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Abstract

In this thesis, we introduce a new testing methodology to detect cojumps in multi-
asset returns. We define a cojump as a jump in at least one dimension of the return
processes. For a multivariate process that follows a semimartingale, and with no
other specific assumptions on the process, we form a test statistic which can easily
disentangle jumps from continuous paths of the process. We prove that the test
statistics are chi-square distributed in the absence of jumps in any dimensions. We
propose a hypothesis testing based on the extreme distribution of the test statistics.
If the test statistic observed is beyond the extreme level, then most likely, a cojump
occurs.

Monte Carlo simulation is performed to access the effectiveness of the test by
examining the size and power of the test. We apply the test to a pair of empirical asset
returns data and the findings of jump timing are consistent with existing literature.

Thesis Supervisor: Scott Joslin
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Chapter 1

Introduction

1.1 Motivation

Standard arbitrage-based pricing theories assume that the asset prices follow a con-

tinuous path. While empirically, significant discontinuities are often found in the

evolution of asset prices. The discontinuities are called jumps, which are empirically

hard to identify, because only discrete time data are available in continuous-time

models. As a result, finding jumps have a significant impact on asset pricing and

portfolio and risk management. Besides, in financial markets, the movements of asset

prices are usually correlated, and their processes are collectively modeled. The cor-

relations render it even harder to identify a jump in the multivariate price processes.

Our goal in this thesis is to find some statistical methods that can detect jumps in

multivariate price processes.

1.2 Literature Review

Identifying jumps in a process has been explored by a number of literature. Among

the pioneers, Andersen, Benzoni, and Lund (2002) developed a parametric model by

adding Poisson jumps with time-varying intensity to stochastic volatility diffusions.

They applied the model to find jumps in daily equity-index returns. At the same

time, Ait-Sahalia (2002) imposed a criterion function on the transaction densities of



diffusion, and identified jumps from discrete-time sampled data. Barndorff-Nielsen

and Shephard (2004) introduced a new measure of variation called bipower variation,

which was proved robust to a finite number of jumps and can separate the continuous

part from the quadratic variation. Later, Barndorff-Nielsen and Shephard (2006a)

(BNS) proposed some nonparametric tests based on an asymptotic distribution the-

ory. Jiang and Oomen (2005) (JO) constructed a test based on the hedging error

of a variance swap replication strategy. Lee and Mykland (2008) also introduced a

nonparametric test which was accessed by simulation that outperforms the tests by

BNS and JO. All these nonparametric tests are for determining jumps in univariate

price process.

Research on determining jumps in multivariate price processes, only started re-

cently, when Bollerslev, Law and Tauchen (2008) tested non-diversifiable jumps in a

large portfolio of stocks. Jacod and Todorov (2009) considered a bivariate process

and tested whether they had at least one jump occurring at the same time. However,

to the best of our knowledge, none of the existing literature has so far proposed a

method to detect the existence of at least one jump in multivariate price processes

(defined as cojump) by taking the correlation into consideration. In the thesis, we

concentrate on the problem of determining whether there is a cojump at time ti in

multi-asset returns, which follow multivariate processes.

1.3 Contribution and Organization

To develop a cojump detection technique, we first find a consistent estimator to the

local covariation of the multivariate returns. We prove its consistency in estimating

the local covariance matrix when the discrete time interval is close to 0. With this

estimator, we design a test statistic that standardizes the return vector by the local

covariation. We prove that in the absence of jumps at a time ti, the test statistic L(ti)

follows a chi-square distribution with degrees of freedom the same as the dimension

of the multivariate processes. We study the extreme distribution of the test statistic

and propose a nonparametric test to infer jumps. Monte Carlo simulation is designed



to examine the effectiveness of our test (we call it multivariate test in the rest of the

thesis).

The thesis is organized as follows. Chapter 2 studies the test of detecting jumps in

univariate price processes and lays out the background ideas for Chapter 3. Chapter

3 develops a new test to detect cojumps in multivariate processes. Monte Carlo

simulation is presented in Chapter 4. Chapter 5 applies the tests to an empirical

example and discuses some characteristics of jumps and cojumps. Concluding remarks

are followed in Chapter 6.
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Chapter 2

Univariate Jump Test

For a single asset, when a jump occurs at time ti, the change in the prices at that

time is expected to be much greater than in regular continuous settings. If we could

observe the price movements in continuous times, a jump can be easily detected

by identifying the continuous path of the prices. However, in reality, asset prices

are observed discretely. In discrete times, a large price change at time ti might be

resulted from two cases: 1. a jump arrives at that time; 2. there is no jump, but

the instantaneous volatility is high, pushing up the movements of the prices. Thus,

identifying jumps by simply looking at the observed realized returns overestimates the

number of jumps. To eliminate the second case, the realized return is standardized

by a measure that explains the local variation only from the continuous part of the

process.

In this chapter, we present the univariate jump detection technique introduced

by Lee and Mykland (2008) to identify jump arrival times and realized jump sizes in

single asset returns. Bipower variation is employed to estimate the local variation. A

test statistic is then formed based on the idea above. We will derive the asymptotic

distribution of the test statistic, and utilize it to detect jumps.



2.1 Notation and Definition

The following notations are used throughout the thesis.

t The time between 0 and the end of a fixed time horizon T

(Q, Ft, P) A fixed complete probability space

S(t) The price of a single asset at t under P

d log S(t) The continuously compounded asset return

W(t) A Ft-adapted standard Brownian motion

At The time difference between equally spaced discrete

observation times ti, i.e., At = ti - ti_1

0, Bounded in probability, following Pollard (2001), it means that,

for random vectors {Z,} and non-negative random variables {b,},

Z, = 0 p(b.), if for each 6 > 0, there exists a finite constant 116 such

that P(ZnI > MA6dn) < 6 as n -+ oc

plim,_, The probability limit operator, denoting convergence in probability

[Y, Y]t The quadratic variation at time t

{Y, Y} The bipower variation at time t

[Y, Y6]t The realized quadratic variation at time t

{Y, Y}, The realized bipower variation at time t

2.2 Problem Description

We are interested in finding a jump in single asset returns at time ti. No assumptions

are made about the jump dynamics before or after ti. The asset price S(t) follows

the process below on the probability space (Q, .F, P), where F is a right-continuous

information filtration for market participants, and P is a data-generating measure.



When there are no jumps in the market, the process is

d log S([) = p(t) dt + a(t) dW (t), (2.1)

where p(t) and u(t) are Ft-adapted processes, such that the underlying process is an

It6 process that has continuous sample paths.

When there are jumps, S(t) is represented as

d log S(t) = p(t)dt + a(t)dW(t) + C(t)dJ(t), (2.2)

where J(t) is a counting process independent of W(t). C(t) is the jump size. The

jump sizes C(ti), C(t 2 ),. C(tO) are assumed to be independent of each other and

identically distributed. They are also independent of other random components W(t)

and J(t). The asset prices are observed in discrete time at ti, for i = 0. 1, - - - , n, with

0 = to < t < -... < tn = T. We impose the following necessary assumption on single

asset price processes.

Assumption 1. For any e > 0,

sup sup IP(u) - pt(ti)I = 0,(At~-'), (2.3)
i ti<_ U<ti- 1

sup sup Iu(u) - o-(ti)I = O(At-~). (2.4)
i ti:u<ti+1

The drift term p(t) is ignored as it is mathematically negligible for high-frequency

data.

From (2.1), in the absence of jumps, the realized instantaneous returns r(ti) can

be approximated by log S(t 1). Absolute returns that are too large are plausible to

indicate jumps. However, we need to exclude the time when actually there is no jump,

but the high return is imposed by a high volatility. This is achieved by standardizing

the return using the instantaneous volatility which only counts the continuous part

of the process. The standardized return creates the test statistic for detecting jumps.

Using this test statistic, we could decide whether the diffusion model (2.1) is rejected.



A jump is found if the model is rejected.

The problem remains: 1. how to consistently estimate the instantaneous volatility;

2. how could the rejection rule be implemented; 3. how powerful the detection method

is. We will answer these questions in the following sections.

2.3 Estimation of Volatility

How can we estimate the instantaneous volatility? The realized quadratic variation

is commonly used as a nonparametric estimator for the variance. It is defined as the

sum of squared returns

k

[Y}tk - [Y-,5Yt = r 2(t,). (2.5)
i=1

Barndorff-Nielsen and Shephard (2006a) showed that, for any sequence of partitions

to = 0 < t < ... < t = t s ng a s sup {tj+1 -tj} - 0 for k -+ oo, [Y]

consistently estimates the total variation comprised of the integrated variance plus

the sum of the squared jumps

/k[Y, Y~tk_ =PliMmkOY6]tk J 1 c 2(s)ds + Ji, (2.6)
to

where Ji is the size of the ith jump. Unfortunately, (2.6) reveals that the realized

quadratic variation is inconsistent in estimating the continuous part of the local vari-

ation in the presence of jumps in a return process.

Instead, a partial generalization of quadratic variation called bipower variation

(BV) introduced by Barndorff-Nielsen and Shephard (2004) has shown to be a con-

sistent estimator of the instantaneous volatility even in the presence of jumps (refer

to Barndorff-Nielsen and Shephard (2004) and Ait-Sahalia (2004) for details). It is

defined as
k

{}t1k { }yltk - pkm4_,00 ( |r(4i) | |r(ti_1) I . (2.7)
i=2

Similar to the quadratic variation, the bipower variation can be consistently estimated



by the realized bipower variation

k

i=2

Barndorff-Nielsen and Shephard (2004) showed that {Y},= c2 t u2 (s)ds, with

c = EIUI = 2/ir, where U ~ N(0, 1). It is obvious that the bipower variation

is independent of the presence of jumps over time. Therefore, the realized bipower

variation is an consistent estimator of the instantaneous volatility.

2.4 Limit Distribution of Test Statistics

2.4.1 Formulation of Test Statistic

With the consistent estimator of the instantaneous volatility, we can form the test

statistic L(ti) - the standardized return. We define the test statistic as follows:

Definition 1. The statistic L(ti), which tests at time ti whether there was a jump

in the asset return from ti 1 to ti, is defined as

L (ti) (2.9)
o (ti_1 )

where

-1) K - 2 r(tj)|Ir(tj_1). (2.10)
j=i-K+2

Here, we consider a local movement of the process within a window of size K, over

which the spot volatility is constant. In this setting, the instantaneous volatility

at time ti_1 can be approximated by u(ti- 1), which is the average realized bipower

variation over the window. There is a tradeoff in choosing the window size K: K

must be large enough to accurately estimate integrated volatility but small enough

for the variance to be approximately constant over the window.



2.4.2 Asymptotic Distribution Theory

What would be the distribution of the test statistic when we refine the discretization?

Lee and Mykland (2008) shows that under the assumption of no jumps at a particular

testing time, the test statistic C(ti) follows a normal distribution with mean 0, and

variance 7r/2. In this subsection, we prove the limiting theory in a clearer and more

detailed manner.

Before stating the theorem, we look at two lemmas, which will be helpful to prove

the theorem later.

Lemma 1. For T > 0, r, > 0, and At = T/n, as n - oo,

n 1 xi + O(At")| |i-1 + OP(At")l

S xii 1x 1 + O,(At"'). (2.11)
i=1

Proof. Since (Ixil-s) | + (|xi+i) for i> 0,

n n

i=1 i 1

n 1x + l 1x-1 el n |+ |xi|I+ 0z_|n

1< 1iI x-1 I 1 i x-1)

i1 i=1

By the weak law of large numbers, converges in probability to its expected

value for n -+ oc. It implies that 1 xi= O,(1). Therefore, as n -+ oo, we

conclude

Y i l- - 20(1 5 + s| |xiI + el Iil 1i-il + 80,1)
Rpai=1 i = i=1

Replacing i by the order in probability, we get the result.



Lemma 2. For U~ i.i.d N(O, 1),

|Uil Ui_1 = c2 + O(At-), (2.12)
i=1I

where c = E|U| =/ 2/7.

Proof. Let.Xi_1,i =Ui||U -1|-E(|Ui||Ui_1|). E(Xi_,.) =0. Define in 1XX1 _1

we have E(Xi) = 1" E (Xi-1,.) = 0, and var(Xn) = E(X ).

By Chebyshev's inequality, for any a > 0,

P( IX l ;> a) E (X) (2.13)

The variance of X is

E(X2) = E

= E12

[1 (X0,1
nx

i=1

n-1
+ 2 X_ 1 ,iXi,i41

+ -E 2E Xi_1,iXi+1,i+2 - 2Xo, X_1,n

Since E(X_1 ,iXY_ 1 ,j) = 0 for 1i - j| > 1, and E" E(X/_s) + E- E(Xi_1 ,jXi,j+1 )

is bounded by O(n),

1
E(X2) = -O(n) -+ 0, as n -+ o.

It is equivalent to E[(nXrt)2] = E(nXi) - 0(1). Apply Chebyshev's inequality

again, we have for any finite M > 0,

P(Vj§Xa7 I > M) < E[fiuiX,2]
O,(1)

=A=12. (2.14)

By the definition of bounded in probability, fnXn = O(1), which is equivalent to

i= 0,($!) = 0,(At2).

+ X1,2 + - - - + Xn_



Xi-1,i = Xk = O(At!).
i=1

By the definition of X it implies that

U||U _1| - E(|Ui|Ui_ 1|) = O(Ati).
n

As Ui ~ i.i.d N(0, 1), we get

v zil l i 1
= E2 (IUil) + O, (Ati) c2 + 0,(At1). (2.17)

Theorem 1. Let L(ti) be as in Definition 1 and window size K = Op(At"), where

-1 < a < -0.5. Let A, be the set of i E {1, 2,... , n} so there is no jump at ti. Then,

as At -+ 0,

L(ti) = c + 0,(At-
c

for i E A, (2.18)

where 6 satisfies 0 < 6 < 3+ a and U = W(t)W(t,-1), a standard normal variable

and a constant c = E|Ui| = V2|~r.

Proof. For t C (ti-K, ti), under Assumption (2.4), similar to Lemma 1 in Mykland

and Zhang (2006), we can apply Burkholder's Inequality (Protter (2004)) to get

sup
i,t<ti ti-K {o-(u) - -(ti-K)} dW(u) (2.19)

where 0 < 6 < + +a.

Following Lee and Mykland (2008), for ti-K < t < ti, d log S(t) can be approxi-

mated by d log S (t) with

d log S'(t) = p(ti-K)dt + o (ti-K)dW(t),

(2.15)

(2.16)

= ,(t- +a-E),



d log Si(t) = p(ti-K)dt + (ti-K)dV(t) + Y(t)dJ(t)

This is because

i t-Kd log S(t) -
StJti-K

d log Si(t)

= (log S(t) - log S(ti-K)) - (log S (t) - log S (ti-K)) I

= IK {u(u) - o-(ti-K)} dW(u)

For all i, j and tj E (ti-K, ti], the return is

r(tj) = log S(tj) - log S(tj-1)

=log Si(ti) - log Si(t- 1 ) + 0,(At- -

= U(ti-K)(W(tj) - W(tj_1)) + O(At-+-

= 0(ti-K)IAtUj + 0,(At 2 )

where Uj ~ i.i.d. Normal (0, 1).

Look at the denominator of L(ti)

= K -2 Ir(ty) I Ir(t-1) I

K -2 E
j=i-K+2

rt(ti) + 0,(At- 3+a-c) ri(ty_1) + O,(At-6+aE)

(2.22)

(2.20)

(2.21)

j=i-K+2



By Lemma 1 and (2.21), (2.22) becomes

---- -2 1 i 12o-1)= K - 2 E ri(tj) r(tj_) + O,(At-±-)
j=i-K+2

1 i-i 
3

K -2 S o1 (ti-K)|v/iU||v'IfU_1|+ O(At-
j=i-K+2

= 2 (ti-K)AK -2 IUI|U-1| O,(Ati-±Qe). (2.23)
j=i-K+2

Apply Lemma 2 to (2.23),

-(ti_1) = c2 .2(ti-K)At + Op(At3) + 0(At1-6+a-E)

c2 .2(ti-K)At + O,(At 4 6± ,E), (2.24)

since O, (At -+-) dominates O(A2).

Therefore,

,= =t + O(At6+a-E). (2.25)

In the presence of jumps at time ti, C(ti) = Ui + Y(,-) where Y(T) is the actual

jump size at time r (see Lee and Mykland (2008) for detailed proof). As At -+ 0, £ -+

00.

2.5 Detection Rule

After examining the limiting behavior of the test statistic in the absence of jumps and

with the presence of jumps, we can possibly detect a jump if the absolute value of the

test statistic is too high. However, how high can IE(ti)| be when there is no jump?

Lee and Mykland (2008) propose inferring jumps from the distribution of maximums

of I(ti) 1. The idea is that if the observed value of I(ti) I is not even within the usual

region of maximums, it is unlikely that the realized return is from the diffusion model



without jumps.

By Theorem 2.1.3 of Galambos (1978), the maximum of a standard normal random

variable follows a Guible distribution. Under the null hypothesis of no jumps from

ti-1 to ti, the sample maximum of |L(ti)| also converges to a Gumble distribution.

We state the hypothesis testing formally (see Galambos (1978) for derivation):

Lemma 3. Define the null hypothesis as there is no jumps from (t _1 , ti], then as

At -+ 0,

max L(ti)| -+ an + bx, (2.26)
iE An

where x has a cumulative distribution function P(x < X) = exp(-ex),

an - (2 log n) 1/2  log 7r + log(log n) and bn .1
c 2c(2logn)1/ 2  c(2 log n)1/ 2

where n is the number of L(ti).

Suppose we set a significance level of a, the null hypothesis is rejected if |L(ti)| >

an + bn6*, where P(x < 6*) = exp(-e-*) = 1 - a.

Lee and Mykland (2008) has proven by simulation that the performance of the test

outperforms other univariate nonparametric tests introduced by Barndorff-Nielsen

and Shephard (2006a) and Jiang and Oomen (2005).
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Chapter 3

Multivariate Jump Test

In this chapter, we introduce a new nonparametric test for detecting cojumps in

multivariate price processes. We call it multivariate test in distingushionment from

the univariate test in Chapter 2. Our new test utilizes the cross-covariance structure

of the asset returns.

When we want to test a cojump in multiple assets at time ti, we set the null

hypothesis: there is no jump in the multiple assets at ti. If the hypothesis is tested

at a significance level of a, one possible approach is to apply the univariate test

simultaneously on each asset. Since we want to control the total significance level at

a, without taking the correlations of the assets into consideration, we might set the

significance level of each test to be a/p, if we have p assets in total. If the assets are

uncorrelated, this approach gives a significance level of a. However, if some of the

assets are correlated, the total significance level is less than a. Thus, we might lose

some power or significance in the inference.

In addition, this approach might have a high Type I error (the probability of

rejecting the null hypothesis when it is true). Shaffer (1995) shows that if multiple

hypotheses are tested, and each test has a specified Type I error , the probability that

at least some Type I errors are committed increases with the number of hypotheses.

To solve the problem, we must take into account of the correlations between the

multiple assets, and propose a new test to identify the cojumps.

Inspired by the idea of the univariate test of a single asset, in discrete times, a



large change of the multiple assets processes can be observed in two cases: 1. an

actual jump arises in at least one of the assets; 2. no jump occurrs, but the total

return is augmented by high covariations between the assets. To distinguish the two

cases, we propose to standardize the returns by the instantaneous covariance matrix

which accounts the local covariation of the returns from the continuous part of the

process.

We use bipower covariation to estimate the covariance between assets. We will

prove that it is a robust estimator. With this estimator, we formulate a test statistic

and demonstrate the asymptotic behavior of the statistic. A detection technique is

innovated by looking at the limiting distribution of the maximum of the test statistic.

3.1 Problem Formulation

We aim to identify a cojump in a multi-asset returns at ti. Again, we make no

assumption about the jump dynamic before or after ti. Let the prices of the p assets be

written as X(t) = (Si(t), S2(t), ... , Sp(t))', for t > 0. We assume the log price vector

log X(t) is a semimartingale on some filtered probability space (QG, F, (F)>o, P).

When there are no jumps in the market, the continuously compounded return follows

d log X(t) = p(t)dt + a(t)dW(t), (3.1)

where p(t) is an p x 1 vector, and o-(t) is an p x p matrix. The drift p (t) and diffusion

rate o-(t) are Ft adapted processes and are endlag. W(t) is an p-dimensional vector of

independent standard Brownian motions. The a(t) matrix is related to the covariance

matrix by E(t) = a(t)u(t)T.

When there are jumps, S(t) is represented as

d log X(t) = p(t)dt + o-(t)dW(t) + C(t)dJ(t), (3.2)

where J(t) is a vector of counting processes independent of W(t). C(t) is the jump

size matrix. The jump sizes at different times C(ti), C(t 2 ), .. ., C(ts) are assumed to



be independent of each other and identically distributed. They are also independent

of other random components W(t) and J(t).

Following Chapter 2, we assume the observation times are equally spaced with

At = ti - ti- 1. We also assume that the drift and diffusion coefficients do not vary

dramatically over a short time interval. The price processes follow:

Assumption 2. For any E > 0,

sup sup |pi(U) - i(ti)| = O(At-'), (3.3)
itigugti+ 1

sup sup I|l,k(U) - Jlk(ti)I = O(At-I~), (3.4)
i ti: u<ti+1

where l, k = 1, 2, ... , p.

The drift term is mathematically negligible for high-frequency data, we can ignore

it in developing the test.

We could solve the problem in three steps: 1. standardize the returns by the

local covariation; 2. find the asymptotic distribution of the standardized return; 3.

formulate a hypothesis testing based on the knowledge of the distribution.

In the following sections, we first look for a consistent estimator of the local

covariation. We then prove the asymptotic distribution theory of the standardized

return. Finally, we introduce our jump detection rule.

3.2 Estimation of Covariance Matrix

Following Barndorff-Nielsen and Shephard (2006b), we estimate the local variation

using the bipower variation for multi-dimensional processes. The bipower variation

matrix is defined as

{Y1 }t {Y,}Y 2 t ... Y,}



Denote the 1,1 - th elements of the matrix as {Y}. It is exactly the same as the

bipower variation for univariate case. For any sequence of partitions to = 0 < ti <

< tk = t as long as supj{tj+1 - tjJ -+ 0 for k -* oc,

k

{Yi }={Y1, Y1}1 = plimk 4 _,,, |r(ti) I|ri(ti_1)| (3.5)
i=1

The 1, q - th bipower covariance process is defined as:

{Y1, Y},= I({Y 1 + Yq}t - {Y - Yq},),4

where

k

{Y ± Y}, {Y1 ± Y,,i Yk Y} = plimk-,. Irl(ti) k rq(ti) I ri(ti_1) ± rq(ti1)|.
i=1

(3.6)

Theorem 1 in Barndorff-Nielsen and Shephard (2006b) states that

{Y}, = c2 Edu, (3.7)

where E., is the covariance matrix at u. This shows that the bipower variation matrix

is independent of the jumps in the process. It is thus a consistent estimator of the

local covariation from the continuous part of the process.

Since the price is observed in discrete times, we can only estimate the bipower

variation using realized bipower variation which can consistently estimate bipower

variation according to Barndorff-Nielsen and Shephard (2006b). From the definition

of the bipower variation matrix, we find that each element of this matrix can be

viewed as the bipower variation in the univariate process. Therefore, the estimation

of the matrix boils down to the estimation of the univariate bipower variation.



3.3 Cojump Detection Technique

3.3.1 Formulation of Test Statistic

Analogous to the univariate case, we consider a local movement of the multivariate

process within a window of size K, over which the spot covariance matrix is constant.

Over this window size, as the realized bipower variation consistently estimates the

local variation which is constant over the window. Taking average of the total local

variation gives a local variation over a small time interval. If we squeeze the time

interval small enough, we obtain a good estimator of the instantaneous covariance.

Following the idea, we define our test statistic as:

Definition 2. The statistic L(ti) which tests at time tj whether there was at least a

jump in the p-asset returns from ti 1 to t, is defined as

" -1
L(ti) r(ti)'E(t ) r(ti), (3.8)

where

E 1 1 (ti) E 12 (ti) ... E1q(ti)

---- -- 21 (ti) E22 (4) -.-. E2q(ti)
E(t ) =(3.9)

Eq1(ti) Eq2(ti) ... Eqq(ti)

Each element of the matrix is defined as

-1
Eli(4 ) = K -2 |rMAty)|ri(ty_1)|; (3.10)

j=i-K+2

Elq(ti) = -(El@eq(ti) - Eisq(ti)), for 1 # q, (3.11)
4



K- 2

+ rq(tj-_)| ;j |r1K± (t2 )+ rq(t}|r 1 tj_1)
j=i-K+2

Iri(tj) - rq(tj)| Iri(tj_1) - rq(tj-_)|.
j=i-K+2

3.3.2 Asymptotic Distribution

Before we derive the limiting distribution of our test statistic, we show that the

covariance estimator in Definition 2 indeed converges to the local covariance. We

first state a Lemma.

Lemma 4. For random variables {(U1 , V1 ), (U2 , V2),- - , (Un, Vn)} which is indepen-

dent and identically bivariate normally distributed with mean 0 and a covariance

matrix E = ,U EUV)we have

nnZ A + WiIlui-i + Ti-iI = 2Eu+Ev+2u) (3.12)

Proof. For eachiE{1,- , n}, let

X _1,j= |Uj + Vil jU- 1 + i_1| - E (jU + Vil IUi_1 + V_1|).

E (Xj_1 ,4) then becomes 0.

Define Xn = -E Xi_1 ,j, we have E(Xn) = 1 E 'n E (Xi 1 ,) = 0,

E(X2). Similar to the proof in Lemma 2, we have

and var(X,) =

X1, = X = 0(Ati).
i=

By the definition of Xj_1 ,j, it implies that

n S Uj + ||lUj_ 1 + Vi_1- - E(Uj + V2I|Uj_ 1 + Vi_1|) = O(At-).
i=1

(3.13)

where

i = K 1
t )q=tI{ - 2

Zleq (ti)

(3.14)



As (UJ, Vi) is i.i.d bivariate normal, random variable U + Vi is then a univariate

normal with mean 0 and variance E + E,, + 2E,,. Therefore,

E (IU + Wil IU-i- + Wi_1|) = E (IU + WI|) E (IUi_ 1 + W1|)

= [E (U± + Wil1)] 2

= c2(EU + EI, + 2Em). (3.15)

Substituting (3.15) into (3.14), we conclude that

in
- jUi + V74 lUiij + V =C

2(Zu, + EA"--2~)+ ~A~. (.6
i=1

From Chapter 2, we confirm that the diagonal elements of the covariance matrix

estimator approximate the local variance part of a multi-dimensional process. How

about the off-diagonal elements? We state the theorem below and prove that the off-

diagonal elements do approximate the local covariance part of the multi-dimensional

process.

Theorem 2. Let E(ti) be as in Definition 1 and window size K = OP(At"), where

-1 < a < -0.5. Let Ak be the set of i E {1, 2,..., k} so there is no jump at ti. Then,

as At -+ 0,

Eq(ti) = c 2 lq(ti-K)At + O(Ati-+aE-), (3.17)

where 6 satisfies 0 <6< a.

Proof. Similar to the univariate case, for ti-K < t < ti, d log X(t) can be approxi-

mated by dlogX 2 (t)

d log X(t) = p(ti-K)dt+ o"(ti-K)dW(t),

or

d log S'(t) = p(ti-K)dt + o(ti-K)dW(t) + Y(t)dJ(t).



For ty E [ti-K, ti], the log returns r(tj) is

r(tj) = log X(tj) - log X(tj _1)

= log Xi(ty) - log Xi(ty_1) + O(At- -

= -(ti-K)(W(tj) - W(tj_ 1)) + 0, t22

= v U + 0,(At- -) (3.18)

where Uj ~ i.i.d. Multivariate Normal with mean 0 and covariance matrix E(ti-K)

with size p x p, and 0 < J < + a.

Replacing r(t ) with (3.18)

Elq)(ti) K 2
j=i-K+2

K -2
j=i-K+2

ri(t) + rq(tj)|I ri(t_1) + rq (tj_1)|

r (tj) + ri(tj) + O,(At -+aE)

r'(tj_1) + r'(tj_1)+ O (At-

K - 2 j=i-K+2
Ir (ti) + rq (t)| |r(tj_1) + rq(tj_1)|+ O(At 2+a-E),

where the last equality follows from Lemma 1. Apply Lemma 4 to (3.19), as O(AtI-'+±-<)

dominates O(A2), O,(A'2) can be ignored, we get

E1Ek(ti) = c 2 [ZEu(ti-K) + Zkk(ti-K) + 2Zlk(ti-K)]At + Op (A-t6aE).

Similarly, we have

l0ek(ti) = c2 [Zll(ti-K) - Zkk(ti-K) - 2lk~ti-K)]At +0 ( At.

By (3.11), we get the result.

(3.19)



We therefore confirm that

E(ti) = c2AtE(ti-K) + O,(AtI±+") (3.20)

Apply (3.18) and (3.20) to the test statistic defined in Definition 2, and let -

stands for O(At2 a). Under the assumption that there is no jump in any of the

assets, the test statistic is

-- -1

L(ti)= r(t) E(ti) r(ti)

= [V7& U + 7]'[c2 E(t,)At + ,]4"[XU +'y]

={ -Ui + 7]'[c2E(ti)At]-l[1 - 7][V Ui + _Y]

= At U + 7]'[c 2E(t,)At]P-[fAUi +Y] + _Y

= fAUi[c2E(ti) At]-I VPA\U, + 7

c-2((i) + 7, (3.21)

where E(i) follows a Chi-Square distribution with p degrees of freedom .

3.3.3 Detection Rule

Following the idea in the univariate test, we propose to infer the cojumps by the

extreme distribution of L(ti). According to Ramanchandran (1975), the asymptotic

distribution of maximimums of Chi-Square also follows a standard Gumbel distribu-

tion. We state the result without proof.

Lemma 5. For a random variable Xi i.i.d x2 (p), with F(x) = P(Xi < x), and

Z. = max(X 1 , X2 ,--- ,Xn), then there are sequences an and bn > 0 such that as

n -+ oo.

limP(Zn < an + bnx) = exp(-e-x), -oc < x < +oo. (3.22)

the normalizing constant an and bn can be chosen as

an = inf x : 1 - F(x) < - (3.23){ n



and

bn = (1 - F(t))- (I - F(y))dy. (3.24)

To infer the presence of jumps, we set the null hypothesis as there is not a jump

in any of the asset at time ti. For a significance level of a, the null hypothesis is

rejected if L(ti) > an + bnO*, where P(x < 6*) = exp(-eO*) = 1 - a.

Approximating the Normalizing Parameters

Compared to the normal distribution, Chi-Square distribution has a more compli-

cated c.d.f. In general, it is hard to find an analytical solution of a., and bn. However,

given that a X'(2) random variable is exponentially distributed and the sum of k in-

dependent identically distributed exponential random variables follows an Erlang-k

distribution, we can approximate the constants using the analytical cumulative dis-

tribution function (c.d.f) of Erlang-k distribution. In this chapter, we demonstrate

the approach using examples when the degrees of freedom of the Chi Square distri-

bution p is 2 or 4. Other Chi Square distributions with degrees of freedom being even

number follow the same idea.

Case 1: p = 2

When p = 2, the test statistic L(i) is exponentially distributed with the rate parame-

ter A = 1/2, i.e., L(i) ~ exp( !). The c.d.f is F(x) = 1 - e-x, as x = L(i) > 0. Since

F(x) is continuous, Equation 3.23 reduces to 1 - F(an) = 1/n. Solving the equation,

we get a = ln = 2 log n. Substitute the result into Equation 3.24, b,, = 1/A = 2.

Case 2: p =4

When N = 4, the test statistic C(i) can be interpreted as the sum of two i.i.d

exponential random variables with A = 1/2. It is therefore an Erlang-k distribution

with shape k = 2 and rate A = 1/2, i.e., L(i) ~ Erlang (2, 1). The c.d.f is F(x) =



1 - e-Ax - Axe-Ax. Similar to case 1, we can get an by solving the equation

e- A"" + Aa e-Aa =.
n

(3.25)

Let y = -Aas, Equation 3.25 reduces to ey - ye = 1. Divide each side by -e, we

have

(y - 1)e'4 = - .
ne

(3.26)

It follows immediately that y = + W(-a), where W(-) is the Lambert W function.

That is, z = W(z)eW(z) for every complex number z. Although Lambert W function

does not have an analytical form, it can be approximated by Taylor series around 0:

(3.27)Wo(z) z"= z)-z1  z - Z+ 2 -33 _ 84
n 1i 2 3

It is suffice to approximate the Lambert W function around 0 to the 3rd order term.

Thus, e 2n 
3 3 is an approximate solution to Equation 3.26. However,

as y > 1 for all integer n, and an = -2yn, this is not a valid solution to (3.25). If

we plot the function f(a,) = 1 - F(a.) - 1/n, for n = 2000, the function approaches

-1/n asymptotically for an ;> 0. an can be only be estimated approximately, and it

is not unique.

Figure 3-1: Plot of f (an) = 1 - F(an) - 1/n.
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Chapter 4

Simulation Study

With the formulation of the multivariate test for a cojump, we access the effectiveness

of our test by Monte Carlo simulation that investigates the performance of the test

using a finite sample. We first lay out the foundation of the study by choosing a

model for the process, and define some terminologies that determine the effectiveness

of the test. We then examine the performance of the test under different scenarios. In

the end, we compare the effectiveness of the multivariate test to that of the univariate

test. We confirm that the univariate test has less power if the significance level is not

well designed.

4.1 Simulation Design

Since our test is a nonparametric test, in the sense that there is no specific model

assumption of the underlying process, as long as the process is a semi-martingale.

We can arbitrarily choose a model to simulate the prices for the test. We choose the

Affine Jump-Diffusion (AJD) model in Duffie, Pan and Singleton (2001), as the AJD

model allows significant flexibility in setting the drift and volatility processes. Under

AJD (ignoring the drift), the p-dimensional log price process Y = log X follows

dY = -(Yt)dVV + CtdJt. (4.1)



where

(o-(Yt)o(Yt)')ij = (Ho)ij + (H1 )ijY, for H = (HO, H1) E RP'P x REx xP. (4.2)

We further impose the assumption that J follows a Poisson process with intensity At.

The jump size Ct has a multivariate normal distribution with mean c and covariance

matrix T'.

To facilitate the examination of simulation results, we introduce several concepts

which will be used to justify the effectiveness of our test. Analogous to the univariate

simulation in Lee and Mykland (2008), for a single testing time ti, we define the

two possible kinds of misclassification. The first is that the test fails to detect the

existence of an actual cojump in interval [ti 1 , ti]. We call it a failure to detect

actual jump (FTDi) at ti. The second kind is that the test reports a cojump while

there is actually no cojump in [ti_ 1, ti]. We call it a spurious detection of cojump

(SDi). As the test can be used to detect jumps over time, we introduce the concept

of global misclassification. Same as the single testing time, we have two cases of

misclassification. The first case is that a number of cojumps present over the time

[0, T], but there is at least one actual cojump that the test fails to detect. We call

this a global failure to detect actual cojump (GFTD) over [0, T]. The second case is

that there are some returns not resulting from cojumps, but the test reports at least

one of them as a result of a cojump. It is called a global spurious detection of cojump

(GSD).

In mathematical terms, suppose there are n observations of returns, we let An be

a set of times when a cojump presents, and B, be a set of times at which the test

declares a cojump. In addition, we denote each event in An and Bn using Ji and Di

respectively. That is Ji = {i C A.} and D = {i C B.}. We then have the following

four statements:



Ji fl D= failure to detect an actual cojump at ti (FTDi)

Ji f D = spurious detection of cojump at ti (SDi)

u (i Jfl D)= failure to detect all actual cojumps over [0, T] (GFTD)
i=1

u (i Jn Di) = spurious detection of a cojumps over [0, T| (GSD)
i=1

With this formulation, the power of our test is the probability of global success

in detecting actual jumps, which is 1 - P(GFTD), and the size of the test is the

probability of global spurious detection of jumps, which is P(GSD).

One thousand series of two-dimensional log prices are simulated at different fre-

quencies from 12-hour to 15-minute. The total time horizon is one year, and we

assume 252 working days within the year. We compare the performance results un-

der different parameter settings. The significance levels for the study of cojumps are

all set at 5%.

4.2 Simulation Result

4.2.1 Null Distribution

Before checking the performance of the test, we first plot the distribution of the test

statistic when there is no cojump, that is, neither of the assets has a jump. The test

statistic is based on the one thousand simulation at frequency of 15-minute over one

year. The plot in Figure 4.2.1 shows that the distribution obtained from the test

statistic is close to the exponential distribution with parameter 0.5. The finding is

consistent with the theoretical argument that the null distribution is Chi-Square with

two degrees of freedom.
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Figure 4-1: Null Distribution of Test Statistics.

4.2.2 Scenario Test

We are going to perform the test under different scenarios of parameters, we set the

default parameters first. The default value of the parameters in the model are

0.1 -0.02)
-0.02 0.1

0.1

-0.1

0.02 -0.002
HO = I

-0.002 0.003

HI - H2  (0.01 0.005

0.005 0.02

When the test is performed at different scenarios of the specified parameters, the

other non tested parameters are always kept at the default values.

We first consider the effectiveness of the test at three levels of volatilities while

keeping the correlations the same.

1. the volatility is constant and at a lower level, i.e., H0 is lower, and H1 = 0

2. the volatility is constant and at a higher level, i.e., H0 is higher, and Hi = 0

3. the volatility is not constant



Table 4.1 summarizes the mean and standard errors (in paratheses) of probabilities

of spurious detection and detecting actual jumps at a particular time. Looking at a

column across different frequencies, it confirms our intuition that as the frequency

increases, the probability of spurious detection decreases and the probability of suc-

cessfully detecting actual jumps increases. At a frequency of 30 minutes or higher,

97% of the jumps can be detected. Across the columns, the test is most effective

when the volatility is high, and does not change over time. It is least effective when

the volatility stays constantly low. The global performance in Table 4.2.2 indicates

the same trends. It is not supprising that changes in volatility over time makes it

difficult to detect cojumps. Thus, the test should be less effective when the volatility

is not constant. However, the result that the test performs worst under low constant

volatility is a bit surprising. It indicates that low level of volatility makes it harder

to detect cojumps.

Table 4.1: Local Property for Volatilities
P(SDi) 1 - P(FTDi)

freq 1 2 3 1 2 3
12-hour 0.00562 0.00377 0.00424 0.91267 0.93990 0.92986

(.00192) (.00144) (.00111) (.01258) (.00984) (.01023)
6-hour 0.00239 0.00145 0.00165 0.95980 0.96997 0.96010

(.00028) (.00014) (.00018) (.00982) (.00489) (.00694)
1-hour 0.00233 0.00129 0.00163 0.96993 0.97850 0.97299

(.00064) (.00055) (.00048) (.00883) (.00465) (.00670)
30-min 0.00168 0.00084 0.00091 0.97148 0.98020 0.97996

(.00039) (.00030) (.00024) (.00569) (.00303) (.00424)
15-min 0.00166 0.00075 0.00082 0.98883 0.99730 0.99010

(.00035) (.00016) (.00018) (.00404) (.00148) (.00180)

After taking a look at the general trend of the test, we examine the performance of

the test at different levels of correlations in returns. To minimize the influence of other

factors, the volatility is set to be constant, i.e., H1 = 0. We add another indicator of

the performance: Global misclassification (Gmis), which is the combination of GFTD

and GSD. This indicator shows how accurately (without making mistakes as GSD or

GFTD) the test can locate the jumps over a time horizon. We set the time horizon

as one day in the example.



Table 4.2: Global Property for Volatilities
Size Power

freq 1 2 3 1 2 3
12-hour 0.2497 0.1988 0.2227 0.9958 0.9980 0.9968

(.0818) (.0729) (.0547) (.0119) (.0036) (.0114)
6-hour 0.1116 0.0746 0.0904 0.9963 0.9983 0.9973

(.0268) (.0313) (.0250) (.0051) (.0014) (.0059)
1-hour 0.0597 0.0511 0.0755 0.9975 0.9998 0.9984

(.0035) (.0030) (.0045) (.0012) (.0005) (.0010)
30-min 0.0554 0.0400 0.0411 0.9969 0.9983 0.9978

(.0079) (.0091) (.0066) (.0031) (.0019) (.0015)
15-min 0.0479 0.0352 0.0364 0.9972 0.9993 0.9981

(.0054) (.0043) (.0045) (.0024) (.0009) (.0011)

Table 4.3: Global Property for Levels of Correlation
Power Size Gmis

freq Low high Low high Low high
1-hour 0.9985 0.9955 0.0747 0.0810 0.0760 0.0847

(.0007) (.0011) (.0042) (.0046) (.0042) (.0047)
30-min 0.9987 0.9964 0.0422 0.0501 0.0433 0.0531

(.0012) (.0020) (.0066) (.0073) (.0067) (.0074)
15-min 0.9989 0.9970 0.0362 0.0436 0.0373 0.0467

(.0009) (.0014) (.0043) (.0051) (.0044) (.0052)

Table 4.2.2 presents the global performance of the test at both low (0.07) and high

(0.7) levels of correlation. The performance is measured by power, size and global

misclassification, respectively. The results consistently show that the test is more

effective when the correlation is low. In fact, the test can detect 0.2% more cojumps

when the correlation is lower. This might be because the correlations added more

volatility to the process, therefore, making it harder to detect cojumps. The local

property of the test in Table 4.4 also confirms that the test performs better when the

correlation is lower.

4.2.3 Comparison with Univariate Test

Lastly, we compare the effectiveness of the univariate test and the multivariate test

in detecting cojumps in two-asset returns. The idea is that when testing if there is at

least a jump in two assets, we can either perform a multivariate test at a significance



Table 4.4: Local Property for Levels of Correlation
P(SDj) 1 -P(FTD)

freq Low high Low high
1-hour 0.00093 0.00137 0.97361 0.96594

(.00024) (.00032) (.00300) (.00350)
30-mini 0.00082 0.00129 0.98542 0.97845

(.00017) (.00027) (.00230) (.00260)
15-min 0.00075 0.00090 0.99308 0.98762

(.00015) (.00023) (.00195) (.00203)

level or an univariate test on each asset to achieve a total significance level the same

as the multivariate test.

When performing the univariate test on each asset returns, we set the significance

level to be 2.5%, half of the default significance level of the multivariate test. This

is a naive way to achieve a total significance level at most as high as that of the

multivariate test. In order to minimize the loss of effectiveness in performing the two

univariate tests, we do another round of testing by increasing the significance level to

5%, the same level as the multivariate test. The test is performed at both low and

high levels of correlation in the returns.

Table 4.5: Probability of Global

freq multivariate

30-min 0.9953
(.0038)

15-min 0.9986
(.0041)

Table 4.6: Probability of Global

freq multivariate
30-min 0.9872

(.0058)
15-min 0.9989

(.0035)

Success to Detect Cojumps at Low Correlation
a = 0.025 a = 0.05

ri r2 ri r2

0.9632 0.9527 0.9645 0.9543
(.0095) (.0113) (.0092) (.0113)
0.9694 0.9603 0.9703 0.9614
(.0184) (.0210) (.0183) (.0207)

Success to Detect Cojumps at High Correlation
a = 0.025 a = 0.05

ri r2 ri r2
0.9623 0.9615 0.9635 0.9533
(.0102) (.0102) (.0099) (.0113)
0.9706 0.9615 0.9717 0.9627
(.0187) (.0203) (.0183) (.0201)

A common feature from Table 4.5 and Table 4.6 is that the multivariate test

outperforms the univariate test in testing the cojumps. As expected, the univariate



test has greater power at a higher significance level. However, the powers are still

lower than those of the multivariate test. The comparison confirms that our test is

more effective in detecting cojunips of multi-asset returns than the univariate test.



Chapter 5

Empirical Example

Both the univariate test and our multivariate test do not assume that the price pro-

cesses follow any specific parametric models. Therefore, the tests can be applied to

detect jumps of different kinds of assets in the financial markets. We apply the tests

to two assets that represent the stock market and bond market: the S&P 500 index

and 30-year U.S. Treasury bond futures. While our jump detection scheme is based

on an infinite small time interval, in financial markets, microstructure complications

prevents us from using too frequently traded data. The noise may distort the fun-

damental semimartingale assumption of the price process. The simulation results for

the univariate test in Lee and Mykland (2008) and our simulation results for the mul-

tivariate test show that 15-minute is adequate for the tests to gain sufficient power to

detect actual jumps and cojumps, we choose 15-minute interval to sample the high

frequency data.

We first give an introduction to the two time series used in this empirical exam-

ple and discuss some interesting findings in the returns. We then apply both the

univariate test and inultivariate test to detect jumps and cojumps of the two-asset

returns.



5.1 Data Description

The data consists of 15-minute returns of two assets: the S&P 500 index and 30-

year U.S. Treasury bond futures. The S&P 500 index is a stock market portfolio

index which is not traded. An exchange traded fund (ETF) called Standard & Poor's

Depositary Receipts (SPDR) is designated to act as a proxy for the S&P 500 index.

We downloaded the 15-minute consolidated trades of SPDR in NYSE from the Trade

and Quote (TAQ) database. We denote it as the S&P 500 index throughout this

chapter. Since the data downloaded from TAQ contain every transactions of trades,

we have to construct the 15-minute prices at a time interval of 15 minutes from 9:30

a.m. to 16:00 p.m.. That is, we stamp the prices at every 15-minute time mark. If no

trade occurs at the exact interval time mark, previous-tick method (see Dacorogna

et al. (2001) for details) is used to construct the interval data, i.e., the last price

information (the last tick price) in the previous time interval is put as the price of

the interval time mark. We use a subset of the 30-year U.S. Treasury bond futures

employed by Wright and Zhou (2007). To construct a single time series, we use

the most actively traded contract, which is nearest to its expiration. Following the

methodology of Andersen, Bollerslev and Huang (2006), we switch to the next bond

futures on the first business day of the delivery month. The trading time for futures is

from 8:20 a.m. to 15:00 p.m., which is approximately one hour earlier than the S&P

500 index trading time. We synchronize the data by taking off the prices from 9:30

a.m. to 15:00 p.m., such that we will not miss out the significant jumps at the starting

time of a trading day. The full sample of the two-asset price span from February 1,

1993 through August 31, 2006.

The average 15-minute returns and standard deviations (in parentheses) of the

S&P 500 index and 30-year U.S. Treasury bond futures are 0.0014%(0.0025) and

0.00004%(0.0014), respectively. As expected, the mean of high frequency returns are

extremely close to zero. Figure 5-1 presents the 15-minute returns of the two assets.

The full sample correlations of the two-asset returns are small. However, when we

only count the returns in the contraction period (March 1,2001 to December 31,
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Figure 5-1: 15-minute Returns of the S&P 500 Index and 30-year U.S. Treasury Bond
Futures

2002), the correlations are highly negative. This might be explained by the cash flow

effect during contraction, as explored by Andersen et al. (2007). Figure 5-2 plots

the realized monthly correlations of the two-asset returns, and the realized monthly

standard deviations of each asset returns over the full sample period. It confirms that

the bond has relatively less volatility than the stock index over time.

5.2 Jump and Cojump in Asset Returns

The jumps are detected in three ways: 1. an univariate test for each asset at a

significance level of 2.5%; 2. an univariate test for each asset at a significance level

of 5%; 3. a multivariate test for the 2-dimensional process at a significance level of

5%. Table 5.1 summarizes the number of cojumps detected for each method. The
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Figure 5-2: Monthly Realized Correlations of the S&P 500 Index and 30-year U.S.
Treasury Bond Futures

first row in the table is the number of detected jumps at 15-minute interval for each

asset using the univariate test. The second row finds the number of times that both

assets have a jump. The last row is obtained by adding the individual jumping times

and subtracting the joint jumping times. It represents the number of times that at

least one of the asset has a jump (a cojump). It proves that if we use the naive way

to choose a significance level (dividing the total significance level by the number of

multiple hypothesis testing) to test if there is a jump in any one of the two assets,

we lose substantial power in inferring the results. Even when a = 5%, the number of

jumps detected is still significantly less than the multivariate test. In the rest of the

chapter, the univariate tests are all performed at a significance level of 5%.



Table 5.1: Summary of the Number of Jumps Detected
i = 0.025 a = 0.05 a = 0.05

S&P 500 T. Bond S&P 500 T. Bond Bivariate
each 600 639 642 686
joint 175 190
union 1064 1106 1275

5.2.1 Distribution of Test Statistics

It would be interesting to empirically check the distribution of the test statistic under

the condition that there is no jump at ti. We plot the histograms of the three test

statistics at the time in absence of jumps. With some scaling, we find that the

two univariate test statistics are approximately normally distributed with mean 0,

and the bivariate test is exponentially distributed, which is equivalent to the chi-

square distribution with two degrees of freedom. It again, numerically confirmed our

theorems in chapter 2 and 3.

5.2.2 Jump Characteristic

We look at the properties of the asset returns in the presence of jumps. Particu-

larly, we plot some variables: the test statistics, the returns (in percentage), and the

estimated instantaneous volatility for each of the univariate test. The x-axis of the

graphs represents the dates, and y-axis represents the magnitude of these variables.

In the plot of the test statistics, the threshold line is drawn as a benchmark.

Figure A-3 plots the jump variables of the S&P 500 index when the jumps are

detected using the univariate test. Similarly, Figure A-4 plots the same test on 30-

year U.S. Treasury bond futures. Look at the time from mid of 2001 and the end

of 2002 in Figure A-3, the changes in returns are relatively high. However, instanta-

neous volatilities are much higher. Since the univariate test statistics is obtained by

standardizing the returns using the volatility, it is thus relatively lower. It empirically

explains the rationale of standardizing the returns. Compare Figure A-3 to Figure

A-4, it is clear that the bond has less extreme jumps, but the frequency of jumps is

higher than the stock index.



One important feature of the multivariate test lies in utilizing the correlations

between the two assets. It inspires us to plot the instantaneous correlation as well.

Figure A-5 tracks the test statistics and the correlations. The pattern of the instan-

taneous correlations inherits that of the monthly correlations in Figure 5-2.

When zooming into intra day level, we found that the jumps in the returns of 30-

year U.S. Treasury bond futures are most prevalent during the 8:30 a.m. to 8:45 a.m.,

and the jumps in the S&P 500 index presents mostly during 9:30 a.m. to 9:45 a.m.

Since most of the macro news release at 8:30 a.m., it is not surprising that the large

movements in returns happen immediately after the news events. The results coincide

with the findings among an extensive literature, which explores the relations between

jumps and macro news announcements. Lahaye, Laurent and Neely (2009) shows

that most large moves in S&P 500 returns are associated with U.S. macroeconomic

news announcements.



Chapter 6

Conclusion

To fill up the blank in identifying cojumps in multi-asset returns, we propose a new

nonparametric jump test. Monte Carlo simulations prove that our test can accurately

identify most of the cojumps under high frequency observations. The nonparametric

feature of our test offers great flexibility in investigating jump dynamics in a variety

of financial assets. We study an empirical example with returns of the S&P 500 index

and 30-year U.S. Treasury bond futures. We find the in intra day level, jumps occur

most frequently at the start of the trading day, when the macro news releases. It

illustrates the close relation of news events and the reactions of financial markets.

Although our test is designed to detect cojumps on multivariate price processes, so

far, it is only been tested for the bivariate case. The reason is twofold: 1. simulation

study in higher dimension requires more memory that may be beyond the capability

of a personal computer; 2. the normalizing parameters have nice analytical solutions

for a bivariate process. As such, future work could be further researched to verify

the effectiveness of the test on processes of higher dimension both by simulation and

empirically.
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Appendix A

Figure
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Figure A-1: Distribution of Test Statistics of Univariate Returns in the Absence of
Jumps
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Figure A-2: Distribution of Test Statistics of Bivariate Returns in the Absence of
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Figure A-3: Jump Characteristics of the S&P 500 Index
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