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HYDRAULIC CONTROL BY A WIDE WEIR IN A ROTATING FLUID

Edmund Sambuco

Submitted to the Department of Meteorology
on November 1, 1974 in partial fulfillment
of the requirements for the degree of
Master of Science.

Abstract

The basic concepts of steady, inviscid, free-surface,
open-channel fluid flow are first reviewed and then extended
to include effects of the rotation of the reference frame.
Specifically, flow control by a very wide, very deep weir
in a rotating fluid is examined. Theoretical calculations
are based on conservation of the Bernoulli function along
streamlines whose curvature is determined by the vorticity
constraint, together with standard hydraulic flow-control
assumptions. For fixed volume flux Q, it is claimed that
the "potential head" of the upstream basin, or depth of the
fluid layer above the weir crest)must increase as Q2 for a
steady-state solution to exist (Q = angular frame rotation
rate).

Experiments that tend to buttress the theoretical pre-
dictions are described. Upstream heights as a function of
Q are measured with a micrometer in a recirculating tank
system fitted with a large flow barrier and mounted on a
variable-speed rotating turntable. For low rotation rates,
the upstream height can be fairly well fitted by an Q2 re-
lation. There is also an indication that a new regime of
hydraulic control comes into play when experimental param-
eters are such that the "wide-weir" assumptions no longer
hold.

Thesis Supervisor: John A. Whitehead, Jr.

Title: Associate Scientist
Woods Hole Oceanographic

Institution



I. On the use of open-channel, free-surface hydraulics

A considerable literature has been built up over the

past two hundred years about flow control in open channels

with free surfaces. One of the major concerns of the

hydraulic engineer is to design weirs, sluice gates, locks,

etc. so that, for given fluid and channel parameters, the

free-surface flow is "controlled" in the sense that "topo-

graphic" barriers act to determine the possible flow regimes.

The hydraulicist's concept of flow control has been applied

to problems of geophysical interest, such as airflow over

mountains (Long (1954 and Houghton and Kasahara (1968)),

but the formulations generally ignore effects of the earth's

rotation. The development presented here includes frame

rotation and momentum advection in the equations for flow

over a wide, deep weir. The introduction of hydraulic

assumptions in a rotating fluid cannot at this time be rigor-

ously defended theoretically, but using them, we can make a

first attempt at a viable solution for the rotating weir,

and the predicted results can be tested experimentally.

To introduce the hydraulic concepts used in the formu-

lation of the rotating-weir problem, we review a standard

problem in nonrotating flow over an obstacle, following

Long (1954) and Rouse (1961).



Figure 1 is a sketch of the geometry cross-section and

flow pattern to be considered. A symmetric obstacle of

maximum (crest) height bc and half-width xb extends infinitely

in the plane perpendicular to the page. (The solution re-

duces to an effectively one-dimensional flow pattern deriva-

tion.) The bottom of the water column is at z = zB' where

b(x) , Jxj < IxbI

zB

0 , lxi > IxbI

(The coordinate origin is taken with x = 0 at the crest.) Far

upstream, a fluid column of uniform depth h and uniform

velocity u = (u ,0,0) approaches the barrier. h(x) defines

the height of the fluid column above the bottom; h(x) + b(x)

defines the free-surface profile. All dependent variables

are functions of x alone.

We want to find a set of values (u0, h , h ) (where

hc = fluid-layer thickness at the crest) such that the steady-

state, inviscid Navier-Stokes equations for a homogeneous

fluid are satisfied, given the volume flux Q = uh. Assume that

the vertical acceleration equation reduces to a hydrostatic

balance (valid if the radius of curvature of the obstacle is

large with respect to h ). Then the horizontal Navier-Stokes

equation reads simply
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Figure 1. A sketch of the obstacle geometry and flow pattern.



Du d
= - g d (h+b).

For steady, irrotational conditions, this equation reduces

further to

d 2
-- [1/2 u + g(h+b)] = 0

or

u + h + b = F = const.
2g

The mass balance equation is simply

uh = u h = Q = const.

F is the Bernoulli head function:

2u
F - 0 +

2g
h

0

Then

2 u2
u + h + b - + h.
2g 2g o

We now define the specific energy e:

2
e = u- + h

2g



or

2
u

e + b = e -0 + h0 2g 0

and, using the relation Q = uh, we obtain

Q2
e= 2 + h.

2gh

Differentiating this last equation for constant Q)

2
de Q dh db
dx (1- 3 dx dxde gh3 d

At the crest of the obstacle, db - 0, so that at thatdx

point, we require that either Q 2/gh = 1 (or, equivalently,c
2 dhf

that uc = gh ) or dh -0. In the latter case h isc c dxiox=o
either at a minimum or a maximum at the crest; the former

possibility represents truly "subcritical" flow, with the

magnitude of the fluid velocity everywhere smaller than the

corresponding shallow-water wave phase speed. The free

surface dips symmetrically over the obstacle as the fluid

draws on its potential energy to mount the barrier. Conversely,

if h is at a maximum over the crest, the flow is truly "super-

critical." All shallow-water waves are swept downstream be-

cause the magnitude of the fluid velocity exceeds the wave

phase speed. In both cases, the barrier is unimportant to



upstream or downstream flow patterns: the obstacle has a

purely localized influence and cannot be considered a flow

control. In other words, given Q, we do not know whether

a steady-state flow solution exists, and even if one does,

we do not have enough information to deduce one or the

other of u0 and h 0 . Experimentally, the upstream Froude

number u //gh9 must be specified. The Froude number and
0 0

volume-flux rate then determine the kind of flow over the

barrier and the values of u and h
0 0

When u2 = gh , the flow is termed "critical." Here the
c c

obstacle acts to control upstream conditions, since, with

given Q, h and u are both given when b is known. Waves
o 0 c

cannot propogate upstream through the crest point because

the magnitude of the fluid velocity matches the phase speed.

That the flow be critical at the crest is a necessary condi-
dh

tion for the steady-state solution if d / 0.
x=o

The critical condition can be cast in other forms (see

Rouse (1961)). For our purposes, it is useful to note that

manipulation of the Bernoulli-head and continuity equations

gives

h ~12
Q2 1 _0_ = gh2[h(x) + b(x) - hi].

2 h (x) gh0

Differentiating implicitly with respect to h and setting

dQ - 0 gives h* = hc, the critical depth, so that maximiza-
dh f c
tion of Q for a given fluid-column thickness at the control



point is an alternate statement of the critical condition.

One interesting flow-control device familiar to

hydraulic engineers is the deep "broad-crested" weir. If

we take the obstacle height to be almost as high as the

2(large) upstream depth, then u /2g << h (the velocity head
0 0

can be made vanishingly small for given Q), and

2u /2g + h + b = h .c c c o

22
Since u = gh , we have h 2 (h . Also, Q = uh =

c c c 3 - c

u ch g = 1/ 2 [2/3(h-b )]3/2. These are the well-known formu-

las for the broad-crested weir, which is an ideal flow-

control device that cannot exist (see the comments of Rouse

(1961), pp. 319 ff), but in practice conditions close to

ideal can be obtained, where the flow in the region of the

critical point is very nearly rectilinear. (Note, however,

dhthat we must always have d- / 0, since the term represents

the loss of "potential head" that is used by the fluid to

gain kinetic energy and to overcome resistance to flow.)

In what follows, these simple principles are extended

to flow over a barrier in a rotating reference frame. The

Bernoulli-head function is conserved along streamlines whose

curvature is determined by the vorticity constraint. If the

barrier is very wide, mass conservation in the x-direction

must hold. Hydraulic assumptions are used to close the set

of equations. These theoretical predictions are then tested

experimentally.



II. Theoretical development

Calculations of the effect of frame rotation on a weir

flow depend on assertions that cannot be theoretically veri-

fied. These assertions will be clearly denoted in the follow-

ing development. All the uncertainties and imprecisions of

nonrotating hydraulics (i.e., free-surface effects, the

"broad-crested" assumption, etc.) are injected, along with

some problems in simplifying the vorticity equations. These

inadequacies are tested in laboratory experiments, which in

this case lend credence to the theoretical ideas and the

assumptions that lie behind them.

To develop the equations for a rotating weir, we retain

the geometry and notation of Figure 1, and, after the theory

has been worked out, the limit where u /2g << h and

bc nu O(h ) (bc' h both very large) is deduced. These limit-

ing conditions are sufficient to define a weir. Furthermore,

the weir extends infinitely in the y-direction, making all

dependent variables independent of y: it is in this sense that

we speak of a wide weir.

In vector form, the momentum equations for a friction-

less homogeneous fluid in a rotating reference frame with

gravity vertical are

Du
- + 2Q x u = - Vp - gkDt ~p



where

u = velocity vector

and

0 = rotation-rate vector for the frame.

(The centripetal acceleration Q x (P x r) has been absorbed

into the pressure-gradient term.)

We are interested in the steady-state equations, since

they are much more tractable than the unsteady equations;

for steady flow, streamlines and trajectory paths coincide,

which will prove to be very useful. Thus, after rearrang-

ing terms, the steady momentum equations become

(20 + w) x u = - V(p/p + gz + 1/2 u - u)

where w = V x u = relative vorticity vector as observed in

the rotating reference frame.

It is most convenient and instructive at this point to

decompose this vector equation into its components in "natural

streamline" coordinates. The sketch below demonstrates the

decomposition:



The orthonormal vector triad is defined so that

U = jula and 2 x Y = Y2

Along a streamline, the steady-state momentum equation is

-(p/p + gz + 1/2 u - u) = 0

or

F = p/p + gz + 1/2(u - u)= F($).

F($), the Bernoulli potential function, is conserved along

streamlines.

F($) will vary across streamlines. Let us assume that

Q = Qk. In general, then, there will be Corioles accelera-

tions in both n1 and n2 directions. We obtain

3F= (2Q + w) lulan ~ ~ n 2 ~

and

= - (2Q +w) lul .
an2 ~ ~ n ~



An important assumption to be made is that

(2Q + w) = 0. This sets the n - and z-directions parallel.
~ ni 2

We must assert that w 2 0 (no horizontal vorticity). In

that event,

3F 3F 0- ~F- 0
Dn 2 az '

Asserting, further, no shear of horizontal currents and

negligible vertical velocity, the n2-momentum equation reduces

to a vertical hydrostatic balance, and the natural coordinates

s and n1 can be defined in terms of a continuously changing

coordinate-axis rotation in the xy-plane as we move along a

streamline.

When the hydrostatic balance p = pg(h + b - z) is sub-

tracted from F, we have

F = g(h + b) + 1/2(u - u)

where h + b = profile of the free surface.

The n 1 -momentum equation becomes

nF = (2Q + wz

where wz = relative vertical vorticity. This expression

will be examined more later.



The basic flow will then be in horizontal planes. Even

though there is necessarily a vertical excursion of stream-

lines as the fluid is driven up the side of the barrier, the

rise is assumed to be sufficiently gentle so that the flow

is almost rectilinear, and the flow patterns are effectively

two-dimensional.

For the rotating weir we introduce the potential-vorticity

equation. Taking the vector momentum equations and using the

curl operation, we get

-~ + (u - V) (2Qk + w) - [(2Qk + w) - V]u = 0

or

D-(2Qk + w) - [(2Qk + o) - V]u = 0.
Dt

The first term of the last equation represents changes

in the vorticity of a fluid parcel as it moves along its

trajectory, and the second term represents vorticity changes

through stretching and tilting of the vortex lines. We assume,

in consonance with the "two-dimensional" assumption for the

momentum equations, that the only significant contribution

from the stretching and tilting terms is the vertical vortex

stretching we use to derive the potential vorticity equation.

Thus we assume negligible horizontal vorticity and no vertical

shear of horizontal currents (to prevent horizontal vorticity

production brought about by vortex-line tilting). This is



equivalent to assuming that the fluid moves up the side of

the barrier in vertically uniform columns.

With the assumption of zero horizontal vorticity, the

vorticity equations reduce to the single scalar equation

- (2Q + w) = (2Q + o)
Dt

where o = relative vertical vorticity. Integrating over the

depth of the fluid,

h R-(2 + o) = (2Q + o) Dh

or

D 20+o
D Eh =0.

Along fluid-parcel trajectories, the quantity 2 + ' is con-h

served. This is the well-known potential vorticity theorem.

In steady flow, particle trajectories trace paths coincident

with the streamlines, so that we can combine the potential-

vorticity and Bernoulli-head conservations as parts of a

system of equations to be solved (at least in a limiting case

to be described below).

Now to formulate the wide-weir problem: Returning to

the geometry and notation of Figure 1, we must have, in the

wide limit for any x > -xb up to the crest, that
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2Q + w 2Q
h(x) h '

We have assumed negligible relative vertical vorticity

kjul - 3~ upstream. In rectangular coordinates with 0,

the vorticity equation becomes

20 + dv
dx _2Q

h(x) h '

which can be immediately integrated to give

v = v(-xb) + 2Q ( h'l - 1 dx'.

-xb h

Define

A(x) = fK h(x') - 1 dx'.
-xb h

In general, A(x) will be difficult to evaluate, since h(x)

is one of the unknowns to be solved for. (This complication

results from having a free surface.) But in the "deep"

limit, A can be simplified. We set

h0 = h(x) + b(x) + 6(x)

where 6(x) = change in the free-surface elevation from z = h .

We assume that 6(x) << b(x); then h 0 h(x) + b(x), and
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A(x) = h 1 dx

f x x

= - 1x)~b(x'YiK' 
- 1 b(x')dx'

o -xb c -xb

A(M) becomes a measure of the centroid of the obstacle, and

if u = 0 at x = xb'

2Q
v = b b(x')dx'.

c xb

The physical interpretation is that the fluid, as it is driven

up the side of the obstacle, develops a relative vorticity

(or spin) opposite in sign to that of the frame rotation, in

the absence of external torques. A(O) will be crucially

dependent on the length of the obstacle from base to crest.

The vorticity constraint also determines streamline

curvature ds
dx

ds= tan $(x) = = h(x)A(x)
dx u Q

or

-1 20
$(x) = tan (- h(x)A(x)).

Q

Along streamlines, the Bernoulli constant is conserved.

With the assumption of vertical hydrostatic balance at every

point over the barrier, we have
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u(x)2 + v(x)2 + 2g(h(x) + b(x)) = F0.

In the wide-weir formulation, it is, however, incorrect to

2
assume F = u + 2g h . To see why we return to the cross-

00 0

stream Bernoulli equation

n= (2Q + w)|ul

In slow, steady upstream flow with 2Q >> w, we have

3h
2Qu 0 1 = g an '

a statement of geostrophic balance. In an infinite plane,
ah

though, it is not physically possible to have an* / 0. This

difficulty is partially overcome by allowing Iu0l to become

arbitrarily small (through setting h0 large enough for given

Q). In other words, a truly motionless upstream in a rotat-

ing fluid is impossible, but by making the weir deep enough,

we can approach the stagnant limit. Only in this limit can

a constant Bernoulli upstream head for all y be realized.

Streamlines do not exist upstream; all fluid flowing over the

barrier is drawn from a "reservoir." (These arguments are

similar in spirit to those reported by Charney (1955) and

Whitehead et al. (1974) about necessary relations between

"upstream" potential vorticity and Bernoulli head.)



Proceeding with the above cautionary notes in mind,

we obtain along streamlines

u(x)2 + 4Q 2A(x)2 + 2g(h(x) + b(x)) = 2gh9,

or

u(x) = [2g(h 0 - h(x) - b(x)) - 4Q2A(X)2 1/2

Then

Q = h(x)u(x) = h(x)[2g(h - h(x) - b(x)) - 4Q2A(X)2 1/2

Now we apply the hydraulic assumption

where hcr
=.critical-point fluid depth.

Differentiating the expression for Q implicitly with respect

to h, and setting h c
hh

cr

= 0, we get

42A2
h 2 -hr2 (h b - cr

where bcr = b(x cr),

3hl - 0



hr = h(x cr)I

Acr

X

Scr

bc -_xb
b(x')dx',

4P2A2 -1/2
u g (h - b ) - 3cruor 3r 0 *2Aj

and

Q=h ucr or
li2 4 2 213/2
-jg (h - b - A
g 3 0 cr 3 <:r

Next we assume that xcr = 0 (the critical control point is

at the crest). The whole obstacle from base to crest has

a role in the flow control. This certainly seems reason-

able, but it will be necessary to test the assumption ex-

perimentally. In that case,

Q= [ g (h - b 4 ) ( b(x')dx' 2]3/2.
g 13 c bc -_xb

Frame rotation thus acts as a block to steady flow:

for a given volume flux Q, as Q increases, so must h0 if a

steady state is to be maintained. If Q = 0, the result for

Q is the classical formula for steady discharge over a wide,

broad-crested weir.
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III. Experimental evidence

A series of experiments using water as the single fluid

layer were run in order to test the theoretical predictions

from the last chapter on upstream heights in a rotating

system. We have that

2 A21 3/2
Q = (h - b )- cr

g 3 o 0 a 3 j

in the limit of a stagnant upstream basin with centripetal

effects removed. If Q is fixed and Q is varied,

Q2 
4Q 2A 2

(Q1/3 _ 2(h - b ) - cr

g 3o c 3g

But

Q2 1/3 2-- = -(honr - bc)

where h o,nr = nonrotating upstream basin height, so that

2Q A
h =h + cr

0 onr g

This is the relation to be tested. It is the upstream effect

of frame rotation on the steady-state weir solution.

Figure 2 is a photograph of the experimental apparatus.

The tank measures 90 cm x 25.7 cm x 50 cm. Built onto the

bottom is a large paraboloid barrier, 60 cm long with an



Figure 2. A photograph of the experimental apparatus.
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apex 16 cm above the tank floor. If the coordinate origin

is taken as in Figure 1, the equation of the bottom in

centimeters is

16[1 - ( 2 lxi < 3030

b(x) =

0 [xi > 30.

A pump downstream recirculates the water to a diffusion

system of horsehair fiber, pea gravel, and a sprinkler. The

entire system is carefully centered on a variable-speed

rotating turntable.

In the experiments for free-surface elevations, a

micrometer was mounted upstream. The micrometer was operated

both manually and mechanically; despite greater precision in

the mechanical micrometer drive, the accuracy of the readings

was not materially better than when hand-operated, because

the major source of error was pump fluctuation and free-

surface oscillations in resonance with machine vibrations.

Since the tank is not very wide, the wide-weir formula-

tion should be valid only for sufficiently small rotati.ovn

rates. A crude idea for the upper bound on the formulation

can be obtained by the following argument:

Calculation of the trajectory of a fluid parcel as it is

driven up the barrier is relatively straightforward if tedious.

Consider the sketch below:



Crest

We want to calculate the rotation rate for which a fluid

parcel that begins its trajectory at A is driven up to B at

the crest. This we can consider the upper bound on the

wide-weir applicability.-

ds v fA f
dx " s Q/h ;5QhA

After integration for experimental parameters, it is found

that to trace a trajectory from A at (0,0) cm to B at

(23,25.7) cm, we need Q o 0.6 sec ~. This value of Q we

take as the upper bound. For higher rotation rates, the

water is driven into a recirculating asymmetric upstream gyre.

(There is an apparent B-effect due to centripetal curving

of the free surface.) A narrow boundary current transports

water over the barrier. For low rotation rates the fluid

separates from the rotation-leading side of the tank and

piles up in a small boundary current on the rotation-lagging
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side. For whatever value of the rotation rate, there is

always a pronounced rotational effect on the steady-state

upstream height, even after corrections have been made

for centripetal accelerations.

As was mentioned before, the pump variability was the

largest source of experimental error. Also, for low rota-

tion rates, the upstream surface was often disturbed by

standing-wave patterns in vibrational resonance with the

turntable driveshaft. As a result, all readings have an

error bar as large as + 0.005 cm (less for higher rotation

rates).

For each rotation rate, at least five micrometer read-

ings were taken; the average reading was then corrected

for centripetal distortion of the free surface (Ahcentripetal
22 p
2g , where r = distance from tuntable center), and from
2g

each average reading, the corresponding nonrotating micro-

meter reading was subtracted. The final figure is therefore

the upstream height difference Ah between the given rotation

rate and zero rotation (Q fixed), corrected to eliminate

centripetal effects.

Figures 3, 3a, 4, and 4a present data from two experi-

mental runs where the upstream height was measured. Experi-

mental parameters are given in the figure captions. The

data in Figures 3 and 3a represent a wider range in 0; note

the apparent transition in Ah .
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/0

Figure 3. Upstream height as a function of the rotation rate.
Experimental run of 9/21/74.
Transition marked by arrow. Solid curve denotes
theoretical predictions. A = 13.3 cm. ho = 7.5 cm.

Now&
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0

-3f/
0z

Figure 3a. Same as Figure 3, but plotted in log-log format.



Figure 4. Caption same as
Figure 3. Experimental run
of 9/24/74.
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Figure 4a. Same as Figure 4, but plotted in log-log format.
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Inspection of the graphs indicates that (1) For every

Q, there is a definite increase in the upstream height for

steady weir flow when compared to the nonrotating (Q = 0]

case, with Q fixed. (2) For low Q(< 0.5 sec 1), there is

2
an approximate Ah 0 02 dependence, as predicted by the

wide-weir theory. At about Q = 0.5 sec~, a transition

whic an pprximae Ah% ~3/2
appears, above which an approximate Ah 0 0 dependence

holds. This dependence is much less pronounced than what

could be expected for the wide-weir case, but is much

stronger than calculations of Whitehead et al. (1974) for

the "narrow weir" limit, where a cross-stream geostrophic

1/2balance is assumed, with the result that Ah 0 % .

Further experimentation is necessary, but it is clear

that strong constraints are placed on weir formulations in

a rotating fluid.

IV. Concluding overview

An effort has been made to extend the classical results

of nonrotating hydraulics to include a strong vorticity con-

straint in the form of frame rotation. Theory and experi-

ments have combined to demonstrate a definite rotational

effect on the steady-state weir solution. Such results are

encouraging, but mnist be viewed with caution.

The use of streamline coordinates brings out many of

the problems in the wide, rotating-weir formulation. The



2u
price of a constant upstream Bernoulli velocity head

in a rotating fluid is a continuously varying potential

head h - bc , which is physically impossible in a fluid of

infinite extent. Cross-stream changes in the Bernoulli

head are determined by the (strong) vorticity constraint;

the formulation presented here is valid only in the very

wide, very deep limit where the velocity head can be set

arbitrarily small and h becomes a constant everywhere

upstream.

The experiments, while showing a definite increasing

trend in upstream height with increasing rotation rate,

have not been entirely conclusive. This is, I think, more

a problem of experimental pitfalls than of theoretical dif-

ficulties. The experiments will be rerun soon with better

pumps (variability in Q less than 1% over the entire Q range)

and with measures taken to reduce turntable vibrations. The

tank may also be widened and the gravity may be reduced by

adding a deep layer of kerosene or some other liquid over

water (to increase the magnitudes of upstream heights for a

given Q).

There are many geophysical situations where the non-

linear approach of free-surface hydraulics might be useful.

One thinks immediately of airflow over mountain ranges or

waterflow through oceanic sills and across seabed ridges.

Some such work has already been done, but only recently has

the earth's rotation been taken into account. We need careful
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investigations of rotating hydraulic flow control - its

strengths and its weaknesses, what we can say rigorously and

what we must assume - so that geophysical applications can

be made with confidence. Such investigations, for the

simplified case of a very wide, very deep obstacle, have

been the aim of this work.
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