (Figure 1.3).

The above phase advance means that calculations in which propagations are

assumed to be along great circles may give slightly higher phase velocity

values.

Now we shall remark some methodological aspects of these calculations.

As mentioned above, we evaluated amplitudes and phases by both the paraxial

ray approximation and the Gaussian beam method. For the example of Figure

5.10, the paraxial ray approximation gave almost same values as those by the

Gaussian beam method at the stations in South America. However, at some

stations in the southwestern Pacific where rays are distorted complicatedly

the paraxial ray approximation gave inaccurate results compared to the

Gaussian beam method. Although the paraxial ray approximation requires less

computational time and do not contains some ambiguous parameters such as beam

parameters, we have to use this method with careful checks.

Before showing the results of inversions with phase and amplitude

data, let us mention the statical character of the present data set briefly

to check the applicability of the methods developed in the previous
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chapters to the present problem. The basic assumption in our methods are

use of asymptotic ray theory: the wavelength has to be shorter than the

scale of heterogeneity (2.21) and the receiver must be within the first

Fresnel zone (2.22). The unknown parameter here is the scale length of

heterogeneity. In cases where the Born approximation is valid (weakly

scattering media), Chernov [1960] gave the following formula for the

normalized autocorrelation function of heterogeneity:

N(r) = <p(r')p(r'+r)>/< 2 > = e-|Ir 2/a 2  (5.25)

= - 6v/vo and < > represents the average over the whole medium):

<| I2> _ 0 + tan-ID

<IAlnAI2> D - tan-ID

where D is called the 'wave parameter' (the ratio of the size of the first

Fresnel zone to the scale length of heterogeneity):

D _ 4L (5.27)
ka2

where L is the travel distance. The variable a, the correlation distance of

heterogeneity, may correspond to the scale of the smoothness in the model

covariance matrix (5.22). Thus, we can estimate the scale length of

heterogeneity by the variance of the phase and amplitude data. In Table 5.6,

we summarize variances of the present data set and estimated parameters from

the above formulations. The phase and amplitude variances in this table are

with respect to the path corrections calculated by the paraxial ray

approximation and the Gaussian beam method for model PP and the adopted focal

mechanism parameters described later. Even though these are not direct

measures of the data but are values after phase data inversion, they may show

the gross character of the present data.
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In Table 5.6, variances of logarithms of amplitude are much smaller than

those of phases, especially for shorter periods. The wave parameter D is

equal to or less than 1. In contrast, in the teleseismic P wave measurements

across the Montana LASA by Aki [1973] the standard deviations of phases are

comparable to those of logarithms of amplitude and wave parameters in most

cases as large as 2. This means that the medium in this study is less

heterogeneous. The obtained correlation distances in our case are about 10

degrees irrespective of periods. This implies the validity of our previous

choice of the smoothing scale length in the model covariance matrices (5.22)

as 10 degrees. The values of wave parameters and correlation distances show

that ray theory is applicable to the present data set even though for the

longer periods there may be some risks in the first Fresnel zone assumption

(2.22). More illustratively, we plot in Figure 5.11 the-locations of the

present data set in ka (wavenumber x correlation distance) versus kL

(wavenumber x travel distance), following Figure 13.11 of Aki and Richards

[1980]. This diagram shows clearly that the present problem is within the

range of ray-theoretical approach. Because the data for 80 sec surface waves

are near the border of the 'ray-theoretical approach' region, we feel that

the validity of the ray-theoretical approach to much longer period surface

waves is suspicious. For multi-orbit surface waves (e.g., R5 and R6)

ray-tracing may be meaningless. One remedy to the use of a ray-theoretical

approach in studies of longer period surface waves is to reduce the travel

distances. In the case of sharp structural transitions such as an

ocean-continent boundary, the present method may not be applied because the

correlation distance, a, is much smaller than the present case.

Back to the original problem, let us invert the velocity structure

using both amplitude and phase data with model PP as a initial model. With
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amplitude and phase calculated from ray theoretical seismograms for model PP,

systematic anomalies are detected for some events, especially in amplitude

data. Figure 5.12a shows one peculiar example for an event on September 9,

1971. In this example, amplitude anomalies at the longer periods are

systematically positive while those at the shorter periods become negative.

These kinds of anomalies are considered to be due to inadequacy of the

employed source parameters rather than to heterogeneity of the medium.

Therefore, we changed some source parameters to eliminate such systematic

anomalies. In particular, seismic moments which are important in evaluation

of amplitude anomalies, were obtained from inversion of our data for each

event. Other parameters were revised by trial-and-error searches, because

the poor azimuthal coverages for most of the events prevented us from

performing formal inversions. For example, for the event on September 9,

1971 shown in Figure 5.12a, the dip angle was reduced from 820 to 590*. The

radiation patterns and phase data for the revised source parameters in this

event are shown in Figure 5.12b. In Table 5.1, the corrected values are

given in parentheses. With these corrections, amplitude anomalies are

reduced in some case (up to 20% variance reductions in the logarithms of

amplitude) but the phase anomalies do not change much. We shall not modify

with source parameters further in this study. Detailed investigations on the

effects of errors in source parameters to the final velocity inversion

results are required in future works.

Since in the present problem the response to velocity perturbations is

non-linear, the initial or 'a priori' model plays an important role, as

emphasized by Tarantola [1984b]. We already know the gross features of

lateral heterogeneity, such as the age-dependent model. Since this initial

model is laterally heterogenous, analytical forms of Frechet derivatives
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(5.18) do not exist and we have to calculate them numerically at each model

point with ray-theoretical seismograms. Moreover, we have to recalculate

Frechet derivatives at each iteration. This process took most of the

computational time (up to 80 % of the whole calculation). For each iteration

the estimated computational time with the VAX 11/780 is about 18 hours for

the present number of model parameters and data. Figures 5.13 shows some

typical features of Frechet derivatives calculated for model PP. Unlike

derivatives (5.23) in ray theory, which are non-zero only along the ray

paths, these derivatives have finite widths on both sides of ray paths. This

is because we employed wave theory in the inversion formulation and included

the effects of finite wavelength, while ray theory assumes infinitesimal

wavelength. One important feature is that the regions of non-zero

derivatives are narrower as the period is shorter (i.e., higher frequency)

and closer to the case of ray theory. For the station-receiver pair in

Figures 5.13 a) and b), derivatives are close to the forms for the laterally

homogeneous case (e.g., see Figure 13.9 of Aki and Richards [1980] with an

opposite sign and without side lobes), and the present size of model meshes

may be sufficient, especially for the case of 80s. However, in the case of

Figures 5.13 c) and d), erratic features may be noticed: there are some

curious bumps oblique to the ray path. This may be due to the deficiency of

our model specifications. In this case the ray path is oblique to the

direction of model meshes and we cannot simulate the shape of the Frechet

derivatives well with the present mesh specification. Especially in the case

of shorter periods (i.e., shorter wavelength), we need much finer meshes to

calculate derivatives accurately. The results of inversions at 30 sec, given

below, do not appear to be as accurate as good as for other periods because

of this modelling deficiency. Due to a limit on computation time, in this
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study the adopted mesh size is effectively a lower limit.

Using these derivatives we inverted phase velocity perturbations with

the formulation (5.20). Once again, a primary problem is the choice of data

and model variances, ogs 2 and 6m2 in (5.21) and (5.22), similar to the case

of phase velocity inversions in the previous section. At first, we simply

assumed that variances (or weights in this case) of the data are constant and

used the values given in Table 5.6. The ratio of variances of logarithm of

amplitude to those of phase were thus different at different periods. The

size of variances in the travel times are basically independent of period as

shown in Table 5.5 and the phase variances, which are products of frequency

and trave time variances, are larger at the shorter periods while amplitude

variances are almost constant among different periods. Therefore, in this

study we put more weight on amplitude data at shorter periods. The choice of

model variances followed procedures similar to those we used in the phase

data inversions in the previous section: with various damping factors, that

is, ratios of data variances to model variances, we plotted model norm versus

residual norm and found a point close to the origin. For example, in Figure

5.14 we show results of inversion with one iteration at 60 sec with three

different damping factors. The effects of dampings are similar to the case

of phase data inversions in the previous section: with a bigger damping

factor, velocity perturbations are small and broad but the most reliable

features are observed, while with a small damping factor detailed features

emerge but these are erratic in some cases. The damping factor in this

section is defined as a reference of variances of logarithms of amplitude:

C2 = alnA 2 /am2 .

Figure 5.15 is a residual norm versus solution norm diagram at 60s

period, similar to Figure 5.5. Note that the residuals in this figure do not
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correspond to those for the inversion models but simply to the products of

Frechet derivatives and model perturbations because of the nonlinearity of

the present problem. In this study we chose e2 = 1.5x104 . One remark is

that we cannot compare this value to that for phase data inversions in the

previous section because we used travel time (second) as a unit of data

variance in the previous section while here the data variance is that of

logarithms of amplitude, which is non-dimensional. Similarly, we chose

values of damping factors to be 3.5x10 4 , 2.0x10 4 and 3.5x10 3 for 30, 40 and

80 sec, respectively. Because we need to repeat the above procedure and

Frechet derivatives are changed at each iteration step, it is quite difficult

to predict an optimal size of damping only by the results of the first

iteration. Observing the obtained final results, we feel that with the above

damping factors the results at 60s were slightly overdamped and those of 80s

were underdamped compared to the quality of data. Thus, in the following

results we should not pay much attention to the magnitute of perturbations

but only their pattern. Another way to estimate the optimal model variances

is the use of statistical character of the data. Following the Chernov

[1960]'s scattering theory, we can estimate the variance of model

perturbations by the variances of phase and amplitude data (5.26). At each

period, an estimated model variance is about 1.2 %, which is close to the

choice of this study.

After the first iteration, we need to shoot rays, recalculate data

residuals and evaluate Frechet derivatives for each model parameter in the

obtained perturbed model. The calculation of further perturbations was

made using the formulation (5.20). From the second iteration we need one

additional term in the right-hand side of (5.20), mk(r) - m0(r), which never

appears in linearized inverse schemes. It may be worthwhile in our problem
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to show the importance of this term.

Equation (5.20) is derived so that we are going to minimize the

following quantities at the k-th iteration:

- f(mk))+ C.-1 ($ - f(Mk) + (Mk+1 - MO)+ Cm~1 (Mk+1 - mo) (5.27)

where f(mk) is the data prediction of model mk- f is related to the Frechet

derivative as Fk = [8f/bm]mk. The first term is the L2-norm of the data

residuals weighted by the data covariance matrix Co and the second term is

L2-norm of the model perturbations from an 'a priori' model weighted by the

model covariance matrix Cm. Thus, this expression is a natural extension of

the Backus-Gilbert approach of linearizing to non-linear problems: to

overcome the non-uniqueness in geophysical problems with combining the common

sense to minimize the departure from the initial guess. However, if we use a

formulation similar to the Backus-Gilbert approach in non-linear problems at

each iteration step without the above term, we are in fact minimizing the

quantity of

(, - f(mk))+ Co-' (0 - f(mk)) + (mk+1 - mk)+ Cm~1 (mk+1 - mk) (5.28)

at the k-th step [Tarantola, 1984b]. In this case the norm of model

perturtions is measured from the model of the previous iteration, while we

measure the departure from an 'a priori' or initial model in the former case.

Thus, as iterations are repeated, models may behave freely from the 'a

priori' model in the latter case. In Figure 5.16 we show the velocity

perturbations obtained after the second iteration from the first iteration

model at 60 sec a) with and b) without the additional tern. The damping

factor is the same as in the first iteration. The additional perturbations

in Figure 5.16 b) have a pattern to the first iteration (i.e., Figure 5.14 c)
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and they give smaller data residuals. However, there are some fine-scale

troughs and peaks and if we overlapped these to the first iteration model,

the total perturbations from the initial model become chaotic. This is

because in this case we are inverting the velocity perturbations

independently at each iteration. On the other hand, with the 'total

inversion' of Tarantola and Valette [1982] the results are generally

different. For some regions the second term is dominant over the first term

(data residual parts) on the right-hand side of (5.20), and the second

velocity perturbations have a pattern opposite to that of the first

perturbations. This phenomenon can be observed well in the areas northeast

of New Zealand where there are large-amplitude and fine-scale but probably

erratic variations in the first iteration solution (Figure 5.14 c)). Such

features are suppressed by the second iteration and the total perturbations

become more reliable. If we use the 'total inversion' of Tarantola and

Valette [1982], solutions never behave chaotically from an a priori model

even in a non-linear problem. This scheme guarantees at least that the

solution is the best one around the a priori model.

Because at each iteration the departure from the a priori model depends

on the model covariance, it may be better to keep the model covariance (i.e.,

damping factor) constant to get a consistent result. In some cases a matrix

whose inverse is used in the formulation (5.20) has small eigenvalues which

give huge perturbations at several isolated model points. In order to obtain

stable calculations, we add extra damping to the diagonal components

corresponding to such points.

Figures 5.17 and 5.18 exhibit one example (at 40 s period) of iterative

procedures in this study. Figure 5.17 shows velocity perturbations from the

a priori model, that is, model PP, at each step while Figure 5.18 shows
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perturbations from the model of the previous iteration. Note that in Figure

5.18 contour line intervals become generally smaller as the number of

iterations increases. This implies that the magnitude of additional

perturbations is reduced each time and the solutions seem to converge. As

with Figure 5.16 at 60 s, in this example the small erratic perturbations are

also suppressed in the process of iteration. Figure 5.17 shows a clear view

of the process of solution convergence.

It may be difficult to decide the optimal choice of the number of

iterations. In Table 5.7, we summarized the variance reductions at each

iterative step compared with the initial model. This table also includes the

standard errors for both logarithms of amplitude and phases. At every

period, the principal variance reduction occurred at the first or second

iteration and was minor thereafter. At 30 s period the variance became

larger in the first iteration and the inversion seemed to have failed.

However, after the second iteration, the variance started to be reduced

normally. At 80 s period even the first iteration reduced the variance

greatly. In general, the variance was reduced more at longer periods. Here

we used a simple statistical estimation of the significance of variance

reductions. We compared two variances, of the starting model and of the

specific iteration, and checked whether there was a significant difference

between these two values by the F-test. In this study the number of model

parameters is difficult to be defined because we assumed the correlation

among neighboring points in the model covariance matrix (5.22). From the

correlation distance of 10 degrees in this study, we assumed that the

independent model points were about one-quarter of the 567 total model

points. Since the total data number (i.e., amplitude + phase) is about 400,

here we set the degree of freedom at about 250. In this case, to reach a 95%
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significance level, variance reduction should exceed about 20%; it should

exceed about 30% for a 99% confidence level. In our example, after three

iterations the variance reductions exceeded 95% confidence level and by the

normal statisticaT measures we judged that about 3 or 4 iterations are

sufficient.

Figure 5.19 shows the final results of amplitude-phase inversions at

each period after five iterations. At the bottom of each figure is an

estimate of uncertainty at each model point. In non-linear problems, there

is no simple way to estimate uncertainties of model parameters. For these

figures we simply use the formulation (5.24) for the estimation of

uncertainty for linear problems. Because of non-linearity, it is possibile

that some local minima are not included in the above linear estimation of

uncertainties.

Because the contour intervals are the same for the velocity perturbation

maps, it is easily seen that the magnitude of the perturbations are different

for different periods. In particular, the results at 60 s period show modest

and broad-scale perturbations while at 80 s period the perturbations are

larger and contain many shorter wavelength features. As mentioned before,

this result does not relate to a real frequency dependence of velocity

perturbations but may be caused by the different choices of damping factors:

the ratio of data covariances to model covariances. At a period of 60 s, the

selected damping factor may be larger than the optimal value, resulting in

reduced amplitudes and suppressed short wavelengths in the phase velocity

perturbations. On the other hand, at a period of 80 s the selected damping

factor may be too small, resulting in large and unrealistic perturbations.

In fact, model uncertainties at 80 s are twice as large as those at 60 s. If

we measure the size of the perturbations in units of the estimated



138

uncertainty, features in the solutions at both periods do not look as

different as shown in Figure 5.20. The size of the damping factors at 30

and 40 s may be appropriate, and we obtained fairly reliable velocity

anomalies of moderate size.

One important result may be obtained if we compare Figure 5.6 and Figure

5.20. Compared with the model uncertainties from the phase data inversions,

the amplitude-phase inversions yield smaller uncertainty values. This means

that the present inversions have better resolution. Since the uncertainty

levels shown in Figure 5.19 may be smaller than the real uncertainties,

however, this statement should be regarded with care. Aside from the local

minimum problem, we nonetheless conclude that amplitude-phase iterative

inversion gives more reliable results than conventional phase data inversion.

It is remarkable that at 80 s period the amplitude-phase inversion gives

velocity perturbations which reduce the perturbations obtained after the

previous phase data inversion. In the central Pacific Ocean, from Hawaii to

the east of New Zealand, there are east-west trending velocity anomalies in

model PP, and the present inversion yields perturbations with opposite

features. The actual phase velocity anomalies may not be as strong as the

variations in model PP; the amplitude-phase inversion apparently corrected

such errors in model PP. The present velocity anomalies patterns are

surprisingly similar to those for Love waves obtained by Nishimura and

Forsyth [1985]. Some low velocity areas correspond to hot spots, for

example, the Gilbert Islands and French Polynesia. The Hawaiian hot spot

does not appear in these results.

The final results of phase velocity inversion are summarized in Figure

5.21 at each period. At the top, we show the obtained phase velocity fields

which we shall call 'model AP', and at the bottom we show the total
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perturbations from the original age-dependent model, that is, the sum of

perturbations from the phase data inversion and the amplitude-phase

inversion. Overall, the following features are observed. The velocity of

the marginal seas-in the west Pacific Ocean is relatively low compared with

the Pacific plate, even accounting for the young seafloors age. Low velocity

areas are fairly well correlated to hot spot locations such as the Gilbert

Islands, Samoa, French Polynesia, and the Hawaiian Islands. However some

anomalous areas are not related to specific tectonic features: for example,

a low velocity area off the coast of California and a high velocity area

north of the Hawaiian Islands.

Figures 5.22 and 5.23 show some examples of improvements in the fit of

data to model predictions before and after phase velocity inversions. Figure

5.22 shows ray paths and the fit of data to predictions with model AP at 40 s

period for an event on December 6, 1965, which can be compared with the

situation before inversion in Figure 5.10. Because the velocity

perturbations are on the order of a few percent, ray paths vary only

slightly. However, in this example the locations of caustics in the western

Pacific were slightly shifted, which gave large amplitude differences at some

stations such as Riverview and Port Morseby. In comparison with Figure

5.10 b) fairly significant improvements of the fit of amplitude and phase

data are observed. Since the paths go through the fairly simple regions,

phase and amplitude perturbations are small and correlated each other at the

stations in South America. This agrees with the theory on weak heterogeneous

media by Chernov [1960]. On the other hand, amplitude data at some stations

in the southwest Pacific show the nonlinear response to model perturbations

and behave independently compared with phase data.

We show four typical examples of improvements of fittings in Figure
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5.23. In Figure 5.23 a) the scatter in the fit of amplitude data is

generally reduced, but the phase data are not greatly improved. Figure

5.23 b) is one example in which the original anomalies were small and the

final residuals are as well. Figure 5.23 c) shows a satisfactory result for

both phase and amplitude anomalies. Figure 5.23 d) is an example in which

the present inverse scheme did not work well. In this example there are

still strong amplitude anomalies at several stations after inversion. In the

last two examples there may be different causes for the amplitude anomalies.

One possibility is large anomalies in the attenuation factor "Q" along the

ray paths.

Even though there are some anomalies which could not be explained by the

present inversions, most anomalies were reduced and the fit of data to model

predictions was significantly improved. With the use of logarithms of

amplitude instead of amplitude itself, as in this study, the response of

amplitude data to velocity perturbations is not as unstable or useless as

previously expected. Up to now, most seismologists have neglected amplitude

information in studying velocity structures. This study suggests, however,

that such data have the potential to improve the resolution of heterogeneity

in the Earth, which is also independent of phase data.



Table 5.1. Source parameters of the earthquakes included in the Rayleigh wave inversions.
Parameters in brackets are revised versions used for amplitude-phase inversions.

Date Time Latitude Longitude Ms Deptha *b 6b Xb Mo x 1025 Refer-
*N *E km deg deg deg dyn.cm encesc

August 18, 1964 0445:02 -26.37 -71.78 6.2 48 235 41 92 2.6 1
December 6, 1965 1134:49 18.87 -107.18 6.0 2 112 90 178 8.5 (7.2) 2
November 12, 1967 1036:54 -17.19 -171.98 6.0 4? 215 63 120 1.6 3
January 21, 1970 1751:37 7.03 -104.24 6.8 4 332 41 106 9.5 (8.7) 4
March 19, 1970 2333:29 51.34 173.75 6.2 20 125(100) 52(60) -112 9.0 (7.3) 5
April 4, 1971 1015:37 -56.25 -1??.46 6.6 7 110 90 0 10. (9.7) 6
September 9, 1971 2301:07 44.34 150.85 5.9 15 220 8?(59) -100 1.8 (2.0) 5
,July 23, 197? 1913:09 50.10 -129.30 6.4 3 140(145) 90 180 3.5 (3.9) 7
September 27, 197? 0901:44 -16.47 -172.16 6.0 6(11) 207 65 -43 2.0 (2.7) 3
April 8, 1973 1?41:03 -15.81 167.24 6.4 20 137 57 92 5.8 (5.4) 1
April 26, 1973 ?076:?7 20.05 -155.16 5.9 41(46) 3(11) 101(106) 150 4.7 (4.3) 8
September 18, 1973 1332:5? -54.5? -13?.6? 6.4 4 113 90 0 3.0 (?.7) 6
July 3, 1974 7325:09 -?.37 -176.13 6.6 15(4) 180(?00) 40(25) -79 7.0 (3.4) 5
August 25, 1974 0118:40 3?.18 14?.37 5.6 7(11) 174(181) 37 -114 1.0 (1.2) 5
March ?, 1976 0539:36 I.96 -85.88 6.5 8(10) 199(205) 8? 181 6.2 (5.5) 4
December 20, 1976 2033:08 48.84 -129.13 6.7 3 130 90 180 10. 7
February 5, 1977 03?9:19 -66.49 -8?.45 6.2 15(10) 4 43(42) 74 3.6 (2.4) 9
October 17, 1q77 1726:40 -27.93 173.13 6.7 11 266 77 12 19. (23.) 9

a Centroid depth below seafloor

b Strike 0, dip 6 and rake A follow the definitions of Aki and Richards [1980].

c (1) Chinn and Isacks [1983]; (2) Sykes [1967]; (3) Chen and Forsyth [1978]; (4) Bergman and
Solomon [19841; (5) Forsyth [19821; (6) Stewart and Okal [1983]; (7) this study, (8) J.L.
Nabelek, personal communication [1985]; (9) Bergman [1984].

4b.



Table 5.2 Stations used for the inversions of 40-sec Rayleigh waves.

WWSSN Stations

August 18, 1964

December 6, 1965

November 12, 1967

January ?1, 1970

March q, 1970

April 4, 1971

September 9, 1971
July 23, 1972

September 27, 1972

April 8, 1q73

April ?6, 1973

September 18, 1973

July 3, 1974

August 25, 1974

March 29, 1976

December 20, 1976

February 5, 1977

October 17, 1977

AFI BKS CTA

AFI GIE HNR

ANT ARE RAG
PEL RAR

APE RHP GU1A

AFI BKS GUA

ADE ARE BHP

AFI RKS GIE

AFI CTA PAV

ALO ANT BKS
RIV TUC

ANT ARE BAG

ALO ANP ANT
RAB RAR

AFI ALO ARE

ALO ANT ARE

AFI BKS DAV

CTA HNR RAR

ADE G11A MAN

AFI RKS COL

ANP ARE HKC

GIE GUIA KIP WEL

NNA PEL PMG RAR RAR

RKS B0 COL COR CTA
RIV SHK TAI IINM
HNR MAN PEL PMG RAR

KIP LON RAR

BKS COL COR LPR LPS

GUA HNR KIP RAB

HNR PMG RAR RAR

COL COR CTA DAV GIE

RIV SOM TAI WEL

DAV GSC HKC HNR LON LPB MAT NNA

RAR RIV SBA SHK WEL

WEL

GSC HKC HNR JCT LON LPB LPS PMG

BKS BOG GIE HKC LPB MAN MAT SHK WEL

ARE BAG COL COR CTA DAV GIE GSC HKC JCT LON MAT NNA
RIV SBA SHK TUC

COL COR CTA GIE GSC LON LPB PMG RIV TUC WEL

BOG GUA LON LPB NNA 0UT SHK

GIE GIIA HKC HNR KIP MAN NNA PMG RAR TUC WEL

RIV SBA WEL

PMG RIV

LPS NNA TI1C WEL

LON LPR LPS NNA SEO SHK

Source
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Table 5.3 The number of paths used for inversions at each period.

Period (sec) Number of source-station paths

191

200

232

219



Table 5.4 Initial model for inversions

Region Phase Velocity,a Group Velocity,a Qb
km/ s km/s

Ocean age (m.y.)
Period (sec) Period (sec) Period (sec)

30 40 60 80 30 40 60 80 30 40 60 80

0 3.775 3.79 3.83 3.93 3.76 3.71 3.64 3.62 173 137 116 129
3 3.81 3.81 3.848 3.94 3.83 3.76 3.67 3.63 174 144 118 131

10 3.86 3.88 3.885 3.96 3.95 3.87 3.74 3.68 180 151 120 133
15 3.915 3.91 3.908 3.975 3.97 3.92 3.79 3.70 187 154 122 134
20 3.94 3.925 3.925 3.985 3.98 3.95 3.82 3.73 195 158 123 136
30 3.97 3.95 3.955 4.00 3.99 3.99 3.87 3.76 205 164 125 138
50 3.94 4.00 3.995 4.028 4.01 4.02 3.92 3.81 218 171 127 140
75 4.025 4.01 4.03 4.048 4.02 4.05 3.95 3.85 223 173 128 140

100 4.045 4.04 4.05 4.073 4.03 4.08 3.97 3.88 226 175 129 141
150 4.06 4.07 4.065 4.09 4.04 4.10 3.98, 3.92 227 176 130 140
200 4.07 4.09 4.08 4.10 4.05 4.11 3.99 3.95 229 177 131 140

North America 3.78 3.81 3.88 3.96 3.23 3.44 3.70 3.70 220 170 126 138
South America 3.84 3.86 3.97 4.09 3.20 3.31 3.67 3.73 220 170 126 138

Island 3.84 3.85 3.90 3.98 3.21 3.38 3.60 3.69 220 170 126 138

a) mainly after Forsyth [1975, 1977]

b) after Ben-Menahen [1965] and Canas and Mitchell [1978, 1981]
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Table 5.5 Standard errors, a, before and after

phase data inversions and variance reductions (VR).

Period (sec) 30 40 60 80

a initial 18.7 17.0 16.5 14.9
(sec)

inverted 13.8 12.'1 13.1 12.9

VR (%) 45.5 4 -rNC 36-5 24.8



Table 5.6 Data variances and related parameters

period (sec) 30 40 60 80

atnA 0.577 0.503 0.490 0.472

a* 3.10 2.14 1.47 1.23

D 0.478 0.620 0.950 1.15

k (km-l)a 0.05?5 0.03q4 0.0263 '0.019

a (krn)h 1260 1280 1270 1340

a) The adopted phase velocities are 3.99, 3.99, 3.99,
4.04 km/s for 30, 40, 60, 80 sec, respectively.

b) The travel distance, L, is chosen to he 10,000 km.

146
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Table 5.7 Standard errors of log amplitudes and phases and
variance reductions after each iteration step.

Period (sec)

30 s

40 s

60 s

80 s

'aInA ao total variance 95% confidence
reduction (%) level

initial
1st
2nd
3rd
4th

initial
1st
2nd
3rd
4th

initial
1st
2nd
3rd
4th

initial
1st
2nd
3rd
4th

0.577
0.595
0.531
0.515
0.516

0.503
0.482
0.461
0.444
0.437

0.490
0.458
0.449
0.432
0.422

0.472
0.432
0.404
0.399
0.385

3.10
2.41
2.39
2.36
2.28

2.14
1.74
1.71
1.67
1.63

1.47
1.23
1.18
1.16
1.16

1.23
0.834
0.817
0.796
0.810

-5.01
16.0
21.0
20.9

9.63
17.2
22.9
25.3

14.3
17.8
23.6
27.0

21.1
30.3
32.3
36.3
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11/12/67

LON

distance: 78.03 deg

~AAAAA AARAAIARAAAIA1IAA111AWAIIA

I min

distance:
max. amp.:

89.85 deg

1.3238 cm

AAAAAAAAAAA -AA

Figure 5.1. Two examples of seismograms for the event on November 12,
1967. a) Recorded vertical components. b) Spectra after
corrections for instrumental response and propagation effects
in the homogeneous model of 8099 FDoman et al., 1960].
Amplitudes are normalized to a distance of 90* after removing
the effects of attenuation. The spectrum at LON is smooth
between 25 and 80 sec but that at PEL has an unstable hole
around 60 sec (indicated by the arrow in the figure); this
part was discarded in further study.

max. amp.: 0.7619 cm

PEL

1 min
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65NF-

40 s

1 1OE 65W

Figure 5.2. Path coverage at 40 sec (200 paths) in the
Mercator projection.
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115E

Figure 5.3.

initial model

65W

Initial (age-dependent) model of Rayleigh wave phase
velocities at 40 sec. The contour interval is 0.05 km/s.
The solid lines correspond to high velocity regions, the
dashed lines to low velocity regions.
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Figure 5.4. Phase velocity variation maps relative to the initial model at

period 40 s with different damping factors e2: a) 107, b)

5 x 106, c) 3 x 106 and d) 2 x 106. The solid lines represent

positive perturbations while the dashed lines are negative.
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Phase Data Inversion
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Solution Norm lixil

Figure 5.5. The residual norm versus the solution norm as a function of
various damping factors e2 at each period. The adopted values
of C2 at each period are circled.
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1 sigma interval 155
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65N

0

0.05% interval

Figure 5.6. Phase velocity perturbations and estimated errors of model
parameters at a) 30s, h) 40s, c) 60s and d) 80s. The
contour interval of velocity perturbations is one sigma
(0.6~0.9%) so that the reliability of the results can be
judged easily.
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Figure 5.7.

model PP

The results of phase data inversions, "model PP", at a)
b) 40s, c) 60s, and d) 80s. The contour intervals are
0.05 km/s for 30and 40s, and 0.025 km/s for 60 and 80s.
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DATA RESIDUALS

40s

4

before inversion
- 1L - - . .-- - - - I I -. . .

180 360
azimuth deg

Figure 5.8. One example of the fit of
phase data inversion (for

phase data (a) before and (b) after
the event of November 12, 1967).
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Figure 5.9. One example of ray-tracing with model PP for an event on
December 6, 1965. Circles indicate station locations.
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Figure 5.10. Amplitude and phase fit to model PP with different path
corrections' a) Phases along great circles and amplitudes as
(distance)- with constant 0 model , and b) ray-traced path with
age-dependent Q model.
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1 10 100 1000 10000

kL (wave number x travel distance)

Figure 5.11. Classification of scattering prohlems and applicahle methods
in ka-kL diagram. Shaded areas indicate the location of surface waves
in the present study. Reproduced from Figure 13.11 of Aki and
Richards r1980].
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orgnal source parameters09/09/71
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Figure 5.12. Amplitude and phase fit to model PP by ray-traced corrections
with a) original focal mechanism and h) revised mechanism for an event

on September 9, 1971.
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Figure 5.13. Real and imaginary parts of Frechet derivatives of inversions

for some source-station pairs. Short-dashed lines are negative,

ion g-dashed zero and solid positive. Crosses indicate source

locations and circles denote stations. a) station COL and event of

April 4, 1971 on Eltanin F.Z. at periods of 30 s and b) 80 s; c)

station TIIC and event 'of April 8, 1973 in the New Hebrides at periods

of 30 s and d) 80 s.
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Figure 5.15. The residual norm versus the solution norm diagram as a
function of various damping factors, e2, at a period of 60 s in the
first iteration of amplitude-phase inversions. The adopted value was
C2 = 1.5 x 104.
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Figure 5.16. Phase velocity perturbations at the second iteration for 60 s
a) with and b) without an additional term of Tarantola and Valette

[19821. In each figure the top shows perturbations from the first

iteration model and the bottom shows those from the a priori model.
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Figure 5.18. Perturbations from the previous iteration model for 40 s.
a) Second, b) third, and c) fourth, and d) fifth iteration step.
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amp-phase inversion
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Chapter 6. Conclusions

We have developed formulations for modelling surface waveforms in a

laterally heterogeneous Earth, tested their accuracy numerically by forward

modelling, and finally applied the methods to real data with a non-linear

iterative inversion scheme. The basic ideas are based on asymptotic ray

theory, especially the Gaussian beam method, under the assumption of a

medium with slowly-varying lateral heterogeneity. These methods were

previously developed for acoustic or seismic body waves. In this study we

showed that the main philosophy in these theory can be extended to the

seismic surface wave problem by combining with normal mode theory for a

laterally homogeneous medium: wavefields close to a ray can be expressed

in terms of the paraxial ray approximation or a Gaussian beam whose basic

element is an eigenfunction of the normal mode theory, (2.60) for Love

waves and (2.66) for Rayleigh waves, respectively. For a single frequency,

surface waves propagate horizontally like two-dimensional body waves,

following the phase velocity distribution. Thus, the Gaussian beam

approach developed for body waves can be directly applied to surface waves.

Our formulations are fairly simple and give a clear understanding of the

physics involved in the Gaussian beam approach to surface wave propagation.

To obtain synthetic seismograms we have only to superpose a number of

Gaussian beams as for the case of two-dimensional acoustic waves [Cerveny

et al., 19821 or seismic body waves [Cerveny and Psencik, 1983]. The

following points should he noted because of the special characters of

surface waves:

1. Compact ray tracing equations for surface waves are derived from

the original canonical equations. In transversely isotropic media, wave
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packets propagate at the local group velocity, while ray paths are

determined by the local phase velocity.

2. Spherical Earth problems can be mapped into two-dimensional

Cartesian coordinates by a Mercator projection which includes the effect of

ellipticity.

3. Weighting factors are derived for superposing the Gaussian beams

at each station. Complete formulae are given for both Love and Rayleigh

waves for a point source specified by a moment-tensor.

4. The choice of a Gabor wavelet with large y is proposed as a source

time function, because the resulting synthetic seismograms can be compared

directly to bandpass-filtered real data with similar frequency

characteristics.

One of the greatest advantages of surface wave synthesis over body

wave synthesis by Gaussian beams is that the problem is essentially

two-dimensional for surface waves. Resolution of the depth of anomalies

may be improved by using a range of periods. Numerical tests show that

this waveform method may have the potential to detect small-scale velocity

anomalies. In constructing synthetic seismograms, the phase velocity

distribution is quite important while group velocity has only minor effects

on the results.

Finally, we performed inversions for phase velocities in the Pacific

Ocean at periods of 30-80 sec by employing both amplitude and phase

information. First, the Born approximation was adopted to obtain the

inverse formulations. We calculated Frechet derivatives by the methods

developed in the early parts of this study. Since the initial model should

he sufficiently close to the final model to avoid convergence of the

solution to a local minima, we first performed conventional phase data
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inversions. Then, with these results as an initial model, amplitude-phase

inversions were conducted. Even though most of the residual variance

reduction in phase was obtained in the phase data inversions, some

improvement in the'models, especially in matching amplitudes, was obtained

by the amplitude-phase inversions. Also, with the formulation introduced

by Tarantola and Valette [19821, we showed that the present non-linear

iterative scheme gave a fairly reliable model.

In future work we should investigate several factors which were not

carefully treated in this study. In this study we basically paid attention

to lateral heterogeneity of the medium, but we should study both medium and

source. For example, joint-inversions or alternative inversions for medium

and source are one of our ultimate goals. Moreover, we may check the

magnitude of lateral variations of attenuation factors 0 and azimuthal

anisotropy, which were totally neglected in this study. Especially, after

corrections are applied for geometrical spreading in the laterally

heterogeneous earth, measurements of Q are expected to be improved.

Finally, we need to attack one difficult problem beyond the basic

assumption of this study that the Earth is a laterally slowly-varying

medium. In some areas such an assumption is not likely to be valid. An

obvious example is an ocean-continent boundary, across which the structure

varies rapidly. The asymptotic ray theory used in this study cannot deal

with such regions. One way to study surface wave propagation through such

boundaries is to obtain transmission and reflection coefficients with

numerical procedures such as the finite-difference method. Then, we may

combine the results of asymptotic ray theory with these coefficients to

study areas with strongly heterogeneous media. For extremely complicated

media the approaches used in this study cannot be applied. Even in
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laterally homogeneous media, Chapman and Orcutt r19851 concluded that "No

one method is ideal for all problems". Nevertheless, we cannot help feeling

that the present approaches can deal with most of the surface wave

propagation problems in the Earth and promote a better understanding of

heterogeneity in the Earth and retrieval of more reliable source

information.
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APPENDIX: Pata Sets for Inversions in Chapter 5

In this appendix, all of the data used in Chapter 5 are displayed. The

basic data are vertical components of Rayleigh waves from the 18 events

listed in Table 5.1 recorded at WWSSN stations (e.g., as given in Table 5.2

for 40s). In each figure the amplitudes and initial phases at 30s, 40s, 60s

and 80s are exhibited. The azimuth is defined to be clockwise from north.

The amplitudes are normalized to a distance of 900 by removing attenuation

effects. Geometrical spreading is assumed to vary simply as (distance)-1/2.

The phase corrections are performed with the pure-path approach and a simple

age-dependent model (e.g., the model shown in Figure 5.3 for 40s). These

plots thus exhibit the fit of the data to the initial models at each period.

The source parameters used in this study are summarized in Tahle 5.1. Data

off the scales of these figures are indicated by a cross ('X'); the bulk of

the data are indicated hy a star ('*').
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