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Abstract

For subduction to occur, plates must bend and slide past overriding plates along
fault zones. This deformation is associated with significant energy dissipation, which
changes the energy balance of mantle convection and influences the thermal history of
the Earth. To parameterize these effects, a subduction zone was included in a small
region of a finite element model for the mantle, which also features an asthenosphere
and a mid-oceanic ridge. Velocity boundary conditions were imposed in the vicinity of
the subduction zone and a rate for subduction was specified, that balances the energy
budget for convection. This balance includes an expression for the energy needed to
bend the oceanic lithosphere as it subducts. Four different modes of energy dissipation
were considered: viscous bending, brittle bending, viscous simple shear, and brittle
simple shear.

We present theoretical arguments for, and numerical illustrations of the fact that
for most modes of deformation, the simple powerlaw relationship of parameterized
convection Nu ~ RaO is not valid anymore, although it is still a good first order
approximation. In the case of viscous bending dissipation and non-depth dependent
brittle simple shear however, Nu ~ Ra does hold. # is less than the value of 1/3
predicted by standard boundary layer theory. For viscous energy dissipation, two
different regimes of mantle convection can be considered, depending on the effective
viscosity of the lithosphere: the "mobile lid" regime, and the "stagnant lid" regime.
For brittle dissipation, the lithosphere strength is a function of yield stress which,
when nearing a certain critical value, introduces a third regime, that of the "episodic
overturning". Within the "mobile lid" regime, the plate velocities for models with a
subduction zone governed by brittle behavior are far less dependent on the plate stress
than those models with viscous deformation. This suggests that the plate motion is
resisted by viscous stresses in the mantle.

The "mobile lid" would be representative for mantle convection associated with plate
tectonics, as we observe on Earth. A "stagnant lid" would be the case for the Moon



or Mars, while Venus could experience the "episodic overturn" regime featuring cyclic
and catastrophic brittle mobilization of a lithosphere with high friction coefficient.

Thesis Supervisor: Bradford H. Hager
Title: Cecil and Ida Green Professor of Earth Sciences
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Chapter 1

Introduction

Understanding of Earth's thermal history yields a better understanding of its struc-

ture and composition. The more realistic model of heat transfer proposed here should

contribute to this discussion. The heat flux that is measured at the Earth's surface

has two main sources. The first component is remnant heat of previous stages in the

Earth's thermal history, beginning with its accretion 4.6 Ga BP. The second com-

ponent is that of the present day heat production by radioactive decay of mainly

U, Th, and K. There are three mechanisms by which the Earth cools down. The

first two mechanisms are conduction and convection. The mantle can be treated as

a Rayleigh-Benard fluid which is heated from below and cooled from the top. This

causes density differences which drive mantle convection. At the top and the bottom

of the convection cell, two thermal boundary layers are formed. The cold, and stiff

upper boundary layer is called the lithosphere and will be defined by a temperature

of 1400K. Through the lithosphere, conduction is the main mechanism of heat trans-

port. The third, and last mechanism of heat transport is radiation. We will neglect

this component in our discussion, since the surface temperature of our planet is too

low to give rise to black body radiation of any significance, compared with the two

other mechanisms of heat dissipation.

The motion of Earth's tectonic plates are the surface expression of mantle con-

vection. Because the plates form a cold boundary layer, they are denser than the

mantle beneath them, and thus gravitationally unstable. Gravitational instability



results in the subduction of oceanic lithosphere [Turcotte and Oxburgh, 1967. Nearly

all previous studies of the thermal evolution of our planet have been based on this

boundary-layer theory applied to a mantle with uniform composition. The Rayleigh

number determines the vigor of convection, and is inversely proportional to the viscos-

ity, while the Nusselt number Nu is a measure for the global efficiency of convective

heat transport. In the traditional theory of "parameterized convection", a simple

relation between the Ra and Nu is used: Nu oc RaO. # is the key parameter in the

theory of parameterized convection, and boundary layer theory predicts it to have

a value of 1/3. This simple parameterization allows us to estimate the Earth's ef-

ficiency of cooling and the evolution of its temperature with time. It represents a

self-regulating mechanism which strongly couples the heat loss and the internal tem-

perature of the Earth. However, such a simple model of Earth's thermal history does

not reconcile an apparent discrepancy between the observed surface heat flux and

the heat production of the mid-ocean ridge basalt (MORB) source region: the two

suggest a present day rate of heat production that is less than 50% of the present rate

of heat loss [Kellogg et al., 1999]. This means that more than 50% of the Earth's heat

loss could be accounted for by secular cooling from a previous, hotter stage. This

would suggest that Earth is very inefficient in dissipating its internal heat. Since heat

production was exponentially higher in the past, this observation yields unrealistic

models of Earth's thermal history when isoviscous boundary layer theory is applied.

Because of the increase of the importance of convection with time, plate velocities

would be unrealistically high in the Archaean [Christensen, 1985]. A lot of the dis-

cussion in this thesis will be concerned with whether or not we can still use the simple

powerlaw equation of parameterized convection if we introduced some complications

to the model, and what the value of # would be in that case.

Recent work at MIT resulted in two modified versions of boundary layer theory.

In a first approach, the mantle is regarded as two compositionally distinct layers. The

upper layer corresponds to a depleted MORB source. The deeper layer would then

have a higher content of U, Th and K and, thus, account for some of the missing

radioactive heat [Kellogg et al., 1999]. This would decrease the importance of the



experimentally determined deficiency of radioactive heat production.

A second approach considers the effect of temperature dependent mantle viscosity

on the bending resistance of subducting lithosphere. One simplification that standard

boundary layer theory makes is that the mantle has an isoviscous rheology. In reality,

the cold temperatures of the lithosphere make is exponentially stiffer than the under-

lying mantle, a fact that makes plates move as rigid units. Laboratory measurements

suggest an order of magnitude variation in viscosity for every 100"C of temperature

change [Kohlstedt, 1995]. The temperature dependence of viscosity thus strength-

ens the interior of lithospheric plates. It should however also strengthen subduction

zones. The temperature gradients across the ductile part of the lithosphere are several

hundreds 0C large. This should be enough to "freeze" plates and develop a "stag-

nant lid" regime of mantle convection, but this situation is not observed on Earth.

Hence, a weakening mechanism is required to allow the lithosphere of deforming at

subduction zones. This mechanism is not well understood. Brittle failure and viscous

flow are the two ways by which materials can deform. This deformation dissipates

energy. The resistance of the cold lithosphere to its deformation at subduction zones

slows down convection and, thus, weakens the efficiency of cooling. This fenomenon

diminished the degree of coupling between heat flow and mantle temperatures and

reproduces more realistic Archaean plate velocities.

Deformation at subduction zones has been studied in localized high resolution

finite element models [e.g. Conrad and Hager, 1999a]. In such models, the main

deformation is associated with the bending and unbending of the slab, and so is the

energy dissipation, which can take up to 30% of the mantle's total convective resis-

tance [Conrad, 2000]. In order to model the effect of energy dissipative subduction

zones on global scale mantle convection, we cannot use such a high resolution ap-

proach. Due to computational constraints, the deformation of the lithosphere has to

take place in only a few elements of a regularly spaced grid. To solve this problem,

an expression can be derived for the viscous dissipation associated with bending of a

plate as a function of the plate velocity. A finite element model then parameterizes

subduction dissipation by specifying velocity boundary conditions that force the litho-



sphere in a subduction-like geometry and balance the mantle's total energy budget,

which includes the subduction dissipation. Using this approach, a finite element code

called "SubMan" was used by Conrad [2000 to model bending dissipation by a plate

with viscous rheology. It was assumed that all deformation can be represented by

one "effective viscosity". In reality, the deformation happens through a complicated

interaction of pure shear and simple shear, and rheologies ranging between the end

members of viscous flow and brittle/ductile flow. Brittle behavior of subduction zones

is supported by clear experimental evidence. In fact, a major part of the seismicity

on our planet is confined to these subduction zones.

In this thesis, I will describe how a modified version of SubMan can be used

to model modes of energy dissipation other than viscous flow under pure bending

strain. Thus, to make subduction dynamically self-consistent, we specify a rate at

which subduction occurs by applying an energy balance for the mantle. This balance

includes an equation for the energy dissipated at the subduction zone. In order

to model brittle deformation, this equation will include a yield stress. So far, we

have looked only at plates deforming under bending shear. However, this is not the

only strain pattern under which subduction can occur. Two more energy dissipation

equations will be derived for the case of simple shearing deformation, again for both

viscous and brittle rheology. This brings the total number of suduction modes to four.

Each of these modes corresponds to an equation for the energy dissipation that is a

different function of the plate velocity, the plate thickness, and the effective viscosity

or -for brittle behavior- two yield stress parameter.

I will first show that the new code successfully incorporates the original SubMan

model, by repeating the numerical experiments done by Conrad, [2000] for viscous

dissipation under pure bending. Next, similar experiments will be carried out for the

other three modes of deformation. Finally, the results of numerical experiments will

be critically evaluated for their consequences regarding boundary layer theory and the

reconstruction of the thermal history of the Earth. The four modes of deformation

here discussed correspond to the end members of stress/strain interaction. They

should be considered constraints on real world situations.



Chapter 2

Background

The general formulation of Earth's thermal evolution can be written:

fj pCTdV = HdV - FdS (2.1)

Where t is time, V is the volume of the earth, S its surface area, p is density, C, is

specific heat, T is temperature, H is the rate of radiogenic heating and F is the surface

heat flux. For given values of C,, p, and H, this equation gives us T as a function

of F. Most of the research on Earth's thermal history is concerned with determining

this function [Richter, 1984], and so is the research proposed here. First we define

the Nusselt number Nu, which is the ratio of the total surface heat flow Q to the

hypothetical heat flow Qcoad(T) which would occur if the only mechanism of heat loss

was conduction [Christensen, 1985]:

Nu -= - (2.2)
Qcond(T) cT

where T is the average temperature of the convection cell and c is a factor depending

on the mode of heating. Next we define the Rayleigh number Ram as:



Ra -- agpTD3  (2.3)

where a is the thermal expansivity, p the density, r, the thermal diffusivity, g the

gravitational acceleration, D the system's depth and r/m the mantle viscosity. In

general, the viscosity 71 strongly depends on the temperature T:

E- ErI(T) = 7mexp *a ;L2) (2.4)
(RT RTm

where Ea is the activation energy, Tm is the mantle temperature and R is the uni-

versal gas constant [Kohlstedt et al., 1995]. Both boundary-layer theory and experi-

ments have shown that there is an exponential relationship between the Rayleigh and

the Nusselt number, which characterizes the convective system [e.g. Turcotte and

Oxburgh, 1967]:

Nu oc Rapm (2.5)

where # is the parameter in the theories of parameterized convection [e.g. Chris-

tensen, 1985, Davies, 1980, Conrad and Hager, 1999b]. Since Nu is a measure of

Earth's surface heat flux (F) and Ram is a function of the temperature (T), this

equation relates T and F. For a system with constant viscosity and constant basal

temperature, boundary layer theory gives a parameter value # = 1/3 [Turcotte and

Oxburgh, 1967]. We can now use (2.5) to solve (2.1), which will then give us the

evolution of temperature or surface heat flow with time.

When the temperature of the mantle is high, viscosity will be low, and thus, Ram

will be high. A high value for # - such as 1/3 - will also result in a high Nu,

and thus an efficient rate of convective cooling. Cooling of the mantle will then

cause the viscosity to increase (equation (2.4)). By definition (equation (2.3), Ram



will therefore decrease and because of (2.5), Nu will decrease. The rate of cooling

will then slow down. This negative feedback mechanism results in a buffering of the

mantle temperature over Earth's history. By this mechanism, Earth will reach a state

of thermal stability, with a ratio of heat production to heat dissipation near unity. We

will call this ratio the Urey ratio [Christensen, 1985]. Boundary-layer theory with #

equal to 1/3 predicts a Urey ratio of 0.85. This means that less than 15% of the

present day heat flow would be the result of secular cooling of the Earth's mantle of

an initially hotter state. Total heat loss was however considerably higher in the past

due to higher heat production. Using the rule that the heat loss by seafloor spreading

is proportional to the square of the plate velocity, one can calculate the average plate

velocity during time. For # equal to 1/3, this would result in unrealistically high

Archaean mid-ocean ridge spreading rates [Christensen, 1985].

If the mantle had the same composition as MORBs, mantle heat production would

only be 2 to 6TW [Kellogg et al., 1999]. With a total terrestrial heat flow of 44 TW,

these low values of mantle heat production imply a Urey ratio of only 0.06 [Conrad and

Hager, 1999a & b]. In order to keep # high and thus preserve the negative feedback

mechanism for the temperature of the mantle, a higher mantle heat production is

required. Geochemical models of the Earth based on an initial average composition

of chondritic meteorites imply a current mantle heat production of 15TW [Jochem et

al., 1983]. There must thus be an extra heat source apart from the MORB source.

Seismological evidence and the isotopic signatures of oceanic island basalts suggest

the existence of a compositionally distinct layer in the deep mantle [Kellogg et al.,

1999]. When we include this layer in the geochemistry of the mantle, the Urey ratio

increases to a maximum value of 0.60. This ten times higher than the value which we

have shown to be predicted by a mantle of uniform composition. 0.60 is, however, still

significantly less than the Urey ratio of 0.85 predicted by standard boundary-layer

theory.

To allow Urey ratios of less than 0.85 without violating the geochemical models

for the Earth, we must use another approach, and allow # to be smaller than 1/3.

We should therefore modify isoviscous boundary-layer theory in order to weaken the



negative feedback mechanism that stabilizes mantle temperatures. The rate of con-

vection of the mantle should respond less effectively to changes in the temperature

of the mantle. There must thus exist a force which is stronger than the resistance

against deformation of an isoviscous mantle. Christensen (1985) states that it is not

the viscosity of the bulk of the convecting fluid that controls heat transfer, but rather

the properties of the cool and exponentially stiffer top boundary layer. This stiff rhe-

ology will resist deformation at subduction zones by viscous dissipation and brittle

behavior. Conrad (2000) modeled this concept numerically by including a subduction

zone in the finite element code ConMan [King et al., 1990].

The energy balance of the convective system is [Conrad and Hager, 1999b]:

pe Ivd +i (2.6)

with 1pe = the total potential energy released, I"/d = the viscous dissipation in the

mantle, and 4, = the energy dissipation associated with bending of the lithosphere in

the subduction zone. In a first approach, the entire bulk of energy dissipation within

the subduction zone is presumed to be caused by viscous bending resistance. One

can show that [Conrad and Hager, 1999a]:

Dpe - pga A lA h, = CPev, (2.7)

= Cd v,\C 2 (2.8)

where p is density, g is the gravitational acceleration, a is the thermal expansiv-

ity, AT = Tint - T, is the temperature difference between the interior of the mantle

and the surface, 1, is the length of the subducted portion of the slab, h, is the thick-

ness of the slab at the subduction zone, Cm is a constant, v, is the plate velocity,



and rm is the viscosity of the mantle. The viscous energy dissipation associated with

the deformation of a continuum can be written as [Chandrasekhar, 1961]:

<D= jT eij3 dV (2.9)

where Tij is the stress tensor, and c3 is the strain rate given by:

E .= - + x3)
2 8xj ax,

(2.10)

When the continuum is an incompressible fluid with an "effective viscosity" i :

rij = 2'/ei Tj (2.11)

and (2.9) becomes:

<bd = 2 j i Tici-cJdV (2.12)

In the case of bending resistance by viscous flow, the horizontal strain ex2 associated

with bending is equal to the change of length of a fiber lc in the curved part of the

slab:

Al y
le R

(2.13)

where v, is the plate velocity, y is the distance from the centerline of the bended slab,

and R is the slab's radius of curvature. Since le is proportional to R (see figure 3.2)

we can now write for the strainrate:



e = 2 vp y (2.14)fX r R R

Plugging (2.14) in (2.12) yields [Conrad and Hager, 1999]:

<Dvd = CivPrj1 (s (2.15)

where 7p is the viscosity of the lithosphere, R is the subduction zone's radius of

curvature and C, is a constant which incorporates all constants of proportionality

and integration that arise in the derivation. Conrad and Hager (1999a) find a value

of 2 for C, by simulating subduction in a high resolution finite element grid. The

analytic solution of the integration yields a value of C, = . The difference between

these two values is due to the fact that temperature-dependent viscosity is used, as

defined in (2.4). Thus, viscosity changes throughout the bending plate, and it is

strongest near the top of the plate (the coldest part). We also assumed that the

viscous dissipation is constant along bands that are a uniform distance from the

center of the bending slab. Numerical experiments clearly show that this is not true.

The viscous dissipation is concentrated in bending and unbending zones [Conrad and

Hager, (1999a)]. In order to compare the energy equation (2.15) for viscous behavior

with the equations for brittle deformation that we will later derive, we will use the

value of C, = -. We will then transfer any uncertainty in C into uncertainty in qj.

It is found that up to 30% of the mantle's total convective resistance is associated

with deformation occuring within the subduction zone [Conrad, 2000]. The extra

resistance accounted for in this model allows # to be smaller than 1/3 and the Urey

ratio to be smaller than 0.85. From (2.4), we know that T1 is a function of the

temperature at the Earth's surface, which is believed not to have varied much since

the Archaean, compared to the changes in mantle temperature. With equation (2.15),

this then infers less variation of v, with time than in the case of isoviscous boundary

layer theory, where <byd was not considered.



The model of a layered mantle yields a Urey ratio of 0.6 without requiring 3 to

be smaller than 1/3. Models which include bending resistance at subduction zones

allow the Urey ratio to be smaller than the 0.85 predicted by isoviscous boundary

layer theory, but also infer a lower value of #. A combination of these two kinds of

models could explain the present day observed heat flow, and allow us to reconstruct

the Earth's thermal history with realistic plate velocities, i.e. approximately constant

over time.



18



Chapter 3

Methods

3.1 The finite element code SubMan

The finite element program ConMan has been developed to model processes of mantle

convection in two dimensions [King et al., 1990]. The initial version of ConMan could

simulate such phenomena as non-Newtonian viscosity and radioactive heat produc-

tion. A recent version of the program called SubMan also includes a subduction zone

[Conrad, 2000]. The energy dissipation associated with the bending of lithosphere

with high viscosity in the subduction zone has been implemented in SubMan through

equation (2.15) [Conrad, 2000]. It is the goal of this research to find equations that

describe the energy dissipation resulting from brittle deformation of the subducting

slab and use them to replace (2.15) in SubMan. I give only a brief introduction to

the finite element method as applied to mantle convection and refer to Hughes (1987)

and Nikishkov (1998) for futher reading about the subject.

The finite element method is a numerical technique for solving problems that are

described by partial differential equations. Suppose that we need to numerically solve

the following differential equation:

u,(x) + f (x) = 0 (3.1)



given f(x):[0,2L] -+ R and constants g and h, with boundary conditions u(2L)=g

and -u,,(O) = h. Equation (3.1) is called the strong form of the problem. In order

to solve the differential equation numerically, the finite element method transforms

it into an integral equation. We do this by multiplying (3.1) with a shape function

w(x), where w(2L) = 0. This yields, after partial integration:

J 2L
2L

w,X(x)u,x(x) = ow (x)f (z)dz + w (0)h (3.2)

This is the weak formulation of the problem. If we consider a one-dimensional domain

divided into two finite elements (figure 3-1.a), an example of a shape function for one

element in this problem would be (figure 3-1.b)

w(x) = - X- ' X (3.3)

so that we can approximate u(x) in the local element i as:

u(x) =w(x)u' (3.4)

where

ui = [ul, u2] (3.5)

Here ul and u2 are the exact solutions of the equation at the nodal points of finite

element i, which should be determined from the discrete global equation system. The

local version of (3.2) for element i now is:



w,x(x)uz (x)dx = w(x)f'(x)dx + w(xi)u' (xi) (3.6)

We integrate (3.6) for each element in the domain and add the results. We can now

write (3.2) as a large sparse matrix equation:

[K]u = b (3.7)

We call K the stiffness matrix and b the forcing vector. We have transformed the

partial differential equation (3.1) into a simple linear algebra problem which is to be

solved for u. It is the transformation between the local domain (3.6) and the global

domain (3.2) that makes the finite element method so powerful. Although we make a

very rough, piecewise-linear approximation to the function of interest, we can increase

precision to any desired level simply by increasing grid density. This is illustrated for

the case of f(x)=1 by figure (3-2). Incompressible mantle convection can be described

by the equations of momentum:

V(rs) = Vp - pgaATk

continuity:

and energy:

T= rV 2 T - u -VT + H
at

(3.8)

V - u = 0 (3.9)

(3.10)



where r/ is the viscosity, e is the strain rate, p pressure, p density, g the gravitational

acceleration, a the thermal expansion coefficient, T temperature, k is the unit vector

in the vertical direction, u is the velocity, t time, and H is a heat source term [e.g.,

Chandrasekhar, 1961; Turcotte and Oxburgh, 1967]. We treat the incompressibility

equation (3.9) as a constraint on the momentum equation and enforce incompressibil-

ity in the solution of the momentum equation using a penalty formulation [Temam,

1977, cited in King et al., 1990]. Since temperature gradients produce the buoyancy

forces that drive the momentum equation, the algorithm to solve the system is a sim-

ple one: first, given an initial temperature field, we calculate the resulting velocity

field. We then use the velocities to advect the temperatures for the next time step

and solve for a new temperature field [King et al., 1990].

The momentum equation is solved through an approach similar to what is named the

Galerkin method, which was described above [Hughes, 1987]. Weighting functions for

the energy equation however are now given by a Petrov-Galerkin function [King et

al., 1990]. This method can be thought of as a standard Galerkin method in which

we counterbalance numerical underdiffusion by adding an artificial diffusivity. The

resulting matrix equation (3.7) is not symmetric. We however use an explicit time

stepping method, and therefore the energy equation is not implemented in matrix

form.
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Figure 3-1: (a) One-dimensional domain divided into two finite elements, (b) Function
approximation in one-dimensional element [from Nikishkov, 1998]

U
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-_* FEM

Figure 3-2: Exact solution of the differential equation (3.1) for f(x)=1 and finite
element approximation (FEM) [from Nikishkov, 1998]



3.2 Brittle deformation of a slab under pure bend-

ing deformation

It is our goal to find an equation describing the energy dissipation associated with

the brittle deformation of a subducting lithospheric plate and introduce this equation

into the finite element code SubMan. In order to model the brittle behaviour of a

subducting lithosphere, we will follow a strategy proposed by Moresi and Solomatov

(1998). We assume that the collective behavior of a large set of randomly oriented

faults can be described by a plastic flow law, and that it is not necessary to resolve

individual faults. We introduce the concept of a yield stress Tyjeld via the Byerlee

yield criterion:

Tyield = CO + ppgz (3.11)

where co is a yield stress at zero hydrostatic pressure, yu is a frictional coefficient, p is

density, g is the gravitational acceleration, and z is depth.

We can nondimensionalize this according to Moresi and Solomatov (1998):

ryield = rO + r 1 z' , (3.12)

where z' = is the nondimensionalized depth, with D = the thickness of the mantle

layer. The non-dimensional cohesion term ro is given by

To = cod 2 , (3.13)
am70

and the non-dimensional depth-dependent term of yield stress T1 is defined as



paRao
T1 = (3.14)

aAT

Other non-dimensional quantities we will use are time and distance

t' = t and x' - (3.15)
D2 D

with r = the diffusivity. Temperature is non-dimensionalized according to:

T = -T (3.16)
Tb - Ts

where T, is the surface temperature, and T the temperature at the grid base. For

convenience, we will drop the primes denoting the non-dimensional nature of these

quantities in future calculations. The deformation described above and modeled by

Conrad and Hager (1999a) for viscous dissipation is essentially a bending deformation.

We will in a first approach continue on this path and model the brittle behavior

with the same straining conditions as used by Conrad and Hager (1999a). For our

2 dimensional problem, substituting (2.14) and (3.12) in (2.9) yields the following

equation for the brittle energy dissipation of the bending lithosphere:

<I>bdps = ( ) Vy|dS , (3.17)

where we take the absolute value of y to make the strain rate always positive. This

was not necessary for the case of viscous bending dissipation because due to (2.11)

the stress was proportional to the strainrate so that (2.9) was always positive. From

the geometry of our problem as summarized in figure (3.3):



(3.18)z= R+ h)- (R + y) cos 0

Plugging (3.18) in (3.17) yields:

<I>bd,ps = 2  2 (R+ y) To

2

The solution of this integral is:

+ T((R+ )-(R+y)cos0 )) dV dy

(3.19)

)bd,ps _ 1 vh2 (4wrRro + ((47 - 8)R 2 + 27rhR - h2 ) TI)

16wr R2
(3.20)

When we compare this equation for the brittle energy dissipation with the equation

describing viscous energy dissipation (2.15), we see that instead of a proportionality

with vp, we are now faced with a proportionality with vp.

3.3 Deformation of a subducting slab under simple

shear

Pure bending is not the only way by which plates can deform. The other way is by

simple shear, as represented in figure (3.4). It is easily seen that the strain rate here

is:

. v tan(7) (3.21)

With w being the width of the subduction zone, and -y the angle of subduction. The

energy dissipation of the deformation is still given by (2.9). For the case of viscous
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Figure 3-3: Subduction with pure bending dissipation geometry



rheology, this again simplifies to (2.12), which combines with (3.21) in:

vd,ss _29o,2 tan(y)2 h (3.22)

In the case of brittle deformation of a lithospheric slab deforming under simple shear,

we use the general equation (2.9) with stress T given by (3.12) and strainrate given

by (3.21):

<Dbdss = wjh (To + Ti(x tan(-y) + y)) VP tan dy dx (3.23)

Solving this integral yields:

bds IT 1-SS = hvP, tan(-Y) ((w tan(-y) + - h + -ro)
2 2

(3.24)

The geometry of a single phase simple shearing deformation (figure (3.4)) is different

from the geometry of bending dissipation (figure (3.3)). Therefore we cannot easily

compare the two cases. We can however repeat the simple shearing various subsequent

times. As shown by figure (3.5), this yields more realistic subduction geometries. The

general formulation of viscous and brittle bending resistance with simple shear can

now be written as:



avd,ss = n f w. vp tan( 2 d
n-+o~o 0o 0

ir ni v2 h (3.25)

R + h

abd,ss lim f w (To + 71 VP tan(2) dxdy
no i=1 0 0

7r h 7rh)) (3.26)
=hop -T0+ (-)+ -1) (R- 1

3.4 Implementation

To simulate mantle convection with energy dissipation by subduction zones, a finite

element grid was set up according to the principles outlined in the beginning of this

chapter. This grid with aspect ratio 1.5 has a resolution of 40 by 60 elements. Four

different regions ("material groups") are distiguished by viscosity. For the mantle

and subduction zone regions, viscosity is temperature dependent, according to (2.4).

The subduction zone is 9 by 9 elements in size and situated in the upper right corner

of the grid. A "ridge" is implemented in the upper left corner. It is 2 elements wide

and 9 elements deep. The viscosity of the ridge is low and constant: TIr = m(T = 1).

The fourth material group is an "asthenosphere". Situated from element 4 through 9

from the surface, it has a viscosity 10 times smaller than that of the mantle. Thus, it

prevents the lithosphere of thickening too much when the subduction zone is strong.

The location of the various material groups is illustrated by figure (3.6). To parame-

terize the deformation associated with subduction, velocity boundary conditions are

imposed in the vicinity of the subduction zone. A rate of subduction is specified

that balances the energy budget for convection. This includes an expression for the

energy needed to bend the oceanic lithosphere as it subducts. The energy balance for

mantle convection is given by (2.6). The velocity with which we force subduction is



calculated from the energy balance by an iterative procedure. In a first step, subduc-

tion is forced with a chosen velocity vi_ 1, and 4)m and 4 Pe are measured. The plate

thickness hp is estimated using the depth of the T = Tnterf(1) = 0.55 isotherm,

which should correspond to the thickness of the thermal boundary layer. With these

values , equation (2.7), and (2.8), we get a first estimate for Cpe and Cm. Applying

these estimates to (2.6) yields an expression for vi that depends on v,_ 1 . In the case

of viscous behavior, where 4I is a function of v, (see (2.15) and (3.25)):

pye

VP = Vi = Vi_1 (3.27)

This procedure is repeated until the imposed velocity does not change by more than

0.01%. For the case of brittle behavior (equations (3.20) and (3.21)), the energy

dissipation is proportional to v,, and the imposed subduction velocities are calculated

with:

Ve Vi = Vi_1 (3.28)

To initiate subduction, we first impose a constant subduction velocity of v=500

on an initially isothermal mantle with temperature Tt=0.65 and Rayleigh number

Ram = 106. The top of the mantle cools down and forms a lithosphere which subducts

into the mantle, forming a slab. After a while, the temperature field ceases to change

significantly with time. This temperature field is used as the initial condition in all

further runs, which have dynamically chosen rates of subduction, as described above.

The 4 modes of energy dissipation associated with subduction zones are summarized

in table (3.1). In what follows, we will refer to the various ways through which

subduction zones can dissipate energy with the terminology of model through mode4

which is defined in this table.



mode

1 vd = _vp2 (hL)3 1+

Dbd,ps _1ph2(4rRro+((4 7r-8)R2+2rhR-h2P42 1 16-7r R2 Vi-1 mC ,

3*vdss -- Ir v 2 h bpe

4 -Pd''' = hvp (z To + ((7r - 1) L + () - 1) (R - r))T1 ) vo 1  ,pe(1

Table 3.1: model = viscous bending dissipation (2.15), 2 = brittle bending dissipation
(3.20), 3 = Simple shear viscous dissipation (3.25), and 4 = Simple shear brittle
dissipation (3.26)

Vp

Figure 3-4: Subduction under simple shear.
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Figure 3-5: Multiple simple shears give in the limit the same geometry as pure bend-
ing.
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Figure 3-6: Snapshot of mantle convection with subduction dissipation under model
with effective lithosphere viscosity q = 10000 and mantle Rayleigh number Ram =
3 x 10'. The various material groups are shown, each of which is characterized
by different viscosity laws. Mantle and subduction zone viscosity are temperature-
dependent while other regions have constant viscosity. The ridge has viscosity 'q, -
7m(T = 1) and the asthenosphere has a constant low viscosity of 1/10th that of the
mantle interior. Special velocity boundary conditions in the subduction zone region
impose the geometry for subduction, and a rate of plate subduction is specified in
order to parameterize the energy dissipation associated with bending deformation
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Chapter 4

Discussion: the dissipation

equations and boundary layer

theory

We can derive an expression for v, using the energy balance (2.6), equation (2.7),

(2.8), and one of the expressions in table (3.1). Thus, for subduction model, we can

express the plate velocity as:

pgo TlIshI/V5F BPehs
VP - Cm, + 2m (h,/ R)3 B m + B'rph

(4.1)

The plate thickness at the time of subduction and the plate velocity are governed by

halfspace cooling of the oceanic lithosphere, which yields the following relationship

[ Turcotte and Schubert, 1982]:

h =2 KL/v,
4KL BP

or v,= = h

where L is the distance traveled by the oceanic plate from the ridge to the subduction

zone. Combining (4.1) and (4.2) yields an expression for the plate thickness:

(4.2)



(B 1 + B'rql)h, - B" = 0 (4.3)

where B 1, B' and B" are constants comprised of R, p, a, AT, Is, Cm, and rm. All

future constants with names of this format will be functions of the same kind. After

some manipulation, the plate thickness and plate velocity can be written as a function

of the mantle Rayleigh number Ram as defined in (2.3) [Conrad, 2000]:

h, oc Ra-D and vp oc Ra 20rD (4.4)

Using (4.4), the total heat flow due to the cooling of oceanic lithosphere can be written

as:

UP (1/2)
N = 2D oc Ram (4.5)

This relationship is analogous to (2.5), which summarizes the theory of parameterized

convection. From (4.3) can be shown that a typical value for 3 = 1/3. The heat flow

N is normalized by dividing by the heat flow from conduction alone and is similar to

the Nusselt number (2.5). Thus, for model, theory predicts the general principles of

parameterized convection to still hold with energy dissipative subduction zones.

According to equation (3.20), the energy dissipation for mode2 subduction is not

proportional to h3 as for model. Instead of (4.3), we now have:

1 (B2h~ + B h~ + Bhs) + ToB'hi + B'vh + Bv = 0 (4.6)

The expression for h, is thus a 6th order polynomial, which cannot be solved analyt-

ically.



For mode3, the plate velocities can be written as:

Bh4 + Bjh 3+ r Bzhs + Bzuhs + B"v 0 (4.7)

Also this equation does not lead to a straightforward derivation of a powerlaw rela-

tionship between the Nusselt number and the Rayleigh number, as was the case for

model.

Finally, mode4 yields the following expression for the plate velocities:

B4 h~ +T 1 (Bih!+±Bh) + ToB"ih + B'v = 0 (4.8)

again, it seems impossible to solve this polynomial equation. If however 71 - 0, then

(4.8) reduces to:

(B 4 +oB 4 ) )h +B" =0 (4.9)

or, when we write out the B-constants:

sLCm/m (4.10)
1/3

- 7ro
2 T

This can be written as:

h, oc (Ram) (4.11)

where it is easily seen that # should have a value of 1/3, as predicted by standard

boundary layer theory. If however:

spga A



7r
pga A T 8/V| = -0, (4.12)

2

or:

2 pg A T =Tg, (4.13)

then the plate thickness h, becomes infinite, the extreme case of the so called "stag-

nant lid" mode of convection. For a mantle with pga 1 x 106, and AT = 1, = 1,

this condition becomes T = 3.6 x 105.



Chapter 5

Results

5.1 Modes 1, 2, and 3

In a first step, we repeat the experiments by Conrad (2000) for our new configura-

tion of a convection cell without continental lithosphere, but with an asthenosphere.

Subduction is initiated by imposing an initial plate velocity of vi = 500 or, for some

runs with resistant subduction zones, v, = 100. The mantle is set isothermal with

Ti =_ 0.65 and Rayleigh number Ram = 106. After typically several thousand time

steps, an approximate steady state is reached for the plate thickness hp, velocity vP,

heat flux N, etc.. These quantities however still oscillate around some mean value.

This is exemplified by figure (5-1). As a reminder: we used a slighly modified version

of equation (2.15) with C, = instead of 2, the value obtained by Conrad and Hager

(1999a). Therefore, the value of the effective lithosphere viscosity r = 10000 used in

the model run can be compared with an r7, = 10000 = 530 viscosity in the work by

Conrad (2000). For three different runs of the program with different mantle Rayleigh

numbers Ram, equations (4.4) and(4.5) predict a linear relationship between log(Ram)

and log(h,), log(vp), and log(N) respectively. This is indeed what is observed in fig-

ure (5-2). It cannot be the goal of this research to repeat Conrad's research. Now

that we know that our model successfully incorporates viscous bending dissipation

by subduction zones, we can therefore proceed, and direct the reader to [Conrad and

Hager, 1999a, & b], and [Conrad, 2000] for further information concerning model



subduction.

We already discussed in chapter 4 that contrary to model, there is no reason to

assume that mode2 and mode3 should show a simple exponential relationship between

Ram and he, v,, and N. For mode2 subduction, the plate thickness is given by (4.6),

a high order polynomial function of the yield stress parameters To and r1 . None of

the polynomial coefficients can really be ignored, and thus, the equation cannot be

analytically solved. Figure (5-3) shows however that for a subduction zone with yield

stress parameters To = 1 x 104 and r1 = 1 x 107, we can still see a general trend of

increase of the values of vp and N with Ram, while hp decreases with Ram. When

the lithosphere strength is increased by raising To to 1 x 106, the slopes seem to

decrease, although the exact value is not clear since the error bars on the data points

are significantly larger than before. We can see why this is so on figure (5-4), which

represents the time series of v,, hp, and the relative importance of bending dissipation

for an even stronger subduction zone with To = 1.5 x 106. The plate velocity is

zero for most of the time. This is the so called "stagnant lid" regime, where there

is no surface expression of mantle convection, and thus no plate tectonics. This is

the mode of convection which is believed to occur on Mars, Mercury, and the Moon

[Moresi and Solomatov, 1998]. However, after a while, the plate velocity suddenly

increases, and over a certain period of time, an Earth like, "mobile lid" regime of

mantle convection prevails. The whole sequence of flats and peaks is referred to as

the "episodic overturn" regime [Moresi and Solomatov, 1998]. This behavior will be

discussed more in detail in the next section about brittle behavior under simple shear.

We will see that in the special case of mode4 subduction with Fo = 0, the transition

between "mobile lid, "episodic overturn", and "stagnant lid" can then be treated in

a more quantitative way.

Next we discuss mode3 subduction. As for mode2, also here we cannot manage to

get a simple power law to explain the data (figure (5-5)). Based of the non-linearity

of the problem, we are not allowed to fit a straight line to the data, and indeed the

fit does not fall within the error bars of the data points. Still the results of doing the

fit make sense, as the slope of N vs. Ram, which for model was equal to #, is less



than 1/3. This slope decreases when the subduction zone strength is increased by

changing the effective lithosphere viscosity rl from 5 to 50. The slope of hp vs. Ram

is negative, as predicted for model by (4.4). Thus, it seems like although we cannot

easily linearize the behavior of mode2 and mode3 suduction, as we could for model,

the behavior is still roughly described by the powerlaw relationships (4.4), and (4.5).

5.2 Subduction under mode4

As shown by (4.10), the special case of mode4 subduction with To= 0 has to yield

straight line fits of vp,h,, and N vs. Ram. This indeed what is observed on figure (5-6)

for values of To = 7.5 x 104, 1 x 105, and 1.25 x 105. For the first two cases, the error

bars on the data points are small and the fit is nice. We can see that as the yield stress

of the plate increases, the plate velocities decrease, the plate thickness increases, and

the heat flow decreases. Also, the slope of the plots, which according to (4.11) equals

the parameter value #, decreases away from the value # = 1/3 predicted by standard

boundary layer theory. When we further increase the strength of the subduction zone

by raising ro to 1.25 x 105, the error bars on v,,h, and N dramatically increase. This

is because To approaches the critical value given by equation (4.13). This equation

gives us the conditions under which a "stagnant lid" is formed and plate tectonics

cease to exist. The value of To = 1.25 x 105 is sufficiently close to the critical yield

stress to show some typical brittle behavior. Plate tectonics are still taking place, but

not as smooth as for lower plate strengths. The time series of v,,h, and N show a

"bumpy" behavior (see figure(5-7)).

When we further increase the yield stress to 'ro = 1.5 x 105, these characteristics

become much more clear, as we can see on figure (5-8). The time series of v, show the

"periodic overturn" regime of mantle convection and thus confirm results of numerical

simulations of mantle convection with brittle lithosphere by Moresi and Solomatov

(1998). Initially, the plate velocity drops to nearly zero. This is the "stagnant lid"

regime for which the plate thickness hp reaches a maximum and the dimensionless

heat flow N a minimum. Suddenly (on figure (5-8) at time t=0.018), the plate velocity



dramatically increases to a value of v,=1000. This marks the beginning of the "mobile

lid" regime, which then gradually decays back into a "stagnant lid" situation again.

This cycle repeats with a periodicity T=0.015. The "episodic overturn" regime has

been proposed as the possible mode of mantle convection on Venus, where the friction

coefficient of the lithosphere is assumed to be high due to the dry conditions (no

oceans). It is nicely displayed in figure (5-9).

The next obvious step is further increasing ro to a value greater than the critical

value T' = 3.6 x 105. Figure (5-10) illustrates such a run for which the "stagnant

lid" regime is the only one possible. The whole sequence of "mobile lid", "episodic

overturn", and "stagnant lid" that was just described for mode4 subduction was also

observed for mode2. Hence, it seems that this is a feature which is characteristic for

brittle subduction zones.

5.3 Is boundary layer still valid with dissipative

subduction zones?

The careful reader might have noticed that on figure (5-2), the values of # calculated

from the slopes of VP, hp, and N vs. Ram are not equal to each other, although the data

points do fit a straight line very well, as predicted by (4.11). This suggests that there

might be something wrong with the basic assumptions of boundary layer theory which

led to the prediction of a consistent parameterization through / with equation (4.5).

Indeed, equation (4.2) implies that the product vph2 should be constant at a value

of CKL. With values of r, = 1, L=1, and C=4, as given by [Conrad and Hager,

1999a], this leads to vph2 = 4. Nevertheless, figure (5-11) shows that this is not

the case and that vph2 in general is smaller than 4. vph is however only weakly

dependent on Ram so that we can consider the value of BP in (4.2) as constant in a

first approximation, and the derivations in Chapter 4 still hold. Except for model

subduction, also mode2, 3, and 4 are plotted. The weak dependence of vph2 on Ram

can be an effect of the presence of an asthenosphere, which keeps the plate thickness



fixed at a certain value, so that the lithosphere thickness can no longer be described

by an error function, which was one of the assumptions behind equation (4.2). This

could explain why the values of # determined from the plots of v, and N vs. Ram

seem to be more consistent with each other that the plots of hp vs. Ram. There can

also be numerical artefacts of the discretization which would disappear if the grid

density was increased.
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Figure 5-3: mode2 subduction: strictly speaking, we are not allowed to fit a straight
line to the data, and the fit does not fall within the error bars of the data points. Still
the predictions of the standard theory of parameterized convection seem to remain
valid for the weak subduction zone with yield stress parameter To = 1 x 104. The

slope of the plots of v' and N vs. Ram are positive, while the slope of h' vs. Ram

is negative. For the stronger subduction zone (To = 1 x 106), the error bars on the

data points are larger and the slope of the regression is less clear. This is due to some

typical brittle behavior which is more thoroughly explored for mode4 subduction, as

shown in figures (5-6) through (5-10).

600
500

400

300

0

0
o

200 '
1e6

(D

-C

F-
a)

CZ
CL

4 7

slope= -0.17±0.05

6 7
T =1x10 , T, 1x10

slope = -0.05 0.08

e6

0.12
0.11
0.10
0.09
0.08
0.07
0.06

0.05

0.04

y 20
10

a 15

o0 10
Ca)
E
i5 1e6

Z-

4 7
4 7 o 1X0 = 1x107

To= 1x10 T, =1x10 slope = 0.01 0.07
slope = 0.09 ± 0.03

I I1 1 1 1

I I I



0 0.01 0.02 0.03 0.04 0.05 0.06
dimensionless time t

0.07 0.08 0.09 0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
dimensionless time t

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
dimensionless time t

Figure 5-4: mode2 subduction: for a strong subduction zone with TO = 1.5 x 106,
mantle convection no longer yields smooth plate tectonics, but in an "periodic over-
turn" regime, switches between a "stagnant lid" regime -where the plate velocities are
zero and the plates freeze- and the "mobile lid" regime, where plate tectonics domi-
nate. This cyclic and catastrophic mode of mantle convection has been proposed as
occuring on Venus, where yield stresses are high due to the dry conditions prevailing.
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7.5 x 104 (solid line), 1 x 109 (dotted line), and 1.25 x 105 (dashed line). The subduction
zone with r0 = 1.25 x 105 shows some features of brittle behavior which will become
more clear for even higher ro in figure (5-8). Ram is 2.2 x 106, 2.35 x 106, and 2.7 x 106
respectively.
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Figure 5-8: mode4 subduction with Ti = 0 and To = 1.5 x 105. To is sufficiently
close to the critical value of ro = 3.6 x 105 to develop a so called "periodic overturn"
regime of mantle convection. Initially, the plate velocities drop to nearly zero. This
is the "stagnant lid" regime for which the plate thickness h' reaches a maximum and
the dimensionless heat flow N a minimum. Suddenly (at time t'=0.018), the plate
velocity dramatically increases to a value of '=1000. This marks the beginning of
the "mobile lid" regime, which gradually decays back into a "stagnant lid" situation.
This cycle repeats with a periodicity T'=0.015.



t' = 0.012

0 0.5 1 1.5

0.03 0.04

t' = 0.033

0.5 1 0.5 1 1.5

Figure 5-9: The first plot shows the first cycle of the ' time series for mode4 sub-
duction with T1 = 0 and To = 1.5 x 105. The next three plots are snapshots of the
temperature (contours) and velocity field (vectors) at certain time steps. They ex-
emplify the "periodic overturn" regime of mantle convection. (a) Initially the plate
velocity drops to almost zero to form a "stagnant lid" regime of mantle convection.
(b) After a sharp peak in v', plate tectonics resume, this is the "mobile lid" regime.
(c) The plate velocity gradually drops again to form a new "stagnant lid".
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Figure 5-10: mode4 subduction with r1 = 0 and To = 1.5 x 105: when the
parameter To exceeds the critical value r-', a "stagnant lid" develops.
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Figure 5-11: If boundary layer theory applies to mantle convection with subduction
zones, then equation (4.2) predicts the product v'h2 to be constant and equal to
CrL, which is proposed by [Conrad and Hager, 1999a] to be 4. These plots show
that this is not true and that v'h in general is smaller than 4. v' h2 is however only
weakly dependent on Ram so that we can consider the value of BP in (4.2) as constant
in a first approximation, and the derivations in Chapter 4 still hold. The data for
model subduction are taken form [Conrad, 2000] with no asthenosphere in the case
of T1 = 10,,and 71 = 500, but including an asthenosphere for ip = 1000. The dashed
line indicates the predicted value of v'h2 = 4 from [Conrad and Hager, 1999a].
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Chapter 6

Conclusions and future research

6.1 Conclusions

We have successfully explored the effects of various modes of energy dissipation at

subduction zones on mantle convection. Four different ways of deforming an oceanic

slab were parameterized in a finite element representation of a mantle with subduction

zone which also includes an asthenosphere and a ridge.

Viscous energy dissipation was modeled for both pure bending strain and simple

shear. Two regimes of mantle convection could be delimited. For weak subduction

zones, with low effective viscosity, plate-like surface motions are produced in a "mobile

lid" regime of mantle convection even if the bending deformation associated with

subduction dissipates a significant portion of the mantle's total convective energy. In

this case, the plate velocities slow down significantly. In the case of viscous bending

deformation, the powerlaw relationship of parameterized convection N oc RaO seems

to still hold, with a value of # which is less than the value of 1/3 predicted by

standard boundary layer theory. However, the product v, x h is lower than the value

of 4 necessary for boundary layer theory to be valid. Still, v, x h' is approximately

constant so that the general powerlaw relationships between the plate velocity vp, the

plate thickness hp, the Nusselt number N and the Rayleigh number Ram still hold.

For viscous dissipation under simple shear, these powerlaw relationships cannot be

derived analytically, although numerical experiments show that they are still valid as



a first approximation.

Also for brittle behavior expressions were derived for the energy dissipation associ-

ated with the subduction of oceanic lithosphere under both pure bending and simple

shear. In general, we cannot derive simple powerlaw expressions between v,, hp, N,

and Ram for these modes. In the special case of a non-depth dependent yield stress,

however, we can, and simulations show that in the "mobile lid" regime the data in-

deed fit a straight line on a log-log plot. Where viscous behavior could yield two

regimes of mantle convection -the "mobile lid", and the "stagnant lid"-, brittle be-

havior also features a third, intermediate one: the "episodic overturn" regime. A

state of "episodic overturn" is reached when the yield stress approximates a critical

value, beyond which a "stagnant lid" develops.

As a general rule, we can say that including an energy dissipative subduction zone

in a model for convection of the mantle decreases the strength of the coupling between

the Rayleigh number and the Nusselt number, and between the Rayleigh number and

the plate velocity. Therefore, plate velocities do not change as much with time as for

standard boundary layer theory. This allows the Urey ratio to be less than 0.85, and

yields a more realistic reconstruction of the thermal history of the Earth.

6.2 Future research

As was outlined in the Introduction, there are some discrepancies between the recon-

struction of the thermal history of the Earth based on standard boundary layer theory

and the observed heat flow as measured at the Earth's surface. In short, boundary

layer theory predicts a Urey ration of 0.85, which would require about ten times as

much heat production as inferred from the radioactive element content of MORBs.

There are two ways by which we can solve this problem. The first way is to lower the

Urey ratio allowed by mantle convection. This is what the research here presented

was basically about. A second way of solving the contradictions is by allowing more

radioactive heat production in the mantle than measured in MORBs. This can be

done by incorporating a compositionally distinct layer in the deep mantle [Kellogg et



al., 1999]. It would be interesting to combine the two approaches in one finite element

representation of the mantle, and see if this indeed results in a realistic reconstruction

of the thermal history of the Earth.
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Appendix A

Non-dimensionalizations, boundary

conditions, and initial conditions

Non-dimensionalizations

Viscosity

Distance

Time

Velocity

Temperature

Non depth dependent yield stress parameter

Depth dependent yield stress parameter

27 70

Z/ z

t, t r.

T' T-T
Tb -Ts

o = d 2

n770

T- pRao
aLAT



Representative values used for non-dimensionalizations

Reference viscosity o0= r7m(Ram = 106)

Activation energy Ea = 100 kJmol-1

Surface temperature T, = 00C

Temperature at CMB T = 20000C

Initial interior temperature (*) see discussion below

Temperature at bottom of lithosphere T, = 1100 0C

Maximum viscosity imax 1000

Density of the mantle Pm = 3300 kgm-3

Thermal expansivity a = 3 x 10- 5 K-1

Thermal diffusivity r = 10- 6m2 -1

Depth of mantle D = 2500 km

Viscosity structure

Mantle 7'(T') = q' (T ft)exp Ea RT AT

Subduction zone r',(T') = r' (T')

Ridge '= r(T' = 1)

Asthenosphere rl'z(T') = r/' (Tjat)/10

Velocity boundary conditions

Top and bottom free slip

Sides flow through

Initial forcing velocity of subduction v = 100 or 500

(*) To initiate subduction, we first impose a constant dimensionless subduction

velocity of v'=500 on an initially isothermal mantle with non-dimensional temperature

T'nt=0.6 5 and Rayleigh number Ram = 106. The top of the mantle cools down and

forms a lithosphere which subducts into the mantle, forming a slab. After a while,

the temperature field ceases to change significantly with time. This temperature field

is then used as the initial condition in all further runs.
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