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Abstract

The capabilities of a system for storing and retrieving office style objects are described in this work.
Traditional file systems provide facilities for the storage and retrieval of objects that are created in
user programs, but the semantics of these objects are not available to the file system. Database
management systems provide a means of describing the semantics of objects using a single basic
paradigm, the record. This model is inadequate for describing the richer semantics of office objects.
An object management system combines the advantages of both a file system and a database
management system in that it can store arbitrarily defined programming language objects and at the
same time maintain a high-level description of their meaning.

This work presents a high-level model of data that can be used to describe office objects more
effectively than data processing oriented models. This model (ODM) forms the basis for our object
management system. It is shown how this model can be used to facilitate the creation of new office
application programs. A language for describing object schemas that is based on the model is
presented. The language contains constructs for conveniently describing common office modeling
situations.

A prototype system that is based on ODM is described. We discuss the techniques that were used to
implement this prototype. The use of some specialized data types (e.g., databases, derivatives) is
shown to facilitate the construction of object management system software.

We also provide a methodology for designing object schemas that match the characteristics of the
application. Also, given a textual schema, if the user requires specialized representations, there is a
procedure to determine which new operation programs must be written in order to provide an object
type with the semantics that is described in that schema. Users can choose to ignore this step and
have the system use default representations and operation programs.

Thesis Supervisor: Michael Hammer
Title: Associate Professor of Computer Science



Acknowledgments

In 1974, while I was working for a small Cambridge firm, a very lucky thing
happened; I enrolled in a seminar that was given by Prof. Michael Hammer.
During the course of this seminar, he convinced me that I should apply to the MIT
Graduate Program in Computer Science. I entered the program a few years later,
and since that time Michael Hammer has been my advisor. He has always managed
to have the confidence in me that made it possible to persevere. It is difficult to
express my gratitude and appreciation for all that he has done in helping to make
this thesis a reality. But, his contribution does not end there. He has taught me a
great deal about what it means to be a researcher, a consultant, a teacher, and a
critical thinker.

The other members of my thesis committee have also contributed to the overall
quality of this work. Irene Greif, as co-director of the Office Automation Group,
has helped to provide an intellectual environment in which the free exchange of
ideas was possible. She was also responsible for major revisions to the content and
organization of this document which have increased its overall quality. Prof. J.C.R.
Licklider read several versions of this document with such interest and curiosity that
he has provided me with enough inspiration to last for some time to come.

Marvin Sirbu, the group's other co-director, has constantly expressed interest in
the ideas that are embodied in this work. He has an incredible capacity to make
insightful comments that often spur one on to new ideas and directions.

The members of the Office Automation group have all contributed something
to my experience at MIT. Dan Carnese deserves special mention for his patient
debugging of my early ideas. His willingness to give his time to assist others as well
as his ability to make sound technical comments makes him truly a unique
individual. Sunil Sarin added insightful suggestions at many points in this research.
Richard Ilson spent many hours trying to convince me of the difficulties involved in
trying to describe formally the structure of a document.

Two former members of the group deserve special mention. Dennis McLeod's
work on the Semantic Data Model helped to solidify my ideas about data modeling
and served as a jumping off point for this research. Jay Kunin's work on an Office
Specification Language helped me to understand better what offices in general and
office automation in particular are about Dennis has become a group legend and, I
think, will always remain as such in my mind. Jay was an office mate and friend



who shared many of the same problems that I encountered from the beginning to
the end our graduate careers.

An Visiting Scientist from Italy, Andrea Aparo, has been a member of our
research group for the past year. He deserves special mention for his contribution to
the overall quality of life in the group. He has infused the second floor with a
renewed vitality and life. His dedication to quality in intellectual pursuits and
philosophical underpinnings has been an important force for keeping this research
in perspective. I think there are others in the group who would have to agree.

Other members of the Office Automation Group and the Programming
Technology Group have helped to make my stay at MIT a happy and productive
time. The particularly guilty parties include Brian Berkowitz, John Cimral, Bahram
Niamir, Larry Rosenstein, Juliet Sutherland, Tim Anderson, Dave Lebling, Stu
Galley, and Chris Reeve.

Several very special friends deserve mention. My dearest longtime friends, Ray
and Monique Magliozzi have given generously of themselves through many difficult
times. They have also provided me with an environment in which it was possible to
laugh and relax. Toby Bloom, an honorary member of the second floor crew, has
been a loyal friend through it all and has proved that other computer scientists can
share a passion for bluegrass music.

My parents have contributed a great deal to this enterprise. Their
encouragement started many years ago and has never failed. They were always
there when I needed them.

Erica Zissman has been a constant source of emotional support and caring that
has made it possible to endure the sometimes grueling parts of these last several
years. She has also made it possible to enjoy fully their successes. Her patience and
love has been very much appreciated.



Table of Contents

Chapter One: Introduction 8

1.1 Workstation Application Characteristics 9
1.2 Outline of the Thesis 11

Chapter Two: Object Management Systems 13

2.1 Comparison to Data Processing 13
2.2 Object Management Systems 16
2.3 Four Simple Scenarios 18
2.4 Brief Description of This Work 29
2.5 Relationship to Previous Work 37

Chapter Three: The Office Data Model 48

3.1 Purpose 48
3.2 ODM Fundamentals 50
3.3 The Office Data Model 53
3.4 Linguistic Concepts for ODM 80

Chapter Four: Examples of ODM Use 118

4.1 An Extended Example 118
4.2 Example Interactions 127
4.3 How to Do Some Useful Things 132
4.4 Advantages of Approach 142

Chapter Five: Architecture 148

5.1 System Architecture 148
5.2 Program Architecture 153

- Chapter Six: The Program (ENCORE) 155

6.1 Object Repositories 155
6.2 Useful Object Types 160
6.3 Classes 178
6.4 Standard DBMS Services 180



6.5 Memory Use 184

Chapter Seven: Repository Design 186

7.1 A Design Methodology 186
7.2 The Mapping Level 193

Chapter Eight: Summary and Future Directions 197

8.1 Meeting the Goals 197
8.2 Workstation Principles 201
8.3 Future Directions 202

Appendix A.: Summary of ODM Operations 207

Appendix B.: Schema Mapping Methodology 210

Appendix C.: ODM Reference Manual 213

C.1 Basic Definitions 213
C.2 Notation 216
C.3 Class Definitions 217
C.4 Aspects 218
C.5 Class Specifiers 236

Appendix D.: Formal Syntax of ODM 242

Appendix E.: Functional Object-Retrieval Language 248

E.1 Functions 248
E.2 Set formers 250
E.3 Predicate formers 252
E.4 ODM-Specific Functions 254

References 256



Table of Figures

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:

Hierarchically Structured Objects
A Linear Version Set
A Branching Version Set
An Earlier Snapshot of the Branching Version Set
Version Sets for a Hierarchical Object
Schema for the
Schema for the
Schema for the
Schema for the
Schema for the
Schema for the
Schema for the
Schema for the

Class of Reports
Class of Reports (cont.)
Final Reports Class
OAReports Class
Chapters Class
Paragraphs Class
Class of Graphs
Class of Axes

Figure 4-9: A Schema for the Class of Curves
Figure 4-10: A Schema for the Class of Points
Figure 4-11: A Schema for the Class of Users
Figure 4-12: A Simple Class Specifier
Figure 4-13: A Class Specifier
Figure 4-14: Environment for Modification Example
Figure 4-15: Final State of Conceptual Report
Figure 4-16: A View of Version Sets Provided by Subclassing
Figure 4-17: An Example of a Comment Form
Figure 4-18: Schema Fragment for Outward Appearance Example
Figure 4-19: Schema Fragment for Formatting Database Example
Figure 4-20: Schemas for the User-Profile Example
Figure 5-1: The Basic System Levels
Figure 5-2: Example Process Space
Figure 5-3: Object Mappings*

119
120
121
121
122
123
125
125
126
126
126
127
128
131
132
133
134
136
137
140
149
151
153



Chapter One

Introduction

The work that is described in this document is a part of an overall effort in

office automation. The focus of that effort is on the development of an advanced

office workstation that can support office applications. The workstation is a vehicle

for the introduction of office system technology into the office environment In

order to introduce technology into an office, we feel that it is essential to understand

first the purpose of that office within the organization. Once the mission of the

office is understood, it is then possible to apply technology to the automation of

office functions. The form of this technology is embodied in the design of an office

workstation. The design of a powerful and flexible workstation that supports an

integrated working environment is the major undercurrent of this work. We believe

that such a workstation cannot be designed without a basic understanding of office

functions and activities.

A workstation is a personal computer on which an office worker can perform

functions that are necessary to his business. Current commercial workstation design

is a quickly growing and highly competitive field. At this point, most vendors of

workstations offer systems that provide facilities for document production,

electronic mail, and some rudimentary form of database management. The ultimate

goal of this technology is to fit into an existing office environment to facilitate the

overall mission of the office.

We believe that a workstation is characterized by the functionality that it

provides to the office worker as opposed to the nature of the hardware on which it



runs. The common notion that a workstation must have a specific set of hardware

characteristics is misdirected. The functional requirements often place requirements

on the workstation hardware, but the hardware is the wrong place to start. More

importantly, the workstation must provide the kind of facilities that an office worker

needs. This set of needs will vary somewhat from office to office; however, we will

try to indicate some general functional characteristics that seem to be of general use.

One of the most important characteristics of the software environment is that it must

support highly interactive programs.

1.1 Workstation Application Characteristics

A workstation is characterized by the collection of application programs that

run on it to provide the functionality that is needed by office workers. There are

generic applications that are common to all workstations and applications that are

specially designed for a particular working environment. The specially designed

application programs often make use of the facilities provided by the generic

applications. For example, a text editor is a generic application and an admissions

processing system is a specific application that would be used by a college

admissions office. In the admissions processing system, there would be cases in

which the admissions officer would need the ability to insert a textual comment into

an applicant's record. This could be accomplished by calling on the facilities of the

text editor.

Some of the generic applications that are being included as a part of the

workstation effort of the Office Automation Group at MIT are:

1. A text editor/formatter. ETUDE is a text editing system that displays to
the user a formatted version of the current working document. It creates
this formatted text based on knowledge about the ways in which
different kinds of textual components are to be displayed. It is also



designed to be as easy to use as possible by providing users with
assistance such as help messages and clearly labeled function keys.

2. A calendar system PCAL is a system to allow a community of users the
ability to maintain personal calendars as well as common shared
calendars. A given user can have access to another users calendar for the
purpose of scheduling a meeting. Of course, interactions of this sort
must not compromise any private information that is stored in one's
calendar.

3. A graphics system. A facility for producing images on a high-resolution
display will be a part of the workstation. This will allow users to create
pictures out of shapes, lines, and text. It will also allow users to create
graphs (i.e., plots) of data points that are stored in some table or
database. The system will be able to pick default values for graph
parameters such as the spacing of the tick marks on the axes.

4. A table system. The workstation will also include a subsystem for
constructing tabular arrays of data easily. Commands will be available
for editing tables. A user will be able to move rows and columns around
within the table format. The system will also have the ability to define
rows or columns that are functionally dependent on some other row(s)
or column(s). This is similar to the popular software package,
VISICALC.

All of the applications systems that are described above are concerned with

creating and modifying different types of objects. The text editor/formatter creates

and modifies textual objects (i.e., documents). The calendar system is primarily

concerned with updating calendars. All of these applications are fundamentally

object-oriented applications in that they are concerned with the creation and update

of objects. The programs that support this class of application are basically object

.editors. This is similar to the approach taken at the University of Washington [61].

The document editor is concerned with the creation and modification of textual

objects; the graphical editor is concerned with the creation and modification of

graphical objects. All the objects that are created and manipulated by the



workstation applications should be stored and managed in a uniform way. The

object management system provides this common view of data.

1.2 Outline of the Thesis

The remainder of this document describes a project that addresses the

information management needs of an office workstation. This project has analyzed

the requirements of such a system, produced a design of a system that responds to

these requirements, and looked at a few novel techniques for implementing such a

system.

In Chapter 2 we describe how an object management system might look. We

sketch the goals of such a system and fit them into a framework of previous related

work. The character of the applications that would be handled by an object

management system is portrayed by four simple examples.

Chapter 3 is divided into two sections. The first is a summary of the key

concepts that are embodied in our object data model, ODM, and the second talks

about the linguistic structures that have have been designed to capture the features

of ODM. This chapter is not intended to include the actual syntax of the language.

That is deferred to Appendix A.

In Chapter 4, we discuss how our data model can be used to describe several

different office object types in an extended example of the use of this language in a

typical setting. The use of the object management system facilities is illustrated by

-showing how typical functions in the application environment can be accomplished.

Chapters 5 and 6 discuss issues that relate to object management system

implementations. Chapter 5 concerns the basic architecture of our object



management system. Chapter 6 describes some programming level constructs that

could be used to construct the programs that are required by the object interface.

Chapter 7 is a discussion of how one would go about designing a particular

object repository. It includes a methodology that would be used by designers, and

states the program requirements that are imposed on the system builder by an object

specification (written in the high-level language

Chapter 8 summarizes the project. It indicates how the goals that were stated in

Chapter 2 have been addressed by our design. It also indicates some directions for

future research. The appendices give summaries of the languages used in this work

including a language reference manual for ODM.



Chapter Two

Object Management Systems

2.1 Comparison to Data Processing

We feel that office applications have characteristics that distinguish them from

conventional data processing applications. We will try to understand the

peculiarities of office applications better by analyzing them in distinction to the

applications that have been addressed by traditional data processing systems.

When we use the term office applications we do not mean to imply that they are

disjoint from what are calling data processing applications. Rather, we believe that

data processing applications are a subset of office applications. The distinctions that

can be drawn between these two application types serve to delineate more clearly

the areas in which new systems techniques can make an impact.

2.1.1 Data Processing Applications

The field of data processing has been concerned with the construction of data

intensive application programs. The structure of the data in these applications

dominates the complexity of the processes. If we look at the applications that data

processing has addressed, we observe the following general characteristics:

1. They tend to be highly structured in the sense that the entire process that
is to be automated can be described in detail. The criteria on which the
decisions are based can be specified in sufficient detail such that the
decisions can be made automatically. In a payroll application, the
deduction for medical insurance can be determined by the kind of
coverage that the employee has elected and the plan that is providing the
coverage.



2. The tasks that are being automated tend to be repetitive. A payroll
program may run once a week doing the same work that was done last
week.

3. The applications are formal meaning that they tend to follow a
well-defined procedure with very few exceptions. The main-line
processing is the rule. Almost all checks cut by the payroll program
have a set of standard deductions for each employee.

4. There is a high transaction volume. The number of interactions with the
system in a given time period is large even though the types of
interaction are fairly uniform. The payroll system will cut many checks
in any large corporation, while the process involved for each check is the
same. Therefore, the efficiency of the system for processing large sets is
an important issue.

5. The data that is used in a data processing application tends to be
uniform. If we are using employee data to process the organization's
payroll, we will make use of employee records that are all very much
alike. The fields will be the same for each record, and the overall form
of the values for these fields will be very much the same.

6. Data processing applications are often characterized by their need for a
large number of objects. In order to process a report, the application
code must often iterate through very large sets of objects (e.g., the set of
all employees). The discipline of file design is largely concerned with
data structuring tricks that make these iterations more efficient. For
example, an index produces the effect of an iteration without actually
having to manifest the individual elements.

7. Data processing applications tend to have a relatively short and
predictable time frame. When a report writing application is submitted
to the batch queue for overnight processing, it is clear that the job will
run sometime during the night, require roughly five minutes of
processor time, and will be completed by the next morning.

8. There is often a well-defined locus of responsibility. Normally, a single
person (or a very small group) will have the responsibility of seeing that
a particular job is completed.



2.1.2 Office Workstation Applications

In contrast to the conventional set of data processing applications, office

applications have a somewhat different set of characteristics. As a result of these

differences, we believe that a successful object management system must be

different from the state of the art in database technology today. Some of these

distinguishing characteristics of office applications are listed below:

1. We would characterize most office procedures as semi-structured. By
this we mean that they are a combination of structured activity as
described above interleaved with unstructured activity. An unstructured
activity is one that can not be adequately described in sufficient detail to
be meaningfully automated. An example of this type of application is a
college admissions office. The processing of an application consists of
making sure that the proper forms are sent out to the appropriate parties
on time, something that can be described and, therefore, automated, and
the making of decisions such as who should interview an applicant a
process which depends on many subjective criteria and, therefore,
cannot be automated.

2. Occasional access to a small number of objects is more common in an
office than routine access to large numbers of objects as in the data
processing environment. An admissions officer will want to see the
recommendations of a particular applicant in response to some question
that has come up. It is hard to see a case in which it would be
appropriate to process all letters of recommendation at the same time in
batch mode.

3. The applications that will be run in an office on a given day are less
predictable than in a data processing environment. Ad hoc use of the
applications software is more common than use that can be planned a
priori. The admissions office typically does not know that it will need to
look at three letters of reference and four grade summaries on a given
day. Instead, an admissions officer will access this information only
when the need arises based on some unpredictable stimuli.

4. There is a much lower transaction volume in an office than in a data
processing environment, even though these office transactions are less
uniform. There may be more transaction types used in given day, but
the total volume will be lower.



5. For formatted data, there are fewer records and these records will be less
uniform than in the data processing case. For non-formatted data, there
will also be much less uniformity than one encounters in a data
processing application.

6. An office application will occur over a longer and less predictable time
frame. Consider the application of writing a final report. This can often
take a month of effort with a deadline that might slip several times.

7. There is often a more diffuse (i.e., distributed) locus of responsibility. The
people who are involved in getting a given job done will often include
many (if not all) the individuals in the office. The people whose
responsibility it is to see that the job is completed will often shift over
time.

8. The applications that are run in an office environment will have to be
specified by non-computer experts. It is not realistic to expect that
customized office applications will be created by a large centralized data
processing staff. They will, instead, be created by people within the
office.

2.2 Object Management Systems

There is a general need in the workstation environment for a tool that can assist

users in managing the large number of objects that are created in the course of daily

work. We will call this type of tool an object management system. An object

management system provides many of the facilities that are provided by a database

management system. An object management system allows users (and

programmers) to describe in high-level terms the behavior of an object. The system

would then act on these objects in such a way as to support that behavior. For

example, suppose all copies of group reports that have new chapters added to them

should be forwarded to the group's manager. An object management system could

notice when such a change has occurred and cause the appropriate forwarding

action to occur. ENCORE (Extensible and Natural Common Object REsource), the



topic of this research, is such a system. It serves as a platform for the creation of

other applications.

As a result of the application differences cited above, we feel that office object

management systems must possess characteristics that are not present or not

emphasized in database management systems of today. This does not mean that

object management systems should be a different breed of system unable to support

traditional data management chores. On the contrary, we believe that a successful

object management system must be able to support both data processing and office

applications in an integrated manner. When we speak of new feature requirements

and differences between these two application areas, we do not intend to exclude

data processing. Instead, we are pointing out a direction for this work and for future

system development. Characteristics that would be required of an office object

management system in order to fit into the office workstation environment are:

1. The object management system must be able to support the creation of
highly interactive programs. The nature of office applications is such
that the programs that implement them must interact heavily with their
users as well as with other programs in the system.

2. The object management system must be able to deal with multiple modes
of data. In the office environment, there are many different kinds of
object that must be treated in a uniform manner. Some examples of
object types that must be handled are documents, graphics, calendars,
and tables. Although one could possibly shoe-horn these data objects
into a records based system, the objects are not inherently records
oriented.

3. The system should be able to deal with non-formatted data. By this we
mean that the interpretation comes from the person using the system. In
a conventional database environment, a value of $30K might be stored
as a value of an attribute named salary, meaning that the employee's
salary is 30K dollars. The interpretation of the value was provided by
the name of the attribute to which it was attached. The value of a
paragraph component of a document is a long text string the
interpretation of this string is provided by the reader.



4. In an office environment there will be no Dalabase Adminisirator(DBA)
as there is in most large-scale databases of today. The job of organizing,
documenting, and maintaining the data must be done by the office
worker with a great deal of help from the system.

5. Since the old model of applications development by a team of highly
skilled programmers cannot apply in an environment of limited
resources, there will be a need for more application development done
by the end-user. The object management system must support the
applications development process.

6. There will be more use of data for operational decision making by the
office worker. There must be a convenient and flexible facility for the
formulation of queries that can retrieve subsets of the many kinds of
objects that will be stored on the workstation.

7. The office environment will be inherently distributed (decentralized).
Workers at different work stations will be creating objects that fit their
own model of the world. There must be a facility for coordinating their
efforts such that they can share the objects that they produce.

The office object management system will be accessible by all the subsystems.

Users of the workstation will also be presented with an object retrieval language

interface which they can use to retrieve objects that have properties of interest. The

exact form of this interface is not a part of this research. It might be very similar to

the interactive query formulation advisor that was built on top of the Semantic Data

Model [43]. Such a tool would give the user access to the object semantics

supported by the system.

2.3 Four Simple Scenarios

In order to illustrate the kinds of interactions that one can expect from an

object management system, we will present a few scenarios of use. These scenarios

are intended to illustrate the different kinds of behavior that the object management



system might exhibit. They are not intended to explain how the intended behavior

is implemented, nor are they intended to describe what a user must do in order to

achieve that behavior.

2.3.1 Document Editing Example

In this example, we will look at how an author interacts with the object

management system in the process of editing a research group's progress report.

The steps in such an interaction are outlined below:

- The first thing that must be done is to retrieve the version of the report
that the worker last saw. This reflects the state of the document at the
last meaningful point from the worker's point of view. The repository
must, therefore, have kept track of which versions of an object have
been seen by which users. This does not have to be recorded for all
objects, but may be specified for certain types of objects (e.g., objects
that several people are working on).

- The worker then inquires about what pieces of the document have
changed since this version was created. The system responds with a
listing of document component identifiers that correspond to the parts
of the document that have been edited. These identifiers have the form
Section 3 of Chapter 2.

- The worker then wants to know who changed these components, and, in
particular, were any changed by the group leader? If the group leader
made any changes, the worker is interested to see if these changes reflect
any shift in the group's public research posture.

- Now that the current state of the report has been investigated, the
worker decides to continue editing the section that describes his work.
In order to appreciate the potential impact of further changes, the
worker asks the repository what other objects are using this section or
what other objects are using paragraphs from this section? The answer is
that there are two paragraphs that are also being used in a paper that the
worker is writing for publication in a journal. It is determined that any
changes that are made to these two paragraphs in the context of the final



report should also be made in the paper as long as the basic subject of
the paragraphs does not change.

- It is noticed that there are several points in this section that have
comments from coworkers attached to them. When the user reads the
text of the section, these comments appear in the margin in italics. They
are not part of the content of the document.

- The worker then spends a few hours making many editorial changes to
this section, responding to the coworkers' comments. Some of the
responses are direct modifications to the text of the document, while
others are comments that are addressed to the author of the original
comment. This illustrates the ability to attach comments to an object
that are only visible to a specific user or class of users. At the close of
this session, a new version of the section is created.

- The worker would like to insert a figure into the section which contains a
graph that appeared in a paper from another research group. This is not
allowed because the final report was specified to contain only
components that were created by members of this group. He, therefore,
composes a message to the group leader to ask for permission to relax
this restriction.

- At this point in the session, the worker receives a message that says that
the group leader is currently looking at this section. In order to get some
immediate feedback, the worker sends a message to the group leader
that describes the changes that he is about to make. The group leader
responds positively.

-The worker has a question about the results of another research effort
that was completed last year. The answer is contained in a paper that
was written by Jones and Smith and delivered at the annual symposium
last June. A request is, therefore, formulated to find the paper written by
Jones and Smith and given at the Annual Symposium. The object
management system processes this request and produces a reference to
the correct paper. The worker reads the section of interest, includes the
answer to his question in the progress report, and places the reference to
the paper in the bibliography.

-This section is then saved in the repository. As a side effect, a new



version of the final report is created as well, since the specification of the
final report states that any changes to the constituent sections should
cause a new version of the entire report to be produced.

- Copies of the new section are sent to co-workers. The list of co-workers
of interest are defined in a database that is stored in the repository. This
database is referenced in the specification of who should get copies of
the section.

2.3.2 Planning a Seminar Series Example

In this example, a member of a research group is interested in arranging a

seminar series on the subject of office automation. It will meet on a regular basis,

perhaps once a week, and it will try to coordinate with other major events that are

happening within the organization. The organizer has never done this before and

would like to understand better how things have been done in the past.

- The worker must first find out what other seminar series have been
planned in the recent past. This is necessary to try to insure that there is
no overlap in speakers or topics. The worker asks the object
management system for seminar series that have occurred in his lab
within the last year. The system responds by saying that there were two,
one on complexity theory and an other on applications programming.
The series on applications programming sounds potentially relevant,
therefore, the worker asks for the list of speakers and their topics for that
series. The worker decides not to include any of these speakers in the
proposed series.

- The worker then needs to know what research projects are going on in
the organization that have anything to do with office automation. They
would be good sources of speakers. A query is formulated, and the
system responds with a list of people whose project has the keyword
office automation associated with it. This would be a query to the
projects database.

- The worker would, then, like to find all people who have sent us a paper
or a memo on office automation and who are located in New England.



This query would be processed by looking in the paper file database and
the author database for papers whose authors are in New England. This
is very similar to forming a relational join of two relations. The system
also holds the complete text of some papers that were either written by
people in the lab or were sent electronically to the group. For these
papers, the system looks for candidates by asking for papers that contain
the term office automation in it contents. This is an example of members
of a class (i.e., Papers) being treated in two different ways, one way for
papers whose text is on line and another way for papers that are not.

-The worker remembers seeing a paper recently that had a graph of office
workstation sales over time on the first page. He submits a request to
the system for any paper fitting this description, and the system
responds with the paper that he was thinking of. The author of this
paper would make an excellent speaker for this series.

- From the above gathered information, the worker selects a list of ten
possible speakers. A form is prepared and sent to each of the attendees
asking them to select the five speakers that they would most like to hear.
The responses from these forms are automatically collected in a
summary document containing the names of the respondents choices.

- In order to schedule this series, the worker asks the repository what
other seminar series are planned at present and when do they meet?
The list seems to indicate that Mondays at 4PM would be a good
proposed time since no other seminar series meets on Monday and the
history of seminars for this lab seems to show that the latter part of the
day is preferred.

-The worker uses the calendar subsystem to propose this time to the
other members of the research group.

2.3.3 Admissions Office Example

This example is drawn from a study [37] of the current operations at the

admissions office at MIT. It concerns the processing of undergraduate applications

by an office worker as new information is added to the applicants' files. We have



recast the example slightly under the assumption that the same functions are being

carried out on a workstation with the assistance of an object management system.

This example is less ad hoc than the other scenarios presented in this chapter. It is

an example of an application that is carried out periodically, although the

information that is processed each time can vary considerably.

-The Admissions Office worker decides that it is time to assign reviewers
to those applicants whose file is now complete. Documentation for an
application arrives slowly over some period of time, causing some
applicant's files to be completed before others. The Admissions Office
worker performs this task at regular intervals (perhaps once a week).

-The worker invokes the application program that has been created for
this purpose. It first locates the class named
Applications-in-need- of reviewers which has been predefined by the
creator of this application. This class, a subclass of the class of
Applications, contains exactly those applications that do not have
reviewers assigned to them yet, but that are in a state that can accept new
reviewers. This last condition is met if the application file is complete
(i.e., it contains all necessary support documentation) or if the two initial
reviewers ratings differ numerically by more than one. If there is such a
discrepancy in the ratings a third reviewer is assigned.

- The object management system produces the set of applications that
must be worked on, and the worker proceeds to make decisions about
which faculty or staff members would be the most appropriate to review
the applications. The facilities of the object management system are,
again, available to assist in this decision making process.

-The worker asks the object management system for the names of all
potential reviewers who have reviewed fewer than the average number
of folders. This is possible because there is a class named Reviewers that
is made up of the union of the subclass of Faculty-members called
Reviewing-faculty and the Class of Admissions-office-staff-members.

-The worker looks through this list of potential reviewers for a good
match for a given candidate. Perhaps it is desirable to have people from
New York public schools reviewed by someone who has familiarity with



that environment. This browsing might be accomplished by actually
looking at the contents of the applicants folder and the descriptions of
each potential reviewer, or it might be facilitated by producing some ad
hoc queries, for example, Get all potential reviewers who are from New
York City.

- For applicants that need an additional reviewer due to discrepancies in
the first two reviewers ratings, the Admissions Office worker might want
to read their comments in order to select the third reviewer. The object
management system would, of course, be able to manifest the first
reviewer's reports on demand.

- When the decision is made, the worker will add references to the
appropriate reviewer to the candidate's application, and refile the
application in the object management system. The act of filing the
amended application will cause a notification to be mailed to the newly
selected reviewers. They will be told of their additional responsibility
and a time by which to reply. The object management system can also
check to see if a reply is received on or before the assigned date, and if it
is not, the system can send a reminder to the reviewer.

2.3.4 Gathering Comments Example

This example is concerned with an author who would like to gather comments

from his colleagues about a paper that he is about to submit for publication. These

comments are to be collected in one central place. The author would like the

response summary to be collected automatically as opposed to having to copy (or

extract) fields from the returned messages.

- The author of the paper first gets a list of all current members of
research projects in the lab that are engaged in work on office
automation. These are the people that should submit comments.

-The author sends a message to each person on this list to ask them for
comments about the paper. The message is a form that each reviewer
fills out and returns to the object management system. The form asks
for their name, their office number, the date, and their review.



- The object management system makes the appropriate entries in a
summary database from the fields in the returned forms. The fields of
interest in the form become individual objects in the object management
system. These objects are shared by database object and the form
object. It is important to note that the form object does not disappear
after it is returned to the system. It is available for reference by the
reviewer or anyone else who has access rights for it. If the reviewer
retrieves it and changes a field, the change will be automatically
reflected in the database.

A high-level description of the objects in this example, comment forms and

comment databases, is provided in Section 4-17 starting on page 134. The details of

this language will be explained latter.

2.3.5 Object Management System Features

The examples that are presented above suggest some of the capabilities that a

user would find useful from an object management system. These features are not

adequately supported in most modern data management systems. Some of the

specific features from these scenarios that distinguish object management systems

from conventional information management systems are:

1. This data model is object-oriented as opposed to records-oriented. In a
conventional database system, the basic data structure is a record with
fixed structure and fixed length fields. This is adequate in an
environment in which the data structures are intended to capture short
descriptions of various attributes of objects in the real-world. In the
office environment, however, we are interested in dealing with classes of
objects that are actually stored entirely in the machine. A document
stored in an office database is not a description of some real-world
entity, but, rather, is an entity in its own right.

Here, we would like to support objects which can have variable
structure. For example, a document might or might not have.sections
for some of its chapters. The data model should be able to express this
directly as opposed to having a set of empty section fields for each



chapter. An object can be built out of other objects that can be of
arbitrary size and structure. In the document editing example, the
worker was able to ask questions about what pieces of the document
have changed since he last saw it. This requires that the system have
some model of what the pieces of the document are and how they can be
located.

2. The objects should allow sharing of components. It often happens that
part of one office object (e.g. a document) is another object that has
existence of its own (e.g. a graph). In fact, the graph might be
maintained by a different person than the worker who is creating and
maintaining the document. It would be convenient to have any change
to the graph object be automatically reflected in the document object.
This can be accomplished by actual sharing of the common object (i.e.
the graph) in the object management store.

In the gathering comments example, the individual comment forms and
the comment database share the object which is the text of the comment.
Changing the text of a comment via a comment form will cause the
corresponding entry in the comment database to change.

3. The office environment is characterized by continual modification of the
objects in the database. It is essential that there be a way to keep track
of the history of a given object In a conventional file system (e.g.
TOPS-20), the entire object that is being modified is copied to create a
new version. In an object management system, version control should be
done at the component level. That is, when a component of a structured
object is changed, only that component needs to be copied as long as all
objects that contain it as a component are aware of the change.

Often, an object will be modified by one or many users in several
different ways. These different candidates for the next version of an
evolving object represent a set of alternatives that are all under
consideration at the same time. They might be different alternatives to a
paper that is being co-authored by several people, or they might be
different versions of the same graph that were all produced by a single
worker. In both cases, the new set of objects are all derived from the
same original object. This is a kind of hierarchical history that is
different from the linear form of version history. Once a user has split a
version history into several alternative paths, it is often necessary to



merge these paths at some point in the future. An object management
system should give users the tools for expressing this type of object
relationship.

In the document editing example, the changes that were made by the
office worker were stored as new versions of their respective former
versions. A new version of the final report object was also generated.
Each of these new objects had the appropriate information (the person
who made the changes, the date the changes were made, etc.) stored
with it.

4. The outward appearance of an object is an object in its own right. It has
structure that is different from the structure of the object on which it is
based (i.e. the logical object). The outward appearance object (i.e. the
physical object) that corresponds to a document object would consist of
components such as pages, columns, lines, and characters. There may be
several outward appearance objects for a given logical object, one for
each output device or format. The outward appearance could provide
information to support queries based on visual cues. The user might
like to see all reports that have been produced in the last month that had
a graph in the upper right-hand corner of one of the first two pages.
This is a search through a set of outward appearance objects. A similar
kind of request was issued in the above seminar series example.

5. The office data model should provide an easy to alter schema definition.
A user who is creating a report might want to create an appendix that
has not been defined as a legitimate component for this document type.
There should be a facility for defining alternative conceptualizations for
an object type.

6. There should be a mechanism for specifying a schema for an individual
object as well as for an object type. Conventional database systems view
statement types to be uniform across all instances of a given type. We
feel that there might be a great deal of information about the meaning of
an object that is common to all objects of a given type, but that there is
also a need to be able to say things about an object that is true for a
particular object of that type. For example, a report always has chapters
as components, but the 1981 group progress report might have an extra
component that is the list of talks given in the previous year by group
members.



7. It is often useful to be able to create aggregations of arbitrary object types
in the same way that one would do with a file folder. The members of
such a collection should not have to be of a common type. Each
applicant's folder in the Admissions Office Scenario was an example of
this type of object grouping. The folders contained letters of
recommendation, application forms, and reviewers' reports.

8. One problem with unformatted data is that the interpretation of that
information is not captured in the system. An approach that seems to
have some utility in trying to capture some interpretation of the
unformatted data is to allow users to attach descriptive material to any
object. The ability to associate descriptive properties with an object is a
useful facility for all object types.

9. An area that seems to place many requirements on the data model is the
support of cooperative processing. By this we mean the coordination of a
single task by many workers, possibly centering around a set of shared
objects. An example of this type of activity would be joint document
production. Some of the facilities that would be useful for this kind of
activity are given below:

a. There should be a facility to support editorial control over the
object. That is, each person involved should be able to include
comments that are analogous to "red-marks" that one might write
in the margin of a document. There must also be a distinguishable
way to include suggestions for alternative forms of the original
material. This could appear as paraphrasings for existing
sentences or sentence fragments of the document. The Document
Editing Example showed how a worker might use comments to
drive his editing session.

b. Concurrency is an important issue in an environment in which
many people are working on the same object. Concurrency should
be supported at the component level. If one person is changing a
paragraph, others should be prohibited from changing it. Several
people, however, could be attaching comments to a paragraph at
the same time. The object management system should support the
definition of what activities can proceed in parallel and what
effects users should see when parallel activities occur. At one
point in the document editing example, the worker received a



message telling him that the group leader was looking at the
section that was being edited. This type of notification of
interactions that are in progress is an example of one of the ways
that some kinds of concurrent activity should be handled.

c. In the process of joint authorship, workers would at times require
their own private copies of an object. They could then work on
this copy independently of the others and, at some time in the
future, could publish their version back into the main stream. This
process could require facilities for merging changes from each of
the competing alternatives.

10. The user interface to an object management system must be simple, easy
to learn, and readily applicable. The data model that is presented to the
user must be free of computer-oriented complexities. The data models
and their associated data manipulation languages that modern database
systems are based on are too formal and unnatural.

11. The object management system should support active objects, objects
that notice when something important has happened and that respond to
that occurrence by performing a specified action. For example, when an
object of a given type is modified in a particular way, a message should
be sent to the custodian of that particular object instance. This facility is
very useful to organize the process of alerting users of the state of the
office data.

When the admissions office worker filed the amended application in the
repository, the new set of reviewers were automatically sent messages
informing them of their appointment. This is an example of an active
object.

2.4 Brief Description of This Work

This work is concerned with the design of a system that can store and manage

the kinds of objects that one produces on an object workstation. The main theme of



such a system is the intelligent management of archival objects*. We believe that

some of the techniques that are being developed will be applicable outside the area

of office applications* and programming environments), but the primary examples

that have driven the design have been drawn from the office domain. The ultimate

measure of its success will come from two sources. The first is the degree to which it

proves useful to the designers of workstation programs, and the other is the degree

to which it assists the user of these programs to manage the ways in which they think

about and organize the objects they need.

The workstation environment is characterized by continual change. This

change manifests itself by the refinement of workstation objects by an office worker.

An object will be created on one day, and modified possibly by a different person on

the next. The progression of changes from an initial version of an object to some

later version represents an evolution from one state to another. The object

management system provides a means for describing these states and the

relationships between them.

In traditional database management systems, users are interested in maintaining

statements about objects in the applications domain. Most database management

systems model objects as a record. A record is a set of statements about an object in

the real world. An employee record contains statements about a particular

employee. That employee is identified by some unique identifier that is stored in

the record. An example of a statement represented by a typical employee record is

Employee number 02358 has a salary of $20K. In this example the employee is

*An archival object is one that persists from session to session.

*These techniques can be applied to general design environments. An office is an example of a
design environment in which the object that is being designed might be a report or a graph; other
examples include computer-aided design (CAD



certainly not stored in the system. Instead, a set of statements become a shadow of

the state of that employee. Most current database management technology is

concerned with methods for managing records (i.e., sets of statements).

We believe that there are fundamental differences between the kinds of systems

that will adequately support office applications and the records based systems used

in data processing today. However, we feel that database techniques can be used

quite heavily by the system as an implementation base. We also feel that much of

the traditional "database viewpoint" has influenced the direction of this work.

In distinction to current database management systems, we are interested in a

system that will store the actual objects of interest. In our view, the system must be

able to handle the actual object, not merely a set of statements about it. For

example, our system will be able to store a report object which has been created by

some application program. There is no report object outside of the machine for

which our object is a surrogate. All the information that is necessary to generate the

report is available in the system. This is very much akin to a file system. However,

the system that we are proposing will be able to express much richer object

semantics than a typical file system. It will combine the object storage facilities of a

file system with the data modeling facilities of a database management system. The

object management system will not only store objects, but it will also contain a large

amount of information about the objects that it is storing. This will allow the system

to participate in the management activities associated with these objects.

In records-oiiented data management systems, the identity of an object is coded

into the data itself. This is done by designating some field or set of fields as the key.

The key field(s) must be unique across the set of records of a given record type.

This insures that there is one record that stands for each external object that is of

interest to the application. Modifying the key field of a record modifies the



correspondence between the the application object and the assertions that are

represented by the rest of the record. An object management system should not

require that the objects that it stores contain unique identifiers, since the system is

handling the actual object. When an object is presented to the system, it generates a

unique identifier that is invisible to the user. There is no way for a user to change

the identity of an object by modifying its key field. An object's identity cannot

change as a side effect of modifying its contents. Altering the contents of an object

creates an entirely different object that has separate identity from the original object.

The definition of the objects that are being stored cannot be predicted by the

object management system. New object types are often defined by the applications

programs. A graphics system may define some new data types that represent

different kinds of images (e.g., pie charts, bar graphs). The semantics of these new

object types must be provided in a declarative fashion to the object management

system by the application designer. The design of the object management system

should facilitate this process.

2.4.1 Goals of an Object Management System

The purpose of this work is to develop models for describing the semantics of

office objects and for specifying the ways in which they should behave. The ideas

that are generated by this work will be captured in the design of a particular object

management system that we shall call ENCORE. This system must be constructed

in such a way as to be efficient and to have an easily understandable and modular

structure. The facilities of our object management system should address the

following areas:

1. Handle different kinds of data. An office is characterized by the diversity
of information that must be managed. Workers routinely deal with
reports, memos, graphs of past performance, and accounting records in



order to perform a single task or make a single decision. An object
management system must provide a single mechanism for handling all
the different office information resources. This mechanism must treat
all objects in a uniform manner so that they can be used together
effectively. Such a tool will make a big contribution toward the creation
of integrated office systems.

2. Support incremental and segmented development. By incremental
development, we mean that the collection of objects that make up the
general information resource are not designed at a single time. This is
not the case when one designs a database for a large corporate
application. The database administrator (DBA) and his staff create an
overall schema that should not change (at least for some time to come).
In an office environment, we expect that new object types will be
needed and designed on an ad hoc basis. Our object management
system must be able to support the distribution of design over time.

Segmented development is the design of new object object types by
different people. The notion of a centralized development team is not
appropriate for the office setting. An object management system must
be able to allow different people to add new object types without
interfering with existing objects. Here the design is distributed across
people.

3. Support Application Development. Users of an office workstation will
need to create applications systems that support the activities and needs
of their specific tasks. A college admissions office will need programs
that will assist them in evaluating an applicant's qualifications based on
the available information.

a. Specification of Classes of Objects. An object management
system, much like a database management system, provides a
means for describing the properties of objects such that they can
be used for retrieval later. In a database management system,
users are often interested in performing retrievals such as Get all
employees who make more than $30K. In an object management

. system, a user might ask for all reports that are longer than 20
pages and that have been written by people who make more than
$30K. Being able to specify the objects of interest is one of the
most common parts of most office applications.



Users should have an easy to use and powerful language for
describing precisely the collections of objects that are of interest to
them. These descriptions should make use of a uniform interface
to potentially dissimilar object types. They will be used in many
different contexts within the object management system for
making statements to the system about how a set of objects is to be
treated. One might wish to specify that reports created by a
member of the office automation group can only be read by other
members of the office automation group. The specification reports
created by members of the office automation group is an example of
an interesting collection of objects.

b. Perform object maintenance. The object management system itself
can have responsibility for performing many of the functions that

. might otherwise be considered part of an application program.
Examples of this type of assistance include alerting a user to new
changes in objects and the automatic maintenance of certain
properties of objects as they are created and changed (e.g., the date
of a change or the person making the change).

4. Manage an environment characterized by change. It is a general
philosophical theme of this work that an object management system
must have features that make it easier for a user to deal with change.
The workstation environment is characterized by the constant
production of new objects and by the evolution of the state of these
objects. The system design should reflect this fact by providing specific
facilities for automatically managing object change.

a. Side effects to change. There must be a way to describe what
actions are to be taken when some change occurs. To this end, we
will need a means for describing side effects on the state of the
system that should occur whenever certain operations are invoked.

b. History of change. The system should be able to automatically
record and deal with the history of an object, including the
alternative formulations of a change that a single user or multiple
users may wish to propose.

5. Control of the use of objects. A workstation is an environment in which
many different objects are being used by many different people, all of



whom have different requirements. The management of the large
collections of objects can be a formidable task. We believe that one way
in which the object management system can help is by enforcing
constraints on how objects are to be used.

a. Policies Toward Objects. Many different object types are created
in an office to communicate ideas to co-workers, clients,
consumers, etc. In order to communicate effectively, numerous
conventions are often necessary to facilitate efficiency. An
organization often wants to preserve some consistency in the form
of their internal as well as external documents. An object
management system should make it easy to set and abide by
policies concerning objects. It should also make it easy to deviate
from certain policies when this is appropriate.

b. Object structure specification. It is desirable to have a mechanism
for describing the structure of the objects that are being managed
by the object management system. A report might be described as
containing a set of chapters, a set of appendices, and a
bibliography. The object management system should also be able
to access any of these object components. If a user stores a report,
for example, the system should be able to retrieve at some later
time any one of its chapters or its bibliography.

The system would also accept descriptions of the objects that can
appear as legal components of another object.. These object
construction constraints would define how an object can be
assembled. For example, one could specify that a group project
report can only contain chapters that have been written by
members of the research group.

c. Object control. Object control is concerned with controlling the
ways in which an object is used, including who is allowed to
perform actions on objects and how concurrent action is to be
managed. We feel that the user should have easy to use facilities
for specifying these usage constraints. The way in which these
constraints are specified for a particular object can be viewed as
another kind of attribute that should be available for object
retrieval. That is, one might want to see all reports that can have
any of their pieces modified by members of the office automation
group.



One common type of constraint is the classical restriction on who
has read or write access to a given object or set of objects. These
security constraints are normally enforced by the system in order
to guard against malicious behavior. They are also useful for that
reason here; however, we feel that they are useful beyond that in
the office environment. They can be used as additional
information for managing objects. For example, knowledge about
the office automation memos that can be released to the rest of the
community can be used in making a decision about how a
proposal should be written.

6. Flexible implementation choices. The system must not constrain the
choice of implementation for system builders. The programmers who
are responsible for a subsystem such as ETUDE will not accept the
default implementations of the object management system as a
constraint on their design. They should be able to select whatever data
structures best suit their purpose and still be able to have their objects
available to users of the object management system. On the other hand,
the system should be able to pick reasonable default implementations
for casual users.

7. Office object semantics. The system should be able to capture directly
and naturally the kinds of information that occurs frequently in an office
environment.

a. Object hierarchies. Office objects are, in general, built up from
other objects. A report might be a set of chapters, a set of
appendices, and a bibliography. The object management system
should be able to express this information and be able to
incorporate it into all other aspects of its functionality.

b. Alternative views of an object. There should be a way to describe
the construction of different objects based on the same underlying
information base. An example of a different view of an object is
the outward appearance of a document. Different outward
appearances can be computed based on the ultimate output

. device. Changing the logical document changes the outward
appearance.

8. Relationships among objects. The object management system will store



many objects of many different types. It is essential that the system have
a means for expressing arbitrary relationships among objects. A given
paper might be related to some meeting object that represents a time
when the authors will get together to discuss its content.

There is also a need to be able to describe certain predefined
relationships for which the system has built in primitive operations. An
example of such a relationship is latest-version-of which expresses the
fact that one object is the latest version of some other object.

9. Effective memory utilization. Another important function that an object
management system should perform is the management of the way in
which large objects are read into main memory. Since the system will
have access to a large amount of information about the semantics of an
object, we expect that it can do a good job of retrieving those pieces of a
large object that are most likely to be needed.

10. Generalized information about object types. There should be a way to
describe general information about an object type. An example, is the
formatting rules that are used by the document formatting program.
This information is associated with an object type, and is probably only
useful to a small number (i.e., in most cases one) of programs.

We will return to these goals in the last chapter of this document. The bulk of

what follows is intended to give the reader an understanding of the approach to the

problem of object management system construction taken by this work. At the end,

we will show how this approach addresses these goals.

2.5 Relationship to Previous Work

Although we feel that our conceptualization of object management systems is

significantly different from other work, there are some areas of current research that

are related. We will describe briefly the similarities and the differences below.



2.5.1 Traditional Database Management

Traditional database management systems are those systems that are

commercially available to run on most modern computer systems. They usually

embody one of the major data models that take a view of data as graphs or relations.

Examples of some of these systems include IMS (IBM), IDMS (Cullinane, Inc.),

Total (Cincom, Inc.), System 2000 (Intel, Inc.), and Model 204 (CCA, Inc.).

Traditional database management has produced a technology of records

processing. The fundamental data structure provided by a DBMS is the record. A

record is a set of short, formatted, fields. This structure is adequate for most data

processing applications that have been encountered to date. For the problem of

supporting a payroll application, modeling an employee as a record containing his

name, social security number, salary, and job title is very reasonable. Some of the

characteristics of these applications that spawned this technology have been listed in

a previous section. However, if the application is document production, the use of

records as the fundamental data structuring tool presents serious limitations.

The records-based systems have achieved a high degree of commercial success

over the last decade. The primary reasons for this success are:

1. Improved applications development. The most important factor in the
success of modern DBMS's is the fact that they have made it much
easier for applications programmers to produce and maintain
applications code. By providing a high-level description of data
semantics, one could write code that used more abstract notions to
describe the required data operations.,,

2. Data independence. Another important reason that DBMS's have
continued to grow in popularity is that the enforced use of a higher level
of description created applications programs that were independent of
the underlying file structures. Tuning the file structures to better
accommodate database usage patterns required no change to the
applications code.



3. Better control over data. Database systems provide the facilities to
control the use of a shared data resource by multiple concurrent users.
It controlled which operations could be performed on a datum by a
given user. It controlled the order in which programs could operate on
data items such that no unexpected results could be obtained. The
DBMS contains these facilities and provides a set of guarantees about
the way in which users are allowed to access the data. The application
programs were not required to address these concerns.

These general success factors should be retained in object management system

designs. They should be used as guidelines that can be used to judge our overall

efforts.

Despite the above listed advantages, there are several reasons why a

conventional DBMS is inappropriate for dealing with the kinds of objects that we

encounter in an office applications environment. These disadvantages for

conventional DBMS in the office environment are summarized below:

1. Wrong level of abstraction. Arbitrarily defined programming language
objects and record structures are difficult to maintain in any sort of
integrated manner. Statements that describe the properties of an object
must be mixed with the components of an object. There is no easy way
for the system to distinguish the attributes of an object from the pieces
of the object itself. There is no way to express directly the kind of
information that is required in the effective management of office
objects.

4 2. Inflexible data structuring facilities. In many systems, the size of a field
is restricted to some unreasonably small length. Also, the data type of
the field is limited to a small set of choices (e.g., integer or string). The
mechanisms for expressing data relationships is also extremely limited.

3. No concept of the whole object. If the object is stored in different
records, one for each component, there is no way for the system to know
about the extent of the object. The system would have no concept of
what pieces would have to be retrieved in order to produce a whole
object (e.g., a report).



4. No simple way to restructure complex objects. The structures that were
chosen by the database designer as a representation of the application
are relatively frozen. New object structures and relationships cannot be
defined dynamically. In an office environment, we would like to be able
to look at various pieces of an information base in many different and
unpredictable ways.

2.5.2 The Semantic Data Model

The Semantic Data Model (SDM) of Hammer and McLeod [31] was designed

as a more expressive alternative to the major data models that are in current use (i.e.,

hierarchical, network, relational, and entity-relationship). The SDM views a

database as a collection of entities that are organized into classes. Entities

correspond to the relevant abstract objects of the application, and classes correspond

to relevant collections of these objects. Classes can be related by inter-class

connections, and entities can be related by means of attributes.

One feature that distinguishes the SDM from other data models is that a given

entity can belong to many classes. This is a reaction to the observation that it is

often useful to describe a given object in many different ways. Another

distinguishing feature is the rich facility for describing derived data. Also, the

built-in constructs for describing high-level application semantics such as events is

something that other data models do not address.

The direction that was started with the SDM for data processing style databases

has been continued in this work for office style databases. There are many aspects

of our office data model that resemble the SDM. This is not accidental. The

facilities of the SDM have been extended and augmented, however, in order to

encompass the type of object semantics that occur in office applications.



2.5.3 Office Information Systems

Current office systems products that are primarily designed around word

processing facilities contain only rudimentary versions of information management.

The documents that are produced by the word processor must be stored on some

permanent medium, usually some form of hard or floppy disk. Most systems

provide a means of storing each document as a single unit with some unique name.

This is much the same as the file system component of current operating systems.

No structure is imposed on these documents making it very difficult for a user to

maintain effective control over their use.

Newer products allow the creation of hierarchical directory structures in which

each user can have his own directory that is further subdivided into subdirectories,

one for each topic of interest, for example. Access to an individual file is achieved

by specifying a path from the root of the file directory and including the sequence of

directories that are needed. Other systems provide a limited database capability

here by allowing access to the directory by means of properties of the entries. An

example of this is accessing the files by the "name of the creator" or by the "date last

processed". The kinds of information that are available for a given set of files is very

limited and is fixed by the implementation of the system.

The other capability that is provided by current office information systems is

essentially a records processing tool that is usually much the same as primitive file

management packages that have been available as support for current data

processing applications. The system supports the creation of a file of records each of

.which contains a particular set of fields. The fields can contain numbers or short

text strings. These systems usually supply some sort of retrieval language for

selecting a subset of the records that match some retrieval predicate. These

languages are usually based on the select/sort/print model of queries. That is, a set



of records is selected by sequentially searching the file, the resulting set is sorted by

some sort criterion, and the result is printed on some output device.

In summary, then, the information management capabilities that are included

in most current office system products are simple-minded imitations of the

technologies that existed in data processing systems. The documents that are

produced by the word processing system are stored in the filing system and

records-oriented data is stored in the database or file management system. The

integration of these two types of data is very difficult. Our research in object

management systems is intended to provide more powerful tools that can model

office objects more directly in terms that reflect the underlying needs of office work.

We are also interested in improving on the ability to integrate a large variety of

different types of data.

2.5.4 PIE

The PIE system [22], developed at XEROX PARC, provides an environment

for creating a network of nodes that each represent some entity of interest. The

network structure indicates relationships between these entities. The original

motivation for developing PIE was based on a desire to manage alternative designs

for Smalltalk programs. PIE is implemented in Smalltalk and shares much of the

Smalltalk design philosophy as well as techniques that are a part of knowledge

representation languages like KRL [8].

PIE is primarily a programming environment. It does have a particular view of

objects, but that view is not designed to support office functions. It does, however,

support the process of incremental design (specifically for programs). PIE provides

a mechanism for recording the history of object changes. This is achieved by

defining two concepts, contexts and layers. A context is structured as a sequence of



layers, and a layer is a tagged environment in which new values can be assigned to

state variables or, in Smalltalk terminology, instance variables. An instance variable

can, therefore, have a sequence of values that reflects the state of that variable over

the course of the object's evolution. This version history is locked into a given

context for an object. Several contexts cannot share the same collection of layers. In

our work, a collection of object changes is an object just like any other object and

can, therefore, be referenced from arbitrary places.

There is no way to control the way in which additions to a layer will propagate

into other objects. For example, if we change a chapter in a report object, there is

no way to conveniently cause a new report object that reflects this change to be

produced.

PIE also adopts the concept of object classes from Smalltalk. It extends that

notion to include such things as multiple inheritance. It's class mechanism differs

from the class mechanism of our object management system in several important

ways. Most importantly, the class mechanism that we will present allows classes to

change their membership as the properties of their constituents changes. In PIE

(and Smalltalk) once an object is created as a member of a given class, it always

remains an instance of that class. Class membership in our object management

system depends on current properties of objects.

2.5.5 Object Filing Systems

The area of object-oriented filing systems has been explored by several research

efforts in the field of operating systems. Some of the more prominent research

systems are HydFa [68], CAP [67], iMAX [48], and Swallow [52]. These systems

represent somewhat different approaches, but they all are concerned with various

aspects of the problem of building operating system facilities that go beyond the

normal conceptualization of file systems.



HYDRA's main goal is to provide the kernel facilities for constructing

operating systems, including object-oriented filing systems. This kernel should

provide a protection mechanism for controlling access to a shared object resource.

Both HYDRA and CAP are similar in that their approach to protection is via a

capability approach. A capability is a reference to an object in the file system that

carries with it a set of access rights. An access right is the privilege to apply a

specific set of operations to an object of a given type. In HYDRA, capabilities can

be passed to other programs by means of a kernel mediated call mechanism. The

kernel checks to see if the the type of the actual parameters match the parameter

types expected by the called procedure. It also checks the rights of the actual

parameters against the rights associated with the corresponding parameter slot in the

called procedure. The fights contained in the actual parameter capability must

include the rights for that parameter that are specified in the called procedure. If

either of these conditions is violated, the call is not allowed.

HYDRA views objects as instances of user defined abstract data types much

like those that are definable in a modern programming language like CLU [39].

Beyond this, there is no prescriptive model of data imposed by the system. Our

object management system presents a particular view of data that we believe fits the

needs of office applications. This view of data relies on the ability to store networks

of related objects in the file system but goes further in its addressing of office

information needs.

Our approach to protection is also, somewhat different. Rather than a

capability based approach, we have adopted an approach in which all information

about which users (or programs) can apply which operations to an object is

contained within the object itself. This type of information is stored in a database

that is associated with the object and that is accessed each time any access operation

for the object is invoked. The access code for each object type, must enforce the



protection constraints. We assume that there is a mechanism for dealing with the

problem of authenticating the identity of a user (e.g. passwords).

2.5.6 OBE

OBE (Office Procedures by Example) [74] is a two-dimensional programming

language that is designed for non-programmers who wish to specify their

applications interactively. It presents a user interface that is an extension of the

authors previous work on QBE (Query by Example) [71]. OBE combines the

database query aspects of QBE with a simple mechanism for specifying triggers and

object distribution (i.e., electronic mail). It also has a facility for specifying an object

or set of objects as a view of some database query. For example, a set of form letters

could be viewed as a textual template with the names and locations of each recipient

extracted from a database and inserted in the right slots. The emphasis here is on

user interfaces; whereas, our research centers more on capabilities of an object

management system and techniques for building such a system.

This approach is very useful for the specification of simple applications. We

expect that a facility such as OBE could be built on top of the kind of object

management system that we are proposing, although an object management system

should also support the construction of more complex applications such as a text

eqitor or a calendar management system. It is not clear that the tabular paradigm

used in OBE (and relational systems in general) is flexible enough to support

completely the rich set of applications that one encounters in an office.

2.5.7 Electronic filing cabinets

Some researchers have seen the problem of office data management as

replacing conventional filing mechanisms (i.e., filing cabinets) with an electronic



counterpart. A typical enhancement to paper storage devices is the ability to locate

a document on the basis of its containing a particular word or words. A simple

variation of this is the use of user assigned keywords. This is an outgrowth of the

field of information retrieval systems [58] that has grown up in the library

environment. For document retrieval in a library, this technology has proven to be

very useful. It often revolves around the idea of supporting a user's search for

documents that are relevant to a user's imprecise model of his interests. Many of

these systems make use of the user's previous responses and complex probabilistic

models to decide which documents to show next.

We feel that this kind of ability would also be useful in an office environment.

However, we also feel that it is only a small part of the picture. The information

retrieval model uses a model of documents that essentially views them as long

strings of tokens. A document can display certain patterns in these strings of tokens

(e.g., contains a specific word), but there is no way to express any of the additional

semantics that we have for office objects. A report can have a date on which it is

due, and it can be made up of chapters. Each of these chapters may have its own

author and a sequence of previous versions that led to the current version. This

additional semantics can also be used for object retrieval and is essential for

managing the tasks that must be performed with these objects.

An example of such a text retrieval system is the NDX-100 Electronic Filing

Machine [62]. It is a physically separate piece of hardware that literally takes the

place of a filing cabinet. One stores documents into it and retrieves them by partial

text matching. It uses a surrogation indexing technique that achieves very rapid

response time without devoting huge amounts of space to the storage of indices.

This technique works very well for documents that are one to two pages in length.

These algorithms would be useful in many text retrieval contexts, and we expect that

they could be used to support such a feature, if one decided to build that feature

into an object management system.



Another example of an electronic filing cabinet style system is BUSINESS [45].

This system not only mimics the standard filing cabinet paradigm, but also

embodies a specific model of an entire office. This system has primitive objects

such as desks, bulletin boards, waste baskets, desk calendars, and office aides. Its

primary goal is to present a programming environment that is easy to use by being

familiar to its users. It is not clear that the office model that is integrally a part of

this system is the correct model for all offices. This system provides a particular

interface to a particular set of office objects. If this proves to be a satisfactory

interface, an object management system could provide a suitable platform for

building it.



Chapter Three

The Office Data Model

A central focus of this work has been to develop a single object specification

language for describing the kinds of objects that one is likely to encounter in an

office application. This language is based on a model of data that encapsulates our

theory of how office objects are used. The features of this model of data delimit the

functional boundaries of our object management system.

This chapter describes our basic view of data that we will call the Office Data

Model (i.e., ODM). To this end, we begin with a discussion of the philosophy upon

which the design of the ODM is based. This will be followed by two main sections.

The first will discuss the ODM in detail including a description of the fundamental

object types and the operations that one can perform on them. The second section

will contain a description of the linguistic features of the object specification

language. The language supports the basic notions of the data model as well as

including constructs that make the data model more convenient to use. In both

sections, the basic principles of the design are discussed in some detail. The detailed

syntax of the language is deferred to Appendix A, an ODM Reference Manual.

3.1 Purpose

The object management system is designed to store and manage objects of

many different types in an integrated fashion. The system puts no restriction on the

underlying implementation of these objects. In this regard it is much like a file

system. On the other hand, most file systems do not have the ability to capture any



interesting semantics about the objects that they are storing. We would like our

object management system to be able to provide the semantics that are necessary to

support the intelligent management of these objects. To this end, it is much like a

modern database system. One of the purposes of an object management system is to

marry these two technologies such that users can store objects with arbitrary

representations and at the same time be able to represent high-level semantics about

these objects.

An object definition language is a mechanism for describing the semantics of a

broad class of objects in a uniform manner. Each object type is described by a

specification in an object schema. The total collection of objects managed by the

system will be called the repository and the collection of all object schemas for each

object type in the system will be called the repository schema. The repository

schema gives a user a uniform view of the total information resource that the system

makes available to applications.

Currently, the different software packages that make up an office automation

system or an office workstation produce objects of many different types. The

systems for storing the objects that are created by these systems have great difficulty

in providing uniform access to the total collection of objects. The primary purpose

of a data model such as ODM is to create a uniform environment for the

management of many different object types. Each object type is described using the

constructs of ODM. A user may, then, use the facilities of the data manipulation

language to access any of the objects. At the highest level, the same basic structures

are used to describe both reports and graphs. Therefore, accessing reports and

graphs will involve the same set of primitives.



3.2 ODM Fundamentals

Our approach to object management takes a view that considers data to be

central and processes to be secondary. This is similar to the view held by modern

database management systems. One of the triumphs of the modern database

approach is the elevation of data to the status of an organizational resource. Data is

recognized as having existence apart from any single application program that might

make use of it. We feel that the same advantages can be achieved in the office

environment by taking a data-oriented view of object description.

Once we have a uniform access language for the objects in our application

domain, we can construct application programs that are based on these objects.

These applications embody the required processes.

3.2.1 Premises

In this section, we will describe the premises that underlie this work. We

believe that an understanding of these premises is essential in order to appreciate

the rest of the work.

Our first premise is that office applications are fundamentally object-oriented.

Office objects are required to support the completion of office tasks that are

responsive to the overall function or mission of the office. The objects that are

found in offices today (e.g., forms) are a particular manifestation of a system that

addresses the function of the office; they,are not the only such objects. These

objects are only artifacts of the current way of doing things. They could easily

change, and, in fact, might be expected to change if we introduce a new technology

base. But whatever the current wisdom on how office work should be organized, we

believe that there will be a set of objects that are needed to support the applications

in a given environment



A second premise is that office applications require integrated access to a wide

variety of objects. It is not sufficient to access objects of only a single type within an

application program. If we look at current office operations, it is common to see

people using multiple information sources. A worker might have several pertinent

reports, a few graphs of business performance, and some catalogues from parts

suppliers spread out on his desk all at the same time. A fundamental part of the task

at hand is to locate the appropriate information and summarize it or move it into

some working document

Many current office systems tend to be low-level and isolated. Each application

program creates data files that are not easily accessible to other applications. Each

application is responsible for its own data. There is no view of this data beyond the

application at hand. We believe that this leads to a situation in which it is

impossible to exploit the potential benefits of computerized office systems.

Our third premise is that the objects that exist in an office environment have

structure. Even though objects like reports and graphs do not fit into the

records-oriented mold of traditional data management systems, there is,

nonetheless, some structure that can be exploited by an object management system

and by applications programs in general. The design of ODM has been driven by a

desire to provide a tool for capturing that structure.

A A

The final premise is that there is much commonality among the different object

types that one encounters in an office workstation environment. It is possible to use

the same basic modelling mechanisms for describing objects from different

applications. We do not believe that one must invent new modelling primitives in

order to accommodate each new style of object that must be handled by the system.



3.2.2 Office Application Style

One of the primary goals of an object management system should be to support

the creation of new application programs. In order to do this, we must understand

the nature of these applications.

It is our contention that many office applications are inherently interactive.

This is a direct result of the fact that these applications are not highly structured as

are data processing applications. That is, it is impossible to generate a formal

procedure that will perform the task. Instead, the user must intervene at various

points in the processing to make decisions about what should happen next. Office

applications require human judgment for their successful completion.

Does this mean that the machine cannot be of help in performing office tasks?

We believe that the answer to this question is that it can. Office applications tend to

be semi-structured in that there are parts of the task that can be completely

described and parts that cannot. The computer can perform that part of the

application that is formalizable, leaving the other parts for the user.

We feel that the basic paradigm for an office application is an alternation

between these structured and unstructured parts. The computer performs some

work, and then the user makes some decisions and perhaps issues some further

instructions. At this point the machine performs some more work, and the cycle

repeats. To the extent that the machine can present the user with exactly the

information that is required to make a decision, the more helpful it is toward

accomplishing the overall goal.

The primary- focus for the structured parts of an application, then, is the

retrieval of the objects that are most useful at that particular point in the process.

Finding too many objects floods the user with unnecessary detail and obfuscates



what is really going on. Insufficient information could lead the user to make an

incorrect decision based on erroneous assumptions caused by the inability to see

critical information sources. This observation relates to two key measures of success

in the field of Information Retrieval (i.e., bibliographic search) [58]. These two

measures are recall, the percentage of all existing relevant objects that are retrieved,

and precision, the percentage of the objects that are retrieved that are relevant. The

role of an object management system is to allow someone who is building an

application to describe as precisely as possible the set of objects that are required at

each potential branch in the application code. The system provides an easy to use

mechanism for describing the objects of interest in terms of the rich semantics that

are recorded in the object repository.

The object management system returns a set of objects to the application. The

user looks through these objects and selects the ones of interest or performs some

operations on a subset of the objects. For example, the user might look at the

content of each object in a set of objects returned by the system and mail copies of

interesting objects or sections of interesting objects to a colleague.

3.3 The Office Data Model

We will now present our model of data. This includes the basic modelling

primitives and the operations that can be performed on them. The data model

expresses our view of how data should be structured. It is distinct from the language

that we use to describe objects. The language is treated in a later section of this

chapter.



3.3.1 Simple Objects

An object is a package of information that is treated as a conceptual unit. It

typically has some set of programming language level operations that can be

performed on it. This corresponds to the CLU [40] notion of a cluster or the ADA

[50] notion of a package. An object has some abstract significance to users of the

system; it is something of interest to the application. It can belong to one of the

following two categories:

1. External objects. An external object is an abstract object in the
repository that describes an object in the real world. An external object
is a shadow of some object that is external to the computer system. In
order to achieve the mapping between the external object and the
abstraction of the object that is stored in the machine, one invents a
symbol (a unique identifier or key) that stands for the real object.
Modern database systems deal with external objects.

2. Internal objects. An internal object is an object that exists within the
computer system. For example, a report is created and manipulated by
the document editor and stored in the repository. The report is defined
by the computer system. Any printed copies are merely outward
appearances of the internal report and serve as a shadow of the object
that resides within the machine. An internal object stands for itself.

Although these two categories are not primitive, this distinction will manifest itself

in the object modeling primitives that the object management system supports.

An object is divided into two distinct parts, its content and its attributes. The

content relates to that portion of the object that gives it its identity, and the

attributes describe various aspects of the object. This distinction is not drawn at a

primitive level in other data management systems. We believe that it is very

important in the office domain. The next few paragraphs will present some

intuition about this distinction. A more detailed discussion will follow in a

subsequent section.



Each major object type (e.g., documents, graphs, and tables) that is dealt with

on the workstation has an editor associated with it. The editor is a program (or

subsystem) that allows a user to create and modify instances of the associated type.

Many of the subsystems of a workstation can be viewed as editors [61]. We can

begin to get an intuitive feel for the notion of content if we begin to think of the

content of an object as that portion of the object that is manipulated by its editor.

The content of a document is the information that appears on the screen when one

invokes the text editor (e.g., EMACS) on that document. For a document, it is the

chapters, sections, and paragraphs that one normally thinks of as the content. For a

graph, it might be the starting and ending values for the tick marks on the axes or

the points that are included in the plot. This is only an approximation, but it begins

to give us the flavor of the content.

Objects can contain other objects. The content of an object describes this

containment relationship. It is common for a given object to be built out of a

collection of other objects, which leads to a hierarchical view of objects. The

content is made up of a set of named components. Each component can be a single

object or a set of objects.

Objects also allow for the sharing of other objects. Two or more objects can

both have some other repository object as a shared component. For example, two

report objects can incorporate the same chapter object as a component of each. In

this way, changes to the shared object will be reflected in the content of all objects

that are sharing it.

Figure 3-1 depicts several structured objects. One of them has 01 as its root

object and 02 and 03 as its direct components. 02 and 03, in turn, contain objects

04, 05, 06, and 07 as components. The lines in this diagram -represent the

containment relationship. That is, 01 contains 02 and 03. Each of these seven



objects are distinct repository objects. Object 08 is sharing 03 with 01. Any

changes to 03, 06, or 07 will be seen from 01 and 03.

01 08
/ \ /

02 03
/I\ / \

04 05 06 07

Figure 3-1:Hierarchically Structured Objects

An object can also have an arbitrary number of attributes, as well as its content.

An attribute makes a statement about the object. Its value has nothing to do with

the essence of the object (as does the content), but rather it records some

observation about it. An example of an attribute of a report is Author-of This

attribute has a value that is the person who has written the report. This is merely an

assertion about something that is true about the report.

We make the distinction between three basic types of object. They are:

1. A primitive object, a sting or a number. These are the most basic data
types in the system. Other objects are built out of groupings of primitive
objects.

2. A simple object, an object whose state is not dependent on time. An
operation on a simple object does not have time as a parameter. A
simple object is built out of primitive objects and other simple objects.
The objects that we have been describing in this section so far are simple
objects.

3. A conceptual object, an object whose state is dependent on time. An
operation on a conceptual object does have time as a parameter.

The following section will look at this later type of object in more detail.



3.3.2 Conceptual Objects

A conceptual object changes over time and keeps track of its previous states. It

is a collection of simple objects that represents the version history of some evolving

entity. This thesis is a conceptual object. Thinking of it evokes memories of

countless previous versions all of which were an instantiation of the concept of this

thesis. Each new version of the thesis was derived from a previous one. The

collection of these versions makes up a single entity that I label with the single

name, My-thesis. The name My-thesis refers to the concept of my thesis, (a concept

that has had many instantiations) and this is how we arrived at the name, conceptual

object.

An office environment is characterized by continual change. The process of

producing objects such as reports, graphical displays, memos, and slides for a talk all

involve the evolution of objects from some early state to a state that is considered to

be more appropriate for meeting the worker's ultimate goals. If one is producing

slides for a talk, several versions are produced, each one, perhaps, being clearer in its

organization than its predecessor.

The conceptual object is a response to an application environments that are

characterized by change. They provide the primitives that are needed to capture the

history of objects that evolve over time. It provides a place to attach information

,that concerns the evolving entity as opposed to information about the individual

versions.

-3.3.2.1 Linear Version Sets

The simplest form of version is a linear time-history. We will call this type of

version set a linear version set. In this case, the version set is a sequence of simple

objects whose order represents the order in which these versions were created in



time. Each version except the latest one has exactly one successor, and each version

except the first one has exactly one predecessor. A simple linear version set is shown

in figure 3-2. Each of the Vi's represents a different version object. The double

dashed line represents a link from a version on its left to that version's successor on

the right.

Vi -- V2 -- V3 -- V4 -- V5

Figure 3-2:A Linear Version Set

This particular version set contains five versions. New versions can be added at

the right-hand end only. That is, the add-new-version operation applied to this

version set and a new primitive object, V6, will make V6 the successor of V5. The

operation latest-version applied to any version set will always produce the right-most

version. In this case, it would return V5.

3.3.2.2 Branching Version Sets

Version sets can be much more complicated than a simple linear history of

versions. Often, several new versions will be proposed as alternatives to some one

existing version of an object. They can, therefore, incorporate a notion of

branching. In other words, the successor of a given object can be a set of objects. In

any environment in which many people are working on the creation of the same set

of objects, it is often necessary to maintain several competing versions at the same

point in time. Each of the authors of a final report will have their private temporary

versions of the report. At some point in the future, all competing versions could be

merged into a single document that is accepted for publication. This happens after a

decision is made about the nature of the final product. This decision can be made

by a single individual or a group of individuals. Our system makes no judgment

about how the merging decision should be made. The system should, however, be

able to support whatever policy the producer(s) of the object deem appropriate.
58



For object management purposes, it is necessary to support all intermediate

versions in their proper relationship to each other. Figure 3-3 shows an example of

a version set that manifests branching behavior. We shall call any such version set a

branching version set.

V8

V4 --V6 V1O
/ \ / \

V1 -- V2 -- V3 V9 Vi2

V5 -- V7 -- V11

Figure 3-3:A Branching Version Set

In this example, two versions, V4 and V5, are both derived from the same

predecessor, V3. After this split, these two versions have independently evolving

version histories until they are recombined into the single version, V12. V4 is

followed by V6 which again splits into V8 and V9 and is recombined into V1O.

As this example illustrates, there are times when an application of the

latest-version operation on a branching version set will produce more than a single

primitive object. Consider the state of the version set in figure 3-4. This is a

possible previous state for the version set in the figure 3-3.

V8

V4 -- v6

Vi,-- V2 -- V3. V9

V5 -- V7

Figure 3-4:An Earlier Snapshot of the Branching Version Set

An application of the latest-version operation for this version set will produce the set

of simple objects, {V7, V8, V9}. All three of these objects are currently active

candidates for the role of latest-version. In order to add a new version to this



version set, one must identify which of the three current alternatives it is a new

version of. For example, if VS is the name of the version set in figure 3-4, then

Add-new-version (VS, V10, V7) would add V10 tas the successor of V7 (as in figure

3-3). In the simple linear case, the third argument to Add-new-version is optional,

and it is assumed that the new version is to be added to the end of the list.

3.3.2.3 Version Set Operations

In summary, the basic operations that can be performed on the version set of a

conceptual object are:

1. Create-Version-Set: -> Version-set
This causes the creation of a new version set object. Initially, this
version set is empty.

2. Add version: Version-set X Simple Object X [Set] -> Version-set
This adds the given object to a given version set. The third argument is
optional (and, therefore, enclosed in brackets). It indicates which
objects of the version set are to be the predecessors of the given object.
All members of this set must be members of the set of latest versions of
the given version set. If the version set is a linear version set, this
argument is unnecessary since there can be one and only one latest
version.

3. Latest-version: Linear-version-set -> Simple-Object
Latest-version: Branching-version-set -> Set.
This operation selects those versions from the version set that are the
latest versions. They are the versions for which there is no successor. If
the version set is linear, there is only a single latest version, and,
therefore, this function returns that object. If, however, it is a branching
version set, the function returns the set of objects that are the latest
versions.

4. Delete version: Version-set X Simple-Object -> Version-set.
This causes the given object to be removed from the given version set.
The result is the old version set with the given object missing. Etracting
the object does not cause the remaining objects to be renumbered. In
this way, the fact that there were once versions there has been retained.



5. Iterate-over-versions: Version set X function.
This operation will cause the given function to be applied to each of the
members of the given version set. The function is applied in the
time-history order of the versions in a linear version set. In a branching
version set, the function f is applied to the versions in an order such that
if f is applied to vi, then all f must have been applied to all predecessors
of vi.

All of these operations are available for conceptual objects, and they all manipulate

the version history part of conceptual objects.

3.3.3 The Repository

The repository is the place in which objects are stored archivally. An object that

has been stored in the repository will not disappear between sessions. The

repository is logically partitioned into two pieces:

1. The immutable repository. Information in this repository cannot be
changed. The only operations that can be performed on these objects is
read and delete. Two read operations on a given piece of information
occurring at different times will always produce the same result if the
object has not been deleted.

2. The mutable repository. Information in this repository. can change in
place. That is, it is possible to modify objects in the mutable repository
such that two read operations on a given piece of information occurring
at different times can possibly produce different results.

We will see that it is possible for certain parts of an object to be in the mutable

repository while other parts are in the immutable repository. The data model

enforces the read-only discipline of the immutable repository.

A repository object is any object that has been stored in the repository. The set

of all repository objects is the set of all things that the object management system

knows about and can manage intelligently. The mechanism provided by the object



management system is only available to repository objects. For example, the only

objects that will be remembered from session to session are repository objects.

How does an object get to be a repository object? In the course of running

application programs, objects of many different types will be created. These objects

initially exist within the address space of the program. They can be operated on by

other programs, but they are not as yet repository objects. In order for them to

attain this status they must be explicitly inserted in the repository by some program.

The successful insertion of an object into the repository will be called committing

the object. The operation of committing an object to the repository is analogous to

writing an object to a conventional file system. Once it has been committed, any

facilities that have been defined to the object management system for objects of its

type are automatically made available.

Each repository object has a unique identifier called a repository key associated

with it. This repository key is created whenever an object is commited to the

repository. When this repository key is presented to the access level routines of the

object management system, it is always guaranteed to return either the same object

that was stored under it or else some indication that the object has been deleted.

There are four basic operations that can be performed on the repository that

involve simple objects. All of these operations except the second one have a side

effect on the state of the repository. They are:

1. Store-object: Repository X Object -> (Repository, Repository-Key)
This operation changes the state of the repository to include the given
object. A unique identifier (i.e., a repository-key) is also returned. We
will say the the object was stored under that key.

2. Retrieve-object: Repository X Repository-Key -> Object
This operation returns the object that was stored in the repository under
the given repository key. If the object has been deleted, the operation
returns an indication to this effect (e.g., false).
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3. Delete object: Repository X Repository-Key -> Repository
This operation changes the state of the repository such that it no longer
includes the object that corresponds to the given repository key. The
key, however, will not be reassigned. This means that one can never get
an unexpected value as a result for a retrieve-object operation.

4. Modify object: Mutable-Repository X Repository-Key X Object ->

Mutable-Repository
This operation can only be performed on the mutable repository. It
takes an object and an existing unique identifier and alters the state of
the mutable repository such that the given new object is associated with
the given repository key. The object that used to be associated with that
unique identifier is forgotten.

These operations can also have side-effects. For example, the operation

Store-Object has the side effect of adding the given object to some predefined

collections (i.e., Classes. See Section 3.3.7). The side efects will vary depending on

the type of the object involved. The side effects of adding a report will be different

from the side effects of adding a graph. A report will be placed in the report class

while a graph will be placed in the graph class.

3.3.4 References

By making an object into a repository object, one copies it into a shared

memory space. Users and programs can access this memory in a controlled way.

The basic mechanism for referring to a repository object or a set of repository

objects is called a reference.

In general, a repository object will contain other repository objects as

components. These inter-object connections are made via a reference. A reference

is an expression that when evaluated will produce some repository object or set of

repository objects. We will call this object or set of objects the referent of the

reference. Retrieving a structured object consists of retrieving the root of that object



and then retrieving each of its components by evaluating the corresponding

references. This process can be repeated for the components of each of the

components, and so forth, until the entire object has been retrieved.

The basic operations for a reference are as follows:

1. Create-Reference: Type X Definition -> Reference.
This operation creates a new reference. The referent can be known, as
in the case of a static reference, or it can change over time, as in the case
of a dynamic reference. The type of a reference identifies how the
definition is to be evaluated. The definition is some expression, which
when evaluated, will produce the proper object or set of objects.

2. Evaluate-Reference: Reference -> Object or Set of Objects.
The method for evaluating a reference depends on the type of that
reference. When a reference is evaluated, the proper method is used to
produce the desired referent.

An example of a reference is a latest version reference. This reference points to

the latest version of some version set. Let us call the type of this reference

latest-version. The definition of this -reference is the repository key, K1, that

corresponds to the version set for conceptual object C from which we are extracting

the latest version. Applying the operation Create-Reference (Latest-Version, K1)

will produce a reference that will always yield the latest version of C.

3.3.5 Object Content

The content of simple repository objects is immutable in that it can never

change. In other words, the content of an object is read-only. The content of a

simple object is written once and accessed many times in the future. The content,

therefore, must bd a part of the immutable repository.

We view the content of an object as that information which defines it. The



content plays a role much like the logical key in conventional database systems.

Changing the content of an object is viewed as creating a new object. This new

object is, to be sure, related to the old object from which it was derived, but it is

really a different object with separate identity. The way in which we reflect changes

to the content is by making an addition of the new object to the version set of the

conceptual object.

The defining nature of the content requires that it be used in the equality

testing operations. They are:

1. =Test?: Object X Object -> {True, False}*
This operation returns true if the the two objects have the same content.
The =Test? operation for each of the corresponding components of the
two objects must also produce true. The two objects must have the same
form.

2. = Test?: Object X Object -> {True, False}**
This operation returns true if the content of the two objects are in fact
the same physical object. That is, the content of the two objects must
have the same repository key.

Notice that these operations apply only to the content. The attributes of the objects

can be different and the objects can still be the same.

The content is made up of a set of named components. A component must be a

reference, a set of references, or a primitive type (i.e., a string, a number, or a

sequence of bits): Each component can have any of the following characteristics:

1. Editable or uneditable. If a component is editable, then there exist
abstract operations that can change the value of that component. The
object management system need not know what these operations are. It

*This is like EQUAL in LISP.

**This is like EQ in LISP



is sufficient to know that they exist. If a component is uneditable, then
its value can never change. The most common use for this characteristic
is for a content that is acting as a logical database key.

2. Single-valued or Set-valued. A component can be either single-valued or
set valued. If it is single valued, there can be only one object that is the
value of that component. If it is set-valued, there can be many.

3. Ordered or unordered. A component that is specified as set-valued can be
further specified to be ordered or unordered. If the set is ordered, it is
possible to deterministicly iterate through the members of the set. The
default value for this property is unordered.

4. Non-empty or Possibly-empty. A component can be declared to be
non-empty which means that there must be a value assigned to that
component. The default for a component is possibly-empty which means
that it is possible to have no assigned value for that component.

All of these characteristics have implications for the operations that are available for

objects of the given type.

The operations that are available for the content of a simple object are given

below:

1. Create-Repository-Object: Repository X Object -> Repository
This operation is not the create operation that would be a part of the
abstract data type semantics for the given object type. It is an operation
that is invoked in order to include a new object in the repository. It
creates a new repository with the given object as a member. If the object
type is not known to the repository or if it violates some basic constraint,
the operation fails.

If there are no components in the content that have the editable
characteristic, this operation will add a simple object to the repository.
In this case, the content would contain a symbol that stands for some
external object. If there is at least one editable component, this
operation will add a new conceptual object.

2. Iterate-Over-Components: Object X Function.



This operation causes the given function to be applied to each of the
components of the given object

3. Get-Component: Object -> Object
If the component is single-valued, this operation is available to get the
value of that component.

4. Iterate-Over-Component: Object X Function
If the component is set-valued, this operation will apply the given
function to each of the members of the set of component objects.

5. Get-Component-n: Object X Integer -> Object or a Set of Objects
It the component is set-valued and ordered, this additional operation is
available to get the component that is occupying the nth position in this
ordered set. If n is greater that the total number of components in the
set or if it is less than one, the operation fails.

There are also operations that are analogous to the last three operations that deal

with references to components instead of the components themselves. They are

Get-Reference, Iterate-Over-References, Get-Reference-n. They simply do the same

thing that the analogous operation does except with the reference that is standing for

the actual component; whereas, the previous operations automatically evaluated

these references. Both types of operation are useful. One often needs to get the

reference in order to process the definition. For example, we might want to have

access to a conceptual object from which the latest version is being drawn.

It should be noticed that there are no value-setting operations provided for the

content of an object. This is a direct result of our assumption that the content is

read-only. This is also in distinction to attributes as we will see in the next section.

3.3.6 Object Attributes

As we have indicated above, the content of an object is that portion of the

object information structure from which the object derives its identity. In contrast



to this, it is often useful to record additional information about an object. This

information can be conceptualized as a set of statements. Each statement

summarizes some property of an object. These statements do not define the object;

they merely record observations about it. As we shall see, these observations can be

made by users of the system, or they can be derived by the system itself.

An object of some type can have an arbitrarily large set of attributes. All

attributes have a name that is unique within the set of attributes for a given object

type. The name identifies the attribute for the purposes of applying attribute--

oriented operations. An attribute can additionally have any of the following

characteristics:

1. Settable or Derived. A settable attribute can be directly set to a value by
a user of the system. The value of a derived attribute is computed by a
procedure that uses some other information in the repository.

2. Set-Valued or Single-Valued. When one applies the get operation to a
set-valued attribute, the result is a set of values. This also requires that
there exist a set operation that will add a new member value to a set
valued attribute. A single-valued attribute can only have one value.
This means that the set operation for this type of attribute can only
replace the old value with a new value.

3. Ordered or Unordered. This characteristic only applies to set valued
attributes. An ordered attribute requires that there be a well-defined
total order on the members of the set. If an attribute is unordered, no
such order exists.

4. Mutable or Immutable. A mutable attribute can be changed. If it has a
value at some point in time, the execution of a set operation will change
the old value to the given new value. If an attribute is immutable, it can
only be set once (i.e., initialized). Once it has been set, that value will
remain in force as long as.the object exists.

An attribute that is settable has a value of null until it is set to a value. Null is a



distinguished value for an attribute that indicates that the attribute is defined for the

object at hand, but that it has not as yet received a value. A settable attribute must

receive its value from a user of the system. There is no way in which the system can

determine its value. An example for a report is the attribute due-date. In general,

there is no way in which the system can determine when the report is due. Only the

user can indicate this information.

3.3.6.1 Derived Attributes

A derived attribute is one whose value depends on some other information in

the repository. It is an expression of some inter-relationship between two or more

pieces of data. A derived attribute cannot be set to a value since its value is always

dependent on the value of some other piece of data. This correspondence is

enforced by a program. ODM allows for the use of an arbitrary program to derive

the value of an attribute.

Derived attributes have appeared in other contexts [31]; however, they are

especially important in the object management system environment. This is a direct

result of the observation that actual objects can be stored in the machine. Therefore,

it is often the case that some observations about an object can be made by some

program that takes the content of the object as an argument. For example, a graph

object might have an attribute called number- of- curves whose value is an integer that

expresses at any point in time the number of curves that appear in that graph. The

number of curves in a graph can be derived from the data structure for a graph by a

program that simply counts the number of curves that are represented.



3.3.6.2 Attribute Operations

Since there can be many different attributes, one must be able to iterate over all

possible attributes for a given object. The following operation provides that

capability:

- Iterate-Over-Attributes: Object X Function.
This operation applies the given function to each of the existing
attributes of the object

If an attribute is set-valued, the following two operations are available for that

attribute (they are a convenience, since iteration operations are already provided for

all sets):

1. Iterate-Over-Values: Object X Function.

2. Iterate-Over-References: Object X Function

These operations apply the given function to each of the members of the set of

objects that are the value of the attribute for the given object. The side effects of

these iterations are the side effects that are the side effects of the given function.

For each attribute of an object, there are operations that will get the value of

that attribute. These operations are of the following form:

1. Get-Attribute: Object -> Object.
This operation returns the value of an attribute. The function name
used above is the name of an operation for a generic attribute. In
reality, there would be a function like this for each attribute. Therefore,
we would get functions like, Get-Report-Chapters which returns the set
of chapters from a report.

2. Get-Reference: Object -> Reference
This operation is very nuch like the above operation except that it
returns the imbedded reference or set of references.

For example, a report that has a bibliography as a component has a corresponding



operation called Get-Report-Bibliography that will get the value of the bibliography

component for a given report. The Get-Reference operation is available for cases in

which one needs to process the actual reference. One might, for example, need to

know what type of reference is contained in a certain component or, in the case of a

latest-version reference, from which conceptual object the latest version is being

extracted.

If the attribute is set-valued and ordered, we provide the following operations

for convenience:

1. Get-Attribute-n: Object X Integer -> Object
This operation returns the nth component of a set-valued attribute. It
automatically dereferences the references that stand for the components.

2. Get-Reference-n: Object X Integer -> Reference
This operation returns the nth reference to a component of a set-valued
attribute.

Attributes that are not derived are settable. A user settable attribute is one

whose value must be supplied by a user of the system. An example, is the attribute

due-date for a report. In general, there is no way in which the system can determine

when the report is due. Only the user can indicate this. A settable attribute must

have an accompanying operation for assigning values to it. These value-setting

operations are very parallel in form to the get operations that were described above.

They are:

1. Set-Attribute: Object X Object -> Object
This sets an attribute of a given object to be the other given object A
static reference is constructed and used to accomplish this mapping.

2. Set-Reference: Object X Reference -> Object
This sets a component of the given object to be the given reference.

3. Set-Attribute-n: Object X Integer X Object -> Object



This operation and the next are provided for convenience. This one sets
the nth member of a set-valued attribute to the given object.

4. Set-Reference-n: Object X Integer X Reference -> Object
This operation sets the nth member of a set valued attribute to be the
given reference.

Notice that operations like these are not available for the components that make up

an objects content. For immutable attributes, these operations will only succeed if

the current value of the attribute is null.

3.3.6.3 Parameterized Attributes

Object attributes are functions that map the given object into some other set of

values. These functions are of a single argument, the object itself. We also allow

attributes to be parameterized. A parameterized attribute takes one or more

additional argument and maps the cross product of these arguments and the object

itself into the set of domain values. This is a generalization of the simple attribute.

A simple attribute is a function of a single parameter, the object itself, while a

parameterized-attribute is a function of the object itself as well as its additional

parameters.

An example of a derived parameterized attribute is Contains- Word (word) of a

paragraph. The argument word is a text string that is supplied to the attribute

function in order to compute the value of the attribute as one of true or false. The

value of the attribute is true if the given paragraph contains the given word and false

otherwise. The attribute function would be a function of two arguments, the

specific paragraph of which we seek the attribute value and a specific word.

Another example of a parameterized attribute is the attribute outward-appearance

which takes a single parameter, the name of an output device. We would, then,

have different values for outward-appearance ("dover'), outward-appearance

("line-printer') and so forth.

-- l-



Parameterized attributes require that the argument lists for all attribute

operations be extended to include the additional parameters. An example of an

extended operation to handle a parameterized attribute is:
Get-Attribute: Object X Param, X ... X Param2 -> Object

The other attribute operations can be extended in a similar way.

3.3.7 Classes

Objects are organized into classes. A class is a named collection of objects that

share some semantic properties (e.g., the class of Reports, the class of chapters

written last Tuesday). A repository is organized as a collection of classes. A given

object can be a member of many classes. The objects that make up a class are its

members. A given member of a class will be referred to as an instance of that class.

A class can be either a base class or a non-base class. Base classes are defined

independently of other classes in the repository. Non-base classes are defined in

terms of base classes or other non-base classes. Non-base classes are related to other

classes by interclass connections. The set of all classes and the interconnections

between them will be called the class graph. A non-base class can be either:

1. Permanent. A permanent class is defined by an object schema (see
section 3.4.1 on page 80. The collection of objects that is defined by the
schema is always available within the repository.

2. Temporary. A temporary class is defined by an expression such that the
members of the class will be manifested when the expression is
evaluated. There is no guarantee that this class will be maintained by the
system. The class will not appear in the class graph. It can be used,
however, in all contexts in which a permanent class name is appropriate.

Whenever a new repository object is created, it must be explicitly inserted into one

of the existing base classes. A side effect of this insertion might be' that the new

object will also be inserted into other non-base classes by the system. Also, once an



object is a member of a base class, it remains a member of that base class until it is

explicitly removed. The membership of certain non-base classes can change as the

properties of its members change. The user is does not have to be aware of this

shifting membership until he inspects the content of the non-base class. The system

makes sure that the proper class insertions and deletions are made for these

non-base classes.

The most fundamental operations for classes are the following:

1. Create-Class: Repository X Base-Class-Schema -> Repository.
This operation takes a schema* for a base class and adds that class to the
repository. The class is initially empty.

2. Delete-Class: Repository X Schema -> Repository.
This operation causes the given class to be deleted from the repository.
If the class is a base class, all its members are deleted as well. For any
class, the classes that are dependent on the given class (via interclass
connections) are also deleted.

3. Modify-Class: Repository X Schema X Class -> Repository.
This operation causes the existing schema for the given class to be
superceded by the new schema.

As we have indicated, non-base classes are not defined independently. They

are logically linked to related classes via interclass connections. Two classes that are

related by an interclass connection will be said to be connected. The term interclass

connection refers to the fact that one of the connected classes was created by means

of an operation that involved the other connected classes. This implies certain

constraints on the membership of the connected classes. Two classes, C1 and C2
can be related to each other if C1 is a subset of C2. In this case, we will call C1 a

subclass of C2, and we will call C2 a parent class of C1.

*A schema is a description of the semantics of the members of a class. They will be described in
detail in Section 3.4.1.



There are several different ways in which interclass connections can be

specified.

1. Restrict: Class X Predicate -> Class.
This operation defines a subclass in terms of properties of a parent class.
The members of the subclass are exactly those members of the parent
class for which the given predicate is true. A member of the restricted
subclass is also a member of the parent class. For example, we could
define Short-Reports to be the subclass of the class of Reports that
contains those members of Reports that have fewer than three chapters.

2. Subset: Class -> Class.
This operation defines a class to be a user-controlled subclass of another.
A subset class contains exactly those members of its parent class that
have been inserted into the class by some user. The members of a subset
class are not specified in the definition of the class as they are in a
restrict. Instead, they become members of the class only when they are
identified as such by an external agent (i.e., a user). The class of
Reports-for-Distribution is a subset of the class Reports. Objects are
entered into this class by a user of authority who decides which reports
should be distributed to people outside of the organization.

3. Merge-Members: Class X ... X Class -> Class.
This operation produces a class that contains the union of the members
of the classes in the class list. It is not required that the elements in the
list of classes have a common root class (as in the SDM). In this way we
can define the class Workstation-Project-File to be the merge-members
of the classes Workstation-Documents, Workstation- Graphs, and
Workstation-Messages.

4. Extract-Common-Members: Class X ... X Class -> CLass.
This operation produces a class that contains the intersection of the
members of the classes in the class list.

5. Extract-Missing-Members: Classi X Class2 -> Class3.
This operation produces a new class, Class3, that contains all those
members of Class, that are not members of Class 2. This is like the
conventional set difference operation.

The next two connection types are both defined between two classes of



dissimilar type. One of the classes has members that are sets of objects
whose members are drawn from the other class that we will call the
underlying class. The class that contains set-valued members and the
underlying class are linked by an interclass connection.

6. Abstract: Class X Grouping-Program -> Class.
This operation defines a new class whose members, called abstractions,
are subsets of the underlying class. Each abstraction contains elements
that are specified by some grouping program on the underlying class.
Let us call this grouping program P and the underlying class C. Then, if
P: C -> {xi, ... , xn}, the abstraction class A defined by P will contain n
members, one for each of the possible values in the range of P. All
members of C for which P produces xi will be members of the same
abstraction. Some of the members of an abstraction class might also be
permanent repository classes while others might not. A member of an
abstraction class would not be a permanent repository class if it was not
of interest in modeling the application domain.

7. Aggregate: Class -> Class.
This operation defines a class that contains aggregates (see above) as
members. The members of each aggregate are drawn from the
underlying class. Some of these aggregates may be defined as
permanent classes in the repository, and others may not be if the
members of these classes are not of interest to the application. Notice
that unlike an abstraction class, the definition of an aggregate class does
not determine the members of each aggregate.

Once the permanent classes of the repository have been defined, the following

operations can be performed on base classes and subset classes:

1. Insert-Member: Class X Object -> Class.
Insert-Member makes the given object be a member of the given class.
In the case of a base class, the object must be of the proper underlying

type. In the case of an subset class, the object must already be a member
of one of the parent base classes for the given class.

2. Delete-Member: Class X Object -> Class.
Delete-Member removes the given object from the given class. In the
case of a base class, the object is implicitly removed from all subclasses



that currently contain it. This deletes the object from the system. In the
case of a subset class, the object is removed from that class and any
subclasses of the subset class.

The following operations are always available for any repository class (base or

non-base):

1. Is-a-Member-of?: Class X Object -> {true, false}.
This predicate tests to see if the given object is a member of the given
class. If it is, the ftnction returns true, otherwise, it returns fallse.

2. Iterate-Over-Class-Members: Class X Function.
Since a class is basically a set of repository objects, it is possible to iterate
over the members of any class. This operation applies the given
function to each of the members of the given class.

The general class mechanism is one of the major ways in which we support

office applications. The application code refers to those classes that are relevant to

the task at hand. If the relevant class is not a permanent repository class, the

application can make use of the general object semantics and create a dynamic class

by means of a class specifier expression (See Section 3.4.10 on page 112).

3.3.8 Access-Specifiers

In an office workstation environment, it is extremely important to be able to

4:entrol the use of objects. We should be able to specify carefully our intentions

about how our objects are to be manipulated. The object management system

should support this need by giving us flexible tools for expressing these constraints.

An access specifier is an expression of who can perform what operation on a

given object. It is created by means of the following operation:

- Create-Access-Specifier: Operation X User-Class -> Access-Specifier.



This operation creates an access specifier that states that members of the given user

class are allowed to perform the given operation on objects to which that operation

applies. For example, Create-Access-Specifier (Get-Report-Bibliography, {Stan,

Mike}) would create an access specifier that says that Stan and Mike are allowed to

perform the operation that extracts the bibliography component from a report.

The above example used a constant set of user names to specify the set of users

who are allowed to perform the operation. In general, we use a scheme that uses a

distinguished class of users and a query against that class to specify the user-class.

The form of this query is as a class-specifier (See Section 3.4.10 on page 112).

In order to determine whether or not a given user can perform some operation:

the system makes use of the following access-specifier operation:

- Check-Access: Access-Specifier X User-id -> {true, false}

This operation takes a unique identifier that is associated with the current user and

checks to see if that user is allowed to perform the operation of the given

access-specifier. We assume that the system has adequate authentication facilities

and can always determine who is currently making the request on the object

management system.

3.3.9 Triggers

Although ODM is basically a model of data, we include hooks for certain

process oriented specifications. The mechanism for this is called a trigger. A trigger

determines what actions should occur as a side-effect of other actions. It is a

procedure that is executed whenever some condition called the trigger condition is

satisfied.

A trigger condition has three essential parts:



1. An operation. Any of the available repository operations (See below).

2. A user class. A subset of the distinguished class Users.

3. An object class. A subset of the objects to which the operation applies.

The trigger condition is matched if a member of the given user class invokes the

given operation on a member of the given object class. When the trigger condition

is matched, a program called the trigger program is called. A trigger is, therefore,

created by means of the following operation:

- Create-Trigger: Operation X User-Class X Object-Class X Program ->

Trigger

The first three arguments specify the trigger condition, and the given program is the

trigger program.

A trigger is activated by the following operation:

- Activate-Trigger: Trigger

Activating a trigger involves checking the trigger condition and then invoking the

trigger program if the trigger condition was matched. The trigger program is

ignored if the trigger condition is not matched.

3.3.10 Repository Operations

Each class in the repository has some underlying abstract programming

language type. An abstract type has a set of operations that provide the interface to

objects of that type. The object management system must be aware of some of these

operations in order to its job, while others do not concern it. The operations that are

specified in class schemas are the province of the object management system.

The operations that have been outlined in the earlier parts of this section will be



called repository operations. For any abstract type that can be stored in the

repository, its repository operations are a subset of its abstract operations.

Each repository operation has two things associated with it. For an operation

Op they are:

1. an access-specifier, that is returned by Access-Spec (Op) and

2. a set of Triggers, that is returned by Triggers (Op).

In order to execute a repository operation on an object, one must use the

following operation:

- Invoke: Operation X Object

The meaning of the Invoke operation is:
If [Check-Access (Access-Spec (Operation), User-id),

Operation (Object),
For-each-member [

Triggers (Operation),
lambda (t) Activate-Trigger (t)]]

3.4 Linguistic Concepts for ODM

This section is intended to describe the basic linguistic capabilities that

accompany the Office Data Model and the motivation behind them. It is not an

extensive treatment of the precise syntax of this language. The syntax is covered in

the appendices. This section assumes that the reader is familiar with the basic data

structuring primitives of ODM as described in Section 3.2.

3.4.1 Object Schemas

An object schema is a textual definition of the semantics of a class of repository



objects.* An object schema is written in a language that we shall call The Object

Definition Language (ODL). There is one object schema associated with each

permanent repository class, and each schema applies to only one class. Since all

object classes that are handled by the object management system are descibed in the

same language, the schemas provide an excellent documentation of repository object

behavior.

Writing a schema implies the existence of certain repository operations. It is a

contract between the way users view an object type and the programs that

implement the operations on that object type. All repository objects must, at least,

comply to the specification that is embodied in the schemas for the classes of which

it is a member. If an object belongs to some class, it must be possible to apply any of

the operations that are implicitly defined in the schema for that object. For

example, if a letter has a component called Inside-address, it must be possible to

apply the operation Get-Inside-Address to a letter yielding the appropriate piece of

that letter.

There are two ways in which this schema contract can be fulfilled:

1. User supplied programs. The user can write a servies of programs that
will implement the semantics specified in the schema in terms of an
arbitrary data representation. This allows representations that are highly
optimized to the needs of the application.

2. System compiled defaults. The user can supply the schema, and the
system will compile it into a set of programs that make use of a set of
system default implementations. This might result in representations
that are not very well suited to the application, but it provides a way to

*'There are also implementation level objects called class schemas that are used by the programs
that implement the semantics of an object. Class schemas are loosely analogous to the object schemas
that exist at the user level. When we use the term schema, we will usually mean the user-level object
schema. If there is a possibility for confusion we will use the more complete term.



get an application running quickly and with a minimum amount of
effort and expertise.

We will have more to say about this mapping of schema-level semantics to

program-level implementations latter in this document

The integration of different object types is achieved by using the object

definition language (ODL) to describe all objects. The collection of all high-level

schemas provides a uniform view of the contents of the object repository. Since all

schemas are expressed in terms of the same language, thereby utilizing the same

data modeling primitives, it is possible to exploit semantic constructs that are shared

by each object type. For example, a basic assumption of ODM is that many

interesting object types are made up of components. The system must be able to

manifest the components of an object regardless of its type. It is, therefore, possible

to retrieve all reports or graphs that have more than five components. In order to

process this request, there must be some mechanism for the system to obtain and

count the components of a report or a graph.

3.4.2 Individual Schemas

Based on the above discussion, we can see that the semantics of a class of

objects is derived from the definitions in the object schema of that class. An object

can belong to many classes. Therefore, the total semantics for a given object is

derived from the collection of object schemas that are associated with the classes of

which that object is a member. A user would often like to configure the semantics

of a single object to be slightly different from the semantics that is specified by its

associated object schemas. In order to accommodate this requirement, the object

management system provides the notion of an individual schema. An individual

schema is like an object schema in form. It is associated, however, with an object

instead of a class. This implies that the specification in an object schema applies to



one and only one object. No other object can now or in the future share that

schema by becoming a member of some class. In this environment, an object can be

very complicated; it can be thought of as a database in its own right.

The object schema refers to groups of objects and expresses policy decisions

about object semantics. The individual schema defines specific object requirements.

The notion that all reports must have chapters is a policy decision regarding the

manner in which reports will be constructed and can be expressed in the object

schema for reports. All objects that belong to the Report class inherit this property.

On the other hand, a security requirement that says that the group progress report

for this year can only be written by one of three trusted people is a requirement for

the progress report object only and would be expressed in the individual schema.

It is required that the individual object schema not violate the constraints

imposed by its class definition in the general object schema. The individual object

schema typically includes two types of semantic requirements.

1. It imposes tighter restrictions on the object than was specified by the
general object schema. For example, the general schema for a report
may specify that part of the contents of a report is a non-empty ordered
set of chapters. The individual schema for a particular report may
further require that the chapters that are included in that object must
have authors who are members of the Office Automation Group.

2. The individual schema can also include the addition of new object
properties such as a new attribute. This clearly does not violate any
previous constraints. It is also possible to add attributes in an individual
object schema. One may want to define a report that is exactly like the
report definition in the general object schema except that it can contain
a title page or it can contain an attribute called Responsible for that
contains the name of the person who has ultimate sign-off authority for
the report.

One way to imitate the behavior of individual schemas is to define a new



subclass for each object. For example, we could define a subclass of the class

Reports which contains reports with the the additional attribute Responsible for.

This attribute, however, is peculiar to this one report. Creating subclasses for every

object is not a very effective solution. A large number of singleton subclasses would

be created.

3.4.3 Class Definition

Class schemas are written as a single textual block. Within this block of text,

one defines the semantic features of the class using ODL. An ODL class definition

can be broken down into following definitional elements:

1. A class name that is used to refer to the class. Class names are only

assigned to permanent classes, and they must be unique.

2. A class description which is a textual description of the class. It is much
like comment. This serves to document the nature of the class and is,
therefore, optional.

3. A class definition which indicates how the members of the class are
determined. The class definition can take one of two forms:

a. It can be a base class in which case the members of the class are
defined independently of the other classes in the repository.

b. It can be a non-base class in which case it can be defined in terms
of one or more other classes in the repository. A non-base class is
defined in terms of an expression that specifies an interclass
connection. Interclass connections were discussed in the previous
section on ODM.

4. Each schema has potentially four aspects that describe different portions
of the semantics of the, class. Each of the aspects has its own
sublanguage and appears in a separate textual section of the schema.
The four aspects are:



a. The content which specifies the components of an internal object.
(See Section 3.4.5 on page 86.)

b. The attributes which specify properties of the object The
attributes are a set of statements about the object. (See Section
3.4.6 on page 87.)

c. The history which specifies how the version history is to be
managed as well as any attributes that apply to the collection of
versions as a whole. (See Section 3.4.7 on page 96.)

d. The control which specifies what actions should occur when
certain operations are invoked on members of the class. This
includes such things as information concerning access rights for an
object. (See Section 3.4.9 on page 3.4.9.)

In these brief characterizations, one should notice parallels between the
aspects and certain features of ODM. Each aspect except the content is
optional. A base class must have the content defined. We will say more
about the details of each of the aspects later in this chapter.

3.4.4 Class Aspects

An object schema consists of a header and up to four major sections. THe

header includes the class name, the class description, and the class definition. The

other sections contain the definition of the fundamental class aspects. The four class

aspects are content, attributes, history, and control. Each of these aspects will be

described in more detail below. A schema can contain definitions for any number

of the class aspects. It is not necessary to define all four aspects in a given schema.

In fact for some derived classes, it is possible to have no new aspect definitions. The

-schema might simply consist of the class name and the derivation specification. For

example, the class of Long-reports might only consist an expression that states that

members of this class are members of the class Reports that have more than six

chapters. All of the semantics for members of Long-reports is inherited from the

class Reports.



Another example of a schema definition that does not involve all four aspects

might be a class of employee records. This class contains objects that are very much

like the objects that one might define using a general purpose database management

system. Each record contains a number of statements or facts about a given

employee. The nature of these facts is defined in the attribute aspect of the object

schema. A record has no editable content since the object that is being described

does not exist in the machine.

The next several sections will investigate the functionality of the four class

aspects in much greater detail.

3.4.5 Content

The content portion of a schema is the part that describes the content of the

object. The content section of a schema is broken down into component definitions.

A component is a reference to another object that is also a member of the repository.

For a report, the components from which it might be constructed are a set of

chapters, a set of appendices and a bibliography. The content section of the schema

for a report, then, would include three component definitions, one for each of these

components.

Each component is assigned a class from which its values can be drawn. We

will call this the value-class for that component. The value class can be either a

permanent repository class identified by the class name or a temporary repository

class that is defined by a class specifier (see Section 3.4.10). The value class creates a

restiction on what type of objects can be connected to the given component.

Each component can have an access specifier and a list of triggers associated

with it. These control specifications are written directly following the component

definition to indicate that they are to be associated with that component.



3.4.6 Attributes

The attributes aspect of a schema is the place in which information about the

attributes of a class is specified. It occurs within a block of text that is contained

within the schema definition for the class.

3.4.6.1 Attribute Characteristics

The essential features of an attribute definition are very similar to the features

of a component definition. The differences are in meaning more than in form,

although there are some small differences in form. The characteristics of an

attribute that are described in an attribute definition are as follows:

1. A name. All attributes have a name that is used to identify it. The name
must be unique within a class.

2. A value set. The value set is a repository class from which values for the
attribute can be drawn. This can be a class name or a class specifier (See
Section 3.4.10 below).

3. A set of characteristics. These include indications of whether or not the
give attribute is single- valued/set-valued, mutable/immutable,
derived/seitable, or ordered/unordered.

Each attribute can have an access specifier and a set of triggers associated with

it. This association is established by writing the name of the trigger following a

given attribute definition.

3.4.6.2 Attribute Applicability

One of the essential differences in the ways in which attributes can be defined is

the locus of applicability of the attribute. Any repository object can have attributes

that apply to it and, therefore, attributes can pertain to any one of the following four

places:



1. A simple object. If the attribute applies to a simple object then each
object of this type that is a part of the conceptual object will also have a
value for this attribute. In other words, the attribute has a value that
reflects the state of a given conceptual object at some point in time. As
the object changes, so might the attribute. An example of this type of
attribute is the attribute date-created. Each version in a conceptual
object would have a different value for this attribute. That value would
be the date on which the new version was created.

2. A conceptual object. If the attribute applies to a conceptual object, it is a
statement about the set of versions as a whole. An example for a report
is the attribute related-project. The value of this attribute is the project
entity for which the conceptual report was created. It does not matter
how many new versions of this object are created. They will all be for
the same related-project. The idea of a related project really attaches to
the abstract entity that is modeled by the conceptual object. The
specifications for attributes of this type reside in the history aspect of the
object schema (See Section 3.4.7).

3. A class (as an entity). An attribute can also make a statement about the
class object as a whole. We will call this a class attribute. An example of
a class attribute is number-of-mem bers for some class. The value of this
attribute is the current number of instances of the given class.

An attribute can also apply to a reference to an object. In this case, it makes a

statement about the way in which the object is used. Let us assume that there is a

comment attribute defined for chapters. Suppose we want to create an attribute

called date-connected to assert the fact that a given comment was connected to a

given chapter on a given date. This is not an attribute of the chapter or of the

comment. It is really an attribute of the connection (i.e., the attribute). This means

that all the attribute operations must work for references as well as repository

objects.

88



3.4.6.3 Derived Attributes

An attribute can be settable by a user, or it can be derived from some other

information in the repository. For derived attributes, there are two basic types.

They are:

1. derived from content

2. derived from other class aspects

The reason for making the above distinction arises from the fact that changing the

content of an object, by definition, creates a new version of the conceptual object.

Therefore, the appropriate time to create a new value for an attribute that is derived

from an object's content is whenever the content changes, or in other words,

whenever an addition is made to a version set. A program can be written that

computes the value of the attribute. This program would be triggered whenever a

new version for the object is created, if the value of the attribute is to be maintained.

Otherwise, this program would be invoked whenever the value is needed.

An attribute can also be derived from the attribute, history, or control aspects

of an object. Consider the attribute of a conceptual object called

number-of-versions. This would be derived from the history aspect. More details on

how the derived attribute mechanism works will follow in Section 3.4.6.3.

As was observed above, the derived information can come from several sources.

It can be derived from the content of the object or else it can be derived from some

other aspect of the object. We have already seen an example above of an attribute

-that is derived from the content of an object. For an example of an attribute that is

derived from another attribute, assume that reports have an attribute called

OKed-by which has as a value the names of all people who have read and approved

the report. Further, assume that a report has an attribute called



ready-for-publication which has a value, true or false, expressing whether or not the

report can currently be published. The attribute ready-for publication for a report

will have the value true if the value of the attribute OKed-by includes the name of

the boss; otherwise, it will have the value false. Clearly, ready-for-publication

depends on OKed-by.

Derived information for a given object can also come from some aspect of

another object in the repository that is related in some way to the first object. For

example, a graph object might have an attribute called

Outward-Appearance-for-the-Line-Printer. The value of this attribute is another

repository object that is a representation of the image of the graph as it is printed on

the line printer. This outward appearance object has as its content a set of line

objects that each contain the characters that are printed on a given line of the

output. The outward appearance object has an attribute called printed-by which has

as a value the names of the users who have printed this outward appearance. The

original graph object also has an attribute called printed-on-line-printer-by which is

derived from the corresponding attribute in it's associated outward appearance

object. The value of the attribute for the graph is defined to be the same as the

value of the attribute for the outward appearance object.

In general, the value of a derived attribute is computed by a program. This

program can be invoked at several different times. It can be triggered by a change

to the state of the repository, or it can be triggered by a request for the value of the

attribute.

The program that computes the value of a derived attribute is stored in the

repository. Like any other repository object it can be retrieved by a class specifier.

This is an example of a program that is identified by invoking a database query.

The program that is used to compute the value of a derived attribute can be



specified by any combination of object properties that can uniquely identify a

program. This could involve a uniquely assigned name or it could involve the latest

version of a program written by a particular user to compute the value of a given

attribute. In this case, the user name and the attribute name are attributes of the

program objects. The specification of a derived attribute first requires a class

specifier that evaluates to a single object from the class of all programs. It also

requires the specification of other objects (possibly repository objects) that will be

used as arguments to the derivation program. These other objects are typically the

things on which the value of the attribute depends. Computing the value of a

derived attribute involves evaluating the class specifier to obtain a program and

evaluating the argument specifications to obtain a set of arguments. The program is

then applied to the arguments to obtain a value or set of values for the attribute.

The Semantic Data Model [31] includes ten different constructs for deriving the

value of an attribute from other information in the database. For example, an

attribute, A, can be defined to be an inverse of some other attribute, B. In this case,

the value of attribute, A, for some object y can be computed to be some object x

such that B.x=y.* These built-in derivation methods have primitive data model

constructs defined for their use. The derivation methods, however, are fixed and

limited to these ten. In the data processing environment, these ten techniques seem

to cover most of the common cases.

In the object management system environment, we believe that it is not

sufficient to supply a small set of predicted ways in which information can depend

on other information. The ten attribute derivation methods from the SDM might at

times be useful, but we feel that there will often be other derivation methods that

*The dot notation is used to denote the application of an attribute to an object. (i.e., B.x means the
value of the B attribute of x.)



will be needed. Since we cannot predict what these will be, we allow the use of

some general purpose programming language for the specification of new data

relationships.

It should be pointed out that the ten methods of deriving attributes in the SDM

can each be expressed by a program. For example, we could easily write a program

that functions in exactly the same way as the inverse derivation method of the SDM

mentioned above. This program would take as arguments an object for which the

attribute value is being derived, the underlying value class of the derived attribute,

and the name of the attribute from the value class for which the given attribute is an

inverse. From this information, it can compute the value of an attribute of interest

such that the inverse constraint is satisfied.

3.4.6.4 Attribute Inheritance

An object can have many components and attributes. These properties derive

from the membership of that object in some collection of classes. An object that is a

member of a class C has all of the properties defined for C. It also inherits properties

from other classes that are related to C in the class graph. Inheritance rules are

transitive. That is, if class X inherits attributes from class Y which inherits attributes

from class Z, then an attribute A that is defined for class Z will also be defined for

class X.

The following describes the rules for attribute inheritance via interclass

connections.

1. A class C2 defined as a restriction of a class C, inherits from C1 all of its
member attributes. For example, since Progress-Reports is a restriction
class of Reports, any attributes that are defined for Reports will also be
defined for Progress-Reports. The value of an inherited attribute for a
member of Progress-Reports is the value that the object would have as a
member of Reports.



2. A class C defined by extract-common-members on the classes C1 and C2
inherits all the attributes from both C1 and C2. If C has conceptual
object class CC and C1 and C2 both have conceptual object classes CC1
and CC2, then CC will inherit all attributes from CC1 and CC2.

3. A class C defined by merge-members on the classes C1 and C2 inherits
all those attributes that are common to both C1 and C2. Attribute A
must be defined for both C1 and C2 in order for that attribute to be
applicable to C.

4. A class C defined by extract-missing-members as the difference between
C1 and C2 (i.e., C1 - C2) inherits the member attributes from C1.

5. A class C that is defined to be an abstraction or an aggregation of a class
C1 inherits all class-determined attributes of C1 as member attributes of
C.

Another way for an object to inherit an attribute is via the part-of hierarchy.

That is, an object that is a component of some other object can inherit properties

from its parent or containing object. If we think in physical terms for a minute, a

fender of a car might have no color attribute. The color of a fender before it is

installed on a vehicle is the color of the metal that it is made out of. Since this is true

of all fenders, it is reasonable to decide not to give fenders a color attribute.

However, if a fender is installed on a car, and that car is painted green, it becomes

reasonable to ask about the color of the fender. The fender now has a color

attribute by virtue of the fact that it is a part of a green car. The same phenomenon

can be observed with office objects. If a chapter is connected to a report object and

that report object has a custodian attribute that indicates who is responsible for the

report, then the chapter object should now have a custodian attribute regardless of

- whether or not it had one before.

One must be careful about which attributes are inherited in this way. Consider

a report that has an author attribute. If we connect a chapter to it that does not have



an author attribute, we do not want to automatically say that the author of the

chapter is the same person as the author of the report. We must have a way to

selectively allow only attributes of the whole object that become attributes of the

parts to be inherited.

An extent specification is a way to indicate which attributes of an object are to

be inherited by its components. An extent specification always refers to some set of

components or parents of the object at hand. An extent expression can, therefore,

be defined to be either upward or downward. A downward extent expression

defines a set of objects that extends downward to lower levels of the component

tree. It stops at a set of leaves that satisfy a given condition. All nodes between the

root and these leaves are said to belong to the extent. An upward extent expression

defines a set of objects that are connected to the object at hand through component

relationships. These objects are all ancestors of the given object in the component

hierarchy.

There are two further distinctions that can be made with respect to types of

extent expression. They are:

1. Through a given predicate. Along each branch, the extent includes all
components that satisfy the given predicate up to a component that does
not satisfy it. The first object that does not satisfy the predicate along a
given branch terminates the extent for that branch. The predecessor of
that object (i.e., the last one for which the predicate is true) becomes a
leaf node of the extent. -

2. Upto a given predicate. Along each branch, all components are included
in the extent until an object is encountered that satisfies the predicate.
This object terminates the extent along that branch, and its predecessor
becomes a leaf node of the extent.

Suppose that Y is a component of X. It is possible for Y to inherit an attribute

A from a higher level object like X if the class definition for X specifies that A is



available to objects at lower levels. This specification is accomplished by an extent

expression that accompanies the definition of A in the schema for X. An example of

this type of inheritance is contained in the following:
Define Class Documents
Definition: Base

Content
Chapters: Ordered Set of Chapters
Comments: Ordered Set of Comments

Attributes
Author: Users
Co-author: Set of Users

Attribute Downward Extent Through Chapters
is Through Chapters

The Co-Author attribute is made available to all Chapter components* of a

document up to and including chapter objects. Any chapter object that is connected

to the subtree rooted to the Chapters component of a document will inherit both the

CoAuthor attribute and the attribute value from the containing document.

Assume that object X is an ancestor of object Y in the component hierarchy; Y

is a component of X. The inheritance of attributes via the component hierarchy can

only occur for an object like Y from an object like X. A higher-level object can

never inherit an attribute from a lower-level object. Therefore, whenever we define

an Attribute extent, the direction of this extent is implied to be downward.

One often needs to be able to inherit the value of an atribute from a related

object. This is similar to derived attributes, but a derived attribute cannot ever be

set to a value. Here, we have an attribute that can be set to a value, but whenever it

has not been set, the value is inherited from some containing object. This extent

.specification occurs in the class definition for the contained object. A Value extent

is implied to be upward, for a subobject that gets its attribute value from some

ancestor.

*The first through chapters phrase refers to the component named chapters in the content
definition.



DEFINE CLASS Chapters
Definition Base

Contents
Paragraphs: Ordered Set of Paragraphs
Comments: Ordered Set of Comments

Attributes
Owner: Names
Co-Authors: Set of Names

Value Extent is through Documents
Attribute Extent Through Paragraphs is Through Paragraphs

In this example, the attribute Co-Authors is available as an attribute of a chapter. If

it has not been set, the system will look up the component hierarchy, one-level at a

time, to get the value from an object that has both the attribute defined and a value

assigned to it. This search will stop at an object of type Docuement.

3.4.7 History

The history aspect of an object schema describes the way in which conceptual

objects are to be managed. A conceptual object is one that can change over time

such that the progression of versions in time is maintained. This thesis is a

conceptual object that has undergone many intermediate versions before reaching

the version that you are reading. All of these intermediate objects are instances of a

conceptual object which I call My-Thesis.

3.4.7.1 Version Sets

As has been stated previously, one of the most salient features of a conceptual

object is its ability to record a version history. A conceptual object is made up of

.many primitive objects each of which represents a snapshot of the state of the object

at some point in time. The conceptual object can have attributes that are distinct

from the attributes of the individual versions. The history aspect of an object

schema is the place in which these attributes are defined.



THe history aspect is an optional self-contained block of text. The attributes

that are defined in the history aspect have exactly the same form as the attributes

that are defined in the attributes aspect. The difference is simply that they apply to

the conceptual object

Any object that has an editable portion of its content must have a

corresponding conceptual object. This leads to a basic dicotomy in the definition of

classes. When we define an object class with an editable content, we are, in effect,

defining a pair of classes. One of the classes is a class containing simple objects of

the type defined by the schema, and the other is a shadow class that contains

conceptual objects whose versions are drawn from the first class. For example, the

two classes might be Reports and Conceptual-Reports. Each member of the class

Conceptual-Reports will have a version history whose versions are members of the

class Reports. The class of conceptual objects is very much like an aggregation of

the underlying class of simple objects.

3.4.7.2 Proliferation of Versions

In this section, we will discuss what can happen when an addition is made to

the version set of a conceptual object, and that conceptual object is referenced as a

component of some other object. The discussion will be driven by an example.

As we stated in a previous section, objects and their components are glued

together by means of references. There are several different types of references. To

review, they are:

1. Static references. This is a reference that refers to a particular object

2. Dynamic references. This is a reference that refers to different objects
over time. References in this category are very much like database
queries. They are expressions that specify a condition on the state of the



repository. The object or objects that match that condition are the
referent of the reference.

The most common reference of the latter type is the latest- version-reference. Its

referent is the newest addition to a specified version set. That is, if VS is a version

set, vi is a simple object, and there is only a single user interacting with VS, then the

following relationship is always true:
latest-version (add-new-version (VS, vi)) a v*

Evaluating a latest-version reference will produce different objects at different

times. Each time a new version is added to a version set, the referent of a

latest-version reference involving that version set will change.

The object represented by figure 3-5 is a more detailed view of the object in

figure 3-1. In this figure, the links represent latest- version-references for the latest

version of the parent conceptual object. These links point to the version sets of the

components. We see that 01 is really a conceptual object that contains three

versions, V1, V2, and V3.

01:
(VI, V2, V3}

/\
02: 03:

{V4, V5} {V6, V7, V8}

04: 05: 06: 07:
{V9, V10} (VII, V12} {V13, V14} {V15}

Figure 3-5:Version Sets for a Hierarchical Object

The latest version of 01 contains two latest-version references (indicated by

diagonal lines). One of these references will evaluate to the newest addition to the

conceptual object, 02. In this case, it will contain V5. The other latest-version

reference will evaluate to the newest addition to 03's version set, V8.

Notice that, by this mechanism, as the membership of version sets at the lower



levels change, members of version sets at the higher levels effectively change. 01

has three recorded versions. Each one contains latest-version references for each of

their components. The structure that is drawn in figure 3-5 indicates the component

structure for the latest version of 01 (i.e., V3). The earlier versions of 01 (i.e., V2

and V3) might not contain two components, or, at least, might not contain the same

two.

This behavior for versions is often exactly what is required. Notice that with

latest-version references one can always be sure that the most current version of a

component is retrieved. The user does not have to periodically update containing

objects to reflect changes to the components. In this way, updates are propagated to

other versions automatically. On the other hand, if all versions of 01 contain

latest-version-references, there are no versions of 01 that contain the early versions

of the objects at lower levels like V9 or V11. Also, the actual high-level objects from

which V3 was derived have now disappeared. Unless we have some other

mechanism such as timestamps for the individual objects, we cannot reconstruct the

actual objects.

There are other desirable behaviors for version sets. For example, we may want

the addition of a new version to a version set to cause the previous versions to freeze

their state. This would require conversion of all latest-version references (and other

dynamic references) to constant-references. Given an object with embedded

latest-version references, it is always possible to convert it to an object with

constant-references such that the referents of the constant references are the current

latest versions of each component. This is possible because for all objects of a given

type, it is possible to find each of its components. If a component is a latest-version

reference, then it can be convered and replaced. A version set that freezes earlier

versions is declared as such in the history aspect of the schema for the appropriate

object class. The add-new-version operation for this type of version set performs the



conversion operation on the previous latest version before inserting the new latest

version.

Another approach to managing the state of version sets is characterized by

providing a controlled way to allow changes from one version set to effect other

version sets. The way in which new versions of a contained object are propagated to

the version sets of containing objects is specified in the object schema for the

containing object. For example, the schema for reports would indicate which

changes to its components, if any, would cause a new version to be created for the

report.

In the history aspect of the schema, there is a section labeled New Versions.

Specifications in this section effect the way in which versions are propagated. For

each named component, in the content aspect of the schema, there can be a

corresponding entry in the history aspect. A given component can be specified to

cause a new version of its parent if:

1. Any change is made. For example, changes to any chapter object of a
report will cause the generation of a new version of the report.

2. Any member of the component set changes and a given condition on
that object is satisfied. For example, changes to chapters of a report will
cause new versions of the report if it is true that the author of the new
chapter object is Mr. Smith, the boss.

3. A particular pre-specified member of the component set is changed.
For example, changes to chapter three of the progress report can be
declared to cause a new version of the report object. This would have to
be specified at run time for a particular instance of an object type.

Specifications at this level for components are optional. If a given component is not

included, it is assumed that changes to that component will not cause new versions

to be propagated to the parent object.
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3.4.8 Object State

A special kind of derived attribute is the state of an object. Intuitively, an

object's state specifies where an object is in it's processing history. That is, a state is

a reflection of how the object has been handled in the past and, perhaps, what

should be done to it in the future. It's current state corresponds to some condition

on the existing properties of the object as well as the object's previous states. A state

could be modeled as the value of a derived attribute of a conceptual object. By

using the conceptual object, which contains the complete object history, the system

could derive the state of each successive version up to and including the latest

version. We include in ODL a mechanism for talking about the state of an object

for convenience. We feel that it is something that will recur in many different

settings.

The states that an object can be in and the ways in which that object can move

from state to state are specified by a state machine in the object schema. The

formalism for expressing a state machine resembles the specification mechanism for

finite state machines from automata theory. An attribute for a conceptual object

(i.e., an attribute in the history aspect) can be specified to have a value set that is a

subclass of the class of States. The derivation mechanism for this attribute is

specified by a state machine. The state machine definition consists of a set of states

(one of which is designated as the initial state) and a set of transitions. A transition

has an beginning state, a target state, and a condition associated with it. The

meaning of a transition is that if the machine is in the source state and the condition

is satisfied, then the machine should make a transition to the target state. The

-condition is a predicate. In this case, it is a class-specifier. Therefore, if (Ss' St, CS)

is a transition in the machine's transition set, the machine is currently in state, S5.
and the latest version of the conceptual object satisfies CS, then the machine will

transit to state, St-
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The transitions for a state machine can be defined to be either optional or

mandatory. If the transitions are optional, then the machine can sit in a given state

through an arbitrary number of changes. If the transitions are declared to be

mandatory, then each change of the object (i.e., each addition to its version set) must

cause the state machine to make a transition to a new state. In this way, the state

machine can be used to enforce a set of constraints on the ways in which an object

can change. If a new version does not satisfy any of the predicates on the transitions

out of the current state, an exception is generated.

For a given conceptual object type, there can be arbitrarily many derived

attributes that have states as a value set. An example of an object that has several

state-valued attributes is a research report that has an attribute named

Publication-state and an attribute named Revision-state, both of which are defined

to have values drawn from the class, States.

The Publication-state is meant to be a reflection of the group of people that are

currently allowed to read the report. States in the machine for this attribute have an

attribute of their own called, Readable-by. Example values for this attribute are

OA-Group, Laboratory-for-Computer-Science, and CS-and-AI-LAb. Each of these

groups of potential readers encompasses a wider audience. The first state in the

machine definition of this state-valued attribute has its Readable-by attribute set to

OA-Group. Presumably, as the set of people that can read this document grows, the

state machine will progress to a new state, each of which has a different value for the

Readable-by attribute. It should be pointed out that the three example values for

Readable-by given above might not be defined explicitly in the control aspect of the

object type. These values might only be defined in terms of the predicates that

define the transition from state to state. These predicates could be expressed in

terms of individuals who are allowed to read the report.
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In this example, the Revision-state attribute is defined by a two state machine.

Each state has an attribute called Condition that has the value Acceptable in one

state and Needs-approval in the other. If any component of the report is edited, then

the Revision-state attribute enters the state that has its Condition attribute equal to

Needs-approval. Whenever the group leader reads the latest version and sets the

Approved attribute for that object to true, the Revision-state attribute transits to the

state for which its Condition attribute has the value Acceptable.

The two attributes described in the previous two paragraphs exist

independently. Other state-valued attributes can be defined for this object type. In

this example, a research report object can, therefore, exist in several states at the

same time.

It should be pointed out that the notion of an attribute as a state machine can

be handled with the derived attribute mechanism that we have previously described.

However, since it is such an important technique for managing the current

processing state of an object, we have provided some special syntax. This syntax

allows us to define a state-valued attribute in a more intuitive form. (See appendix

for details.) The language for expressing interesting subsets of the object space will

also include primitives for dealing with state machines. For example, it is possible

to form the class of all final reports that are one state away from a state that has a

condition of accepted. This might be an interesting set because a little additional

effort expended on these documents might cause them to be released to the waiting

organization. Similarly, one might want to form the class of all messages that are in

a state that is only one state beyond the initial approval state. Both of these

examples make use of the class specifier mechanism that allows us to form a

predicate that matches all those objects that are n states before or after a state that

has some property.
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3.4.9 Control

The control aspect of an object describes the ways in which objects can be

manipulated by users of the object management system. It specifies who can apply

various operations to which objects, and what should happen when they do. Unlike

the other aspects, some of the specifications that relate to the control aspect will

appear within the textual body of the other aspects. This is merely a notational

convenience. For example, we have already descibed how the specification of the

access specifier and the triggers for a component or an attribute occur textually

within the context of the the component or attribute definition.

3.4.9.1 Access Control

An access control specification defines classes of users that will be granted

certain privileges to invoke operations on parts of the object. The basic model for

access control is that invoking an operation on an object causes a special security

program to be executed. This program checks to see if the current user is allowed to

perform the given operation. The operation proceeds only if the user has the right

to perform it.

It is very important in an office environment for the system to deal with rapid

changes to the accessing requirements of the user base. A query on the database of

igformation about the current users of the system specifies who can perform an

operation on an object. As tiis database changes, so do the sets of users who have

access rights for the various object types.

The object management system maintains a distinguished class called Users.

Members of this class are defined to have attributes that are determined to be

relevant to workstation applications. The class of Users contais an object for each

user for each user of the system. Each user object has a unique identifier (possibly a
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name) that is used to establish the correspondence between the abstract repository

object and some user of the system. Any program can always ask the operating

system for the unique-id of the user who is currently associated with a given process.

For each operation on objects of a given class that the object management

system supports, there is a set of users that are allowed to perform it. This set of

users is a subset of the class Users. A pair of the form, (Op, U) where Op is an

operation and U is a specification for a subclass of the class Users is said to be a

right. The specification U is in the form of a class specifier. In order to determine

which users match the class specifier at a given point in time, it is necessary to

evaluate U. This is done with a special expression evaluating function. It is

necessary to retain the specification of the class U in the form of an expression (i.e.,

a query) so that changes to the members of the class Users will be included in the

rights for an object next time they are needed.

Rights are specified in the object schema for a class. It is always possible to

determine if some operation, 0, can be performed on a given object, x, by the

current process. The operating system can give us the unique-id of the user, uid, and

the object schemas can be used to determine the rights (0, U) for x. If uid is a

member of U, then the operation 0 can be executed.

Rights for components and attributes are of three basic kinds. They correspond

to the basic operations that are supported for components and attributes. There are:

1. Read.* A user who has the read privilege can obtain a copy of the object
into the address space of the program that makes the read request

*This corresponds to the Get operations for components and attributes.
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2. Write.** A user who has the write privilege can modify the repository
object in question. If the object is an immutable conceptual object, then
the user must have write privilege on the version set for the conceptual
object.

3. Include. A user who has the include privilege for an object can know of
that object's existence. If a user does not have the include privilege for
an object, it is as if that object is not there for that user. This is useful for
defining "views" of the repository.

These privileges are related in the following way. If a user has the write privilege for

an object, then that user also has the read and the include privilege for that object

If a user has the read privilege for an object, then that user also has the include

privilege.

The granting of privileges can occur in the control aspect. This imposes

constraints on the basic operations on a repository. If one says that reports "as a

whole" can only be read by people in the OA Group, then this places restrictions on

the Repository-Get operation.

Rights can also be assigned to the individual components and attributes of an

object. In this way, it is possible to say that the bibliography of a report can be read

by anyone, but that the chapters can only be read by members of the Office

Automation Group. Similarly, it is possible to restrict access to an attribute of an

object. Perhaps only the leader of a group and the commentator can read the

comments attribute of a paper.

**This corresponds to the Set operatoins for attributes and the Add-New- Version operation for a
conceptual object. In the later case, the write privilege -for a component is a constraint on the things
that can be changed by a user from one version to the next.
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3.4.9.2 Determining Object Rights

Each object in the repository has some set of users who can access it.

Determining this set of users can involve more than looking at the schema for a

single class. Access rights are determined in two ways:

1. If the object is being accessed as a member of some class from the
top-level of the object management system, the access rights are
determined by the class hierarchy.

2. If the object is being accessed as a component of an object that one
already has accessed, the rights are also determined by the grant
privileges that are specified in the class definitions for the contained and
the containing objects.

We will now look at these two methods in more detail.

In the first method, an object will be a member of several repository classes at

any point in time. The class of users who can access a repository object from the

top-level of the object management system is determined by the membership of the

object in the various classes of the class graph. Let us call this set of classes, Sc. The

rights associated with the schemas for the members of Sc will collectively determine

the access rights for a given object, x. The following algorithm can be used to

determine the rights for an object, x. The function Schema-Rights(C) returns the

rights for objects that are members of C. Descendants(C) returns the set of

subclasses of the class, C. And-Expression and Or-Expression take expressions as

arguments and return expressions that are the logical and and the logical or of their

arguments, respectively.
Define Composite-Rights (C)

And-Expression [
Schema-Rights (C)
Or-Expression [

Iterate [Descendants (C),
lambda (c)
if Member-of [x,c] then Composite-Rights (c)

else False]]]
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The result of this algorithm is an expression that when evaluated yields the subclass

of users that can access x. Using this algorithm, we can arrive at the rights for an

object, x, with respect to a class, C, of which x is a member. This is done by taking

the logical or of the rights for all subclasses of C of which x is a member and then

taking the logical and of this result with the rights for class, C. The above

computation of the rights for a class can be done once and stored with the class. It

only has to be recomputed when new classes are added to the repository.

In an environment in which objects are being constructed out of other

repository objects, it is useful to allow rights to an object to be determined

dynamically by the current content of the object. This addresses method two in the

above list. When a user creates a chapter object, it is difficult for that user to predict

a priori who should be able to access it. Certain rights specifications would

accompany the definition of the chapter object class; however, other rights might be

granted to special users depending on the context in which the user is accessing the

chapter. A user who has read access to a given report might reasonably expect to be

able to read the chapters of that report. Moreover, the creator of the chapter object

may sanction this type of access. The user who connects a chapter to a report may

not be able to change the access specifications of the chapter. The creator of the

chapter might be very willing to relinquish additional rights to the chapter to anyone

who can access the containing report. We provide mechanisms for accomplishing

this type of rights inheritance, the inheritance of access rights from a contained

object

If rights are to be inherited, there must be a way to carefully control the way in

which it takes place. Our mechanism is a kind of "handshaking" procedure. The

containing object schema specilies to what objects rights will be granted, and the

contained object schema specifies from what objects rights will be inherited. The

containing object schema specifies for each component an access specifier that
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contains a designated operation 01, a set of users U, and a subset C1 of the value

set for that component. The contained object schema also contains specifications for

an operation 02, a set of users U2, and a subset C2 of the members of the defined

class. This latter specification is given for a particular component of a potentially

containing object. A user U will be given access to a component C of an object 0 if

the following is true:
Or [

And [member-of [U,U,], member-of [C.C]],
And [member-of [U,U,], member-of [0,C 2]]]

For example, assume that reports contain chapters as components. There will

be a subclass of Users specified in the Report schema as those users who can apply

the Get-Component operation on chapters that match a given predicate. This

predicate is optional. An example of this follows:
Get-Chapter-n by

Users where group = "0A"
for Chapters where date-created > 1/1/83

So far, this is no different from what has been described already.

To complete this example, the following kind of specification could appear in

the schema for chapters:
As Chapters of Reports:

Get-Chapter-n
by Users where age > 30
for Reports where author a "Stan"

The first line says that what follows applies to chapter objects that are members of

the Chapters component of a report. For those chapters, we are making a restiction

on the use of the Get-Chapter-n operation. The last two lines indicate that Users

who are over 30 years old should be able to apply that operation on reports that

-have Stan as an author.

The result of these two specifications is that a chapter C can be accessed from a

report R by a user U who is applying the Get-Chapter-n operation on R if the

following is true:
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Or [
And [Member-of [U, Users where group="OA"],

Member-of [C, Chapters where date-created > 1/1/83]],
And [Member-of [U, Users where age > 30],

Member-of [R, Reports where author="Stan"]]]

3.4.9.3 Class Owners

When a class is created by means of one of the class creating operations (i.e.,

create-class or interclass connections), the user who has invoked the operation

becomes the class owner (or owner for short). The owner can expand the definition

of the class owner by including in the schema a specification for a class of users who

will play the role of owner. We will, therefore, use the term owner as both singular

and plural.

Only the owner can modify the definition for a class. That is, the access control

specification for the Modify-Class operation is always defined to be the class owner.

An example of the type of modification operation that would be performed by the

class owner is altering the access specification for a component or attribute.

A class schema also contains a definition of who is allowed to create subclasses

(thereby becoming a class owner for the new class) for the given class. This is an

access specification for the all of the interclass connection operations. Only the

members of the specified class of users are allowed to create subclasses by

performing these operations on the parent class.

Assume that there are two classes such that one is a subclass of the other. Let

us call the parent class P and the subclass S. Assume that the functions Owner(C)

and Sublass(C) return the class of users who are the owners of C and the class of

users who are allowed to form subsets of C, respectively. The rules for class owners

are as follows:
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1. Anyone can become the owner of a base class simply by creating the
class. The creater of a base class B becomes Owner(B). Once the class is
formed, though, the ownership can only be changed by the current
owner.

2. Owner(S) must be a subset of Subclass(P).

3. Subclass(S) must be a subset of Subclass(P).

4. For any class C, Owner(C) must be a subclass of Subclass(C).

As we move down the class hierarchy, the owner/subclass specifications can only get

tighter. That is, we cannot admit more users at a lower level than the class of users

that have these rights at a higher level since the members of a lower level class are

also members of the higher level classes.

3.4.9.4 Triggers

Another part of object control is the specification of triggers. A trigger is an

action that is to occur whenever it is noticed that some condition on the state of the

repository has occurred. Triggers are defined within the block of text that is

associated with the Control aspect. They are given a name, and that name is used

within the other aspects in order to attach a given trigger to an attribute or a

component

Triggers have three main parts.

1. The trigger condition.

2. The trigger program.

3. The trigger arguments.

The trigger condition, in this case, is based on the reading or writing 6f a repository

object. A trigger condition specifies three things:
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1. The ac/ion that is being performed. For components and attributes, the
appropriate actions are read and write. (i.e., get and set)

2. A subclass of objects (the object set) that are being operated on.

3. A subclass of the class Users (the user set) that are to apply the
operation.

If the action occurs to a member of the target set by a member of the user set, the

trigger program is executed on the trigger arguments.

The trigger programs will be stored and managed by the object management

system. They will, therefore, be repository objects that are retrievable by class

specifiers. In this way, one can define a trigger that will execute one program at one

point in time and some other program at another, depending on the state of the

repository. This same technique for managing programs is used for derived

attribute functions.

3.4.10 Class Specifiers

A class specifier is a formal description of some set of repository objects. It is

very much akin to a database query in conventional terms. Th'e options for forming

class specifiers provide the basic mechanisms for the data manipulation language for

the object management system. The value of a class specifier is always a set of

objects. We will call this set of objects the target set.

The basic mechanism involves a powerful set of primitives for constructing

predicates that make use of the underlying semantics of repository objects. The

class of objects that is specified by the class specifier is exactly those objects that are

in the repository and that satisfy the given predicate. An example of a class specifier

is the set of reports that have more than five chapters. This class is a subclass of the
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class Reports. It contains all members of the class Reports that currently have more

than five members of its component named chapters.

In this section we will describe the basic facilities of the class specifier

mechanism. We will give examples in English and also in a functional notation that

is defined in Appendix E. The actual syntax for class specifiers will be deferred to

Appendix C. The purpose of the functional language for specifying classes is to be

more precise about the meaning of a given retrieval. The meaning of the functional

language is given in the appendix.

Class specifiers are very important to our object specification language. They

are used in many different contexts within ODM to define a class of objects. They

are also used by applications programs to specify precisely a small set of entities that

is of interest to the application. The following discussion is intended to illustrate the

capabilities that are provided by the class specifier mechanism.

3.4.10.1 Simple Class Specifiers

The simplest class specifier is a class name. For example, Reports is a class

specifier that refers to the class of objects named Reports. A class specifier of more

complexity is basically some other class specifier qualified by a predicate. We will

call the predicate a qualifier. Other forms of class specifiers make use of more

complex qualifiers.

Qualifiers can be constructed by simple predicates on the values of an object

.attribute. A simple predicate is a predicate that involves a single attribute name, a

relational operator, and a constant. The relational operators are equals, greater-than,

less-than, greater-than-or-equal-to, and less-than-or-equal-to. An example of a

simple predicate involving the attribute author is author equals "John Smith".
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Qualifiers can be combined with standard Boolean operators to form other

compound qualifiers. The Boolean operators are and, or, minus, and not. An

example of a compound qualifier is author equals "John Smith" or date greater-than

1/23/82.

Class specifiers can also be combined with standard Boolean operators to form

other class specifiers. The Boolean operator that are available here are the same

operators that were mentioned above. If the class of Short-Reports is defined by

some class specifier, CS1, and the class of Good-Reports is defined by some class

specifier, CS2, then the class of Good-Short-Reports is defined by the class specifier,

CS1 and CS2. The other Boolean operations work in the same intuitive manner.

3.4.10.2 Class Specifiers with Containment

Class specifiers can make use of the internal structure of the content of an

object. In this way, classes can be created based on properties of the components of

an object as well as on properties of an object itself. For example, we might want to

specify the class of objects that are Reports that contain chapters that were written

by "John Smith". This request involves the information that is stored in the content

aspect of the object schema. It requires that the system be able to access the

components that are members of the class Chapters.

It is also possible to form a class specifier that involves the containment

relationship in reverse. That is, we might be interested in all chapters that are

contained in reports that were published in the last week. In this case, the

containment relationship is also used; however, the objects of interest are the

components of some object class. In order to process this type of request, it must be

possible to obtain all the parent objects of a given object. We will discuss how this

might be implemented in a later chapter.
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3.4.10.3 Class Specifiers with Versions

It is also possible to construct a class specifier that restricts the target set to

include only those objects whose version set has certain specified properties. This is

a qualifier based on the history aspect of objects.

The first way in which we can qualify conceptual objects is by forming simple

and compound predicates on the values of conceptual object attributes. A

conceptual object attribute is one that applies to the conceptual object as a whole.

These attributes can be qualified in the same way that a simple attribute can. For

example, assume that the class Conceptual-Reports has an attribute called

Person-responsible-for that has a value that is the person that is ultimately

responsible for making decisions about a given report. We might like to specify the

subclass of the class Conceptual-Reports as all conceptual reports that have the head

of the Office Automation Group as the person responsible for them.

We can also form conditions on the membership of a version set. It is possible

to create class specifiers that restrict a class to be all conceptual objects of a given

type that have all, some or a fixed number of versions that satisfy a given qualifier.

For example, we might want all conceptual reports that have some versions that

were written by "John Smith". This is equivalent to:
Restrict [Conceptual [Reports],

lambda (cr)
For-some [Versions-of [cr],

lambda (v) written-by (v) = "John Smith"]]

We can also ask for all conceptual reports that have all versions that were written by

John Smith. The condition on the version set can also be quantified with an integer

to yield the class of conceptual reports that have three versions that were written by

John Smith.
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3.4.10.4 Class Specifiers with Control Properties

One of our basic assumptions about object management systems is that the

control information ought to be available to help manage the space of all objects.

As a result, we have promoted control information to the same level as other object

aspects. We, therefore, have primitives in the class specifier mechanism to form new

classes of objects on the basis of their control properties.

In the control section of an object schema, one defines various classes of users

that can have different access rights to objects of that class. Class specifiers can

contain qualifiers that describe conditions on this information. A qualifier can

produce a class of objects by specifying only those members of some existing class

that have read, write, or include access by some user class. For example, a class

specifier could generate the class of reports that were produced by the Lab for

Computer Science and that can be read by all members of the Office Automation

Group.
Restrict [Reports,

lambda (r)
and [produced-by (r) = Lab for Computer Science,

included-in [OA-Group, read-access (r)]]]

3.4.10.5 Class Specifiers with State

We provide specialized syntax for specifying a state machine that describes

,various interesting states that an object can be in and how it can get there. The

purpose of having this mechanism is to be able to access all those objects that are in

some particular state at some point in time. Class specifiers, therefore, have special

facilities for indicating classes of objects based on their current state.

There are three basic ways of specifying object state in a class specifier. They

are:

116



1. State with property. Since a state is a repository object, it can have
attributes of its own. It is, then, possible to specify all objects that are in
a state for which one of its attributes has a given value. This is simply
like any other object specifier that restricts a class on the value of an
attribute, except, here, the class that is being restricted is the class States.

2. Previous or future states. It is useful to be able to ask for all objects that
are some number of states before or after a state with some specified
property. The number is given as some integer.

3. Waiting for state transition. A state machine for an object can be waiting
for some interesting condition. Since transitions are made on the basis
of the object's changing from belonging to one class to another, the
interesting condition is given as a class specifier (the one that must be
satisfied if a transition is to be made).
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Chapter Four

Examples of ODM Use

In this Chapter, we present an extended, annotated example of the description

of several object types in terms of the Office Data Model. The example will be

presented in the context of a scenario of producing a final report for a technical

R&D project within a large corporation. The purpose of this example is not to

illustrate every aspect or use of an object management system, but, rather, to

provide the flavor of its use in the context of a concrete office application. We, then,

demonstrate how the Office Data Model can be used to handle some common office

situations. The syntax that is used in this chapter is explained in Appendix C and

summarized in Appendix D. We have occasionally used underlining that is not a

part of the formal syntax to emphasize certain parts of the definitions.

4.1 An Extended Example

In this example, the Office Automation Research and Development team

expects to produce many reports to document the progress of projects that they are

pursuing. The group has some conventions that it has developed with respect to

report production. In their view, a report consists of a set of chapters, and a

bibliography. It might also have an optional set of appendices. There exist many

other such views about how their information sources are to be structured. The

nature of these information structures will be described in detail in the next section.
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4.1.1 Document Related Classes

As we mentioned above, the report is a central information source for the

Office Automation Group. The schema for the class of Reports is given in Figures

4-1 and 4-2.

DEFINE CLASS Reports
Definition: Base

CONTENT
Chapters: Non-empty Ordered Set of Chapters

Read by Researchers, Write by Chapter-Authors
Change-Trigger
Constraint-Trigger

Appendices: Ordered Set of Appendices
Read by Researchers, Write by Researchers
Change-Trigger

Bibliography: Bibliography
Read by Home-Group
Write by Users where Equals(Author(Thisobject))

ATTRIBUTES
Author: Users

Write by Author(thisobject)
Date-of-Creation: Dates
Length-in-pages (Output-devices): Integers

Derived by Length-Program
Contains-word (String): True-or-False

Derived by Word-Containment-Program
Outward-Appearance: Report-Outward-Appearance

HISTORY
Type: Report-Types
Related-Project: Projects
Topic: String
Date-due: Dates
Done?: True-or-False
Send-copy-to: Set of Users

Figure4-1:Schema for the Class of Reports

The class of reports can be specialized to create interesting subclasses. For

-example, we would like to be able to speak about the class of Final-Reports. A final

report is a report that has a value of final for its type attribute. A final report has a

number of additional components and attributes, and its control requirements are

somewhat different from those for reports in general. The schema for final reports

is given in Figure 4-3.
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CONTROL
QA-Group = Users where Group="Office Automation"
PL-Group = Users where Group="Programming Languages"
Researchers = OA-Group or PL-Group
Home-Group = Users where Group=Group (author (thisobject))
Home-Group-Leader = Users where Group=Group (author (thisobject))

and role="Leader"
Group-Leaders = Users where role="Leader"
Chapter-Authors=Users where

Member-of [Image [Chapters(thisobject), author]]

Change-Trigger=
Define Trigger on Change

Object Set: Set thisobject to matching-object
User Set: Not (OA-Group)

Set OffendingUser to matching-object
Trigger program: Send-Message

On: thisobject, OffendingUser

Constraint-Trigger=
Define Trigger on Change

Object Set: Restrict where date-of-creation < 1/1/82
Set thisobject to matching-object

Trigger program: Error
On: "Object is out of date"

Read-Trigger=
Define Trigger on Read

Object Set: Set thisobject to matching-object
Trigger Program: Latest Version of

The Trigger-Program where name="send-read-msg-to"
on: author (thisobject), thisobject

Control for whole object:
Read By Researchers
Write By Home-Group
Include By Users
Read-Trigger

Additional Owners: Researchers
Subclasses by: Researchers

Figure4-2:Schema for the Class of Reports (cont.)

A final report contains an additional component called Group-Publication-List.

Notice that this component is in addition to the other three components defined in

Figure 4-1 for reports. These three components are inherited from the parent class.

The attributes that are defined in that object schema (i.e., Figure 4-1) are also

inherited by objects in the Final-Reports class. The control specification and the

trigger program that both attached to the Group-Publication-L ist component involve
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DEFINE CLASS Final-Reports
DEFINITION: Reports where type="final"

CONTENT
Group-Publication-List: Bibliography

Read by Researchers
Change-Trigger

ATTRIBUTES
Available-for-comment: True-or-False

Write by Leader
Read-by: Users

HISTORY
For-year-ending: Year
Research-Groups: Groups

CONTROL
Leader=Users where group="OA" and role="Leader"
Additional Owners: Group-Leaders
Subclasses by: Users where name="Stan"

Figure4-3:Schema for the Final Reports Class

definitions from the Reports schema. These definitions are inherited too, and would

only have different meaning if another definition for the same name occurred in the

Final-Reports control aspect.

DEFINE CLASS OAReports
Definition: Reports where Member-of [Author(thisobject), OAGroup]

CONTENT
Abstract: Ordered Set of Paragraphs

Read by Users, Write by Author (thisobject)

CONTROL
Additional Owners: OAGroup
Subclasses by: OAGroup

Figure 4-4:Schema for the OAReports Class

The OAReports class is also a subclass of the class Reports. The control

-specification in this class indicates that the owners of this class should be the

members of the Office Automation (i.e., OA) Group. This is legal since the

OAGroup is a subclass of the class Researchers. The definition for the class

Researchers occurs in the control aspect of the class Reports. This definition is
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inherited since it is not specially defined in the context of this class and this class is a

subclass of Reports. The users who can construct new subclasses of this class are

defined to be just the single user named Stan.

The class Chapters, the value class for the Chapters component of reports, is

defined in Figure 4-5. It is another base class like Reports. A chapter has two

components, both of which are sets. The first one is defined much like the

components that we saw in the Reports schema. The second component, Figures, is

defined to have a value set that is the Merge-members (i.e., Union) of the classes

Graphs and Texts.

DEFINE CLASS Chapters
DEFINITION: Base

CONTENT
Paragraphs: Set of Paragraphs
Figures: Set of Merge-members(Graphs, Texts)

Define for connection:
[Associated-Paragraph: Paragraphs where Part of thisobject]

ATTRIBUTES
Author: Users
Write by thisauthor

Date-of-Creation: Dates

HISTORY
Number-of-Versions: Integer
Longest-Version: Chapter where version of thisobject

CONTROL
Thisauthor=author(thisobject)

Figure 4-5:Schema for the Chapters Class

The Figures component is the collection of figures that are to appear in the

given chapter. Each figure can be keyed to a given paragraph in the Paragraphs

component. This association between figures and paragraphs is accomplished by

the additional definition that appears below the definition line for the component,

Figures. There, we find a definition for an attribute named Associated-paragraph.

This is an attribute of a connection between a Chapter and a Figure. For each
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figure in the Figures set, there is a connection between parent chapter and the

contained figures. Each of these connections will have an attribute called

Associated-paragraph which has as a value the paragraph to which the given figure is

keyed.

DEFINE CLASS Paragraphs
DEFINITION: Base

CONTENT
Body: Text

ATTRIBUTES
Creator: User
Date-Created: Date
Contains-Word (word: String): True-or-False

HISTORY

Figure4-6:Schema for the Paragraphs Class

The Paragraphs class, another base class, has a single component named Body

which contains the string of text that is the paragraph. The class Text is primitive to

the system. It has an empty history aspect. This means that the system will maintain

paragraphs as conceptual objects (i.e., in version sets) with no additional restrictions

or attributes. If the keyword HISTORY were absent from the schema, paragraphs

would not be maintained in version sets.

4.1.2 A Graph

The Office Automation R&D Team also makes use of graphs to communicate

business information to their monitoring agencies. They will often plot such things

as expenditures over time or system cost as a function of memory size. These graphs

are stored in the repository, and certain important aspects of them are described in

ODM. This makes it possible to retrieve graphs as well as documents and document

components with the same retrieval commands.
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The schema for the class Graphs is given in Figure 4-7. Notice that it has a state

machine defined as a part of its history aspect. This state machine has two states,

one that represents a state waiting for the graph to be approved for release and

another state that is entered when the graph is approved. The attribute,

Graph-Status has a value one of the two attributes from the machine

Graph-Status-Machine. The states in this machine are repository objects, each

having an attribute called Condition. This attribute can have a value of done or

pending, thereby, partitioning the states of the machine into two sets, the

pending-states and the done-states. In this case this dichotomy is not very rich

because there are only two states. However, in a more complex state machine, it

might be interesting to look at states that are either done or pending.

A graph is made up of axes, curves, and a title. Of these components, axes and

curves are distinct repository objects and, therefore, must have object schemas of

their own. The schemas for these two classes are given in Figures 4-8 and 4-9.

These schemas are rather simple and should be understandable in the context of the

preceding examples.

Curves are, further, made up of points which are simply a. pair of real numbers.

If we change one of these numbers, we will get a different point, so they are defined

to be part of the content. They are also very simple objects, and it was not

considered necessary to define any other aspects for them. The Points schema is

given in Figure 4-10.

-4.1.3 Some Record-Like Objects

The object management system should be able to deal with objects that behave

like ordinary records in the sense of conventional database management. To model

objects of this kind, we must only define the Attributes aspect in the object schema.
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DEFINE CLASS Graph
DEFINITION: Base

CONTENT
Axes: Axes
Curves: Set of Curves
Title: String

ATTRIBUTES
Author: Users
Approved?: One of {true, false}

Write by Leader

HISTORY
Send-to: Users
Processing-state: Graph-Status-Machine

Graph-Status-Machine=
Define State-Machine

Statel:
Condition: pending
When Entering (Graphs where approved?=true)
Do Send-Msg-To(Leader)
Goto State2

State2:
Condition=done

CONTROL
Leader=Users where group="OA" and role="Leader"
OA-Group=Users where group="OA"

Control for whole object:
Read by OA-Group
Write by OA-Group

Figure4-7:Schema for the Class of Graphs

DEFINE CLASS Axes
Definition: Base

CONTENT
X-Start-Point: Real
X-End-Point: Real
X-Tick-Spacing: Real
Y-Start-Point: Real
Y-End-Point: Real
Y-Tick-Spacing: Real

-ATTRIBUTES
Creator: Users

HISTORY
Useful-for: Plotting-goals

Figure4-8:Schema for the Class of Axes

An important class that is reCord-likt2fs the class of Users. The system uses this



DEFINE CLASS Curves
DEFINITION: Base

CONTENT
Points: Set of Points

ATTRIBUTES
Increasing?: True-or-False

Figure4-9:A Schema for the Class of Curves

DEFINE CLASS Points
DEFINITION: Base

CONTENT
X-Value: Real
Y-Value: Real

Figure4-10:A Schema for the Class of Points

DEFINE CLASS Users
DEFINITION: Base

ATTRIBUTES
User-name: String
Group: Groups
Role:Roles
System-status: String
Salary: Integer

CONTROL

Read By Group(thisobject)
Write By Users where System-status="Wheel"

Figure4-11:A Schema for the Class of Users

class to manage the control aspect of other object types. It contains an object (i.e., a

record) for each user of the system. This class must be present in all object

management system implementations, but the attributes of each user record can be

configured to meet the special needs of a particular application environment.

The user class for our Office Automation Group example is given in Figure

4-11. In this case, we have defined five attributes that apply to each user. These

attributes are used in defining subclasses of Users that are to be given certain

privileges.
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4.2 Example Interactions

Now that we have described the data that comprises this example, we will

demonstrate the ways in which the object management will handle some realistic

interactions. These interactions include retrievals and modifications of the basic

data that has been described previously in this chapter.

4.2.1 Retrievals

The retrieval language that is provided by the class specifier mechanism can be

used to specify interesting sets of objects. These set specifications can be issued to

the object management system at top-level in order to retrieve some information

that is relevant to making some decision. They can also used in the definition of the

data itself to describe relevant sets. We have seen examples of this in the definition

of user sets and the definition of restriction subclasses as in Figure 4-3.

Let us begin by looking at a very simple retrieval. We can specify the class of

all graphs that have only increasing curves. The class specifier that would produce

this set is shown in Figure 4-12.

Graphs where
Contains all Curves where

Increasing?=true

Figure4-12:A Simple Class Specifier

This class specifier contains a condition on the class Graphs which contains a

second condition on the set of curves in each graph. The first condition is on a given

graph. It requires that the second condition be true for all the Curves components

of the graph. The second condition requires that the increasing? attribute have a

value of true.
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Now, let us look at a somewhat more complex retrieval. Suppose that we were

interested in the set of all reports that have Stan as an author and that contain

graphs that are in a "done" processing state. The class specifier given in Figure

4-13 will select exactly those objects. It contains two conditions on the class Reports.

The first simply restricts Reports to those that have a value of "Stan" for their

Author attribute. The second restricts Reports to those that contain a graph that

satisfy an additional condition. That condition is that the processing-state attribute

of the conceptual graph object should have as a value a state that has a value of

"done" for its condition attribute.

Reports where
author="Stan" and
contains Graph where

Processing-state in
States where condition="done".

Figure4-13:A Class Specifier

Issuing this class specifier to the top-level of the object management system

causes the system to construct a set of reports that satisfy the qualifying condition.

The user can access members of this set one at a time. Let us assume that the user

who issued the request in Figure 4-13 has a value of Programming-languages for the

Group attribute of the corresponding User object (i.e., for that user). This means

that from the point of view of the Reports class, that user is at least a member of the

PL-Group and Researchers control groups. As the user tries to access (i.e., read) a

"report that was returned by the given class specifier, the system checks to that that

operation is allowed. The control aspect of the schema for reports (see Figure

4-2 says that read access is granted to all members of Researchers. The access is

- allowed.

There is also another effect of the user's reading a given report. The author of

that report is sent a message that informs him about the fact that the given user is
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reading his report. This is a result of associating the Read-Trigger with report

objects. This trigger matches the reading of any report by any user, and will activate

a program on the author of the report and the report as arguments. The author is

the value of the author attribute for the given report. The message is prespecified

except for two fields that are filled in with the name of the author and the name of

the report.

One could argue that this read trigger would cause an over-production of

message traffic. Every time a report is read, some user gets set a message. If this is

not the desired behavior, one can redesign the change trigger to be more selective

about the class of objects or the class of users that it matches. The object

management system gives workstation users the flexibility to design whatever

behavior suites their environment

4.2.2 A Simple Modification Example

As a simple example of a modification, let us suppose that a member of the

Office Automation Group decides that a graph is acceptable for publication. This

user, therefore, decides to change the approved? attribute to true. The system checks

the authority of this user and discovers that since his role attribute is not equal to

leader, this change request must be denied.

The user, then, looks at the values of the attributes for his corresponding user

object. There is no problem with this, because the schema indicates that users can

read User objects for any members of their group, including their own. The value of

the role attribute is equal to group-member. The user, then, tries to change this value

so that his access privileges can -be expanded. The system prevents this action since

one must have system-status equal to wheel in order to change the value of an

attribute of a user.
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The user, then, issues the following class-specifier to the top-level object

management system:
Users where system-status="wheel"

The result of this request is a list of the users who are system wheels. The user can

ask one of these users to make the change for him.

4.2.3 A More Complicated Modification Example

The previous example involved the modification of simple attributes. We will

now look at an example that involves changing the value of a component of a

structured object.

Let us suppose that there is a report R1 that is a member of the class

Conceptual-Reports. Further, let us assume that the chapter objects CI, C2, and C3,

are all members of the class Conceptual-Chapters. The relationship of these objects

is shown in Figure 4-14. The symbol 0 is used to represent a particular version off

an object (i.e., a simple object). The symbol lv that labels the two arcs represents the

act that those two components o the latest-version o R1 are latest-version references.

Suppose that John, a student in the OA-Group, is using the system. He iterates

through the members of the class Conceptual-Reports in order to find a report that

he needs. He finds the report called RI that seems interesting. He accesses R13 by

invoking the operation Latest- Version (Ri). He begins reading it which causes the

system to retrieve the first chapter by means of Get-Chapter-n (RI 3, 1). When this

operation is executed, the system first checks the access specifier for the operation

Get-Chapter-n. Since John is a member of the OA-Group, the operation is

performed. This causes an Evaluate-Reference to be performed on the reference

that is embedded in R13. Since this is a latest-version reference, the latest version of

C1 is produced (i.e., C12). The trigger for Get-Chapter-n is then invoked since John

is not the author of the report and the type of the report is "controlled". This trigger
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{0,0,0} R1

lv / \ lv
/\

C1 (0,0) {0} C2 (0,01 C3

Attribute definitions:
Author (R1) = "Stan"
Type (Ri) = "Controlled"
Date-of-Creation (CI) = 1/18/83
Date-of-Creation (C2) = 1/23/83

For Reports, Get-Chapter-n Operation has:

Access Specifier: Users where group = "0A"

Trigger:
Objects: Reports where type="Controlled"
Users: Users where not(name=author(Thisobject))
Program: Send-Message

On: Author (Thisobject),
"Someone is reading your report"

Figure4-14:Environment for Modification Example

causes a message to be sent to the author (i.e., Stan) telling him that someone is

reading his report.

John decides to change the report by adding C3 to it as the third chapter. He,

therefore, executes the following operation:
Set-Chapter-n (R13, 3, Create-Reference (Latest-Version, C3))

This inserts a latest version reference into the set of chapters of R13. No triggers or

access specifiers are applicable since this is not a repository operation*. John then

adds this new report object to the R1 version set by means of the operation

Add-New-Version(R1, RI). This operation will check the structural constraints to

make sure that any component that has changed is a member of the proper value

set**. After all this, the final structure for R1 is given in Figure 4-15.

*Components do not have a set operation from the point of view of the repository

**Is the new chapter object a member of the class of Chapters?
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{0, 0, 0, 0) R1
/ \/|\

/ /\I \
/ / \ \

(0,0) (0} (0,0)
C1 C2 C3

Figure4-15:Final State of Conceptual Report

4.3 How to Do Some Useful Things

There are many common situations that can be effectively modeled with the

facilities described in the previous chapter. Some of those situations are illustrated

in this section. Most of these examples have to do with providing alternate views of

the information stored in the repository.

4.3.1 Version-Set Views

Suppose that we have a conceptual object, R, that is a report. R will have

several versions, r,... , r5. Now suppose that only the first, third, and fifth of these

versions is available to the public as published versions of R. These three versions

have a value of published for their condition attribute. To the public, R should

appear to have only these three versions. This is a view of the conceptual object, R.

How is this view provided using ODM primitives? The definition of a class for

conceptual objects (i.e., objects with history) really creates two parallel classes, the

class of simple objects and the class of conceptual objects with elements of their

version sets drawn from the first class. For example, the schema for the class,

Reports, implicitly defines a class for conceptual reports. See the top of figure 4-16.

Moreover, defining a subclass of a class that has a parallel class of conceptual

objects will implicitly create a subclass of the class of conceptual objects. Suppose
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that the subclass is formed by restricting the members of the first class by a

predicate, P. The subclass of the conceptual object class, CC, is formed by creating

one new conceptual object for each member, x, of CC such that the new conceptual

object contains just those versions of x such that P(x) is true. Following this

procedure, version sets that have no members are not included in the new class. For

example, in figure 4-16, the subclass of Reports called Published-Reports contains

those reports that have a value of published for their condition attribute. The

subclass, Conceptual-Published-Reports is formed automatically to contain members

of Conceptual-Reports with versions for which condition is not equal to published

missing. An example version set is indicated in the figure under the class names.

Reports ------------ > Conceptual Reports
{vl,v2,v3,v4,v5}

subclass subclass

Published Conceptual
Reports --------------- > Published

Reports
{vl,v3,v5}

Figure4-16:A View of Version Sets Provided by Subclassing

4.3.2 Object Dependencies

It is often the case that a given object should be defined to have pieces that are

dependent on a piece of some other object or objects. An example of this

phenomenon is a set of comment forms and a summary database for those forms.

The forms are filled out by users to indicate their feelings about a particular paper.

The summary database is a set of records whose fields have values that are some of

the responses on the comment forms. Filling in values in the fields of the form will

cause the appropriate fields in the database to be filled in.

In Figure 4-17, the comment form for Smith has caused a record to be created
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CommentDB
CommentForm Name | Evaluation

Regarding: Fred's paper -------------------------
Commenter: Smith -------------- > Smith | Fair
Evaluation: Fair Jones Good
Comment: "You should

emphasize the final point."

Figure4-17:An Example of a Comment Form

in the Comment Database. The fields in this record are derived from the response

in the Comment Form.

We model this situation using ODM, by defining the attributes of the records in

the Comment Database to be derived attributes with values computed from the

corresponding Comment Form. That is to say that there is a derivation program

stored in the repository that will be invoked whenever the value of an attribute from

a Comment Database record is required. This program will take as an argument the

value of the Name attribute from the record.

A record in the Comment Database will be created by a trigger program every

time a new Comment Form object is entered into the repository.

4.3.3 Handling Outward Appearances

An interesting and important dichotomy exists between two broad classes of

objects. One is the logical objects that are manipulated by the object editors, and the

other is the outward-appeararrce objects that are actually "printed" on the available

output devices. The logical objects contain components that make sense in terms of

the basic object structure. For example, a report has logical pieces that might

include chapters, sections, and paragraphs. The outward appearance of an object

contains components that make sense with respect to the constraints of the output

medium and current printing conventions. For example, an outward appearance

object for a report might contain pages, columns, and lines as components.
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Moreover, the sizes of these pieces will be dependent on the physical characteristics

of the output device. If we print a report on a line printer, the number of words on

a line will be different from the number of words on a line if we were to print it on

the xerographic printer.

There is, however, a correspondence between the logical report and the

outward appearances for that report. Furthermore, there are outward appearances

for each of the components of the report. We feel that it is useful to be able to treat

these outward appearances as objects in their own right. One often uses visual (i.e.,

appearance related) cues to remember and retrieve objects. It is desirable to be able

to ask for all reports that have a graph in the upper right hand corner on one of the

first five pages. The object management system should be able to maintain this

correspondence in some convenient fashion, and we should be able to use class

specifiers to specify restrictions of the outward appearances.

Let us assume that reports only have chapters as components. The following

schema fragments illustrate the main features of one possible schema for keeping

the logical reports and their corresponding outward appearances synchronized.

In this example, changing a chapter in the chapter set of a report will cause a

trigger called Reformat-Trigger to be invoked. This trigger program will recompute

the outward appearance object for the report. This is necessary since any editing to

a chapter of a report will potentially require that the entire report be reformatted.

Adding or deleting text at one point in a chapter can have globally propagating

effects in the formatted version.

Another example of a situation that can be modeled using outward appearance

objects can be found in the management of screens as objects. A screen is an entity

that is very much like a form [65, 66] with which a user interacts with a database.
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DEFINE CLASS Reports
DEFINITION: Base

CONTENT
Chapters: Ordered Set of Chapters

Reformat-Trigger

ATTRIBUTES
Outward-Appearance: OWAP-for-Reports

CONTROL
DEFINE TRIGGER on Change
Object Set: All

Set Matching-object to thechapter
Trigger Program: Reformat-Chapter-Set

on: Outward-Appearance (thisobject), thechapter

DEFINE CLASS OWAP-for-Reports
DEFINITION: Base

CONTENT
Chapter-WAPs: Ordered Set of OWAP-for-Chapters

ATTRIBUTES
Logical-Report: Reports

DEFINE CLASS OWAP-for-Chapters
DEFINITION: Base

CONTENT
Pages: Ordered Set of Lines

ATTRIBUTES
Logical-Chapter: Chapters

DEFINE CLASS Lines
DEFINITION: Base

CONTENT
Line: String

Figure4-18:Schema Fragment for Outward Appearance Example

The user actually interacts with an outward appearance of a logical form. The

logical form does not contain any information about how the fields are laid out on

the screen. This additional information is the domain of the screen outward-

appearance objects.
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4.3.4 Maintenance of Formatting Databases

In a text formatting system such as SCRIBE [55], information concerning the

ways in which various document components are to be formatted are stored in

databases. The scribe databases are specially named files containing formatted

textual format specifications. It is difficult to make coordinated changes to one of

these scribe databases such that the effects of the change are propagated in an

understandable manner. It is also very difficult to query these databases in any ad

hoc way. For example, one cannot ask to see all types of environment types that use

a fixed width font.

An object management system should, however, make the above problems

easier to deal with. We should be able to design a set of schemas that can deal with

textual objects as well as specialized databases to handle their associated formatting

information.

DEFINE CLASS Paragraphs
DEFINITION: Base

CONTENT
Body: Text

ATTRIBUTES
Formatting-info: Environment-Format-DBs
Class-determined

DEFINE CLASS Environment-Format-DBs
DEFINITION: Base

ATTRIBUTES
Left-margin: Number
Right-Margin: Number
Spacing: Number
Type-face: One of (Regular, Bold, Italic}
Font-Family: One of {HelveticalO, TimesRoman12}
Blanklines: One-of {Ignored, Break, Kept, Hinge)

Figure 4-19:Schema Fragment for Formatting Database Example

The format database for a given document component is determined by its class

membership. In this case, paragraphs that belongs to the class Paragraphs will all
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have a particular Environment-Format-DB as the value of their Formatting-info

attribute. The particular database that applies is determined by the class to which

the paragraph belongs.

The names of the attributes are standardized and known to the program,

SCRIBE. All the attributes that apply to a given database need not be designated in

the schema for the object class. They can be inherited from classes of format

databases for which the given class is a member. For example, the

Environment-Format-Databases class might have a subclass named

Numbered-Environment-Fonat-Databases that contain formatting databases that

describe numbered environments such as enumerated lists. These databases have

another attribute called Numbering-Style that indicates whether the enumeration is

"numbered" with numbers (1, 2, 3,...) or letters (a, b, c, ...). This class will inherit all

attributes from its parent class.

4.3.5 Path-Dependent Attributes

A path-dependent attribute, a, for an object, x, is an attribute whose value

depends on how the object, x, was accessed. Assume that there exists a predicate,

Component-of(x,y), that is true if x is a component of y. Let us say that a path to an

object, x, is some sequence of objects, xi, .. ,x n such that for all i between 1 and

n-1, Component-of (xi+, xi). The value of the path-dependent attribute, a, of

object, x, depends on the path that was followed to arrive at x.

Consider a chapter, C1, that has a set of paragraphs as components. One of

- these paragraphs, P, might have a comment attached to it that applies to that

paragraph from the point of view of the chapter. It might say, "In my opinion, the

tone of this chapter does not really fit with the rest of the chapter." Since another

chapter, C2, could be sharing the paragraph, P, it would not be sensible for someone
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viewing P from C2 to see that value of the comment. There might be a different

value of the comment attribute from the point of view of C2. Then, where does the

comment value logically belong? The example comment does not apply to C1, and

it does not apply to the paragraph, P, in general. It also does not apply to the

connection between the chapter, C, and the paragraph, P. In this case, the comment

is the value of the comment attribute of the paragraph, P, from the point of view of

C, only. The comment, then, is a path-determined attribute.

The way that we would model this situation is with a parameterized attribute

that takes a set of objects as a parameter. This set of objects represents the path. In

most cases this path will be a single object, the immediate parent object of the given

object in the containment hierarchy. In the example, we would define an attribute

named comment for paragraphs. This attribute takes a single argument which is the

containing object (i.e., the chapter object). If we use C1 as the parameter, we will get

the example value used above. If we use C2, we will get some other result. Notice

that with this approach the user is responsible for keeping track of how the object

with the parameterized attribute was accessed.

4.3.6 User Interface Profiles

In a user-friendly system, a particular user should be able to customize the

interface to various application programs based on that user's own style of

interaction. Databases can be used to support this capability. The system could

provide a set of reasonable defaults that many users would find satisfactory. Those

that require changes would be able to set the values of attributes in the databases to

indicate their preferred style of interaction. They could set the attributes directly or

there could be a special-purpose interface program that would question them about

the available options. Sometimes these options would depend on the characteristics

of the user's hardware. For example, if the user is running on a bit-mapped display,
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an iconic interface would be appropriate, whereas, if the user is running on a

character oriented terminal, some form of textual interface would have to be run.

The object management system would store a class of objects called

User-Profiles that would specify the way in which a given user is to interact with a

given application. The current state of these objects would determine the way in

which the interface programs would behave. The information in these databases is

also potentially available to users and programs via the same ODM interface. Many

current interface programs capture this type of information in an idiosyncratic form

making it inaccessible from other contexts.

The databases that capture the user profile information can be configured by

the workstation designer to match the types of interfaces that are available. Our

system does not advocate any particular configuration. An example of a possible

design for the class of User-Profiles follows:

Define Class User-Profiles
Definition: Base

CONTENT
User: Users
Program: Programs where type="subsystem"

ATTRIBUTES
Style: One of {Iconic, Textual)
Selection: One of {Pointer, Menu)
Prompt-line-position: One of {Top, Bottom)
Resolution: Number

Figure4-20:Schemas for the User-Profile Example

In this example, we have a set of objects that are defined by two pieces of

information, a user and a program. Each of these objects defines a user interface

protocol for a given user for a given program. Each of these objects has a number of

attributes that indicate the way in which that interface is defined. For example, the

attribute Prompt-line-position indicates whether the system prompts appear at the

top or the bottom of the screen.
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4.3.7 Connections as Objects

We have previously indicated that objects can have components. A component

represents a connection between the contained and the containing object. Objects

can have a variety of attributes, each one with an object or set of objects as a value.

A component or attribute involves a connection between the given object and the

value of that component or attribute. In the simplest model, the connections are a

reference to some repository object. Given an object and a component name, we

can follow the named connection to another object. Here the connection (i.e., the

reference) has no additional structure.

In our object management system, we allow much greater structure to exist for

a connection. In fact, we would like to be able to treat some connections as objects

in their own right. Connections can have attributes and access rights. It is also

possible to retrieve a set of references that satisfy a given condition.

A connection is really a repository object that references another repository

object. We, therefore, have a class called References. This class has a schema that

describes the semantics of references in the same way that a schema describes the

semantics of any other class of objects. Subclasses of References can be created to

describe various kinds of references. For example, the class of references that can

be connected to chapter objects is a subclass of References.

It is possible to get the object to which any reference refers. We call this

dereferencing the reference. Performing the Get-Component or the Get-Attribute

operations on an object causes the reference that is standing for the component or

the attribute to be retrieved. This involves dereferencing the reference. The same

sort of behavior should occur if we interpose an object from the class Connections

between the containing and the contained objects. The two operations mentioned

above must be aware of this special object class. When one of these object is
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invoked, the code for the operation gets the connection object and applies its

dereference operation to it automatically. This will produce the proper referent.

Alternatively, it is possible to get the reference to the connection object by

means of the Get-Reference operation. This reference can be manually dereferenced

to yield the connection object. We can then access any attributes of the connection.

An attribute of a reference makes some statement about the connection. For

example, if we had a report with chapters, there might be a reference type that is

defined between reports and chapters. These references have an attribute called

date-connected which makes a statement about when the given chapter was

connected to the given report.

4.4 Advantages of Approach

This section looks at the ways in which the approach to object management that

has been presented in this thesis differs from the ways in which one might maintain

similar information using more conventional approaches.

Let us look at a comparison of the example given in Sect-ion 4.1 with the same

application handled by a conventional database approach. We will use the

relational data model [13] as our point of reference to illustrate these points. In our

examples, relations are designated by the relation name followed by a list of

domains (contained in parentheses) for that relation. The primary key of each

relation is underlined.

One way to represent the report class that was defined in Section 4.1 is by

means of the relations that are given below:
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Reports (Report-Id, Bibliography, Author,
Date-of-Creation, Length-in-Pages, Contains-Word,
Outward-Appearance)

Chapters (Chapter-Id. Author, Date-of-Creation)
Appendices (Appendix-Id, Author, Title)
Paragraphs (Paragraph-Id, Body, Creator, Date-Created, Contains-Word)

Report-Chapters (Report-Id, Chapter-Id)
Report-Appendices (Report-Id, Appendix-Id)
Chapter-Paragraphs (Chapter-Id, Paragraph-Id)
Appendix-Paragraphs (Appendix-Id, Paragraph-Id)

The Reports relation contains one tuple for each report in the Reports class. Each

report is assigned a unique identifier (i.e., Report-Id) that is used to refer to this

report from other contexts. The unique identifier for the bibliography of a report is

stored in the Bibliography field of a Report tuple. The relationship between a report

and one.of its chapters or a report and one of its appendices is captured by a tuple in

the either the Reports-Chapters relation or the Reports-Appendices relation

respectively.

In order to retrieve an entire report including all of its components, we must

use a program like the following:
Get-Whole-Report (X) <-

Set-Chapters [Answer,
For-each-member [
Restriction [Chapters,

lambda (ch) Member-of [Chapter-Id (ch),
Project [
Restrict [Report-Chapters,

lambda (c) Report (c) = Report-Id (X)],
Chapters]]],

lambda (ch) Get-Whole-Chapter (ch)]]
Set-Appendices [Answer,

For-each-member [
Restriction [Appendices,

lambda (ap) Member-of [Appendix-Id (ap),
Project [

Restrict [Report-Appendices,
lambda (a) Report (a) = Report-Id (X)],

Appendices]]]
lambda (ap) Get-Whole-Appendix (ap)]]

Set-Bibliography [Answer, Bibliography (X)]
Return (Answer) *

This is a complex piece of code. Its structure depends on the particular way in

which the components of a report are associated with that report. In this case, the
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chapters and the appendices are associated differently from the bibliography. The

chapters and the appendices are linked to their containing report by means of

additional relations, while the bibliography is linked by a field within the report

tuple. Moreover, notice that this piece of code makes use of two additional

programs, Get-Whole-Chapter and Get- Whole-Appendix. These are equally

complex programs that depend on the structure of the relations that represent the

components of the chapters and the appendices.

With our view of object content, it is possible to write a single simple program

that will return an entire object given its root. This code is given below:
Get-Whole-Object (X) <-

Iterate-Over-Components [X,
lambda (c) If [Set?(c),

Set-Component [X, c,
For-each-member [c,
lambda (r) Get-Whole-Object (r)]].

Set-Component [X, c,
Get-Whole-Object (c)]]]

This program will work for any object type that has been declared to contain

components (i.e., have content). It can be supplied as part of the system code

making the notion of the entire content of an object something that is primitive to

the object management system. This relieves the user from having to write

complicated and idiosyncratic procedures as in the example above.

Since the data model captures the component structure of objects directly, the

system can make use of this information to support other parts of its functionality.

For example, the inheritance of attributes via the component hierarchy is made

possible by this feature. The representation of which subparts of an object are its

components makes inheritance by components something that the system can deal

with.

How are versions of these objects handled? With relations, one might choose to

store a version number in each tuple that represents a component of a conceptual
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object. This version number will become part of the primary key since it is used to

distinguish between instances of a single conceptual report (i.e., reports that have

the same report-id). In this way, the definition of the Reports relation becomes the

following:
Reports (Report-Id, Version-Number, Bibliography, Author,

Date-of-Creation, Length-in-Pages, Contains-Word,
Outward-Appearance)~

In this view, there is no identifiable entity that corresponds to the version set as

a whole. There is, therefore, no place to attach attributes of for the conceptual

object. If we want to include conceptual object attributes, we must invent another

relation that contains domains for each of these attributes. That relation might look

like the following:
Conceptual-Reports (Report-Id, Type, Related-Project, Topic,

Date-due, Done?, Send-copy-to)

This separation into two distinct relations is unnatural. The relationship between

these two relations is expressed only in their names.

Also, since there is no object that corresponds to the version set, it is impossible

to provide a locking schema that allows only one process to add new versions to a

version set while other processes are concurrently reading old versions. There is

nothing with which to associate the lock. Locking the Reports relation is too course

a granularity. This prevents other processes from accessing any reports. Locking

any one tuple for a report R does not achieve the desired effect since anyone can

add new tuples with a Report-Id equal to the Report-Id for R.

Related to this is the problem of maintaining the integrity of the version

- numbers. There is nothing to prevent someone from entering a new report tuple

that has a version number that is completely out of sequence. Let us suppose that

version sets are implemented by a version numbering scheme in our object

management system. Since the actual implementation of the version set mechanism
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is hidden from the user the determination of the version number is localized to one

specific module, the operation Add-New- Version.

It is also impossible to pass a conceptual object as a parameter to programs.

This is useful, for example, for query programs that are going to choose the version

of an object that has the fewest components. This type of program takes a

conceptual report object as an argument and returns the desired element. The

program can rely on the fact that the object that is passed to it can have any of some

standard set to version set operations applied to it. In the relational example, if we

pass the Report-Id to such a query program as an indicator of the conceptual object,

then all relations that can store multiple versions of an object must obey this unique

identifier convention.

The class mechanism provides several benefits over the relational approach.

First, a given repository object can be a member of many classes. In the relational

model, it is impossible to have an object that is a member of more than one

collection. A report record can only occur in a single relation (i.e., the Reports

relation). If there is a representation of the same report object as a tuple in some

other relation, that is linked by a common identifier such as the report-id, there is no

way to enforce the identity of these two tuples. If one is deleted, the system cannot

know to automatically delete the other. There is no real notion of the object itself.

Consider the additional relation:
Long-Reports (Report-Id-, Version-Number, Number-of-Chapters)

This represents the additional attribute Number-of-Chapters that is defined for long

reports. The correspondence between the original report and a given long report is

made by the Report-Id and the Version-Number attributes since they are the keys of

both relations. If a given report is deleted by an application program, that program

must know that it must also locate the corresponding long report record (as well ass

any other similar qualifying relations) and delete that too.
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Unlike the relational model, our model supports the notion of access control at

the most primitive level. It is not handled by a system that is build on top of the

basic data modeling mechanism. This makes it possible to access this information in

much the same way that one would access any other information about objects. We

can ask the system to produce all reports that can be read by Smith.
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Chapter Five

Architecture

5.1 System Architecture

In this chapter we will explain the basic system modules, their functions, and

how they communicate. We will also describe some general approaches to building

such a set of modules. The descriptions in this chapter will be high-level; detailed

descriptions will be deferred to later discussions.

5.1.1 The System Modules

The design of our object management system involves six identifiable modules.

Each module has a well-defined, functional purpose that will be described in some

detail in this section. The details on how to build each of these modules will be

deferred to a later chapter on implementation.

The six modules are listed in Figure 5-1. The lines that connect the modules

indicate a dependence relationship. That is, for two modules connected by a line,

the module at a higher level makes use of the abstractions presented by the module

at the lower level.

We will now sketch the functionality of these six modules:

1. The Object Filing System (OFS) forms the lowest level of the object
management system architecture. It is similar to the file system
component of a conventional operating system. It has the capability of
storing objects archivally. It is much like a laundry in that when a user
presents an object to the system, it takes possession of the object and
gives the user back a ticket that can be redeemed at some future time for
the original object. We call this ticket a repository key.

148



Interfaces

Class Mechanism (CM)

Predicate Support (DML)

Individual Object Semantics (IOS)

Object Storage System (OSS)

Object Filing System (OFS)

Figure5-1:The Basic System Levels

2. The Object Storage System (OSS) adds the view that repository objects
are made up of other objects and that conceptual objects consist of a set
of versions. One of the functions of the OSS is to break a complex,
structured object into its constituent pieces and store them each as
separate repository objects. For example, a report is often created using
a text editor as if it were a single object. When this report is stored in
the repository, the OSS will explode it into its component chapters as
well as exploding each of these chapters into its component paragraphs.
The complete set of objects (i.e., the paragraphs, the chapters, and the
report) are then each stored by the OFS.

The OSS is also responsible for the maintenance of the version sets that
are part of a conceptual objects. Whenever a new version of a
conceptual object is created, the OSS places in the proper version set.
The OSS will also propagate a given change to version sets of containing
objects if the object schemas indicate that this is appropriate.

3. The Individual Object Semantics (lOS) module is responsible for
maintaining the additional object semantics that is described in an object
schema. For example, the attributes of a graph or the triggers that are
associated with a chapter set in a report are supported by the IOS.

4. The Predicate Support module (DML) is akin to data manipulation
languages of conventional database systems (thereby, the acronym,
DML). This module provides facilities for processing class specifiers
and producing sets of objects that satisfy a given class specifier. It makes
use of all the semantic capabilities that are supported by the previous
three modules.
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5. The Class Mechanism module (CM) creates an environment in which all
the objects in the repository are partitioned into relevant classes.
Whenever a new object is placed in the repository, the CM module must
decide to which classes the object belongs. The CM module must also
be able to manifest all the members of a given class.

6. The Interfaces module is a collection of interface programs to assist the
user in searching for relevant information from the repository. There
are several interface protocols supported by the system at any point in
time. Each interface protocol is suited for a different style of interaction.

Users interact with the system at the level of the interface modules. A system

designer, however, will often add things at the lower levels. For example, when

adding a new object type to the system, a designer may have to write programs that

logically belong to the IOS or the OSS level.

5.1.2 Process-Level Architecture

There are several alternatives to the way in which the object management

system is configured within the process space of the workstation.

The first and simplest configuration has the object management system as a set

of programs residing within the address space of the application program. In this

scheme, each application would have its own copy of the object management

software. There would be no communication between the object management

modules. This works for repositories that are not shared, but makes it difficult to

synchronize and control the activities of multiple workstation users. This solution is

only good for true personal computers.

The next configuration has a single object management process that runs in its

own address space. Each of the application programs reside in their own process

and communicates with the object management process via well-defined
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communication paths. The nature of the communication along these paths is worth

some discussion.

We would like the use of our object management system to be independent of

the language in which it is implemented. One should be able to communicate with

the object management system from programs that are written in different

programming languages. This situation is illustrated in Figure 5-2. In this figure,

MDL [20], CLU [40], and PASCAL are all general purpose programming languages.

Even though our object management system, ENCORE, is written in MDL, we

ultimately do not want to restrict our user base to people who write or use MDL

programs. This artificially limits the number of potential users as well as limiting

the potential sharing of information between different user groups.

MDL CLU PASCAL
Program Program Program

I I I
I I I

Object
Management------->Disk

System

Figure 5-2:Example Process Space

In order to accomplish this type of information sharing, we establish

communications conventions along the paths of Figure 5-2. That is, the external

representation for objects that are transferred between the processes must conform

to some standard. We assume that all object types for each programming language

environment can be converted to this standard. The standard involves

predetermined ASCII character sequences to indicate the relationship of the

external data representation to the corresponding part of the ODM schema.

In order to make the translation from the internal representation of the
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application to the external representation of the communication paths, as modular

as possible we adopt a scheme that is very similar to Herlihy [32]. In this scheme,

every type that is to be communicated must include a definition for an encode and a

decode operation. Encode converts from the internal to the external representation,

and decode converts from the external representation to the internal representation

for the receiving environment. The act of transmitting a value of some type will

cause the appropriate encode operation to be invoked. the act of receiving a value

will cause the corresponding decode operation to be invoked.

The development of a suitable external representation for ODM objects is

beyond the scope of this work. It would resemble the protocol given in Herlihy [32].

An alternative to this scheme is to pass the internal representation and the

operation programs to the receiving program. The receiving program could then

interact with the object by invoking the operation code that it received with the

object. This works if the receiving program exists in an environment in which these

operations can execute. For example, the receiving environment might have to be

running on a particular processor, or a floating point unit might be required. If the

machine code for the operations will not run in the receiving environment, we might

be able to pass the operation source code. The source code could then be

interpreted on any processor, assuming an interpreter exists in that environment.

We reject this solution be-cause it is potentially very inefficient to transmit large

amounts of code back and forth and because it potentially compromises the security

and integrity of the data. Since we are giving the receiving program the internal

representation, it could perform incorrect transformations to the data. It could also

discover more information than it had a right to by rummaging through the data

structures.
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5.2 Program Architecture

The programs that support the semantics of object types can be supplied by the

system as a default implementation, or else it can be supplied by the system

designer. This basic approach to system building is sketched in this section.

5.2.1 The Basic System Paradigm

The object schemas provide the high-level, integrated interface to the

repository. The complete collection of object schemas makes it possible for users to

use objects of disparate types together. The object semantics that is expressed in

these schemas is supported by a set of abstract data types [39] that include

operations that are implemented in some general-purpose programming language

(e.g., in this case, MDL).

How does the mapping between high-level object schemas and the underlying

programming types occur? We provide an intermediate level that contains

programs that express this mapping. This structure is illustrated in Figure 5-3.

Schemas

Mapping Programs

MDL Data Types

Figure 5-3:Object Mappings

These mapping programs can come from two sources.

1. The system. The user can construct a set of schemas for the system to
process. The system understands the intended semantics and provides
default implementations. These implementations are guaranteed to be
correct, but may not be as efficient as possible. This provides a way to
get new object types working quickly without additional low-level
programming. This capability is useful for designers to test some new
ideas or for non-experts to get some specialized application running.
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2. The user. In this case, the user who is a programmer can create
programs that implement the functionality that is expressed in some
object schema. This implementation can be tailored to the intended use
of the object. It can be as efficient as possible. For a given ODM
semantic feature, we provide a specification of what programs must be
written and how they should behave. This set of specifications will
appear in a later chapter.

It is often the case, that an expert user who is creating a complex new
application, like a text editor, must be allowed to choose arbitrary
implementations in order to achieve the performance that is demanded
by his user community. For this reason, we feel that it is essential to
allow this type of capability for customizing the system. The object
types that have been created with user provided implementations should
be indistinguishable from objects that have their implementations
provided by the system. Any aspect of an object that can be described
by ODM should be implementable by a user.

With reference to Figure 5-3, this paradigm allows access from the top down by

non-programmers or from the bottom up by computer experts. We find that this

approach provides the flexibility that is required in a workstation environment
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Chapter Six

The Program (ENCORE)

This chapter is a description of some of the basic structures that are used in a

prototype version of the object management system called ENCORE (Extensible

and Natural Common Object REsource). The primitive programming language

types and their operations out of which the higher-level object management system

facilities are built will be described in this section. We believe that this set of

facilities forms a base for supporting the construction of object management systems

in general.

6.1 Object Repositories

At the lowest level of the program, there is a module that implements a file

system for objects that are maintained by the object management system. The file

system provides the interface between the higher-level modules and the disk.

6.1.1 Conventional File Systems

Systems that deal with data objects that must be preserved from one working

session to another need some form of archival storage facility. In conventional

operating systems, this is normally provided by the file system. At the simplest

level, a file is a collection of data that can be stored archivally associated with some

unique name. During some ,future session, the file system can produce that

collection of data by presenting it with the previously assigned name. .

155



The structure of the file system is usually very limited and inflexible. A file is

limited in terms of the degree of interpretation of the data that it contains. It is

either considered to contain some special set of objects (e.g., records) that are

obtainable by means of specialized access methods, or else it is considered to be an

uninterpreted collection of data. The structures that are available in the file system

for describing the data in a file are usually very difficult to customize or change. For

example, if the date of last access is not part of a file descriptor, it is impossible to

add this additional piece of information without making changes to the systeni

internals.

6.1.2 The Object Filing System

We will now describe the overall characteristics of the file system or repository.

This description will include the general assumptions and programming techniques

that will be used to build the system. Specific facilities that will be built on top of

this facility have been described in a previous chapter.

We feel that it is very important in the office workstation environment for the

file system, or as we shall call it the repository, to take an active part in the

management of objects. This requires that the repository have some degree of

knowledge about the semantics of the objects that it stores. We also feel that a

uniform approach to the description of the objects that are in the repository will be a

step toward achieving integration of the subsystems that will be running on the

workstation.

The repository is the place in which objects that are created by the applications

programs are stored. These objects are data structures whose meaning is defined by

the programs that implement their abstract operations. These programs are part of

the applications packages. For example, the document editor implements the

operations that are available for modifying a document.
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At the simplest level, the repository allows an application program to store an

object that has been created in an application that is written in some arbitrary

programming language. The act of successfully storing the object will return to the

program a unique identifier, or repository-key, that can be used to retrieve the object

at an arbitrary time in the future. We will defer, for now, how this key is

remembered from session to session. If a program has a key, it can be guaranteed

the ability to get the object which was stored under that key if that object still exists.

It will always be the case that nothing else will ever be stored under that key. Given

a key, the repository will always produce the original object that was stored under it

or an indication that the original object has been deleted.

The workstation environment is characterized by the concurrent manipulation

of objects by multiple users. If a user could store an object in the repository, and

that object could be modified by another user or program, then a key that at one

time referred to a given object may at some later time refer to a modified version of

that object. There is no stability of reference; there is no way to guarantee that what

I stored yesterday under a key that I now possess has retained its state.

In this system, we view the immutable repository as a place in which stable

objects are stored. Once an object is stored there under a particular key, it can never

be changed. There is a one to one correspondence between repository-keys and

objects in the immutable repository. Therefore, if a user gets a key for an object,

then that user can safely assume that that object will not change. This is different

from most file systems in which a user can over-write a copy of a given file. It is

different from current database system technology in which a user is allowed to

change the contents of a record that is referred to by some key.

There are three basic operations on this repository. They are:

1. Repository-put: Repository X Object -> Repository-Key.
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Repository-put takes a repository and some programming language
object as an argument and returns a repository-key as a result. As a side
effect, the given object is stored in the given repository.

2. Repository-get: Repository X Repository-Key -> Object.
Repository-get takes a repository and a repository-key that was the result
of a previous repository-put operation and returns the previously stored
object as a result. Repository-get is the inverse of Repository-put.

3. Repository-delete: Repository X Repository-Key -> Repository.
Repository-delete takes a repository-key as an argument and removes the
correspondence between that key and its associated object. The system
must not reassign the key to some other object as the result of another
repository-put operation. If it did, then a user (i.e. some program) that
had a key with the expectation of being able to retrieve a particular
object could have an undesirable effect. The original object could be
deleted, a new object could be reassigned to the old key, and a
repository-get operation on the old key would get the new object. The
desired behavior would be for the system to alert the user that the old
object had been deleted. We will explore how this can be accomplished,
and how additional information (e.g., who deleted it) can be maintained.

6.1.3 Mutable Repositories

Changes to objects are still possible within the context of the immutable object

repository. The concept of object changes is maintained by another type of object

called a version set. Version sets were introduced in Chapter 3. Version sets are

,sored in the mutable repository. A mutable repository is just like an immutable

repository except that it has the following operation available:

- Repository-replace: Mutable-Repository X Repository-key X Object ->
Mutable-Repository.

This operation stores the given, object in the repository under the given key. The

key must already exist with respect to the repository.
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There seems to be no benefit from requiring that there be versions sets for

version sets, etc. In any case, this process of constructing multi-level version sets

must stop somewhere with some object that can actually change in place. We have

chosen to have this occur at the first level of version set. Therefore, all version sets

will be in the mutable object repository. The members of these version sets will be

members of an immutable object repository.

Some objects do not need to incur the overhead of the version set mechanism

and, therefore, should be allowed to change in place. That is, for some objects, it

should be possible to change a field or a component without having to create a new

repository key. Objects of this type are also stored in a mutable repository. Mutable

objects do not have a system maintained history aspect

Often an object contains some mutable and some immutable parts. We allow

objects to be fragmented across the two repository types. Some portions of a

primitive object like its attributes can change in place. These attributes, then, are

stored in a mutable repository. The content of an object is by definition read-only

and, therefore, stored in an immutable repository.

6.1.4 Object Explosion

Very often objects are produced and manipulated by their editors in such a way

that what appears to the user to be a single object is in reality many objects. When a

report is created by the text editor, that report is often a collection of chapters which

in turn are a collection of paragraphs.

Creating a single report might produce scores of component objects. The

repository will store each of these component objects as distinct entities. This

implies that the act of writing a complex object to the repository often consists of

exploding that object into its constituent pieces.
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The Repository-put operation on an object X calls an Explode-object program

which recursively calls Repository-put on each of the components of X. This

recursion continues until objects are encountered that have no distinct*

components. As the recursive calls return, they each write out the object that they

were called with and return the repository key of that object. This key is used to

construct a reference that is inserted in the next higher level object in place of the

original component. This requires that the data structure slot for each component

must be able to accommodate objects of the basic type for that component or of type

reference.

6.2 Useful Object Types

In this section we will discuss some of the primitive types on which the object

management system has been built. We feel that they have use beyond this

particular implementation. They could be used to construct other examples of

object management systems. These types have been created in the context of our

MDL program, although we feel that nothing in their definition depends on MDL.

6.2.1 Databases

Databases have traditionally provided a convenient tool for modeling

applications environments by presenting the user with a records-oriented data

model. The record is a particular mechanism for organizing a set of statements

about objects that are relevant to the application. It is important to note that, in this

paradigm, the objects exist outside of the system, and the statements that are

*By distinct components, we mean objects that have existence in the repository apart from their
parent. For example, a paragraph contains a component called body which contains the text string
that is its content.
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represented by the record are made to track the state of the object by means of

updates performed by the system maintainers. The record is a "shadow" of its

counterpart real object.

Database objects are one possible mechanism that we use for storing a

collection of statements. Although we use the term database to describe this type of

object, as we shall see, we need not view these objects as imposing structures with

the overhead associated with modem database management systems.

6.2.2 Database Objects

A database object in its most abstract form is considered to be a set of

assertions. An assertion is an expression which is considered to be true. Intuitively,

it is a statement about the application. Examples of assertions are the salary of John

is $30K and the salary of John is greater than the salary of Jack. An assertion is an

instance of a mathematical relation. A relation is a named set of ordered n-tuples in

which the values in each position of the n-tuple are drawn from some domain set. A

relation defined over the domains DI,...,Dn is a subset of the set DIX...X Dn. The

elements of the tuple are expressions that denote members of the domain sets. The

relation specifies a particular relationship among the members of the tuple. In a

database, all tuples are assumed to assert something about the application.

Binary relations are very common vehicles for asserting properties of objects. A

binary relation involves two value sets. Any binary relation which has a single value

set that is a unique identifier for some object will be called a simple assertion. In a

-simple assertion, the relation expresses the value of some attribute for the object that

is referred to by the unique identifier. The attribute is designated by the name of

the relation. For example, the relation Salary(X, Y) asserts that Y is the salary of X,

where X is an identifier that uniquely determines some person in the environment
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of the application. A member of that relation might be the assertion Salary(John,

$30K). This asserts that the salary of John is $30K. It is the job of the database

maintainers to insure that any changes in the real world are reflected by updates to

the relevant database assertions.

Since a database is a set of assertions, all operations that are available for sets

are also available for databases. For example,iterate is a set operation that takes a

set and a function as arguments and applies the function to each of the members of

the set. It is possible to use iterate for sets of assertions in the same way as for other

sets. In this way, an application program can manipulate the assertions in the

database by using the standard set interface.

In general, however, using the generalized set operations for complex programs

involving databases that contain large numbers of assertions could be very

cumbersome. Additional interfaces for databases are needed. An example of such

an interface is the records-oriented interface that is used by most modern data

processing applications. A typical application might be interested in many simple

assertions about a single object. This could be modeled by means of a set of simple

assertions, all containing the unique identifier for the object of interest. The record

is a way of grouping together all of the simple assertions about a given entity. It is a

set of related assertions. This higher-level interface can be built on top of the

set-of-assertions interface.

A database type has a set of transactions (i.e., additional operations) associated

with it. The transactions are used for creating, updating, and querying a database.

Each database type will have its own set of transactions. Each transaction would be

written using the standard set-of-assertions interface.

Let us look at an example of a simple set-of-assertions database and a single
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retrieval transaction (i.e., a query). Suppose that the Salary-Database is a set of

assertions of the form Salary(X,Y) which states that the salary of employee X is

Y. Further, suppose there exist two selectors, name and emp-salary, such that for a

given assertion A = Salary(X,Y), name(A) = X and emp-salary(A) = Y. A transaction

to retrieve the salary of someone with name N would be written as follows:
Transaction (N)n

[Iterate [Salary-Database,
lambda (a) If [name(A)=N,

Return salary(A)]]
Return Null-Assertion]

This particular transaction program requires, in the worst case, looking at all

assertions in the database.

All transactions must have an implementation in terms of the set-of-assertions

interface. We, further, allow each transaction to have an optional specialized

implementation. The specialized implementation is a program that must perform

the same action as the transaction that is written in terms of the set-of-assertions

interface; however, it is not required to use this interface. It can take advantage of

the underlying implementation.

Suppose that our Salary-Database has an associated data structure called a

name-index. Applying the operation Get-Assertion to the name-index and a given

name returns the assertion containing the given name. This is done by using an

index structure like perhaps a B-tree. The above transaction would have a

specialized implementation as follows:
Transaction (N)a

Salary [Get-Assertion [Name-Index, N]]

If using the index is fast, executing this program will also be fast.

To execute a transaction, one must use the procedure:

- Apply-Transaction: Transaction X Arg, X ... X Argn.
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This procedure simply uses the normal definition for the transaction (i.e, in terms of

the set-of-assertions interface) unless a specialized implementation exists. If such a

procedure exists, Apply-Transaction uses it instead of the normal one.

One class of databases that is very useful is pattern-matching databases. A

pattern is an assertion for which one or more of its slots is unbound. A pattern is

said to match an assertion if the slots that are bound in the pattern are the the same

as the corresponding values in the assertion. For example, the pattern Salary[X,

$30K] will match the following two assertions: Salary[John, $30K] and Salary

[Mary, $30K] A pattern-matching database is one for which there exists a

transaction called match-pattern that takes a pattern as an argument and returns all

assertions in the database that match that pattern. This behavior matches the

behavior of a large class of useful database queries. It is much like a simple QBE

retrieval.

It is important to point out that when we use the term database, we do not

mean a system that is supported by hundreds of thousands of lines of code like most

commercial database systems. We use the term to refer to any data structure and set

of operations that implement the set of assertions interface that was described

above. The implementation of this interface may be chosen by the database

designer to optimally match the expected use of the system. The designer has the

fgll facilities of the programming language available to produce an efficient

implementation of any database. Therefore, we do not view databases as requiring

unnecessary overhead based on the generality of conventional database system

storage structures. If there is going to be a database associated with each conceptual

object, accessing a database must be very efficient. The programming language class

mechanism will assist us in building database classes with different implementations.

A database contains assertions about objects. These objects can be objects in
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the real world or they can be other objects in the repository. For real world objects,

we have seen how a unique identifier (i.e., the key) must be invented as one of the

fields of the assertion to maintain the correspondence. An employee might be

identified by his social security number. For repository objects, the assertion can

contain a reference object that will serve the same purpose as the key. The reference

object might contain the repository key for the referent. Objects of type reference,

then, are analogous in the way they are used to the key field of a database record. A

reference object is more powerful, however, since the referent is not necessarily

fixed. It is possible to make statements about things like the latest version of the

progress report.

6.2.3 The Use of Databases

Databases have some specialized uses in the object management environment.

A number of specialized database types would be predefined in the context of any

object management system. There are two uses of these database types:

1. Databases will be useful as a resource for users who have need to build
object types that can maintain statement-like information. The most
important example of this is the attributes of a repository object. For
these users, there will be a few database types available for direct use.

2. Databases will also be used by the object management system to keep
track of information that is required for the proper management of
repository objects. For example, the concept of a version set that was
described earlier may be implemented by a special database type called
a version-set-database. Below, we describe this further.

As we have just pointed out above, version sets are implemented by databases.

These databases will contain information about which objects are new versions of

which other objects. Assertions of the form New version of (object, object) will be

stored in this database to indicate that object 2 is a new version of object,. This is not
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the only kind of assertion type that will be stored in the version set database. Any

other type of information that is useful in managing the conceptual object could also

be stored here. For example, the information about who would like to be notified

whenever another user accesses a particular conceptual object might be stored in

that object's version set. It would be stored by a set of assertions of the form Inform

on Read Access ["SBZ'7. This information would be used by any operations on a

version set that retrieve a member object.

Many other types of information could be stored in the version set objects. An

implementation for a particular object type will reflect the choices that were made

for that object type. Consider the attribute author-of for a conceptual report. This

could be implemented directly as a field in the content of the object. On the other

hand, if the object does not have this designed into it, or if the designer decides that

it is not something that should cause a new version to be generated, then it could be

implemented by making it an assertion type to be stored in the version set database.

We would then have assertions of the form Author-of(object, person).

6.2.4 References

The above approach to storing object components limits their use in shared

contexts. For cases in which actual sharing of the same component is necessary,

there must be some way to provide access to an entity in the repository from several

places. This is accomplished by a reference mechanism that allows an object to

contain a virtual pointer to other objects in the file system. This should not be

confused with a physical pointer to a location on secondary (or primary) storage. A

reference can take many forms.

The reference mechanism requires that there be a way to get the referent from

the repository given the reference. It is special type that is distinguished by the fact
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that it has the operation evaluate-reference defined for it. There will be many

subtypes of the type reference, one for each form or reference that is useful to

applications programs. A reference subtype corresponds to a specific way of

referring to repository objects.

Each reference type has a slot that is used to store the definition of that type.

The definition can be an object of any type but is of a uniform type for all references

of a given subtype. The evaluate-reference operation for the specific subtype knows

how to obtain the referent from the definition.

We implement this with a single MDL type called reference. One slot in this

data type contains an atom that identifies the reference subtype. This atom has a

property named eval on its property list. The value of this property is the

evaluate-reference function for that subtype.

So far, the program-level reference appears to be very much like the

ODM-level reference. The lower-level reference has some additional features.

These additional features provide general facilities for storing information about the

referent with the reference. In this way, we can often make judgments about the

referent without having to incur the overhead of dereferencing the reference.

One of these features is the a slot that can be used to store the type of the

referent. From this information, for example, we can tell whether or not the object

pointed to by a given reference is a paragraph or a graph. We also have the ability

to store a list of names for the referent in the reference. These names and the object

-type can be printed by the system interface at a point at which the user is being

asked to determine whether or not a given reference is of interest and should,

therefore, be followed. An example of the type of message that could be printed,

consider the following: "Here there is a section named section 2 of chapter 1 of my
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report". This message uses first the type (i.e., section) and the name (i.e., section 2

of chapter 1 of my report).

Another useful part of a reference object is a slot that can hold a database. This

database can contain assertions about the referent or about the object inter-object

connection that is being expressed by the reference. For example, we could store an

assertion of the form Date-Connected(1/1/83) indicating that the referent was

established on the given date. This assertion could correspond to an attribute of an

object at the ODM level, or it could be something that is useful for the system to

perform its functions.

As an example, a name reference has a definition that contains the name of the

object that is referenced. This name would be used by the evaluate-reference

operation for references of type name-reference. This operation will look up the

given name in some directory and return the object that is associated with the name

in the context of that directory. The directory that is used could be specified as an

additional slot in the reference definition, or it could default to the directory that is

connected to the current job.

There are two broad categories of references that are of interest. They are:

1. Constant references These references always evaluate to the same
repository object at any point in time. A constant reference is useful
when the intention is to freeze the value of a reference. If one wants the
first chapter of a report to be the version of that chapter as it appeared
on June 30, then a constant reference would be used.

2. Variable references A variable reference can evaluate to different
repository objects at different times. There is something about the
reference that depends on the current state of the repository. This is
useful if one is interested in constructing objects that are in some way
automatically kept current. An object containing a variable reference as
a component will logically contain different objects as the object or set
of objects that satisfy the definition of the reference changes.
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We will now give some examples of both of these reference types. These

example reference types are all needed in an office workstation environment.

Each reference subtype has a creation operation that, when invoked with the

proper arguments, will produce a reference object of the proper type. In the

following examples, we will use these operations to illustrate the basic nature of

these reference types. The operation name will be followed by an argument list that

contains symbols that are taken in pairs; the first element of a pair is the name of a

component and the second is the type of that component.

Let us first look at an example of a constant reference. It would be defined by

the following:
create-constant-reference (key: repository-key)

This will create an object of type reference with a subtype slot that contains the atom

constant-reference and a definition slot that contains the given key the repository key

for the object that is referenced. The evaluate-reference operation for this type will

get the value of the key field and invoke the repository-get operation on it. The

result of this will always be the same object since the repository is guaranteed to

maintain a correspondence between a key and an immutable object.

The simplest and perhaps the most useful kind of variable reference is a

reference to the latest version of some conceptual object. In this case, the definition

would be as follows:
create-latest-version-reference (version-set-key: repository-key)

This subtype is created with a single argument which is the repository key of an

object of type version-set. The evaluate-reference operation for this subtype will get

the value of the version-set-key from the reference definition and will get that

version set object from the repository. It will then apply the latest-version

transaction to the version set database which will produce a reference to an object in
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the repository. Presumably, this object will be of the type with which that version

set is associated. It will then evaluate that reference to obtain the actual latest

version object. This referent will change in time as new versions are added to the

version set making this a variable reference.

Another example of a variable reference is one involving a query on some

database in the file system. Let us suppose that there is a database that contains

information about the office automation group's working papers. This database

contains statements of the form WP015 is a working paper, WP015 was written by

Ilson, WP015 is about ETUDE, and WP015 is dated November, 1980. A working

paper database also presents a set of transactions as an interface. One of these

transactions (i.e. a query) is find-newest-paper-about-subject which takes a working

paper database and a subject as arguments and returns a single conceptual object,

the newest paper about the given subject. The transaction determines this by means

of the statements about the date and the subject of the papers. The office

automation group might, then, maintain a repository object which is the set of

papers that are distributed to people that inquire about the group. This object

would contain a set of references, some of which might be variable. An example of

one of these variable references is as follows:
Create-newest-paper-on-subject-reference

(paper-database: repository-key, subject: string)

This reference definition contains two components, a repository key that

"rresponds to the working paper database and a string that describes the subject of

interest. Evaluation of this reference will cause the find-newest-paper-about-subject

transaction to be executed with the database and the subject string as arguments.

- This transaction will return a latest-version-reference to a conceptual working paper

object. The generic evaluate-reference operation will, then, take this reference and

apply the evaluate-reference operation for latest-version-references to it to yield the

latest version of the version set. Notice that the latest version is retrieved since the

reference that is contained in the paper database is of type latest-version-reference.
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The manner in which a particular reference is dereferenced depends on the

type of the reference. If one wanted the referent of the

Newest-paper-on-subject-reference to be a keyed reference to the version set that

contains the paper, this could be done by the code for the generic evaluate-reference

for that reference type. It would not evaluate the latest-version-reference but rather

simply return its definition.

All references should also have a generic display operation defined for them.

When display is applied to a reference, it prints some meaningful description of

what this reference is. It might print the name and/or the type of the reference. It

might also print selected statements from the reference's associated database. This

allows a program to communicate to a user the important aspects of a reference that

occurs as a component of some other object.

6.2.5 Alternatives

As objects evolve, there can often be several alternative versions of a conceptual

object at any point in time. We observed this phenomenon in our earlier description

of ODM. These alternatives represent a set of evolving development histories from

which the user will choose a final version. These alternatives might have been

produced by one or several users. The version set structures should have some

means of managing this forking of the normally linear version chain.

One approach is to use a special object type called an alternative to construct

the data structures that will represent a set of concurrently active versions within the

simple linear version history. An alternative has two components. The first is a

reference to the original object from which each of the alternatives derive, and the

second is a set of version sets. Each of these version sets represents the version

history for a single branch of the alternative tree. Alternative objects occur as
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members of a version set in order to indicate that a branching occurs at that point.

If additional objects occur in a version set after an alternative object, then the

alternatives represented by the alternative object must have been merged. Since

alternatives occur in version sets and version sets are used to indicate the history of

each of the choices of an alternative, this process can be repeated recursively to

construct arbitrary branching structures.

Let us look at a simple example. Suppose that we have a paper that is being

worked on by two co-authors. The paper goes through two revisions to produce p2

and p3 from pl. The version set that represents this development is as follows:

{pl, p2' PP
The two authors decide that they would like to each produce their own versions of

the paper on their own. They will meet in a few days to discuss the results and

merge the new suggestions into a single paper again. Each author creates two new

versions of the paper on their own as they edit in their changes. The first author

creates p4 and p5, while the second author creates p6 and p7. When they get

together to talk about their results, they collectively create p8. The version set for

the paper will at this point be as follows:

{pl, P2' P3. A1, p8)where
A l = {p3 ' ( 6 -P7))}

Al is an alternative object that indicates that there is a fork in the version history.

The alternative object has two components. The first is p3 to indicate that p3 is the

object from which the alternatives are generated, and the second is a pair of version

sets, each of which records the history of the two chains of development produced

by each of the co-authors.

This would be sufficient if all alternatives that were created at a given time are

merged at the same time. If any subset of the active alternatives can be merged, we

need another kind of object type to represent the joining of arbitrary paths. Let us
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call this object type a merge. A merge has two components, a set of objects that are

latest versions of some alternative path, and a merged object. The set of latest

version objects are those objects that are being merged, and the merged object is the

new merged version of the set of alternatives. As an example, consider:

{p1, p2. P3, A1, MI)

where AI = (p3 ' (P4 ' P51 (p6, A211)
A2 = ( p P8  (p9 p10M)
M= ({p5' P8' P11

Here, at one point three alternatives are active. At some point, however, the p5 and

p8 versions are merged into the p11 object. This coalesces two of the three paths.

One of the three path still remains as an active alternative. It's latest version object

is p10. The overall version set now has two latest versions.

6.2.6 Derivatives

In the definition of version sets, there is no requirement that a new version of

an object bear any structural relationship to any of the previous versions. This can,

in fact, be useful for cases in which the previous version is obsolete or incorrect and

a completely new version of the conceptual object is needed. However, the most

common version-creation process is by incremental evolution of one version into

another. A user will make a few modifications to an existing object and call the new

object the next version.

To take advantage of this observation, we will make a distinction between a

version and a derivative. As we have said before, a version is related to its

predecessor because a user has stated that it is, but a derivative is related to its

- predecessor because of some structural similarities. A special data structure has

been designed to store an object that is a derivative of some existing object.

Essentially, the derivative object contains both a pointer to the object from which

the new object is derived and the modified components of the new object. The
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members of a version set will, in most cases, be derivative objects since new versions

are most often created by modifying previous versions. It is important to note,

however, that this is not a requirement.

There are two main reasons for having derivatives (i.e., change objects). They

are:

1. Derivatives are useful to save space in the repository. By storing only
those components that have changed, the amount of space that is
consumed by the version set mechanism is minimized.

2. Derivatives also provide easy manifestation of what has changed. A
typical use of the version set mechanism is to support a user's questions
about what has changed between the current version and the previous
version. By storing versions as derivatives, this information is easy to
manifest since it is maintained directly.

The above discussion has described a derivative as the set of changes that have

taken some old object into a newer object. In this model, in order to recover the

latest version of an object, by far the most common form of retrieval, the system

would potentially have to search the entire version chain to get components that

have not been modified. Alternatively, the latest version of the object could be

stored in its entirety and the previous version could be stored as a derivative from

the most current object. In this way, the penalties of reconstructing versions from

derivatives would be incurred when looking at older versions. Both ways of

structuring the derivatives within a version set are available to the programmer. It is

felt, though, that the technique of storing derivatives from the current version would

be the one of choice in most applications.

If the approach of using derivatives that are changes from the original object is

taken, it is harder to retrieve the entire latest version object. However, the

components that have been modified recently are easy to get. They would be part of
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the current derivative object (or perhaps the previous one). If one believes that

components that have changed recently are the ones that are most likely to change

again, this might be the preferred choice. With this approach, the components that

have been recently modified, and the skeleton of the rest of the object will be read

in first.

6.2.7 Front-end Databases

For some object types, it might be inconvenient to store assertions about

individual objects in the version set. Consider an assertion that describes the date

on which a given version was created. Further, let us suppose that this information

is almost always accessed at the same time that the content of the version is accessed.

It might be better to store this assertion in a data structure that was easy to obtain

once we have the content of the object in hand. For these cases, we provide the

notion of a front-end database. This is a database for each repository object that is

associated with the object. This approach has the advantage of grouping all

assertions about an object together, thereby, eliminating the need to search a larger

collection for all versions of a conceptual object in the version set. The decision

concerning the appropriate choice of where to store an assertion will depend on how

the objects are going to be accessed. If one tends to access the object assertions only

when one accesses the object as a whole, then using a front-end database might

make more sense. If many queries (i.e. class specifiers) involving a particular object

type are processed that involve some assertion types, then these assertions might

better be stored in the version set. That way, the object itself would not have to be

retrieved in order to answer the queries.

The above discussion about having a special database for every object in the

repository at first sounds inherently very expensive. How can such a proliferation of

databases be handled with any kind of efficiency? We have said nothing about how
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these front-end databases should be implemented. They might be very low

overhead items. If the number of assertions in a front-end database is small, the

database could become nothing more than a header that is attached to the main

object. This header would be a small block of storage that would contain the

assertions of interest. The front-end database operations would interpret this header

to present the proper set-of-assertions interface.

6.2.8 Associators

There is a general need to be able to relate two objects to each other. For

example, The content of an object is related to a database that contains the current

values of the attributes for that object. The mechanism that we use to accomplish

this is an associator table.

There is one associator table connected to each repository. An associator table

contains a set of associators. Each associator contains two repository keys. In the

case of the object and the database, one of the keys corresponds to the object and

the other corresponds to the database. The following operation:

- Get-Associated-Object: Association-Table X Object -> Object.

finds the other object that is associated with the given object. In most cases, this is

the attribute database.

6.2.9 Program-Level Schemas

We have already encountered schemas as a means for describing the high-level

semantics of object classes. The notion of a schema at the program level is loosely

analogous to the higher-level concept. A program-level schema contains much of

the information that is contained in the higher-level form, but it also includes
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information about the implementations of repository operations. In this section

when we use the word schema we will be referring to the program-level kind.

An example of a program-level schema is the following:
<SETG REPORT-SCHEMA

(SEQUENCE
(ASSERTION COMPONENT REPORTS CHAPTERS>
<ASSERTION COMPONENT REPORTS APPENDICES>
(ASSERTION COMPONENT REPORTS BIBLIOGRAPHY>
<ASSERTION COMPONENT-DEF CHAPTERS

SET SETS-OF-CHAPTERS>
(ASSERTION COMPONENT-DEF APPENDICES

SET SETS-OF-APPENDICES>
(ASSERTION COMPONENT-DEF BIBLIOGRAPHY

NON-SET BIBLIOGRAPHY>
(ASSERTION COMPONENT-IMPL CHAPTERS

GET-CHAPTERS-IN-REPORT
SET-CHAPTERS-IN-REPORT
SINGLE-VALUED-COMPONENT>

<ASSERTION COMPONENT-IMPL APPENDICES
GET-APPENDICES-IN-REPORT
SET-APPENDICES-IN-REPORT
SINGLE-VALUED-COMPONENT>

(ASSERTION COMPONENT-IMPL BIBLIOGRAPHY
GET-BIBLIOGRAPHY-IN-REPORT
SET-BIBLIOGRAPHY-IN-REPORT
SINGLE-VALUED-COMPONENT>

<ASSERTION ATTRIBUTE AUTHOR
GET-AUTHOR-FROM-REPORT
NOT-SETTABLE>

(ASSERTION ATTRIBUTE DATE-CREATED
GET-DATE-CREATED-FROM-REPORT
NOT-SETTABLE>

<ASSERTION ATTRIBUTE HOURS-CHARGED
GET-HOURS-CHARGED-FROM-REPORT
SET-HOURS-CHARGED-IN-REPORT>>>

This example shows the MDL data structure definition of a schema for the class

Reports. As one can see, it is a set of (i.e., sequence) assertions. Each of the

assertions are coded in a special way. The first atom following the atom

ASSERTION is the type of the assertion. The remaining fields in each assertion

indicate some specialization of the assertion type. For example, the very first

assertion in the example sequence states that one component of a report is called

chapters.
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6.3 Classes

A repository is actually a data structure that is used to access any of the objects

that are stored in that repository. One of the crucial parts of that that data structure

is a class that we will call the root class. The root class is the top class in the object

class hierarchy. It contains all objects in the repository; it is normally called Objects.

All other classes are subclasses of Objects.

A class has six subparts. They are:

1. A name. This name must be unique within a repository.

2. A .class definition. This is either the atom BASE or a predicate that
determines how to derive the members of this class from its parent
classes.

3. A schema. A schema at this level is a database object that contains
assertions about how the semantics of the members of the class as well as
assertions about the programs that implement these semantics.

4. A list of parent classes. The members of the given class must be subsets
of the parent classes. The definition subpart applies to the parent
classes.

5. A list of subclasses. The subclasses are subsets of the given class.

6. A list of members. The members of the given class are indicated by a list
of references to the corresponding repository objects.

The operation Members-of- Class applied to a class C produces the set of objects

that are the members of C. This could either simply return the list of members if

that list is complete, or it could involve a more complex procedure if it is not. For

example, each object in the repository might be stored in only the lowest level of

each applicable path in the class hierarchy even though it is a member of many

other classes. Members-of Class would, then, have to look through all of its
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subclasses to see if there are any objects stored at the lower level that are not stored

at the higher levels.

ENCORE uses a multi-processing scheme for inserting objects into the class

hierarchy. There is a pending list that has an entry for objects that are still being

worked on. When a new object 0 is inserted into the class hierarchy, 0 is placed

into its base class and an entry is made on the pending list. This entry indicates that

0 has not been fully placed into all its containing classes. 0 will be called a pending

list object.

The existence of a pending list has implications for the implementation of the

Members-of Class operation. When this program is run on class C, it must now

return all objects on C's list of members as well as any objects on the pending list

that might potentially be members of C. The pending list contains a notation about

the base class of each of the objects that it contains. There is conceptually one

process for each entry on the pending list. When one asks for the objects that are

the members of C, one must run to completion all of the processes that could

potentially contribute members to C. That is, if the base class that is mentioned in

the pending list entry is an ancestor of C, the pending list object could possibly

belong to C. Once all of these processes have been run, the list of members of the

class will contain all its real members.

Whenever the user is not making use of the workstation CPU by running an

application program*, these processes can-be run. This approach uses otherwise

wasted resources to accomplish work that must eventually be done, but that can in

many cases be deferred to a more opportune time. The net result is that the load on

the system is smoothed out over time.

*This can occur often whenever the user is thinking about what to do next.
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This approach makes adding an object to the class hierarchy very fast by

delaying a great deal of the work. The price that must be paid is that for certain

classes, the Members-of-Class operation will be slower. Notice, however, that after

some time has passed since objects have been added to the class hierarchy, the

system will become quiescent in a state that is indistinguishable from the state that

we would be in if we followed the brute force approach*.

Objects are initially inserted into some base class. The base class into which it is

placed is determined by the programming language class of the object. There is a

database that contains a set of assertions that state the correspondences between a

programming language type and a base class name. The MDL type Report is

inserted into the base class named Reports.

6.4 Standard DBMS Services

In any commercially viable DBMS, there is a level of service that must be

offered in to support the typical operations in a way that is not disruptive of

business. These services relate to the ways in which concurrently executing

transactions are handled. They must be present in order to guarantee that

unexpected occurrences in this environment do not cause the data resource to

become incorrect** The unexpected events that we will deal with in this section are

.petentially interfering transactions*** and failures of the basic system components.

*The brute force approach refers to the insertion of an object into all of its appropriate subclasses
- at the time that the insertion operation is invoked.

**In this context, incorrect is usually taken to mean inconsistent. That is changes to related values
should be made reliably to all such values, not just some of them.

***That is, transactions that are both trying to access the same piece of data at the same time, and
at least one of these transactions is trying to access the data in order to write it.
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The first type of event will be termed concurrency and the second will be called

recovery.

The main thrust of this project has not been to study these two areas. We feel

that, at least for the present, the techniques that are used in current practice will

suffice. The remainder of this section will place these issues in the context of our

object management system.

6.4.1 Concurrency

Concurrency relates to the handling of potentially conflicting transactions. Two

transactions are said to conflict if they are both accessing the same piece of

information and at least on of them is trying to change it. In the immutable object

repository, the only way that the state of the world can change is by making

additions to a version set object. This has implications about how the problem of

concurrency control is handled in this environment. Since objects cannot be

overwritten in the immutable object repository, once a user has access to a set of

objects that represents a consistent state, there is no need for that user to worry

about someone else's overwriting these objects. The only place that conflicts can

occur is in adding new entries to a version set. This means that concurrency control

can be localized to the control of who has access (by setting a lock) to the version

sets. If a set of transactions or changes are to happen atomically, then several

version set objects will have to be locked. Notice that the lock on a version set does

not have to exclude all users from using it. Previous versions can be read without

interfering with the change that is being made.

For the mutable repository, there is no version set discipline imposed by the

system. Concurrency control, however, is still an issue. In this case; we use some

conventional concurrency control mechanism as embodied in current database
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technology. This would be some scheme like 2-Phase Locking [18, 24] involving

read locks and write locks at the repository object level. In these schemes, read locks

may be shared by several readers, and a writer must wait on a read lock.

We feel that the issues that arise from concurrent access to shared resources in

an office environment extend beyond the traditional problems of guaranteeing

serializability of transactions. An object management system should also address

other problems that arise in an environment of concurrent access involving the

cooperative sharing of resources among several co-workers. This includes facilities

for keeping track of which objects have changed and in which ways since a user has

last seen it. A given user might want to be notified about such changes. Of course,

the user should have some means of defining exactly what is meant by a change for a

given object or object class.

This type of change control information would be stored in the version set

object or the front-end databases. The transactions (i.e., operations) for these

databases will be sensitive to their content and will issue the proper actions when a

change is detected. These actions should be user configurable.

6.4.2 Recovery

Recovery relates to the ability of the system to recover the database itself from

various forms of catastrophic failure. It is crucial that there be some mechanism to

restore the database to some state that is known to be consistent whenever

something has happened to make the state of the database suspect. Without

-consistent information most organizations cannot conduct their business. The

technical area of recovery management is something that has received a great deal of
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attention in commercial database implementations.* There are several classes of

potential causes for failure. They are:

1. Transaction failures. The individual user programs can fail by
attempting to do something that is illegal. An example of this would be
an arithmetic overflow or an attempt to divide by zero. When this
happens the system must abort the transaction.

2. System failures. The general system facilities can fail in a way that
causes all current transactions to be affected. An example of this would
be a software problem or a CPU failure. In this case, the database itself
remains intact.

3. Media failures. It is possible for the physical device that stores the
database to fail in such a way that the damage to the database occurs.
An example of this type of failure is a disk head crash.

In order to achieve recoverable behavior from a failure-prone system, one must

rely on redundancy. It must be possible to reconstruct data values from other values

that are stored redundantly somewhere else in the system. The generally accepted

techniques all involve some version of checkpointing and transaction logs. A

checkpoint is a dump of the database (or a part of the database). It provides a point

of reference at which a stable state of the database has been captured. A transaction

log is a record of all transactions that have been executed on the database since some

time in the past. For each transaction, the log stores an indication of the data value

along with a "before image" and an "after image" for that value.

With this mechanism in place, transactions can be rolled forward or rolled

backward to some consistent state. We can use a scheme similar to this in the object

management system. A checkpoint is basically the same for our purposes. The log

*It is estimated that over half of the code in IMS is devoted to recovery and concurrency issues. In
IBM's System R product, roughly ten percent of the code is for recovery.
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contains entries for each repository operation the is performed. Each entry

contains:

1. A transaction-id.

2. An indication of the repository operation.

3. A before image for the value that changed.

4. An after image for the value that changed.

A transaction that is interrupted because of failure can be rolled back to a consistent

state by applying the before images.

6.5 Memory Use

For large structured objects, it is desirable to be able to read in pieces of the

structure without having to incur the overhead of first having to read the whole

object. For example, if one is interested in looking at a small part of a 1000 page

proposal, it would be unfortunate to have to read the entire 1000 page of text from

the disk and search through it to the proper point. The file system should have

knowledge about the structure of the object such that if a user (or a program)

specifies a single low-level component of an object (e.g., paragraph 6 of section 3 of

chapter 2 of FinalReport) for retrieval, essentially, only that component need be

read.

This is accomplished in ENCORE by making each of the low-level components

of an object into separate repository entities, each with its own repository key. The

lower-level objects can be linked together to form hierarchical objects that contain

references to their descendants. The way in which an object type should have its

components exploded into separate objects can be specified in the object schema
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definition for that object type. This information is stored in a schema database to be

used by the repository-write operation.

Editing a reference that occurs within an object can cause the original reference

to be superseded. Consider a reference to the chapter with the largest number of

pages. This is a variable reference that will refer to a particular chapter at any given

point in time. If this chapter is retrieved via the reference and then edited, the

intent of the user is probably to supersede the original referent with a new object,

the result of the edit. There is no guarantee that object will still satisfy the condition

of the variable reference. Therefore, a constant reference to the new object will be

substituted for the original reference.

Another issue that relates to the use of memory and to objects that contain

references is the ability to know what objects in main memory have been changed

and, therefore, need to be written out to the repository. We will adopt the use of an

additional object type that we will call a virtual key. A virtual key will contain at

least two slots, one for the real repository key and another for the actual object that

is read from the repository. The invariant that must hold for this object type is that

if the key slot is empty, then the object that is contained in the object slot has been

changed. This means that the first change to the object must delete the repository

object that is in the key slot.

We will also provide type specific virtual-read and virtual-write operations.

These operations will be used to access an object from the repository. They will

know about the structure of that object type and will take care of reading any

- associated structures (e.g., indices) for an object type.
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Chapter Seven

Repository Design

This chapter covers issues involved in the design of a repository for a given

application environment. We begin by presenting a methodology for a system

designer who is approaching the design of a workstation information resource. The

methodology provides a set of guidelines to assist in the design process. It is not a

magic formula. Instead, it is an application of common sense practices that has a

good chance at leading to a reasonable first cut design. This procedure must be

mitigated by the designers good sense and knowledge of the application.

In previous chapters, we have presented the details of two general topics: 1. a

data model (i.e., ODM) and language (i.e., ODL) for expressing high-level object

semantics and 2. programming structures that could be used as implementations for

a schema that is written in ODL. In the second half of this chapter, we discuss some

techniques for putting these previous two topics together. We introduce the reader

to our basic approach to the problem of mapping high-level semantic structures to a

set of underlying programs. In other words, we are interested in ways of mapping

concepts in the object schema into particular implementations.

7.1 A Design Methodology

The steps in the creation of an office workstation repository are analogous to

the steps that would be followed in the design of any database. There has been

much literature recently on the subject of logical database design for data processing

applications [12]. Our methodology is good for designs that include data processing-

style as well as office-style applications and data.
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This methodology is not intended to be followed linearly from beginning to

end. As we shall see, there are places in the procedure that require iteration. The

result of this procedure is a set of object schemas that describe the characteristics of

the repository. The examples that are used in the discussion of the methodology are

all drawn from the design of a document-oriented repository, much like the one in

the extended example in Chapter 4. The basic steps in our repository design

methodology are as follows:

1. The designer prepares an initial list of types of objects (i.e., classes) that
are interesting to the applications at the present time. There is no need
to worry about redundancy since a given object may appear in many
classes. The name of each class should be chosen carefully to be
suggestive of the function of that class. If the name does not convey a
precise enough characterization of the class, the designer should also
generate a short textual description.

Examples of classes that might appear on an initial class list are
REPORTS, REPORT-OUTWARD-APPEARANCES (representations
of reports in terms of physical characteristics such as pages, columns,
and lines), LONG-REPORTS (reports that have an outward appearance
of more than twenty pages on the line printer), INTERNAL-REPORTS,
PUBLISHED-REPORTS, GRAPHS, CALENDARS, OA-GROUP (the
members of the office automation group), PROJECTS (the projects that
researchers are engaged in), GOV-PROJECTS (projects supported by
government agencies), and PRIV-PROJECTS (projects paid for by the
private sector).

2. The list that was developed above is examined to determine which
classes on the list are subclasses of other classes on the list. Often, in
doing this, the designer will discover that some subclasses on the class
list suggest other similar subclasses that were initially missed. These new
classes are added.

In the above list, the class LONG-REPORTS is a subclass of
REPORTS. The realization of this relationship might cause the designer
to realize that the class SHORT-REPORTS is also of interest.
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3. The classes on the list are determined to be base or non-base classes.
This is easy to determine from the previous two steps. Any classes on
the class list that are not subclasses of any other class will be base classes
unless the designer discovers that some additional classes have been
omitted. For example, REPORTS is a base class while LONG-
REPORTS is not.

4. The base classes are determined to contain internal or external objects.
If the members of a class have editable content, then they will be
internal objects, otherwise, they will likely be external objects. It is
possible to have a read-only internal object. The designer must decide
whether the read only content is an object that is stored in the machine
or whether it is a symbol (i.e., a key) that stands for something that is
outside of the context of the machine.

An example of an internal object class is the class REPORTS or the class
GRAPHS. The basic stuff* of which reports and graphs are made are
objects in the repository. An example of an external object class is the
class USERS or the class PROJECTS. A user is a person that is not
physically a part of the repository, while a project is an abstract concept
that cannot be completely captured in the world of computers.

5. The base classes are determined to contain user implemented or system
default implemented objects. A user implemented class is one for which
some system programmer (possibly the designer) determines the
underlying data structures that will be used to support it. This is a
decision of policy and resources and has little to do with semantics. It is,
however, an important distinction to make at this level since it will
impact the activities of the next level of design.

If there exists a special editor for textual objects on the workstation, it is
likely that textual objects will require a specialized implementation. The
class REPORTS, then, might fall into the category of a user
implemented class. The class of PROJECTS might be an information
resource that is accessed infrequently and, therefore, can tolerate the
implementation chosen for it by the object management system.

*In the case of reports, this stuff is in the form of chapters and appendices, while in the case of
graphs, it is in the form of axes and curves.
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6. Any class that contains editable internal objects is indicated to be a pair
of classes: the class containing primitive objects and the class containing
conceptual objects whose versions are drawn from the class of primitive
objects. This is because the version sets are objects, too.

For example, the objects in the class REPORTS are versions of the
conceptual objects in the class CONCEPTUAL-REPORTS. The class
conceptual reports was not listed in the original class list. It is added
now, and the steps from step one to this point are repeated for it.

7. The class list is scanned to determine if any of the members of the list
are abstractions or aggregations of other members of the list. These
classes are often of interest because they might have attributes of their
own.

8. The designer begins to add detail to the class list. Any base classes that
are supported by internal objects are examined to determine the next
level of structure of the object content. These objects have an editable
content that could be composed of other objects in the repository. For
example, a member of REPORTS is composed of chapters, appendices,
and a bibliography. Each of these components is an object or set of
objects in the repository.

9. For each component of this content, the component characteristics* and
a value class are determined. If the value class for a component is not
already a member of the class list and the designer determines that it is
of general interest to the application, then the class is added to the list
and all the steps from step one to here are repeated for that class.

The names of the components of a report are Chapters, Appendices, and
Bibliography. The Chapters component is determined to have the
characteristics Set-valued, Editable, Ordered, and Possibly-empty. The
value set for this component is the class CHAPTERS. This class was not
included in the initial class list, therefore, it is included now and all
previous steps are repeated for it.

*These are single-valued/set-valued, editable/uneditable, ordered/unordered, and non-
empty/possibly-empty
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10. For each class, the designer determines what attributes are required by
the application. These attributes can be attributes for the members of
the class or attributes of the class itself. Member attributes should be
assigned to the lowest possible class in the class hierarchy for which that
attribute is applicable. For example, suppose there is a class called
Reports and a class called Long Reports that is a subclass of Reports.
Further, suppose that only long reports have cost of publication
recorded. Then, the attribute Cost-of-Publication should be associated
with Long-Reports only and not with Reports. Attribute association
should be as specific as possible.

11. Any of these attributes whose values can be derived from other
information in the repository is indicated as such. The method by which
the attribute value can be derived is also recorded. As an example,
consider the attribute number-of-chapters for a report. The value of this
attribute is dependent on the content of the report. The value can be
derived by counting the number of chapters that make up the
component named Chapters.

12. The designer determines the characteristics* and the value classes for
these attributes. If a value class is not already in the class list, it is added
and the previous steps are repeated for that class. The value class should
also be as specific as possible. Even though it is correct to say that a very
high-level parent class is the value class for an attribute, indicating a
lower-level class as the value class provides the system with more
information.

For example, the outward-appearance attribute for members of the class
GRAPHS has a value in the class GRAPH-OUTWARD-
APPEARANCES which was omitted from our original list. This
attribute is single-valued, derived, and mutable. The attribute
related-projects is set-valued, unordered, settable, and mutable. It has a
value class of PROJECTS.

13. For each at'ribute, the designer must decide if that attribute can be
inherited through the part-of (i.e., the component) hierarchy. If it is

*'The characteristics for attributes are settable/derived, set-valued/single-valued,
ordered/unordered, and mutable/immutable
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determined that it can, the extent of this inheritance is defined. For
example, the Author attribute of a report can be inherited by all
components of that report as long as the component is a member of the
class DOCUMENT-COMPONENT. DOCUMENT-COMPONENTS
are the union of all document component classes like CHAPTERS,
SECTIONS, and PARAGRAPHS. This new class is also added to the
class list.

14. For each component and each attribute determined above, a set of class
specifiers is invented, one for each restricted operation involving the
given subpiece. The easiest way to do this is to make a list of the
possible operations that can be performed on a component or an
attribute (See Appendix A). For each attribute and each component,
ask who can perform each of the operations. In many cases, the result
will be either "anyone can perform that operation" or "the user class U
can perform most all the operations" thereby simplifying the process.

For example, the bibliography component of a report can have the
get-component operation performed on it by anyone who is in the same
research group as the author of the report. New versions of a report
object that contain a changed bibliography can only be added by the
author of the report. (See the example in Figure 4-1).

15. For each component and each attribute determined above, a set of
appropriate triggers is invented. For many of the components and
attributes, there will be no triggers. Again, for each of the possible
operations that can be performed on each of the components and
attributes (use the same list that was used in the previous step), the
designer asks whether any special side-effect is in order. For any
operation for which a trigger is required, the trigger pattern is written
down by using class specifiers on the class of Users and the class of
objects at hand. If the side effect is one of a standard library of
programs (e.g., Send-Message), then the trigger is written by referring to
this program. If it is not, a description of the program is written down
and added to the list of programs that must be written by the designer or
an applications programmer.

The example in Figure 4-1 shows an example of a trigger called
Change-Trigger that is associated with both the Chapters and the
Appendices components. The specification for this trigger was created
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when the designer realized that it was necessary to send a message to an
unauthorized user telling him that he is not allowed to change these
parts of a report object

16. Derivation specifications are now determined for each of the subclasses
determined in step two. This involves providing detail for the interclass
connections. Some of the subclasses will be Restrictions of their parent
classes, others will be formed by operations such as Merge-Members.
The class LONG-REPORTS is specified to be a restriction of the class
REPORTS where the number of pages of the reports is greater than
twenty.

17. State machines are useful for keeping track of objects that have
progressed to some point of significance. For each class, the designer
should think about the normal progression of states might be in the life
of a typical member of that class. Once these states have been
articulated, the designer tries to write down a state machine that captures
the order in which the states can occur. A characterization of the
properties that define an objects transition from one state to an other is
written next to each state change. These properties are expressed in
terms of the schema descriptions of the object class. If the current
schema does not provide enough semantic detail, new attributes might
have to be invented.

Many of the classes in an office environment might have two principal
states: one that indicates that the object is still under development and
another that indicates that it finished and ready for release. In this case,
the transition between these two states could occur when the value of the
approved? attribute becomes equal to true. If this attribute was not
defined previously, it is defined at this point.

18. The designer now has a complete class structure diagram and a notion of
how the components of a given object type are put together. He, then,
asks himself if altering any component of an object should cause a new
version of the parent object to be created. If the answer is yes, any

condition on the component that must be satisfied is recorded in the
history aspect of the object schema.
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7.2 The Mapping Level

The object management system cannot impose a default implementation for

objects on the designers of the applications that manipulate these objects. The

design of the object management system should not effect the implementation

choices of other systems programmers. The designers of workstation applications

can make the best implementation decisions about their own programs. The only

requirement for them is that if they want the objects that their programs create to be

handled by the object management system, they must supply some programs that

provide the proper interface to their objects.

This requirement drives the next level of repository design. The designer must

write* a set of programs for each class that contains objects with specialized

implementations. These programs provide the interface that is specified in the

schemas. For example, the content of an object is structured as a set of components

that are each available via a name. Components can be retrieved (i.e. read) by name

and, therefore, there must be some program that can treat the components of an

object as a set with names as selectors. This corresponds to the Get-Component

operation. If the content is defined for some class C that has a specialized

implementation, then someone must insure that this operation is provided.

It is of no consequence to the object management system interface how these

operations are implemented. It is the job of the subsystem designers and

implementors to write the code for these two programs in terms of the

implementation that they have chosen. Suppose the designer has chosen to

*It is more often the case that the designer of the overall repository does not write these programs.
Instead, the designer will enlist the services of the individual subsystem implementors. A list of
programs that must be written by them as well as a specification of how these are to behave will
facilitate this process. The designer, then, will provide such a list.
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implement a report in terms of a list pairs, the first element of which is the index

and the second element of which is the value. The document editing system

designer would then write the put and get operations to search the list for the correct

slot. The designer would have to provide programs that map each feature of the

schema-level definition to the implementation that has been chosen for the object.

It is important to realize that if the application designers' conceptualization of

an object type is too far askew from the facilities provided by the object

management system, it might not be possible to interface the two. This could occur

for an object like a digitized photograph that is simply a large collection of

gray-scale intensities. In this case, it might be difficult to model the object as a

hierarchical collection of components. However, as more structure is imposed on

pictures, and individual items in the scene are identified, one begins to see ways in

which it could be handled. The scene might consist of physical objects which might

each have a name, dimensions, and a location in space.

It is not desirable to require all classes of user of the object management system

to write programs that map their definitions into structures. It should also be

possible to define a new class of object that does not need a specialized

implementation. We, therefore, would like to have a default implementation for

each schema concept When a default is chosen, it might not be the most efficient

one possible, but it is guaranteed to work. This is useful for getting applications

working quickly.

One approach to managing these mapping programs would be to have a

database that stored assertions such as Implementation-for-type (T, F, P). The

meaning of this assertion is that for an object of type T, the schema feature F is

realized by program P. In our implementation of ENCORE, these assertions about

implementation are merged into the schema database in which the features for a
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particular class are defined (See Section 6.2.9). This mechanism is completely

invisible to the object management system interface. It is an implementation choice.

The last part of our design methodology helps a designer prepare the list of

programs that either he or an application builder will write. This process is guided

by the set of tests that are contained in Appendix B. The way in which this

Appendix is used will be described in the rest of this Section.

Appendix B contains a procedure that indicates what to do with each feature

that is defined in an object schema. The best way to illustrate how it is used is to

present an example. Consider the following schema:
Define Class Chapters
Definition: Base

CONTENT
Intro-Paragraphs: Ordered Set of Paragraphs
Sections: Ordered Set of Sections

ATTRIBUTES
Author: User
Date-Created: Date

Since this schema has a defined content, the procedure tells us that there must be an

Iterate-Over-Components operation defined. This procedure will apply a given

function first to the set of introductory paragraphs and then to the set of sections.

For each of the two components, there must be a procedure to test if it is a

member of its value set. Therefore, there must be a procedure that indicates

whether or not the introductory paragraphs are really a set of paragraphs and a

procedure that indicates whether or not the sections are indeed a set of sections.

These procedures might be called Set-of-Paragraphs? and Set-of-Sections?,

respectively.

Since both of the components are set-valued and ordered they must both have

an Iterate-Over-Component and a Get-Component-n operation. These might be
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called Iterate-Over-Intro-Paragraphs-of-Cliapter, Get-Intro-Chapter-n-of-Chapter,

Iterate-Over-Sections-of Chapter, and Get-Section-n-of-Chapter.

The two attributes, author and date-created, are single valued and settable.

There must, therefore, be operations called Get-Author, Set-Author,

Get-Date-Created, and Set-Date-Created.

This example is admittedly simple, but it gives the flavor for how the

methodology in the Appendix works. The other aspects of the methodology should

be self-explanatory.
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Chapter Eight

Summary and Future Directions

Our work on object management systems has focused on the capabilities of an

information management system in an office environment. We have demonstrated

the ways in which this type of system is substantively different from conventional

database management systems. Our major goal has been to provide rich definitional

tools for describing objects such that an application program (or office worker) can

manifest the set of objects that are required to perform some task.

8.1 Meeting the Goals

We have described the general approach to object management that has been

be adopted in this work. In this chapter, we will describe how this approach satisfies

the goals listed in Section 2.4.1 on page 32. This recap of the broad problem areas

and our approaches to their solutions is intended to focus more sharply the large

number of techniques that were delineated in the previous pages. We feel that the

following list will close the circle by tying the analysis of office information system

needs in the first chapter with the technical approach of our object management

system design.

The goals that were listed in the first chiipter were:

1. Handle different kinds of data. The ability to use a common language for
describing many different types of objects goes a long way toward
allowing users to treat data uniformly. The capability for mapping the
constructs of the high-level object description language onto
programmer chosen implementation structures also encourages a
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common view of data. The operations for manipulation of data in terms
of the high level model will work the same for all object types that have
been specified in terms of the high-level data model.

2. Support incremental and segmented development. The process of writing
schemas in our object management system paradigm does not require
that someone create all database classes at one time. It is possible to
create new classes at any point in the life of the system. Moreover, we
have made it possible for a user who is creating a new class to make use
of existing structures and constraints. The attribute inheritance
mechanism makes it possible to create a new class that is exactly like
some older class with some additions. The access specifier mechanism
and the value classes for components and attributes all require that the
definition of new class based on an older class at least maintain the
restrictions that are defined at the higher level. THe new class can make
these constraints tighter but it cannot loosen them. In this way it is
impossible for someone to inadvertently (or otherwise) subvert the
intentions of another user.

3. Support application development. The process of workstation application
development is served by the fact that the object management system
can support the creation of the working set of objects. The fact that it
also presents a single uniform language for referring to objects of
different types makes the use of the workstation for office applications
more tractable. Also, the ability to define objects as having structure
that is automatically derived from other objects simplifies application
development. Many of the chores that would have to be handled by the
individual applications can be handled by the object management
system.

a. Specification of Classes of Objects. Object class specification is
possible with the class-specifiers that were discussed earlier. The
class specifier provides a powerful means of grouping objects
based on common properties. These properties can be defined in
terms of any of the object semantics that is captured in the schema
definition language. This includes things like the history or

. control aspects. One can therefore create a class of all objects that
can be modified by Smith but were created by Jones.

b. Perform object maintenance. The trigger mechanism provides the
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hooks to achieve this. The ability to generate calls to arbitrary
programs whenever a change occurs (i.e., an object is added to a
version set) gives the system the power to perform many functions
that are related to maintenance of information across object
changes.

4. Manage an environment characterized by change. The system that was
outlined above has many facilities for dealing with objects that are
changing.

a. Side effects to change. The trigger specifications that are a part of
the control aspect of an object allow a user to perform arbitrary
actions when a new object is added to a version set for that object.
For the immutable repository this is the only way that objects can
change.

b. History of change. The version set, derivatives, and alternatives are
all designed to help workstation users deal with objects that are
evolving over time. These capabilities allow for the efficient
representation of the way in which new versions of objects relate
to each other. The control mechanisms for defining triggers are
another facility that enhances a users ability to manage the
continual change that occurs in a workstation environment.

5. Control of the use of objects. The above discussion has outlined
different ways in which the constraints can be placed on the usage of
objects.

a. Object structure specification. The content of an object can be
specified as a set of components each of which is drawn from some
class. The ability to describe arbitrary subclasses with class
specifiers allows a user to restrict the legal values of a component
to be a member of any class that can be described with a class
specifier.

b. Object control. The control aspect of an object class definition
describes the way an instance of that class will behave when users
try to access it in various ways. The object might deny access to
some users or send a message to another user. The exact behavior
is user configurable. The information on which this behavior rests
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is accessible as a part of a class specification (or query). This
allows a user to easily find all objects that behave in a particular
way.

6. Flexible implementation choices. Our object management system allows
system builders to use any implementation choice that they feel is best
for their needs as long as the behavior that they would like to display at
the higher level is describable in terms of the required operational
interface. The only requirement is that the system builder produce the
set of programs that implement the operational interface for the new
class of objects.

7. Office object semantics. The high-level object description language has
been designed with an eye toward the kind of semantics that can be
observed for many types of objects that are used in an office setting.

a. Object hierarchies. Office objects tend to be constructed from
other objects. The content aspect of an object is specifically for
the purpose of expressing this type of object hierarchy.

b. Alternative views of an object. The ability to define an object's
contents as being dependent on some other object or objects
allows us to have several views of the information that is stored in
the repository.

8. Relationships among objects. The attribute aspect of a class specification
allows a user to express arbitrary relationships between a given object
and any other object in the repository. Some system supported
relationships between objects have also been explained. For example,
the version-of and the component-of relationship have a great deal of
machinery built into the system to support them.

9. Effective memory utilization. The reference mechanism allows one to
define objects that do not physically contain their contents. In this way,
one only reads in (i.e., dereferences) the parts of an object that are
needed by the program.

10. Generalized information about object types. We provide general
database object types for storing arbitrary assertions about the
application or about repository objects. Using a reference object type in
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an assertion gives us a way to handle general statements about repository
objects.

8.2 Workstation Principles

This project has produced a number of tangible results, a model of data

(ODM), and a working prototype system, to name just two. Another less obvious

result has been the articulation of a number of general principles for the design of

workstation applications. Some of these principles have manifested themselves in

the design that we have described earlier in this document and others have been

born out of our experience with workstation applications. We feel that these

principles have applicability to many areas of workstation application design.

Principle 1: When building workstation programs, one should strive
to make use of primary data structures that can be updated with minimal
overhead. These data structures are always available but are not
necessarily efficient. There should also be auxiliary data structures to
support rapid access. In order to make the effect of an update visible to
the auxiliary data structures there should be a background process that
updates the auxiliary data structures on the basis of changes to the
primary data structure. After the initial update to the primary data
structure, a process is scheduled to update the auxiliary data structure. At
some time in the future, access will be through the auxiliary data
structure, and, therefore, efficient.

Principle 2: One should always try to construct workstation programs
such that they anticipate the types of operations that might reasonably
occur next. The programs can then preprocess the data in a way that
eliminates the need to always perform actions only on demand.
Sometimes, when a users requests that a certain operation occur, the
system might already have performed it.*

Principle 3: User interfaces for workstation applications that involve

*This idea became a principle during a private conversation with Marvin Sirbu.
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the selection of objects should incorporate the notion of "browsing"**. A
good basis for an interface that browses is our class hierarchy. The user
can travel down paths of the class hierarchy inspecting the contents of
classes. Each class that is visited represents a narrowing of the domain
presented by the previous class. The choice of a path represents a
semantic property of interest to the user. It should be possible to back up
and move arbitrarily around the class hierarchy.

Principle 4: User interfaces must suit the working style of each user if
there is to be wide-spread acceptance of office workstation technology.
People tend to have individual preferences concerning how they interact
with the basic tools of their job. If we use statistical methods to design
user interfaces, we will end up with systems that are best used by average
people. If we aspire to systems that will amplify the talents of all office
workers, we must understand many different interface techniques and
allow each user to customize the interface to each program by selecting
options from this set* .

Principle 5: Many information sources that are required by the object
management system itself can be stored in the object repository and
treated as any other object type. Examples of this type of object include
the classes Users, Programs, A ttribute-Derivation-Programs, and
User-Interface-Profiles.

8.3 Future Directions

This work has been an initial study into the conceptualization of office

databases. It has been an experiment in a new area of data management. We expect

that it could form the basis for many future projects that will study each of the

aspects of an object management system that we have described in this document in

more detail.

**This is like the Xerox notion of a browser [22, 23]

*This could be done by parameterizing user interface profiles that are stored in the repository and
accessed whenever a user runs a new program.
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8.3.1 Efficient Access Structures

We feel that, given the kinds of logical structures that are presented by an

object management system and the patterns of use that they will experience in an

office, there is a great deal of potential for the invention of specialized data

structures that will optimize this use. This is very much like what has happened

over the years in the field of database management systems. It is also reasonable to

expect that some of the techniques from traditional database management systems

implementations will carry over to the object management system environment.

Studies of how an object management system is used and where the bottlenecks

occur would be fruitful as a first step in determining where effort should be

expended. It is unclear at present where the maximum benefit can be derived from

a new system data structure.

8.3.2 User-friendly Interfaces

In order for an office worker to use an object management system, easy to use

interfaces must be made available. The office worker is not prepared to invest large

amounts of time learning how to use arcane computer systems. The interface must

communicate in terms of metaphors that are already familiar to the typical office

worker.

The office data model that has been presented in this work is not intended for

computer naive users. We expect that it would have the most utility to an office

system designer or office data administrator. There is great utility in making some

of the facilities of the system directly available to the users of a workstation. Future

projects in the area of interfaces for object management systems could potentially

have enormous impact in terms of the ability for all levels of users to have uniform

access to the data resource. This relates to the use of an object repository as a part of

a decision support system.
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8.3.3 Distributed Environments

Most current proposals for office system architectures involve a collection of

distributed workstation each with its own local storage facility as well as more

centralized file server machines all connected together in some form of network. In

this model, data does not reside at a single site. Instead it can be located at various

physical sites and can possibly have multiple copies scattered around the network.

The application code will be simpler to the extent that the location of this data is

transparent to the users of the system.

The distribution of data around the system raises a new set of issues. Can

components of objects (e.g., the different chapters of a report) be allowed to reside

on different machines? Should repositories (as defined previously) be allowed to

straddle multiple machines? If so, how are facilities such as the locking scheme

affected? Can one effectively write interface programs for a repository operation on

another machine in much the same way that one would write such a program for the

single machine case, the only difference being the remote procedure call to a

repository server on another machine? How can one guarantee consistency of data

across multiple machines? These and other issues form the basis for another line of

potential development.

J.3.4 Study of Impacts

Once an operational version of the object management is available that exhibits

acceptable performance, we feel that a project that tracked its use in a real-world

-environment would be of enormous utility. This kind of study would be interested

in which features of an object management system were used most often and in what

ways. A study of this sort could demonstrate which areas of object management are

most vital and which have a less immediate payback.
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One could also study the impact of object management systems on the ways in

which work gets done. Do people structure their tasks differently if they have the

capability to access various types of information by means of a single facility? What

things that were impossible to do before become important to the functioning of the

office. This would be interesting in order to determine the ultimate niche of object

management system technology.

8.3.5 Use in Other Environments

Although this work has been driven by studying office workstation

applications, we believe that some of these techniques could be fruitfully applied to

other disciplines. For example, many of the data handling problems that occur in

the field of CAD/CAM resemble problems that we have encountered in the office.

Engineering drawings often go through many revisions. Each of these versions of a

drawing is in reality a structured object The components of a computer circuit

schematic, for example, might be the CPU, the memory unit, and the I/O bus. Each

of these pieces are also broken down into smaller pieces at the next level of detail.

Program maintenance in any large software project poses a large number of

problems related to version control. Software designers need to be able to assemble

many modules to produce a consistent overall version of the system. In order to

facilitate this process, it would be useful to make assertions about each of these

pieces. With such a facility, one could, for example, find the version of the disk

driver module that has been checked out by the head of software quality control.

This should be very reminiscent of some of the examples that we encountered in the

world of office objects (i.e., documents).

We feel that the ideas embodied in our object management system could be

applied to any application which is concerned with the perturbation of large
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structured objects. More of these applications should be ferreted out and their

suitability for object management system solution should be determined.
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Appendix A.

Summary of ODM Operations

The following summarizes the operations types of modeling primitives that are

available in ODM. For each type of primitive object, we list the basic operations

that are available for them. A more detailed discussion is available in Section

3.3 from which the following list was excerpted.

Version Sets:

Create-Version-Set: -> Version-set.
Add version: Version-set X Simple Object X [Set] -> Version-set.
Latest-version: Linear-version-set -> Simple-Object.
Latest-version: Branching-version-set -> Set.
Delete version: Version-set X Simple-Object -> Version-set.
Iterate-over-versions: Version set X function.

The Repository:

Store-object: Repository X Object -> (Repository, Repository-Key).
Retrieve-object: Repository X Repository-Key -> Object.
Delete object: Repository X Repository-Key -> Repository.
Modify object: Mutable-Repository X Repository-Key X Object ->

Mutable-Repository.

References:

Create-Reference: Type X Definition -> Reference.
Evaluate-Reference: Reference -> Object or Set of Objects.

Object Content:

=Test?: Object X Object -> {True, False}.
= =Test?: Object X Object -> {True, False}.
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Create-Repository-Object: Repository X Object -> Repository.
Get-Component: Object -> Object.
Iterate-Over-Components: Object X Function.
Iterate-Over-Component: Object X Function.
Get-Component-n: Object X Integer -> Object or a Set of Objects.

Object Attributes:

Iterate-Over-Attributes: Object X Function.
Iterate-Over-Values: Object X Function.
Iterate-Over-References: Object X Function.
Get-Attribute: Object -> Object.
Get-Reference: Object -> Referece.
Get-Attribute-n: Object X Integer -> Object.
Get-Reference-n: Object X Integer -> Reference.
Set-Attribute: Object X Object -> Object
Set-Reference: Object X Reference -> Object
Set-Attribute-n: Object X Integer X Object -> Object.
Set-Reference-n: Object X Integer X Reference -> Object.

Classes:

Create-Class: Repository X Base-Class-Schema -> Repository.
Delete-Class: Repository X Schema -> Repository.
Modify-Class: Repository X Schema -> Repository.
Restrict: Class X Predicate -> Class.
Subset: Class -> Class.
Merge-Members: Class X ... X Class -> Class.
Extract-Common-Members: Class X ... X Class -> Class.
Extract-Missing-Members: Classi X Class2 -> Class3'
Abstract: Class X Grouping-Program -> Class.
Aggregate: Class -> Class.
Insert-Member: Class X Object -> Class.
Delete-Member: Class X Object -> Class.
Is-a-Member-of?: Class X Object -> {true, false}.
Iterate-Over-Class-Members: Class X Function.

Access Specifiers:

Create-Access-Specifier: Operation X User-Class -> Access-Specifier.

208



Check-Access: Access-Specifier X User-id -> {true, false}.

Triggers:

Create-Trigger: Operation X User-Class X Object-Class X Program -> Trigger.
Activate-Trigger: Trigger.

Repository Operations:

Invoke: Operation X Object.
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Appendix B.

Schema Mapping Methodology

The procedure contained in this appendix serves as a guideline for a system

designer who is involved in the process of creating the set of programs that supports

the semantics of an object class (as contained in a given object schema). In many

cases, these programs will already be available as some of the operations of the

abstract data type that has been created to underly the given class. For cases like

these, this methodology will provide a checklist to insure that there is a one-to-one

correspondence between the high-level schema features and the required program

level operations.

For the content of an object:

There must be a program called Iterate-Over-Components

Components

For each component of an object's content:

There must be a program that tests to see if this component
is a member of its value set.

If Single-valued -> Get-Component
If Set-valued -> Iterate-Over-Component
If Set-valued and ordered -> Get-Component-n

If component has:
1. Access specifier for Read -> Predicate for all above operations
2. Access specifier for Write -> Predicate for Add-New-Version

If component has triggers, one must write 2 programs for each one.
1. A matching program
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2. The trigger program

Attributes

For each attribute of an object:

If Single-valued -> Set-Attribute
-> Get-Attribute

If Set-valued -> Iterate-Over-Attribute
If Set-valued and ordered -> Set-Attribute-n

-> Get-Attribute-n
All set operations must check to see if the value to which the attribute is
being set is a member of its value class.

If attribute has:
1. Access specifier for Read -> Predicate for Get-Attribute operations
2. Access specifier for Write -> Predicate for Set-Attribute operations

If attribute has triggers, one must write 2 programs for each one.
1. A matching program
2. The trigger program

If an attribute has an extent specification,
there must be a way of making this information available
to lower level objects.
For any object:

Superiors-That-Could-Contribute-Attributes: Object -> Set of Objects

State Machines

If a schema definition has a state machine associated with it,
For each transition in the state machine,
1. There must be a program that checks to see if

the transition specification is satisfied.
2. Triggers that use this program to see if the change has occurred.

These triggers do not have to be described at the schema level.

Version Propagation

For Add-New-Version for the version set of the component there must be
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a program that gets parent objects that get new versions.
This might require program to notice when a dependent connection is made.
(i.e., Add-New-Version at the higher-level might notice that such a

connection has been made and record this fact somewhere.)
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Appendix C.

ODM Reference Manual

This chapter will serve as a guide for someone who is interested in creating

ODM object schemas. It is assumed that the reader is familiar with basic ODM

concepts as described in Chapter 3. In a few cases, some of the more central

concepts have been recast here in order to facilitate the reading of this manual.

C.1 Basic Definitions

In order to provide a setting for the more detailed discussion of the object

management system interface, we will begin with some basic definitions of the most

central concepts. These concepts are the basic semantic units for an office

information system, and they form the conceptual framework for our object

management system. They are useful for describing objects of any type.

C.1.1 Objects

An object is any collection of information that is thought of as a conceptually

distinct unit. The decision concerning what constitutes the boundaries of an object

is a part of the overall database design. For example, the final report of our research

group might be considered to be an object. This report is an entity that has identity

of its own. Members of the group perform various operations on it such as reading,

editing, and mailing copies to colleagues.

In our view, objects can be constructed out of other objects. We call the pieces
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of an object its components, and we call the collection of all its components the

content. As an example, the final report object might be built out of several chapter

objects and an appendix object. Objects can share components. That is, a given

object can appear as a component in more than one parent object. In this way,

changes to a single object can be reflected in more than one containing object.

An object is also the locus of change. It is the smallest unit of information that

can be edited. When one modifies the content of an object, a new version is created,

and the correspondence between the old version and the new version is recorded.

The content portion of an object, therefore, is read-only.

C.1.2 Classes

The entire collection of objects that the object management system knows

about will be called the repository. This collection of objects is broken down into

smaller sets of objects called classes. A class is a meaningful collection of objects

that all share some property. Sometimes this shared property can be a complex

predicate or sometimes the property can be as simple as the fact that the user

considers them to be members of the same class.

Classes do not, in general, exist independently of each other, but rather are

related to each other by means of interclass connections. For example, one of the

most common ways to establish an interclass connection is by defining one class to

be a restriction of the members of some other class. A restriction class contains

those members of the parent class that satisfy a given restriction predicate. A

restriction class is, therefore a subclass of its parent class in that all members of the

subclass are also members of the parent. A given object must be a member of at

least one class, its base class, but it may be a member of arbitrarily many other

classes. A base class is a class whose existence does not depend on any other class.

Every object in the repository has a base class.
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At any point in time, an object will belong to some set of classes. As the

conditions upon which class membership is based change, so will the class

membership patterns. A given class can have different member objects over time.

This is in distinction to most programming language type systems in which an

object's type is fixed.

We do not require that the members of a class be of a uniform type. That is,

they do not all have to be members of a common base class. In this way, for

example, we can make a class imitate the behavior of a file folder. It can accumulate

a set of objects of dissimilar type that share some common purpose (e.g., relate to

the management of the Office Automation project).

C.1.3 Schemas

A schema exists for each class in the repository database. The schema is a set of

statements that describes the objects belonging to that class. There are two levels of

schema information about members of a class.

1. The schema specifies the high-level semantics of objects that belong to a
class. This is the interface that users of the object management system
see. A given user will interact with the objects in the repository by
making use of the semantic constructs from the various object class
schemas. The rest of this appendix deals with the mechanics of creating
this level of schema.

2. At the implementation level, the schemas specify the ways in which the
high-level semantics of the object class are to be implemented. They
provide the mechanism for indicating the mapping between a given
semantic feature and a program that implements that feature. This is
described more fully in Chapter 5.

A schema is associated with each class in the database, but a schema can also be

associated with an individual object. In this case, it describes the high-level
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semantics of that particular object. This is useful when a given object deviates in

important ways from the other members of its class. For example, a class of final

reports might be defined to have a set of chapters as components. Another user of

the system might like to create a final report object which has an additional

component called a bibliography. This new component would be defined in the

individual schema for the new final report object.

C.1.4 Class Specifiers

A class specifier is an expression that evaluates to a repository class. It might be

a class that already exists in the repository or it might be a brand new class that is

derived from one or several existing repository classes. A class specifier is analogous

to a database query in that it selects a set of objects as its result. It consists of a

predicate P and a class C. The result of evaluating the class specifier is the set of

objects from C that satisfy P. Class specifiers are often used as the method of

defining a new, permanent repository class.

C.2 Notation

In the descriptions of the linguistic features of the Office Data Model (ODM)

that appear in this document, we will make use of the following conventions:

- Language literals or constants (i.e. reserved words) will appear in lower
case letters, sometimes with beginning capitals. (e.g., Define Class)

- Class names will be presented in lower-case with initial capital letters.
(e.g., Reports)

-Attribute names and component names will appear in a lower-case type
face. (e.g., author-of-report)

-Symbols that represent a set of possible values drawn from some
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syntactic class are presented completely in upper case (e.g.,
COMPONENT-DEFINITION). These symbols correspond to the
non-terminals in a grammar.

- Curly brackets are placed around items that are optionally present. The
items within the brackets may or may not be present. If there is more
than one choice for the optional item, the options are separated by
semicolons (e.g., {Any; All; INTEGER}. The example indicates that
one of the following may optionally appear: the literal Any, the literal
All, or an integer.

- Square brackets are used to enclose a list of items of which exactly one
must be chosen (e.g., [Upward; Downward]).

-Double curly brackets (i.e., {{ }}) mean that zero or more of the
enclosed can appear, appended linearly.

- Double pointed brackets (i.e., << >>) mean one or more of the enclosed
can appear, appended linearly.

- If the example is a production (as used in BNF), the left and right sides
of the production will be separated by a "-".

C.3 Class Definitions

Many different types of object can be stored by an object management system.

An object can be a member of one or more named collections called classes. The

objects in a class are homogeneous in the sense that they all share some property or

set of properties. One of the principal ways in which two objects can be

distinguished from each other is by their membership in different predefined

classes. A class definition is a description of the high-level semantics that members

of the class share. It also provides a specification for a set of procedures that must

exist in order for the class members to be managed by the object management

system.
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Users of the object management facilities can specify new object classes by

means of the following construct:
Define Class CLASS-NAME
Definition : CLASS-DEFINITION
{ Content

CONTENT-SPECIFIER-LIST }
{ Attributes

ATTRIBUTE-SPECIFIER-LIST }
{ History

HISTORY-SPECIFIER }
{ Control

CONTROL-SPECIFIER }

The syntactic categories used above (e.g., CONTENT-SPECIFIER-LIST), will be

defined later in this document.

Within a repository, each class must have a unique name that is specified in the

first line of its definition. The class name is a string of characters of arbitrary length.

The characters can be any printing ASCII character except space.

The class definition is a predicate that can serve as a membership test for

elements of the class. It is either expressed in terms of the class-specifier forms that

are describe below, or it is the literal BASE. In the later case, the class is a base class.

A base class is one that is defined independently of the other classes in the

repository. A newly created object becomes a member of a base class because

someone or some program tells the system that it should belong. The system can

determine the base class of an object by the underlying programming language type

of the object.

C.4 Aspects

Four optional definitions, one for each of the potential aspects of an object

type, complete the definition of an object class. Each of the aspects of an object is a

way of grouping together related semantics that objects in the class share. Each of
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the four aspects that we will investigate in this work displays unique requirements

for a linguistic mechanism that adequately expresses the kinds of information that

we feel is necessary. We, therefore, have provided distinct sublanguages for each of

the class aspects. Not all object types will have all four aspects defined. An object

type can be defined to behave like a record type in traditional data processing. This

object type would have attributes (i.e., the fields in the record), but no content.

Textually, we group, within the schema, the definitions that belong to each aspect.

C.4.1 Content

The content aspect of an object schema describes the physical structure of the

objects that belong to the corresponding class. The specific functions that are

provided by the content aspect of an object schema are as follows:

1. Defines the object. Objects that have editable content do not require an
artificial unique identifier (i.e., key) to identify the object. The object
here stands for itself. If two objects have the same content, then they
both represent the same object.

2. Defines the containment relationship. If an object type is defined in
terms of a collection of other object types, this is reflected in the content
specification. The question of whether a particular report has been
edited this week can now be processed by looking at each of the
components of the report and restating the question for each of them.
This process is continued recursively until we reach only objects whose
components are not repository objects. They will be primitive objects
instead. In the case of a report, we will continue following components
until we encounter objects such as paragraphs whose components are
strings (i.e., primitive).

3. Defines structural constraints. The content section of an object schema

describes the structural form of legal objects. Suppose the content
aspect of a report object were defined as follows:

Chapters: Set of Chapters
Bibliography: Bibliography
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This would indicate that a report must be a set of chapter objects
followed by a single bibliography object. If a user tried to create a report
object with a section object or with more than one bibliography, the
object management system would notify the user of the error at the
moment when he tried to commit the object to the repository.

4. Defines characteristics of components. The characteristics
set-valued/single- valued, mutable/immutable, derived/settable, and
ordered/unordered are indicated in each of the component definitions.

5. Defines object explosion. It is possible to indicate which components of
an object are to written out to the repository as separate objects and
which are not. This is accomplished by placing the word Repository
before the defining class specification. This means that the object
component has its own identity and can, therefore, change without
causing all containing objects to change directly.

The content aspect is defined directly following the literal Content in a class

definition. It is specified by a content-specifier that is a list of definitions for each of

the components of the object type. In the simplest case, each component

specification has the following form:
COMPONENT-NAME :
{{ [Mutable; Immutable]; [Ordered; Unordered]; Set Of }}

CLASS-SPECIFIER

The central item here is the class-specifier. Any object that is an instance of this

named component must be a member of the specified class. This class need not

exist explicitly in the overall repository schema. It might instead be a derivation of

some existing class. The legal forms for a class-specifier will be discussed below. If

the literal, Set Of, is present in front of the class-specifier, then the value of this

named component can be a set of objects drawn from the stated class.
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C.4.2 Attributes

An attribute is used to make a statement about some object. For example, the

salary attribute of an employee can be used to state that the salary of Jones is $20K

(i.e., salary(Jones) = $20K). The object to which the attribute attaches can be

physically either in the repository (as in the case of a report) or in the application

environment outside of the machine (as in the case of an employee). The later case

requires that this external object be represented by some surrogate object in the

repository.

C.4.2.1 Regular Attributes

The simplest version of an attribute specification is:
ATTRIBUTE-NAME: CLASS-SPECIFIER

All attributes are defined in the attributes aspect of a schema. There is no limit to

the number of attributes that can be defined for objects of a given class. The

definition for each of the attributes appears in a list of attribute definitions beneath

the keyword Attributes in the schema definition. Each attribute has a name that is

unique within the attribute names for that class. The attribute definition begins

with the attribute name, followed by a colon, followed by a value class specification.

The value class is the set of objects from which the values of the attribute can

legitimately be drawn. The value class is always some repository class. It can be the

name of an existing class, or it can be a class specifier (see below) that will

dynamically produce a new class of objects. We do not actually need to manifest the

members of this class. It is sufficient to be able to test an object's membership in the

class.

The data manipulation language includes facilities for getting and setting the

value of an attribute. It also includes constructs for adding a new attribute to a

schema definition.
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C.4.2.2 Derived Attributes

A derived attribute is one whose value is dependent on other information about

the object. The form of the dependency is expressed in terms of some program.

This program expresses a relationship between the derived attribute and other

information about the given object or related objects. An expression like the

following expresses how an object is derived.
Number-of-pages: Integer

Derived by (The Derivation-Program where name = "Count-pages")
on thisobject

The attribute Number-of-pages is defined like any other attribute by its name,

followed by a colon, followed by class specifier that indicates the set of legal values

that the attribute can acquire. In this case, Number-ofpages can have a value that is

drawn from the class of integers. The next line in the specification indicates that the

value for this attribute is derived. That is, it depends on the value of other data and,

therefore, cannot be manually set to a value. The program that computes the value

of this attribute is indicated by the class specifier in parentheses. The parentheses

are optional. Programs are repository objects and, therefore, can be manipulated by

the facilities of the object management system (e.g., retrieved by class specifiers).

The last line specifies the arguments to the derivation program. The name

thisobject is used throughout this work to refer to the current object. If we are

looking at the number-of-pages attribute for the thesis object that you are now

reading, the value of thisobject will be this thesis.

The general form of an attribute derivation specification is:
Derived by OBJECT-SPECIFIER on ARGUMENT-LIST

where an object specifier is a class specifier that is required to return a single object,

and the argument list is a sequence of expressions, separated by commas, each of

which evaluates to a repository object or set of objects.
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C.4.2.3 Parameterized attributes.

A parameterized attribute is declared just like a regular attribute except that it

has a list of parameters between the attribute name and the colon. The general form

of a parameterized attribute is:
ATTRIBUTE-NAME (PARAMETER-LIST): CLASS-SPECIFIER

The parameter list is a list of expressions that each evaluate to a repository object.

The list of parameters are arguments that are used by the function that computes the

value of the attribute. Simple attributes are functions of one parameter, the object

itself. A parameterized attribute is a generalization of that idea by allowing the

attribute to be a function of many arguments, only one of which is the object itself.

This is very useful in an office system environment. It can be used to allow attribute

definitions to vary based on other properties of an object.

The parameters in the parameter list can be optionally given names to describe

the purpose of the parameters. These names have no fundamental semantics to the

system. The most common example of a parameterized attribute for a report is the

following:
Contains-word (word : String) : One of {True. False}

This represents a function of two parameters, the report object and a particular word

(i.e., string). The result is either true or false.

C.4.2.4 Attribute Extent Specification

The repository contains many objects, some of which contain other objects as

components. This creates an environment in which objects can be connected

through long chains to arbitrarily many other objects. It is often useful to be able to

describe some portion of this network that emanates from the object in question.

For example, from the point of view of a report object, we may wish .to indicate all

components that are members of the class Document Components. This would
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exclude objects such as graphs or tables that might be connected as components to

some report component. The normal reason for needing this type of expression is to

indicate the extent of applicability of an attribute for purposes of attribute

inheritance.

In order to provide this control over the locus of an object, we provide the

extent expression construct. It is defined in its most general form by the following:
EXTENT-SPECIFIER <-

[Attribute; Value] Extent
(Via <<COMPONENT-NAME>> }
(Is CLASS-SPECIFIER)
[Through; Upto] CLASS-SPECIFIER

Suppose that component-oJ(xy) is a predicate that is true if object x is a component

of object y. That is, object x is defined to be part of the content of object y. A

component path is a sequence of objects, 0 1'...'On' such that for all i greater than or

equal to 1 and less than or equal to n, component-of (Oi+1, O).* An extent

expression for object 0 defines a set of objects that lie on some component path

beginning with object 0.

The choice of the modifier, Attribute, indicates that we are defining an extent

over the descendants of the given object in the content hierarchy. This is because

attributes of objects in a class C can be specified to apply to objects that are attached

as components to members of C. If we were to use the modifier Value, we would be

specifying an extent over the ancestors of the given object. This upward extent

reaches up in the content hierarchy to objects that contain the given object in order

to supply a value for the attribute that is defined for the lower level object

The first phrase beginning with the literal Via indicates which components of

the object are allowed to produce component paths. A list of component names

*Coiponent-of (X,Y) is a predicate that is true if X is a component of Y.
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follows the literal. All of these component names must be defined as part of the

content of the object schema in which the given extent expression is found. This

phrase is only applicable to downward extents since only components and not

parent objects have names.

The first class specifier in the above definition is optional. It indicates which

object types along a component path are to be included in the extent. For example,

if it is Paragraphs, then only objects that are members of the class Paragraphs will be

considered to be part of the extent

The choice of the modifier, Through, in the final phrase of an extent expression

indicates that the component paths are defined to be all those component objects

that are members of the specified class. As soon as an object is encountered that

does not belong to this class, the extent is terminated, and the the object that does

not belong is excluded from the result. If the modifier, upto, is used, the component

paths reach out through all components until an object shows up that is a member of

the specified class. This object terminates the extent and is not included in the

result.

A simple example of an extent expression is:
Downward Extent Is Paragraphs Through Document-Components

The set of objects that is being defined by the above expression extends recursively,

through components of components of the object, as long as all objects encountered

are members of the class Document-Components. As soon as an object is found

along a given component path that is not a Document-Component, the extent is

terminated. Of the objects that appear along this component path, only objects that

belong to the class Paragraphs are selected as members of the extent.
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C.4.3 History

The history section of an object schema appears between the keyword History

and the beginning of the next aspect definition. We use the term history since this

aspect describes properties of version histories. The history aspect of a schema for

class C really describes conceptual objects that are members of another class parallel

to C. The parallel class contains collections of objects that are drawn from C. If the

given schema defines a class with name T, the history aspect defines properties of

the version set objects that are members of a class called Conceptual-Ts.

C.4.3.1 History Attributes

An important part of the History aspect is the definition of another set of

attributes that pertain to the associated conceptual objects. These attributes follow

the rules of construction of the attributes that are defined in the Attributes aspect

They are defined by a list of attribute specifications appended vertically. Each

attribute specification contains a name and a value class separated by a comma, as in

the following history attribute for a graph:
Related-project: Projects

In this example, the attribute related-projects is defined to have a a value in the class

of Projects. This attribute describes the related project for a conceptual object. It

makes a statement about the version set object as a whole. That is, the related

project does not change from version to version.

C.4.3.2 Parameterized History Attributes

A history attribute can take additional parameters, like any parameterized

attribute, as in: '
Latest-version-seen (User-name : String): Report

The additional parameters for the attribute are specified in a list following the
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attribute name. The elements of this list are separated by commas and the entire list

is enclosed in parenthesis. In this example, the value of the attribute is dependent

on the value of the supplied parameter, User-name. If user name, U, is used as a

parameter, latest-version-seen for a given conceptual report will have a value that is

the last version of the report that U has read.

It is possible to assign a name to a parameterized history attribute in exactly the

same way that one assigns names to parameters of regular attributes. These names

are optional. They are specified by prefixing the value class for the parameter with

the name followed by a colon, as in the example above.

C.4.3.3 Multiple-valued Attributes

Just as with any other attribute, if the value can be a set of objects, the keyword

Set-ofis inserted before the definition of the value class, as in:
Related-papers: Set-of Papers

In this example, if this attribute definition appears in the context of a schema for

reports, then a given report can have many papers to which it is related.

C.4.3.4 Derived Attributes and Access Specifiers

Each of the attributes in the history aspect can also have a derivation specifier

and an access specifier. This can be seen in the following:
Longest-version: Report
Derived by: Number-of-Chapters-Comparator

on: thisobject
Read by Users where group="OA"

In this case, Number-of-Chapters-Comparator is the program that compares a set of

reports and selects the one with the largest number of chapters. It should be noticed

that the syntax for a derived attribute and the syntax for an access specification are

exactly the same in the history aspect as they are in the attributes aspect.
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C.4.3.5 State Attributes

In the history aspect, we can define a new type of attribute called a state

attribute. This type of attribute has a value that is a state. A state is a special kind of

object that is related to other state objects by means of transitions. A transition

specifies the requirements for a state attribute to change its value from a current

state to some new state. State attributes behave much like conventional finite state

machines.

A state attribute is defined by indicating that the value set of an attribute is

some machine specification. The name of the machine, then, occupies the position

of the class-specifier in the normal attribute specification. We, therefore, get

attributes of the form:
Processing-status: Status-machine

where the name Status-machine corresponds to a state machine that is also defined

with in the history aspect of the schema by a machine specification.

A machine specification is a list of state definitions. The heading Define State

Machine is followed by the name of the machine. This line is then directly followed

by the state definitions. Each state definition is a state name, followed by a colon,

followed by a class-specifier that is a subclass of the base class of States. The states

of a machine are repository objects, and, therefore, belong to repository classes.

This class specifier in the state definition indicates which states can comprise the

states of the given machine.

A state specification contains a number of components. First, there is a list of

state attributes and their values for this state. This can be useful to indicate

properties of the state (i.e., a completed state). Then, a list of transition specifications

follows. Each transition corresponds to one of the directed arcs that emanates from

a state in a finite state machine. At any point in time, the machine is said to be in

228



one of these states. The machine will be said to follow one of the transitions from

the current state whenever a pattern associated with one of the transitions is

matched.

A transition specification contains three components. They are:

1. When entering CLASS-SPECIFIER. This is used to indicate the pattern
that must be matched in order to cause the machine to follow this
transition when it is in the current state.

2. Do ACTION. This indicates a side effect that will occur whenever the
transition is followed. This component of a transition is optional. If it is
not present, the only side effect of following the transition is possibly to
cause the machine to be in some other state. The action is some
program that will be executed as a side-effect. The program is indicated
by an object-specifier.

3. Goto STATE-NAME. This indicates which state will be the new current
state of the machine after the transition has been followed. The state
name must be one of the state names that appears in one of the state
specifications in the given machine definition.

As an example of the definition of a state machine, the Status-machine that was

alluded to above could be defined as follows:
Define State Machine Status-Machine

Statel: States-with-Condition
Condition: Pending
When Entering (Reports where publishable?=true)
Do Add-to-Publication-List
Goto State2

State2: States-with-Condition
Condition: Done

In this example, we have defined a machine with two states. Both of these states are

drawn from the class States-with-Condition that contains states that have the

attribute Condition defined. The first state, Statel, has a value of pending for its

condition attribute. This state has one transition that is followed whenever the

report object becomes a member of the class (Reports where publishable? =true).
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Whenever this transition is followed, the Add-io-Publication-List procedure is

activated, and the machine enters State2.

By convention, we will assume that all machines for a new conceptual object (if

any exist) will be initialized to the state that is listed first in the machine definition.

This state will be called the machine's initial state.

C.4.4 Control

The control aspect of an object schema defines features of an object class that

relate to the ways in which members of that class can be used and to the things that

should happen when an object of that type is used. The fundamental definitions

that support the control aspect are textually contained between the keyword Control

and the next aspect or object definition. We will call this section of textual

definition the control block. Unlike other aspects, however, control information can

textually pervade all of the other aspect definitions. One specifies general

definitions within the control block and uses these general definitions within other

aspects.

C.4.4.1 User Group Definitions

The first part of the control block contains the definition of groups of users (i.e.,

subclasses of the class Users) that are useful in specifying control constraints for

other aspects. A user group is given a name. That name is used to refer to this user

group in other contexts. The name appears to the left of an equal sign and the class

specifier that defines the group appears to the right of the equal sign. All of these

class specifiers must be qualifications of the class Users. An example of a typical

user group follows:
OAGroup a Users where group="Office Automation"
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One may define arbitrarily many user groups. A user group that is defined within

the control aspect of an object schema is known only within the context of that

object schema. If one wants to define user groups that have global existence, one

must create schemas for these groups.

C.4.4.2 Trigger Definitions

A trigger is a program that is run at a well-defined time in response to the

matching of a trigger pattern. A trigger pattern involves three elements: an

operation P, a set of users U, and a set of objects B. If any member of U tries to

perform P on any member of B, the trigger is activated.

The syntax for a trigger begins with the header line:
Define Trigger on P

This indicates that the trigger is to be associated with the performance of the

operation P. The complete definition of P is determined by the context in which it is

used. We can define a trigger to be applicable on read, but that does not completely

specify the matching operation. Read for which objects? If the trigger is attached to

the Chapters component of reports, the operation for the trigger becomes read for a

chapter.

The object set is indicated next by a definition of the form:
Object Set: B

The set B is specified by a class-specifier. This class specifier must be a qualification

of the class of objects to which the operation P pertains. For example, if the trigger

is attached to the Chapters component of reports, the qualification must be on

Chapters, since it is really the chapters that are being read. If this object set is not

specified (i.e., this part of the trigger definition is absent), the object set defaults to

all objects (e.g., all chapters).
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The user set is defined via a textual component that begins with the string User

set: followed by a user class specification (i.e., a class-specifier involving the class

Users). This is illustrated by the following:
User Set: Users where years-of-service > 3

Finally, a program is invoked by the trigger when the condition specified by the

trigger pattern is satisfied. This program is specified by the preface

Trigger-program: followed by a specification of the program. In general, this

specification is an object-specifier, a class-specifier that must return a single object.

A complete example of the syntax of a trigger definition follows:
Define Trigger on Write
Object Set: Set thisobject to matching-object
User Set: Not (OA-Group)

Set OffendingUser to matching-object
Trigger program: Send-Change-Warning-Message

On: author of thisobject, OffendingUser

This trigger is defined on any write operation. If the object type with which it is

associated is changed by someone who is not a member of the OA-Group, then a

program that sends a message is invoked with the user who is the author of the

object and the user who is changing the object as arguments. Presumably, that

program will send a message to the author warning him that someone is tampering

with his object.

C.4.4.3 Access Specifiers

An access specifier determines who can perform a given operation to an object.

Access specifiers are textually associated with the subparts (i.e., the components and

the attributes) of an object class definition. One achieves this association by writing

the access specifier following. the definition of the appropriate component or

attribute.
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An access specifier contains two essential parts: an operation and a user class.

The operation is one of the basic repository operations that are specified in

Appendix A. By writing an access specifier following a component or an attribute

definition, one establishes a connection between the operation and that subpart of.

An access specifier which specifies a read operation and appears in the context of

the definition of a Chapter component of a report specifies a constraint on who can

read the chapters of a report. If the keyword read is used, the access specifier refers

to any operation that reads a value*. If the keyword write is used, the access

specifier refers to any of the operations that write (i.e., change) values*.

The second part of an attribute specifier is a class of users that can perform the

given operation. This is indicated by a class specifier on the distinguished repository

class named Users. This class contains one object or each potential user of the

system. The class specifier is like a query on this class. It returns a set of users who

satisfy the condition part of the class specifier. The class specifier is evaluated each

time the operation is invoked.

The form of an access specifier is the operation name, followed by the keyword

by, followed by the user class specification, as in:
Chapters: Ordered Set of Chapters
Read by Users where years-of-service > 5

This schema fragment indicates that members of the chapters component can only

be read by users who have more than five years of service.

*This might be any of the following operations: Get-Component, Get-Component-n, Get-attribute,
Get-Reference, Get-nth-A ttribute- Value, or Get-Reference-n.

**This might be any of the following operations: Set-attribute, Set-Reference, Set-Component-n, or
Set-Reference-n.
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C.4.4.4 Attaching Control to Other Aspects

In our model of control, an access specifier or a trigger can be associated with

any operation that is available for an object type. For a report that is defined to

have a set of chapters as a component, there is an implicit operation of reading a

particular chapter from a report. An access specifier and a set of triggers can be

attached to this operation for reports. If the operation is ever invoked, the access

specification is checked, and the triggers are invoked.

Components and attributes are the basic subparts of an object. Let us call that

part of the schema that defines a component or an attribute the subpart definition.

This includes the name of the subpart, the value set, and any properties of the

subpart (e.g., set-of). Syntactically, the access specifiers and the trigger names are

attached to a given subpart by writing it following the subpart definition. We,

therefore, have:
Chapters: Set-of Chapters

Read by OAGroup
Msg-trigger

The first line is the subpart definition; the succeeding two lines are an attached

access specifier and trigger name, respectively. By writing them following the

definition of the Chapters component, they become associated with that component.

The access specifier indicates which users can read chapters from the chapter set.

The trigger, Msg-Trigger will be invoked whenever an operation is invoked on the

,chapter set. Of course, there is an operation specified as a part of the pattern that

must be matched in order for the trigger program to be invoked. If the given

operation is not the one specified, the trigger pattern is not matched and the trigger

is aborted.
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C.4.4.5 Control for Whole Object

The triggers and access specifications that were described above attach to the

components and attributes of an object. It is also possible to specify triggers and

access specifiers for the repository and for repository objects independent of their

subparts. One should also be able to attach triggers and access specifiers to these

operations as well as to operations on the subparts.

The operations that can be performed on a repository are read, write, and delete

an object. The user may wish to define additional, non-standard operations for

repository objects. An example of such an operation is mail which sends a copy of

an object to a given user. All of the control specifications of this later type are

attached to the repository or to individual objects in a section of the control aspect

that is prefaced with the string Controlfor the whole object:.

By including under this heading a trigger or an access specifier for one of the

three boldface operations listed above, one associates that control specifier with the

repository. Access specifiers or triggers for other operations are associated with the

members of the class for which the control aspect is defined.

The following illustrates the use of this type of control definition.
Control for the Whole Object:
Read by Secretaries
Trigger-X

The syntax for a control specifier is the same as in other contexts, and the triggers

are indicated by a trigger name, as in other contexts. In this case, objects that belong

to the class that is defined by a schema in which the above fragment occurs can be

read from the repository by someone who is a member of the class of secretaries. If

the trigger pattern for Trigger-X is matched, its trigger program is invoked. This

trigger pattern includes the specification of an operation.
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C.5 Class Specifiers

Class specifiers are the basic mechanism for forming predicates for partitioning

the space of objects (i.e., the repository) into interesting subsets. The syntax for class

specifiers is simply "syntactic sugar" for the functional language that is presented in

Appendix E. At any point in the ODM syntax that a class specifier can be used, one

may use an equivalent formulation in terms of this functional language.

We will now discuss the syntax of the class specifier mechanism. There are

several different forms of class specifier to accommodate the various semantic

constructs in the Office Data Model (ODM).

C.5.1 Class Names

The simplest form of class specifier is a class name. This is the name of a class

that has been defined in an object schema. The name is the string that follows the

keywords Define Class in the first line of a schema definition. The name is often

descriptive of the content of the class as in:
Long-Chapters

This name may be used as a class specifier if it has been previously defined as the

name of a class. It might, for example, have been the name of class containing

chapters that contain more than 1000 words.

C.5.2 Qualifiers

Beyond this, class specifiers are built up recursively by qualifying existing class

specifiers with a clause that we shall call a qualifier. The general form of a class

specifier is:
CLASS-SPECIFIER Where QUALIFIER

Therefore, a class name followed by a qualifier is also a qualifier. Similarly, this new

class specifier can be further qualified by a second qualifier, and so forth.
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A qualifier is a predicate that can be applied to a set of objects (i.e., a class). A

qualifier Q is applied to a set S by applying the qualifier to each member of S and

then forming the set of all objects x in S for which Q(x) is true (i.e., {x in S I Q(x)}).

C.5.2.1 Qualifiers on Attributes

The simplest form of qualifier presents some condition on the value of an

attribute. An example of this type of qualifier in the context of a class specifier is:
Reports where (author = "Smith")

The expression in parenthesis is the qualifier. It is used here to select those

members of the class Reports that have a value of "Smith" for their author attribute.

The qualifier in this example compares the value of the attribute with a constant

Qualifiers can be made more complex by comparing their value with attributes of

other objects.
Reports where (due-date >
Due-date of The Report where name = "1981-Progress-Report")

In this case, the expression on the second line evaluates to a single value, the due

date of the 1981 Progress report. This value is compared with the due date of other

reports within the qualifier (i.e., the expression in parenthesis). By nesting

expressions within expressions, as in the example, we can build up more

complicated qualifiers.

C.5.2.2 Qualifiers with Containment

One of the reasons for distinguishing between ordinary attributes and object

components is to provide a semantic base that will allow one to retrieve objects

based on properties of their components. Qualifiers with containment are a direct

result of this goal.

A qualifier can specify that all, some, or an integral number of components are

members of some other class specifier, as in:
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Reports where contains some (chapters where creation-date < 1/1/81)

The expression in parenthesis is another class specifier. The overall expression

evaluates to the reports that have at least one component which is a chapter that has

been created before January 1, 1981.

The indicators all, some, or an integer follow the keyword contains in a qualifier

with containment. These indicators are followed by a class specifier or the keyword

components. A class specifier in this position indicates that all, some or an integral

number of components of an object that satisfies the qualifier must belong to the

specified class. The word components indicates that there is no further qualification

on the components. This is useful if there is no qualification at this level, but there

is further qualification in terms of the version sets (See below).

C.5.2.3 Qualifiers with Versions

When the word components is used, it is often qualified by a version specifier. A

version specifier expresses a condition on the members of a version set. It begins

with the keyword with, followed by one of the indicators: all, some, or an integer,

followed by the keyword versions. We, therefore, have:
1. with all versions
2. with some versions
3. with INTEGER versions

This prefix to the version specifier is followed by the keyword where followed by a

qualifier. This qualifier must match the quantification of the versions from the

prefix. As an example, we have:
with all versions where (author="Stan")

which matches a conceptual object that has a value of Stan for the author attribute

of each of its versions. The parentheses are optional. They are used here to

emphasize that the last part of this expression is simply another qualifier. Any

qualifier is legal in this position.
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It is often useful to be able to indicate a subsequence of the version history for

which the conceptual object was in a particular state. This is accomplished by using

a state descriptor. There are three basic forms of state descriptor. They are

described in the next section. They are used by appending the keywords with

versions while in followed by a state descriptor to a version specifier. For example,
with 3 versions where author="Stan"

with versions while in STATE-DESCRIPTOR

would match conceptual objects that have three versions with author= "Stan" and

that are all in some state such that the State-descriptor is satisfied.

C.5.2.4 Qualifiers with State

State machines that are specified as a part of an object definition can be used to

retrieve repository objects. An object's state is used to qualify a class of objects by

means of a state-descriptor. There are three basic types of state descriptor. They

are:

1. State with STATE-PROPERTY RELOP VALUE. This qualifies an
object to be in a state that has an attribute that is related by the given
relational operator (RELOP) to the specified value.

2. State INTEGER States [Before; After] STATE-DESCRIPTOR. This
qualifies an object to be in a state that is some number of states before or
after a specified state. In other words, within the given finite state
machine, there exists a path of length INTEGER between the current
state of the given object and a state that matches the STATE-
DESCRIPTOR.

3. State Waiting [For CLASS-SPECIFIERJ [to Become
CLASS-SPECIFIER 2]. This qualifies an object to be in a state that was
arrived at by entering CLASS-SPECIFIER1 and is waiting to make a
transition by entering CLASS-SPECIFIER 2. Either of these two class
specifiers can be missing. This requires that one be able to reconstruct
the path that was used to arrive at the current state (at least one state
back).
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This state specifier mechanism is intended to capture the most commonly used uses

of the state mechanism for conceptual objects. The state specifier is the optional last

clause on a version specifier.

The state specifier can also be used as a simple qualifier by using the following

construct:
Object in STATE-DESCRIPTOR

This leads to class specifiers like:
Reports where Object in

State Waiting to Become
Reports where status="approved"

This class specifier matches reports that are in a state that has a transition emanating

from it that will be taken if the object becomes a member of the class Reports where

status= "approved". In other words, it is looking for all reports that are waiting to

become approved.

C.5.2.5 Qualifiers with Control Specification

In ODM, the information about object control is available to the the class

specifier mechanism. This is different from the conventional approach in that

normally, this information is only available to the database system or the operating

system. We feel that this information is important for understanding the full

dimensionality of objects and the ways in which they are used.

A qualifier involving access control information can be formed in the following

ways:
OPERATION By USER-CLASS

or
OPERATION [Granted-to;

Denied-to] USER-CLASS
via COMPONENT-NAME of CLASS-SPECIFIER

The OPERATION is any member of the class Operations which contains programs
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that are the fundamental operations on the abstract data types that provide the

implementations for the members of repository classes. For most objects and

subparts of these objects, the set of legal operations will include a basic read and

write operation.

The most common form of this qualifier is the one that uses the keyword by.

This qualifies the access specifications for the object itself. An example of this type

of qualifier is contained in:
Graphs where (Read by Users where group="OA")

This indicates those graphs that can be read by users who are in the OA group. The

expression in parentheses is a qualifier on an access specification.

As we have described earlier (See Chapter 3), an object schema for a class C can

grant rights to objects that are connected to members of C. In order to form a

qualifier based on this information, we use the Granted-to form described above.

For example,
Chapters where Read Granted-to Users where role="secretary"

via Chapters of Reports

This finds all chapters for which secretaries have been granted read access through

the chapters component of reports.
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Appendix D.

Formal Syntax of ODM

This appendix contains a formal grammar of the syntax of the Office Data

Model (ODM). An informal description of this language and motivation for its

design were presented in Chapter 3. In this appendix, its syntax is described in a

form that resembles BNF with the following metasyntactic conventions:

- The left and right sides of a production are separated by a "<-".

- Symbol in all capital letters is a syntactic category.

- { } means the enclosed item is optional.

- [ encloses a set of items, one of which must appear. The choices are
separated by semicolons (i.e., ";"). When used with "{ }", one of the
choices may appear optionally.

- {{ }} means zero or more of the enclosed can appear, appended linearly.

-<< >> means one or more of the enclosed can appear, appended linearly.

-o" " means that the enclosed character or characters are to be interpreted
literally. This is used, to indicate that some of the metasyntactic
characters that are described in this list are to be included as a part of the
ODM language.

- * * encloses a textual description of some syntactic category. This
textual description is an informal explanation.
which the meaning is clear.

It is used in places in

The meaning of these constructs is explained in Appendix C from the point of

view of a user who wants to write some ODM schemas. Here, we merely summarize

the syntax of the language. The complete language syntax follows.
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CLASS SCHEMA <-
Define Class CLASS-NAME
Definition: CLASS-DEFINITION
Content

{{ CONTENT-SPECIFIER }}
Attributes
ATTRIBUTE-SPECIFIER-LIST

History
HISTORY-SPECIFIER

Control
{{ CONTROL-SPECIFIER }

CLASS DEFINITION <-
CLASS-SPECIFIER I Base

CONTENT-SPECIFIER <-
{COMPONENT-NAME : COMPONENT-SPECIFIER

EXTENT-SPECIFIER)

COMPONENT-SPECIFIER <-
{{Ordered; Non-Empty; Repository))
[Set of {Repository) CLASS-SPECIFIER;

CLASS-SPECIFIER]
ACCESS-SPECIFIER-LIST
TRIGGER-SPECIFIER-LIST

EXTENT-SPECIFIER <-
[Attribute; Value] Extent

{ Via << COMPONENT-NAME >>
Is { CLASS-SPECIFIER }
[Through; Upto] CLASS-SPECIFIER

ATTRIBUTE-SPECIFIER-LIST
Default for attributes:

ACCESS-SPECIFICATION-LIST
TRIGGER-SPECIFICATION-LIST

{{ ATTRIBUTE-SPECIFIER }}

ATTRIBUTE-SPECIFIER <-
[SIMPLE-ATTRIBUTE-SPECIFIER;
PARAMETERIZED-ATTRIBUTE-SPECIFIER]
{{DERIVATION-SPECIFIER;

EXTENT-SPECIFIER
ACCESS-SPECIFIER))

SIMPLE-ATTRIBUTE-SPECIFIER <-
ATTRIBUTE-NAME : {Set-of} CLASS-SPECIFIER

PARAMETERIZED-ATTRIBUTE-SPECIFIER <-
ATTRIBUTE-NAME (PARAMETER-LIST) : {Set-of) CLASS-SPECIFIER
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DERIVATION-SPECIFIER <-
Derived By OBJECT-SPECIFIER

With ARGUMENT-LIST

HISTORY-SPECIFIER <-
Defaults for history attributes:
ACCESS-SPECIFICATION-LIST
TRIGGER-SPECIFICATION-LIST

{{ HISTORY-ATTRIBUTE-SPECIFIER }

HISTORY-ATTRIBUTE-SPECIFIER <-
[SIMPLE-ATTRIBUTE-SPECIFIER;
PARAMETERIZED-ATTRIBUTE-SPECIFIER;
STATE-ATTRIBUTE-SPECIFIER]

{{PROPAGATION-SPECIFIER;
DERIVATION-SPECIFIER;
ACCESS-SPECIFIER))

STATE-ATTRIBUTE-SPECIFIER <-
ATTRIBUTE-NAME : MACHINE-SPECIFIER

MACHINE-SPECIFIER <-
Define State Machine

{{ STATE-NAME : STATE-CLASS-SPECIFIER
STATE-SPECIFIER }}

STATE-CLASS-SPECIFIER <-
States Where QUALIFIER

STATE-SPECIFIER <-
{ {{ ATTRIBUTE-SPECIFICATION }} } ;"Attributes of the given state"

{{ TRANSITION-SPECIFIER }}

TRANSITION-SPECIFIER <-
When Entering CLASS-SPECIFIER ;"A predicate"
{ Do ACTION )
Goto STATE-NAME)

CONTROL-SPECIFIER <-
USER-CLASS-DEFINITIONS
TRIGGER-DEFINITIONS

Control for whole object:
Read By USER-CLASS-NAME

EXTENT-SPECIFIER
Write By USER-CLASS-NAME

EXTENT-SPECIFIER
Included By USER-CLASS-NAME

EXTENT-SPECIFIER

ACCESS-SPECIFIER <-
OPERATION By USER-CLASS
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ACCESS-SPECIFICATION-LIST <-
[ACCESS-SPECIFIER;
ACCESS-SPECIFICATION-LIST, ACCESS-SPECIFIER]

USER-CLASS <-
Users Where QUALIFIER

USER-CLASS-DEFINITIONS <-
{ USER-CLASS }

TRIGGER-DEFINITIONS <-
{{ TRIGGER-DEFINITION }}

TRIGGER-DEFINITION <-
{ NAME = }

Define Trigger on OPERATION
Object Set: CLASS-SPECIFIER
User Set: USER-CLASS
Trigger-Program: OBJECT-SPECIFIER

on: ARGUMENT-LIST

TRIGGER-SPECIFICATION-LIST <-
[TRIGGER-NAME;
TRIGGER-SPECIFICATION-LIST, TRIGGER-NAME]

INHERITANCE-SPECIFIER <-
Inherit Rights From CLASS-SPECIFIER
{ But Not For USER-CLASS }

GRANT-SPECIFIER <-
Grant Rights To CLASS-SPECIFIER
{ But Not For USER-CLASS }

CLASS-SPECIFIER <-
[CLASS-NAME;
CLASS-SPECIFIER Where QUALIFIER;
ATTRIBUTE-NAME of CLASS-SPECIFIER;
Not CLASS-SPECIFIER;
CLASS-SPECIFIER And CLASS-SPECIFIER;
CLASS-SPECIFIER Or CLASS-SPECIFIER;
CLASS-SPECIFIER Minus CLASS-SPECIFIER]

QUALIFIER <-
[Contains [All Some INTEGER] [CLASS-SPECIFIER Components]

VERSION-SPECIFIER;

Part Of CLASS-SPECIFIER;

ATTRIBUTE-NAME (PARAMETER-LIST) RELOP SINGLE-VALUE;
ATTRIBUTE-NAME (PARAMETER-LIST)

Member Of [CONSTANT-SET; CLASS-SPECIFIER];
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Object In STATE-DESCRIPTOR;

Read By USER-CLASS;
Write By USER-CLASS;
Read Granted To CLASS-SPECIFIER;
Read Denied To USER-CLASS;
Write Granted To CLASS-SPECIFIER;
Write Denied To USER-CLASS]

VERSION-SPECIFIER <-
[With [All; Some; INTEGER] Versions

Where QUALIFIER;
With Versions While In STATE-DESCRIPTOR]

STATE-DESCRIPTOR <-
State With STATE-PROPERTY RELOP VALUE
State INTEGER States [Before; After] STATE-DESCRIPTOR
State Waiting For CLASS-SPECIFIER To Become CLASS-SPECIFIER

RELOP <-
<= I >= I < I > =

VALUE <-
[NUMERICAL-CONSTANT;

STRING-CONSTANT;
CONSTANT-SET;
CLASS-SPECIFIER]

OBJECT-SPECIFIER <-
[ The CLASS-SPECIFIER;
ATTRIBUTE-NAME of OBJECT-SPECIFIER;
OBJECT-SPECIFIER.ATTRIBUTE-NAME ]

ARGUMENT-LIST <-
[VALUE; ARGUMENT-LIST, VALUE]

PARAMETER-LIST <-
.4 (NAME :} VALUE;

PARAMETER-LIST, (NAME -: VALUE]

ACTION <-
PROGRAM where QUALIFIER

CONSTANT <-
[STRING-CONSTANT; NUMERICAL-CONSTANT]

CONSTANT-SET <-
"{" CONSTANT-LIST "}"

CONSTANT-LIST <-
[CONSTANT; CONSTANT-LIST, CONSTANT]
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CLASS-NAME <- NAME

COMPONENT-NAME <- NAME

ATTRIBUTE-NAME <- NAME

STATE-NAME <- NAME

USER-CLASS-NAME <- NAME

NAME <-
*string of lowercase letters beginning with a capital*

INTEGER <-
*an integer*

NUMERICAL-CONSTANT <-
*a number constant*

STRING-CONSTANT <-
*a string constant*

SINGLE-VALUE <-
[ CONSTANT;

OBJECT-SPECIFIER ]

USERS <-
*a class of objects that contains one object for each of the users
who are known to the system*

PROGRAM <-
*a class of objects that contains application specific programs*
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Appendix E.

Functional Object-Retrieval Language

This appendix describes the functional object-retrieval language that is used in

the body of this thesis to describe the semantics of object specifiers. The form of

this language does not imply anything about the way in which a given retrieval

would be implemented. It is used simply to map a given object specifier into a set

specification with known semantics.

We will present each of the constructs of this language along with a narrative

description of what each one means. This intuitive specification will be couched in

terms of set theoretic notions.

E.1 Functions

The language describe in this appendix consists of a set of functions that have

primitive values and sets of these primitive values as their domains. Each function

maps a set of arguments into a primitive value or a set of primitive values. A

function can have a name like the function plus or it can be construct from other

functions as described below.

New functions can be formed by creating a lambda expression. The lambda

expression here is like the lambda expression in the lambda calculus or the

programming language, LISP. A lambda expression consists of three parts: a list of

bound variables (or arguments) and a body which is a function that is defined by the

composition of previously defined functions. An example lambda expression is the

following:
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Lambda (x) plus (x, 3)

This is a function that adds 3 to its argument, x. Plus is a function with two formal

parameters that returns the sum of those parameters as a result.

An important class of functions is the class of predicates. A predicate is a

function that maps its arguments into the set {true, false}. Predicates can be

constructed as lambda expressions as long as the function that is the top-level

function of the body of the lambda expression is a predicate. An example of a

predicate is:
lambda (x) greater-than (x,3)

E.1.1 Attribute Application

Functions can be applied to arguments. The built-in function apply is available

for that purpose. The first argument to apply is a function, and the other arguments

are the objects to which the function is to be applied. The following:
Apply (plus, 3, 4)

will compute the value 7 by applying the function plus to the remaining arguments.

We can also use the equivalent notation, plus(3, 4). An attribute, such as author, of

an object is a function that returns the value of that attribute for object, x, when

applied to x. We can write this as Author (x).

E.1.2 Iterate

In order to apply a function f to each of the members of a set of n elements, S,

(i.e., S = {xJ, x2' ... xn}), we use the built-in function iterate. The meaning of:
Iterate [S, f]

is to apply f to each of the elenlents of S. The result of the above application of the

iterate function is a new set containing the results of the individual applications of

f. That is, the result of the above function is:
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{f(x1 ), f(x 2 ). --- ' f(xn))

E.1.3 If

The function Ifis used to achieve conditional application of a function. It takes

either two or three arguments. In the case of three arguments, if the first argument

evaluates to true, the second argument is evaluated, and the third argument is

ignored. If the first argument evaluates to false, the second argument is ignored,

and the third argument is evaluated. In the case of two arguments, the second

argument is evaluated if and only if the first argument evaluates to true.

E.2 Set formers

The functional language deals with sets of objects. The simplest way to refer to

a set is by some name. Examples of named sets might be Employees or Reports.

Sets can also be constructed by functions that take other sets as arguments. This

section describes the functions that are available to create new sets from old sets.

E.2.1 Restrict

The Restrict function takes two arguments: a set and a predicate. The value of

restrict applied to a set, S, and a predicate, P, is all those members of S for which P is

true. The result of a restrict function is always a subset of the set, S.

An example of a restrict is the set of all Reports that have been written after

September 1. This would be expressed as follows:
Restrict [Reports. lambda (r) date-written (r) > 9/1)

The function date-written is an attribute of reports.
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E.2.2 Image

The image function takes two arguments: a set, S, and a function, F. The

function must be defined for all members of the set. That is, S must be a subset of

the domain of F. The result of Image (S, F) is a set of objects, R, in the range of F,

such that for each x in S, F(x) is a member R.

An example is the set of all employees who are managed by the mangers who

live in Boston. This would be expressed as follows:
Image (
Restrict (Mangers, lambda (m) lives-in (m) = "Boston")
lambda (x) managed-by (x))

This example also illustrates how one function can be nested within another

function.

E.2.3 Boolean Operators

Given two or more set expressions, we can use the standard Boolean operators

to combine them into a single set expression. The Union function takes an arbitrary

number of set expressions as arguments and returns the set of objects that is the

union of the sets produced by each of the individual set expressions. The

Intersection function takes an arbitrary number of set expressions as arguments and

returns the set of objects that is the intersection of the sets produced by each of the

individual set expressions. The Difference function takes two set expressions as

arguments and returns all those elements that are members of the set produced by

the first argument but are not members of the result produced by the second

argument.
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E.2.4 Dot Notation

We can use dot notation as a shorthand for attribute (a kind of function)

application. The application of an attribute, A, to an object, x, can be abbreviated as

x.A. In this way we can abbreviate the application of the author attribute to a

report, r as: r.author. Dot notation makes it convenient to cascade the successive

application of several attributes to an object. Consider, r.author.group. This first

applies the author attribute to the report, r, to get a particular user of the system, and

then applies the group attribute to that user to get the group of that user. The result

of the compound expression, then, is the group affiliation of the author of a report.

E.3 Predicate formers

There are several functions that form predicates form other predicates and sets.

These functions are described in detail in this section.

E.3.1 For-some

The next two functions, for-some and for-all relate to quantification over a set

of objects. For-some takes two arguments: a set, S, and a predicate, P. The value of

for-some will be true if the predicate, P, is true for at least one member of S. If P is

true for no members of S, the value of the function is false.
a'' For-some (Reports, lambda (r) length-in-pages (r) > 50)

This predicate is true if there is at least one report in the set (i.e.. class) named

Reports has a value for its length-in-pages attribute that exceeds 50.

E.3.2 For-all -

The predicate For-all takes two arguments: a set, S, and a predicate, P. The

value offor-some will be true if the predicate, P, is true for every member of the set,

S. If P is false for any member of S, the value of the predicate isfalse.
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For-all (Reports, lambda (r) date-created (r) > 1/1/76)

This predicate will be true if every report in the set, Reports was created after 1975.

E.3.3 Member-of

Member-of is a predicate that tests to see if a given object is a member of a

given set. It, thereby, takes two arguments: an object, x, and a set, S. If x is a

member of S, the value of this predicate will be true, otherwise it will be false.
Member-of (1981-Group-Final-Report, Reports)

This predicate is true if the group's final report for 1981 is a member of the set

named Reports, otherwise it is false.

E.3.4 Contained-in

Contained-in is a predicate that takes two arguments: a set S, and a set S2 If S1

is a subset of S2, then the value of the predicate is true, otherwise it is false.
Contained-in (

Restrict (Reports, lambda (r) author="Fred"),
Reports)

The above expression is always true since the restriction of a set is always a subset of

that set regardless of the predicate (i.e., the lambda expression in the restrict).

E.3.5 Comparison Operators

The standard arithmetic comparison operators (i.e., equals, less-than, greater-

than, less-than-or-equal-to, greater-than-or-equal-to) are available to form

predicates. They each take two arguments and are true whenever the expression

that results from substituting the corresponding arithmetic operator between the two

arguments is true.

These operators are supported for numbers as described above; however, they
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are also supported for several other built in types that have some accepted ordering.

One date, dl, is less than another date, d2, if d, occurred before d2. Similarly, a text

string, ti, is less than another text string, t2, if t, occurs lexicographically before t2-

The other comparison operations work in similar ways for dates and strings.

E.4 ODM-Specific Functions

The functions that were introduced above have general usefulness as a language

for manipulating sets. In order to use this language in the domain of object

management systems, we have added some additional functions that pertain to the

basic mechanisms of such a system. These additional functions are described in the

following sections.

E.4.1 Components-of

The function components-oftakes a primitive object as an argument and returns

a set of object that are the components of its argument. It can also take an optional

second argument which is the name of one of the components of the type of its first

argument. In this case, it will only return those componerits that belong to the

named component. The following two examples illustrate this. Assume that R is a

report object.
1. Components-of (R)
2. Components-of (R, Chapters)

The first application of the function will return a set containing all the components

of the report, R. This will include all of its chapters, all of its appendices, its

bibliography an so forth. In the second expression, the result will only be the set of

chapters which are components of the report, R.
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E.4.2 Versions-of

The function versions-of takes a conceptual object, x, as an argument and

returns all versions of x as a result. That is, it returns the members of its version set.
Versions-of (1981-Final-Report)

This expression will return a set containing all of the versions of the 1981 final

report.
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