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Abstract

Observations of the vertical structure of stratospheric planetary waves reveal a large

variety of structures, and a variability both on seasonal and on daily time scales.

The extent to which linear wave theory explains these structures and their time

evolution at a given time or season is not well known. The sensitivity of linear

wave models to details of the basic state and model damping, both of which are not

determined from observations in great accuracy, makes it hard to determine why the

observations deviate from modeled waves in any given case. In addition, the ability

of the observations to resolve the vertical structure of planetary waves is not obvious,
given the low vertical resolution of satellite retrievals. The goal of this thesis is to

understand the sources of observed variability of vertical wave structure, in particular,
to determine whether linear wave theory can explain this variability, and whether the

observations are capable of resolving it.
We start by testing the ability of satellite retrievals to resolve the vertical structure

of the waves. We calculate the radiances that a virtual satellite sitting at the top of
our model atmosphere would see, and invert them to obtain retrieved temperature
fields. The comparison to the model temperatures suggests that the retrievals are

able to resolve their general features quite well, with a few exceptions. Above 1.5mb

there is little observed information in the retrievals, and errors start growing above 5
mb. Also, small scale features are not resolvable, but most waves have large enough

vertical wavelengths to be resolved. We also identify dynamic situations in the real

atmosphere which are more prone to retrieval errors. These are mostly relevant to

summer or to the breakup of the polar vortex, when the existence of critical surfaces

may cause the waves to have sharp features.
The next part consists of understanding the relation between vertical wave struc-

ture and the wave propagation characteristics of the basic state in a series of linear

wave models, both steady state and time dependent. We study the normal modes
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on a one dimensional (vertical) troposphere-stratosphere system, using a framework
of wave geometry, which allows us to generalize the results to many basic states. A
large variety of vertical wave structures is found, similar to observed. This variety is
due to the existence of stratospheric turning points. We extend these results to basic
states that vary in latitude and height in a nonseparable way. The main problem
is how to separate the wave propagation into the vertical and meridional directions.
Our approach is diagnostic, where we calculate meridional and vertical wavenumbers
from the steady state wave solution to a given basic state, and use them as a diag-
nostic of the basic state wave propagation characteristics. In particular, we are able
to determine the location of turning surfaces for meridional and vertical propagation.
By applying this wavenumber diagnostic to many model runs we show that the exis-
tence of a stratospheric waveguide renders the problem qualitatively one dimensional
by determining the meridional wavenumber, regardless of the characteristics of the
tropospheric forcing. In particular, the effects of damping and turning surfaces on
the vertical structure are qualitatively as in the vertical propagation problem.

In a complementary study, we regard the waves as consisting of many wave activ-
ity packets that propagate from the troposphere through the stratosphere, until they
dissipate. A technique that follows a wave packet on its journey through the strato-
sphere, while keeping track of variations in wave activity that are due to refraction
of the waves, is introduced and applied to the model runs. This allows us to separate
between the contributions to the wave activity budget of damping, refraction, and
time variations in the source of wave activity. Also, we can estimate the time scale
for vertical propagation through the stratosphere of specific wave events.

Finally, we use our diagnostics to study observed wave episodes. We show that the
differences in vertical wave structure between middle and late winter episodes in the
southern hemisphere can be explained as a linear response to the seasonal evolution
of the basic state wave propagation characteristics. We also show that the occasional
daily time scale variations of vertical wave structure within a given wave episode are
qualitatively a linear response to time variations of the basic state wave propagation
characteristics. Since the basic state variations are wave driven, the relevant theory
is quasi-linear. Estimates of wave propagation time scales, obtained using our wave
activity diagnostic, are also consistent with the theory. We take this is a qualitative
assessment of the applicability of quasi-linear wave propagation theory on daily time
scales, as well as an assessment of the observations of the waves and the basic state.
The latter is not obvious since most of the relevant variations in the basic state occur
above 5mb, where observations are less accurate.

Thesis Supervisor: Richard S. Lindzen
Title: Alfred P. Sloan Professor of Meteorology



To my grandmother, Ibi Harnik,

whom I love very much.

Acknowledgments

There are many people who have helped me through my years in MIT. I have been

fortunate to receive support not only professionally but also morally through the en-

couragement and friendship of the many people who went through this process with

me.
First and foremost, I would like to thank my advisor, Richard Lindzen. My dis-

cussions with Dick have been a source of inspiration throughout my time here, and his

insight of the workings of nature and the atmosphere as well as his general approach to

research will guide me in the future. Dick patiently led me, and stood by as my view

clarified and focused, occasionally making extremely useful suggestions.
I would like to thank Peter Stone, my first advisor, for his guidance through my early

days in MIT and for enabling me to pursue my own interests. I would also like to thank

the rest of my committee members: Alan Plumb, Kerry Emanuel and Edmund Chang

for their time, support and helpful comments. I especially thank Alan Plumb for many

useful discussions, and for including me in some of his group meetings. I am obliged

to all my professors and teachers in MIT whose courses I participated in and whose

instruction served as the invaluable foundation of this thesis. In particular, I thank Ed

Lorenz for guiding me in a fun and interesting reading course on Chaos.
The Chemistry and Dynamics Branch (code 916) at NASA GSFC have provided me

with the observational data which made my research possible. I thank Paul Newman,
Larry Coy and Eric Nash, who acquainted me with their data system and answered my

numerous questions.
I have received additional assistance in the research which served the basis for the

Satellite Retrievals Chapter. Thomas Kleespies from NESDIS supplied me with the

OPTRAN code used for calculating the NOAA 14 HIRS and MSU transmittance and

weighting functions. Larry McMillin from NESDIS explained how current operational
retrievals are obtained. Philip Rosenkranz from the Research Lab of Electronics at MIT

answered my questions regarding satellite retrieval techniques and assured me of the cor-

rectness of my methods. Laurie Rokke from the DAO at NASA/GSFC kindly provided

helpful information about the SSU instrument and about the operational retrievals.

There are many whose dedicated work and warm manner made my years at MIT

more pleasant. I am indebted to Jane McNabb, Mary Elliff, Tracey Stanelun, Stacey

Frangos and the rest of the administrative staff at EAPS who assisted me over the years,
cared and endeavored to make my life at MIT as hassle-free as possible. Joel Sloman

spiced up many days by sharing some of his poetic and artistic thoughts.

Repetitive Strain Injury has made my long days at the computer somewhat uncom-

fortable. I am therefore grateful to Lodovica Illari who in addition to a wonderful lab

experience took it upon herself to provide me and my fellow students with the appro-

priate computer setup. I also thank the computer support staff: Linda Meinke, Tom



Yates, and Michael Batchelder. I thank Linda especially for patiently and relentlessly
helping me through numerous logistic computer setup problems.

I have been fortunate in fellow students at MIT, and over the years a few of them
have become good and hopefully lifelong friends. I deeply thank: Gerard Roe, a true
friend and angel, who pulled me out of the hardest moments with unyielding support
and belief in my ability to get this thesis done. I can't thank him enough; Amy Solomon
for long long chats in which, with a lovely excitement, she introduced me to aspects
of American culture I did not really know before; Adam Sobel for keeping me excited
about science through his own genuine excitement and insight which he passed on in
many of our discussions, for providing me with the matrix solver which is the core of
the two dimensional wave models I have used and showing me how to read some of the
observational data, and for his and his wife Marit's warm friendship; and Constantine
Giannitsis for hours of discussions about the stratosphere and more artistic topics, and
for his good and frank criticism, especially during the last stages of my thesis.

I have been very fortunate to meet Gidon Eshel, whose wonderful friendship I have
relied on many a time. I thank him for the fun conversations over lunch, for loads
of good advice, and for introducing me to his sweet wife Laura. I thank Gavin Esler
for some very helpful scientific discussions, for teaching me how to understand an Irish
accent, and for fun hours in the darkroom. I thank Rebecca Morss for bravely letting
me paint her casts, and for being the kind and impressive person that she is. My first
officemates, Juno Hsu, Danny Kirk-Davidoff and Moto Nakamura made my earlier days
at MIT easier and more enjoyable. I especially thank Danny for reading my thesis and
giving comments, and for all the incredibly delicious dinners with his lovely family.

I also thank: Greg Lawson and Pablo Zurita for not leaving me alone here at the
wee hours of the night and, along with Tie Yong Koh, for listening to practice talks;
Veronique Bugnion for her wonderful fondues; Marja Bister for getting me started on
GRADS and for the long pleasant hours of sharing a computer room; Jessica Neu for
supplying me with needed stratospheric papers; Sarah Samuel for her red/purple hair;
Eyal Heifetz for his encouragement and energetic readiness to help during the late stages
of my thesis; Sudharshan Sathiyamoorthy for being my first MIT friend; and Michael
Morgan, Francoise Robe, Chris Forest, Lars Schade and James Risbey for helping out
in the old days when I just got here.

A special special thanks to Ed McCluney for his kindness and for heading the Student
Art Association at MIT which provided a much needed place in which I can relax from
the scientific life and let artistic expression flow. I also thank my teachers there, Thery
Mislick, Graham Ramsay and Susan Anderson.

It was my good fortune that some of my best friends happened to be in Boston
during these years. I thank Gaia Bernstein and Amit Solomon, Michali Barzuza, and
Alon and Julie Yavnai-Criniere for all the fun stuff we did together.

Boaz deserves the most thanks of all, too much too express here in words.
Finally, the love and support of my dear and wonderful family has helped me greatly

along the way. I especially thank my parents, Miki and Viki, who passed on to me their
love of math and science, and my brothers, Danny and Roni, for their friendship and
humor. I dedicate this thesis to my grandmother, Ibi Harnik, whom I love very much.



Contents

1 Introduction and motivation

1.1 Charney and Drazin's theory for vertical wave propagation . . . . . .

1.2 The observed planetary waves- some resolved and unresolved questions

1.2.1 The seasonal cycle of stratospheric planetary waves . . . . . .

1.2.2 Wave episodes and the time evolution of vertical structure . .

1.2.3 Eastward propagating wavenumber two in the southern hemi-

sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Some examples from the southern hemisphere winter of 1996 . . . . .

2 The
2.1

2.2

2.3

operational observations products

Retrieving temperatures . . . . . . . . . . . . . . . . . . . . . . . . .

Calculating geopotential heights: Errors due to base level analysis . .

Interpolation: Asynoptic sampling and aliasing . . . . . . . . . . . . .

2.3.1 Asynoptic sampling of a wave undergoing vertical structure

changes . . . . . . . . . . . . . . . . . . . .

2.4 Winds and higher order diagnostics . . . . . . . . .

2.5 Summary and the relevance to our study . . . . . .

3 The 'Virtual Satellite' problem

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . .

3.1.1 Outline of experiment . . . . . . . . . . . .

3.2 The virtual satellite . . . . . . . . . . . . . . . . . .

3.2.1 The basic principles of remote sounding . . .

3.2.2 The satellite instruments and transmittances

3.2.3 Calculating the radiances . . . . . . . . . . .

3.3 The Inverse problem . . . . . . . . . . . . . . . . .

3.3.1 General outline and solvability . . . . . . . .

3.3.2 Chahine's retrieval algorithm . . . . . . . .

3.3.3 The Minimum Variance method . . . . . . .

18

19

24

24

26

28

29

40

41

43

44

. . . . . . . . . . 46

. . . . . . . . . . 48

... ....... 49

51

. . . . . . . . . . 51

. . . . . . . . . . 52

. . . . . . . . . . 52

. . . . . . . . . . 52

. . . . . . . . . . 53

. . . . . . . . . . 55

. . . . . . . . . . 57

. . . . . . . . . . 57

. . . . . . . . . . 59

. . . . . . . . . . 61



3.3.4 Vertical resolution . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 A single profile . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Three dimensional fields- Chahine's method . . . . . . . . . . 73
3.4.3 Three dimensional fields- Minimum variance method . . . . . 75

3.5 Summary and implications to observations . . . . . . . . . . . . . . . 85

4 The dependence of normal mode structure on the wave geometry of
vertically varying basic states 90
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 The m odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 A wave geometry classification of basic states . . . . . . . . . . . . . 94

4.3.1 The tropospheric wave geometry. . . . . . . . . . . . . . . . . 97
4.3.2 The stratospheric wave geometry. . . . . . . . . . . . . . . . . 98

4.4 The normal modes on basic states with no critical levels in the strato-
sphere ........ ................................... 103
4.4.1 The relation between the index of refraction, the dispersion

relation, and the vertical structure of the modes . . . . . . . . 103
4.4.2 The dependence of growth rate on the wave geometry and New-

tonian damping . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.3 The effect of surface damping . . . . . . . . . . . . . . . . . . 116
4.4.4 Sensitivity of the results . . . . . . . . . . . . . . . . . . . . . 117

4.5 Internal stratospheric instability . . . . . . . . . . . . . . . . . . . . . 119
4.6 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 The dependence of stratospheric wave structure on the latitude-
height wave geometry of the basic state 124
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Formulation of the Charney-Drazin criterion in two dimensions . . . . 125

5.2.1 Conditions for the WKB approximation to hold . . . . . . . . 128
5.3 Demonstration on a #-plane model . . . . . . . . . . . . . . . . . . . 129

5.3.1 The m odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.2 Robustness of the meridional wavenumber in a waveguide . . . 132
5.3.3 The dependence of wave structure on the wave geometry and

dam ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.4 The effect of a turning surface on the time evolution of waves 139
5.3.5 Validity of the WKB approximation . . . . . . . . . . . . . . . 141



5.3.6 An approximate ID model of the wave in the center of the

waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Applying the diagnostic to observations . . . . . . . . . . . . . . . . . 146

5.4.1 The effect of spherical coordinates and model setup . . . . . . 146

5.4.2 The differences between mid-winter and later winter wave struc-

ture ....... .... ............................ 147

5.4.3 Relevance of the steady state solution to instantaneously ob-

served waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 The structure of stratospheric planetary waves from a wave activity

point of view 158

6.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . 158

6.2 Formulation- Tracking wave packets along

Eliassen-Palm Flux lines . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 The wave based coordinate: a steady state wave . . . . . . . . . . . . 162

6.4 The wave packet propagation in a time dependent case . . . . . . . . 167

6.5 The relation to Karoly and Hoskins' ray tracing . . . . . . . . . . . . 173

6.6 Summary: uses and application to observations . . . . . . . . . . . . 177

7 Applying the diagnostics: explaining observed variations of wave

structure on daily time scales 182

7.1 Wave 1 event of July-August 1996 . . . . . . . . . . . . . . . . . . . . 182

7.1.1 The formation of a turning point and its effect on wave structure187

7.1.2 The role of time variations in forcing . . . . . . . . . . . . . . 197

7.1.3 The consistency and estimation of time scales . . . . . . . . . 197

7.1.4 Evolution of the wave using the wave packet formulation . . . 198

7.1.5 Alternative possibilities . . . . . . . . . . . . . . . . . . . . . . 203

7.2 The September version of reflection from a turning point . . . . . . . 206

7.2.1 Another example from September 1982 . . . . . . . . . . . . . 212

7.3 Sum m ary . . . . . . . . . . . . . . . . . . . .. . . . .. . . - - . 213

8 Summary and conclusions 217

8.1 Assessing observations . . . . . . . . . . . . . . . . . . . . . . .. . 218

8.2 Theoretical model studies . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3 Applying to observations . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.4 Discussion . . . . . . . . . . . . . . . . . . . . .. . . . - - - - - . 225



'Virtual Satellite' problem
The basic state temperature . . . . . . . . . . . . . . . .
The minimum variance constraint . . . . . . . . . . . . .
The operational constraint . . . . . . . . . . . . . . . . .

B The models used
B.1 The 1 dimensional model ......................

B.1.1 Parameters and nondimensionalization constants.
B.1.2 The boundary conditions .................

B.2 The 2D steady state #-plane channel model. . . . . . . .
B.3 The 2D time dependent 3-plane channel model. . . . . .
B.4 The 2D steady state spherical hemispheric model.....

231
. . . . . . . 231

. . . . . . . 231

. . . . . . . 232

. . . . . . . 233

. . . . . . . 235

. . . . . . . 236

C Tracking wave packets: a wave activity based coordinate
C.1 The relation between the Jacobian and V -Va. . . . . . . . . . . . . .
C.2 Calculating the s - r coordinate from Va. . . . . . . . . . . . . . . . .
C.3 Transforming scalar fields between the geometric and s - r grids . . .

D Spherical coordinates

D.1 The PV equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.2 The transformed Eulerian mean zonal momentum equation. . . . . .
D.3 The linear, QG, spherical wave equations: Index of refraction and

wavenum bers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4 Wave activity conservation and the wave based coordinate. . . . . . .

A The

A.1

A.2

A.3

228

228

228

229

237

237

238

240

241

241

243

243

244



------------ ~minininin.in..mu..miIiIui Id

List of Figures

1.1 Results from a steady state wave calculation by Lin (1982). . . . . . . 23

1.2 The seasonal cycle in wave amplitudes, at 10 mb, from Randel (1988) 25

1.3 Longitude-time sections of temperature perturbation at 10 mb, for

June 1st - September 30th, 1996. . . . . . . . . . . . . . . . . . . . . 34

1.4 The maximum temperature variance at 10 mb in the latitude band of

40-700S, for April 1st-November 30th, 1980-1998. . . . . . . . . . . . 35

1.5 As in figure 1.4, for geopotential height . . . . . . . . . . . . . . . . . 36

1.6 Wave 1 temperature and geopotential height structure at 600S, and the

centered 5-day average of zonal mean wind for July 3rd, August 8th,

and September 15th, 1996. . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 Six consecutive days (August 10-15, 1996) of wave 1 temperature longitude-

height sections at 600S. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.8 The temperature perturbations, and the wave 1 and 2 components at

60'S for June 1-3, 1996. ...... ......................... 39

2.1 Trajectory of nadir observations viewed from a reference frame of the

earth. Figure taken from Salby (1982a). . . . . . . . . . . . . . . . . 44

2.2 The sampling pattern of observations on a latitude circle in the longitude-

time plane, and the allowed wavenumber-frequency spectra for twice-

daily synoptic sampling, taken from Salby (1982a,b). . . . . . . . . . 45

2.3 A simple asynoptic sampling exercise of a tilting idealized wave. . . . 47

3.1 The weighting functions and the corresponding brightness tempera-

tures (for an example temperature profile) of the instrument channels

used in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 The eigenvectors and eigenvalues of KKT. . . . . . . . . . . . . . . . 65

3.3 The Chahine and diagonal MV retrieval, using a few values of variance

of the constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



3.4 The STD and maximum errors of the Chahine and diagonal MV re-
trievals, resulting from putting an error in the radiances. . . . . . . . 69

3.5 The response functions to a spike perturbation of temperature at vari-
ous heights for a diagonal MV retrieval, using a few values of constraint
variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 The 10 largest eigenvalues of the Averaging Kernel Matrix for a diag-
onal MV retrieval, as a function of the constraint variance. . . . . . . 71

3.7 The first six eigenvectors of the Averaging Kernel Matrix for a diagonal
MV retrieval using a few values of the constraint variance. . . . . . . 72

3.8 The 'true' basic state and wave 1 temperature fields, generated by the
model and used for the retrievals shown later. . . . . . . . . . . . . . 73

3.9 The Chahine retrieval of the wave temperature fields shown in figure 3.8. 74
3.10 As in figure 3.9, only for the diagonal MV retrieval with a constant

variance of 10*K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.11 The response functions to a spike perturbation of temperature at vari-

ous heights, as shown in figure 3.5 for a non-diagonal MV retrieval and
the corresponding diagonal retrieval. . . . . . . . . . . . . . . . . . . 78

3.12 The first six eigenvectors of the Averaging Kernel Matrix for a non-
diagonal MV retrieval and the corresponding diagonal retrieval. . . . 79

3.13 As in figure 3.9, only for the non-diagonal MV retrieval . . . . . . . . 80
3.14 As in figure 3.4, only for a non-diagonal MV retrieval, using different

values of wave amplitude in the constraint. . . . . . . . . . . . . . . . 81
3.15 The 'true' temperature field generated by the model and its non-

diagonal MV retrieval, for a wave characteristic of summer. . . . . . . 82
3.16 The retrieval of the wave 1 temperature amplitude of figure 3.15, after

applying a vertical averaging and interpolation as in the operational
data product, and a diagonal MV retrieval of the same field. . . . . . 83

3.17 A diagonal MV retrieval of the wave 1 temperature field of figure 3.15
using a spatially varying constraint that has a wave 1 structure. . . . 84

3.18 Observed temperature perturbation on January 28th, 1996, in the
southern hemisphere, at different levels. . . . . . . . . . . . . . . . . . 87

3.19 The total temperature perturbation and the wave 1 component at 52S,
along with the zonal mean wind, on December 10th, 1996. . . . . . . 89

4.1 The types of transitions from wave propagation to wave evanescence
regions, and the wave behavior they support. . . . . . . . . . . . . . . 96



omlo""'

4.2 Various wave geometry configurations that support different kinds of

stratospheric m odes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 The basic state wind, Brunt Vaisala frequency, Temperature, and PV

gradients used in the standard model runs. . . . . . . . . . . . . . . . 104

4.4 The dispersion relation for the basic state of figure 4.3. . . . . . . . . 105

4.5 Height-wavenumber plots of the index of refraction squared (n ef). 107

4.6 The vertical structure and nref of a few wavenumbers. . . . . . . . . . 108

4.7 Longitude-height structure of geopotential stream function and tem-

perature, for various total wavenumbers K, assuming zonal wavenum-

ber 1. ....... ................................... 110

4.8 Comparison of the results of the undamped model and the model with

Newtonian damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.9 The imaginary phase speed as a function of the phase accumulation,

Aphase, for the long waves shown in figure 4.4. . . . . . . . . . . . . 116

4.10 Results for a run with stratospheric critical levels and a q < 0 region. 120

5.1 Basic state and damping of the model control run. . . . . . . . . . . . 131

5.2 Wave 1 and 2 stationary geopotential height and n 2 for the basic

state of figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 133

5.3 Meridional and vertical wavenumbers for the stationary waves of fig-

ure 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 134

5.4 Wave 1 stationary geopotential height and meridional wavenumber for

a constant and a point source forcing at the bottom. . . . . . . . . . 135

5.5 Zonal-height cross-sections of temperature and geopotential height, for

the control run and the high-sponge run. . . . . . . . . . . . . . . . . 137

5.6 Wave 1 @, along with the sponge layer damping and vertical wavenum-

ber, for the high-sponge run of figure 5.3. . . . . . . . . . . . . . . . . 138

5.7 Height-time plots of the wave 1 geopotential height for a model run

where the forcing is turned on, then off, in the presence of a turning

point. . . . . . . . . . . . . . . . . . . . . . . . .. . . - . - - . 141

5.8 The validity of the WKB approximation. . . . . . . . . . . . . . . . . 142

5.9 Comparison of geopotential height and temperature amplitude in mid-

channel and a corresponding one dimensional model. . . . . . . . . . 145

5.10 Time averaged wave 1 Geopotential height and temperature for July

18-August 19 and September 1-30, 1996. . . . . . . . . . . . . . . . . 148

5.11 Height-time plots of a latitudinally averaged wave 1 geopotential and

temperature for July 18-August 19, 1996. . . . . . . . . . . . . . . . . 149

IIWIIMIIIMIIIIIM M WIIMIIMIIIW W11111,1",



5.12 As in figure 5.11, only for September 1-30, 1996. . . . . . . . . . . . . 150
5.13 Observed time mean zonal mean wind, and the meridional and vertical

wavenumbers of the corresponding steady state model solution, for July
18-August 19 and September 1-30, 1996. . . . . . . . . . . . . . . . . 152

5.14 As in figure 5.11, only the steady state model solution for the instan-
taneous observed basic state. . . . . . . . . . . . . . . . . . . . . . . . 154

5.15 As in figure 5.12, only the steady state model solution for the instan-
taneous observed basic state. . . . . . . . . . . . . . . . . . . . . . . . 155

6.1 Wave activity density, EP fluxes and their divergence, and the wave
activity velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 The wave based coordinate, plotted in geometric space. . . . . . . . . 163
6.3 Wave activity density plotted on y - z and s - r coordinates, and the

total wave activity in a wave packet plotted on s - r coordinates. . . 164

6.4 The contributions of damping and variations in wave packet volume to
changes in wave activity density along packet paths. . . . . . . . . . . 165

6.5 The forcing of the time dependent model used in the next four figures. 167
6.6 The time evolution of wave activity density and wave activity flow lines

in the m odel run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.7 Wave packet paths, for wave packets that left the bottom on different

days, and the location of wave packets on a single day, for the model
run of figure 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.8 The evolution of wave activity along wave packet paths, for packets
that leave the bottom on day 16. . . . . . . . . . . . . . . . . . . . . 172

6.9 The contributions of damping and variations in wave packet volume to
changes in wave activity density along packet paths. . . . . . . . . . . 173

6.10 A comparison between Karoly and Hoskins ray tracing and our wave
packet paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.11 The effect of low vertical resolution on the wave activity diagnostics. . 178
6.12 Wave activity flow lines for wave 1 in the southern hemisphere, on

August 3-7, 1996 (during the growth stages of the wave). . . . . . . . 181

7.1 Height-time sections (July 18-August 19, 1996) of the 40-80*S average
of zonal mean wind, wave 1 geopotential height amplitude, the change
in zonal mean wind over 1 day (U(t)-U(t-1)), and the acceleration due

to wave driving: F. .. .. .. . . . . . . . . . . . . . . .. .. .. . 184



uIIIA

7.2 Daily longitude-height cross-sections at 60'S of wave 1 geopotential

height for July 28-August 2 and August 10-15, 1996. . . . . . . . . . 185

7.3 As in figure 7.2, only the temperature perturbation . . . . .-. . . . . 186

7.4 Zonal mean wind, meridional PV gradient, and index of refraction

squared, on August 8 and 11, 1996. . . . . . . . . . . . . . . . . . . . 189

7.5 Latitude-height cross-sections of meridional wavenumber, vertical wavenum-

ber, and wave 1 geopotential height amplitude and phase, calculated

from a steady state solution to the observed basic states on August 8th

and 11th, 1996. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.6 Latitude-height cross-sections of meridional PV gradient, meridional

wavenumber, and vertical wavenumber, calculated from a steady state

solution to the observed basic state on July 29th and August 1st, 1996. 191

7.7 Characteristics of the initial and final basic states of the model run

described in 7.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 194

7.8 Zonal-height sections of the geopotential height and temperature per-

turbations for six days in the model run. . . . . . . . . . . . . . . . . 195

7.9 Wave activity flow lines on days 13, 15, and 50 of the model run, and

the paths followed by wave packets that emanated at the bottom of

the model on days 8, 10, and 13 . . . . . . . . . . . . . . . . . . . . . 196

7.10 Latitude-height plots of wave rays, calculated using Karoly and Hoskins

ray tracing, for the initial and final basic states shown in figure 7.7, for

a source at 2.2 scale heights and latitude y=3. . . . . . . . . . . . . . 199

7.11 Latitude-height plots of wave packet paths, for packets emanating at

the bottom on July 23rd and August 7th, 1996. . . . . . . . . . . . . 200

7.12 Latitude-height plots of wave packet locations, for July 21, 26, 31,

August 2, 9, and 14, 1996, superposed on the shading of regions of
2negative nref of the same day. . . . . . . . . . . . . . . . . . . . . . . 202

7.13 Longitude-height plots of geopotential height perturbation, at different

times, for the run that is initialized by a barotropic wave 1 PV blob at

y= 2-3, z= 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.14 Height-time sections (September 1-30, 1996) of a latitudinal average

of zonal mean wind, vertical wavenumber calculated from the wave 1

steady state solution to the daily observed basic state, the change in

zonal mean wind over 1 day, and the acceleration due to wave 1 driving:

V-F.......... .................................. 207
ae p Cos (p

7.15 As in figure 7.3, only for September 8-13, 1996. . . . . . . . . . . . . 209

7.16 Ertel PV on the 1500'K 0 surface, on September 10, 11, 12, 1996. . . 211



7.17 Height-time sections of the 40-70*S average of zonal mean wind, wave 1
geopotential height amplitude and phase, and temperature amplitude,
for September 20 - October 9, 1982. . . . . . . . . . . . . . . . . . . . 215

7.18 Longitude height sections of wave 1 temperature at 60'S, for September

23, 24, 25, 27, 28, and 29, 1982. .......................... 216
7.19 Ertel PV on 1500*K 0 surface, on September 25 and 26, 1982. . . . . 216



_______________________________________________________*nuIirnrnmiininmminIwm huh

List of Tables

1.1 Statistics of satellite observations minus co-located radiosonde mea-

surements, at 10 mb in the southern hemisphere, for the period Septem-

ber, 1991-August, 1997. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 The channels used in this study. Error data is taken from the NOAA

POD guide (1997). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The effect of Ekman damping on the growth rates of the fastest growing

long w aves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 The variance of the standard constraint. . . . . . . . . . . . . . . . . 230

1lilil I M M I in l ~ lllliilli i10114 11 1'1lllllu lilla



Chapter 1

Introduction and motivation

Planetary Rossby waves are the dominant mode of intra-seasonal variability in the

stratosphere. They are believed to be responsible for most of the deviation of the

zonal mean state from radiative equilibrium, and for the poleward transport of tracers.

Understanding the evolution and structure of these waves, which are defined to be the

large (planetary) scale deviations from the zonal mean state1 , is therefore essential for

understanding the general circulation of the stratosphere. Most of the observations of

the stratosphere are based on satellite retrievals of temperature. The temperature and

geopotential height are the most directly observed wave fields2 and the variation of

their longitudinal orientation with height and latitude is indicative of a wave activity

flux in these directions. Looking at consecutive maps of vertical structure of the

wave is therefore extremely useful as a diagnostic. We will show that at times, waves

undergo changes in their vertical structure on time scales of a few days and that
often this is indicative of interesting dynamics (e.g. a deceleration of the mean flow,
variation in the tropospheric forcing). The response of the wave field in these cases is
also interesting because it is qualitatively linear. Surprisingly, the variability on daily

time scales has not been discussed much in the literature as a daily evolution of vertical

structure. Since variation in vertical structure often appears as a phase propagation

at some altitudes, it has been discussed as an occasional phase propagation.

The goal of this thesis is to understand what the observations of vertical structure

mean and to use them to gain insight into life cycles of a few observed waves. This

involves first of all understanding what the satellite retrievals of vertical structure

mean, given the current observation system with its low vertical resolution (chapters 2

'Small scale deviations from a zonal mean state are most likely gravity waves
2The satellite instruments measure layer mean temperatures. Geopotential height is calculated

by adding the layer means to a surface height field, while temperature is calculated by interpolation.



and 3), and using simple models to understand what controls the vertical structure

and its relation to higher order and more commonly used diagnostics like the EP

flux (chapters 4, 5). We will also present a different way to look at wave fields, from

the point of view of wave activity and its propagation and dissipation through the

stratosphere (chapter 6). Finally, we will diagnose a few specific wave events in which

the vertical structure varies on time scales of a few days, and where our understanding

of the mechanisms that control vertical structure allow us to determine a causality

between observed evolution of the waves and the basic state (chapter 7).

In this chapter we will introduce a few of the outstanding issues regarding strato-

spheric planetary waves that have motivated our work (section 1.2), along with a

brief review of past studies (section 1.1) and some observations (1.3). We will restrict

the discussion to planetary waves and their structure, and mention only briefly some

aspects of the general circulation of the stratosphere and wave-mean flow interaction.

We should note that the observational examples we will show are from the southern

hemisphere, while much of the theory we present was developed specifically with the

northern hemisphere in mind. This reflects the fact that the northern hemisphere,

being more dynamically active, roused the interest of scientists earlier. While there

are important differences between the hemispheres, the basic theory is the same, es-

pecially the linear parts of it. We also have reason to believe that our discussion

and results are relevant at least to the relatively quiescent periods of the northern

hemisphere, when waves behave more linearly.

1.1 Charney and Drazin's theory for vertical wave

propagation

The first stratospheric maps that showed planetary waves were compiled from ra-

diosonde and rocketsonde data which were gathered in the late fifties, mostly during

the international geophysical year (IGY) (e.g. Boville, 1960 and references therein).

Two of the striking features were large planetary scale perturbations during winter,

with little variability in smaller scales, and the lack of such perturbations in summer.

Charney and Drazin (1961) explained these two features in terms of vertical propa-

gation of Rossby waves. Using a #-plane model of vertical wave propagation, they

showed that planetary waves forced in the troposphere could propagate vertically

only through westerlies that are weaker than a certain limit, which depends on the

wavenumber. Only the largest waves (wavenumbers one and two) can propagate into

the stratosphere for the climatological wind values. The easterly winds in summer



explain the absence of waves in that season. Charney and Drazin's theory was ex-
tended by Dickinson (1968b, 1969b), who included Newtonian damping and showed
the importance of the meridional structure of the wind by introducing the notion of
a wave guide in the stratosphere. Dickinson (1968b, 1969a) also showed that criti-
cal surfaces (where the wind equals the phase speed of the waves) will absorb wave
activity, causing the wave guide to be leaky and the amplitude of a forced wave in
such a waveguide to decrease as a result. Dickinson (1968a) pointed out that since
the critical wind of the Charney and Drazin model depends on latitude, a spherical
model is needed to study vertical propagation and obtain a Charney-Drazin critical
velocity in the real atmosphere.

Observational evidence of a link between the troposphere and stratosphere was
first shown by Boville (1960), who performed a Fourier analysis of perturbations on the
500mb and 25mb surfaces. Muench (1965) found evidence of a tropospheric growth
followed by vertical propagation to the stratosphere by constructing pressure-time
plots of wave one and two amplitudes from northern hemisphere radiosonde data and
estimated a vertical propagation of about 6km/day. A more comprehensive review
of early observational studies can be found in Matsuno (1970), who was the first to
attempt to simulate the observations by forcing a model with observed 500mb heights.
One of the main contributions of Matsuno's study is the formulation of the quasi-
geostrophic equations of vertical wave propagation on a sphere and the introduction of
an index of refraction for Rossby wave propagation in the vertical-meridional plane.
The basic state used was an idealized northern hemisphere winter jet, with a zero
wind line in the tropics. The corresponding PV gradients had a ridge oriented along
the jet maximum, acting as a wave guide'. Matsuno also suggested the possibility of
a cavity forming, rather than a waveguide, where the perturbations are bounded from
above by large winds, as suggested by Charney and Drazin (1961). The results of
Matsuno were quite good for wave one, but not for wave two, which was considerably
weaker than observed. One of the shortcomings of Matsuno's calculation in terms
of simulating observed waves is the use of idealized zonal mean winds instead of the
observed winds4 . Matsuno explained this by noting that the observations include

3Matsuno (1970) correctly pointed out a mistake by Dickinson (1968b) who had the waves guided
up regions of weak westerlies and not along the maximum winds. The source of Dickinson's error
was in choosing a basic state that renders the problem separable but at the same time cancels the
contribution of the meridional curvature to the PV gradients.

4Other shortcomings include the assumption of an isothermal atmosphere, with a constant Brunt
Vaisala frequency and not accounting for thermal damping that is a function of height. Matsuno
did use some damping, in the form of an imaginary phase speed (constant and equal Newtonian
damping and Rayleigh friction coefficients) in order to get rid of the singularity at the zero wind
line.



small scale features which are unreliable but may have a large influence on the results

through a contribution to the PV gradients. This sensitivity of the response to details

of the basic state may explain the discrepancies between his results and observations,
however, it also makes it hard to generalize the results. In particular, the two-

dimensionality of the problem (meridional and vertical directions) makes it hard to

analyze the results in terms of vertical wave propagation as in Charney and Drazin

(1961).

One of the major issues is the extent and manner in which wave amplitudes depend

on the basic state of the stratosphere, both instantaneously, and in a climatological

sense. A theoretical framework in which we can study the sensitivity of the system

and identify the important parameters is essential. Studies that followed Charney

and Drazin (e.g. Simmons, 1974; Schoeberl and Geller, 1977; Karoly and Hoskins,

1982) were concerned with finding a simplifying framework in which to study the

waves and understand what controls their structure. This is also one of the goals of

our study.

Simmons (1974) formulated a simplified problem in which the basic state wind

was separable in latitude and height, and an approximate # plane was used in a way

that renders the equations separable. This reduced the problem to one dimension,

as in Charney and Drazin (1961). The wavenumber two response using zonal jets

characteristic of observations was not deficient as in Matsuno (1970), suggesting that

a linear model is capable of explaining observations.

Schoeberl and Geller (1977), using a spherical model with realistic winds, forced

their model with observed geopotential height amplitudes and phases of waves 1-3 at

100mb. They used an approximate separable version of the equations to find merid-

ional eigenfunctions which they called Fourier-Hough modes and analyzed the results

in terms of their vertical propagation characteristics. They were able to explain the

sensitivity of the model to increasing the zonal mean winds and to various damp-

ing profiles in terms of the response of individual modes. In order to separate the

equation in the meridional and vertical directions, however, Schoeberl and Geller had

to ignore the vertical shear term in the PV equation (equation 10 in their paper,

equations 5.2, 4.3 here). Since shear in the stratosphere is often large, the neglected

terms may be important.

Lin (1982) used a linear primitive-equation model to study the sensitivity of the

response to variations in the structure of the zonal mean wind using the index of

refraction as a diagnostic. Lin discussed the importance of a waveguide configuration

for the stratospheric response, noting that it makes the location of maximum response

less sensitive to the latitude of tropospheric forcing. Figure 1.1 shows an example of

Wil I , ~ W II~~~IUEiM U EIh~ I i, , ..



one of Lin's runs. Shown are the basic state zonal mean wind and index of refraction
squared5 (nrf), and the wave 1 geopotential height and EP fluxes. We see a ridge
of n 2e in high latitudes and very large values in the topics, with a region of reduced
but positive values in between. It is not clear whether this basic state is a wave guide
in the sense that the waves are evanescent between the ridge and the tropics. The
EP fluxes are not a good indication because they point out of the ridge (they are
equatorward at 40-60'N, 20-60km). The ridge has to be large enough for a waveguide
to form.

To determine whether a given basic state is a waveguide, we need to separate the
meridional and vertical propagation characteristics. Karoly and Hoskins (1982, see
also O'Neill and Youngblat, 1982) essentially did this by calculating wave rays for a
given point source. They showed that some wave rays reflect back and forth in the
meridional direction as a result of a waveguide, but eventually, due to the spherical
geometry, they bend equatorwards. Whether they bend equatorwards right away or
not depends on the basic state and on the initial ray propagation direction in the
meridional-vertical plane. The relation between a given wave field structure and the
wave rays is not simple because the wave is a superposition of many point sources,
and once the wave reflects in the meridional direction it will superpose with itself.
Also, ray tracing cannot incorporate damping and wave tunneling through negative

nflo regions.
In chapter 5 we will develop a framework in which to diagnose propagation in

the meridional-vertical direction, and in particular, to diagnose the existence of a
waveguide. Also, by making use of the special characteristics of a waveguide we
determine the propagation characteristics in the vertical direction and compare the
results with an equivalent one-dimensional model that we formulate. In chapter 6 we
will discuss the relation between the EP flux and the index of refraction configuration,
and the relation to Karoly and Hoskins' ray tracing.

Understanding what determines wave structures and what various diagnostics of
the waves mean is essential for understanding many aspects of their behavior. In the
rest of this chapter we will introduce a few outstanding questions regarding strato-
spheric planetary waves, both by describing past studies and by bringing examples
from observations.

5Actually plotted is Matsuno's Q,, which is the quasi-geostrophic index of refraction squared
,2

minus the zonal wavenumber term -c0-, where s is the integral wavenumber and 0 is latitude.
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Figure 1.1: Results from one of the runs of Lin (1982). Top- Left: Zonal mean

wind (m/sec). Right: Stationary wave 1 geopotential height amplitude(solid, meters)

and phase (dashed). Bottom- Left: The index of refraction squared without the

zonal wavenumber term (Matsuno's 1970 Q0). Right: Eliassen-Palm Flux for wave 1

(arrows). Figure taken from Lin (1982).
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1.2 The observed planetary waves- some resolved

and unresolved questions

Remote sensing of temperatures, which started in the early 70's and became part
of the current operational system in 1979, revealed new and interesting aspects of
stratospheric planetary waves that were not observed before. Rather than continue
to describe the various studies chronologically, we will discuss a few aspects of the

observations that interest us and have motivated this study.

1.2.1 The seasonal cycle of stratospheric planetary waves

Charney and Drazin (1961) and the studies that followed (see previous section) showed
the importance of the basic state wind for planetary wave propagation. While the lack
of planetary waves in summer is easily explained by Charney and Drazin's theory,
the climatological seasonal evolution of' wave activity in winter is not so obvious.
Hirota et al. (1983) studied the wave activity in both hemispheres for October, 1979-
August, 1981, and found that while in the northern hemisphere planetary waves were
large throughout the winter, in the southern hemisphere they were large in spring
and fall and weak in June-August. Randel (1988, 1992), looking at eight and twelve
years of data, showed that the southern mid-winter minimum in wave activity is a
climatological feature, both of the stationary and the transient waves (figure 1.2).

Plumb (1989) suggested the Charney-Drazin criterion could explain the seasonal
cycle. In the southern hemisphere, mid-winter winds are strong enough to block
propagation of waves and cause a minimum of wave activity, while in the Northern
hemisphere, the waves are large enough to decelerate the winds and allow propagation
all winter long. Plumb demonstrated this mechanism using a one-dimensional 3-plane
model of wave-mean flow interactions that was forced with constant forcing at the
surface and relaxed to a seasonally varying zonal mean wind (easterly in summer and
westerly in winter). The model was essentially linear for a weak forcing, resulting
in a mid-winter minimum due to the strong winds, and quasi-linear for large waves,
resulting in a maximum of wave activity in mid-winter with much reduced winds.
This behavior essentially supports the notion that the wave activity is determined
according to Charney and Drazin's theory, however, there are limitations to using a
one-dimensional model. Most notably, in the absence of meridional propagation of
waves and a critical surface at the equator, the wave-mean flow interaction expected
to be weaker. Also, there are no meridional gradients of the basic state, resulting
in smaller PV gradients and correspondingly in reduced vertical propagation. Wirth
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Figure 1.2: .
Geopotential height (top) and temperature (bottom) and ensemble rms zonal waves
1-3 amplitudes (left), ensemble wave 1 stationary (middle) and transient (right) am-
plitudes at 10mb. The ensemble average is over the years 1979-1986. Stationary
waves are the 33 day running means and transients are the deviations from it. Non-
overlapping 3-day means are plotted. Figure taken from Randel (1992).

(1991) forced a two-dimensional spherical model similar to Matsuno's (1970) using

monthly mean basic states for the months April-October to see if the response will

explain the seasonal cycle of planetary waves. The model did well in late winter

but failed to reproduce the spring wave activity maximum. It is hard to conclude

whether the Charney-Drazin criterion, and Plumb's results for one dimension, explain

the response of Wirth's model. The main problem is that whether the waves are

propagating or are evanescent in a given direction is no longer a local property of the

basic state. Rather, the full wave solution needs to be obtained and the propagation
characteristics diagnosed. In chapter 5 we will develop a diagnostic framework that

makes use of the special waveguide characteristics of the basic state to allow us to

generalize the Charney-Drazin criterion to the two dimensional case.
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It is important to note that the seasonally averaged wave may not resemble the

steady state response to the seasonal mean basic state because of the transience in

the system. In the next section we will show that wave activity usually comes in
episodes of a few weeks, rather than continuously. Also, in section 1.3 we will present
some evidence that the climatological mid-winter minimum may be, at least partially,
a result of less frequent wave events rather than weaker continuous waves.

1.2.2 Wave episodes and the time evolution of vertical struc-
ture

Another important aspect of the planetary waves is their time variability, both of
amplitude and of phase. Hirota and Sato (1969) were the first to note that the quasi-
stationary wave amplitudes, as well as the zonal mean flow are highly correlated and
oscillate with a period of up to a few weeks. These oscillations are a common feature
and have been observed by others (e.g. Hartmann, 1976 for the southern hemisphere,
and Madden, 1975, for the northern hemisphere). Another form of transience is a
phase propagation of the waves. Mechoso and Hartmann (1982) did a space-time
spectral analysis of observations and found a large amount of variance concentrated
in eastward and westward propagating modes. The westward waves, which were
dominant in the northern hemisphere, were highly coherent between the troposphere
and stratosphere, while the eastward waves were dominant in the southern hemisphere
and exhibited no coherence between their tropospheric and stratospheric parts. Leovy
and Webster (1976) pointed out the behavior of wave 2 in the southern hemisphere is
unique, because it propagates eastward regularly, and over very long periods. Other
waves are mostly quasi stationary, with occasional periods of propagation, often ob-
served during wave growth. We will distinguish between the episodic propagation of
quasi-stationary waves and the clear modal propagation of wave 2 (a coherent propa-
gation throughout the stratosphere), and discuss the latter separately in section 1.2.3.

There have been a few approaches to explaining the variability of the waves. One
kind of study has concentrated on the simultaneous existence of stationary and free
traveling Rossby waves, which superpose to cause periodic oscillations in amplitude
and wave fluxes, both in the troposphere and in the stratosphere (e.g. Salby and
Garcia, 1987; Lindzen et al., 1982; Madden, 1983). There are a few uncertainties
regarding this mechanism. In the southern hemisphere, where eastward phase propa-
gation dominates, it is not clear that the modes exist at all. Westward propagating
modes are external Lamb waves. Model studies have shown that their periods are
insensitive to the basic state configuration and they have been observed extensively in



the troposphere-stratosphere (see the review by Salby, 1984, and references therein).

Eastward propagating modes, on the other hand, can only exist as internal modes,

which requires the existence of turning points. This would make these modes very

sensitive to the zonal mean wind. Hirota (1971) and Garcia and Geisler (1981) showed

that such modes can be excited in simple models as a result of time varying forcing.

These results heavily depend on the simplicity of their basic states. Da Silva and

Lindzen (1987, 1993) showed that westward propagating external modes were not

easily excited in a baroclinic model by variations of the zonal mean wind flowing over

topography, even though they were excited in a barotropic model when similar varia-

tions were specified. Given that it is hard to excite the external westward propagating

modes in a baroclinic model, even though their frequency does not depend strongly

on the zonal wind, it is hard to see how internal modes which are very sensitive to

the basic state configuration can be excited.

A different point of view, which is closer to our current approach, is of the waves

undergoing life cycles of vertical propagation followed by barotropic decay, as a re-

sponse to episodic tropospheric forcing (Randel, 1987b, 1990; Randel et al., 1987)6.

Two questions that need to be answered are what causes the variations in forcing

in the troposphere, and what determines which tropospheric episodes propagate ver-

tically. Nigam and Lindzen (1989) showed in a linear model that variations in the

latitudinal structure of the zonal mean winds can result in large variations in the

stationary wave amplitudes in the troposphere. Shiotani and Hirota (1985) suggested

that variations in the strength of subtropical jet will modulate the amount of wave

activity propagating up to the stratosphere, by attracting some of the wave activity.

Shiotani and Hirota also suggested the lower stratospheric winds may act as a shutter

to wave activity, thus affecting wave propagation. The problem with this mechanism

is that the vertical wavelengths are large enough for waves to tunnel through regions

of evanescence in the lower stratosphere (e.g. see Jacqmin and Lindzen, 1985', and

results in chapters 4, 5). Also, this mechanism leaves open the question of the source

of the variations of lower stratospheric winds.

In the current work, we will view the waves as evolving in episodes. The occasional

6Randel (1987b, 1990), as opposed to Mechoso and Hartmann (1982), found a substantial cor-

relation between the troposphere and stratosphere, because he took into account a time lag due to

finite vertical propagation times. Also, he noted that not all tropospheric episodes propagate into

the stratosphere, which decreases the correlations.
7Jacqmin and Lindzen, 1985, tested the sensitivity of a linear primitive equation model stationary

wave response to variations in the basic state. For reasons explained there, most of their basic states

refractive indices were such that a region in the lower stratosphere was evanescent. The stratospheric

responses on the various basic sates varied considerably, but the evanescent region was not crucial

because the waves were able to tunnel through it.



phase propagation will then be explained as the result of changes in the vertical
structure of the wave as it adjusts to its steady state (which is not always reached).
Viewed in this way, the oscillations that arise when a source is switched on are due
to the adjustment of the mode to steady state. For example, in a basic state that
has turning points, the perturbation will propagate vertically, then reflect downward,
adjusting its vertical structure in the mean time. This will also result in oscillations
in wave fluxes. When viewed at one level, the changes in structure will appear as
a burst of phase propagation, resulting in some power in propagating modes. In
chapter 7 we will discuss a few observed episodes in this light. Randel et al. (1987)
showed another kind of adjustment of the modes, by compositing a few wave episodes
to study the life cycle of the waves. They found that the EP fluxes evolve from being
vertical to tilting towards the equator. This sort of adjustment also results in phase
changes at some latitudes and heights that may appear as a phase propagation. If the
mechanisms for structure changes have a specific time scale involved, the time-space
Fourier decomposition will have a peak (probably broad) around the characteristic
frequency.

1.2.3 Eastward propagating wavenumber two in the southern
hemisphere

One of the striking phenomena in the stratosphere is the eastward-propagating wavenum-
ber 2 in the southern hemisphere (observed in early radiosonde and satellite data by
Phillpot, 1969, Deland, 1973, Leovy and Webster, 1976, Harwood, 1975, Hartmann,
1976). Unlike other waves, wave 2 in the southern hemisphere is predominantly prop-
agating, with a similar phase speed at all levels and latitudes in the stratosphere,
suggesting it is a mode. Manney et al. (1991a) compiled a ten-year climatology of
wave two in the southern hemisphere. As with the quasi-stationary waves, wave 2
appears in episodes of a few weeks. The period of the waves varies on interannual
and intra-seasonal time scales, between 5-40 days (3 - 23- at 60*S). The meridional
structure is a broad peak between 55-65*S, with maximum geopotential amplitudes
typically between 400-800 meters at 10mb. The source of the waves is not yet clear.
One possibility is that the waves are due to instability, either a barotropic instability
on regions of negative meridional PV gradients which are occasionally observed on the
poleward or equatorward flanks of the jet (Hartmann, 1983), or a stratospheric exten-
sion of a tropospheric baroclinic instability (Geisler and Dickinson, 1975; Geisler and
Garcia, 1977; Hartmann, 1979; Straus, 1981; and Young and Houben, 1989). Another
explanation is that the eastward propagating waves are forced by nonlinear wave-wave



interactions in the upper troposphere, essentially, by the baroclinic waves organizing

into wave packets with a wave-2 envelope (Scinocca and Haynes, 1998, and references

therein). All of these mechanisms have been shown to occur in models (see corre-

sponding references mentioned above). Models exhibit two kinds of barotropically

unstable modes. The first, occurring on regions of qY < 0 which are on the poleward

flank of the jet, tend to peak at 70'S and to propagate eastward with a period of a few

days. The corresponding momentum flux is outward from the jet. The second kind

of barotropically unstable modes occurs on regions of q, < 0 that are equatorward

of the jet. The perturbations peak in the middle of the jet and have equatorward

momentum fluxes in the region of negative PV gradients. Observed waves, apart for

rare occasions, have poleward momentum fluxes in mid-latitudes, pretty much ruling

out the second kind of barotropically unstable modes (Hartmann, 1983, 1985). Also,

the momentum fluxes of observed fast moving polar perturbations (the first kind of

modes) point outward from the jet, which is also opposite the observed momentum

fluxes in the southern hemisphere (Hartmann, 1983). The problem remains to dis-

tinguish observationally between the long wave baroclinic instability mechanism and

the tropopause wave-wave interaction mechanism, because both essentially consist of

a response of the stratosphere to tropospheric forcing, and because the tropospheric

observations in the southern hemisphere are poor.

The main problem with the wave-wave interaction mechanism is to explain long

lasting modes like the wave 2 episode in the fall of 1983, which showed a constant phase

progression that lasted for over 50 days (Shiotani et al., 1990). The attraction of it is

that it explains why phase propagation does not always extend into the troposphere

(Manney et al., 1991a), and the lack of coherence between the tropospheric and

stratospheric parts of the wave (Mechoso and Hartmann, 1982, see section 1.2.28)

In chapter 4 we will look at the baroclinic instability problem and discuss the

possibility of internal stratospheric instability.

1.3 Some examples from the southern hemisphere

winter of 1996

In this section we will present some of the observations that have motivated our

study. Observations are from the southern hemisphere winter of 1996. For more

8As was mentioned in section 1.2.2 regarding quasi-stationary wave 1, Randel (1987b) found a

large correlation between the troposphere and stratosphere, when a vertical propagation time lag

was taken into account (for wave 2 as well as for wave 1).



details about the data source and quality, see chapter 2.

Figure 1.3 shows time-longitude plots of the temperature perturbation at 10 mb,
60S. Shown are the deviations from a zonal mean, and the wave 1 and 2 components.
We see a few wave episodes, which are either dominantly wave 1 or dominantly wave 2.
Wave 1 is mostly quasi stationary (early July, mid-July-August, September) and wave
2 eastward propagating (late July). Wave 1 propagates eastward for a short period
of time around August 16th. In September, the perturbation is mostly of zonal wave
1 (one trough and one ridge), but wave 2 is quite large, causing the perturbation to
concentrate in the western hemisphere. The coexistence of both wave 1 and 2 is quite
common in late winter, when the vortex is weaker and in the process of breaking
down.

In section 1.2.1 we discussed the seasonal cycle of wave activity. Randel's clima-
tologies (1988, 1992) show there to be two maxima of wave activity in early and late
winter, and a minimum in mid-winter (figure 1.2). Wave activity in 1996 does not be-
have like the climatology would suggest, because the largest waves are in mid-winter.
Also, the temperature amplitude of the waves is much larger (maximum amplitude
of 15-25*K, as opposed to a climatological maximum of 10-12*K). Since wave activity
appears in episodes, this could mean that the climatological minimum is due to a less
frequent occurrence of wave episodes, rather than to the existence of lower ampli-
tude waves. It is important to distinguish between having a succession of large and
relatively short wave episodes and having a smooth constant level of smaller ampli-
tude waves, because only the latter can be said to be a steady state. This raises the
question of the relevance of steady state models to explaining the wave structure.

To get an idea of the relevance of a steady state, we calculated the wave variance in
the southern hemisphere over the years 1980-1998. The daily variance of temperature
and geopotential amplitude is calculated for each latitude between 40-75'S, and the
maximum value is plotted in figures 1.4 and 1.5. This is almost identical to the
variance at 60'S, since that is where the waves generally peak. Note that the square
of the variance, (Var 2 (f) = (f - f)2 , overline denotes a zonal mean) is half the
square of the wave amplitude. We show the geopotential height data, which was
also calculated by Randel (1992), for comparison with the temperature time series.
We see that time variations in temperature tend to be larger, appearing more like
episodes than a continuous wave event. Since temperature is a vertical derivative of
geopotential height, it is more sensitive to variations in the vertical structure, and
reveals such variability more clearly. We see that there are some years that have
a mid-winter wave minimum in between two wave maxima, as the climatology does
(1980, 1981, 1984, 1998), some years have just one peak of wave activity, and it is large



during mid-winter (1988, 1992, 1997), and some years look more like a succession of

wave events (1989, 1996).

The vertical structure of the waves may vary from one wave episode to the other.

Some of these structures are shown in figure 1.6, in longitude-height sections of wave

1 at 60 0S. Also shown are the corresponding 5-day averages of the zonal mean wind.

We see three different structures, along with some notable differences in the zonal

mean wind. The August wave tilts westward with height, with the geopotential

height increasing throughout the stratosphere. In September, on the other hand, the

geopotential height peaks in mid-stratosphere, where the temperature has a node,

and on the day shown the wave is vertical. The zonal mean wind also peaks in

mid-stratosphere. A double peaked temperature structure is found in September of

other years, sometimes also in wave 2. In June, the geopotential height has a node

in mid-stratosphere, slightly below a broad peak in temperature. We will show in

chapter 4 that these structures can be reproduced in a one-dimensional steady state

model, and are a function of the basic state vertical wave propagation characteristics.

We will further show in chapter 5 that the observed differences in vertical structure

between waves in September and August are a result of the basic state changes that

occur towards late winter.

In addition to a seasonal time scale variability of the vertical wave structure, we

find variability on time scales of a few days. Figure 1.7 shows a succession of daily

longitude-height sections of wave 1 temperature at 60'S in August. We see that the

wave undergoes a change in structure over a time period of a few days. This accounts

for the eastward propagation of wave 1 that is observed in this period (figure 1.3).

It is often the case that eastward propagation is not the same at all levels, implying

a change in the wave structure, rather than propagation of the wave. In chapter 7

we will show other instances of structure changes and discuss the reasons for the

variations in each instance. The propagation of wave 2 is different because it occurs

at all levels in the stratosphere, suggesting it is a propagating mode. Occasionally,

however, wave 2 also undergoes variations in its vertical structure (for example, the

sudden shift westward for a few days around September 23).

Finally, we need to worry about the quality of the data, because we are interested

in vertical structures, and the resolution of satellite observations is quite poor in

the vertical. As an example, figure 1.8 shows longitude-height cross-sections of the

temperature perturbation and its wave 1 and 2 components for three consecutive days

in June. There are small scale features that are most likely spurious (e.g. June 2nd

at 1mb). Also, wave 2 shows discontinuous evolution with the amplitude being much

smaller and the pattern 1800 our of phase on June 2nd, compared to June 1 and 3.



This results from the total temperature perturbation at 10-2mb, 60-120*E growing
from 2 to 8'K on June 2nd, and moving westward to 0-60'E while intensifying to
12*K on June 3rd. It is not clear whether this wave 2 evolution is real or whether it
is within the observational uncertainty.

Table 1.1 shows some results from a comparison of co-located radiosondes and
satellite based temperatures. Data shown is for September 1991 to August 1997, at

Mean(*K) STD(*K) Min/Max No. of
Year Jul-Aug Jul-Aug yearly observations

(yearly) (yearly) (OK)
1991* (3.51) (4.2) -4.5/15.5 172
1992 5.6(2.81) 3.4(6.1) -9.0/21.0 553
1993 5.2(2.34) 4.0(6.5) -10.0/14.0 451
1994 5.6(3.05) 3.8(4.0) -4.0/16.0 1024
1995 6.8(3.15) 3.7(3.7) -8.0/15.0 864
1996 6.5(3.49) 5.5(3.7) -10.0/13.5 1030
1997* 7.6(3.91) 6.2(4.1) -7.5/14.5 722

Table 1.1: Statistics of satellite observations minus co-located radiosonde measure-
ments, at 10 mb in the southern hemisphere, for the period September, 1991-August,
1997. Years marked by a * have observations for only part of the year. The mini-
mum and maximum values are given after taking out values that are more than four
standard deviations away from the mean.

10mb in the southern hemisphere. The satellite data, which is the same as we use
in our observational studies, is independent of the radiosonde data (see chapter 2
for an explanation). The biases in July-August are in the range of 5-8*K and the
standard deviation varies between 3-6'K. Yearly biases and standard deviations are
smaller than the July-August values for most years, because the deviations tend to be
smaller in summer. Also shown are the minimum and maximum differences between
the radiosondes and the satellite observations, where deviations that are larger than
four standard deviations are discarded. We see that the spread is very large. By
looking at the errors of all observation stations on specific days (not shown), we can
determine if the errors are a constant bias or whether they have a horizontal pattern.
We find that at times there is a constant bias, meaning the wave patterns are not
affected by the satellite errors but at times the horizontal structures of the satellite
and the radiosonde measurements are very different. These results point out large
errors in the satellite data, even from quite recent years. It is important to remember
that the radiosondes can see small-scale, short-lived features, like gravity waves, which



the satellites aren't able to resolve. This can account for some of the spread but not

for the biases. In the next two chapters we will discuss the observations and the

various sources of error.
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Figure 1.3: Longitude-time sections of temperature deviations from a zonal mean
(top), and the wave 1 (middle) and 2 (bottom) components, at 10 mb, 58*S, for June
1st - September 30th, 1996. Contour interval is 5K for the top two plots and 30K
for the bottom one. Zero line is thick and negative values dashed.
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Chapter 2

The operational observations
products

In 1.3 we saw that the satellite observations do not agree very well with co-located
radiosonde observations. We also saw that the observations are very noisy and that
the waves we are interested in occasionally show a large variability on short time
scales. Since our study involves using observations, it is of utmost importance to
understand their limitations. In this chapter we will describe the operational obser-
vational product we use, and discuss various sources of uncertainty and corresponding
assessment studies. We will only discuss the operational product from nadir-viewing
instruments on board the polar orbiting TIROS N and NOAA satellites. We will not
include products from research and experimental satellites (e.g. UARS) which have
provided valuable, but limited coverage data (limited either in time or space).

There are a few operational data products for the standard global observations
of the stratosphere which use the same raw data (radiances), but differ either in the
methods by which radiances are processed to get temperatures or in the methods of
using the temperature fields to calculate other quantities. One of the major distinc-
tions is between a stratospheric analysis product and an assimilation product. We
use the term analysis for a product in which the satellite retrieved temperatures and
geopotential heights are interpolated objectively onto a regular grid and then used to
calculate other quantities assuming some balance. An assimilation product, on the
other hand, combines the satellite retrievals with a numerical model, both to obtain
the retrieved fields on a regular grid and to obtain other quantities. We use an analy-
sis product for the current studies because we want to avoid the additional sources of
uncertainty related to the model, and to have a product that is as simple as possible.

The stratospheric analysis product we use is compiled and distributed by the



NASA/GSFC Stratospheric Chemistry and Dynamics Branch. Temperature and

geopotential height fields are provided on 18 levels (1000-0.4mb) by the NCEP Cli-

mate Prediction Center (CPC) for the stratosphere (70-0.4mb), and by the Global

Data Assimilation System (GDAS) for the troposphere (1000-100mb). The reader is

referred to McPherson et al. (1979) for a description of GDAS data. The data is

regridded at NASA/GSFC onto a 50 longitude by 2' latitude grid.

The satellite data are constructed by retrieving layer mean temperatures from the

radiances, and integrating to get geopotential heights, using the 100mb tropospheric

analysis as a lower boundary condition. This boundary condition, referred to as a

base level analysis, is a major source of error. The temperature and geopotential

height fields are then interpolated on to a regular grid using a successive corrections

method (Cressman, 1959), which consists of calculating corrections to an initial guess
field (usually the previous day's analysis; Gelman and Nagatani, 1977). The same

corrections method is used to add radiosonde data to the 70-10 mb northern hemi-

sphere fields (Finger et al., 1965). Occasional radiosonde observations from above

10mb in the northern hemisphere and above 70 mb in the southern hemisphere pro-

vide a useful source of comparison to test the data (see section 1.3). Apart from

the obvious errors involved in interpolating data from one grid to another, there are

aliasing errors as a result of the asynoptic sampling of the satellite. Finally, winds,
vorticity and Ertel's potential vorticity are calculated at GSFC from the geopotential

heights using a balanced wind approximation (Randel, 1987a). We will now proceed

to describe some of the stages described above in more detail, with an emphasis on

the sources of uncertainties1 .

2.1 Retrieving temperatures

The current operational instrumentation package is the TIROS Operational Vertical

Sounder (TOVS; Smith et al., 1979). It was first flown on the experimental TIROS N
satellite, launched in 1978, and later on the NOAA6-NOAA14 operational satellites2.

TOVS consists of three scanning radiometers; The High Resolution IR Spectrometer

'The operational analyses system has undergone many changes over the years. Since our work
concentrates on specific wave events and not on interannual variability, we will concentrate on the
current analysis, and the reader is referred to Randel (1992) and references therein.

2The first operational sounder was launched in 1972 on the NOAA2 satellite. It was succeeded by
the next generation of sounders, launched in 1975 on NIMBUS 6. These earlier sounders provided the
data for the first comprehensive observational studies of the stratosphere. Continuous operational
stratospheric data is available since the Vertical Temperature Profiler Radiometer (VTPR) was
launched, in September 1978. TOVS replaced the VTPR on October, 1979.

II



(HIRS), the Microwave Sounding Unit (MSU) and the Stratospheric Sounding Unit
(SSU). These measure the radiances in a total of eight channels that peak in the
stratosphere, only three of which peak at or above 10 mb (see figure 3.1 and sec-
tion 3.2.2). The raw data from each of the three instruments is processed to produce
radiances. This involves applying various corrections to the data (e.g. an antenna
side lobe correction) and an extrapolation of the radiances from the SSU onto the
HIRS scan spots because the former has a narrower scanning band than the latter3.
These corrected radiances are further processed to obtain a set of spatially averaged
clear-column radiances, by using cross calibration with MSU radiances to account
for the contamination by clouds and water vapor. We will not discuss the errors
involved in all these stages. They are described in detail in Smith et al. (1979),
Kidwell (1986), and Kidder (1995). The final set of clear-column corrected radiances
are inverted at the National Environmental Satellite Data and Information Services
(NESDIS) to obtain the temperature profiles on 42 operational TOVS levels. The
retrieval technique has evolved over the years, and is currently a Minimum-Variance
method (see chapter 3 for a more detailed discussion). The inversion of a discrete
set of radiances to obtain a vertical temperature profile is inherently ill posed, and it
points out one of the major shortcomings of the data- its limited vertical resolution.
The retrieved temperature profiles are integrated to give layer mean temperatures
(layers above 14 km are: 200-100mb, 100-70mb, 70-50mb, 50-30mb, 30-10mb, 10-5
mb, 5-2 mb, 2-1mb, 1-0.4 mb). Operational temperature profiles are calculated on
the operational analyses grid from these layer means using linear interpolation (the
grid levels above 14 km: 100, 70, 50, 30, 10, 5, 2, 1 and 0.4 mb).

Studies that deal with the assessment of satellite retrievals usually compare the
satellite observations to data from other sources, for example, different satellite instru-
ments, radiosondes or rocketsondes. These studies usually compare data from specific
days, or climatological fields, either of directly observed quantities or of diagnostics
that are derived from them (e.g. Schmidlin, 1984, Barnett and Corney, 1984). Others
compare the satellite retrievals of a specific event with observations that were taken
at one time as part of a mission (e.g. Claud et al, 1998). Results vary, depending on

3 This extrapolation process involves an unfortunate error (Laurie Rokke, personal communica-
tion, 1997). The two outer most spots of each scan line of the HIRS and MSU do not have a
corresponding SSU spot. An extrapolation routine (the stratospheric mapper module) is used to
extrapolate the SSU measurements to the two outer most spots of each scan line of the HIRS and
MSU. This extrapolation routine does not work as it should and the SSU extrapolated data drifts
off over time. At the time of speaking with L. Rokke (who is involved in developing an alternative
retrieval system), the program was just being reinitialized every couple of weeks to get rid of the
errors.
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the instruments compared, on the years of data used or the specific events compared.

Generally, the temperature differences between various instruments are around 5K

but some studies have reported a difference of 15-20'K in the upper stratosphere in

early winter, while others have shown differences of only 2'K. Generally, time mean

fields have fewer differences. Miles and O'Neill (1986) give an extensive reference

list. An obvious limitation of all such studies is the existence of errors in all these

measurements and the lack of a ground truth to compare them with.

A different approach, taken by Graves, (1986, see also Karoly and Graves, 1990)

was to use a model to test the retrievals by applying them to the model generated

fields. Graves used the SKYHI GCM as the truth, and used the operational routines

used at the time by NESDIS, to retrieve temperature, geopotential heights, zonal

winds and various other diagnostics. She also looked at how the model resolves wave

statistics and wave amplitudes, but did not look systematically at wave structures.

The general results show that zonal mean temperature can be retrieved to within 3K

in the stratosphere during periods when the evolution is dominated by large scale,

slowly evolving dynamics. Amplitudes of planetary waves are off by about 20%, and

sometimes there is also a phase lag. Higher order derived quantities are not captured

very well by the retrievals, and the errors decrease if the fields are averaged either in

time or zonally. In chapter 3 we use a similar but much simplified setup to examine

the ability of the retrievals to resolve vertical wave structures.

2.2 Calculating geopotential heights: Errors due

to base level analysis

Geopotential height is calculated by adding the operational layer mean temperatures

to the 100mb tropospheric analysis. Errors in the base level analysis will, of course,

affect the stratospheric analysis (see Trenberth and Olson, 1988, for an evaluation of

tropospheric analyses). Karoly (1989) compared stratospheric circulation statistics

calculated using one set of retrieved layer mean temperatures and a few different base

level analyses. Errors in base level geopotential height were on the order of 100m,

with the largest differences at high latitudes, over Antarctica. Not surprisingly, Karoly

found errors to decrease with averaging, both of time and space, and to increase with

the amount of spatial differencing. For example, daily zonal mean wind variations

and the corresponding EP flux divergences had a similar sense but very different

magnitudes (more than 50%) in the different analyses. Smoothing of the base level

fields reduced some of the differences in highly differentiated fields like vorticity, but



large scale differences in the base level analyses were not removed. Geographically,
differences were largest at high latitudes, especially above Antarctica. Other studies
were conducted as part of the Middle Atmosphere Southern Hemisphere (MASH)
project, with similar results (e.g. Grose and O'Neill, 1989).

2.3 Interpolation: Asynoptic sampling and alias-

ing

Unlike a radiosonde network, where all measurements are taken simultaneously at
specified times, a satellite samples the domain in a continuous scan. Figure 2.1 shows
part of the ground track typical of the NOAA satellites which operate in a near-polar,
sun-synchronous orbit. At a given latitude, the satellite samples the whole circle twice

Figure 2.1: Trajectory of nadir observations viewed from a reference frame of the
earth. Figure taken from Salby (1982a).

during a day, during the ascending and descending nodes of the orbit. There are
about 14 cycles per day, meaning 28 samples in total. Salby (1982a) showed that for



a given latitude circle, asynoptic sampling is equivalent to a rotation of the frequency-

wavenumber plane by an angle that depends on the drift-speed of the orbital plane

relative to the earth's surface (see figure 2.2). Correspondingly, the region of aliasing

is also rotated. Salby (1982b) derived a Fast Fourier Synoptic Mapping method 4 to

account for this when doing a time-space spectral decomposition of the data as is

generally done when analyzing the data for normal modes.

SAMPLE POINTS
* Ascending
o Descending
o Twice-Daily

Synoptic

-7

-1 0 1 2 3 4 5 6 7 8

Figure 2.2: Left: The sampling pattern of observations on a latitude circle in the

longitude-time plane. Shown are the ascending and descending nodes (full and empty
circles, respectively), which are not equidistant, and the twice-daily synoptic pattern

(squares). Right: The allowed wavenumber-frequency spectra for a twice-daily synop-

tic sampling (dashed) and a combined asynoptic sampling (solid). The shaded region

corresponds to spectra resolvable in both types of observations. The frequency axis

is o = 2r with positive values for westward propagation, and the wavenumber axis
days

is the integral wavenumber. Figures taken from Salby (1982a,b).

4The Fast Fourier Synoptic Mapping was applied by Lait and Stanford (1988a,b) to real data.



Observing a synoptic evolution is quite different, however. We need to worry about
the effects of asynoptic sampling, when looking at the short time scale variations in
wave structure (figure 1.7). The operational maps are created by combining all the
data gathered in a 24 hour period as if it were gathered instantaneously, using a
Cressman interpolation (Cressman, 1965), which essentially weights the observations
around each grid point according to the distance from it. Graves (1986) studied
the effects of asynoptic sampling by sampling the data of a GCM in the same way a
polar orbiting satellite would, and interpolating it onto the operational grid using two
methods. The first is essentially similar to the operational method and the second
uses the Fast Fourier Synoptic Mapping (FFSM) scheme of Salby (1982b) to get
rid of all aliased frequencies. The different methods did similarly well in simulating
quiet periods. Interestingly, the simple 'instantaneous plotting' method did much
better than the FFSM method during a sudden warming, with errors in zonal mean
temperature of 3*K for the former (which were mostly due to the sampling of the
model onto a lower resolution) and of as much as 20*K for the latter. The FFSM
method threw out all the high frequencies which are naturally present in sudden
changes. Graves did not specifically look at the vertical wave structures. Rather,
she looked at zonal means and at maximum and minimum temperatures on a given
latitude circle. In the following section we perform a simple sampling exercise to get
a feel for the distortions involved in asynoptic sampling of vertical structure changes
that occur on time scales of one to a few days.

2.3.1 Asynoptic sampling of a wave undergoing vertical struc-
ture changes

We specify analytically a very simple zonal wave 1 that is changing its vertical tilt
in the course of a few days (figure 2.3). We use 28 grid points in the longitude
direction, to facilitate sampling by a satellite that orbits the earth 14 times a day.
We then sample the wave field as a satellite would, assuming the ascending nodes
are exactly centered between descending nodes and coincident exactly with the grid
points. Finally, we plot all the 'observations' taken in the course of one day on a
single map. During times of rapid change, the alternation between ascending and
descending nodes results in a 2-grid oscillation. When a 1-2-1 smoother is applied
the fields are smooth, except for a jump at the longitude where the sampling day
starts. The smoothing has an almost unnoticeable effect on the wave 1 component
of the sampled field. We will show a pattern that is effectively moving eastward,
because the sampling errors are expected to be larger than for a westward moving
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wave. Since the satellite drifts westward relative to the earth, eastward phase speeds

are essentially increased and westward phase speeds decreased. Figure 2.3 shows four

consecutive days of a specified time-varying wave field, sampled at mid-day5 , along

with the corresponding wave 1 component of the asynoptically sampled field and the

difference between the two. The reduction in amplitude is of 30% for a wave that

moves about 1350 longitude in one day (i.e. a 2.67 day period, 86 m/sec at 600 S).

To get an idea of observed phase variations, one of the fastest shifts observed in the

southern winter of 1996 was of 900 longitude between August 11 and 12 at 1 mb

(figure 1.7) which is smaller than the case tested (we need of course to take into

account that these observations may be biased, but the calculation above suggests

the distortions in phase are hardly noticeable even for the larger phase speed tested).
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Figure 2.3: Longitude-height sections of four consecutive days (left to right) of a

simple wave undergoing structure changes. Top: The specified field. Middle: The

wave 1 component of the asynoptically sampled field. Bottom: The specified minus

the wave 1 sampled field. Contour intervals: 0.25 top two rows; 0.05 bottom row;

negative values are dashed. See text for details.

5We compare the asynoptic field sampled over the course of a day with the synoptic field at

mid-day.



We have also tested variations in amplitude. We found maximum sampling errors
of 5% for an increase with a time scale of 1 day, and 13% for a time scale of 0.5 days,
which is much faster than growth expected in the stratosphere because the vertical
group propagation times are at least one day, and the relevant instability growth rates
are also much smaller (chapter 4). To sum up, distortions due to asynoptic sampling
are noticeable only for rapid variations in vertical wave structure. The distortions
are usually a decrease in amplitude, which increases with increasing phase speed.
Distortions are slightly larger for eastward moving patterns. The general pattern,
however, is captured by the asynoptic sampling. This effect may explain, at least
partially, observed decreases in amplitude in the upper stratosphere that accompany
structure changes (e.g. August 11-15, figure 1.7).

2.4 Winds and higher order diagnostics

Since there are no direct observations of winds in the stratosphere, they need to
be inferred from the geopotential heights, by assuming some balance. Winds in
the analysis product we are using are balance winds (see Randel, 1987a), which are
calculated by dropping the time tendency and vertical advection terms from the zonal
momentum primitive equations, and solving iteratively starting from geostrophy (as
suggested by Gent and McWilliams, 1983). The largest errors are in the tropics, and
in meridional winds and momentum fluxes in the upper stratosphere. The kind of
balance used for calculating winds has a very large effect, especially on instantaneous
winds and on higher order quantities which are derived using winds. For a thorough
discussion, see Randel (1987a). Balance winds are a significant improvement over
geostrophic winds, which were used in many earlier studies (e.g. Geller et al, 1983,
1984, Hartmann et al, 1984, Mechoso et al., 1985). Geostrophic zonal mean winds are
generally too strong (Randel, 1987a), and the geostrophic EP flux divergence is an
overestimate of as much as 100% (Robinson, 1986). This is especially important in
light of the puzzling observation in most of these studies, of large regions of positive
V -F in the upper middle and high-latitude stratosphere (implying a source of wave
activity)6 .

The geopotential heights are also used to calculate higher order diagnostics like
the EP fluxes and various quadratic wave fields. The uncertainties involved in these
calculations, apart from those associated with calculating winds, are mostly due to

6It is important to note that the problem is not solved completely. Even with the use of balance
winds, there is still a small region of positive V . F, in the upper high latitude stratosphere that is
not understood.



the low resolution of the observations, especially in the vertical. The uncertainties

involved, both due to the assumption made in calculating winds, and due to the low

resolution, have led us to look at temperature and geopotential height fields of the

waves, which are the most directly observed quantities.

2.5 Summary and the relevance to our study

In this chapter we have discussed the process of putting together the operational

observations product. There are a few stages to this process, which are obtaining

the raw data (radiances), retrieving temperatures from the radiances, calculating

geopotential heights from the temperatures, interpolating onto a regular grid, and

calculating higher order quantities from the geopotential heights and temperatures.

Each of these stages involves uncertainties and errors.

We are especially interested in how these uncertainties affect the observations

of planetary waves, in particular their vertical structure. We have shown, by per-

forming a simple exercise, that asynoptic sampling can distort the observations in

periods of very rapid variations. The main effect is to decrease the amplitude of

the perturbation. We expect this effect to be small for realistic structure variations

and phase propagations. The base level analysis will not have a large effect on the

vertical structure of the waves (it will have no effect on temperatures). The largest

uncertainty comes from the coarse vertical resolution inherent to the temperature

retrieval process. There have been theoretical studies of the accuracy of temperature

retrievals. Most papers that suggest a new retrieval method also looks at the ability

of the retrieval algorithm to reproduce an isolated temperature profile (e.g. Smith,

1970, Smith and Woolf, 1976). These studies, however, mostly emphasize the ability

to simulate the vertical structure of the temperature field, and do not look generally

at the ability to resolve specific dynamic phenomena. The ability of the retrievals

to resolve wave structures, in particular, has never been looked at to our knowledge.

It is important to note in this context, that a wave field is the deviation from the

zonal mean profile, which varies substantially with height. A given satellite retrieval,

therefore, may capture the vertical structure of the total temperature field sufficiently

well, but still not resolve the vertical wave structure satisfactorily.

In chapter 3 we discuss the information content of the retrievals and deal with

the ability to use the retrievals to study vertical structures. Our approach is to use

a model to give us waves, and to check how well we can retrieve them. This is

different from most observational assessment studies because we have a ground-truth

to compare with. It is different from Graves' (1986) study, which took a similar



approach only using a GCM, because we are using a simple model and are looking
specifically at the dynamical phenomena we are interested in. Graves, in her study
did not look at vertical structures specifically.
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Chapter 3

The 'Virtual Satellite' problem

3.1 Introduction

In the previous chapter we described the operational observational product and dis-

cussed the uncertainties involved. In this chapter we investigate the uncertainties of

the temperature retrieval stage in much more detail, and look at the ability of satellite

observations to resolve planetary waves.

As we saw in chapter 1, at times, observed waves exhibit a large degree of time

variability on short time scales in their vertical structure (e.g. figures 1.7). The

time variations are an interesting feature that we want to understand. It is very

important, as part of our study, to have a good idea of the ability of observations to

capture wave structures. It is conceivable that the errors in wave structure are large

enough and random enough to appear in our data as short time scale variability in

wave structure (as in figure 1.8). We want to know how real the phenomena we see

are. The approach we will take in this study is to use a model to give us waves, and

to check how well we can retrieve them1 . In the following chapters we use a model

of stratospheric planetary waves to study their linear dynamics. Details of the model

are found in chapter 5 and appendix B. We use the same model here. Generally,

we characterize waves quantitatively and qualitatively by the amplitude and phase

structure. We will therefore concentrate on understanding how well the amplitude

and phase of waves are resolved by the satellite observations.

'See section 2.1 for a discussion on previous approaches to assessing satellite retrievals, and how
they differ from the present study.



3.1.1 Outline of experiment

Using a model of quasi geostrophic (QG) stratospheric waves, we obtain temperature
fields that have stratospheric waves in them. For the model run, we specify a vertical
profile of Brunt Vaisala frequency, a zonal mean wind as a basic state and a geopo-
tential height perturbation at the bottom of our model as forcing. We then run the
model to obtain a perturbation geopotential height field, from which we calculate a
temperature field (see appendix A.1 for details).

We calculate the radiances a satellite sitting at the top of our model would see,
and then take the radiance's and apply some inverse technique to get the retrieved
temperature fields. This is done at every horizontal model grid point, to get a three
dimensional retrieved wave temperature field. We use a few retrieval algorithms and
look at a variety of waves, mostly to see what the retrieval algorithm does to wave
structures (amplitude and phase of temperature).

3.2 The virtual satellite

3.2.1 The basic principles of remote sounding

Remote sensing of temperature is based on the fact that the radiation emitted at a
given wavelength, from a gas in local thermodynamic equilibrium, is a function of the
local temperature, through the Planck law, and of the concentration of the relevant
emitting gases. Emission by gases with a well known concentration that is essentially
constant with height (02, 02) is useful in determining temperature (Kaplan, 1959)

The relevant process is emission resulting from molecular vibrational-rotational
transitions. Temperature soundings mostly utilize the fundamental vibrational tran-
sition bands. Since the emission is much stronger at the center of a band than at
the edges of it, the atmosphere is more optically thick at these frequencies, and most
of the radiation is emitted from a thin high layer. Correspondingly, the radiation
from the sides of the band originates at lower levels. A satellite instrument measures
radiance over a narrow frequency band that is much narrower than a vibration emis-
sion band. This allows it to sense different levels of the atmosphere, by measuring at
different positions along the band.

We define an optical depth T = f,' k,(z)p(z)dz, where k,, is the monochromatic
extinction coefficient, p is the density of the absorbing/emitting gases and z is log
pressure. The total monochromatic radiance at an optical depth r, viewed by a sensor



looking downwards along the local vertical is:

I,(T ) = IL,(TO)e(- ) + f B,[T(T')]e-('-)dT' (3.1)

where T is temperature, B,[T(T)] is the Planck function, and T, is the optical depth

at the bottom level, in our case, the lowest model level, which is at 2 scale heights.

The total monochromatic radiance at the top of the atmosphere, viewed by a

satellite looking directly down is obtained by choosing z = oo. The equation becomes

simpler if we define a monochromatic transmittance function and write the equation

in log pressure coordinates (z) as follows:

TV(z) = e-r(z) (3.2)

/'Or
I. (oo) = I.(z.)T7,(z.) + 00 B,[T (z) ] 9Tdz (3.3)

where we have used the fact that T,(oo) = 1 (T(oo) = 0). z, denotes the bottom

boundary. W, (z) = 2 is called the weighting function. The shape of the weight-

ing function indicates the levels that contribute most to the radiance at the given

frequency v.

3.2.2 The satellite instruments and transmittances

The current satellite that remotely senses temperature is NOAA 14, which is

a polar orbiting satellite from the TIROS N series. The relevant instrumentation

package is the TIROS Operational Vertical Sounder (TOVS), which consists of three

scanning radiometers; The High Resolution IR Spectrometer (HIRS), the Microwave

Sounding Unit (MSU) and the Stratospheric Sounding Unit (SSU).

The HIRS instrument utilizes the 15pam and 4.3pm CO2 IR bands, which are used

to sense temperature. In addition, it uses water vapor absorption in the 6.3pam band to

sense moisture, and four window channels that sense surface temperature or detect

clouds. There are 19 operational channels, 11 of which are used for temperature

soundings, only four of which peak at or above the bottom of our model (2 scale

heights).

One of the MSU's main purposes is to make temperature soundings in the presence

of clouds. It utilizes an 02 absorption band. The horizontal resolution is much coarser

than the HIRS resolution because the wavelength is much longer. Only one channel

peaks above 2 scale heights. We will not use this one channel for reasons that will

become clear later on.



The SSU measures radiation near the center of the 15pm CO2 band. It is used
for temperature soundings in the stratosphere. It has three channels that peak at
1.5,5,15 mb. Since the measurements near the peak of the absorption band have
to be very narrow in frequency space, and since there is little emission because the
density at high levels is low, a special technique that uses pressurized C02 cells to
filter the radiation is used. Taylor et al. (1972) describe this instrument in detail and
also derive a simple equation for the weighting function:

W,()p (3.4)
S(1 + p2)3/2

P ) = vf2(3.5)
Ppeak

p is the pressure, and Ppeak is the pressure at which the weight function peaks. Ppeak
depends on the pressure in the C02 cell and on various instrument parameters. For
a more detailed description of these instruments, see Smith et al. (1979), Kidder and
Vonder Haar (1995) and Kidwell (1986).

Vibrational transitions are accompanied by finer rotational transitions, which are
separated into three branches, P, Q, R, corresponding to jumps of -1, 0, 1 of the ro-
tational quantum number. The satellite instrument response function is much wider
than these rotational lines. The radiance measured by the satellite instrument is
therefore an integral of equation 3.3 over frequency, weighted by the instrument re-
sponse function. Since the integration is over many absorption lines, the absorption
coefficient is highly variable and is generally done using approximate band models
or other approximate radiation codes. The Planck function, however, varies slowly
enough with frequency, hence the integration over frequency is applied only to the
transmittance function. In the current study, a fast transmittance model called OP-
TRAN (McMillin et al., 1995) was used for the HIRS and MSU instrument channels.
Equations 3.4 and 3.5 were used to calculate the SSU weighting functions. Figure 3.1
shows all the weight functions that peak at or above 14 km (the bottom of our model).
The channels and the heights of the corresponding weighting functions are also listed
in table 3.1. The solid lines correspond to SSU channels 1-3 and HIRS channels 1-3,
which use the 15pm CO2 band) and to HIRS channel 16, which uses the 4.3pm C02

band. The dashed line corresponds to MSU channel 4. All channels except the latter
one are used in this study. The reasoning for not using the latter is as follows. The
MSU channel peaks at around 70 mb, at a region that is well covered by other HIRS
channels, and is relatively narrow. We are mainly interested in the middle and upper
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stratosphere, at heights where there are no radiosonde observations and the MSU has

very little influence there. We will show later (section 3.3.4) that since this channel

overlaps two HIRS channels so much, it will not add much new information. We will

also show later (section 3.3.3) that the retrieval becomes much simpler if we assume a

single frequency for all channels. We therefore prefer to throw out the MSU channel,

which has a very different frequency from the rest.

T and T,(I) Weighting Functions
9 9

8- 8

7 - 7 -
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Figure 3.1: Left: Brightness temperatures (circles) corresponding to the radiances
measured by each of the channels used in this study for the temperature profile

shown (solid line), plotted at the peaks of the corresponding weighting functions.

Right: The weighting functions that peak in our model domain. Solid lines are the

channels used in our study (marked next to the peaks) and the dashed line is the

MSU channel we drop. In all relevant figures, the grid lines below 7 scale heights are
at the peaks of the weighting functions.

3.2.3 Calculating the radiances

Calculating the radiance that a satellite would measure at a given frequency, for a

given temperature profile, is referred to as the forward problem. The transmittance

functions are plugged into equation 3.3 to calculate a set of radiances at each hori-

zontal model grid point. The radiances are then used as input for the temperature

retrieval schemes. Once the weighting functions are known, all we need for calculating

the radiances is the vertical profile of the Planck function, which is a function of the

temperature profile and the channel frequency. In reality, the frequency is determined



by the satellite instrument, hence the correct one should be used to retrieve temper-
ature. In our virtual satellite problem, we are free to specify any frequencies we want
as long as we keep them the same in the forward and inverse problems. The ability to
resolve temperature structures will not be affected by our choice of frequencies. The
problem is much simpler to solve when we use the same frequency for all channels

(see section 3.3.3), because we can solve the inverse problem for the Planck function
directly.

Figure 3.1 shows the brightness temperatures (Tb), corresponding to the radiances
that were calculated from a given temperature profile (shown) using equation 3.3, and
plotted at the height of their corresponding weighting functions, which are shown on
the right. We can see that the brightness temperatures correspond roughly to the
mean temperature of a layer centered at the peak of the weighting function. It is clear
that HIRS channel 1 is different from the rest because it is very deep. The brightness
temperature deviates significantly from other channels, and doesn't follow the actual
temperature profile like the rest of the channels do. This channel proves problematic
in one of the retrieval methods we use (referred to later as Chahine's method), hence,
we drop it when we use that method. Finally, this calculation was done using the SSU
wavenumber of 668 cm' for all channels. When we repeat the calculation for the
actual TOVS frequencies (table 3.1), we get almost identical brightness temperatures,
except for the surface one which is a couple of degrees different. This supports our
assumption that we are free to use a constant frequency as long as we are consistent
in the forward and inverse calculations.

Table 3.1 lists the instrumental errors of the channels used in this study, in terms
of a temperature error at a given mean scene temperature. These numbers are taken
from the NOAA POD guide (1997). Also shown are the equivalent errors in radiance,
using a wavenumber of 668 cm- 1 for all channels. These errors will be used later in
this study to test the sensitivity of our retrievals to noise (section 3.4.1). The true
channel wavenumbers are listed for reader information only. They were not used in
the study.

The bottom boundary

Generally, the retrieval problem is solved for the troposphere-stratosphere, and the
bottom boundary is the surface. For many of the channels we are interested in,
T,(O) = 0, hence the surface term does not contribute to equation 3.3. For channels
that have a surface contribution, we use a gray or black body law:



Instrument Peak AT('K) at Mean scene AI Instrument

and of weighting mean scene temperature 10-- W, 2  wavenumber
channel function (km) temperature (0K) Srm (cm-1)

HIRS 16 14.0 0.31 230.0 0.32 2265.5
HIRS 3 17.9 0.55 220.0 0.51 689.22
HIRS 2 20.5 0.74 220.0 0.68 682.22
HIRS 1 24.4 2.77 235.0 2.96 668.51
SSU 1 29.6 0.25 273.0 0.36 668.00
SSU 2 37.4 0.50 273.0 0.72 668.00
SSU 3 45.2 1.25 273.0 1.79 668.00

Table 3.1: The channels used in this study. Error data is taken from the NOAA POD
guide (1997).

1(0) = B[T(0)]E, (3.6)

where (E,) is the surface emissivity (equals 1 in the IR domain, to a good approxima-

tion).

In our wave model, however, the bottom boundary is above the tropopause, at two

scale heights (14km) and equation 3.6 does not necessarily hold. To simplify matters,

we still use this relation. We can derive it if we assume the Planck function is linear

with height in the troposphere, and the transmittance at the surface is negligible,

which is true of all channels used in this study. The transmittance of 5 of the 7

channels used is less than 0.1 at our model bottom boundary, hence the exact value

of E, is important only for the 2 channels for which it is larger. We tested this by using

various values of Ec, ranging from 0.5 to 1.5. The resultant temperature retrievals

were almost identical, with the differences being at the surface. These were around

2'K for the Chahine retrieval (section 3.3.2), and much less for the Minimum Variance

retrievals (section 3.3.3).

3.3 The Inverse problem

3.3.1 General outline and solvability

The inverse problem consists of solving the set of M equations, M being the number

of satellite channels, to get a vertical profile of temperature:

I(oo) = Bi[T(zs)]Ti(zs) + Bi[T(z)]W(z)idz i = 1...M (3.7)

III



The subscript i denotes the frequency of the i'th channel vi. The problem is inherently
ill posed, since we are trying to solve for a continuous profile using a discrete set of
measurements. We therefore need to settle for less. A possible way is to solve for the
temperature at N discrete levels, where N has to be less than or at the most equal
to M, along with some assumption about interpolation between the discrete levels.
Physically, the satellite senses layer mean temperatures, and we can only obtain a
temperature profile with low vertical resolution.

There is a great body of literature that deals with the inversion of satellite IR
measurements to obtain temperatures (Rodgers, 1976 is an excellent review paper).
There are two general kinds of papers. One deals with determining the inherent
vertical resolution of the inverse solution (Mateer, 1965, Conrath, 1972 Backus and
Gilbert, 1970, Rodgers, 1990). Such papers generally show there is a tradeoff be-
tween resolution and sensitivity to noise, where higher resolution also implies higher
sensitivity to noise in the measurements. The second kind of study deals with finding
practical inversion methods using various approaches. Some methods give a local
temperature at M discrete levels (Chahine, 1970), some express the vertical tem-
perature profile as a linear combination of M basis functions and find the relevant
coefficients (Mateer, 1965), some use a purely statistical regression approach (Smith
and Woolf, 1976), and some combine the inverse solution with a statistical solution,
the way statistical measurements are combined, using error covariance matrices as
weights (Rodgers, 1976, and references therein). The latter approach is used opera-
tionally. Rodgers (1976) in his review explains how all methods give essentially the
same solution with the differences stemming from the differences in the additional
information that is supplied in order to solve the inverse problem.

In the current study, we retrieve temperatures using two methods. The first is
a nonlinear algorithm that solves for the temperature at six discrete levels. This
method is used because it is independent of additional statistical information, hence
it is objective. The second method retrieves a continuous profile by combining the
retrieval with a statistical constraint. In order to simplify the solution we make
the problem linear. This method is used because it is similar to the operational
temperature retrievals (see appendix for more details on the operational retrieval).
The combination of using these two different retrieval algorithms will separate the
robust features from those that are method dependent, in particular, features that
depend on the specifics of the statistical constraint.



3.3.2 Chahine's retrieval algorithm

Chahine (Chahine, 1968, Chahine 1970) developed an iterative method to solve equa-

tion 3.7, for a set of discrete temperature values at the peaks of the weighting func-

tions. He bases his analysis on the fact that the weighting functions have a well

defined peak, and most of the contribution to equation 3.7 comes from a narrow

region in the vertical, and approximates the relation between the radiances of two

different temperature profiles as follows:

Ii(oo) - Bi[T(z)]Ti(z) _ Bj[T(z)]W(zj)Az

I(oo) - Bi[T(zs)]Ti(zs) Bi [T((z)]W(zi)Aiz

The subscript i denotes the i'th channel, zi is the height (log pressure) of the

peak of the i'th weighting function, and Aiz is the effective width of the contributing

region, defined as follows:

A = Ii(oo) - Bi[T(zs)]Ti(zs)
Bi [T (zi) ]Wi zi)

T and T are two different temperature profiles, and ~ denotes a function of T. If

the contribution comes from a narrow enough region (i.e. Aiz is small enough) and

the variation of the weighting functions with temperature is much smaller than the

variation of the Planck function with temperature, and if the contribution to the

radiance by the bottom boundary term is either negligible or dominant, we get the

following approximation:
Ij(oo) Bi[T(zi)](39

Ii(oo) Bi[T(zi)]

Equation 3.9 is the basis of the iteration method. We can start off with a given

temperature profile, To given at the peaks of the weighting functions, and use it

to integrate equation 3.7 for each channel, to obtain a set of radiances If. We can

then use the set of calculated radiances, the measured radiances (I), and the initial

temperature profile, to obtain a new profile T 1 from equation 3.9. We can repeat this

for every channel, till convergence of the calculated radiances towards the observed

ones is reached, as follows:

TU+l = 2hvic 2

n- ({I(ehCV'/KT- + (3.10)
In 1c,|K,

WMMM Mili 4 "IJ 1111 11MI 1= 111h



where we have used

B(Ti) hcKTi _ 1 (3.11)

Ti and Ii are respectively the n'th iteration temperature and radiance corre-

sponding to the i'th channel. h is the Planck constant, c the speed of light, K the
Boltzmann constant. We repeat this until the radiances If+1 that are calculated

from all the Tn+1, using equation 3.7, converge to the observed radiances to within a
specified limit 2.

We start the iteration from a constant temperature profile of 300'K. Since this
algorithm assumes the weighting functions are narrow, it is not surprising that HIRS
channel 1, which has a very wide weighting function, degrades the retrieval. What
we get looks similar to the profile shown in figure 3.1, where the temperature cor-
responding to HIRS channel 1 is much larger than the true profile. This channel is
therefore not used in Chahine's algorithm.

The Chahine retrieval method, from the start, points out the inherent limitations
of the satellite observations, namely, even if it were to do a perfect job by retrieving
the exact temperature at the six levels, we are retrieving only six points. There is
no information above 1.5 mb and the resolution is at best as good as the distance
between the peaks of the weighting functions. This method is useful because it is
nonlinear and can be used to test whether using one frequency for all channels affects
our results. Comparisons between retrievals using the correct frequency and just one
frequency shows the retrieved temperatures to be almost identical. We will therefore
only show results from linear runs in this study. All runs use the SSU channels'
wavenumber of 668 cm- 1 .

This brings us to the next section, where we look at a retrieval method that gives
a continuous profile, instead of a discrete one. The way this is achieved is by adding a
climatology profile to the retrieval that effectively fills in the gaps between the points
we get from Chahine's method. The fact that we get a smooth profile that extends
much higher than 1.5 mb does not mean we can see more levels or higher up, or that
we can resolve more, it just means we have added more information.

2In order to calculate the radiances from the set of six temperature points, we use a bicubic
spline interpolation to interpolate the temperature onto a higher resolution grid, and integrate using
a simple trapezoidal integration. This interpolation is the additional information we use in the
Chahine retrieval.



3.3.3 The Minimum Variance method

In the following section we describe a linear retrieval algorithm, which combines the

inverse solution with additional statistical information, to get a continuous profile.

Our derivation follows Rodgers (1976), with slightly different notation. In general

the problem is nonlinear, due to the nonlinearity of the Planck function. If, however,

we use the same frequency for all channels, we make the problem linear because we

can invert the radiances to obtain B(T) directly, instead of T. We can then write

equation 3.7 as a matrix equation by discretizing it onto N grid points in the vertical

direction:

r=Kb (3.12)

r and b are M and N dimensional vectors respectively representing the radiance

measured by the different satellite channels and the discretized vertical profile of the

Planck function:
I1 \B(zi)

r= . b= .

IM /B(ZN)

K is an M x N matrix, that represents the discrete version of the integral in

equation 3.3 as well as the bottom boundary transmittance. Mathematically, K can

be inverted to solve for b only if N < M. Assuming we can, we define the matrix D

such that:
b = Dr (3.13)

therefore, KD = 1

If we combine our inverse solution with an additional constraint, for example, a

climatology (a mean profile and an error covariance matrix for the variance around

this mean), we can get a retrieval that has a much higher resolution than M levels.

Let us call the part of the solution that is a direct inversion of the radiances

the inverse solution. In the case where the number of measurements would equal or

exceed the number of layers in our retrieval, this would correspond to b = Dr. Let us

also call the profile with which we combine our inverse solution the constraint profile,

and denote it by b.. The corresponding error covariance matrix is denoted by S. 3.

3The error covariance matrix is calculated as follows. Supposing our climatology is a set of L
profiles xi, where the subscript 1 denotes the measurement number. We take our constraint profile



The error covariance matrix for the inverse solution will be a function of the error
covariance of the radiances, SE. Since the errors in the different satellite channels are

uncorrelated, S, is a diagonal matrix, with the square of the standard deviations as
the diagonal values. The corresponding error covariance matrix of the inverse solution
is:

Sr = (KTSC-lK)~1 (3.14)

The inverse solution is combined with the constraint profile, by inversely weighting
by the error covariance matrices, as follows:

6 = (S,- 1 + KTS6-lK)~1 (So-lbo + KTSE~1r) (3.15)

Note that equation 3.15 is equivalent to writing

b = (So~1 + Sr 1 )~(Soj'bo + Sr 'Dr) (3.16)

where Dr is the inverse solution b, only 3.16 is singular when the matrix equation 3.12

is ill defined (when N > M), whereas equation 3.15 is not.

The covariance of the solution b is:

$ = (SO-1 + KTSjK)-l (3.17)

Some matrix manipulation results in a different form of equation 3.15 that will
prove useful later on, and involves fewer matrix inversions:

6 = bo + SOKT(KSoKT + SE)- 1 (r - Kbo) (3.18)

This equation constitutes the second retrieval method used in this study, along
with Chahine's method. The nonlinear variation of this method can be constructed for
nonlinear problems by linearizing the equations around some profile. Such an iterative
procedure that starts with the constraint profile b., and converges to equation 3.18
is used by most operational centers that retrieve temperature from radiances (see
Rodgers, 1976, equation 99).

(b.) to be the mean of this sample and the error covariance matrix (error because we treat the
climatology as a measurement with deviations around it) is defined as follows:

So = L [(xi - bo)(xi - b.)T]
1=1
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Since the retrieved profile is a combination of an inverse solution and an a priori

constraint, the main question is what part of the retrieval is sensitive to the constraint

we use, and what part not. Ideally, the effect of the constraint is to fill in the

information in parts of the solution that are not resolved by the observing system,

hence it is an important part of the solution. We will also see that the error covariance

matrix is important in determining how the inverse and constraint profiles combine.

We use various constraints in this study. We divide the constraints into two main

kinds. The first (referred to as a diagonal constraint) has a diagonal error covariance

matrix, which means all vertical correlations in the retrieval are due only to the

observing system. The second kind of constraint has a non-diagonal error covariance

matrix (we refer to it as a non-diagonal constraint), hence the vertical correlations in

the retrieval are due also to the correlations in the constraint. The latter one is used

for the operational retrievals. Appendix A.2 describes how we construct the various

constraints.

In the following sections we will show results of retrieving various temperature

fields from our QG model, using both Chahine's method (CH retrieval) and the

method just described, which is commonly referred to as a Minimum Variance method

(MV retrieval). We will look at the effect of using various constraints, and correspond-

ing error covariance matrices on the retrieval. Before describing the various runs and

results, we will look at the issue of vertical resolution, using some diagnostics on the

weighting functions and on the constraint field, that will help explain some of the

results we get.

3.3.4 Vertical resolution

There have been quite a few studies that deal with the issue of the vertical resolution

of the observing system (see the review by Rodgers, 1976, for a detailed reference list).

In this section we will describe a few diagnostics that will be useful in illuminating

the issues of resolution and noise sensitivity in our study.

The first such diagnostic is the set of eigenvectors and eigenvalues of the weight-

ing functions, which give us an idea of the vertical structures that can be resolved by

the observing system. This was first introduced by Mateer (1965) for Umkehr ozone

soundings. Here we follow Rodgers (1976), who discusses this in context of temper-

ature soundings. One way to solve equation 3.12 is to expand b onto a set of M or

less basis functions. An optimal choice of basis functions is a linear combination of

the weighting functions4 . One such combination, which is also orthogonal, is the set

4 Using a linear combination of the weighting functions as a choice of basis functions minimizes
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of eigenvectors of KKT. Assuming that the radiance measurements are independent

of each other and are measured with an error variance of o, it can be shown that the
corresponding eigenvalues (Ai) are inversely proportional to the measurement error
variance, as follows:

U2
Ai = - (3.19)

where 6-i is the measurement error variance corresponding to the i'th eigenvector.
We see that eigenvectors with a large eigenvalue will have a small measurement error
variance, which means they are resolvable by the observing system. Eigenvectors with
corresponding small eigenvalues are hard to measure with accuracy.

Figure 3.2 shows the eigenvectors that were calculated form the weighting func-
tions in figure 3.1. The corresponding eigenvalues are shown by each of them. It is
clear that only 3-4 eigenvalues are practically resolvable, because there is a drop of
a few orders of magnitude between A, and A5. These eigenvalues are the ones with
the largest vertical structures. Eigenvalues with smaller structures are not resolvable,
which makes sense. It is interesting to note that we have fewer independent pieces
of information than satellite channels. This is due to the large overlap between the
weighting functions. This fact is one of the main reasons why we can drop HIRS chan-
nel 1 in the Chahine retrieval, without significantly decreasing the resolution of the
retrieved profile. Also, this explains why we can drop MSU channel 4 (section 3.2.2).
We repeated this analysis on the set of 8 weighting functions, including the MSU
channel. The resulting eigenvectors were almost the same, and the eigenvalues of
the largest ones increased by a few percent. This means the MSU channels does not
add much new independent information. This makes sense since it peaks in the lower
stratosphere where there is a relatively large overlap between the weighting functions.

Another diagnostic that will prove useful in understanding the minimum variance
retrieval is the Averaging Kernel Matrix. There are a few references that have used
averaging kernels, most notable Backus and Gilbert (1970), Conrath(1972). Here we
will describe the diagnostic used by Rodgers (1990).

A retrieved temperature profile can be expressed as a function of the true temper-
ature profile, by substituting the forward calculation for the radiances in the inverse
calculation. In the minimum variance case, we simply substitute equation 3.12 for
the radiances, into equation 3.18 to get:

the sensitivity of the retrieved profile to errors in the radiance measurements. For more details see
Rodgers (1976).



Major structures spanned by weighting functions
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Figure 3.2: The eigenvectors of KKT, along with the eigenvalues. The structures of
the largest four eigenvalues are shown in the left figure and the fifth, six and seventh
are shown on the right. See text for details.

b = b, + SoKT(KSoKT + S)- 1 K(b - b,) = bo + Akm(b - bo) (3.20)

b - bo = Akm(b - bo) (3.21)

Akm is called the Averaging Kernel Matrix because the retrieval at a given height

is an average of the whole profile weighted by this row. The columns of this matrix

(referred to as the response functions) are the response of the observing system to a

spike of temperature perturbation introduced at a given height5 .

The effect of the constraint on the retrieval solution can be understood more

intuitively by rearranging equation 3.21

b = Akmb + (I - Akm)bo (3.22)

5Backus and Gilbert (1970) introduced the Averaging Kernel Matrix and used the averaging

kernels to define a resolution of the observing system, in the context of solid earth remote sensing.

They also developed a retrieval algorithm based on this matrix that optimizes the resolution we can

obtain with respect to the sensitivity of the system to noise. Conrath (1972) applied their method

to the temperature sounding problem.

higher order structures



where I is the identity matrix. If we also decompose Akm into its eigenvectors, we
have

AkmU = UA (3.23)

and

U-1 Akm = AU- 1  (3.24)

where U is the matrix of eigenvectors, and A is a diagonal matrix of the corresponding
eigenvalues.

Multiplying both sides of equation 3.22 by U-1 gives:

U-b = AU-'b + (I - A)U-'b, (3.25)

If we now use the eigenvectors as a set of basis functions to expand b, we have
b = Uu, u = U-'b, where u is a vector of the coefficients of the eigenvectors in the
expansion of b. We similarly expand b., and get:

ni = Ajun + (1 - Ai)uoi (3.26)

The retrieval solution can be described as a linear combination of the eigenvectors
of Akm, where the coefficient of each of them is a weighted average of the correspond-
ing coefficients from the inverse solution (us) and the constraint (uoj), with a weight
of A2, the corresponding eigenvalue.

3.4 Results

We apply the retrieval algorithms described above to many temperature fields. The
fields we choose vary in the shape of the waves, as well as in the basic state. Some
have smaller vertical scales than others. We also use many constraints and error
covariance matrices in the MV retrieval. Due to lack of space, we will only present
results that are needed to illustrate our conclusions. Unless specifically noted, the
results presented are general characteristics of the retrievals in this study.

3.4.1 A single profile

In this section we will discuss the results for a single profile, in order to gain some
understanding of the general properties of the retrievals. Figure 3.3 shows a temper-
ature profile (line with solid circles), and various retrievals of it. The continuous lines
are different MV retrievals, all using the same constraint profile (thin dotted line)



with a diagonal error covariance matrix but with different values of variance (using a

constant value of variance for all levels). The circles show the Chahine retrieval. Also

shown are the true minus retrieved profiles for each of the retrievals, to highlight the

deviations.
True, constraint and retrieved temperature Deviation from the true temperature

8 - 8-

6.4571 - - 6.4571 - O

53429 - 5.3429-

4.2286 -- 4.2286 --

3.4857 --- 3.4857 --

2.9286 - - - 2.9286 - -

2.5571 -- -- 2.5571 - -

1

. I

2200 220 240 260 280 2 1'O 0 10 20

Temperature (K) Temperature (K)

Figure 3.3: Left: A 'true' temperature profile (line with solid circles), and various
retrievals of it: the Chahine retrieval (circles), and diagonal MV retrievals using the
constraint profile shown (thin dotted line) and a constant variance of 5 'K (dash-dot),
10 K (solid) and 20 K (dashed). Right: The true minus retrieved and true minus

constraint profiles shown on the left (using same line types).

The retrieval solutions below 4.5 scale heights (30 km) are within 1-2 *Kelvin of

the true temperature. The errors grow above that, with largest errors at the top of

our model, above the peak of the top weighting functions. Errors at the height of the

top Chahine level are typically between 4-12'K (for all methods), depending on the

specific profile resolved. It is illuminating to compare the diagonal MV retrievals for

various values of variance. Since the constraint errors are uncorrelated in the vertical,

the general behavior of the retrieval is to follow the inverse solution (i.e. the true

profile) at the lower levels, where the variance in the measurement is smaller than the

variance in the constraint, and to follow the constraint at higher levels, where there

are no observations. In between, the solution is a combination of the two, where we

find that a larger constraint variance allows the retrieval to follow the inverse solution

more closely and over a larger region.

The problem with specifying too large a variance is highlighted by comparing the
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results of using noisy and exact retrievals. It is important for a retrieval scheme to
have low sensitivity to noise in the measurements because in reality we do not know

the radiances exactly. Figure 3.4 shows the RMS retrieval errors due to introducing
some errors in the radiances. This was calculated by subtracting the exact from noisy
retrievals of many different profiles, and calculating the statistics of these deviations
for each level. We use white noise errors with a standard deviation about zero of
the value of the instrumental uncertainty (see table 3.1). We see that larger values of
constraint variance are associated with a larger sensitivity to noise. The noise variance
is generally between 1 and 2'K for a constraint variance of 10*K. At 20*K variance,
the standard deviation oscillates about a value of 2 'K in most of the domain, and
reaches a peak value above 5*K near the bottom (this may be a result of not having

the troposphere in our retrieval). For smaller variance, the errors above the weighting
functions' span region are very small because the retrieval follows the constraint. The

Chahine method has a relatively large sensitivity, equivalent to the sensitivity of the
MV retrieval with 20*K variance. Also shown in figure 3.4 are the maximum error
values found in the ensemble used for the MV retrievals. The limitations of using a

very large variance are obvious, because the errors can reach values larger than 5*K
throughout most of the domain. The maximum errors of the Chahine retrievals (not
shown) are very large (15oat most levels and 60'K at level 2). When we look at 3
dimensional wave patterns, these large errors usually occur in isolated grid points,
while the general noise level corresponds more to the RMS one. These isolated very
large errors are most likely due to a bad convergence of the iteration routine. A more
likely estimate of an upper bound on the errors is 10*K.

This brings out one of the main issues of inverse solutions, namely, the more
you constrain the inverse solution, the less sensitive it is to noise. A solution that
has no constraint (for example, what you would get from inverting the matrix K in
equation 3.12), will have a sensitivity to noise that will render the solution impractical
(the roundoff error will be sufficient to give you a very wrong answer). We therefore
have to introduce some constraint. In the MV retrieval, the constraint is very obvious.

In the Chahine retrieval it is hidden in the assumptions we make (some form of

interpolation) when we integrate the discrete temperature profile in the vertical to

calculate radiances in the iteration. The ideal retrieval will have the correct balance
between constraint and sensitivity to noise. In the diagonal MV case this seems to
be a variance of around 7-10'K.

We can gain more insight as to what the diagonal constraint MV retrieval is
doing by looking at the response functions, which show the response of the measuring
system to a spike of temperature. Figure 3.5 shows the response to putting a spike
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Figure 3.4: The STD (left) and maximum (right) errors in the temperature retrievals
(OK), resulting from putting an error in the radiances as described in table 3.1, for
various retrievals: Diagonal MV retrievals with a constant variance of 50K (dot-dash),
10'K (solid) and 20'K (dashed) lines, and (on the left) the Chahine retrieval (circles

at a few different heights, for the different values of variance. The response generally

peaks at or near the height of the perturbation it is responding to. An exception is

the response to perturbations at levels above the peak of the top weighting functions.

Those result in a maximum response that is just above the height of the top weighting

function, and the response decreases the higher the perturbation. The response has

some vertical spread, which can be taken as a measure of the resolution of the system.

Generally, the amplitude of the response is confined to a region around the spike, and

there is hardly any "remote" response. This will not be true when we introduce

vertical correlations into the constraint. Comparing the response functions for the

different values of variance, we see that a larger variance results in responses with

a narrower and larger magnitude. However, when the variance is increased enough,

we start seeing larger overshoot, which will result in a larger sensitivity to noise, as

expected.

Figure 3.6 shows the 10 largest eigenvalues of Akin for various values of variance.

The first thing to note is that no more than six or seven eigenvalues are significantly

larger than zero, which makes sense because we only have seven observations. The

largest eigenvalues approach 1.0. Figure 3.7 shows the first six eigenvectors (ordered
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Figure 3.5: The response functions to a spike perturbation of temperature at various
heights, for a diagonal MV retrieval using a constant variance of 50K (dash-dot),
10*K (solid) and 20*K (dashed). Starting from the top, left to right, the response to
perturbations at 19.2, 25.7, 32.2, 38.7, 45.2, 51.7 km, (he height in scale heights is
given at the top of each sub-plot)

by ascending eigenvalue) for the various values of constraint variance. We see that
the shapes of the vectors do not change too much with variance, and that the dom-
inant vertical scale decreases with eigenvalue. According to equation 3.26, the first
few eigenvectors (which have the largest vertical structures) with eigenvalues close
to 1.0, will be determined mostly by the inverse solution. The structures in between
(eigenvalues of 0.33-0.67) will be a mixture of the inverse solution and the constraint.
Structures with very small eigenvalues (and small vertical scales) will be affected by
the constraint only. As the variance of the constraint is increased, the eigenvalues be-
come larger, and more eigenvectors are affected by the inverse solution. For example,
the retrieval using a variance of 2.5*K will draw only the first one or two eigenvectors

Z=-4.6



from the inverse solution. The resultant retrieval will therefore be very different from

the true temperature profile, because it can follow it only with very coarse resolution.

We also note that the first two eigenvectors are heavily weighted towards the lower

levels, hence the errors are smallest at the lowest levels and increase with height. In

contrast, solutions with very large variance (e.g. 40'K) will have 4 or even 5 eigenval-

ues that are affected mostly by the retrieval solution. That is not very good as well,
since the observations do not resolve that many, as demonstrated earlier by looking at

the eigenvalues of the weighting functions (section 3.3.4). The resulting retrieval will

be sensitive to noise because the projection of the inverse solution on to the higher

structures is sensitive. Accordingly, we expect to see these structures emerge in the

difference between the true and retrieved fields. Note that the fifth eigenvector is the

most stable structure in the sense that it is the least affected by the variance of the

solution. This suggests it is some measure of the resolution of the observing system,

hence its structure is determined by it, and not by the constraint.

10 largest eigenvalues of Ak for various values of variance in a diagonal MV retrieval
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Figure 3.6: The 10 largest eigenvalues of the Averaging Kernel Matrix for a diago-
nal MV retrieval, with a constant variance of 2.5'K (astrisks), 5K (circles), 10'K
(stars),20'K (diamonds) and 40 0K (plusses).

Ideally we want the retrieval to have large eigenvalues for the first 3 structures,

because they are well resolved by observations, and to have small eigenvalues for

all structures above and including the 5th, because those are not resolvable by the

observing system. This leaves the fourth eigenvalue to be a combination of the inverse

and constraint profiles. Looking at figure 3.6, this corresponds to a variance of about
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Figure 3.7: The first six eigenvectors of the Averaging Kernel Matrix for a diagonal
MV retrieval using a constant variance of 50K (dash-dot), 100K (solid) and 20'K
(dashed).

70K.

To summarize, a retrieval solution is capable of retrieving a temperature profile to
within 2-30K, below 5 mb. Above that height, the quality of the response decreases
with height, and it depends to a large extent on the retrieval method. There is an

inherent resolution of the system, which shows up as the characteristic scale of errors
when the solution is weakly constrained. This error pattern vertical scale is around
1.5 scale heights (10km).

After getting a good sense of the behavior of the retrieval in one dimension, it is
essential to look at the three dimensional fields because it is unclear what horizontal
structures the errors in the retrievals will assume, and how they will affect the vertical-
horizontal cross sections of the waves. This is the subject of the next few sections.
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3.4.2 Three dimensional fields- Chahine's method

Figure 3.8 shows the basic state temperature along with wave number one amplitude

and phase and a longitude-height plot of the wave at latitude y = 2.83 radii of defor-

mation, (see appendix A.1 for details on the calculation of the true field). Figure 3.9

shows the Chahine retrieval of this wave, along with the true minus retrieved fields.

True basic state temperature True wave#1 temperature

True wave#1 temperature at y=2.829

200
Longitude

2 4
Latitude (radii deformation)

Figure 3.8: The 'true' temperature field, generated by the model and used for the
retrievals shown later. Top left: The basic state temperature. Top right: Wave
number 1 temperature amplitude (solid) and phase (dashed). Bottom: A longitude-
height section of the temperature wave number 1, at a latitude of y=2.83. In all
relevant figures, contour intervals for the phase is 0.57r, latitude is in units of radii of

deformation, height in scale heights, and negative values are dashed.

In general, the properties of the one dimensional retrieval, described in the pre-

vious section, hold here. The interesting result is that the horizontal pattern of the

wave is captured well by the retrieval, errors being mostly in the amplitude of the

wave, and not in the phase structures. The lower maximum of wave amplitude (with

a magnitude of 18'K) which is at roughly 5 scale heights is captured very well, with
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Figure 3.9: The Chahine retrieval of the wave temperature fields shown in figure 3.8
(top) and the true minus retrieved fields (bottom). Left: Wave number 1 temperature
amplitude (solid) and phase (dashed, not shown in the true minus retrieved field).
Right: A longitude-height section of the temperature wave number 1, at a latitude of
y= 2 .83 .

a 1*K error. However, above that, the errors grow, reaching 6*K at the top Chahine
level. The excellent retrieval of the phase structure makes sense because the radiance
fields reflect the horizontal pattern of the wave and there is nothing in the retrieval
algorithm that will change the horizontal pattern of the radiances.

The effect of adding random noise to the radiances is to add a white noise field
to the temperature of roughly 2 - 3*K. The resultant retrieved wave field looks a bit
noisy, but the overall large scale pattern is still evident. When a Fourier decomposition
is made and only wave one retained, there is a very small difference between the exact
and noisy fields, meaning that the noise does not project onto wave 1. A similar noisy
appearance is in fact a feature of observed fields.



3.4.3 Three dimensional fields- Minimum variance method

Diagonal constraint

The minimum variance method is used to retrieve temperatures, with various con-

straints and error covariance matrices. First we show results from runs using a di-

agonal error covariance matrix. We showed earlier that having a diagonal constraint

means that it has no vertical correlations, hence the vertical correlations in the re-

trieval solution are due to the observing system. We also showed that for a single

profile, there is a tradeoff between resolution and sensitivity to noise.

What we look at in this section is how this shows up in a three dimensional field.

Figure 3.10 shows a diagonal MV retrieval, with a constant variance of 100, of the

wave shown in figure 3.8. The general features shown in the single profile case hold

here as well. The errors are largest at the top of the domain, and are less than 2'K in

the lower stratosphere. As in the Chahine retrieval, the main errors below the peak

of the highest weighting function are in the amplitude of the wave, while the phase

structure is captured well. Above this level (where we have no Chahine retrieval)

there are errors in both the amplitude and the phase of the wave that increase with

height. To get an idea of magnitudes, the phase error at 8 scale heights is about 60',
and it never exceeds 900 in our runs. The amplitude errors can be as large as the

waves are (when the retrieval follows the constraint, the retrieved wave amplitude is

zero).

The phase shift needs some explaining, because the constraint, which contains no

waves, cannot be the source of it. The constraint can affect the amplitude of the

waves, but not the phase. Hence, the explanation lies in the inverse solution. It is

interesting to note that the phase shift is always such as to decrease the vertical tilt

of the wave. This suggests the inverse solution above the peak of the top weighting

function (6.45 scale heights) is some vertical average of the true profile, between the

peak of the top weighting function and the point of retrieval, because the observing

system sees less and less of the top levels as we go up. This is consistent with the

behavior of the response functions, which show that the response to a temperature

perturbation at any height above 6.45 scale heights peaks slightly above 6.45 scale

heights, and the higher the perturbation, the weaker the response (figure 3.5).

Non-diagonal constraint

In this section we check the effect of having vertical correlations in the constraint. It is

important to check this because the operational retrievals calculate the constraint and

the error covariance matrix from a climatology which may contain waves and other
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Figure 3.10: As in figure 3.9, only for the diagonal MV retrieval with a constant
variance of 10'K.

physical processes that have correlations in the vertical (see appendix A.3). Having a
vertical correlation in the constraint is equivalent to introducing new information to
our retrieval, which may not necessarily be a good thing, because the new information
may be wrong. The constraint we use in most runs is specified from a climatology

we create for our model, by running it with a time dependent forcing. We describe

the constraints we use and how we calculate them in appendix A.2. Most of our
retrievals contain a constraint calculated from a run where we superpose a transient
and a stationary wave number 1. The structure of waves in this 'climatology run' is
different from the structure of stationary waves or transient waves.

Figure 3.11 shows some of the response functions (see section 3.3.4) for the non-

diagonal constraint case, and for a case where only the diagonal elements of the error



covariance matrix were retained, while the rest are set to zero6 . We see that the main

effect of the vertical correlations is to spread the response to non-adjacent layers. The

response functions have two or three peaks, instead of a single major one, meaning

that a spike of temperature perturbation will introduce responses at remote layers.

In this case this is mostly the result of having waves in the climatology from which

the constraint was calculated. The largest effect is on the retrieval at high levels, in

some cases, leading to a larger response at high levels than at the level at which the

perturbation is introduced. This is a result of the increase of wave amplitude with

height in the model run used for the constraint calculation. Note however, that the

remote responses to perturbations at various heights may cancel each other.

Figure 3.12 shows the eigenvectors of the 6 largest eigenvalues (listed in the figure)

of the averaging kernel matrix for the diagonal and non-diagonal constraints that are

shown above. The first five eigenvalues of the diagonal case are larger (or equal) to

the non-diagonal ones, meaning the constraint has more influence on the retrieval

solution in the non-diagonal case (equation 3.26). The eigenvectors of the two cases

have similar general features (similar vertical scales and number of peaks) but the

non-diagonal ones peak higher up and the highest peaks are larger, relative to the

bottom ones.

Figure 3.13 shows a minimum variance retrieval of the fields shown in figure 3.8,

using the non-diagonal constraint used in the above analysis. Overall the retrieval

does a good job, similar to the diagonal minimum variance and the Chahine retrievals.

We see that in this case the retrieval does better at higher altitudes than the diagonal

retrieval does (figure 3.10). The improvement is most striking in the phase structure

of the wave, which is now almost the same as the true one. The error in amplitude is

also about half of that in the diagonal case.

The vertical correlations in the constraint also have an effect of reducing the

sensitivity of the solution to noise. Figure 3.14 shows the RMS error due to putting

noise in the radiances (the same noise used in figure 3.4) for a non-diagonal MV

retrieval, using a few constraints. Shown are the non-diagonal constraint used above

(referred to as standard), its corresponding diagonal constraint, and two additional

constraints that are calculated from the same model run as the standard one, once

with doubling and once with halving the amplitude of the waves. This has an effect

of increasing or decreasing the variance, respectively. We see, as in the diagonal case,

6The difference between the current diagonal covariance matrix and the ones tested in the previous

section is that the variance varies with height, whereas the constraint of the previous section assumed

a constant variance. The current variance has larger values in the middle and upper stratosphere

(around 13*K) and smaller values at the lowest and highest levels (around 3 K).
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Figure 3.11: The response functions to a spike perturbation of temperature at var-
ious heights, as shown in figure 3.5 for a non-diagonal (solid) MV retrieval and the
corresponding diagonal (dashed) retrieval (see text for details).

that the more constrained retrievals (those with smaller waves in the constraint) have
a smaller sensitivity to noise. We also see, by comparing the standard constraint to
its diagonal version, and to the diagonal retrievals of figure 3.4, that the non-diagonal
terms in the error covariance matrix act to reduce the noise sensitivity below the
peak for the top weighting function, and act to increase it above. In the lower
part, that observations see, the RMS error is around 0.5-1.5*K (depending on the
constraint used), and the maximum error is less than 4*K. At the upper levels, the
RMS error is 2-4'K and the maximum error is 10-20', depending on the constraint,
while the diagonal STD is up to 2'K less and the maximum error up to 10*K less
than the corresponding non-diagonal case. This large sensitivity at higher levels is
due to the projection of the noise at lower levels on higher levels, through the vertical

z-4.6
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Figure 3.12: The first six eigenvectors of the Averaging Kernel Matrix for a non-

diagonal (solid) MV retrieval and the corresponding diagonal (dashed) retrieval. The

corresponding eigenvalues for the two cases are given in the title of each subplot. The

diagonal case is denoted by D and the non-diagonal by ND.

correlations.

The reasoning behind having a non-diagonal constraint is clear. First, the noise

sensitivity is greatly reduced in most of the domain as a result of having vertical cor-

relations in the constraint. Second, if we have a general idea of the structure of waves

in the stratosphere, obtained by other means of observation (e.g. radiosondes and

rocketsondes), we can use this as an extrapolation tool to supply the observations. If

the observing system detects a wave in the middle of the stratosphere, the constraint

will supplement its structure at the top of the stratosphere. Indeed our results show

that when the true wave field does include waves, the non-diagonal retrieval is capable

of doing an excellent job, and if the climatology used to calculate it includes suffi-

D- 0. 72, ND- 0.65
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Figure 3.13: As in figure 3.9, only for the non-diagonal MV retrieval.

ciently large waves, it usually is an improvement over a diagonal minimum variance
or a Chahine retrieval. However, there is no way to insure this improvement, because
the retrieval system does not have a way of knowing when the vertical correlations
actually exist in reality. Also, the noise sensitivity tests suggest that small errors in
the retrievals can lead to large variations in the retrieved wave structures at the top
of the domain. There is no clear way to estimate what part of the retrieved wave is
not due to the observations but is artificially provided through the constraint, unless
we know what the true wave field is.

We will illustrate this point with an example. We run our steady state model with
a basic state that is characteristic of early summer, where the winds become easterly
at around 30 km and with a wave number 1 forcing at the bottom. The resultant wave
geopotential height decays rapidly above the zero wind line, and the corresponding

Retrieved wave#1|T77, MV nondag.
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Figure 3.14: As in figure 3.4, only for a non-diagonal MV retrieval, using different
values of wave amplitude in the constraint. Shown are the standard constraint, which
was used in figure 3.11 (solid) and the diagonal version of it (dotted). Also shown are
constraints that are calculated as the standard one, only using half (dash-dot) and
twice (dashed) the amplitude of waves.

temperature wave field is cut off sharply. The temperature field also has some very

small scale structure near the critical layer. Figure 3.15 shows the wave number 1

temperature amplitude and a longitude height cross section, at latitude y=2.83, along

with the non-diagonal MV retrieval of these fields. We see, first of all, that the vertical

correlations of the retrieval introduce waves into the upper part of the domain. The

retrieved wave has some characteristic vertical structure which corresponds quite well

to the fourth eigenvalue of the averaging kernel matrix (see figure 3.12, solid line),

which has an eigenvalue of 0.5, meaning the constraint contributes as much as the

inverse solution. We also see that not only is a wave introduced to upper levels, but

the retrieval has a hard time with the true wave at lower levels because the vertical

structure is too small for the observing system to see. As a result, the retrieved waves

looks nothing like the true wave.

The operational sounding product uses a minimum variance retrieval to obtain

temperature on 32 TOVS levels (see appendix A.3). This relatively high resolution

profile is averaged over specific layers, and these averages are then used to calculate

temperature on 18 levels (9 of which are in the stratosphere), assuming linear interpo-

lation. The reasoning is that the satellite sees layer averages rather than a continuous

temperature profile, and the overall effect is to smooth small scale features. We ap-
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Figure 3.15: The 'true' temperature field generated by the model (top) and its non-
diagonal MV retrieval (bottom). Left: Wave number 1 temperature amplitude. Right:
A longitude-height section of the temperature wave number 1, at a latitude of y=2.83.
The non-diagonal constraint is exactly the same one used in figure 3.13.

plied such an averaging to the retrievals, to see if it gets rid of the relatively small
scale artificial waves introduced by the vertical correlations of the constraint. The

resulting fields are shown in figure 3.16, where the grid is now on the official levels

at which observations are reported. We see that the artificial wave is not averaged

out, it just looks a bit smoother, with the top part appearing more connected to the

bottom part of it.

In order to test how well the sharp temperature structure of figure 3.15 can be

resolved, without having vertical correlations, we repeat the retrieval using a diagonal
MV method with a constant variance of 10*K (figure 3.16), and a Chahine method

(not shown). Both methods give roughly the same results. We basically get a very

True wave#1|/T|/
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Figure 3.16: The retrieval of the wave 1 temperature amplitude shown in the top left
plot of figure 3.15. Left: after applying a vertical averaging over specified layers to get
geopotential heights, then applying a linear interpolation to get temperatures. Right:
A diagonal MV retrieval with a constant variance of 10'K. Note that the vertical
grid of the left hand figure is different from all other figures. The grid corresponds to
levels that are reported operationally.

smoothed version of the true wave, without the projection of vertical scales onto the

top part of the domain. In this case therefore, the CH and diagonal MV methods do

much better than the non-diagonal MV method, not just at the top levels above the

weighting function peaks but everywhere.

The main question is do we expect such high structured perturbations that are

confined to the lower stratosphere to occur in nature? If yes, then we may have a

problem distinguishing between them and a vertically propagating wave. We will

address this question in section 3.5. Before we do that however, we will look at the

effect of having a spatially varying constraint profile.

Horizontally varying constraint

Operational retrievals use a horizontally varying constraint field (see appendix A.2

for more details). This means that waves are introduced into the constraint field, and

not only by the observations. We saw, in a single profile case that in the absence of

vertical correlations, the retrieved fields tend towards the constraint at upper levels

(section 3.4.1, figure 3.3). This would suggest that having a wave in the constraint

profile can introduce a wave into the solution, even if the true field does not contain

one, and even in the absence of vertical correlations in the constraint. Figure 3.17

shows the retrieval of the same summer wave field shown in figure 3.15, using a

diagonal MV retrieval with a constant variance of 10 K, and a non-zonal constraint
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field, which is a wave number 1. Also shown is the constraint wave field. We see that

the retrieval at lower levels looks like the diagonal MV retrieval with one constraint

profile for all grid points, and at higher levels, above the peak of the top weighting

functions, the retrieval looks like the constraint. It is important to note that this kind
of retrieval will introduce a spurious wave only at regions where the observations are
poor, which is not the case with vertical correlations. In the operational retrievals, a

combination of both the vertical correlations and a wave in the constraint profile will
contribute to the retrieved wave fields at upper levels.

Retrieved wave 1 temperature amplitude Constraint wave I temperature amplitude

latitude latitude

Retrieved wave 1 at latitude y=2.83

0 60 120 180 240 300
longitude

Constraint wave I temperature amplitude

0 60 120 180 240 300
longitude

Figure 3.17: A diagonal MV retrieval of the longitude-height section of wave 1 tem-
perature shown in the top right plot of figure 3.15 (left) using a spatially varying
constraint that has a wave 1 structure (shown on the right). The diagonal MV re-
trieval is done with a constant variance of 10*K.



3.5 Summary and implications to observations

We have seen in past sections that the retrievals are capable of doing a very good job

of retrieving waves, with a few limitations. There is a limit to the resolution which

the retrievals can get. Any features with higher resolution are spurious and may be

due to noise or to having small scale structure in the constraint. Above the peak

of the top weighting function (1.5 mb), there are not enough observations to resolve

the waves or even the zonal mean temperature field. Errors start being large even

from the peak of the second highest weighting function, at 5 mb. The operational

retrievals use additional information to fill in those areas. When we come to look at

the observations, we know that any small scale features are questionable, and any

information above 1.5 mb is derived purely from the climatology which forms the

basis of the constraint. We can tell if the the observed fields above 1.5 mb are a

reasonable continuation of the rest of the wave field, but we can not asses how real

they are. Indeed, data on the top analysis level of 0.4 mb often looks obviously

wrong. However, some situations may be more complicated. We have seen that in

certain cases, the retrievals will produce waves where there are none. Moreover, it

is not obvious, looking at such waves, that they are spurious. One way of telling is

by looking at the radiances. In the minimum variance method, the radiances of the

retrieved profile do not necessarily equal the true radiances, especially at the highest

level, because above the peak of the top weighting function the retrieval follows the

constraint and not the true profile. In all the cases of a spurious wave retrieval that

we checked, the radiances of the highest channel (SSU 3) calculated from the true

and retrieved profiles both have very small amplitude waves in them (the retrieved

spurious wave seems to arrange itself so as to have very small radiances in the top

channel, for example by having a node right at that height) but the wave patterns are

180 out of phase with each other. This can also be seen when comparing the pattern of

the retrieved temperature at the peak of the top weighting function with the pattern

in the radiances. The radiances of the true and retrieved fields at lower channels

are not so distinguishable because they are in phase and have a similar horizontal

pattern, only the retrieved radiances have a slightly larger wave amplitude than the

true ones. In cases where the true waves span the entire depth of the stratosphere, and

the minimum variance method supplies information mostly above the top weighting

function, the radiances calculated from the retrieved waves are similar to the true

ones for all channels. Checking the radiances of the highest weighting function is

therefore one way to tell when the retrieval is likely to be off.

Another approach is to decide, on physical grounds, which is more likely- for the



observed wave to be close to the truth or for it to be spurious. The question then
becomes one of listing the scenarios where we have a wave only in lower levels, that is
cut off abruptly above some height. There are two main possibilities we expect from

theory. The first is waves in summer, where the basic state is easterly and will not
allow wave propagation. The second is smaller scale waves, which can't propagate

vertically, both in winter and in summer. In both of the above cases we expect to see
large signals at and below the tropopause and maybe in the lower stratosphere. Since
the geopotential height decays quite abruptly above some height, the temperature
field may have small scale structures in the vertical. As shown in section 3.4.3, our
model runs show this to be true especially at critical surfaces, which are always present
in summer. Our model runs also suggest that waves in winter span the entire depth
of the stratosphere, and the existence of small scales depends strongly on the basic
state winds having small scale structures.

In this context, it is important to know what kind of constraint is used oper-
ationally. The details of this are discussed in the appendix, but it suffices to say
here that in the stratosphere, especially in the southern hemisphere, the constraint is
taken from a rocketsonde data set. A constraint profile is specified by extrapolating
radiosonde profiles upwards, using a covariance matrix calculated from the rocket-
sonde data set. The data is divided into high, middle and low latitudes, and into
seasons. The error covariance matrix of the constraint is calculated directly from a
data set of upwards extrapolated radiosonde profiles, meaning the vertical correla-
tions of the rocketsonde data set are dominant at upper levels. Closer to winter, we

expect to have more vertical correlations, because there is more wave activity. In
summer we expect to have fewer correlations. Since in summer we do not expect to
see waves very high up, we checked one summer of southern hemisphere observations
(November-February 1996) to see if there are any.

On January 28, 1996, we see perturbations in the upper stratosphere that can best
be explained as being a spurious retrieval. The zonal mean winds are easterly above
30 mb. Figure 3.18 shows the temperature perturbation at several levels. We see a

wave packet in the troposphere, extending from South America to Australia, that is
also evident in the stratosphere. At 5 mb we do not see this pattern but we do see
it clearly at 30mb and partly at 10 mb (not shown). At 0.4 we see the full pattern
again (it is also evident at 1 and 2 mb, not shown). This is most likely spurious
because the stratospheric pattern clearly follows the tropospheric one, and we do not
expect a perturbation of such a small wave number to propagate vertically through
easterlies. Also, the oscillation of amplitude in the vertical is also a feature of the
spurious waves of figure 3.15. The magnitude of the wave at 0.4 mb is 2*K. This is



the clearest case of projection of tropospheric features found in the summer of 1996.

This gives us an estimate of the magnitude of this effect. We do however expect it

to be larger in winter, because the constraint is calculated from a set of collocated

radiances and radiosonde profiles measured in the two weeks prior to the retrieval.

Also, the rocketsonde data set used for the extrapolation to the upper stratosphere

has more waves built into the vertical correlations in winter than in summer.

500 mb 150 mb 70 mb

30 mb 5 mb 0.4 mb

Figure 3.18: Observed temperature perturbation (temperature minus zonal mean)
on January 28th, 1996, in the southern hemisphere, at different levels. From top to
bottom, left to right: 500mb, 150mb, 70mb, 30mb, 5 mb, 0.4 mb. Contour intervals
are 3*in the top figures and lin the bottom ones.

A more ambiguous case is the diminishing of wave activity at the end of the

winter that is associated with the breakup of the winter polar vortex. In the southern

hemisphere summer of 1996 the zonal mean winds gradually shift from a state of

easterlies above 2-5 mb poleward of 40*S in the beginning of November, to having a

westerly jet in mid-December that is centered around 50*S, and reaches a maximum

height of 30 mb. The easterly jet also grows stronger in mid-winter, reaching a

maximum speed of -60m/sec in January. The easterly jet starts diminishing in early

February. The wave activity follows this cycle. In the beginning of November we



see considerable wave activity throughout the stratosphere. The temperature waves

have a double peaked amplitude, with the lower, slightly larger peak at around 70

mb and 70*S and the higher peak at 2-5 mb, 65*S. This activity reduces gradually

until in the last third of December, there are no waves in the stratosphere (apart for

some exceptions like the case of January 28th). What is interesting is the way the

wave activity decreases. The higher peak of the waves decreases and moves down to

5-10 mb, and disappears only around December 20. This is a bit surprising since by

December 10th the zero wind line is already at 30 mb. In fact, On December 9-20

the zero wind line often seems to lie just between the two peaks of wave amplitude.

The higher peak extends much more in the vertical beyond the critical level and is

much broader than what our model runs seem to suggest would be the case. The

upper peak magnitude is around 3*K. An example is seen in figure 3.19. The largest

perturbations in the stratosphere lie above perturbations of opposite sign, that are

just below the critical layer. The fact that we have a critical layer and a wave on

an easterly basic state suggests that we may be seeing a case of spurious waves.

Another possibility is a case where the true fields are very sharp and we are seeing a

smoothed out version of them. However, things are not as clear as the January 28th

case, because the phenomena we are seeing has a more coherent time evolution, and

the theory is more complicated. The breakup of the polar vortex and the onset of

easterlies is a highly transient phenomena. It is not clear how waves would react to

the basic state changing so rapidly. Also, in a transient situation, some component

of the wave field may be excited westerly waves, which may be able to propagate

upwards in the easterlies. Further model studies and observational studies need to

be conducted in order to understand this more. In any case, it is important to keep

in mind that the breakup of the polar vortex is a time where the wave fields may

have very sharp structures and may diminish very rapidly above some height. These

conditions are when the retrievals are likely to have the largest errors. Moreover,
since the operational radiosonde data set used to calculate the constraint consists of

measurement from a period of about two weeks prior to the observation day, it is

likely that in this period, the constraint contains significant vertical correlations.



T perturbation at 52S, Dec 10 1996

longitude

T variance at 52S, Dec 10 1996

latitude

latitude

Figure 3.19: Observations of the southern hemisphere on December 10th, 1996. Top
left: Height-longitude map of temperature perturbation (temperature minus zonal

mean) at latitude 52S ('K). Top right: The zonal mean wind (m/sec). Bottom:
Temperature wave number 1 amplitude ('K).
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Chapter 4

The dependence of normal mode

structure on the wave geometry of

vertically varying basic states

4.1 Introduction

In this chapter, we study the effect of wave geometry on the vertical structure of

stratospheric waves, with the goal of testing the validity of these relations for obser-

vations. We start with the much simpler case where the basic state varies only with

height. In chapter 5 we will generalize the results to include meridional variations.

We choose to study vertical wave structures in the context of finding the normal

modes of the system, and we discuss a few basic state wave geometry configurations

which support different kinds of normal modes, that differ in the location of the in-

teraction with the mean flow. Observationally, the stratospheric basic state varies

considerably with time, latitude and hemisphere. The meridional PV gradient struc-

ture is very sensitive to the wind and temperature profiles (Sun and Lindzen, 1994).

The result is that a very large variety of stratospheric PV gradient structures can

be constructed that have fairly realistic looking winds and temperatures, which can

support a large variety of wave structures. Observations are too coarse in the vertical

to rule out many possibilities. The modes we will discuss most, which are relevant

for the rest of our study, are tropospheric baroclinically unstable modes that have a

continuation into the stratosphere. As will become clear, the vertical structure-wave

geometry relations of these modes applies to the forced wave problem as well (strato-

spheric waves forced at the tropopause). We solve the eigenvalue problem for modes

rather than the forced problem, because it highlights the distinction between the var-



ious kinds of wave geometry configurations, and because of the possible relevance to

the eastward propagating waves observed in the southern hemisphere (1.2.3).

We need to say a few words about the differences between the current study and

related past studies of the normal modes of the troposphere-stratosphere system (e.g.

Geisler and Garcia, 1977, Kuo, 1979, and Fullmer, 1982, for a # plane; Hartmann,

1979, and Strauss, 1981, for a sphere). Most of the discussion in past studies is in

terms of Green (1960) modes and Charney (1947) modes, which are the different

normal mode solutions of the Charney problem. For a given wavenumber, a few

normal mode solutions exist, but only one is unstable while others are decaying. The

different modes grow in different regions of wavenumber space. The Charney modes

grow at shorter wave lengths, and are the most unstable. The Green modes are

unstable at longer wavenumbers, and are mathematically separated from the Charney

modes by a neutral wavenumber (zero exponential growth rate). While Charney

modes have a shallow vertical structure with amplitudes that peak at the surface,

Green modes are deeper and typically have large amplitudes in the stratosphere.

This type of discussion does not lend itself well to generalizing the results to other

basic states. It is important to note that most of these studies were done before the

emphasis on PV dynamics became widespread. The notion of wave geometry (regions

of wave propagation and evanescence and the location of critical layers), for which

PV is central, will provide a more physically illuminating approach, which will allow

us to generalize to the latitude and time dependent problems, and apply our results

to specific observed waves on a range of time scales. We will also highlight the fact

that the growth mechanism of the Green and Charney modes is physically similar,

and the distinction between them is a mathematical artifact of specific features of the

wave geometry.

4.2 The model

A one dimensional (height) quasi-geostrophic (QG), #-plane model is used to cal-

culate the normal modes of a given basic state. The formulation follows Lindzen

(1994a,b). The nondimensionalized equations of conservation of pseudo potential

vorticity, linearized around a zonal mean basic state are:

( + U- )q'+ o' + (V x Y') - (4.1)(at + 8x )q 'iy =poaz (N2)



q', q are the perturbation and zonal mean PV:
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X, y, z, t are the zonal, meridional, height and time coordinates. #', v', u', T' and

C' are the perturbation geopotential stream function (see B.1), meridional and zonal

winds, temperature and the vertical component of vorticity respectively. U and N 2

are the basic state zonal mean wind and Brunt-Vaisala frequency respectively, taken
to be independent of y. #e is the nondimensional # parameter (see appendix B). The
nondimensional density is assumed to be p = e-z. We express all variables in terms
of a geopotential stream function, as follows (nondimensionalized):
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See appendix B for the nondimensionalization constants and other details. 7' and
F are the heating and momentum damping terms, assumed to act on the perturbation
fields only. k is a unit vector in the vertical direction. In most runs, we have no heating
and damping, since we are interested first in understanding the unforced, undamped,
normal mode structure. We use Newtonian heating and Rayleigh damping when we
do retain these terms.

The boundary conditions are a rigid lid at the surface (applied by setting the
vertical velocity to zero in the thermodynamic equation), or an Ekman boundary
condition, and a radiation condition at the top (see appendix B). For brevity, we
will drop the primes from all the perturbation quantities except for the temperature
perturbation T', to distinguish it from the zonal mean temperature T.

We assume perturbations on the mean flow which have a sinusoidal horizontal
structure with a zonal complex phase speed c = c, + ici:

O(z) = <p(z) -ei-k(x-ct)+i-y (4.5)
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This results in the following equation:

N 2 a p a<p) + N 2 2 iN2 a pa i8<pN2 + ( -2 K2N2 ' _ N 2 (4.6)
p oz (N2 Oz J - c pk(U - c) z N

where K 2 = k2 + 12 is the total wavenumber and k and 1, the zonal and meridional

wavenumbers respectively. We have assumed no friction (Y = 0)1 and Newtonian

damping WU = -a2. For given zonal and meridional wavenumbers, the complex

phase speed c and the corresponding eigenfunction ep(z) are found. The numerical

method is described in Harnik and Lindzen (1998).

Since the zonal mean flow has no meridional variation, we are free to choose

a meridional wavenumber for our perturbations. Since the wavenumber in the un-

damped unforced eigenvalue equations appears only as part of the total wavenumber,

we do not have to specify it while solving the equations.

The basic states are calculated separately in the troposphere and stratosphere.

Unless otherwise noted, the tropospheric PV gradient is specified to be between zero

and #,2 and wind and temperature profiles calculated from it 3 . In the stratosphere, we

specify two of the three variables wind, temperature and PV gradient, and calculate

the third from them. When we decide to calculate PV gradients from wind and

temperature, we specify wind shear and temperature lapse rates, and match the wind

and temperature to the tropospheric values at the tropopause (following Lindzen,

1994a). A spline smoother is then applied at a narrow region around the tropopause

to keep the first two derivatives of wind and temperature continuous. The results

are found not to be sensitive to the width of this smoothing region. In order to

facilitate the application of a radiation condition, the wind and temperature are held

constant at the top levels. All profiles thus specified have O(0) PV gradients in the

stratosphere, and a sharp tropopause, characterized by a narrow region of very large

PV gradients (10-30 #) between the troposphere and stratosphere.

Specifying PV gradients and one other variable is slightly more involved than

calculating PV from winds and temperature. It turns out that in a one dimensional

'We use Rayleigh damping in our model studies mostly in order to parameterize a radiation

condition. In the one dimensional model this is unnecessary, since it is very easy to implement a

radiation condition. In two dimensions it is much harder and we use a sponge layer instead.
2Harnik and Lindzen (1998) found that varying the tropospheric values of g, from 0 to # did not

significantly affect the long waves.
3The PV gradients yield values for isentropic slopes, with arbitrary values at the ground. The

partition of the slopes into wind and temperature also involves an arbitrary constant. All of these

choices do not affect the results relevant to this study, which makes sense because we are interested

in the stratospheric structures. See Harnik and Lindzen (1998) for more details.
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model there is an integral constraint on the mass weighted vertical integral of the PV
gradient. From equation 4.3 we get:

tope ydz = +e UZ1(top)et + - e-z (4.7)
oe " N 2 (0) N 2 (top)

Applying the condition that shear at the top is zero (necessary for the implementation

of a radiation condition) yields a strong constraint on the mass weighted integral of ly.

Note that even if we do not require zero isentropic slopes at the top, the value of
is very sensitive to the integral of q, because of the density factor, hence an arbitrary

set of qY and N 2 will, in most cases, yield wind profiles that blow up at z -+ 004.

We therefore need to make sure that the q, we specify satisfies equation 4.7. The

tropopause is taken at z = 1 (8.9km).

4.3 A wave geometry classification of basic states

In this section we will introduce the wave geometry concept as it applies to our

problem. We also identify the different basic state configurations and the possible

modes they support. We follow Lindzen et al. (1980) who identify overreflection to

be the mechanism by which shear instabilities occur, and classify the wave geometry

configuration necessary for instability. The reader is referred to this paper and the
references therein for a more thorough treatment of the results we present.

We start by transforming equation 4.6 into canonical form:

zz + (U K2 + F(N2)) N29 = 0 (4.8)

where we use the following transformation of variables:

<p = el d@ (4.9)

and

F(N 2) (2 5-e 2N) (4.10)

Equation 4.8 is a wave equation, and the index of refraction for vertical propagation

4This may be a peculiar property of the one dimensional model, because in two dimensions we
have an additional degree of freedom in the meridional wind curvature term.



is:

n2ef = N - k2N 2 + F(N 2)N 2  (4.11)
U - c,

where c,. is the real part of the phase speed (see footnote 6). Under WKB conditions5
the solution is of the form eui f nref , hence in regions where the real part of nref

is non-zero we have wave propagation, and in regions where its imaginary part is

non-zero we have exponential behavior'.

Wave geometry is the configuration of the basic state in terms of vertical wave

propagation and evanescence regions. These are separated either by a turning point

(n 2 = 0) or a singular point (nr&ef -+ ±oo) which in our case happens at the critical

level where U = c,. When a wave approaches a turning point, it reflects back because

it can't propagate beyond it, unless it can tunnel through to another wave propagation

region. In this case we get partial reflection,. Waves approaching a critical surface from

a wave propagation region are absorbed in it (in the linear limit7). If, however, the

critical level is separated from the wave propagation region by an evanescent region

(i.e. a turning point exists in between), the wave may tunnel to the critical level,
in which case it will overreflect from it (Lindzen and Tung, 1978). Tunneling to the

critical level will occur only if there is a propagation region or a sink of wave activity

beyond the critical layer' (otherwise waves will reflect from the turning point before

they reach it). Figure 4.1 shows a schematic of these wave geometry configurations.

5WKB is valid if the wave length of the solution is much smaller than the variations of the
medium, allowing us to make the separation between a wave and a slowly varying basic state. See
sections 5.2.1 and 5.3.5 for a quantitative discussion.

6Note that we use only the real part of the phase speed in our calculation of the index of refraction.
This gives an exact picture of the wave geometry for neutral waves, a good approximation for slowly
growing modes and just a crude picture for fast growing modes. A growing wave will decay away
from its source (the troposphere in this case) just as waves that are forced by a wave maker that is
increasing its forcing amplitude in time will decay in amplitude away from it. Calculating the index
of refraction using the real phase speed only will distinguish between decay that is due to the growth
of the waves and decay that is due to the medium not supporting wave propagation. Also, using
the real phase speed is relevant to waves that have saturated nonlinearly, hence are not growing in
time. We expect the vertical propagation of such waves to still be affected by the wave geometry.

7We should note here that in the nonlinear limit waves propagating directly to a critical level will
oscillate between overreflection and partial reflection, eventually reaching a fully reflecting steady
state (e.g. Warn and Warn, 1978).

'This is usually the case because Sq (which is the dominant term in n, near the critical level,
equation 4.11) changes sign at the critical level. This is not true in some very special cases, i.e.
when U = c at a minimum or maximum of U where V, is monotonous, or when q, changes sign at
the critical level, or when 4, = 0 in the vicinity of the critical level.
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Figure 4.1: The wave geometry of a fully (a) and partially (b) reflecting turning point,
and an absorbing (c), reflecting (d) and overreflecting (e) critical level.
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The physical mechanism behind overreflection is suggested by Lindzen and Barker

(1985) to be the Orr mechanism (Orr, 1907), where a perturbation that is tilted

against the shear and is moving with the flow at some level, will be tilted to a

more vertical configuration, causing growth of the perturbation'. If the wave that

overreflects off the critical level reflects back from a turning point (or the surface) in

a way that interferes constructively with itself, we can have sustained modal growth

through a continuous overreflection-reflection process. For a given wavelength and

basic state, the condition for constructive interference will be satisfied only for a

certain phase speed (Lindzen and Rosenthal, 1976). Thus, a quantization condition

is at the heart of the dispersion relation.

4.3.1 The tropospheric wave geometry.

The main characteristics of the tropospheric basic states we use are order # PV

gradients in the troposphere and a large spike of PV gradients at the tropopause.

We have shear at the surface, which is equivalent to a 3 function of negative PV

gradients (Charney and Stern, 1962). Since U - c is also negative at the surface,

the index of refraction (equation 4.11) is large and positive there, resulting in an

infinitesimal wave propagation region (Lindzen and Tung, 1978). Above the surface,

q, > 0 and U - c < 0, hence nr eis negative all the way to the critical level. Above

the critical level, U- is very large and positive, and we have a wave propagation

region. Surface waves can tunnel to the critical level, overreflect off it, and reflect

back up from the surface to form a growing mode. This was shown by Lindzen et al.

(1980) to be the mechanism of instability in the Charney model. This configuration

applies to all wave geometries we consider in this study 0 . Also, the tropopause will

always be a wave propagation region because qY is very large and positive, resulting

in a positive nef. This tropospheric wave geometry configuration is relevant both to

the long waves (Green modes) and the most unstable medium scale waves (Charney

modes), and only the stratospheric wave geometry is different. Since the instability

results from an interaction of the wave with the mean flow in the troposphere, the

9 Correspondingly, if the perturbation is tilted in the direction of the shear, it will decay.
' 0 Snyder and Lindzen (1988) considered profiles for which the negative PV gradient region extends

over some depth, rather than be confined to a 6 function at the surface. In particular, they examined

states where the i, < 0 propagation region extends higher than the critical level, which results in

wave propagation below the critical level and wave evanescence above. Such basic states allow

overreflection from the tropopause wave propagation region above. Snyder and Lindzen referred to

such cases as 'upper level baroclinic instability'. In addition, they considered states with no shear

at the ground, but q, < 0 in a region above the ground. Since our interest is in the stratosphere, we

do not discuss such configurations here.



physical growth mechanism of the long and medium scale waves is similar and the
differences between them stem from the differences in the stratospheric basic state.
We will elaborate on this point later on.

4.3.2 The stratospheric wave geometry.

Using the conditions for wave absorption, reflection and overreflection, we can now

distinguish between three qualitatively different stratospheric basic states, which re-

sult in qualitatively different normal modes:

I. PV gradients are positive everywhere, and no critical layers in the
stratosphere.

The corresponding normal modes are like the classical baroclinic instability modes
which grow by overreflection in the troposphere only (e.g. the Charney model, see

section 4.3.1). From equation 4.11 we see that shorter waves will be more likely

to have a negative nef * Small waves will therefore have a turning point above the
tropopause, and will be evanescent in the stratosphere. Very long waves will in
most cases propagate throughout the stratosphere and radiate out through the top
of our model. The medium waves will be somewhere in between, with the possibility
of having one or more wave ducts in the stratosphere (see figure 4.5, which shows

ref (K)).
Whether a mode is propagating or evanescent has a large effect on the variation

of amplitude with height; WKB theory tells us that to first order, the solution at a
given height, away from turning points and the critical level has the form:

- ( AN(z) eif nref(z)dz + BN(z) eif nref(z)dz e-citik(x-crt)+ily (4.12)
knref(Z) fnref(Z) /

where A and B are integration constants. In regions where n 2 is positive, the
zero'th order behavior of the amplitude is of the form e1. If n 2 is negative, then

zf 2

e Inlref(z)Idz is the zero'th order behavior". First order effects of nref come in
through the nref -1/2 factor. This factor is necessary in order to satisfy wave activity
conservation. The wave geometry in the stratosphere is important first of all for the
vertical structure of the waves. We will see later that in some cases it can also affect
the phase speed and growth rate of the modes (sections 4.4.2, 4.4).

"We choose the minus sign before the integral because generally, the waves decay away from their
source (the troposphere in this case) if they are not able to propagate away from it.



II. PV gradients are positive everywhere, with one or more critical lay-

ers in the stratosphere.

Since U - c and q are positive in the upper troposphere and lower stratosphere,

a critical layer in the stratosphere will cause nref -+ oo below it, and nref -+ -oo

above it (this configuration is similar to figure 4.1.c). The corresponding normal

modes grow by tropospheric overreflection, but at the same time they are absorbed

at the stratospheric critical level. Such basic states occur in summer, when there

are easterlies in the stratosphere, and also possibly in spring, when the polar vortex

breaks down. The effect of the stratospheric critical level is first of all on the ampli-

tude of the waves, which drops sharply to zero above the critical level. Apart from

that, there may be some effect on the growth rates. Since the critical level acts as a

sink of wave activity, its effect is similar to putting damping in the stratosphere. We

will not show examples of modes with a stratospheric critical level, rather, the reader

is referred to section 4.4.2 (also figure 4.8) where we discuss the effects of Newtonian

damping.

III. There are one or more regions of negative PV gradients and one or

more critical levels in the stratosphere.

The existence of one or more regions of negative PV gradients may allow an

interaction with the stratospheric critical level (an overreflection from it), resulting

in stratospheric modes. There are few different configurations which can allow for

qualitatively different modes. Not considering the special cases when n2ef does not

change sign at the critical level (footnote 8), we distinguish between critical levels

that have a wave propagation region below, and an evanescent region (underneath

another wave region) above, and the opposite, when the evanescent region is below the

critical level. The difference is in the direction from which overreflection can occur.

What determines which configuration we have is the sign of shear and PV gradient

at the critical level. Figure 4.2 shows the different wave geometry configurations that

support overreflection. We divide them into a critical level in a region of positive

shear, with negative (a) or positive (b) PV gradients, and a critical level in a region

of negative shear with negative (c) or positive (d) PV gradients.
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We see that when the shear and the PV gradient have the same sign at the critical

level, overreflection occurs below the critical level, and when they have opposite signs,

overreflection occurs from above. When the PV gradients are positive at a critical

level in a region of negative(positive) shear, an unstable mode can exist only if there

is a region of negative PV gradients above(below) the critical level, which serves

as the wave propagation region from which waves tunnel to the critical level and

overreflecti 2 . An important point to note is that for PV gradients to be negative, we

need a large enough positive wind curvature, or alternatively a large enough negative

shear (equation 4.3). Negative PV gradients are therefore more likely to occur near

a minimum in westerly winds (or a maximum in easterly winds).

Also shown in figure 4.2 are possible combinations of two critical levels. We

expect to see two critical levels, not just one, in cases where the region of negative

PV gradients is near a local wind minimum or maximum. The different possibilities

are:

1. A wave propagation region that has on each of its sides a turning point with

a further critical level, allowing overreflection from both directions. The over-

reflection off of each side enhances the other, as long as the quantization con-

dition is satisfied (plots f, i).

2. A wave propagation region bounded on both sides by critical levels. There are

also two wave propagation regions beyond the critical levels and their evanescent

regions. Waves can overreflect off of both these critical levels from the outer

wave regions. The wave activity that tunnels into the middle wave propagation

region from overreflection off one critical level gets absorbed in the other, i.e.

each critical level acts as a wave energy sink for the other (plots e, j).

3. A wave propagation region bounded by an absorbing critical level on one side

and a turning point and further critical level on the other. The waves overreflect

off one side of the wave propagation region and get absorbed at the other. The

only way such a basic state can sustain an exponentially growing mode is if

waves are continuously excited in the propagation region by overreflection from

the other side of the critical level (plots g, h).

Since the phase speed of the modes (the location of the critical level) is part of the

solution, it is quite tricky to construct some of the configurations above. Having two

12As was pointed out by Lindzen and Tung (1978), this is the Charney-Stern (1962) necessary

condition for instability
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critical levels rather than one will affect the vertical structure of the modes, and will
probably also affect their phase speed and growth rate. It could be, however, that

the interaction with one of the critical levels will be dominant, while the interaction
with the other will be forced. This is certainly so when one of the critical levels is the
tropospheric one (which is dominant). By comparing modes of basic states that differ
only in the stratosphere, we find that the tropospheric instability is dominant in our
results in the sense that it sets the phase speed (the interaction of the mode with
any critical levels in the stratosphere may have a small but secondary effect on the
magnitude of the phase speed). It is important to note that we did not necessarily
find all possible normal mode solutions because our search routine only finds the most
unstable modes. We did not find any internal stratospheric instabilities with phase
speeds that are higher than tropospheric phase speeds (i.e. any modes that do not
interact with the mean flow at a tropospheric critical level). We did not, however,
look for purely stratospheric modes on basic states that do not support tropospheric
baroclinic instability". It is very possible that stratospheric modes with higher phase
speeds do exist in our model. We leave these for future study.

The fact that the tropospheric basic states set the phase speeds to tropospheric
values means the stratospheric critical levels exist only on zonal wind profiles that
have a decrease in wind above the tropopause. In section 4.5 we will show an example
of a mode which is essentially like figure 4.2.f, in addition to having a critical level in
the troposphere.

We decided to focus on the deep tropospheric instabilities, and leave the internal
stratospheric modes for future study for two reasons. First, most observed waves are
quasi stationary, and the prominent eastward stratospheric propagating waves occur
in winter in the southern hemisphere, when there are no critical levels in the strato-
sphere (the basic state wind in the stratosphere is much larger than the phase speed
of the modes). The deep tropospheric modes are therefore the most likely candidates
to explain observed waves. Such waves are not observed in southern hemisphere
spring (March, April) and in the northern hemisphere spring and fall (March, April,
September, October, also maybe in February), when the basic states that are most
likely to support internal stratospheric instability occur (basic states with a minimum
in westerly wind at latitudes 50-70*, above the tropospheric jet). The second reason
is that even if internal stratospheric modes do exist, observing them is hard because
they have very sharp features (e.g. figure 4.10). Our results from chapter 3 show that

"Internal baroclinic instability of the mesospheric summer easterly jet has been suggested in the
past as a source for the mesospheric 2-day waves (Plumb, 1983). As far as we know, there have been
no studies of internal baroclinic instability of stratospheric basic states.
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the retrievals of such waves may be very problematic (sections 3.4.3, 3.5). In addition,

the observations of zonal mean wind may not be good enough to distinguish between

a basic state with negative PV gradients and one with only small but positive q.

It should be noted that the stratospheric part of the deep tropospheric instability

modes can be regarded as forced, with a forcing that has a zonal phase speed and is

increasing with time. Therefore, the relations between wave structure and the wave

geometry apply to quasi-stationary waves, and to eastward propagating waves even

if they are forced by nonlinear interactions at the tropopause and not by instability

(see discussion in section 1.2.3).

4.4 The normal modes on basic states with no crit-

ical levels in the stratosphere

In the following section, we will show how the wave geometry view applies to our

model results, for basic states that have no critical levels in the stratosphere. In

section 4.4.1 we show the results of a specific run to illustrate the general features of

the solutions. In section 4.4.2 we discuss the effect of wave geometry and Newtonian

damping on the growth rates, in section 4.4.3 we discuss the effect of surface damping

and in section 4.4.4 we discuss the sensitivity of the results to various parameters.

4.4.1 The relation between the index of refraction, the dis-

persion relation, and the vertical structure of the modes

Figure 4.3 shows the basic state wind, PV gradient, N 2 , and temperature of this

run. The PV gradient in the troposphere is set to 0.5#. In the stratosphere, the PV

gradients are of order P. The wind profile is characteristic in shape and magnitude

of the winds of a southern hemisphere June-August basic state.

Figure 4.4 shows the real and imaginary phase speeds as a function of nondimen-

sional total wavenumber (K) for unstable modes on this basic state. On top is the

dispersion relation for a large range of wavenumbers. On the bottom is a blowup of

the long wave spectrum. There are three main regions, based on the dispersion rela-

tion (top figure); The medium waves which are the fastest growing, the short waves

which grow very slowly (in the limit of zero PV gradients in the troposphere these

waves are neutral, as in the Eady model), and the long waves which grow slower than

the medium scale waves.

The long and medium waves are the traditional Green and Charney modes re-
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Figure 4.3: The basic state wind (top left), Brunt Vaisala frequency (top right),
Temperature (bottom left) and PV gradients (bottom right) used in the standard
model runs. Height is in kilometers, wind in m/sec, N2 in 10 4 sec 2 , temperature in
*K and PV gradients in units of #.

spectively, and the neutral point that, by definition, separates them exists in this run
at K = 0.5. There is another neutral point at longer waves (K = 0.22). A closer
look at the long wave region (bottom figure) reveals a lot of structure in both the
real and imaginary phase speeds. The neutral points discussed above appear to be
neutral regions (K = 0.4 - 0.5, K = 0.2 - 0.22). Between them we find regions of

relatively large growth rates. The longest waves also have non-zero imaginary phase
speeds.

The index of refraction also has a few distinct regions in wavenumber space,
that correspond to the different regions in phase speed. Figure 4.5 shows height-
wavenumber contour plots of the index of refraction squared calculated using equa-
tion 4.11, for the long and medium wavenumbers shown in the bottom of figure 4.4.
On the right(left) is n ef calculated with(without) the N 2 derivative terms in F(N 2 )
(equation 4.10). The wavenumbers shown are the same as in the bottom of figure 4.4.
The term F(N2 ) has a contribution from the density factor (- ) and a contribution
from N 2, which depends only on its first and second derivatives with height. If N 2
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Figure 4.4: The dispersion relation for the basic state of figure 4.3. Real (solid, circles)
and imaginary (dashed, squares) phase speed. Multiply by 30 to get in units of m/sec.

Circles and squares mark the wavenumbers that are actually calculated. Wavenum-
bers are nondimensional. Top: Full range of long, medium and short wavenumbers
(k=0.1:0.1:2.5). Bottom: The long wave region only (k=0.1:0.02:0.7).

is constant, F(N2 ) = -- 2. As mentioned before, the index of refraction without

the N 2 derivative terms is the one relevant for o (equation 4.6). The full nef is rel-

evant for @b. We see that the differences are generally small except at regions where

N 2 varies rapidly (near the tropopause and stratopause). In these regions, nef with

the derivative terms is negative, suggesting wave evanescence. In the simpler form

of n 2e, this evanescence still exists, but it is hidden in the rapid variations of o in

regions where N 2 changes rapidly. In these regions the wave nature of p is violated

(it varies faster than a wavelength)1 4 . These regions have little effect since they are

very narrow and waves tunnel through them easily. Since the wave geometry looks

simpler without the N 2 derivative terms, we prefer looking at it. Looking at the

simpler form, without the N 2 terms, we see that the longest waves, beyond the long

14A quantitative example is shown in figure 5.8, where the magnitude of ( (L) is plotted. The
regions where this term is much larger than 0.5 are shaded and they coincide with regions where N2

(figure 5.1) varies rapidly.
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wave neutral point (K < 0.2) can propagate all the way through the stratosphere.
Waves between K = 0.2 - 0.5 have a turning point in the upper stratosphere, and
wavenumbers larger than K = 0.5 (the Charney-Green neutral point) are evanes-
cent in the stratosphere. Note that all the wavenumbers have similar tropospheric
wave geometries (propagation in the tropopause region, where the PV gradients are
large enough to allow it, and in a narrow region above the critical level). The main
differences are in the stratospheric wave geometry.

As we already pointed out, the division of stratospheric ne into regions of
wavenumber space is similar to the division in the dispersion relation. This is ex-
pected to some extent, since the index of refraction is a function of the phase speed.
The coincidence of the neutral point with the boundary between stratospheric propa-
gation and evanescence is not general. On some basic states (mostly those that have a
minimum in winds above the tropospheric jet peak), the longest medium scale waves
may have a propagation region in the stratosphere, and correspondingly, quite large
amplitudes there.

The main point we want to show in this section, however, is that the index of
refraction (which is part of the solution to the extent it depends on phase speed) has
a direct effect on the vertical structure of the waves. Vertical structures are calculated
for all wavenumbers for which c is calculated. As expected, we find that the modes
in each of the regions of nref and the dispersion relation curves have distinct vertical
structures. Figure 4.6 shows vertical structures of waves from each of these regions
and of the neutral wave (K < 0.2, 0.2 < K < 0.5, K = 0.5, K > 0.5). Shown are the
amplitude and phase of the temperature perturbation and of the geopotential stream
function perturbation (see appendix B for exact definition), with and without the
density contribution. For easy comparison, we also show the real part of the index of
refraction for vertical wave propagation for these wavenumbers. Since we are looking
at <p and not at # (equation 4.9), we use nref without the vertical derivatives of N 2

We see that the two long waves have relatively similar tropospheric structures,
with a minimum of |#| at the critical level (where the phase increase with height is
most rapid) and relatively constant temperature amplitude and phase. Long wave
amplitudes are much larger in the stratosphere than in the troposphere". This may be
important because one of the main problems in associating the eastward propagating
observed waves with normal mode instability is their apparent lack of a tropospheric
continuation. This may be due to a much smaller signal-to-noise ratio in the tropo-

i51n the current example, the geopotential height can be more than 10 times as large at 40 km
than in the troposphere. This however will depend strongly on damping, which is not included in
this run.
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Figure 4.5: Height-wavenumber plots of the index of refraction squared (n 2e), not
using the derivative terms in F(N 2 ) (left) and including these terms (right, see text for
explanation), for the long waves shown in the bottom of figure 4.4. n 2eis in nondi-
mensional units. Contour values are 0:0.25:1,2:2:10. Negative (wave evanescence)
regions are shaded. Height is in kilometers.

sphere. We also see that the phase of the long waves increases with height, indicating

a westward tilt of phase lines with height and vertical propagation. This fits nicely

with the picture of an unstable wave growing in the troposphere and propagating

upwards into the stratosphere.

There are, however, large differences in the stratospheric temperature structure

of the long waves of the different regions. The temperature amplitude and phase of

the longest waves (K = 0.1, solid line) increase throughout the stratosphere, while

the slightly shorter long waves (K = 0.3, dashed line) have a more confined structure

with a broad maximum in the upper stratosphere and a decrease to tropospheric

amplitudes above 45 km, where the phase is constant with height. These differences

correspond well with the differences in n 2e: while the longer waves propagate all

the way through the stratosphere, the shorter waves have a turning point at around

45km (n 2e becomes negative). These differences are also manifest in the geopotential

height, but not as clearly (<0le- is more constant with height for the vertically
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(left) and phase (middle) of the geopotential stream
contribution (pe- 2), and the real part of the index of

refraction (nref, not using N 2 terms, see text for details). Bottom: The geopotential
stream function amplitude including the density effect (left), and the temperature
amplitude (middle) and phase (right), plotted for a few wavenumbers. Wavenumbers
shown are K = 0.1 (thin solid), K = 0.3 (dashed), K = 0.5 (dash-dotted), and
K = 1.1 (thick solid). Height is in kilometers. Phase is in units of 7r. n,ef is in
nondimensional units.

propagating K = 0.1, while it has a peak in mid-stratosphere which is indicative of
downward reflection, for K = 0.3). Note however, that the K = 0.1 wave has a small
amount of partial downward reflection (evident from the small undulations in |#|e-2

and in temperature amplitude), and the K = 0.3 is not fully reflected downward, and
some of it leaks through the top of the model (a non-zero, but small increase of phase
with height even above 45km).

The medium waves (K = 1.1, thick line) have a very different stratospheric

structure- their amplitude decays rapidly above the tropopause, and the phase is
constant with height (the tropospheric structure is quite similar to the long waves).
This decay, along with no phase shift with height, corresponds well with the fact that
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medium waves are evanescent in the stratosphere. It is interesting to compare the

medium waves to the neutral wave (K = 0.5, dash-dotted), which is also evanescent

in the stratosphere. The latter decays with height in the troposphere, but much more

slowly. This highlights another factor which contributes to the decay with height of

the medium scale waves, and that is their growth in time. Charney and Pedlosky

(1963) were the first to point out in this context that growth in time will be manifest

in a decrease in amplitude away from a source of wave energy which is growing in

time (the source in our case is the troposphere).

Finally, while the unstable waves have a westward phase tilt with height (some

larger than others, and the medium scale waves have a phase tilt only in the tro-

posphere), the neutral waves have a vertical phase structure in which all the phase

variation is concentrated at nodes (where the phase jumps r radians). This is true

both in the troposphere and stratosphere.

Figure 4.7 shows longitude-height structures of a few of the long waves, assuming a

zonal wave 1, for the purposes of comparing to observations and 2 dimensional model

studies later on (e.g. figures 1.6 and 5.5). Shown are the two long waves of figure 4.6.

We see that the K = 0.3 wave, which is evanescent at the top of the stratosphere,

has a smaller # phase tilt at the top of the domain, compared to wavenumber 0.1

which has no turning point. Also, the temperature structure is more vertical and

more confined. It peaks in mid-stratosphere, as opposed to the upper stratosphere.

The temperature structure in general shows more variability because it is a vertical

derivative of 4. This makes the combination of # and temperature fields a very useful

diagnostic for wave geometry.

Also shown in figure 4.7 is the neutral long wave (K = 0.2). The wave is clearly

a standing wave in the vertical. There is no phase tilt with height and there are

two nodes in #, one in mid-stratosphere and the other at the critical level in the

troposphere. The pattern of this wave looks like a version of the longest wave (K =

0.1), that was tilted into the vertical.
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Figure 4.7: Longitude-height structure of geopotential stream function (left) and
temperature (right), for various total wavenumbers K, assuming a zonal wave one
(S. = 1). From top to bottom, we have the longest wave (K = 0.1), the long neutral
wave (K = 0.2), the fastest growing long wave (K = 0.3), and the longest medium
wave (K = 0.52). Height is in kilometers. Negative values are dashed.
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An interesting point to note about the node at the critical level is the following: A

strictly neutral wave, assuming normal mode structure, has a real phase speed, and

in the absence of damping, at least locally at the critical level, the equations become

singular:

(U - c)q' + -q#' = 0 (4.13)

In the Eady model Y = 0, hence this is not a problem. In the Charney model c, = 0

when ci=0, which places the critical level at the ground where again qY = 0. In

the present case, the neutral waves do have a critical level, and Y : 0, hence the

geopotential stream function has to vanish, by having a node. Bretherton (1966)

was the first to note that neutral waves can not occur unless specific conditions are

met at the critical level, however, he stressed the possibility of q. = 0 at the critical

level, and assumed the case where v' = 0 (#' = 0) at the critical level is rare. Since

long waves generally have a node (or almost node, when ci > 0) somewhere in the

troposphere, it is not as surprising to find modes that have v' = 0 at the critical level.

Finally, also shown in figure 4.7 is the structure of the longest medium wave,

just beyond the neutral point. We see that the # perturbation is maximum at the

tropopause, and decays quite slowly in the stratosphere (its growth rate is quite

small). The structure is almost vertical, consistent with a perturbation that is slowly

growing, and is evanescent in the stratosphere. The temperature perturbation is much

larger in the troposphere than in the stratosphere. Note that both neutral waves are

fully reflected downward from a turning point, and the main difference between them

is in the location of the turning point.

4.4.2 The dependence of growth rate on the wave geometry

and Newtonian damping

As was shown by Ioannou and Lindzen (1986), the meridional wavenumber makes a

very big difference for the maximum growth rate of the long waves (because the growth

rate is kci, and for a given total wavenumber, 1 determines k). In the real atmosphere,

we will only see integral zonal wavenumbers. Therefore, assuming the meridional

structure is determined externally by the basic state confinement (see chapter 5), the

wavenumbers that will be relevant to the stratosphere will be set by the basic state.

For example, for no meridional confinement only waves 1 and 2 have large amplitudes

in the stratosphere (wave 3 is a medium scale wave), while for large enough values

of 1, the very long waves are not relevant- they have imaginary zonal wavenumbers.

The structure of the dispersion relation (bottom of figure 4.4) in this case becomes
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crucial, because the waves will have large or small growth rates depending on whether

their integral zonal wavenumbers lie in the regions of very slow growth or not. It is

therefore important to understand what causes some wavenumbers to grow and others

to be neutral. This also highlights the importance of understanding the latitudinal

behavior of the perturbations (which we discuss in more detail in chapter 5).
In the Charney model, the neutral point forms as a result of the formation of

a standing wave pattern above the critical level, which forces a node at the critical

level (Lindzen et al., 1980). The wave geometry framework allows one to generalize

from simpler models like the Charney model to more complex basic states like our

own. We expect vertical reflection off of turning points in the stratosphere to interfere

destructively with the perturbation at the critical level, just as in the Charney model.

A simple way to test this is to inhibit the reflection at the turning point, by putting
damping there. The damping we use is Newtonian cooling, which is specified to grow

gradually to effective magnitudes only in the upper stratosphere. Figure 4.8 shows the

results of adding Newtonian damping to the undamped model described in previous

sections. Shown is the dispersion relation for the long waves (top), along with the

vertical structure (left and middle of two bottom rows), the index of refraction for

wavenumber K = 0.22 (middle row on right), and the damping coefficient a (middle

row on right, thick line). The damping time scale reaches an amplitude of 1 day at

around 40 km. It is essentially infinite below 20 km. The damping affects the phase

speed of the longest waves, those that are propagating in the damping region. We see
that the damping homogenizes the real and imaginary phase speeds of the modes. In

particular, the undamped neutral modes that have a turning point in the damping
region (K = 0.2 - 0.22) are not neutral when the damping is added. The neutral

modes that are not affected by damping (K = 0.4 - 0.5) have a turning point below
the damping region (see nfe in middle row, right panel).

These results support our picture that the neutral points in our model result from
interference of the downward reflected wave with the wave field at the tropospheric
critical level. In the real atmosphere, we do not expect this to happen so easily

for a few reasons. First, we have some damping which will most likely cut at least

part of the downward reflection. Second, the reflection is from a surface which is

not necessarily simple geometrically, making any sort of destructive interference less

likely to occur. Third, we expect the wave to take a relatively long time to reach

steady state because it involves the wave propagating up to the turning point and

back down to the critical level, at least once.
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Figure 4.8: Results of the undamped model (dashed) and the model with Newtonian
damping (solid). Top: Real (squares) and imaginary (circles) phase speed, nondimen-
sional units. Middle row: # amplitude (left) and phase (middle) for the neutral long

wave (K = 0.22). nef (right) for the neutral waves K = 0.22 (solid) and K = 0.48

(dash-dot), and the damping coefficient a (thick) in units of day 1 . Bottom: Tem-

perature amplitude (left) and phase (middle) for the neutral long wave (K = 0.22).
# amplitude for the fastest growing long wave K = 0.32 (right). Phase is in units of

7r, amplitudes and nef are nondimensional.
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We show in chapters 6 and 7 that it takes Rossby waves a few days to traverse the

stratosphere. Note that initially, when the modes develop in the troposphere and are

only on their first time up through the stratosphere, we expect all wavenumbers to

have similar phase speeds and growth rates, as in the damped case, because they do

not 'see' their turning points yet. This highlights the fact that neutral points do not

separate between physically different modes. We can generalize to the neutral point

dividing the Charney and Green modes and conclude that the growth mechanism of

both is similar- an interaction of the mode with the tropospheric critical level, and
the differences are due to the propagation characteristics in the stratosphere or to the

existence of a turning point.

We also see that damping affects the modes mainly in two ways. The first is to

inhibit reflection from the turning point and make the wave vertically propagating.

This can be seen by looking at the phase of the perturbation- damping gets rid of

the nodes, and causes the phase to increase with height. The other effect is to reduce

the wave amplitudes in the damping regions. Newtonian damping acts directly on
temperature, but its effect on # is also to reduce its amplitude. It is interesting that

the amplitude of the neutral wave K = 0.4 is hardly affected by the damping, even
though its amplitude reaches a peak of 4.0 at 40km (not shown). This is because

the wave is evanescent in the damping region, and the amplitude peaks there only

because of the density effect. Since damping is one of the largest unknowns in the

real atmosphere, it is useful to understand its effect on the large scale structure of
the waves in order to understand its contribution to differences between observed and

modeled waves.

As mentioned in section 4.3, in the Charney model, neutral points form when the
phase accumulation of the wave over the wave duct, calculated as follows, is 7r:

Aphase = - fndz (4.14)
71 p.r.

where the integration is over the entire wave propagation region (p.r.). To see if this

rule holds, we calculated Aphase as a function of wavenumber, for different basic

states and parameter values16 . We find a few things. First, when we have a sharp

"6In our model, we have more than one propagation region. There is a very narrow region of
evanescence for all but the longest wavenumbers, just below the tropopause. We would expect
multiple reflections to complicate the interference at the critical level and to get rid of the neutral
points, however, this does not happen, probably because the evanescence region is so small that
it acts like an internal scattering region. In some cases we have no neutral points, but we do see
wavenumbers that have a reduced growth rate and these basic states have a more obvious multiplicity
of propagation and evanescence regions, for a larger range of wavenumbers.
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tropopause, the neutral point does not occur at a phase accumulation of r, but for a

smaller number. This is due to partial reflections the wave undergoes as it propagates

through regions where the basic state is varying rapidly. It makes sense therefore that

the phase accumulation is less than w. In many of the basic states we have used, there

are two neutral points. In most of these cases, the total phase accumulation of these

neutral points is roughly 7r apart. For example, some runs have neutral points at

, 2' etc, and some are at 0.47r, 1.47, etc. The phase accumulation increases with

wavelength because the propagation region increases in size with wavelength. The

difference in phase accumulation between the medium waves and the long waves is due

to the addition of phase in the stratospheric propagation regions. The common feature

of these runs is that these stratospheric propagation regions are simple in the sense

that the basic state does not vary rapidly with height and internal partial reflections

are small. As a result, the phase accumulation in the stratosphere is simple, making

additional neutral points spaced r apart. Figure 4.9 shows the imaginary phase speed

as a function of Aphase for the long waves of our control run. We have strictly neutral

points at Aphase ~~ 0.57r and 1.57r. Also, the wavenumbers with Aphase ~ 0.57r - 7r

are almost neutral. This is a feature that is common to quite a few of the runs. Not

all runs have neutral wavenumbers. These are runs that have a complicated wave

geometry that does not allow destructive interference to occur. For example, basic

states with multiple turning points and/or regions where the basic state varies rapidly

and we have partial reflection. The only conclusion we can draw from all these runs

is that the mode can interfere with the growth at the critical level, and that basic

states that vary with height do not have a simple relationship between the phase

accumulation and the growth rate as we find in the Charney model.

This raises the issue of why long waves grow as slowly as they do. The long waves

are expected to grow slower than the medium scale waves because the growth rate

is proportional to the wavenumber, however, in our case, the imaginary phase speed

itself is smaller. This is not obvious, based on simpler models. In the Eady model,

for example, the long waves have the largest imaginary phase speed. In the Charney

model, the longest waves grow much faster than in our case, even though there is a

neutral point to separate them from the medium scale waves. In the Green model

(a Charney model with a lid at the tropopause), on the other hand, the long waves

grow slowly. The above results would suggest that partial reflections from above the

critical level inhibit growth through interference. Most of the partial reflections occur

in the tropopause region, where the basic state varies most rapidly. This suggests the

tropopause is the reason for slow growth. Our model differs from the Charney model

essentially in having a tropopause. In order to test this we ran a series of models
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Figure 4.9: The imaginary phase speed (nondimensional units) as a function of the
phase accumulation, Aphase (in units of 7r), for the long waves shown in figure 4.4.

that vary gradually from a Charney model where the shear and N 2 are constant

with height, to a model where shear and N 2 both vary rapidly at the tropopause.

Our results suggest that the tropopause inhibits growth by partially reflecting waves

downward, since most models with a sharp tropopause had slower growing long waves
than the Charney model. There was, however, one basic state where the long waves

actually grew faster when the tropopause was sharper. It is possible that partial
reflections sometimes cause the growth rate to increase, instead of decrease.

4.4.3 The effect of surface damping

In section 4.4.2 (and figure 4.8) we saw that the effects of thermal damping that is
parameterized as Newtonian damping are mostly to decrease amplitudes of waves in

the damping region and to dramatically reduce reflection from turning points, causing

the growth rate of long waves to be relatively constant (the neutral waves become

unstable and the growth of unstable waves is slightly decreased).

In this section we discuss the sensitivity of our results to the inclusion of surface

damping. This is important since the long waves grow slowly, and damping may

interfere with this growth to make them irrelevant to the real atmosphere. There have
been quite a few studies of the effect of Ekman damping on baroclinically unstable

modes (e.g. Card and Barcilon, 1982, Lin and Pierrehumbert, 1988, Snyder and
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Lindzen, 1988) however, most studies concentrated on the most unstable medium scale

waves, for which they present the results, using quite a large meridional wavenumber.

Surface friction is parameterized as an Ekman boundary condition (see appendix B).

Table 4.1 shows the growth rates (in day-1 ), and the zonal and total wavenumbers

of the fastest growing long waves, for various values of Ekman damping coefficient

Ek. The nondimensional damping coefficients used are 0.1, 0.2, 0.5, corresponding

to eddy viscosity coefficients of 11.1, 44.3, and 277.0 !, and spin-down time scales

of 2.0, 1.0, and 0.4 days (Lin and Pierrehumbert, 1988, considered eddy viscosity

coefficients in the range 0 = 1001). For comparison, we also show the growth rates

for no damping. Since the inclusion of damping breaks the symmetry between zonal

and meridional wavenumbers, a meridional wavenumber has to be specified before

solving the equations. The results are shown for three meridional wavenumbers (the

equivalence in degrees latitude is also shown). We see that the damping is more

efficient for larger meridional wavenumbers. When 1 = 0, a damping of Ek = 0.1

reduces the growth rate by 23%. For 1=0.23, by 33%, and for 1=0.35, by 67%. It is

interesting, however, that even with a very large damping Ek = 0.5, the long waves

are not eliminated. The effect of Ekman damping is not simply to reduce the growth

rate by the inverse spin-down time. This is probably because the damping is applied

at the surface, and not at the critical level, where the actual growth occurs. For

this reason, Ekman damping may not be the appropriate form of damping for our

problem. The critical level of the fastest growing long waves lies between 1 and 6

kilometers, which may lie in the boundary layer. The effect of surface damping on

baroclinically unstable modes is a still debated question which we will not attempt

to answer in this study.

4.4.4 Sensitivity of the results

The results shown so far are for a single basic state. The wave geometry framework

allows us to test the sensitivity to the basic state characteristics by identifying and

varying the parameters that matter most. What we find is that varying the basic state

in the stratosphere affects only waves that have wave propagation regions there (unless

"Snyder and Lindzen (1988) distinguished between upper level modes, whose wave geometry is

such that there is propagation below the critical layer and evanescence above it, and lower level

modes (the classic Charney modes, for example), which have propagation above the critical level

and evanescence below. Upper level modes grow due to overreflection of the waves approaching
the critical level from above. In these configurations, surface damping has a reduced effect, and

may actually increase the growth rate. The reduced effect of Ekman damping (compared to the

spin-down time) in our model is not due to the same cause because we have a lower level instability.
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Meridional Ekman Largest Zonal Total
wavenumber damping growth wavenumber wavenumber

l(*lat.) coefficient rate k K
0.0 (oo) 0.0 0.17 0.32 0.32
0.0 (cc) 0.1 0.13 0.30 0.30
0.0 (oo) 0.2 0.11 0.30 0.30
0.0 (oo) 0.5 0.07 0.28 0.28

0.23 (900) 0.0 0.12 0.22 0.32
0.23 (900) 0.1 0.08 0.22 0.32
0.23 (900) 0.2 0.06 0.22 0.32
0.23 (900) I 0.5 0.03 0.19 0.30
0.35 (600) 0.0 0.03 0.08 0.36
0.35 (600) 0.1 0.01 0.19 0.40
0.35 (600) 0.2 0.01 0.19 0.40
0.35 (600) 0.5 0.004 0.15 0.38

Table 4.1: Growth rates, zonal, and total wavenumbers of the fastest growing long
waves, for various values of Ekman damping coefficients and meridional wavenumbers.
Meridional wavenumber is given in nondimensional units as well as in degrees latitude
of half a meridional wavelength. Growth rate is in day-1 . Zonal and total wavenum-
bers are in nondimensional units. Ekman damping coefficients are nondimensional,
refer to the text for the corresponding dimensional values.

the changes cause more or less waves to propagate in the stratosphere). Changes in
the tropopause region affect all wavenumbers because all waves propagate there. The
effects depend on the wave geometry. The relation between the vertical structure
and wave geometry found in the control run holds for all runs. For example, if we
change the winds in the stratosphere in a manner that reduces the index of refraction,
the separation between waves that are stratospheric and waves that decay in the
stratosphere will shift to longer waves. The effect of wave geometry on the growth
rate also holds, hence, the tropospheric basic state will affect the location of the

neutral point between the Green and Charney modes, while the stratospheric basic
state will affect the existence of neutral waves at longer wavenumbers. The relation
between the neutral wavenumbers and the phase integral (equation 4.14), however, is
hard to generalize, because of the internal scattering of the waves in the tropopause
region. It is important to note that there are two significant wavenumbers, the neutral
wavenumber and the wavenumber that separates between the modes that propagate
in the stratosphere and the modes that don't. These two wavenumbers coincide in

118



our control run, but not in general. If we take, for example, the same tropospheric

basic state as the control run, and change the winds to have a minimum above the

tropopause (as in fall and spring of both hemispheres), the location of the neutral

point may not move much. At the same time, some of the waves on the short wave side

of the neutral point may have a propagation region in the stratosphere (in the region

of minimum winds). Such modes have relatively large amplitudes in the stratosphere

(as large as in the troposphere but not much larger) along with relatively large growth

rates (compared to the long stratospheric modes). The basic states that allow these

modes to exist, however, are not very realistic for winter, and they occur for mid-

channel latitudes that are a bit too small for stratospheric planetary waves (e.g. 450).

Finally, in order to make sure none of the above results depend too strongly on the

vertical scale height chosen, we repeated the calculations for different values. We do

this because we used a scale height of H = 8.9km, while 7km is a more characteristic

value for the stratosphere. As expected, changing the scale height mostly affects the

vertical structure of the waves through the e* factor.

4.5 Internal stratospheric instability

In this section we will show one example of a mode that is drawing energy from

a critical level in the stratosphere. We constructed the basic state to have a mid-

stratospheric minimum in wind of 10m/sec at 30km, to assure critical levels. Also,

we specified the PV gradient to be negative around the minimum in zonal wind (fig-

ure 4.10). This specific run has zero PV gradients in the troposphere. The dispersion

relation (not shown) is similar to the dispersion relation of runs with no critical levels

in the stratosphere, meaning that the tropospheric instability is dominant in setting

the growth rates and phase speed of the modes. Also shown in figure 4.10 are the

results for wavenumber K = 0.6 that has a phase speed of 15m/sec and a growth

time of around 7.5 days. We see from the real part of n,ef that the wave geometry

configuration is like figure 4.2f, where there is a region of negative iy in between, but

not touching, two critical levels. As a result, the y < 0 region is a wave propagation

region that is bounded by turning points on both sides, with critical levels beyond,

such that waves can overreflect from both sides. This is evident from the meridional

PV flux (also shown in figure 4.10) which is positive in the region of negative qY,

and negative elsewhere. There are two peaks of negative PV flux at the stratospheric

critical levels, with the lower one being larger. Such peaks in PV flux are a clear

indication of an interaction with the mean flow at the critical level. They are not

found for long waves that do not have a critical level in the stratosphere. Note that
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Figure 4.10: Results for a run with stratospheric critical levels and a y < 0 region, for
wavenumber K = 0.6. Top, from left to right: Zonal mean wind (m/sec), PV gradient
(units of #), and the real part of the index of refraction. Bottom: Geopotential height
(left) and temperature (middle) amplitude (-) and phase (-), and PV fluxes (right).
See text for details.

the PV fluxes in the troposphere are zero, which is due to q, = 0 there. The above
results hold for runs with non-zero tropospheric -, as well. Also shown in figure 4.10
are the geopotential height and temperature structure of the mode (both amplitude
and phase). The vertical structure varies quite a lot with wavenumber. There are
however a few robust features. There is a westward phase tilt with height of # at the
higher critical level (where the shear is positive) and essentially no phase tilt at the
lower critical level and in the negative i, region. The temperature phase tilts slightly
eastward (this is similar to the tropospheric instability). The temperature structure

(and even the geopotential height field) has relatively small scale features which may
pose a problem in retrieving these waves (see sections 3.4.3, 3.5).
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Finally, it is interesting to note that Manney et. al (1991a) observed occasional

episodes of growth which are confined to the stratosphere and have slightly different

characteristics than the more typical growth episodes (e.g. weak equatorward heat

fluxes). The type of mode we get here could be a possible explanation for these

observations but more study is needed to test this.

4.6 Discussion

In this chapter we studied the normal modes of a troposphere-stratosphere system

with basic states that vary with height only, in the framework of wave geometry.

We used tropospheric basic states that support baroclinic instability, and identified

different kinds of stratospheric wave geometry configurations that support different

kinds of modes. The first kind evolve on basic states that have no critical levels

or regions of negative PV gradients in the stratosphere. These are tropospherically

unstable modes that propagate up to the stratosphere, and are commonly referred to

in the literature as Green modes. The second kind of modes evolve on basic states that

have both a region of negative PV gradients and a critical level in the stratosphere.

This allows the modes to draw energy from the mean flow at the stratospheric critical

level. There are various configurations of critical levels and qy < 0 regions, that result

in different structures of internal stratospheric modes. The existence of regions of

negative PV gradients are crucial, since without them the modes just get absorbed

at the critical level.

We concentrated on the relation between the normal mode structure and phase

speed (real and imaginary) and the basic state wave geometry for the first kind of

modes. We studied the second kind of modes only on basic states that support tro-

pospheric instability as well. We found that the tropospheric instability is dominant

in the sense that it determines the phase speed, while the stratospheric part of the

mode, which now has a critical level in the stratosphere, draws energy from the mean

flow there. We leave looking for pure stratospheric instability both in models and

observations for future study.

The largest effect the stratosphere has in model runs with simpler basic states

(i.e. positive stratospheric q,), is obviously on the mode structure there, through

determining the vertical propagation characteristics of the waves. The picture is

slightly more complicated because the index of refraction depends on the phase speed,

which is determined mostly in the troposphere. We saw that to some extent, the phase

speed also depends on the stratosphere. When a wave has turning points in the

stratosphere, it reflects downward, and interferes with the upward propagating wave.
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This affects the interaction of the wave with the critical layer in the troposphere,
which affects both the growth rate and the real phase speed.

We can also apply wave geometry reasoning to the time development of the mode.

We expect the following picture: the unstable tropospheric mode develops first, with
the stratosphere acting as a wave energy sink. In the stratosphere, structure will
be controlled by wave propagation, determined by the local basic state properties,
and by the phase speed of the perturbation. At later stages the mode will reflect

down and adjust the phase speed, affecting the stratospheric structure, reflecting

back, and so on until a normal mode is fully developed. In the initial stages of

mode development, the wave will not see the reflecting surface and we expect the

growth rates to be quite constant for the different wavenumbers. Only later (if at all)
we expect the stratosphere to affect growth rates18. This is a mechanism by which
neutral structures can develop, and it is consistent with findings that the neutral
modes actually grow linearly in the initial value problem (e.g. Burger, 1966, Farrell,
1982).

We actually do not expect to see a fully developed linear neutral wave for several
reasons. The first is that it may take the mode a long time to develop, and the
basic state may change in the meantime, affecting the wave geometry. Second, the
turning point that reflects the wave down is in reality a turning surface, and this
surface will most likely not have a simple geometric form. Under these conditions,
it is hard to see how we can get the interference at the critical level that is inherent
to the neutral modes. Finally, we expect damping to reduce reflections from turning
surfaces. We should not, however, dismiss downward reflection. As we will show
in the later chapters (mostly chapter 7), downward reflections are observed, and
do play a role in the transient evolution of waves. Neutral modes are not entirely
irrelevant to the atmosphere, because we may have nonlinear equilibration, where
nonlinear dissipation of energy balances the linear growth. In such cases we may still
expect the wave geometry in the stratosphere to affect the wave structure there, while
nonlinearities modify the structure qualitatively like damping. In chapter 7 we show
some examples where nonlinearities affect the mode like damping, while the overall
behavior is still qualitatively linear.

Finally, even though our results are obtained for the eigenvalue problem, the
effect of the basic state wave geometry on the vertical structure of the normal modes
is relevant to the forced problem as well. This is important, since we can use our

18We will show in chapters 6 and 7 that it takes an order a few days for waves to propagate to
stratospheric turning points.
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results to test the extent to which linear QG wave theory explains the structure and

time evolution of observed planetary waves at a given time or season. The sensitivity

of linear QG wave models to details of the basic state and model damping, both

of which are not determined from observations in great accuracy, makes it hard to

determine why the observations deviate from modeled waves in any given case. By

understanding the effects of the wave propagation geometry and damping on the

vertical structure of geopotential height and temperature of the waves in a model, we

can relate specific large scale (and easily observed) features of vertical structure to

specific features of the basic state, and see to what extent they are consistent. Before

we do this, however, we need to see how these relations hold when the basic state

depends on latitude, and the waves can propagate meridionally. This is the focus of

the next two chapters.
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Chapter 5

The dependence of stratospheric
wave structure on the

latitude-height wave geometry of
the basic state

5.1 Introduction

In this chapter, we would like to relate the latitude-height wave structure to the
propagation characteristics of the basic state (index of refraction). In general, given

an index of refraction, there is no unique way to separate wave propagation in the
meridional and vertical directions a priori, without obtaining the full solution first.
The existence of a waveguide in the stratosphere simplifies matters, because it de-
termines the structure of the perturbations in the across-waveguide direction. This
allows us to obtain a Charney-Drazin type criterion for wave propagation in the ver-

tical. This is trivial for a constant-width channel model with a separable basic state
and is less obvious for more general conditions. In particular, it is not obvious that

this formulation applies at all, because the 'wave propagation - index of refraction'

picture is appropriate only when the amplitude of the wave varies on scales larger
than the wavelength, which is not obviously the case everywhere in the stratosphere.

We discuss this quantitatively in sections 5.2.1 and 5.3.5.

We start by formulating the wave propagation problem in a way that will allow us
to diagnose the propagation characteristic of a given wave solution, using an extension
of the Charney-Drazin criterion to two dimensions (section 5.2). In section 5.3 we

diagnose the propagation characteristics of waves in simple QG #-plane model, and
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discuss its effect on vertical wave structure. We then use the diagnostic to explain

some of the observed features of waves (section 5.4).

5.2 Formulation of the Charney-Drazin criterion

in two dimensions

Throughout our discussion we use the quasi-geostrophic approximation, to study

linear wave propagation. We start by using a #-plane and we will extend our analysis

to spherical coordinates later on.

The equations we use are the same as 4.1 - 4.3, where z is log-pressure, nondi-

mensionalized by a reference scale height (H0 ), and # is the geopotential height (see

appendix B).

Assuming a normal mode structure:

#(y, z) = (p(y, z) -eik(x-ct) (5.1)

we get the following equation for p:

e+ (e + ±D+ "-+(az N2 az 1y2 U - c k(U - c) a (e-za o) rr opaz N2 az (y y
(5.2)

We have used Newtonian damping of the form 7 = and Rayleigh friction

of the form (V x F) -k = -rV 2 p- a9y ay

On a spatially varying medium, we can formulate the problem in terms of wave

propagation/index of refraction only by assuming the basic state varies on scales larger

than the wavelength. We use the WKB approximation to write down a wave solution

with an amplitude and wavenumber varying in space on scales that are much larger

than the wavelength itself (see 5.2.1). In one dimension, the first order WKB solution

is given by equation 4.12. The appropriate equivalent relation in two dimensions is

not readily obtained, but we may start by assuming a solution of the form (using the

transformation 4.9):

#f= (AieifSt" + A2e f 1d) eif mdz + (Bieif dy + B 2 6e-f f) efmz] Ne 2eik(x-ct)

(5.3)

where 1 and m can either be real or imaginary (in which case we have an exponential

rather than a wave behavior). As in one dimension, the amplitude functions A1 , A2 ,
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B 1, B2 , which are functions of y and z, have to satisfy conservation of wave activity,
while the meridional and vertical wavenumbers (1 and m) satisfy a dispersion relation

(see equations 5.10 and 5.11). These conditions, however, do not determine the
amplitude coefficients and the wavenumbers uniquely. Our approach is therefore to
solve the equations, and to diagnose the wavenumbers. We will show later that this
approach is useful, since our goal is to determine the wave geometry of the basic state.

We divide equation 5.2 by N 2 (U-c)' equate the real parts, and divide by U - c, to

get:

Re z N2 () + N2 Re (") + N2 Y _k2N2 4 'k Im ) +
eg2 W U -c, U -c, )

N~ykIm + c) + Im z ( f2) + N 2 ci + IM " (5.4)U c p) U - c, e-i z U - c,. (P

We now note that under WKB conditions the wavelength and amplitude vary on
scales that are much larger than a wavelength, allowing us, for example, to neglect ly,
A 1 , A2y, Biy, and B2, relative to 12. As a result, if we plug a solution of the form 5.3
into equation 5.4, we can relate the first two terms to the vertical (m) and meridional
(1) wavenumbers as follows:

Re ( )zz =Re z (EN z)) -N 2 F(N 2 ) = -m 2  (5.5)
\ @ ;N2 (P

Re (W) = -2 (5.6)

where F(N 2 ) is defined by 4.10, and 0 by equation 4.9. Note that in general 12 and
m 2 are not pure real numbers, and under the conditions assumed for 5.5 and 5.6:

IM = Im = -Im(m2) (5.7)

IM ") = -Im(l2) (5.8)

however, when we have no damping (or very small damping), these terms are small.
This can be shown as follows. We transform equation 5.2 to @ (using 4.9), divide it
by N -0, equate the imaginary parts, and divide by U - Cr, to get:
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Im( zz N2Im ( 9YY +Oz+ k E Nz + Re () - N2F(N2) +
$ U -c, 2 N $)U - c,

k22 +! N 2 ykCk 2 N2 c k+ Nr~ Re $k+%Re Nz - 2 ci + I Re 0"= 5.9)
c, U- c, ) U- c, U ) -c p

It is clear from equation 5.9 that if the damping and imaginary phase speed are

zero (the two are related in the forced problem since the only source of an imaginary

phase speed is damping), the terms Im (0) and Im (0) are zero.

Note that for WKB to hold, we need damping to be small, in which case we may

neglect the last four terms on the left hand side of equation 5.4, which leaves us with

the following relation:

m2 + N212 = N(2 4Y k2 + F(N2) = n2ef (5.10)
(U - c, e

n2 is the index of refraction of the one dimensional case (4.11).

It is important to point out that if we define m and 1 as in relations 5.5-5.6,

equation 5.10 is still exactly satisfied in the undamped case even if WKB conditions

are violated.

When we do have damping, we need to add the damping terms from 5.4 to the

dispersion relation 5.10:

+ + -k 2 +F(N 2 )+ azk Im +
N 2  U - C, N 2 (U - Cr) (p

ry/k ci+ I i ("zp ± ++ QIm (5.11)

(U - c)Im ) N2(U - c,) UCr IM ;) (5.11)

We see that when we have large damping, 1 and m can change. The terms

Im ( ) and Im (2) are proportional to the meridional and vertical components

of the Eliassen-Palm flux:

Fy = pu/vi = p km(<po) = pk (2m (5.12)

Fz = T = k Im(pzp) = kp2 (5.13)

Under WKB conditions (section 5.2.1), perturbations of the form f(y, z)eif 1y +

127



g(y, z)e-ifdy will satisfy:

IM Re(l) If|2e-2f Im(l)y _ g2 e 2fIm()dy fg*Im(e2 i f Rel)dy )

If ei fIdy +ge-if M 2 dI-if 2 (|f eif +geidYu2)

(5.14)

where f (y, z) is the amplitude of the wave propagating in the positive direction (equa-

torwards in our model) and g(y, z) of the oppositely propagating wave. We are free

to assume 1 is real, by putting the terms e± f Im(1)dy into the coefficients f, g, which

leaves us with:

Im (W) = 1 f 2 _ 1g12  (5.15)
W |f fei Idy + ge-if dY|2

and we see that if the poleward and equatorward perturbations are of equal mag-
nitudes, there will be no EP flux. This makes sense since an EP flux implies net
propagation of wave activity and a standing wave has no net propagation. We will
have a non-zero EP flux, only if the waves have a sink of wave energy.

We can get a sense of one of the effects of damping on the dispersion relation
by looking at the EP flux terms of equation 5.11. When the EP flux is positive,
and the Newtonian damping coefficient increases(decreases) with height, the vertical
wavenumber increases(decreases). In this case damping increases(decreases) vertical
propagation in the sense that it allows larger(smaller) zonal wavenumbers to propa-
gate upwards.

Equation 5.10 (or 5.11) is the dispersion relation in the two dimensional case, and

will serve as the basis of our diagnostics in the following sections. Before we apply
it, however, we will discuss the conditions under which the wave propagation-wave
geometry concept and the WKB assumptions are valid.

5.2.1 Conditions for the WKB approximation to hold

In order for equations 5.5 and 5.6 to hold, with 1 and m being the wavenumbers of a
solution of the form 5.3, we need to assume that the wavelength of the solution is much
smaller than the length over which the amplitude of the wave and the wavenumber

itself vary, allowing us to neglect ly, Aiy, A2y, Biy, and B2y relative to 12. These are
the assumptions we make for WKB to hold.

In one dimension, we can express the amplitude of the wave in terms of the
wavenumber (A oc m- 1/ 2 , equation 4.12), hence the above conditions can be stated
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in terms of the wavenumber only:

d (1) <1 (5.16)
dz m

The extension to two dimensions is not as simple, since we cannot express the am-

plitude in terms of the wavenumber explicitly. The best we can do is to obtain a

set of necessary conditions by applying 5.16 along with a similar condition on the

meridional direction:

- <1 1(5.17)
dy1

Since we had to assume WKB in our definition of 1 and m, we can only test the

consistency of our approximations a posteriori1 . Note however, that even if WKB

conditions do not hold, equation 5.10 is still exactly satisfied in the undamped case.

Also, the solution may still be of wavelike nature, as long as the < in the inequal-

ities 5.16- 5.17 is replaced by <. In this case the WKB form of the solution will

not be correct, but the qualitative wave features of the solution will still hold. It is

interesting to see in how much of the domain the solution violates WKB but is still

wavelike. If the left hand sides of 5.16- 5.17 are greater than 1.0, the interpretation

of the solution in terms of wave structure and wave propagation is ambiguous. In

section 5.3.5 we calculate the size of the left hand terms of the inequalities 5.16- 5.17

for our model run to see where WKB is violated.

5.3 Demonstration on a 3-plane model

In the following section we will use a model to obtain a steady state wave solution

to a given basic state (solve equation 5.2), and use it to demonstrate the meaning of

the vertical and meridional wavenumbers defined in equations 5.5- 5.6.

5.3.1 The model

Our model is quasi-geostrophic, linear and on a #-plane. We specify a basic state

wind U to be a function of latitude and height, and a basic state temperature that

varies only with height. We have a sponge layer at the top, to approximate a ra-

diation condition, and a sponge layer at low latitudes to include the effect of either

absorption at a critical surface or radiation through the tropics. The sponge layers are

1Karoly and Hoskins (1982) came up with approximate conditions that are based only on the

basic state and do not require solving for the wave in order to test WKB validity, however, since we

obtain a wave solution, it is easier to test the validity directly.
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a combination of Newtonian cooling and Rayleigh damping with equal coefficients,
which we specify such that waves are absorbed before they reach the model bound-
aries (see appendix B for details). In some runs we raise the sponge layer and add a
more realistic Newtonian cooling, that follows the temperature profile, as suggested
by Dickinson (1969b). We also add a small constant damping to model runs that
have a critical level, to insure numerical convergence. At the poleward boundary we
set the perturbation to be zero. Such a boundary condition will reflect the waves
equatorwards. However, in the real atmosphere and in our model, there is always
a turning point at high latitudes which reflects the waves equatorwards before they
reach the pole. Since a channel model can't really get the perturbations at the pole
correctly (a polar coordinate model is needed for that) this is the best we can do.
We use a mid-channel latitude of 550, which means the radius of deformation (the

horizontal length scale nondimensionalization constant) is: Ld = NH = 1190Km
which is 10.7 degrees latitude. See appendix B for more details on the model.

We force the model by specifying the zonal wavenumber and phase speed, and the
latitudinal structure of the amplitude and phase of the forcing at the bottom (which
is at 2 scale heights, 14km). The forcing is constant with time, apart for a zonal
propagation with the prescribed phase speed. The latitudinal variation of the phase
of the forcing at the bottom determines the latitudinal direction and magnitude of
the EP fluxes there. The model is computationally cheap, and we can run it many
times to test the sensitivity to various parameters. The results we will show, unless
otherwise stated, are general. The overall picture we get is that the stratospheric
jet acts to guide wave activity from the troposphere up, along its maximum. This
waveguide however is leaky, with most of the leakage to the equator where we have
a sponge layer. This picture of a leaky waveguide has been suggested in the past

(e.g. by Dickinson, 1968 and Matsuno, 1970), however, the consequences of such
a configuration have not been demonstrated in much detail before. We will show
that the consequence of having a waveguide aligned with the jet axis is to set the
meridional wavenumber of the perturbation. This will in turn determine the vertical
propagation characteristics of the waves, which will determine their vertical structure.

Figure 5.1 shows the basic state for our model run, which we will refer to as our
control run in this chapter. The basic state wind is specified analytically. It tilts
equatorwards and widens with height, which is characteristic of the early southern
hemisphere winter jet. The maximum winds are around 100 m/sec, which is realistic
for the early Austral winter. The PV gradient field is also qualitatively like observed.
It has a ridge that follows the jet with a maximum of about 5.9,3 = 7.7.10- 1 1(sec-m)-1,
and negative regions on both sides of the jet. In observations, the maximum we
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observe is around 6. 10-"(sec - m)-1. We almost always see the poleward negative
region and not always the equatorward negative region. Some of these differences are

due to the use of a #-plane. It is important to remember that the observations of
PV gradients are not very accurate because of the coarse vertical resolution. Also

shown in figure 5.1 are the basic state temperature and Brunt-Vaisala frequency that

we will use in all runs shown. The temperature is specified analytically to look like a

standard midlatitude winter profile. We use both Newtonian damping and Rayleigh

friction, which increase from zero at the bottom high latitudes (small y) to a a value

of 3day- 1 at the top and equatorial boundaries, with most of the increase above 42

km (z=6) and equatorwards of latitude (y=6.5).

Zonal mean wind /y13

2 3 4 5 0 1 2 3 4
Latitude (non. dim) Latitude (non. dim)

N 2 BS Temperature The sponge layer

3 4 5

x 10-4

14

12 --

101
0.5

8

4 - - - - - -

2
0 2 4 6

Latitude (non. dim)

Figure 5.1: The control run- and early southern hemisphere winter idealized run.
Top: Left- Basic state zonal mean wind (m/sec). Right- Meridional PV gradients, in
units of # = 1.3 . 10-1"(sec - m)- 1 . Bottom: Left- Basic state N 2 in sec~2 . Middle-
Basic state temperature ('K). Right- The damping coefficient used (day~1 ) for both
Newtonian cooling and Rayleigh damping. For reference, the vertical coordinate of
the PV gradient plot is in kilometers while all the rest are in scale heights. The
latitude is in units of radii deformation (Ld = 1190km).
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5.3.2 Robustness of the meridional wavenumber in a waveg-

uide

Figure 5.2 shows the wave one and two geopotential height perturbations for a station-

ary forcing that is centered on the waveguide (also shown). The geopotential height

perturbation has a peak that is located on the jet axis. The height of the maximum

is determined by the damping of the sponge layer (which, in our model stratosphere,

is much smaller than available estimates of damping, e.g. Dickinson, 1969b). The

wave one geopotential height peak is 21 times as large as the forcing at the bottom.

The largest waves we have observed have maximum geopotential height amplitudes

of about 2.5km, with an amplitude of about 400m at 150mb (lowest observation level

above 2 scale heights). The amplification we get is therefore too large (we will see

later that some of the amplification is due to our model being on a #-plane rather

than on a sphere). The corresponding index of refraction (equation 5.10) has a ridge

aligned vertically along the jet, bounded to the north and south by regions of negative

index of refraction. As expected, wave one has a larger index of refraction than wave

two. The index of refraction in the middle of the waveguide (i.e. the value at the

ridge) generally decreases with height. The PV gradient increases with height up to

about 30km, then it is relatively constant, while N2 is constant up to about 30km,

then it increases. The PV gradients and N 2 act to increase the index of refraction (it

increases with increasing PV gradient, and is roughly proportional to N 2 , apart from

the wiggles due to F(N2 )). The decrease of the index of refraction with height in this

case, is therefore due to the winds increasing. This is as suggested by Charney and

Drazin (1961), however the magnitude of the winds needed for trapping waves will

be different because they did not include the effects of meridional curvature in their

analysis.

Figure 5.3 shows the vertical and meridional wavenumbers (as defined by equa-

tions 5.5- 5.6) for waves one and two. Shown are positive values only, denoting the

regions of meridional and vertical propagation, respectively. We see that there is

meridional propagation in a relatively narrow region that is aligned with the PV gra-

dient ridge, and in the equatorial region, where the index of refraction is very large

due to the small winds. In chapter 6 we will show that the waves leak from the mid-

latitude wave propagation region to the equatorial one. The width of the midlatitude

region is much smaller than the jet width. We see that the meridional wavenumber is

similar for waves one and two, and the differences in index of refraction are manifest

in the vertical wavenumber only. This is a consequence of having a waveguide that

is oriented more or less vertically. Note that the meridional wavenumber, which is
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Figure 5.2: Top: Wave one (left) and two (right) stationary geopotential height
amplitude (solid, arbitrary units) and phase (dashed, in units of 7r), for the basic
state of figure 5.1. Also shown on the left is the amplitude of forcing at the bottom
(thick stars). The magnitude is zero at the sides and one in the middle and there is
no phase variation with y. Bottom: The index of refraction (equation 5.10), for wave
one (left) and two (right), in nondimensional units. Negative values are dashed.

roughly 1.0 in nondimensional units, is much larger than any wavenumber considered

in chapter 4 (e.g. table 4.1). According to those results even wave one should have

been evanescent in the vertical. This shows the importance of the meridional curva-

ture, which allows larger total wavenumbers to propagate vertically by increasing the

PV gradients. An examination of the vertical wavenumber reveals that wavenumber

two is evanescent in the vertical roughly above 5 scale heights, where the index of

refraction becomes smaller than 12N 2 . This causes its amplitude to be much smaller

than wave one, in accordance with the Charney-Drazin criterion. The m 2 - 0 line is

referred to as the turning point, the turning surface, or the reflecting (reflection) sur-

face. All mean the same and are chosen randomly. It is interesting that wave one also

has turning points. It is evanescent between 6 and 7 scale heights and above 8.5 scale

heights. According to our one dimensional runs, this implies downward reflection.

We also test the dependence of the meridional and vertical wavenumbers on other
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Wave 1 meridional wavenumber
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Figure 5.3: Meridional (top) and vertical (bottom) wavenumbers (as defined by equa-
tions 5.6 and 5.5) for the stationary wave one (left) and two (right) perturbations of
figure 5.2. Only propagation regions are contoured, in nondimensional units.

parameters of the forcing besides zonal wavenumber. Figure 5.4 shows the wave

one stationary response to a forcing that is constant in latitude (with an amplitude
of 1.0). The geopotential height has a similar amplitude shape as the control run,
but the amplitude is much larger, since the total amount of wave activity injected
into the waveguide is larger. The phase increase with height at the bottom scale
height is stronger than in the control run 2 . Above 3 scale heights, the meridional
wavenumbers (and the vertical wavenumbers) are similar. Also shown in figure 5.4 is
the response to forcing from a point source, located at the middle of the waveguide.

The meridional wavenumber, in this case too, is similar to the control run above 3
scale heights. Since the model is linear, the geopotential height perturbation of a

general forcing is a superposition of the response to point sources at the bottom.
Apart from being much smaller, the geopotential height perturbation is very similar

2A stronger phase increase with height reflects a larger vertical group velocity at the bottom,
which can be explained by the increase in the vertical wavenumber at the bottom. This increase
has to happen, according to equation 5.10, because the constant forcing imposes a zero meridional
wavenumber at the bottom.
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to the control run. We also find that the meridional wavenumber of the response to

forcing with a different phase structure at the bottom (a non-vertical EP flux at the

bottom) is similar to the control run above 3-4 scale heights3 .

Geopotential height, Obot=1 -0

Latitude (non. dim)

Meridional wavenumber

Geopotential height, point source

Latitude (non. dim)

Meridional wavenumber

1 2 3 4 5 0 1 2 3 4
Latitude (non. dim) Latitude (non. dim)

Figure 5.4: Top: Wave 1 stationary geopotential height amplitude (solid), and phase
(dashed), for a constant forcing at the bottom of <p = 1.0 (left), and for a point source
at the middle of the waveguide of magnitude 1.0 (right). Amplitude is in arbitrary
units, phase is in units of 7r. The region where many phase lines are bunched together
is a jump in phase of 27r, which is no phase shift at all (it is an artifact of the plotting
routine). Bottom: The corresponding meridional wavenumbers (constant forcing on
left and point source on right), in nondimensional units. Only propagation regions
are contoured. The basic state is of figure 5.1.

We also find the meridional wavenumber to be insensitive to zonal phase speed,

at least in the middle of the waveguide. Differences between zero and non-zero phase

speeds are found only very near the critical surfaces (where the phase speed equals the

zonal mean wind). For observed phase speeds, which are usually not more than 15-20

31t is interesting to note that Dunkerton et al. (1981) found that the orientation in the vertical-
meridional plane of the EP fluxes at the lower boundary did not affect the orientation of the EP
fluxes higher up in the stratosphere. Dunkerton et al. tested whether or not the convergence of EP
fluxes into the upper stratospheric polar vortex during a sudden warming of the model resulted from
a poleward tilt of the EP fluxes at the bottom of the model.
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m/sec, the critical surface is located far enough from the jet core to be separated

from the waveguide by an evanescent region.

To sum up, the meridional wavenumber is determined by the basic state. The

shape of the forcing affects the meridional wavenumber only roughly in the lowest scale

height, before the wave reflects off the sides of the waveguide. This means the zonal

wavenumber and phase speed of the forcing affect mostly the vertical propagation

characteristics (by affecting m through n ) resulting essentially in a Charney-Drazin

type criterion for the propagation of waves up the waveguide.

5.3.3 The dependence of wave structure on the wave geom-
etry and damping

In this section, we will show the relation between vertical wave structure and the

vertical wavenumber in our model. We will also test the sensitivity of our results

to the damping in our model. This is essential for comparison with observations,
because damping is a large uncertainty in the atmosphere.

In the control run, the sponge layer (the only damping in our model) roughly

coincides in height with the turning point. As we saw in chapter 4 (equation 4.12),
the wave amplitude will decrease with height due to evanescence and to damping. We

would like to determine which of these effects is dominant in our run. We do this by
raising the sponge layer and the lid of our model by 5 scale heights, leaving all other

features the same (referred to as the high-sponge run). The location of the turning

surface does not change as a result.

Figure 5.5 shows the longitude-height cross section of the temperature and geopo-

tential height fields at latitude y = 2.45 (which is roughly in the middle of the

waveguide between 4-8 scale heights), for the control run and the high-sponge run.
We see that the control run wave tilts westward with height. The tilt in geopotential

height is stronger at the bottom scale height, where we almost have a node, as a
result of the downward reflection. The temperature amplitude peaks slightly below

the highest turning point. The amplitude of the high-sponge wave is larger than

the control, and the peak of geopotential height amplitude moves up. This implies

that the amplitude maximum in the control run is a function of the damping. Also,
the waves in the high-sponge run are almost vertical, indicating an 'almost standing'

wave pattern (just a tiny bit of the wave leaks to the sponge layer but most of it

reflects downward). This means that the sponge layer in the control run inhibits

reflection from the turning points, just as we saw happening in the one dimensional

model (section 4.4.2 and figure 4.8). Another way to show this is by looking at 0
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Figure 5.5: Zonal-height cross-sections of temperature (left) and geopotential height
(right) for the control run (top) and a similar run with the sponge layer and the top
of the model shifted upward by five scale heights (bottom). Units are arbitrary, and
the same contour intervals are used for the two runs.

(equation 4.9), which is constant if there is pure propagation with no reflection, and is

decaying in regions of wave evanescence or regions with damping. Figure 5.6 shows 11

(the solid lines), along with the sponge layer damping coefficients (dashed) in days-,

and the meridional wavenumber (dotted, same contour values as in figure 5.3). We

see clearly that now that the sponge layer is much higher, b decays when it reaches

an evanescent region and reflects downward, and not because it reaches the sponge

layer. The damping time scale at the highest turning point (z=8) is 100 days, too

small to cause the rapid decay in amplitude. The region of minimum amplitude just

below z=3 is indicative of downward reflection.

We see that the top sponge layer damping affects the vertical EP flux (the vertical

phase tilt with height) without affecting the vertical propagation geometry. This

implies that the damping affects the relative magnitude of the coefficients of upward

and downward reflection (in the case of meridional propagation, affecting the relative

magnitudes of f and g in equation 5.15).

We specified our sponge layer quite arbitrarily, with the only consideration that it
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Figure 5.6: 0 = e-/2 (equation 4.9, solid lines) in arbitrary units, the sponge
layer damping coefficient (both Newtonian cooling and Rayleigh damping) in days-1

(dashed) and the vertical wavenumber (dotted line, same contours as in figure 5.3),
for a run which is like the control only with the sponge layer and the top of the model
shifted upward by 5 scale heights.

absorb waves and not reflect them back, and not based on any realistic damping pa-
rameterization. We therefore run the model with a high sponge layer and Newtonian
damping that is based on Dickinson (1969b), which follows the shape of the basic
state temperature profile'. We find that the Newtonian damping does not affect the
meridional wavenumber. The main effects are to decrease the amplitude, with a very
small effect on the vertical wavenumber of the perturbation. We also see that the
radiative damping inhibits downward reflection, although not to the same extent as
the sponge layer at 10.5 (the control run).

Finally, we varied the strength and size of the equatorial sponge layer, to test
the sensitivity to the damping at the equator. The meridional wavenumber is not
affected, as long as the sponge layer does not extend into the waveguide region. We

4The damping time scale decreases from 20 days at the bottom of our model to 2 days at 50 km,
with 10 days at 30km. Above 50km the damping time scale increases to more than 5 days between
70-80 km above which it decreases as a result of the sponge layer.
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expect the magnitude of the damping, however, to affect the meridional EP flux, since

damping acts as a sink of wave activity.

5.3.4 The effect of a turning surface on the time evolution of

waves

Since the source of planetary waves in the stratosphere is not constant with time (also,

the basic state itself varies with time, but we will discuss this later), waves are not in

strict steady state. One of our main goals is to understand how the basic state wave

geometry affects the time evolution of the waves. The existence of a turning point for

vertical propagation will affect the time evolution of the wave most strongly, because

the amount of wave that is propagating upward relative to the amount of the wave

that is being reflected down will vary with time, causing the phase tilt with height

to change. This change will manifest itself at a given height and latitude as a zonal

phase translation, that will project onto traveling modes in a Fourier decomposition in

time. Since such an analysis is often done to look for traveling modes, it is important

to know how much of the signal comes from the transient adjustment of waves to

steady state. In this study, we will mostly be concerned with showing that indeed

such variations in phase occur in the stratosphere as a result of transient evolution in

the presence of turning points (chapter 7), rather than try to estimate quantitatively

how much this contributes to the Fourier decomposition statistics.

As a start we use a time dependent version of our quasi-geostrophic, #-plane
model. The details of the model are described in appendix B, and it suffices here to

say that the setup is like the steady state model, only we specify the wave geopotential

height at the bottom as a function of time. Unless otherwise noted, the basic state is

kept constant with time. Figure 5.7 shows time-height plots of the wave 1 geopotential

height amplitude without the contribution of density, along with the phase, from an

integration where the basic state is like the control run, only with a high lid and sponge

layer (such that the turning point at 8.5 scale heights is below the sponge damping

region). We have an additional constant damping of approximately 0.04day- 1 to

assure numerical stability. We initialize the model with no wave, and force it as in

the steady state control run, and turn the forcing off on day 30 (over 3 days). This

is equivalent to switching on a source instantaneously (and switching it off later).

We see that initially, the westward phase tilt (phase increase with height) increases

with time, reaching a maximum at model day 5. This is when the wave front reaches

the turning point. After this time, part of the wave reflects down, resulting in a

decrease of the phase tilt with height. The downward reflection is followed by further
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adjustments to the steady state, which are leakage to the equator, equilibration with
the damping and some weak reflection back up from the surface and the sides of the
waveguide. When the forcing is shut off, the upward propagating part of the wave
decreases first, causing the wave to tilt vertically (day 37), and finally eastward with
height. A Karoly and Hoskins ray tracing (see section 6.5) estimate of the vertical
group travel time gives roughly 3-4 days to reach the highest turning point at 8.5 scale
heights. A different way of estimating this time, by tracking wave packets (which is
more appropriate for our calculation, see chapter 6), gives an estimate of 4-5 days.
The time scales in our model run seem slightly longer. It takes the wave front 5
days to reach the turning point after the forcing is turned on, and about 6-8 days
both to reflect back down (the time between maximum and minimum phase tilts with
height), and to reach the maximum eastward phase tilt when the forcing shuts down.
There is some slowing down and ambiguity of the travel times, associated with the
wave front being spread out over a region. Apart from the beginning of the run when
the forcing is turned on, and the end, when the forcing shuts off, the phase tilt with
height hardly changes below 5 scale heights. This may be due to a leaking out to the
equator of the downward reflected part of the wave, such that when the wave reaches
5 scale heights, all of the reflected part leaked. Time-latitude phase plots confirm
that there is constant leakage to the equator.

It is clear from this model run that the wave sees the turning point, and that
the time evolution is affected by it, mostly when the bottom forcing changes rapidly.
This stresses the fact that the wavenumbers diagnosed from the steady state solution
are a diagnostic of the basic state wave propagation characteristics rather than of
the wave structure'. We can therefore use the steady state solution to an observed
instantaneous basic state as a diagnostic of the propagation characteristics of that
basic state. Later on we will use this to determine whether observed variations of
wave structure are consistent with variations of the basic state, both on seasonal

(section 5.4.2) and on daily (chapter 7) time scales.
Another point to make is that the transient evolution of the wave is manifest as

a temporary propagation in the zonal direction (i.e., a non-zero zonal phase speed),
which would temporarily change the local index of refraction relevant to the pertur-
bation. It is therefore not obvious that the wave will 'see' the index of refraction that
is relevant to the stationary wave throughout the integration. However, calculations
using the maximum transient phase speed in our model run, show this has a very

5 Note that wavenumbers that are calculated from an instantaneous wave field are meaningless
when the time variations are large.
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small effect on n2 ef hence this is not an issue here.

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Wave 1 phase$ ( ), at y=2.45
10

0 0.7 0.5
8 ~

--

0..60.7

6-

a) 4 . . . . . .

Ca .2

2

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
model days

Figure 5.7: Height-time plots of geopotential height wave 1 amplitude multiplied by
the square root of density |#|ez/2 (top) and phase (bottom), at y=2.45, for a model

run like the control, only with a high lid and sponge layer, where the forcing is turned

on, then off (see text for details). Geopotential height amplitude is nondimensional

and phase is units of wr. Time is in model days (roughly 1 day).

5.3.5 Validity of the WKB approximation

In section 5.2.1 we wrote down conditions on the meridional and vertical wavenumbers

for the WKB approximation to be valid (5.16- 5.17), and for the solution to be a

wave (5.16- 5.17, with < replaced by <). We now check whether these conditions

are satisfied, and where. Figure 5.8 shows the absolute value of the left hand sides

of 5.16- 5.17, calculated from the run using the high lid and sponge layer (the control

run yields similar results).

141

.I l6II Im i m I l i



d(l1-)/dy

4 I '

3 0.5 1 1.5 2 2.5
latitude

d(m- )/d

3 3.5 4 4.5 5 5.5

2.5
latitude

Figure 5.8: The validity of the WKB approximation: Absolute values of J (j) (top)
and i ( ) (bottom) (5.16- 5.17), which are conditions on the meridional and vertical
wavenumbers, respectively. Regions larger than 0.5 are shaded. Contour values are
0.25:0.25:1, 1.5, 3, and the 1.0 contour is thick. Also plotted for reference is the
meridional wavenumber (dashed), with contour values of 0.01, 0.25:0.25:1. See text
for details.
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For WKB, we need these parameters to be much smaller than 1.0. The shaded regions

are for values greater than 0.5, which we consider as regions where WKB is violated.

We also highlighted the 1.0 contours by making them thick. We see that the vertical

wavenumber satisfies the WKB quite well in most of the domain, and violates it near

turning surfaces, and near the bottom. The region near the bottom is where we

have a node, due to the downward reflection from the turning point. The meridional

wavenumber, on the other hand, satisfies WKB only in a narrow region near the center

of the waveguide. Moreover, the solution is wavelike in nature only in the center of

the waveguide, in a region that is slightly wider than the WKB region. For reference,

we have plotted the meridional wavenumber (dashed). In the next section we will see

some possible implications of the meridional WKB condition being satisfied only in

a narrow region.

5.3.6 An approximate 1D model of the wave in the center of

the waveguide.

The waveguide configuration simplifies the structure of the response by determining

the meridional wavenumber of the perturbation and by rendering the response almost

separable in the across-waveguide and along-waveguide directions6 . In this section we

try to approximate the response at the center of the waveguide using a one dimensional

(iD) model, as follows: We take the basic state from the center of our channel. We

also take the damping coefficients and the forcing at the bottom (amplitude, phase,

zonal wavenumber and phase speed) from the center of our channel. Finally, we

take the meridional wavenumber of the two dimensional (2D) response, also at the

center of our channel. Note that the waveguide is tilted, hence for each level we

find the latitude of maximum 1 and take the profile values from there. We then

assume this is a vertical profile by ignoring the fact that the waveguide is slanted,

and solve equation 4.6 to obtain the 1D approximation of the geopotential height and

temperature at the center of the 2D model.

What we can learn from such an exercise is whether our assumption of a WKB

solution of the form 5.3 is a good one, and whether the index of refraction and

wavenumbers defined in the previous section are meaningful. Also, this allows us to

compare the response of the 2D model to that of a 1D model directly7 . In chapter 4

6The response can not be purely separable because there is damping at the equator and not at

the pole, causing a leakage to the equator.
7This is useful, for example, in light of studies like Plumb (1989) which used a one dimensional

wave mean-flow model to explain the mid-winter minimum in wave activity observed in the southern
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we saw that the response in one dimension can be very sensitive to the wavenumber

of the forcing. It is interesting to see if this holds for the 2D model as well.

We run and compare the 1D and corresponding 2D models for a range of zonal

wavenumbers. We do this for the control run of section 5.3.1, for a different basic state,
for other mid-channel latitudes and with different damping profiles. The 1D model

succeeds qualitatively in reproducing some of the main aspects of the response. Most

interesting is that the one dimensional model captures the sensitivity of the response

to the zonal wavenumber (with a few exceptions which will be shown shortly), and

to the mid-channel latitude. It does not succeed in quantitatively reproducing the

amplitude and phase of the perturbation. There are few reasons for this failure. First,
the leakage from the side of the waveguide to the equator is not accounted for, which
will cause the one dimensional model to overestimate the response. Second, we ignore
the tilt of the waveguide and the resultant stretching of the coordinate when setting

up our one dimensional model. It is hard to say how this will affect the results. Also,
we see that the wave nature of the solution, and the WKB condition (section 5.3.5),
strictly hold only in the middle of the waveguide. Note that despite the violation of

WKB in the meridional direction, the 1D model succeeds in qualitatively representing

the vertical wave propagation along the waveguide. This is not so surprising since in
the vertical direction WKB holds quite well in most of the domain.

Figure 5.9 shows the geopotential height and temperature8 amplitudes for the 1D
model and at the center of the waveguide of the 2D model, as a function of zonal

wavenumber, for a run that is like the control except for a mid-channel latitude of

450 instead of 55*. This configuration showed the largest differences between the two

models. The one dimensional model overestimates the response for all wavenumbers.

There is a very pronounced resonant wavenumber (k = 0.6)9. This resonance is not
a feature of the 2D model. On close inspection, we see that this is actually the
main difference between the two models. Other than that, the shape of the response
is quite similar- the maximum amplitude in temperature and geopotential height is
at the same altitudes, and the abrupt cutoff of the response occurs at exactly the

same wavenumber (0.7). The resonant wavenumber is reminiscent of the neutral

wavenumber response in the 1D model of chapter 4 (see for example the neutral

hemisphere, in terms of the basic state seasonal evolution.
8Note that since the temperature is a vertical derivative of the geopotential height, the only way

the model can get temperatures correctly is by getting both the amplitude and phase structure of
the geopotential height field.

9 Other 1D model runs, including the control run, did not have such a pronounced resonant
wavenumber.
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wavenumber in figure 4.6)10, which suggests constructive interference due to vertical

reflection. An inspection of the vertical wavenumber in the middle of the channel

(not shown) shows that wavenumbers smaller than k = 0.6 propagate up to 8.5 scale

heights, and wavenumbers 0.6 and larger have a turning point below six scale heights.

This is important since the damping is large enough to inhibit reflection at 8.5 scale

heights, but is not large enough to inhibit it at six scale heights (see section 5.3.3).

This is an interesting result which we speculated upon in chapter 4, namely that in

two dimensions we will not see strong constructive interference, because of the more

complicated geometry and the leakage of wave activity to the equator.
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Figure 5.9: Height-wavenumber sections of geopotential height (left) and temperature
(right) amplitude, for a one dimensional model (top) and the corresponding response

at mid-channel of the two dimensional model run with a mid-channel latitude of 450,
but otherwise like the control run (bottom). To create the figure, we ran the model

for nondimensional zonal wavenumbers k = 0.1, 0.2... .1.0. For reference, waves one

and two are k = 0.325 and k = 0.65 respectively. See text for more details.

10We should keep in mind that the 1D model is a stationary wave model, and not a normal mode

calculation as is chapter 4, however, the dependence of the waves on wave geometry is the same in

both models, which allows them to be compared.
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5.4 Applying the diagnostic to observations

One of our main motivations behind studying the relation between the basic state
wave geometry and vertical wave structure is to explain vertical structures of observed
waves. Our results suggest that the meridional wavenumber is determined by the basic
state, regardless of tropospheric forcing characteristics (zonal wavenumber and phase

speed and latitudinal shape of the forcing) and of damping. The vertical propagation
characteristics are sensitive to these parameters, in a manner which is qualitatively like
the one dimensional model. In this section we obtain the propagation characteristics

of observed basic states in order to explain a few characteristics of observed waves.

5.4.1 The effect of spherical coordinates and model setup

Before we apply our diagnostic to observations, we need to make sure the results still
hold for spherical coordinates. Most important, is the waveguide picture relevant,
and does the insensitivity of the meridional wavenumber to forcing parameterizations
hold. The equations and formulation of the meridional wavenumber and index of
refraction in spherical coordinates are described in appendix D. The model we use
spans the southern hemisphere1 ' and for simplicity, we use the latitudinal resolution of
the operational observation data product (20). The vertical domain, unless specified
otherwise, extends from 2-15 scale heights (14-105km). When we use observed basic
states, the observations are interpolated in the vertical to the model grid (which is the
same as in the #-plane) below 0.4 mb, and wind and temperature are kept constant
above that, in order to apply a sponge layer. For simplicity, we specify a temperature
that varies only with height, by taking an average of the observed temperature over 40-
700 latitude. A comparison with runs using the full two dimensional temperature field
give very similar results (similar enough given the uncertainties in the observations).
We also put damping in the equator, as in the #-plane. See appendix B for more
details.

The most notable difference between the two coordinate systems is in the relation
between the zonal mean wind and the index of refraction. The PV gradient (equa-
tion D.8), interestingly enough, is not very sensitive to the coordinate system in the
basic states we have used, because most of the contribution is from the meridional
and vertical curvature, and the terms that depend on latitude are much smaller. The
largest effect is close to the pole, where the spherical terms are large and negative.

"Our model is a channel model, in the sense that the polar boundary is a wall. More realistic
polar dynamics would require a polar cap model.
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There is a strong dependence of the index of refraction on latitude which causes the

polar region to be evanescent to wave propagation (the term -2 in n becomespolar egionCos,(~ in re

large and negative, equation D.14). Also, the index of refraction becomes infinite

at the equator, causing waves to refract equatorwards (as was shown by Karoly and

Hoskins, 1982).

These differences aside, given a wave geometry, waves behave in a qualitatively

similar manner in both coordinate systems. The refraction equatorwards results in

smaller amplitudes in the spherical model. Also, the waveguide along the jet axis is

much less separated from the equatorial propagation regions. This is a characteristic

of the index of refraction, and is evident in the meridional wavenumber. Neverthe-

less, the insensitivity of the meridional wavenumber to the parameters of the forcing

and damping hold for all the basic states we have checked, both ones we specified

analytically and from observations.

5.4.2 The differences between mid-winter and later winter

wave structure

We have mostly studied the evolution of waves in southern hemisphere winter of 1996.

Looking at other years suggests the features we will present in this section are not

specific to 1996.

As was shown in figure 1.3, in 1996 there were two major wave 1 events, one in

July 18-August 19 (referred to as the mid-winter wave) and the other in September

(referred to as late winter). Figure 5.10 shows the latitude-height amplitude and phase

structures of the time mean waves in these two periods (both geopotential height and

temperature). We see that the mid-winter wave has one temperature amplitude

peak in the stratosphere while the late winter wave has two. Correspondingly, the

geopotential height amplitude reaches a maximum much lower in late winter. The

phase tilt with height in September is also smaller.

To show that the structures shown in figure 5.10 are not dependent on the time

averaging, we plot the time-height evolution of the waves (amplitude and phase of

the geopotential height and temperature, averaged over 40-70' latitude 2 .) in July-

August and in September (figures 5.11 and 5.12 respectively). While the geopotential

height peaks at or above the top of the observation domain for most of the time in

1
2 We have taken a latitude average of these quantities, rather than show their value at a specific

latitude because we are interested in structure changes to the whole wave field (as opposed to

apparent structure changes at a given latitude that result from a latitudinal shift of wave patterns).
In any case, the differences between a latitudinal average and a latitudinal section at 60'S for the

observations we will show are minimal.
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Figure 5.10: Time averaged wave 1 Geopotential height (left) and temperature (right)
amplitude (solid) and phase (dashed), for July 18-August 19, 1996 (top) and Septem-
ber 1-30, 1996 (bottom). Geopotential height amplitude is in meters, temperature
amplitude in *K and phase in units of 7r. The vertical grid is the observation grid.
Time averaging was done on the amplitude and phase separately.

July-August, it peaks in the middle of the stratosphere during most of September.
Correspondingly, the temperature has two amplitude peaks (in height) during most
of September and only one in July-August. Note that longitude-height sections at
60*S, on August 8th and September 15th were presented in figure 1.6. The differences
in structure are shown clearly there. We also see from figures 5.11 and 5.12 that the
waves generally tilt westward with height (phase increases upward) but there are days
on which the wave tilts to a vertical position (phase is constant with height, July 31-
August 2, August 12, September 14-15, 24). Also, in September, there is one period
when we have one peak in temperature amplitude instead of two (September 10-12).
We discuss these variations in vertical structure in detail in chapter 7.
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Figure 5.11: Height-time plots of a latitudinal average over 40-70S of wave 1 geopo-
tential height amplitude and phase (respectively in top two plots), and temperature
amplitude and phase (bottom two plots), for July 18-August 19, 1996. Geopotential

height amplitude is in meters, temperature amplitude in 'K and phase in units of 7r.

Vertical grid is the observation grid.
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Figure 5.12: As in figure 5.11, only for September 1-30, 1996.
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Based on results from this and the previous chapter, the September wave structure

is suggestive of downward reflection from a turning point in the upper-middle strato-

sphere. To check this, we calculate the steady state solution on the observed basic

states, using a wave 1 stationary forcing that is constant with latitude (geopotential

height of 100 m). We use both the time mean and daily basic states and both lead

to the same conclusions. Figure 5.13 shows the observed zonal mean wind averaged

over each of the two wave events, along with the meridional and vertical wavenum-

bers of the corresponding steady state solutions. We see that the difference in basic

states leads to a qualitative difference in the vertical propagation characteristics. In

August, the zonal jet reaches 70 m/sec at 5.5 scale heights, 50'S, and there is vertical

propagation in most of the domain (evanescent regions, where m 2 < 0, are shaded).

By September, the jet has weakened and moved downward and poleward, reaching

50 m/sec at 5 scale heights, 60'S. As a result, a turning surface develops at 5.5 scale

heights in midlatitudes, and the steady state geopotential height peaks at around 5.5

scale heights (not shown). The evanescent region is due to the positive vertical wind

curvature on the upward flank of the jet, which causes the PV gradient to be small

and even negative (see equation D.8). The resultant vertical decay of geopotential

height is much stronger than the decay in an evanescent region that is due to strong

winds (the Charney-Drazin criterion) as is usually the case in early and mid-winter.

This results in the geopotential height peaking so low (around 5 mb) in September,

and the temperature having a node there. Apart from evanescent regions, damping

will also cause the geopotential amplitude to decay. We calculated the steady state

solution for the September mean basic state, with the lid and sponge layer raised by

5 scale heights, to make sure the decay we see is due to the evanescent region and not

to the damping in our model. The results, as expected, were very similar to those

obtained with the lower sponge layer.

To sum up, we can explain the seasonal evolution of wave structure in the south-

ern hemisphere winter of 1996 in terms of the change in linear wave propagation

characteristics of the basic state. The seasonal evolution of the zonal mean wind

in 1996 was such that the jet weakened and moved downward and poleward in the

end of August-beginning of September. This caused a turning point to form and the

"The reason for this is as follows. Ignoring damping, the decay of geopotential height in an

evanescent region is dominated by the term e f mdz (equation 5.3). m, in turn, depends on n2ef

and on the meridional wavenumber (equations 5.10 and D.14). Since the meridional wavenumber is

not dependent on the type of evanescent region we have (it depends mostly on the meridional wind

curvature), the main difference between evanescence in a region of positive vertical wind curvature

and in a region of strong winds is that the latter has smaller PV gradients and hence much smaller

(even negative) n e.
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geopotential height to peak in mid-stratosphere. Correspondingly, the temperature
structure assumed a double-peaked structure. Since the time evolution of the zonal
mean wind observed in 1996 is not specific to this year (e.g. see Shiotani and Hirota,
1985, and references therein), we expect to see this seasonal change in wave structure
in other years. Indeed, we find the double peaked temperature structure in September

of other years we have studied (e.g. 1982, figure 7.18), both in wave 1 and wave 2.

Zonal mean wind, 7/18-8/19/1996 memieady state 1, 7/18-8/19/1996 meaSteady state m, 7/18-8/19/1996 mean
7.8 7.8 7.8
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Figure 5.13: Observed time mean zonal mean wind (left) and the meridional (middle)
and vertical (right) wavenumbers of the corresponding steady state model solution,
for July 18-August 19 (top) and September 1-30 (bottom), 1996. Wind in m/sec,
meridional wavenumber in radians-1 and vertical wavenumber in 10m- 1. See text
for details.
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5.4.3 Relevance of the steady state solution to instantaneously

observed waves

Finally, we will discuss the relevance of the steady state solution to the time evolving

observed waves. We will concentrate here on general characteristics of the two. In

chapter 7, we will concentrate more on specific cases of variations in wave structure

and the basic state. Figures 5.14 and 5.15 show time-height plots of the steady state

wave solution (averaged over 40-70'S) for the daily observed time basic state. These

should not be taken as a time evolution of waves, since each point is a steady state

solution. Also, the forcing is constant, unlike the real atmosphere where it varies

from day to day. However, a comparison with figures 5.11 and 5.12 is useful in

understanding the relevance of the steady state solution to an instantaneous one.

The first thing we see is that the general structure in terms of the height of amplitude

peaks is captured, apart from a few days when the observed waves undergo structure

changes, or the wave is very weak. This means that the observed characteristic

differences in wave structure between middle and late winter are evident in the steady

state solution. Damping, which is a big uncertainty in our model, can affect the

height of the geopotential amplitude peak, but our analysis suggests that at least

in late winter, the location of reflection surfaces rather than damping determine the

height of the peak in geopotential height wave amplitude. Some of the differences

we do see, however, are due to damping. Our model thermal damping, is most likely

and underestimate in the domain of observations below the sponge layer. It is hard

to determine how realistic the momentum damping we have is, since it represents

the effect of gravity wave drag, both in the stratosphere and in the mesosphere".

We expect thermal damping to reduce both geopotential height and temperature

amplitudes (with a larger effect on temperature). Indeed we see that the magnitude

of the waves is overestimated by the steady state solution. Also, the phase structure

of the waves is not very well captured by the steady state in most of September' 5 . We

have already shown that one of the main effects of damping, when we have a turning

point, is on the phase tilt with height. As we saw in the time dependent model run

described in section 5.3.4, some of the differences in phase structure, however, are

due to the transience of the wave rather than to damping.

1
4 Note that we need to have momentum damping in order to fully absorb the waves in the sponge

layers. When we have only thermal damping, the waves reach the model boundaries and reflect.

"For example, in September, the observed wave 1 temperature phase tilts westward with height

above 3.5 scale heights on most days, while the model steady state solution has an region of eastward

or vertical tilt between 5.5 and 7 scale heights.
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Steady state wave 1 |1, averaged over 40-70S
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Figure 5.14: As in figure 5.11, only the steady state model solution for the instanta-
neous observed basic state. Note that the strong localized variation in temperature
phase at around 5.5 scale heights is spurious- it is a change of almost 27r radians. It
is not exactly 27r because of the latitudinal averaging(the surface is slightly tilted in
latitude).

154

5

Steady state wave 1 phase($), averaged over 40-70S

9
9 1...1.........
2 -0.7

3

...... ~i . . . . . . . . .. . . . . . . . .

6.9-
.. 6.2-

5.3 -
_o 4.6-
<a -
0

C3.5~

2.9 -
2.3 -

25

25

... .... ..... .. .. .

.. . .. .... .. ... .. .
-075

. .. ... ............ . .. . .... .. . -0 7 5 --
5

0.75
.... .... . . . .... ...........

.. ... ..... ......10 5. .......... . .... . .. ........



Steady state wave 1 $1, averaged over 40-70S
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Figure 5.15: As in figure 5.12, only the steady state model solution for the instanta-

neous observed basic state. Note that the strong localized variation in temperature
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For example, there are a few days in July-August when the wave tilts vertically for a
few days and then resumes a vertically propagating structure. We will discuss these
in detail in chapter 7. Note that part of the observed transience is due to the fact
that the wave source varies with time, unlike our model forcing.

Our calculations have shown how the steady state solution of a model using the
observed zonal mean winds and temperature is useful in revealing the wave geometry
of the basic state. While the steady state solution is not a good approximation to
actual observed waves, it is useful in explaining general features of their structure.
Generally, the shape of the amplitude is captured by the steady state solution (e.g.
the height of the peak in geopotential height amplitude or the number of peaks in
the temperature structure). The phase structure, on'the other hand is not gener-
ally captured by the steady state solution, both because of uncertainties in damping
and because the wave is not in steady state. Turning points will lead to temporal
changes of the phase structure by reflecting the waves as they evolve in time (e.g.
section 5.3.4). We will discuss this more in chapter 7.

5.5 Summary

We have shown that the two dimensional wave propagation problem is conceptually
simplified by the existence of a waveguide that is oriented along the polar night jet
axis, because it determines the meridional wavenumber. As a result, variations in
the tropospheric forcing parameters (i.e. zonal wavenumber and phase speed) affect
the vertical wavenumber only, which allows us to treat the two dimensional problem
essentially as one dimensional.

The main advantages are that we can predict the effect of having damping and
turning surfaces (in the vertical direction) on the vertical structure of the waves. For
example, damping has a large effect on the phase structure of waves that have turning
surfaces because it controls the amount of downward reflection from these surfaces.

We also tested the analogy to a 1D propagation problem quantitatively, by formu-
lating an equivalent one dimensional model, using the meridional wavenumber and
basic state from the middle of the waveguide. We find that the evolution in the waveg-
uide is qualitatively like a ID model, but not quantitatively. Most important is the
fact that the sensitivity to zonal wavenumber, in particular the cutoff wavenumber
to vertical propagation, are the same for the two models, as well as the sensitivity
to parameters like the mid-channel latitude. The discrepancies are explained by the
leakage of a large part of the perturbation to the equator, and also, because the
WKB condition in the meridional direction is violated outside of a narrow region in
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the middle of the waveguide. In the vertical direction, however, WKB holds quite

well in most of the domain. A feature of the 1D model that was not found in the

analogous 2D model is resonance of specific wavenumbers. Overall, the concept of

meridional and vertical wavenumbers and the wave propagation/index of refraction

picture work remarkably well.

We also applied the wavenumber diagnostics to observations. Testing linear wave

propagation concepts on observations constitutes one of the main goal of this thesis.

It is therefore exciting to find a seasonal transition in vertical wave structure which

is nicely explained by the evolution of the basic state wave geometry. Towards end

of winter, when the jet moves downward and poleward, and weakens, a turning point

forms at around 5 mb. This turning point is not a result of the winds becoming too

large for propagation (the Charney-Drazin criterion), but rather a result of the PV

gradient becoming small and even negative when the vertical wind curvature becomes

positive above the jet peak. The downward reflection from the turning point is clearly

evident in the vertical structure of the waves. Most notable is the effect on vertical

temperature structure, which develops a node or almost-node at the turning point.

By almost-node we mean a minimum in amplitude at a region of rapid vertical phase

variations. Whether there is an actual node or an almost-node depends on the degree

of reflection from the turning point. The most important factor to determine that is

damping.

Finally, we discussed briefly the effects of wave geometry on the time evolution of

waves, in particular, when we have a time varying source. We regard the steady state

solution using the observed basic state as a tool to obtain the propagation characteris-

tics of the basic state. The actual observed instantaneous wave is influenced by many

factors which do not come into the steady state solution. For example, the time evo-

lution of the tropospheric forcing, and/or the basic state will affect the instantaneous

wave structure. Damping will also play a role. Our knowledge of the wave geometry

and how waves evolve in it are useful in understanding the more complicated time

evolution of the waves. We will apply this to observations in chapter 7.
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Chapter 6

The structure of stratospheric
planetary waves from a wave
activity point of view

6.1 Motivation

This chapter is a short digression from applying the wavenumber diagnostics to ob-
servations, in which we view a wave field as the propagation of many 'wave activity
packets' with a velocity analogous to group velocity, and develop a diagnostic tech-
nique to study the evolution of these packets within a stratospheric planetary Rossby
wave. Our diagnostic is based on defining a coordinate system that follows the prop-
agation of wave packets.

This idea has stemmed from a few general thoughts. First, in thinking about
distinguishing in observations between a propagating mode and a quasi stationary
wave that undergoes vertical structure changes (see discussion in section 1.2.2), we
come up against the question of how to track a wave as it propagates up through the
stratosphere. In particular, tracking a wave becomes tricky when we realize that as
it propagates up through the stratosphere a few factors affect its amplitude, namely,
time variations in its source, refraction due to variations in the index of refraction,
and dissipation. Second, the relation between the index of refraction and the group
velocity of a pure plane Rossby wave is very simple (C refracts up the gradient of

nref), however, the relation between the index of refraction, the EP flux of the wave,
and the vertical-latitudinal structure is not as straightforward (see chapter 5). Finally,
the nonseparability of the basic state complicates our thinking of the waves in terms
of vertical propagation of a given meridional structure (see discussion in section 1.1).
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Our original intention in defining a coordinate system that follows the wave field was

to come up with a coordinate in which the wave field is separable. We realized this

is impossible since the distribution of damping is asymmetric relative to the basic

state (causing for example the waveguide to be leaky only on its equatorial side).

Looking at the wave in terms of wave activity, and defining a wave based coordinate

does, however, highlight the relation between n,e, group velocity, EP fluxes and

wave structure, and it allows to distinguish between the various factors that control

wave activity and hence amplitude. In addition, there are some uses for analyzing

observations.

We will start by presenting the basic wave activity formulation (section 6.2). We

then define our coordinate system, and use it to analyze a steady state (section 6.3)

and a time dependent (section 6.4) wave field. In section 6.5 we discuss the relation

between our diagnostic and the ray tracing technique of Karoly and Hoskins (1982).

Finally, we discuss the limitations and uses of our diagnostic, as well as the application

to observations (section 6.6).

6.2 Formulation- Tracking wave packets along

Eliassen-Palm Flux lines

Wave activity (which is a form of wave action) is an important dynamical quantity

of the waves because it obeys a simple conservation relation. We follow Andrews et

al. (1987) in the following derivation. The wave activity equation is obtained by

multiplying equation 4.1 by q' (where primes denote deviations from a zonal mean),

and taking a zonal average (denoted by an overbar):

+ v'q'-aq = -q' - + q' (ru) (6.1)at 2 ay p &z N2 y

We have assumed Newtonian cooling and Rayleigh damping, as in chapter 5. The

PV flux, v'q , is related to the EP Flux (equations 5.12, 5.13) in the following way:

P'= p1 + (' -1 2 (puiv) + + ( v'T') = V - F (6.2)

We have used equations 4.2 and 4.4 and the fact that the zonal mean of zonal deriva-

tives is zero. Multiplying 6.1 by e-, and assuming the PV gradient is constant with
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time we get:
aA
-- + V -F = D (6.3)

where A is a wave activity density:

A = p2 (6.4)
2q,

and D is the damping of wave activity. When WKB conditions hold, and we have a
simple Rossby wave of the form: # oc ei(kx-wt+f ldy+f mdz), with the following disper-
sion relation

w = kc = kU - " (6.5)
k2 + 12 +M - F(N2)

where the variables are as defined in chapter 4, we can define a group velocity as
follows:

aw 2q kl
al =+ (k2 2 - F(N2))2

- w 246,kmz Nm N2(k2 + 12 + 2 - F(N 2 ))2
am N2(k2+ 2~

The EP flux and the wave activity equal:

F = pk|12Im () = p k#2

Fz = pk 1 12  () = k 2  (6.7)

A = (k2  2+ 2 - F(N2 2q_ (6.8)

We see that the following relation holds in this case:

-4
C =(6.9)

and wave activity is conserved following the group velocity, except for loss by damp-
ing on temperature or momentum. In more real-world scenarios, we do not have a
pure Rossby wave, but rather, a superposition of waves, moving in all directions and
reflecting at turning points. However, we can still define a "wave activity velocity"
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which we will denote by V, as follows (e.g. Palmer, 1982).

-. F
V = - (6.10)

A

Va is the velocity at which wave activity propagates along the wave field. Unlike

the group velocity, it can only be calculated as a diagnostic of a given wave field.

It is not a local property of the basic state, rather it depends on the wave geometry

configuration and the global distribution of damping. Plugging into equation 6.3 gives

an equation for the variation of wave activity following Va.

aA aA ##
+V- (Va- A)= -+fa-V(A) +AV Va =D (6.11)at at

Following Va, wave activity increases when lines of Va converge, and vice versa.

We can define a wave packet as a part of the wave that moves with the wave

activity velocity, Va. If we now define a coordinate system that follows the wave

packet (see next section), we can show in analogy to fluid flow, that the Jacobian of

the transformation (J) is the ratio of the wave packet volume to its initial volume

(which we take as a unit) and its fractional change following the wave packet equals

the divergence of Va (see appendix C for derivation):

1 dJ -.
= V - V.(6.12)

J dt

Plugging in equation 6.11, we get the following conservation equation:

-(AJ) = DJ (6.13)
dt

where the material derivative is defined following the wave activity velocity (d =dt-

j+ Va -V). AJ is the total amount of wave activity in the packet (A is wave activity

density and J is the volume of the packet) and DJ is the volume integrated damping

of wave activity. AJ is conserved as it moves along Va, unless there is dissipation.

The wave activity density (which is proportional to the wave amplitude) does change,
however, because the volume of the wave packet changes due to divergence of V. In

the next section we will define a wave based coordinate which follows wave packets,
and illustrate the conservation of wave activity in the new system, using the control

run of chapter 5.
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6.3 The wave based coordinate: a steady state

wave

Figure 6.1 shows the wave activity density (A), along with an EP flux diagram (EP
flux arrows and EP flux divergence) for the control run of section 5.3.1. As a reminder,
the pole is on the left hand side of our figures (small y). We see two distinct maxima of
wave activity density, one in the middle of the wave guide, and the other equatorwards
of it. The EP flux vectors are vertical at lower levels and tilt towards the equatorial
sponge layer higher up. V - F is large at the equatorial sponge layer where there is
a maximum of wave activity density, and in the upper stratosphere in the middle of
the waveguide.

Wave activity density EP Flux (arrows), V- F Wave activity velocity
10 1010
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Figure 6.1: Latitude-height plots. Left: Wave activity density (A, arbitrary units).

Middle: An EP flux diagram- the EP flux (arrows) and EP flux divergence (contours,

see footnote 1 for dimensions). Right: Wave activity velocity, Va.

Also shown is the wave activity velocity Va. There are isolated regions where Va

is very large, on both sides of the waveguide. These regions coincide with regions

of small or negative PV gradients where there is wave evanescence. Large Va in

evanescent regions is consistent with wave tunneling, which is much faster than wave

propagation. There is also a region of large Va and small wave activity density at the

surface, which is due to vertical reflection. The location of the 'almost-node' depends

on the specific run, and it is not always so close to the surface.

'To get the actual deceleration from V - F of figure 6.1 we need to put it in dimensional units

and multiply by density. For dimensional units we need to multiply by * , where #, is what we

nondimensionalized geopotential height by (433m in this case). The resultant deceleration (taking

into account the density factor) reaches a maximum in the middle of the waveguide at 10-11 scale

heights. For a geopotential height perturbation of 100m at the bottom, the deceleration is 1(2)

da.e at 8(10) scale heights.
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We define a coordinate system (referred to as the s - r coordinate) that follows a

wave packet. Figure 6.2 shows this coordinate, along with Va arrows. One coordinate,

denoted by s, represents the time it takes a parcel to reach its location, and we obtain

it by calculating integral lines of Za2 (see appendix C). The other coordinate, denoted

by r, represents the latitude at which a wave packet enters the stratosphere at the

bottom. From figure 6.2 we see that s lines (which we refer to as either wave packet

paths or rays) are everywhere tangential to Va. The value of r is constant along each

of these lines, and is equal to the latitude of the ray at the bottom.

va arrows and the s-r coordinate grid

f t 11 i i t / -
. t t it t t i t t f t

t t.t t t f t 1./' - -

1.5
<-- pole

2.5 3 3.5 4
latitude (non dimensional)

5
equator -- >

Figure 6.2: The wave based
The s coordinate is tangent
s lines. a, b, and c are also

coordinate, plotted in geometric space (latitude-height).

to Va (arrows). The circles are spaced one day apart on
marked in figure 6.3. See text for details.

Wave packets are defined as a grid box in s - r space (assuming each grid box is

one unit volume in s - r space). The wave packets move along s lines, and change their

volume both because the spacing between s lines changes (refraction) and because

the magnitude of Va changes along the packet path. The variation of the volume of a

2Since the definitions of wave activity and wave activity velocity are ambiguous in regions of
zero and negative PV gradients, and since the regions of negative PV gradients are small, we have
artificially set Va to zero there. This explains why wave activity paths end in a point in the middle
of the domain.
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wave packet in y - z space is clearly illustrated by the two thick grid boxes marked
on figure 6.2.

According to equation 6.13, the total wave activity in the wave packet is constant
(apart from loss to damping), hence an increase in packet volume will be accompanied
by a decrease in wave activity density, and vice versa. This is nicely illustrated when
we transform to s - r coordinates. The transformation of a scalar field is done simply
by interpolating the field to the grid points of the s - r coordinate (the circles in
figure 6.2), and plotting on a Cartesian s - r plot (unskewing the s - r coordinate).
Figure 6.3 shows the wave activity density in both coordinate systems. To facilitate
the comparison, we marked the location of three points with the letters a, b, c, on
both plots, as well as in figure 6.2. In the s - r coordinate system, the 'vertical' axis is
along the wave packet path, while the 'horizontal' axis denotes the latitude at which
the packets entered the stratosphere at the bottom of the model. Quantities that are
conserved following the packet are constant along the 'vertical' s axis.

A, Wave activity density A, Wave activity density AJ, Wave activity in packet
10 12 . : : 12

10 10

0.025 8 - . 8 -.... -

-j .. . . O

b .2
N 4 -

220

2 0 0
1 2 3 4 5 6 0 1 2 3 4 5 0 1 2 3 4 5

y (non dim. lat.) r( non dim. lat.) r( non dim. lat.)

Figure 6.3: Wave activity density (A) plotted on y - z (left) and s - r (middle)
coordinates, and the total wave activity in a wave packet (AJ) plotted on s - r
coordinates (right). The s axis is in days, the z axis in scale heights (7km), and the r
and y axes in nondimensional latitude (1190km). Note that the pole is at small y/r.

Looking at the wave activity density on s - r coordinates, we see that it varies a
lot along the packet paths. This variation is due both to variations in wave packet
volume, and to damping. To isolate the effect of damping, we multiply A by the wave
packet volume (the Jacobian of the transformation), and plot on s - r coordinates.
The result is also plotted in figure 6.3. We see that the contours in the bottom 1/3
of the figure are 'vertical', meaning the total wave activity in the wave packets is
conserved along their path for the first four days. After four days AJ decreases along
the packets' paths. Using figure 6.2, we see that after four days (the r coordinate
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lines are spaced 1 day apart) the packets reach 5-7 scale heights, depending on their

latitude. The damping we specify has a time scale of more than 20 days at 5 scale

heights and it becomes significant (less than 10 days) only above 6 scale heights.

It is very simple to calculate material derivatives in the new coordinate system,
because it is simple a derivative along the s axis (- =). We can calculate the

contributions of various factors to the wave activity budget, as follows:

DA _A 1AJ AOJ

DT Os J as J as
(6.14)

Figure 6.4 shows the contributions to variations in wave activity due to damping and

to changes in wave packet volume plotted on latitude-height coordinates (the first and

second terms of equation 6.14, transformed back from s - r to y - z coordinates). For

easy comparison, we marked the three locations a, b, and c which are also marked

on figures 6.3 and 6.2.

a A/a s due to volume changes

1 2 3 4 5
<- pole latitude (non dim.)

a A/a s due to damping

......... +.................

I. 0

-. 01

0. C \

1 2 3
latitude (non dim.)

4 5
equator ->

Figure 6.4: The variations of wave activity along wave packet paths due to changes
in packet volume (left) and damping (right). a, b, and c are the same as in figure 6.3.
See text for details.

The packet volume effect increases wave activity in the waveguide (roughly y=1-

3) in the lowest third of the domain and decreases it above. Note that the wave

activity peak marked as a falls exactly on the zero line. There is also a decrease in
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wave activity between the midlatitude and equatorial wave regions (point b, y=3-
4, where q is small or negative and the wave has to tunnel). This is due to Va
and the wave packet volume being very large there. Beyond the evanescent region
(y > 4), 9V and packet volume are small, hence A is large (point c). It is important to
note that in most cases we can not assume causality, only consistency. For example,
the midlatitude peak in wave activity (point a) is a result of downward reflection

(wave activity is constant in the absence of reflection), as well as the minimum near
the surface (in the case of full reflection we would have a node, here we have and
'almost-node' due to partial reflection). V has to be very large at a 'node' of A,
since the EP flux is relatively constant (see for example figure 6.1). This results in a
divergence/convergence pattern of Va, that is consistent with an increase/decrease of
packet volume, and a decrease/increase of wave activity density at the 'node'. We can
point out to some causality in the equatorial peak of wave activity, since wave packets
reach the equatorial region mostly by leaking out of the midlatitude waveguide, and
not through direct upward propagation in the equatorial region. Since V is very large
in the evanescence region (wave tunneling), wave packets increase before (poleward of)
and decrease after the tunneling region. As a result, wave activity density decreases
in the evanescent region and increases beyond it. This effect is larger at upper levels.

The damping effect is to decrease wave activity density in the upper and equatorial
sponge regions (figure 6.4, right). We expect the contribution of damping to be
mostly negative (the global integral should be negative). There are regions with large
positive contributions, near the regions of tunneling. These regions, as well as the
negative region at point b are spurious, and highlight the limitations of this diagnostic.
Calculating the damping effect involves transforming A from y - z coordinates to
s - r coordinates and multiplying by J. This calculation is messy in regions of large
V (and J), because we are under-sampling (the s - r grid is very large). This is
clear in figure 6.3, both in the region of tunneling (point b and the diagonal messy
line in AJ), and near the node of A (the kinks in AJ lines near the surface). The
consequent derivative of AJ along s is also very noisy, and the transformation back to
y - z coordinates spreads the region of noise back to a large region in geometric space.
These problems are not as large in the calculations of the volume effect because we
do not have a transformation from y - z to s - r coordinates. Note that in steady
state, the damping equals the EP flux divergence, and it is easier and less noisy to
calculate V - F directly. In the next section we will discuss the case of a time varying
wave, where the damping felt by a wave packet is not equal V -F.
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6.4 The wave packet propagation in a time depen-

dent case

Observed stratospheric waves occur in episodes and are constantly varying in time

(see chapter 1). When the wave field varies with time, the wave activity, the EP

flux, and hence Va and our wave-based coordinate also vary with time. In analogy to

fluid flow, we have the distinction between streamlines (integral lines of the Va field

on a given day) and trajectories (integral lines of Va following a wave packet, taking

into account the time variations of Ii). For illustration purposes, we use the time

dependent model described in section 5.3.4 (also appendix B). We force it with a

stationary wave 1 that has the same latitudinal shape as the control run forcing, and

turn the forcing on over a period of 12 days and decrease it to 0.6 of its maximum

by day 19 (figure 6.5 shows the amplitude of the wave at the latitude of maximum

forcing, which is at the middle of the waveguide). The basic state, which is constant

in time, is the same one used in the previous section (and section 5.3.1).

Forcing amplitude for time dependent run
1

0.8 -

E
.0.2- -.-...-

E..
0.2 ...........................................

0
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

time

Figure 6.5: The forcing of the time dependent model used in the next four figures.

Shown is the maximum amplitude (the latitudinal shape of the forcing is as the control

run, figure 5.2).

Figure 6.6 shows the geopotential height amplitude, the wave activity, and the

wave activity flow lines for a few days of the model run. Flow lines are the integral

lines of the daily snapshots of V (analogous to streamlines). Looking at the wave

activity density, we see the perturbation propagating up the waveguide and then

'spreading sideways'3 . This is also evident in the wave activity flow lines.

3For reference, the wave eventually reaches a steady state (small oscillations in amplitude persist

till about day 50), which is similar to that of figure 5.2, scaled by 0.6 due to the smaller forcing.
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Figure 6.6: Five days (6, 7, 10, 15, 18) of geopotential height amplitude (left), wave
activity density (middle) and wave activity flow lines (left, stars mark day intervals),
for the model run of figure 6.5 (see text for details). Note that contour intervals are
not the same for all days. 168
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Initially, the wave field is 'not aware' of the large index of refraction at the equator,

and travels up the local ne, gradient into the middle of the waveguide. Afterwards the

wave tunnels out of the waveguide to the equator and gets absorbed in the equatorial

sponge layer, resulting in the wave activity flow lines tilting equatorwards. This is a

leaky waveguide signature. It is interesting that Randel et al. (1987) in a study of life

cycles of stratospheric planetary waves find an initial baroclinic stage (EP fluxes point

upwards), followed by a barotropic stage (EP fluxes point equatorwards), suggestive

of the wave evolution shown here. In section 6.6 we will show an example from

observations. Note that this behavior is much less obvious in geopotential height.

The wave activity density peak increases until day 15 and decreases afterwards,

due to the decrease in forcing at the bottom. The time dependence introduces an

effect on the vertical-latitudinal structure of the wave. For example, on day 18, A

increases with height below 4 scale heights. Apart for variations in wave packet

volume and damping, part of this increase with height may be due to the vertical

advection of the decrease in forcing over days 14-18. This effect will be evident if

we repeat calculations of the previous section using the instantaneous wave fields. In

particular, AJ contours plotted on s - r coordinates calculated from a daily V field

will not be 'vertical' (AJ will not be constant along s lines), even in regions of no

damping, because of the advection of time variations in the source of A. We can get

rid of this effect by 'hopping onto a wave packet'. Essentially this means repeating the

exercise of integrating Va lines to obtain s - r, but keeping track of the time variations

of Va as the wave packet moves along. Figure 6.7 shows wave packet paths, which are

the paths that a set of wave packets that leave the bottom of the model on a certain

day follow. We mark intervals of 1 model day by circles, and highlight the locations

of packets on day 12. For example, packets that leave the bottom on day 6 (9) reach

the locations marked by A (0) on day 12. We can also combine the information from

a few of these to create a plot of wave packet locations (day 12 is shown here), where

each packet is tagged according to the day it left the bottom (A for day 6, El for day

9). Apart for being an illustrative tool for looking at the evolution of a given wave

field in time (as we do in sections 7.1.1 and 7.1.4), we can use this 'dissection' of the

wave field into wave packets to calculate the effects of packet volume and damping

on the wave activity density of the packet as it moves along. Note that unlike the

steady state case where V -F (which is much easier to calculate) equals the damping

of A, in the time dependent case, A has to be taken into account. Also, daily plots

of LA + V- F do not follow a given wave packet.
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Figure 6.7: Wave packet paths (with day intervals marked), for wave packets that
left the bottom on days 1,6,9,12, and 16, and the location of wave packets on day 12,
for the model run of figure 6.6. See text for details.
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To calculate the evolution of wave activity in a wave packet, we define the wave

packet paths to be our s - r coordinate system. The Jacobian of the transformation

denotes the volume of the wave packets as they move along. Since s denotes the time

a certain wave packet reaches a given location, we can determine A of the packet

from the corresponding day and location. This is easy to do if we transform the wave

activity fields of each day (actually our model output is in increments of half days

but for brevity we will use 'days') onto the s - r coordinate, choose from each day the

appropriate value, and stack them (i.e. the composited A(s, r) for wave packets that

leave the bottom on day 16 is constructed by choosing the s = 0 row of A from day

16, the s = 1 row from day 17, the s = 2 row from day 18, etc., and stacking them in

order). To illustrate, figure 6.8 shows A of wave packets that left the bottom on day

16, plotted on s - r coordinates (middle). The values of A that are plotted on the

s = i row are taken from the s = i row of the A field of day 16 + i, where i = 0...12.

We see that A varies as the wave packets move along. This is due both to variations

in packet volume and to damping. Since we are tracking given wave packets, we do

not have a contribution from the time variation of the forcing. To view in geometric

space, we transform this composited A field back to y - z space (left). Also plotted

are the corresponding wave activity paths. The packets leave the bottom on day

16 and travel along these paths, taking one day to travel the distance between the

circles, while wave activity density varies according to the contours4 . As in the steady

state case, we get rid of the volume effect by multiplying A by the Jacobian to get

the total wave activity in the wave packets as they move along (shown on the right).

As expected, AJ is quite constant for the first 3 days, roughly the time it takes the

packets to traverse 4 scale heights. Note that AJ decreases more rapidly than in the

steady state case (figure 6.3). This is because in the time dependent model runs, in

addition to the sponge layers, we have a small constant damping (time scale of 25

days) to assure numerical convergence. The strong decrease in AJ near the surface is

probably not real, for a few reasons. The Jacobian, which involves derivatives along

the rays, is not very accurate at the bottom. Also, the resolution of A in s - r space

is only As = 0.5days, which is the time resolution of our model output, while the

resolution of s is 1/8 of a day'. We choose a relatively low time resolution for our

model output since the observations do not have a high resolution. Also, as with the

4The resolution in s - r coordinates is half a day. Note that the transformation from s - r back
to y - z coordinates, which is a transformation from an irregular to a regular grid, is not well defined

over roughly the lowest scale height (the distance traveled in 1 day, which is equivalent to two s grid

points).
5As explained in appendix C, we interpolate Va in space and time when we integrate it to get

the wave packet rays.
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Figure 6.8: Middle: The wave activity density following wave packets that leave the
bottom on day 16, plotted on s - r coordinates. Left: A transformed back to y - z
coordinates, along with the s - r coordinate (day intervals marked). Right: the total
wave activity in a the wave packets (on s - r coordinates). Note that the pole is at
small y/r.

steady state case, the calculation is not very accurate near the surface where wave

activity almost has a node.

Finally, we calculate the contribution of the volume and damping terms to the

wave activity budget, as was done for the steady state case (equation 6.14, figure 6.4),
and transform back to y - z coordinates. Figure 6.9 shows these fields, along with the
corresponding wave packet paths. Some of the features of the steady state solution

are found here. The most striking is the increase in volume (hence a decrease in wave
activity density) poleward (small y) of the tunneling region (y=3-4, z=3-7), and a
corresponding decrease in volume (increase in A) beyond it. The magnitude of the
volume effect is similar to the steady state wave. This suggests that most of the
volume effect is due to variations in V as a result of the tunneling of the wave to
the equator. The damping effect is similar to the steady state in that it contributes
only negatively, but it is roughly twice as large between 4-6 scale heights in the time
dependent case. This is because we added a constant damping of 0.04days' to insure
numerical stability of our control run. This is four times as much as the steady state
damping at 4 scale heights, and half the damping at 6 scale heights (see figure 5.1).

One of the goals in developing this diagnostic was to distinguish between the
different factors that affect wave activity and wave amplitude in observations, in
particular to get an estimate of the amount of damping felt by the waves. Application
to observations, however can be quite problematic. Before we discuss the limitations of
this technique, however, we will digress a bit and show how the wave based coordinate

172

Pack. paths, A, day 16 A on pack. paths AJ on pack. paths



.. MMMM I, ,,I

a A/a s due to volume changes, emanation day 16
10 . u 1 1 s r N I I

0 1 2 3 4 5
y (lat.)

a A/a s due to damping

1 2 3 4 5
y (lat.)

Figure 6.9: The variations of wave activity density along wave packet paths due to

changes in packet volume (left) and damping (right), for packets that leave the bottom
on day 16. The fields were calculated on s - r coordinates using equation 6.14, and

transformed back to y - z coordinates. Negative values dashed. Also plotted are the

corresponding s - r coordinate lines (the wave packet paths, intervals of one day are
marked by circles). The pole is at small y.

is related to ray tracing (as in Karoly and Hoskins, 1982).

6.5 The relation to Karoly and Hoskins' ray trac-

ing

The integral lines of wave activity velocity are reminiscent of ray tracing calculations

by Karoly and Hoskins (1982)6, referred to from now on as KH. Since ray tracing

involves integrating the group velocity, which is equal to Va in the case of a pure plane

6The first to introduce ray tracing (that we know of) are Landau and Lifshitz (1959). However,

Lighthill and Whitham (1955), and Whitham (1960) redeveloped the formulation unaware of Landau

and Lifshitz's work. Since the original work was not widely known, Lighthill and Whitham's work was

published as an expository article. While Lighthill and Whitham developed the kinematic approach

to group velocity (i.e. ray tracing) for one dimensional wave propagation, Whitham (1960) extended

the derivation to two and three dimensions.
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Rossby wave, the two are related. The main difference, however, is that ray tracing is

an analytic calculation of certain wave propagation properties on a given basic state,
while our calculations are diagnostic in nature, meaning we need to have a wave field,
as well as the basic state on which it travels. We will start by a short description of
the ray tracing formulation of KH (see also Andrews et al., 1987, Appendix 4A):

Given a basic state, we assume a pure plane Rossby wave of the form #(x, y, z, t) =

#ei(kx+ly+mz-wt). (k,l,m) are the wavenumbers in the (x,yz) direction and w is the
frequency, which is related to the wavenumbers through a dispersion relation:

W = Q(x, y, z, t, k, 1, m) (6.15)

The dispersion relation for Rossby waves is given by equation 6.5. Wave rays are
integral lines of group velocity, which is defined as:

(C,2, C,, Cgz) = ( , ,m) (6.16)
ak ' l ' m

The group velocities in our case are given by equations 6.6 . We need to know the

vertical and meridional wavenumbers in order to integrate the group velocities. We

can again use the dispersion relation to write down equations for the variation of 1
and m along a wave ray, which leaves us with the following set of equations:

dy 80

DT = * Bg l

DT = z

dl _ 0

DT Oy
dm 8

-d = -- (6.17)
DT Oz

Given initial conditions yo, z., l., m, at t = 0, we integrate this set of equations to

obtain the wave rays. KH rays essentially show where wave activity will propagate if
a point source (yo, zO) is put into the medium, for a given initial angle of propagation
(l, m). Karoly and Hoskins (1982) calculate rays for a range of initial propagation
angles, on specified stratospheric basic states and various locations of point source.

They use the rays as an indication for where waves will propagate, in order to gain
insight into their structure. They also show that wave rays are refracted up the

7Since the basic state, hence also the zonal wavenumber, phase speed, and group velocity are
constant in the zonal direction (x), we will omit it from the rest of our discussion.
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local gradient of n ef (and in spherical coordinates rays refract equatorwards). The

relation, however, to a given wave field, and in particular to the EP fluxes, is not

straightforward, and is not really discussed in KH. We can gain some intuition by

comparing KH rays with our wave packet paths, for a given point source. Figure 6.10

shows the KH rays along with V lines for a point source that is turned on at the

bottom of the wave guide at t = 0, both for wave packets that leave the bottom during

the initial stages of wave development (0.1 days) and for the steady state solution.

The basic state is the same as used in previous sections. The circles/squares on

both mark 1/2 day intervals. We also plot the KH rays superposed on nref, to show

that the rays are reflected back and forth in the latitudinal direction along the n 2e

waveguide. We see that initially, the wave field is related to the KH response quite

strongly. In the lowest 1.5 scale heights, below the level of meridional reflection of the

KH rays, fa lines and KH rays are quite similar. Above that, the KH rays oscillate

around the wave packet paths, which are concentrated in the middle of the waveguide.

The steady state response, on the other hand, is not similar, because of leakage to

the equator. There are few points to note. KH rays reflect local wave propagation

properties, hence they do not 'tunnel' through evanescent regions. They are also not

affected by damping. fa lines, on the other hand, show the flow of wave activity in

the total wave field, which is determined non-locally (i.e. we have tunneling through

evanescent regions, and damping may affect the wave non-locally). Even when non-

local effects are not present, as is the case for wave packets that leave the bottom on

day 0.1 (the wave has not had time to 'feel' beyond its local surroundings), a at any

given location is a superposition of the northward and southward components of the

wave field. As a result, Va lines concentrate into the middle of the wave guide'. When

a point source is turned on, a wave front spreads out from the source, and propagates

according to the ray equations. One caveat is that KH ray tracing is for a pure plane

wave with a given phase speed, and very close to the time when the source is turned

on there are many frequencies.

8Similar concentration into the middle of the wave guide is found even in steady state, for the Va
lines that do not refract equatorwards, in regions of vertical wave evanescence (m2 < 0). In figure 6.2

(as well as 6.10), for example, Va lines that reach the top concentrate in to the middle of the wave

guide above 10 scale heights. The reason for this concentration is not completely understood.
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Figure 6.10: Top: Karoly and Hoskins rays (solid), superposed on the index of re-
fraction squared (dashed). Bottom: A comparison between Karoly and Hoskins rays
(dashed) and wave packet paths (solid), for wave packets that leave the bottom at
day 0.1 (left) and for steady state (right), for a model run with point forcing turned
on at day 0, over four days. Half-day intervals are marked on all rays and packet
paths. See text for details.
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This may explain why the time scales of KH rays do not match the 0.1 day V, as well as

they do later times (packets that leave the source at day 0.1 move 4.5 scale heights in

the first half day, while KH rays move 0.5 scale heights). When the wave front reaches

the sides of the waveguide, it reflects onto itself and the similarity between KH rays

and V lines is lost. The relation between V and KH rays is even more complicated

if the wave field is a response to a continuous forcing (i.e. a superposition of the

response to many point sources). Finally, while ray tracing holds for highly idealized

waves, for which WKB applies strictly (a small wavelength limit), the wave activity

formulation is not so restricted. In fact, we do not need to assume WKB to derive

the wave activity conservation equation (6.3), or to define Va.

6.6 Summary: uses and application to observa-

tions

In this section we will discuss the potential uses and limitations of our wave based

coordinate and the wave activity diagnostics that stem from it. So far in this chapter

we have used it as an illustrative tool, or a different approach to looking at wave

structure and evolution. Another obvious application, is to observations, with two

main kinds of calculations. The first has to do with tracking wave packets, and

observing the evolution of the wave field in this way. In particular, we can estimate

propagation time scales. The second has to do with the wave activity budget, and

calculating the various terms that contribute to it.

In order to apply the coordinate diagnostics to observations, we interpolate ob-

served geopotential height, zonal mean wind and temperature onto a high resolution

grid, and then calculate the coordinate system, the wave activity and other diagnos-

tics. In order to check the effect of low resolution on these calculations, we simulate

this process using our model. We sample the geopotential height and the basic state

at 18 equally spaced levels (9 of which are below 8 scale heights, the top observa-

tions level), which corresponds roughly to the resolution of the operational product.

Unlike observations, the levels are evenly spaced, and we are assuming they are per-

fect. We then interpolate the low resolution fields back to the high resolution of

the control run using a standard spline interpolation routine (which is what we use

with real data), calculate A, the coordinate system and its Jacobian, and compare

A(y, z), and AJ(s - r) to the original high resolution version (figure 6.11, compare

to figure 6.3). We use the steady state model run of section 6.3. We see that the

sampled-interpolated version does remarkably well in capturing the fact that AJ is
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constant, except near the node in A, which is problematic in the high resolution cal-
culations also. The errors in wave activity are more evident, because the effect of

the sampling is to move the node up to the new lowest grid point, at around 3 scale

heights, and to spread its effect in the vertical. We should note, that since the node of
A in our control run is very close to the surface, it does not affect most of the domain,
but in cases when the node is in mid-stratosphere, the errors due to low resolution
sampling affect much more of the analysis. Since the sampling is even spaced, and
our 'observations' are perfect, these errors should be taken as a lower bound for real
observations.

A, Wave activity density

1 2 3 4
y (non dim. lat.)

AJ, Wave activity in packet

5 6 0 1 2 3
r( non dim. lat.)

Figure 6.11: Wave activity density on y - z coordinates
activity in a wave packet on s - r coordinates (right) for
using low vertical resolution sampled fields as the basis for
to figure 6.3. See text for details.

4 5

(left), and the total wave
the steady state run, only
the calculations. Compare

We have done both kinds of calculations, tracking wave packets, their paths and

travel times, and calculating the various contributions to the wave activity budget,
using observations from the southern hemisphere winter of 1996. For the first kind

of calculations, our diagnostic is quite useful. One feature of our model which is

qualitatively found in observations is the initial concentration and eventual refraction

toward the equator of the wave activity flow lines of a perturbation in its growing

stages (e.g. figure 6.6). This is a signature of a leaky wave guide, hence it is interesting
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to find it in observations. Randel et al. (1987) found a similar signature using time-lag

correlations of wave amplitude with EP fluxes. Figure 6.12 shows an example of the

wave activity flow lines for August 3-7, 1996, in the southern hemisphere. At this time

the wave is growing (see figure 5.10). We see that on August 3rd and 4th the wave

activity lines concentrate into a narrow region, while on the 5th and 6th, the lines are

spread out and tilt equatorwards. It is important to note, however, that out of all the

periods of wave growth we analyzed in winter of 1996, this was the cleanest example

of such a leaky waveguide signature, and more wave events have to be analyzed in

order to establish this as a characteristic behavior. In section 7.1.4 we use wave

packet locations and wave activity paths to study the time evolution of the wave, and

also discuss the accuracy of these diagnostics. We also use V lines to estimate travel

times. There are existing methods for calculating time scales for propagation through

the stratosphere, namely KH ray tracing discussed in the previous section and space-

time lag correlation diagrams (Randel et al., 1987, Randel, 1987b). Ray tracing is a

theoretical calculation, for the propagation of a wave front from a point source, which

may or may not relate to actual wave propagation time scales (see sections 5.3.4, 7.1.4,

and 7.1.3, where we compare the two). Time-lag correlations are statistical in nature,

hence they give climatological time scales. There are, however, occasions when we

want to estimate the propagation time scales of a given wave event, for example, as a

consistency check on the applicability of linear theory to observations (section 7.1.4).

It is important to note one limitation of our diagnostic, namely, that it reflects the

wave activity flow in the total wave field, which is a superposition of upward and

downward propagating components. This will result in an overestimation of vertical

propagation time scales. The only way to get time scales for vertical propagation that

reflect only a purely upward propagating component is to diagnose the time scales

from the wave at the initial development stage, before it reflects downwards.

Calculations of the wave activity budget are more complicated, because the ac-

curacy of wave activity observations is very low. Since the uncertainties in the cal-

culations are too large to really make sense of them, we will not show any results

here. The most widely used wave activity based diagnostic is the EP flux divergence,

as a measure of damping (Edmon et al., 1980). Such estimates of damping are not

very reliable, and the various operational data products may differ by a factor of two

in the southern hemisphere, with the main sources of discrepancy are errors in the

base level analysis and errors in the retrieval process (Miles and O'Neill, 1989, and

references therein). Other sources of error are the low vertical resolution of obser-

vations, and the fact that winds are calculated from geopotential height via some

balance assumption (Robinson, 1986). As much as V - F calculations are inaccurate,
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they give much smoother fields than our coordinate system. Advantages of our di-
agnostic are that we can follow a wave packet and keep track of its wave activity,
and distinguish between the various factors that contribute to it. One of the main
problems we find is that the coordinate system itself is quite messy, more so during
later stages of wave development, when there is downward reflection. The transfor-
mation itself is ill defined in times and places where the coordinate lines cross each
other. This renders many days of observations useless for our calculations. During
the growth stages of a wave episode, V, lines are quite well behaved in a large range
of latitudes. Corresponding AJ calculations, however, are very hard to interpolate,
because in general AJ varies along packet paths (at the very best it appears constant
for a day or two, which is meaningless given our time resolution is of one day). It is
then hard to say if variations in AJ are due to real damping or to errors in the data.
One limitation appears to be that we only have daily time resolution. To test the
effects of daily sampling, we calculated our coordinates and the corresponding wave
activity budget using only daily output from our model run. The results we get are
quite similar to the half-day sampling of our control run. This suggests undersam-
pling in time is not in itself a problem, however, we should note that wave activity
density in our model is quite smooth and does not change much on daily time scales.
In observations, wave activity density varies quite a lot on daily time scales, but we
are not sure if this is due to a real variation or to large errors in the wave activity
fields. Since wave activity density is a messy field, small shifts in the wave position
can cause large local variations with time. A possible way to gain more insight into
the need for more temporal resolution (which we leave for a future study) is to apply
the diagnostic on an assimilation product that has 6 hour time resolution, but this
involves model uncertainties. Disregarding these practical problems (we can always
apply this diagnostic to a GCM), we still have not found a practical use for knowing
the daily wave activity budget of a given wave event (this whole diagnostic started
as a thought experiment and an illustrative tool to view waves differently), although
we suspect there are dynamic situations where it is useful to be able to distinguish
between effects of wave packet volume changes, time variations in the source for wave
activity, and damping. A potential use (only speculative at this point) is in explain-
ing the budgets of other quantities that may be affected by the waves on short time
scales, for example chemical concentrations.

180



Wave activity flow lines, August 3th, 1996
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Chapter 7

Applying the diagnostics:

explaining observed variations of
wave structure on daily time scales

In the following sections we will use the various diagnostics developed so far to study

in detail the relations between observed variations in vertical wave structure and

variations in the basic state and tropospheric forcing. The motivation is both to gain

some understanding of the linear transient evolution of the stratospheric waves and

to demonstrate the use of the diagnostics themselves. We will show how the index

of refraction, which is calculated assuming a steady state wave is relevant for the

transient evolution of the waves, and in particular, how it is relevant to the evolution

of specific observed waves. This increases our confidence in both the relevance of the
theory to the atmosphere and in the observations themselves.

7.1 Wave 1 event of July-August 1996

Figure 7.1 shows the time series of wave 1 geopotential height amplitude, zonal mean

wind and its acceleration, and the EP flux divergence term in the zonal momentum

equation (equation D.11), for the period of July 18th-August 19th 1996, averaged

over the latitudes 40-80'S'. The amplitude of wave 1 was shown in figure 5.11, and is

shown here again to facilitate the comparison with the other quantities plotted. There

'We have taken a latitude average of these quantities, rather than show their value at a specific
latitude, to account for variations due to latitudinal shifts of the jet. This is more important for
the acceleration term because the averaging will distinguish between true net acceleration and large
deceleration/acceleration dipole patterns that are associated with the jet shifting position without
changing its strength.
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are strong decelerations of the zonal mean wind at the end of July and in mid-August.

A comparison of the EP flux divergence and the observed acceleration shows a strong

relation between the two, with the former being much larger and preceding roughly

by a day or two. The fact that the V -F term is much larger makes sense because

part of it goes to driving a mean meridional circulation. During both deceleration

periods the amplitude of the wave starts decreasing roughly when minimum winds

are reached. Figure 5.11 shows that along with the decrease in amplitude there is a

change in the vertical structure of the wave. Figures 7.2 and 7.3 show the evolution

of the vertical wave structure of geopotential height and temperature at 60S during

these two periods2. We show these two figures, in spite of the fact that they do not

add any information to what is shown figure 5.11, because it is easier to visualize the

structure changes from them. We see that the wave has a structure of an upward

propagating wave (westward phase tilt with height) during most of the wave episode

(before July 7/29, August 5-11). At the time of maximum deceleration and a few

days afterwards (7/31-8/2, 8/12-16), the phase of the wave tilts into the vertical

(characteristic of a standing wave in the vertical), and eventually tilts eastward with

height (characteristic of a downward propagating wave).

2As is evident from figure 5.11, the structure variations occur over a wide range of latitudes, and
not just at 60*S.
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Zonal rnean wind, averaged over 40-80S
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Figure 7.1: Longitude-time sections (July 18-August 19, 1996) of the 40-80 0 S average
of (top to bottom): A. Zonal mean wind (contour interval of 5 m/sec). B. Wave 1
geopotential height amplitude (contours at 0,100,200:200:2000 m). C. The change in
zonal mean wind over 1 day (U(t)-U(t-1)). Contour interval is 2m/sec, negative values

dashed. D. The acceleration due to wave driving: .F* Contours at t0, 1, 5 : 5
30m/sec/day, negative values dashed. All quantities, except the wave geopotential
height amplitude are volume averaged over latitude (weighted by cos p)
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7.1.1 The formation of a turning point and its effect on wave

structure

We will now proceed to show that the observed time evolution is a wave-mean flow

interaction, where the wave responds qualitatively linearly to the basic state changes

(which appear to be wave-induced), and that the time evolution of both seem to

be dynamically consistent. Figure 7.4 shows the zonal mean wind, meridional PV

gradient (4y, equation D.8) and index of refraction squared (n ef equation D.14) for

stationary wave 1, on August 8th and 11th. The strong deceleration on August 8-12

results in the formation of a region of negative q, and n 2  in the upper stratosphere,

between 55-65'S, on August 11-123. As was shown in chapter 3, the top observation

level, (0.4 mb, 7.8 scale heights) cannot be trusted because it is above the highest

weighting function. We believe, however, that the deceleration and the formation

of negative PV gradients are real features, because they are observed at and above

5mb (the second highest weighting function, which is relatively reliable). Also, the

coincidence with consistent variations in wave structure encourages us to believe at

least the qualitative nature of the observations.

In a one dimensional model, the formation of a region of negative nref would lead

to downward reflection. The present case is more complicated, since the PV gradients

become negative only in a midlatitude region, and essentially the waveguide in the

upper stratosphere splits into poleward and equatorward branches (the latter is more

pronounced). It is unclear if this would cause the wave to reflect downward, or to

bypass the negative qY region and propagate up one or both of the branches of the

split waveguide, and how this would affect the vertical structure.

One way to test the propagation characteristics of a given basic state was in-

troduced in chapter 5. We showed that the meridional and vertical wavenumbers

calculated from the steady state response to forcing of a given basic state are an in-

dication of the propagation characteristics of waves on this basic state, relevant both

to their transient evolution4 and to their steady state structure.

Figure 7.5 shows the meridional and vertical wavenumbers calculated from the

steady state response (also shown) to a steady forcing that is constant with latitude,

for the basic states of figure 7.4. Regions of evanescence are shaded. The model we use

3The regions of negative q, and nef are later on reduced by the strong acceleration in the upper

stratosphere on August 13-17. The early August basic state, however, is not regained, rather we see

a slow climatological transition to the September-October basic state (see 5.4.2).

4Note that by transient we mean the time dependent response to time dependent forcing of a

given zonal wavenumber and phase speed. This has to be distinguished from traveling waves which

have a non-zero zonal phase speed (and may have a constant structure with time).
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is the spherical steady state model described in 5.4.1 and appendix B. The vertical
wavenumber indicates clearly the formation of a reflecting surface (M2 = 0 surface)
on August 11th, which is not present on August 8th. The meridional wavenumber on
August 11th has a very clear split waveguide structure, while on the 8th it looks like
a waveguide about to split in to two in the upper stratosphere. These changes in the
basic state seem to explain the observed structure changes of the wave. This is not so
clear when we note that the turning surface on August 11th, which is as low as 6 scale
heights, is only 1 scale height lower than the turning surface on some days when the
observed wave tilts westward with height (e.g. July 29th, figure 7.6). This westward
tilt (implying only partial downward reflection), in spite of the existence of the turning
point at 7 scale heights (assuming the observations are sufficiently good), indicates
the presence of damping at or above the reflection surface, and/or a higher region
of propagation beyond the domain of observations. In our steady state model runs
we never get a pure vertical standing wave. The vertical wavenumber is always large
enough to feel at least the top sponge layer, resulting in some vertical propagation
and westward tilt with height (see figure 5.5). A slow formation of the turning point
will not cause a tilting into the vertical, if the transition is slower than the relevant
damping time scale. The abruptness of the basic state changes is therefore important.

The importance of transience is highlighted by looking at the earlier deceleration
event (which is weaker by almost 50%). Figure 7.6 shows the PV gradients and the
steady state meridional and vertical wavenumbers of the basic states of July 29th and
August 1st. The PV gradients and the meridional wavenumber show that on July
29th, there is a well defined, vertically oriented waveguide. The deceleration causes
this waveguide to split into two branches (August 1st). The vertical wavenumber, on
the other hand, does not change as dramatically as in mid-August, and the changes
are opposite to what is expected. On July 29th, there is a turning surface at 6.9
scale heights, that spans the latitudes of the waveguide. On August 1st, on the
other hand, the region of negative m2 is confined and is roughly between the two
branches of the waveguide, allowing vertical propagation at least in the equatorward
waveguide. While in mid-August we expect to get strong downward reflection as a
transient response to the basic state changes, it is not so clear in the end of July. The
question is will the transient response to the observed splitting of the waveguide lead
to a temporary downward reflection of the wave?
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Figure 7.4: Top: Zonal mean wind (contour interval of 10m/sec). Middle: Meridional
PV gradient (units of 10- 11sec- 1m- 1, contours at -1,0,2:2:8). Bottom: Index of
refraction squared (nondimensional, see equation 5.10, contour interval is 10, negative
values are dashed), on August 8th (left) and 11th (right), 1996.
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I, August 8th, 1996
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Figure 7.5: Latitude height sections of the steady state solution to the observed
basic state on August 8th (left) and 11th (right), 1996. Top: Meridional wavenumber

(contours at 0.01,1:5 a-im-1 )). Middle: Vertical wavenumber (contours at 0.01,2:2:20
10- 5 m-1 ). Bottom: Wave 1 geopotential height amplitude (solid, in meters) and
phase (dashed, in units of 7r). Regions of evanescence (negative 12, M 2 ) are shaded.
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Figure 7.6: Latitude height sections of the steady state solution to the observed ba-
sic state on July 29th (left) and August 1st (right), 1996. Top: Top: Meridional
PV gradient (units of 10- 11sec-lm-1 , contours at -1,0,2:2:8). Middle: Meridional
wavenumber (contours are 0.01,1:5 ae 1m-'). Bottom: Vertical wavenumber. Con-
tours are 0.01,2:2:20 10- 5m-1. Regions of evanescence (negative 12, M 2 ) are shaded.
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To check this we run our time dependent model with a zonal mean wind that

changes in a way similar to the observed. The initial state is specified analytically

to have a well defined vertically oriented waveguide, and the final state is calculated

by adding the observed deceleration between August 11-13, above 4.5 scale heights5 .

We vary the wind linearly between the initial and final states, and initialize the

model with the steady state response to the initial wind, while keeping the bottom

forcing constant. The wind starts changing after model day 12.5 and reaches the

final state on model day 17.5. Negative PV gradients appear on day 16. Figure 7.7
shows the initial and final zonal mean winds, along with nef and the meridional

wavenumber calculated from the steady state response. We see that as the zonal mean

wind changes, the initially vertically oriented waveguide shifts poleward in the upper

stratosphere, effectively forming a 'turning surface' at a range of latitudes. There are

no striking variations in the vertical wavenumber between the two states (not shown),
making this scenario more like the early winter (July 29-August 1st) observed event.

Note that our model is on a #-plane, hence there are some differences in the relation

between a given wind field and the index of refraction. As a result, even though
we use a deceleration similar to observed in mid-August, the changes in the model
basic state are more like the earlier deceleration event. Apart from this difference in

the dependence of the index of refraction on the basic state, we expect the waves to
behave qualitatively the same in the two coordinate systems (see section 5.4.1 for a
more detailed discussion).

Figure 7.8 shows zonal-height sections of the wave at 60S at a succession of times,
as it responds to the changes in the basic state. The phase shift with height decreases
with time, such that on days 17-18, the wave has a barotropic structure (phase lines
are vertical) above about 3.5 scale heights, after which the phase tilt increases and
readjusts to the final westward tilting steady-state solution. The temperature field in
this run changes its structure mostly above 4 scale heights, where a minimum forms
at six scale heights on day 17, and eventually becomes a second peak. The main
feature is the cutting-off of the amplitude at the height of the turning point. The
details of the temperature structure above this are dependent on the damping we use
in the model. The corresponding observed evolution of temperature (figure 7.3) shows
a similar cutting-off of the amplitude roughly at the height of the turning point. We
also see the formation of a second peak above (e.g. August 14, at 1 mb), however,
we believe that at best, this small scale feature is a distorted representation of a real

5We do not use observed basic states because they are noisy and our model is a #-plane, which
means the propagation characteristics for a given wind field are different. Rather, we specify winds
such that the propagation characteristics are qualitatively like the observed.
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feature which is relatively small in its vertical extent.

It is interesting to look at the 'wave activity flow lines' (lines tangent to Va, 6.10)

and the 'wave packet paths' (paths that wave packets follow, calculated for a given

initial day and height) which were introduced in section 6.4. Figure 7.9 shows the

flow lines (left) for three days. Before the deceleration (model day 13), the wave

activity flow lines concentrate into the initial waveguide. As the winds change, they

split around the region of negative n,2e2, with most of the flux going up the poleward

waveguide (model days 15, 50). Also shown are the wave packet paths (right) for three

emanation days. The stars are separated one model day apart. We see that before the

basic state changes the packets move upwards, but after the changes, wave packets

slow down completely, for about one day, before moving polewards or equatorwards

up one of the newly formed waveguides. It is interesting how the packets that left

the bottom on day 10 reach 6 scale heights before they split sideways, on day 16,

while the packets that left the bottom on day 13 reach only 5 scale heights, and split

sideways on day 17. This behavior indicates that the response of the wave field moves

downwards in time, as expected in a downward reflecting wave.
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Figure 7.9: Left: Wave activity flow lines on days 13, 15, and 50 of the model run.
Right: The paths followed by wave packets that emanated at the bottom of the model
(2 scale heights) on days 8, 10, and 13. Stars are separated one day apart. See text
for details.
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7.1.2 The role of time variations in forcing

Note that there is no eastward phase tilt with height in our model run. Such a tilt

requires a larger downward than upward propagating component, which can only

happen if the wave forcing decreases while the wave reflects downwards. A reduction

in wave forcing is indeed observed during the periods of structure changes. We run

our model with a bottom forcing that decreases at the same time that the turning

point first forms and the wave starts tilting to a vertical position. The result is that

the wave goes on tilting to an eastward position before decaying. This raises the

question of whether the observed structure changes are not just the result of the

forcing decreasing. As we have shown in section 5.3.4, decreasing the forcing in a

basic state that has a turning point will cause the wave pattern to tilt eastward with

height because we are shutting off the upward propagating wave first, and only the

downward reflecting part of it remains. From figure 7.1 we can see that a decrease

in the amplitude of the wave at 150mb slightly precedes the decrease of the wave

(and the variations in structure which accompany it) in the upper stratosphere in the

first deceleration period, and coincides with the changes in structure in the second

deceleration period. The basic state, however, does not seem to have a turning point

before the deceleration changes the basic state (as is shown in figure 7.5). It appears

that two simultaneous things happen- a turning point forms and the bottom forcing

decreases. This naturally raises the question of whether these two are connected, and

in what way? Do the variations of the basic state lead to a weakening of the wave

or does the weakening of the wave lead to enhanced deceleration of the mean state?

At present, we do not know the answer. The former possibility suggests an effect of

the stratosphere on tropospheric wave structure. Some evidence for such influence is

consistent with the one dimensional model results of chapter 4, where we saw that the

existence of a turning point in the stratosphere has an effect on the phase speed and

growth rate of normal modes, which are due to tropospheric instability. Since our

study focuses on the stratosphere only (and the tools we have developed are not easily

applicable to the troposphere), we leave addressing these issues for future research.

7.1.3 The consistency and estimation of time scales

The patterns of our model run and observations are similar. A main issue we still need

to check is the consistency of time scales of variations in structure with the vertical

group speed in the atmosphere. In the idealized case when a turning point is inserted

into the path of an upward propagating wave, a wave front forms at the turning point,

that propagates downwards with the group speed. The time it will take the wave in
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the domain to reach a vertical position is roughly the time it takes a wave packet to
travel from the turning point down to the bottom6 . In our model run we do not have
an instant formation of a turning point and we have gradual and partial reflection,
hence the time it takes the wave to tilt should be larger than this group propagation
speed (see section 5.3.4). From figure 7.8 we see that it takes the wave roughly two
days to tilt into the vertical (days 15-17, this is an under-estimate because the wave
also decreases its tilt slightly on days 14 and 18). The wave activity paths (e.g. top
right of figure 7.8) give us an estimated propagation time of four days between 2 and
5.5 scale heights (the height of the turning point). The wave packet paths, however,
in most cases over-estimate travel times because they take into account both upward
and downward propagation. If there is partial downward reflection, the net vertical
propagation speed will be reduced (it is zero for full reflection). We can also use
ray tracing (Karoly and Hoskins, 1982, see section 6.5). Figure 7.10 shows the ray
tracing calculations for the initial and final states of our runs, superposed on the PV
gradient fields. Circles are spaced one model day apart. The estimated propagation
time from these calculations is a bit more than 2 days to travel from 2 to 5.5 scale
heights, which is consistent with a tilting into the vertical over approximately two
days. To obtain corresponding estimates of travel times from observations, we need
to apply our wave packet diagnostics to them.

7.1.4 Evolution of the wave using the wave packet formula-
tion

It is illuminating to look at the time evolution of the wave field using the wave packet
framework developed in chapter 6 (see also appendix D for the spherical coordinate
version of the diagnostics). It is especially interesting to superpose the wave packet
diagnostics on the index of refraction or on the meridional and vertical wavenumbers
of the steady state solution, to see how they relate, since they are obtained using
different and somewhat independent calculations. The wavenumbers are calculated
using observed zonal mean quantities and a model, n 2e is calculated using observed

'This analysis also holds for the case where we have a standing wave and the forcing at the
bottom is turned off, causing the wave to tilt eastward. In this case we have a wave packet tail
forming, and propagating upward with the group speed. The vertical group propagation time is the
time it will take the wave pattern to reach its maximum eastward tilt. If both a turning point forms
and the forcing at the bottom is turned off in a vertically propagating wave field, both effects will
occur at once. After the time of group propagation from the bottom to the turning point the wave
will be have an eastward phase tilt with height, while after half this time it will have a barotropic
structure.
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Figure 7.10: Latitude-height plots of wave rays, calculated using Karoly and Hoskins

ray tracing, for the initial (left) and final (right) basic states shown in figure 7.7,
for a source at 2.2 scale heights and latitude y=3. Different lines are for different

initial propagation angles. Circles are spaced one day apart. Also plotted are the

corresponding PV gradients.

zonal means, and the wave packet diagnostic uses observed wave and zonal mean

quantities. Figure 7.11 shows the paths that wave packets follow, starting from a

height of 2.3 scale heights on July 23rd and August 7th, with shaded regions denoting

no meridional propagation (12 < 0) on July 31st and no vertical propagation (M 2 < 0)
on August 12th, respectively. Note that 1 (m) are relevant only to the motion of wave

packets on July 31 (August 12). The time is marked on each packet path by the

circles, which are spaced one day apart. Looking at the July 23rd packets, we see one

packet path that changes its direction sharply on July 30-31. This packet path clearly

shows the earlier period of downward and equatorward reflection due to the splitting

of the waveguide on July 31st. The mid-August downward reflection shows up much

clearer, as is evident from the August 7th packet paths. We see that downward

reflection occurs at the location where a turning surface forms on August 11-12th.

An advantage of this diagnostic is that we can get a sense for the time evolution of

the two dimensional field in one plot. It is interesting that the different nature of

structure changes between the two deceleration events shows up so clearly in these

wave packet paths. In mid-August a vertical turning point develops at all latitudes,

and the reflection is very strong, causing all wave packets in midlatitudes to move

down. In the July-August event the waveguide only splits in two with no turning point

for vertical propagation developing and the reflection is weaker, more concentrated

in latitude, and for some wave packets is more equatorward than downward.

It is important to note that the location at which wave packets reflect downward

does not necessarily coincide with the turning surfaces, rather, it depends on the
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location of the wave packets on the days that downward reflection developed.

WP paths: July 23 ,: July 31 WP paths: Aug. 7 ,m: Aug. 12
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Figure 7.11: Latitude-height plots of wave packet paths, for packets emanating at the
bottom (2.3 scale heights) on July 23rd (left) and August 7th (right), 1996. Circles
are spaced one day apart. Regions where 12 < 0 on July 31st (left) and m 2 < 0 on
August 12th (right) are shaded. See text for details.

Figure 7.12 shows wave packet locations (section 6.4) for different stages of the

July-August wave event, superposed on the corresponding wave geometry (regions
of negative nef are shaded). Each symbol represents a wave packet. Packets are
marked by the day they emanate at the bottom (2.3 scale heights in this case),
and the color and symbol are kept the same in all plots for a given emanation day.

For example, on July 21st, we see the locations of packets that left the bottom
on July 18 (magenta o's), July 19 (yellow o's), July 20th (black squares) and July

21st (the purple line at the bottom). On these days, the wave is in its growing
stage. We can see that it took the packets of July 18 three days to ascend from 2

to 5-6 scale heights (meaning 3-4 days to reach 6 scale heights, where the turning

point develops). Packet locations on earlier days (not shown) suggest an even faster

vertical propagation, which makes sense because wave packets slow down as the wave

reaches the stratopause and some partial downward reflection develops. This time

scale is consistent with the time it takes the wave to tilt into a vertical, and eastward

position (see section 7.1.3, and footnote 6 for a discussion). There are two periods
of relatively fast vertical propagation during the wave event, once at the beginning

(July 21) and one after the first deceleration-wave tilting event when the wave grows

again (see large spacing between red, light-blue and magenta lines on August 9th,
representing packets that left the bottom on August 6-8 respectively). During these

rapid propagation and growth periods, wave activity first propagates vertically up

the waveguide, and only later it leaks out sideways to the equator (packets are more

concentrated in the waveguide on July 26 and August 9th and are more spread out
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on July 31 and August 14th). Also clearly shown is the splitting of the wave field into

the two waveguides on July 31st-August 2nd 7 along with a downward motion of the

wave packets as a result of the downward reflection. Downward propagation is also

clear on August 14-15 (15th not shown), when the wave essentially breaks down.

A note is needed as to the quality of these diagnostics. First, in our calculations,
we set the wave activity velocity to zero in regions of negative PV gradients, hence,
the bunching up of packets at equatorward vertical lines. To some extent, the good

correspondence between packet locations and the wave geometry is due to the de-

pendence of the magnitude (not the direction) of the wave activity velocity on PV

gradient, which is also a large factor in n Ye (/ = oc 40. The direction of

the propagation, however, depends on the EP fluxes of the wave. In particular, the

boundaries of the downward reflection region depend on where the EP fluxes change

from upward to downward, which depends on the phase structure of the wave. It

follows, that the location of the reflection front is a more reliable feature than the

actual wave packet locations. Plots of successive wave packet locations are useful

in showing us patterns, but it is hard to determine whether we can trust the exact

locations of a given wave packet on a given day. An idea of the uncertainty in packet

locations can be drawn from the large differences between calculations of V - F of the

various analyses products, especially for the southern hemisphere.

One specific problem with the observations is that we do not observe a time

progression of the reflection region, as we see in the model run. Instead, the downward

reflection appears and lasts throughout the upper half of the stratosphere (above 4

scale heights) simultaneously (July 30-August 2). The downward progression of the

reflection front, however, is not something we expect observations to be able to detect

easily, given the coarse vertical and time resolution. It does, however, suggest we

should look at other mechanisms that may cause a tilting of the wave.

7The poleward upper branch of the waveguide disappears by August 2nd. nof August 1st is
shown to highlight that packets move up the poleward branch of the waveguide.
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Figure 7.12: Latitude-height plots of wave packet locations, for July 21, 26, 31, August
2, 9, and 14, 1996, superposed on the shading of regions of negative n ef of the same
day, except for packets of August 2nd, for which the shading is of August 1st. Each
symbol denotes a wave packet. Packets are plotted for each day, and the colors and
symbols mark the day of emanation at the bottom. These are consistent within the
different plots, for example, magenta circles denote packets that emanated on July
18th. See text for details.
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7.1.5 Alternative possibilities

Superposition of stationary and transient waves

A possible source of variations in vertical structure is the superposition between a

transient and a stationary wave, each of which has a constant vertical structure with

time (e.g. Salby and Garcia, 1987, Lindzen et. al., 1982). One of the characteristics of

such a superposition is a periodicity in the changes, that should have the period of the

transient wave. Figures 7.2 and 7.3 show that the variation of structure occurs twice

in July-August of 1996, suggesting a period of 13-14 days. The main problem with

testing this possibility from observations is how to separate between the stationary

and transient waves, especially since their amplitude changes with time as the waves

grow and decay. One possibility is to assume the amplitude of the waves is constant

with time at least over one period, hence a time mean of that period is the stationary

wave. Two choices that we tried are the period between the two days on which the

wave is vertical (July 30th-August 12th), and the entire July 18-August 19th period.

In both cases, the transient wave, which is the total wave minus the stationary wave,

do not look like a traveling mode. At a given level, the phase speed changes with

time. Also, the wave does not propagate at the same phase speed at all levels. In the

period of August 4-13, the transient wave at 30mb propagates westward, while at 10

and 2mb it propagates eastward, for both cases. This means the vertical structure

changes in time during this period. It is possible that we are seeing a superposition

between two different transient waves, however, the additional degree of freedom in

choosing the two wave phase speeds makes it even harder to separate the two modes.

A main problem of the superposition theory is having to account for a source of

traveling waves in the stratosphere, especially modes that last for a whole month.

Given this, and the fact that our simple attempts do not support the superposition

theory, it is more likely that what we are seeing is a transient response of the wave

to the changes in basic state and forcing.

Non-modal decay by shearing

The coincidence of decay with a tilting of the waves from a westward to an eastward

phase shift with height is reminiscent of the non-modal decay of the Orr mechanism

(1907). Such a decrease in amplitude has to do with the changes in spacing between

PV lines, caused by shearing. The tilt of the perturbation in this case is an advection

by the mean flow and in not associated with the propagation of waves in the vertical
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direction, hence is not a result of downward propagation or reflection. In this section
we test the possibility that the observed southern hemisphere wave 1 in July-August
1996 undergoes such a decay-shearing stage, once the source of the perturbation is
shut off. This would account for the tilting appearing over a deep level simultaneously.

We use our time dependent #-plane QG model to test this with a few different
runs. The basic state we use in all runs is the control run of chapter 5, with a sponge
layer at 10.5 scale heights. In chapter 5 we saw that in such a basic state, stationary
waves propagate vertically to the sponge layer where they are damped. Stationary
waves were shown to have a turning point in the sponge layer but its effect is not felt
strongly by the wave because the damping is sufficient to cut the downward reflection.

Since the initial tilting of the wave against the shear is associated with its vertical
propagation from the troposphere, we look at what happens to the perturbation after
we shut off its source (reduce the bottom forcing to zero). The resultant behavior
depends on whether there are turning points, or actually, on whether the initial
steady state has a downward propagating component in it or not. When it does not,
the perturbation propagates vertically and eventually dissipates in the sponge layer.
We see a wave packet 'tail' forming and moving upwards. Correspondingly, the tilt
remains westward with height the whole time. To further understand the mechanisms
associated with shearing the PV by the flow, we initialize our model with a PV blob,
and let it evolve without forcing it any further. The blob has a zonal wavenumber 1,
and a barotropic structure. A PV blob that is put between y=2-3, and 2.5-3.5 scale
heights does shear with the flow, but it induces a vertically propagating component
above it, which tilts westward with height, even as it decays in time. It could be
that the time it takes the perturbation to shear is larger than the time it takes it to
propagate vertically and decay in the sponge layer, hence we put the PV blob in a
larger range of heights (3-6 scale heights), to give the perturbation the most favorable
structure for shearing. Figure 7.13 shows the evolution of the geopotential height field
in this run. Even in this case, we see an initial westward tilting of the perturbation,
however, starting on day 5, we see an eastward tilt developing (it lasts three days
only but we believe reflections from the surface affect the results at this point). This
run suggests that the shearing mechanism may work in the stratosphere, but given
the unrealistic initial state (a barotropic PV blob), we do not believe it is relevant
to the observed case at hand. We do, however, need to understand what causes the

8Note that such decay may occur on any wave geometry, even when we have an evanescent wave
region (for example when q, = 0), and even without the existence of a turning point. This makes
the shearing decay mechanism different from the case of tilting and decay that are caused by turning
off the tropospheric forcing.
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perturbations to tilt against the shear, in order to determine in what cases, if at all,
we expect perturbations in the stratosphere to be sheared by the basic state.
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Figure 7.13: Longitude-height plots of geopotential height perturbation, at different
times, for the run that is initialized by a barotropic wave 1 PV blob at y=2-3, z=3-6.
See text for details.

A possible explanation we can think of is the following. There are two opposing

mechanisms affecting the tilt of the PV perturbation. One is the advection by the

mean flow, which will tend to tilt the perturbation with the shear. The other is

the vertical propagation, which is manifest by the advection of basic state PV by

the meridional flow that the PV perturbation induces. It can be shown that above

the PV perturbation, this mechanism will tend to tilt the wave against the shear

(Heifetz, 1999, personal communication), which is expected since the wave is upward

propagating. What causes the latter effect to win seems to be the density effect.

Some support for this comes from runs we have done where we initialized the model

with a random PV perturbation (wave 1, random initial amplitude and phase at each
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grid point) to see what patterns emerge. Large scale patterns occasionally emerge,
that are very weak, but they have a westward tilt with height. Since a 6-function
PV perturbation will propagate in all directions, the only reason why the vertical
propagating structure emerges is the amplification related to the density effect of
amplifying vertically propagating waves. We plan to test this by running a Boussinesq
flow model, among other things. As for the issue at hand, it seems that in the present
case at least, the observed tilting of the waves in July-August 1996 is not due to
shearing during the decay stage of the wave.

7.2 The September version of reflection from a

turning point

In this section we will discuss variations of wave structure that occurred in wave 1 of
September 1996, which are in essence similar to the July-August case shown above,
but with a few differences. We concentrate here on presenting the differences.

Figure 7.14 shows time-height plots of the zonal mean wind, the wave 1 vertical
wavenumber calculated from the steady state solution using the daily basic state, the
zonal mean wind acceleration, and the contribution to the acceleration from wave 1
V - F (RHS of equation D.11) for September 1-30, 1996. All quantities are averaged
over 40-80*S, except the vertical wavenumber (m) which is averaged over 56-76*S
(these latitudes were chosen to represent the values of m in middle-high latitudes, see
for example figure 5.13). The evolution of wave 1 geopotential height and temperature
is shown in figure 5.12. There are two strong deceleration events during this period
(9/9-12, 20-22), followed by acceleration (larger on September 13-15). Wave 1 V -F
is strong enough to account for the deceleration, but not for the acceleration which
follows. On the other hand, a strong positive wave 2 V -F on September 12-14 (not
shown) can account for it. We will comment on the appearance of wave 2 later (before
September 12 its V -F is negligible). Following both decelerations, wave 1 tilts to
a vertical position (geopotential height phase becomes constant with height, and a
7r jump in temperature phase forms around 5 scale heights). In between, the wave
returns to a westward phase tilt with height (September 16-21).
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Figure 7.14: Height-time sections (September 1-30, 1996) of a latitudinal average

of (top to bottom): A. Zonal mean wind (m/sec). B. Vertical wavenumber (m),
calculated from the wave 1 steady state solution to the daily observed basic state

(10- 5 m-1 ). C. The change in zonal mean wind over 1 day: (U(t)-U(t-1), m/sec,

negative values dashed). D. The acceleration due to wave 1 driving: V. F (m/sec
., fJ Cos W~

per day, negative values dashed). All quantities, except m are volume averaged in

latitude over 40-80'S (weighted by cos tp). m is averaged over 56-76 S.

207

4 7 10 13 16 19 22 25 28

Vertical wavenumber of steady state solution, averaged over 56-76S

35

1.

illini willilmilmilillwi ow illi lp imm mi milwillill1iii HIM

- 10

- -



In mid-August we saw reflection that resulted from the formation of a turning
point. In September, this mechanism doesn't obviously work because there is a turn-
ing point to begin with (as we saw in 5.4.2, the climatological September basic state
has a turning point at around 5.5 scale heights). Looking at the time series of m in
figure 7.14, we see that a turning point exists within the observation domain through-
out September, but that on 9/11-13 and 9/21-24, the turning point dips down'. By
comparing this time evolution of m with the evolution of the wave phase tilt, it seems
that the wave phase tilt roughly follows m, such that a downward motion of the
turning point causes the wave to reflect downward and tilt vertically, and an upward
motion of the turning point causes the wave to tilt more westward with height. As
was already pointed out in 5.4.3, the observed temperature phase is not similar to
that of the steady state solution, which is never vertical (figures 5.12 and 5.15). This
emphasizes the importance of transience when the adjustment of the wave involves
reflections.

Another change in structure which is not seen in mid-winter is the transition
from a double to a single peak in temperature amplitude (September 10-12). This is
most clearly seen when looking at longitude-height sections of temperature (shown in
figure 7.15 for September 8-13, at 60'S)"o. Unlike the phase of the wave, the observed
temperature amplitude seems to roughly follow (with a time lag of approximately
3 days) the amplitude of the steady state solution to the time evolving basic state

(compare figures 5.12 and 5.15). For example, a single peak in temperature, like
observed on the 10-12th, appears in the steady state solution on the 7-9th. Also, the
steady state solution has a single peak on the 14-16th, while the observations almost
have a single peak (very shallow double peaks) on the 18th.

Since the variations in the height of the turning point are not very large, and in
some cases the tilting into the vertical appears quite suddenly in observations (see
figure 7.15, September 12-13)11, we test the adjustment of waves to changes in the
height of the turning point in a model. We want to see whether a small change
in the height of the turning point can cause the wave to tilt as much as observed,
and whether observed time scales for these changes are reasonable. We run our time

9m = 0.01 denotes the turning point.
0This change is also evident in the latitudinal average (figure 5.12), hence it is not due to latitu-

dinal shifts of a complicated wave pattern, but to a robust change over all latitudes.
"Our intuition is that the transition from a westward tilting wave (9/12) to a vertical wave

with a double temperature peak (9/13) is robust, because both structures are observed on the few
days before and after this transition, but the observations of the transition stage are biased by the
asynoptic sampling (which increases eastward phase progression), and in addition, there is probably
some error in the highest levels, where most of the transition occurs.
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structure of the waves is sensitive to this wave geometry, as well as to the damping.
We can, however, get vertical phase lines as a transient structure, without it being a
characteristic of the steady state solution before or after the basic state changes. This
sensitivity to high level winds may be more important for the amplitude structure.
It is unclear if we can get the temperature amplitude to 'stretch' to one peak as a
strictly transient response, or whether it happens only if the steady state solution to
the basic state at some point has only one peak. In our model run, we do manage
to get the two temperature peaks to become one, within three days of moving the
turning point up, but only in the run with a high lid and sponge layer. The steady
state solution to the basic state with the high turning point does not, however, have
a large upper temperature peak to begin with.

The sensitivity of the response of our model waves to the basic state in the upper
stratosphere raises the issue of the reliability of the observations. The changes in zonal
mean wind occur mostly above 5 scale heights, where observations are less reliable,
but they extend down to 4.6 scale heights most of the time. The time variations in the
vertical wavenumber, however, occur above 5 scale heights. Since m is diagnosed from
a model that uses vertically interpolated winds it is hard to judge how accurate it is.
The variations in temperature amplitude are concentrated at high levels as well, and
do not involve very large amplitudes. For example, the difference between September
9 and 10 in figure 7.15 is of 3-6*K at 5-10 mb. The analysis of chapter 3 suggests the
retrievals are capable of resolving such a feature, but errors can be as large as most
of this difference. The fact that they occur simultaneously at all latitudes raises our
confidence in these variations, because they are not due to measurement noise. As was
shown in chapter 3, large scale errors may be a result of sharp features projecting onto
the vertical correlations of the error covariance matrix of the retrieval. It is hard to
say if sharp vertical features exist in September. As we will show in a moment, there
is wave breaking going on in some of the days, however, the high peak in temperature
amplitude disappears during one of the wave breaking events, contrary to what we
expect from spurious vertical correlations. Overall, however, since the variations in
basic state and in the waves agree quite well, we believe they are real and at the most
the errors are quantitative, not qualitative.

Another mechanism which might play a role in affecting vertical wave structure is
wave breaking. The increase in phase tilt with height, and the disappearance of the
higher temperature peak, is consistent with a 'pulling up of the wave' (or alternatively,
an elimination of the downward reflected component of the wave), which could be
achieved by increased damping in the vicinity of the turning point. This, along with
the sudden appearance of wave 2 V - F mentioned above, suggests looking for wave
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breaking. By Rossby wave breaking, we mean an irreversible pulling out of material

PV from the polar vortex (McIntyre and Palmer, 1983). In terms of a linear wave

formulation, the nonlinearities effectively become large enough to project onto higher

wavenumbers, and act as effective damping on the wave. Plots of Ertel PV on 0

surfaces show a clear event of wave breaking" (the formation of a comma shaped

vortex and an eventual detachment of one or more blobs of PV from the vortex) over

the Indian ocean, on September 10-12 (figure 7.16). These are precisely the days

when the temperature structure becomes one peaked. While we do not find large

scale wave breaking in 1996 before September 10th, we see a weaker case of breaking

on September 17-19 over the Pacific ocean, accompanied by a westward tilting of

the wave, and a weakening of the upper temperature peak. Wave breaking however

does not always occur simultaneously with a stretching westward of the wave, as in

September 20-21, when we see quite large breaking over the Indian ocean, but no

change in wave structure. At this stage, without running a nonlinear model that can

exhibit wave breaking, it is hard to say more about the effects of nonlinearities on the

vertical structure of the waves. The only thing we can do is show another example

when wave breaking occurs simultaneously with vertical structure changes. Analyzing

another case is useful because we can see if the vertical changes in wave structure are

also accompanied by an upward shift in the location of the turning point. If not, it

is more likely that the wave breaking acts like damping, and reduces the downward

reflection from the turning point.

Ertel PV on 1500 K surfoce. September 10 1996 September 11 1996 September 12 1996

Figure 7.16: Ertel PV on the 1500'K 0 surface, on September 10, 11, 12, 1996.
Contour intervals are 2 x 10 4 Km 2 /Kg/sec.

1
4 Wave breaking is observed above the 1000'K potential temperature surface (roughly 5mb) on

these days, and extends at least up to 1500'K (the highest level we checked, roughly 2mb).
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7.2.1 Another example from September 1982

Mechoso et al. (1988), in their discussion of the final warming of 1982 in the south-

ern hemisphere, pointed out the appearance of an upward wave 1 EP flux in the

stratosphere (without a corresponding tropospheric signal) alongside wave breaking,
in September 1982. They discussed this evolution in terms of internal stratospheric

nonlinear evolution. This signature is similar to what we observe on September 10th,
1996, hence we decided to analyze the 1982 case and compare.

Figure 7.17 shows time-height plots of the zonal mean wind, wave 1 geopotential

height and temperature amplitudes and geopotential height phase, averaged over 40-

70*S, for the period September 20th-October 9th, 1982. We see, as in 1996, a strong

deceleration (9/25-29), followed by the wave tilting into the vertical (9/28-10/3). Just

when the deceleration starts, we see an increase in the geopotential height phase tilt

with height (9/23-25) and the transition from a double to a single peaked temperature

amplitude (9/25-27). It easier to visualize these changes, and to compare them to

the 1996 case, by looking at longitude-height sections of wave 1 temperature, shown

in figure 7.18. Figure 7.19 shows the Ertel PV on the 1500*K potential temperature

surface (roughly 2 mb), for September 25-2715. As in 1996, wave breaking occurs on

the days that the temperature structure changes from a double to a single peak. We

also see that a few days later, the wave tilts to a vertical position. Nonlinear reflection

from the critical level is one possibility we would like to test in a more comprehensive

study of the effects of wave breaking on wave structure. Both in 1996 and in 1982,
we see the wave tilting to a vertical structure as the wave breaking matures.

The simpler possibility of the wave structure changes being caused by the turning
point moving up and down is also tested. The vertical wavenumber does seem to

explain the vertical tilting of the wave, although not as clearly as in 1996, because
the observations are messier. Rather than having one turning point, there is an

additional evanescent region (such that a narrow propagation region forms above it
and below a higher turning point) which appears and disappears occasionally during
the period shown. On September 28-29, when the wave reflects downward, the upper

propagation region disappears, and there is a turning point at 5 scale heights. There

is no increase in the height of the turning point on the days preceding the westward
tilting of the phase lines on September 25-27, which supports the hypothesis that

wave breaking causes the top peak to disappear. As we pointed out before, it is hard
to judge how robust small scale features in m are (e.g. the multiple turning points),

1
5 Similar to the 1996 case, wave breaking is observed above about 1000*K on these days, and

extends at least up to 15000K.
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since we use a high resolution model with interpolated winds and temperature. It is

important to note that after 1982 (end of 1988) the operational retrievals changed

from a statistical to a minimum variance method, meaning, there is less dependence

on statistics in the retrievals after 1988. In the southern hemisphere in particular

the statistics are not very robust, resulting (at least in theory) in much improved

retrievals.

Finally, it is interesting to read the discussion of the observed wave life cycles in

Mechoso et al. (1988), in light of the current study. They discuss the evolution of

waves 1 and 2 (both of which appear in 1982) in terms of life cycles of growth, east-

ward progression and decay. They do not explain the source of eastward propagation.

While wave 2 is clearly an eastward propagating mode, wave 1 has periods of east-

ward propagation, separated by westward propagation. This cycle of growth-eastward

phase progression-decay is what you get when a wave grows, reflects downward and

decays.

7.3 Summary

In this chapter we have used the diagnostics developed in previous chapters, to ask

to what extent the time evolution of observed waves can be explained by linear wave

propagation theory, given the observed basic state. We find that the observed time

evolution is a wave-mean flow interaction, where the wave responds qualitatively

linearly to the basic state changes (which appear to be wave-induced), and that the

time evolution of both seem to be dynamically consistent.

The purpose of these calculations, apart from testing the applicability of linear

theory, is to test the use of the diagnostics and the reliability of the observations.

Much of the time variations we are interested in occur at or above 5 mb, where the

observations start losing reliability. The coincidence and consistency of variations

in the basic state wave geometry and the vertical structure of the waves increases

our faith in these observations. The wave geometry diagnostics we have used (1, m)

are diagnostics of the basic state propagation characteristics, even though they were

derived from the steady state wave solution. Being basic state diagnostics, they are

relevant for the transient evolution of the waves, even on daily time scales. The

diagnostics based on the steady state solution to an instantaneous basic state are

useful for understanding the wave structure even when the basic state varies with

time and the waves never have the opportunity to reach their steady state.

The phase structure of the waves, which is a diagnostic of the direction of prop-

agation, is much of the time in transience. In particular, vertical or eastward phase
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tilts with height are not a steady state response, hence they always result from abrupt
changes in the basic state or forcing, or from nonlinearities (given the observations

are real). During late winter, and occasionally during mid-winter, we have a turning

surface which reflects waves downwards. Variations of the mean flow (which may

be wave-induced) cause such turning points to either form abruptly, or if a turning

point existed to begin with (as in late winter), to shift downwards. The abruptness
of these changes causes the waves to reflect downwards for a few days. We also get
reflection in the presence of a steady turning point with a transient wave source.

Downward reflection and the associated structure changes will appear as an eastward

phase propagation at some levels. Much of the discussion of planetary wave variability

has been in terms of a Fourier decomposition in space and time. In the one winter we

analyzed (1996, southern hemisphere), the life cycle of growth, followed by reflection

(and sometimes decay) was quite abundant. While we did not study other years in
great detail, we skimmed a few years of data for signatures of a deceleration of the

upper stratospheric zonal mean winds, followed by a poleward heat flux (downward

reflection). Such signatures were found in the southern hemisphere for wave 1 in
September 1986, and 1983, and for wave 2 in September 1983, and in the northern
hemisphere, for wave 1 in winters 1990-91 and 1995-6. While these signatures are

not a proof of formation of a turning point and subsequent wave reflection, they are

necessary conditions. While we have concentrated on the southern hemisphere, we

expect to find such wave behavior in the northern hemisphere, except for times when
the waves are extremely large and nonlinear (e.g. sudden warmings).

Finally, our analysis suggests that in September, when the polar vortex starts its
breakdown, wave nonlinearities are noticeable in terms of their effect on the vertical
wave structure, and at least qualitatively, nonlinearities can act as damping on the
waves.
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Figure 7.17: Height-time sections of the 40-70*S average of (top to bottom): A.
Zonal mean wind (weighted by cos W, contour interval is 5 m/sec). B. and C. Wave

1 geopotential height amplitude and phase, respectively (amplitude in meters, phase
in units of 7r). D. Wave 1 temperature amplitude ('K) for September 20 - October 9,
1982. The vertical grid is the observations grid.
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7.18: Longitude height sections of wave 1 temperature at 60'S, for September
25, 27, 28, and 29, 1982.

Ertel PV on 1500 K surface, September 25 1982

Figure 7.19: Ertel PV on the 1500"K 0 surface, on September 25, 26 and 27, 1982.
Contour intervals are 2 x 10- 4 Km 2/Kg/sec.
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Chapter 8

Summary and conclusions

In this thesis we study the vertical structure of stratospheric planetary waves and

its variability, both in models and in observations. We concentrate on observations

of vertical wave structure in the southern hemisphere, but a skim of some northern

hemisphere data indicates that much of the wave features are observed there as well.

Stratospheric waves usually appear in episodes, with a characteristic zonal wavenum-

ber. In the northern hemisphere we observe mostly quasi-stationary waves 1 and 2,

while in the southern hemisphere only wave 1 is quasi stationary and wave 2 is east-

ward propagating. We find a large variety of vertical wave structures, which varies

from one wave episode to another, with a seasonal cycle. Also, within a given episode

waves occasionally undergo changes that last a few days. These variations, are most

notable when looking at longitude-height sections of the waves. It is important to

point out the inherent difference between the occasional phase propagation associ-

ated with structure changes and the the modal phase propagation that is observed,

for example for wave 2 in the southern hemisphere, which is coherent at all latitudes

and heights'.

A simple model study of normal modes on vertically varying basic states also re-

veals a large variety of vertical structures, that is similar to observations. In models,

the factor that introduces the largest variability in the longitude-height structure of

the waves is a reflection of the wave off of turning surfaces in the vertical direction.

The existence and the location of turning points depends on the basic state. Using

a diagnostic of the basic state wave propagation characteristics, we find in observa-

tions that a turning point exists in the upper stratosphere in late winter, and that

'Note that eastward propagating wave 2 also exhibits occasional vertical structure changes, where
the associated phase propagation (which varies with height) is superposed on the modal eastward

propagation.
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occasionally it forms for a few days during early and mid-winter. Analysis of a few

observed wave events shows the time evolution of vertical structure to be consistent

with the formation of turning points and with time variations in the forcing. We

view this as a qualitative assessment of the relevance of quasi-linear wave theory to

the real atmosphere as well as an assessment of the observations (much of the rel-

evant variability in the basic state occurs above 5mb, where observations are less

reliable). A clear advantage of using vertical wave structures of geopotential height

and temperature is that these fields are the most directly observed wave quantities.

Higher order diagnostics have errors that relate to the base level analysis, to vertical

and horizontal differentiation and to the balance assumption used to calculate winds.

We do need to worry, however, about the ability of satellite retrievals to resolve the

vertical structure of the waves.

We will proceed to summarize and discuss the main results of this work, which

consists of theoretical model studies of the relation between vertical wave structure

and the wave geometry of the basic state, an assessment of the ability of the observing

system to resolve the wave phenomena we are interested in, and a diagnostic study

of the observations to determine whether the theoretical relations we find hold.

8.1 Assessing observations

We start the thesis with a thorough discussion of the operational observations prod-

uct we use, and the various stages involved in obtaining it (chapters 2, 3). The

observations we use are based almost entirely on satellite measurements of radiance,
from which temperature profiles are retrieved2 . There have been many studies of the
errors and uncertainties in the various stages of the observational product (see sec-
tions 2.1, 2.5 for references). The largest uncertainty we need to be concerned with is
the ability of the satellite retrievals to resolve the vertical structure planetary waves,
given the coarse vertical resolution of the observations. Past studies that have tested

the ability of a retrieval algorithm to reproduce a temperature profile have mostly em-

phasized the ability to simulate the vertical structure of the total temperature field,
and not wave structures, which are deviations from the zonal mean. It is true in gen-

eral, that studies that asses the quality of observations are done by the scientists who

design the observations, and not by the scientists who use them. These studies, there-

fore, do not usually test specifically the ability to resolve the phenomena of interest.

2 The quantity observed is neither temperature nor geopotential height, rather it is layer mean
temperature, or thickness. Combined with a surface height, this gives us the geopotential height.
Using some interpolation method, we can get the temperature at a given level.

218



We have therefore decided to use our model to check whether the retrievals are able

to resolve the vertical amplitude and phase structures of the waves by calculating the

radiances that a virtual satellite sitting at the top of our model would see, inverting

these radiances to obtain retrieved temperature fields, and comparing to the model

'true' fields. We find that retrievals are capable of capturing the important features

of the waves, in particular their vertical phase and amplitude structure, to within a

few 'K, with a few limitations and exceptions. Above the peak of the top weighting

function, at 1.5 mb, the retrievals contain little or no information from the radiance

measurements, rather, the source of data in the operational products (which are given

on levels as high as 2, 1, and 0.4 mb) is the additional information that is put into the

retrieval to make it stable. This additional information is usually statistical. Errors

in the retrievals start being large above 5mb, the peak of the second highest weighting

function. Also, small scale features can not be resolved, but since most waves have

quite large vertical wavelengths, the retrievals are able to resolve their general features

quite well. When the wave fields terminate sharply at some level, the retrievals may

spuriously create waves above that level, depending on the vertical correlations in the

additional information used. This may happen, for example, when waves encounter

critical levels, as is the case in summer or when the polar vortex breaks down in late

winter. We should note that the above limitations reflect the information content in

the radiance measurements, hence they pertain to any retrieval algorithm, including

the direct assimilation of radiances. The differences between retrieval methods is in

how data voids are filled, and how the solution combines the observations with the

additional information.

Another concern we have is the ability of the satellites to resolve rapid variations

in vertical structure, given the asynoptic nature of satellite sampling (section 2.3). A

simple test of this effect (sampling a specified time varying wave as the satellite would

and plotting the fields as if they were taken synoptically, as is done in the operational

product) shows that the resultant distortion is usually a decrease in amplitude which

is noticeable only for very rapid variations in vertical wave structure, and is quite

small for observed ones. The distortion increases with increasing phase speed and

is slightly larger for eastward moving patterns. Sampling errors may be partially

responsible for the observed decreases in amplitude in the upper stratosphere that

accompany structure changes.

Our results are reassuring, because they indicate the observations are capable

of resolving the features we are interested in. We should be cautious, however, of

observations above 5 mb, and of small scale features. Also, we should be cautious of

the observations of the breakup of the polar vortex, when a critical level descends,
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and time variations are very rapid. One way to verify the retrievals in such cases is to

look at the radiances directly. Also, we can repeat our 'virtual satellite' exercise on a

model of the polar vortex breakup. Also, an assimilation product where the radiances

are assimilated directly, will assure that the additional information is dynamically

consistent with an absorption of waves at a critical level, because the additional

information used in the retrieval is based on the model dynamics (hence it will not
introduce spurious waves in the easterlies above a critical level, as a non-diagonal

minimum variance constraint would).

8.2 Theoretical model studies

The theoretical part of this work consists of a few studies:

o A study of the normal modes on tropospheric-stratospheric basic states that
vary only with height, in the framework of wave-geometry and overreflection

theory (chapter 4).

o A study of linear forced stratospheric waves on basic states that vary with

latitude and height, both steady state and time dependent, where we come up
with a diagnostic of the wave propagation geometry (chapter 5).

o A more diagnostic study, in which we view the waves as consisting of many wave
activity packets that propagate from the troposphere through the stratosphere.

We use a wave-based coordinate to study the evolution and budget of wave
activity within the wave packets as they propagate through the stratosphere,
both for steady state and time dependent waves (chapter 6).

Our goal in the first two studies is to categorize the waves in terms of their ver-
tical structure, and to determine how the basic state and other factors like damping
affect it. To this end we categorize the basic state in terms of the geometry of wave

propagation and wave evanescence regions, separated either by a critical level or a

turning point (wave geometry). This approach is useful because it lends itself well
to generalizing our results to many basic states. While Charney and Drazin (1961)
showed that wave geometry is relevant to the forced stratospheric wave problem,
Lindzen et al. (1980) showed that it is relevant to baroclinically unstable modes,
which can be explained in terms of wave propagation/overreflection. In chapter 4
we extend the normal mode analysis using overreflection theory to the normal modes
of the tropospheric-stratospheric system. The modes we study draw energy from an
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interaction with a critical level in the troposphere, and, depending on the wavenum-

ber, propagate vertically in the stratosphere. We find a large variety of vertical wave

structures, which are similar to the observed. The variability is both for different

wave numbers on a given basic state, and for a given wavenumber on different basic

states. It stems from having different stratospheric wave geometry configurations for

the different modes. Viewed in this way, it becomes obvious that there is not much

difference between the stratospheric part of forced and unstable waves, hence results

from the normal mode analysis are relevant to the observed quasi stationary waves,

as well as to the eastward propagating wave 2 observed in the southern hemisphere.

The feature which affects wave structure most is the existence of a turning point,

which reflects the waves downward. The zonal-vertical structure is directly affected

because the orientation of phase lines in the longitude-height plane is indicative of the

direction of wave propagation. When damping is added in the vicinity of a turning

point, it cuts down the reflection, causing the phase tilt with height to be more west-

ward. Also, it decreases the amplitude of waves that are propagating in the region

of damping. Temperature amplitude is also very sensitive, because it is a vertical

derivative of geopotential height. We commonly find a node in temperature at or

above the turning point, along with a peak in geopotential height (in the case of

partial reflection we have an 'almost node' in temperature).
When the basic state varies with latitude as well as with height, we need to worry

about meridional propagation (chapter 5). In general, given an index of refraction,

there is no unique way to separate wave propagation in the meridional and vertical

directions a priori, without obtaining the full solution first. Given a steady state

solution, we can however calculate meridional and vertical wavenumbers. In the

stratosphere, the meridional wavenumber is determined by the shape of the polar

night jet, which acts as a waveguide. As a result, the meridional wavenumber is

insensitive to the zonal wavenumber and phase speed of the wave, as well as to the

damping 3 and shape of the forcing at the bottom4. This leaves only the vertical

wavenumber free to vary with the zonal wavenumber and phase speed of the wave.

Most important, the meridional and vertical wavenumbers that are calculated from a

steady state solution to a given basic state, using arbitrary forcing and damping, are a

diagnostic of the basic state wave propagation characteristics. This diagnostic allows

3The insensitivity to damping holds as long as the equatorial damping does not get into the

waveguide and as long as it does not vary on spatial scales of the order of or smaller than the

wavenumber.
4The shape of the forcing at the bottom affects only the lowest scale height. Above that, the

meridional wavenumber is determined by the shape of the waveguide.
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us to 'see' turning points (for propagation in the vertical). We also find that the

effects of turning points and damping on the wave phase and amplitude structure are
qualitatively like in the one dimensional model. The analogy to the one dimensional
model is further tested by comparing the solution in the middle of the waveguide to
that of an approximate one dimensional model, with the basic state, damping, and
meridional wavenumbers taken from the middle of the waveguide (section 5.3.6). The
sensitivity of the response to zonal wavenumber is very similar in the two models,
with the exception that resonant wavenumbers are not found in the two dimensional
model. This is due to leakage of the perturbation to the equator. Quantitatively,
the 1D approximation is not very good, with some of the difference also being due
to leakage to the equator. Since the zonal and vertical wavenumbers are diagnostics
of the basic state propagation characteristics, they are relevant for time evolving
waves as well as for steady state. Note that using an instantaneous wave structure to
calculate wavenumbers is meaningless if we have large time variations.

There are a few additional points to make. In solving the ID model for normal
modes, we find that when stratospheric turning points exist, the downward reflec-
tion of the wave interferes with the interaction of the mode with the critical level
in the troposphere, causing one or more wavenumbers to be exponentially neutral

(section 4.4.2). In the real world, however, we do not expect strong interference to
develop because the reflection is from a surface that is not necessarily simple geo-
metrically, the damping will most likely reduce the reflection, and by the time the
wave propagates up to the turning point and back, the basic state may change. Also,
since it takes time for the wave to propagate up to the turning point and back down
to the critical level, we expect the modes initially to grow like the faster growing
adjacent wavenumbers. This highlights the fact that the growth mechanism of the
neutral wave and the waves adjacent to it are similar, namely, an interaction with
the critical level in the troposphere. Generalizing to the neutral wavenumber of the
in the Charney model, which defines the separation between the long Green modes
and the medium scale Charney modes, we note that the physical growth mechanism
of Green and Charney modes is the same, and the distinction between them is an
artifact of having a turning point.

Solving the normal mode problem also allows us to identify other possible basic
state configurations that support different kinds of modes, differing in the location
of interaction with the mean flow. Basic states that have one or more regions of
negative PV gradients in the stratosphere along with one or more critical levels may
support modes that draw energy from the mean flow at the stratospheric critical level.
However, we can exclude these modes as being a dominant source of variability in
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the stratosphere because the phase speeds of the dominant observed waves are gener-

ally smaller than stratospheric winds (which excludes the possibility of stratospheric

critical levels). Basic states that are more likely to support internal stratospheric

instability, given the observed phase speeds, are found in fall and spring of both

hemispheres, when the zonal wind has a minimum in the lower stratosphere. Waves

during these periods, however, are typically small.

Finally, we side step from looking at vertical structures in terms of wave geom-

etry, and take a different approach to stratospheric waves. In chapter 6 we develop

a diagnostic technique to study the evolution of a 'wave activity packet' within a

stratospheric planetary Rossby wave. We view the wave field as the propagation of

many such wave packets with a velocity analogous to group velocity. We define a

coordinate system that follows this propagation, and use it to track the packets as

they propagate. This also allows us to keep track of the evolution of the wave activ-

ity in the packet, and to distinguish between the contribution to the wave activity

budget of wave refraction, damping, and time variations in the source. It also allows

us to obtain a time scale for propagation of the waves through the stratosphere. We

also relate our coordinate system to Karoly and Hoskins (1982) ray tracing, which

highlights the diagnostic vs. analytic nature of these two calculations, respectively.

Theoretically, this wave activity approach is mostly an interesting alternative way to

view waves and their evolution. In some cases it is particularly illuminating. For

example, a perturbation that is forced at the tropopause initially concentrates into

the center of the wave guide as it propagates along it. After some time it spreads

out and leaks through the equatorial boundary and tunnels to the critical level at the

equator. This is a consequence of having a leaky wave guide, where initially the wave

only feels the local index of refraction, but eventually, when the perturbation fills the

waveguide, it 'sees' the equator where the index of refraction and the damping are

large.

8.3 Applying to observations

In the observational part of our study we analyze a few cases where the vertical

structure of the waves is observed to vary on time scales of a few days (chapter 7).

We analyze one event from mid-winter in the southern hemisphere (July-August 1996)

and one from late-winter/spring (September 1996). During each episode the waves

have a characteristic vertical structure which occasionally changes for a few days,

mostly suggestive of downward reflection. We use our wavenumber diagnostic to

diagnose the propagation characteristics of the basic state (by finding the steady state
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wave solution). As in our model, we find turning points from which waves can reflect
downwards. There are two kinds of turning points, one due to large zonal winds, as
in the Charney-Drazin criterion, and the other due to small or negative PV gradients
forming in the region of positive vertical wind curvature above the jet maximum. The
decay of the waves above the turning point is much sharper for the latter. The zonal
mean jet has a well observed seasonal cycle- its peak moves downward and poleward
towards the end of winter, such that it peaks in mid-stratosphere in September (e.g.
Shiotani and Hirota, 1985). As a result, in late winter a region of small or negative PV
gradients forms in the upper stratosphere, resulting in a turning point of the second
kind. While in mid-winter we see a turning point in the stratosphere only occasionally,
in September we usually observe one at around 5-7 scale heights. The observed
seasonal cycle in wave structure is consistent with the basic state (section 5.4.2). In
mid-winter the waves have a westward phase tilt with height and their amplitude
increases in the stratosphere, corresponding to an upward propagating wave. In late
winter, when the jet shifts downward and a turning point forms, the geopotential
height amplitude peaks in mid-stratosphere, slightly above the turning point, while
the temperature has a node. Also, the waves have a smaller westward phase tilt with
height.

We also study the variations in wave structure on daily time scales, and look for
consistent variations in the wave geometry of the basic state. In the cases we studied
we find that the observed time evolution is a wave-mean flow interaction, where the
wave responds qualitatively linearly to the basic state changes, which appear to be
wave-induced (based on EP flux divergence calculations). A quantitative consistency
check is a calculation of vertical propagation time scales, where the time over which
vertical structure changes occur is related to the time it takes the wave to propagate
to the turning point. Our wave based coordinate diagnostic allows us to calculate the
time it takes a wave packet to propagate through the stratosphere5 . Calculations,
based both on our diagnostic and on Karoly and Hoskins (1982) ray tracing, show
a consistency of wave response times. Apart from confirming the relevance of lin-
ear wave propagation theory to observations on short time scales, this suggests the
observations are at least qualitatively correct. This is important since much of the im-
portant variations in the basic state occur above 5 mb, the level above which satellite
retrievals become less reliable. Our analysis also suggests that in September, when
the polar vortex starts its breakdown, wave nonlinearities are noticeable in terms of

5We need to calculate this time in the initial stages of wave growth because once partial downward
reflections develop, our diagnostic shows longer time scales because the wave is a superposition of
the upward and downward propagating components.
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their effect on the vertical wave structure, and at least qualitatively, nonlinearities

can act as damping on the waves.

Finally, we apply our wave based coordinate diagnostics to observations, for two

kinds of calculations. The first has to do with tracking wave packets, and observing

the evolution of the wave field in this way (one use already mentioned is the estimation

of propagation time scales). This type of calculation works quite well, especially in

highlighting the time evolution of the wave in a leaky waveguide, with or without a

turning point (section 7.1.4). The second kind of calculation has to do with the wave

activity budget, and the contributions to it from various terms. Advantages of this

diagnostic are that we can follow a wave packet, keep track of its wave activity, and

distinguish between the various factors that contribute to it. The accuracy of wave

activity calculations from observations is very low, however, causing the uncertainties

in the calculations to be too large to really make sense of.

8.4 Discussion

In the introduction, we described a few of the outstanding issues regarding strato-

spheric planetary waves that have been the general motivation of our work. In this

section we will comment briefly about how our results relate to these issues.

The extent to which linear wave theory explains the structure and time evolution

of observed planetary waves at a given time or season in the stratosphere is still

debated (e.g. O'Neill and Pope, 1988 and references therein). An obvious way to test

this is to compare observed waves with modeled ones, however, we need to account for

the differences between them. Differences are expected because models are sensitive

to details of the basic state and damping, both of which are not determined from

observations in great accuracy. This sensitivity, on the other hand, makes it hard to

determine why the observations deviate from modeled waves in any given case. It is

also unclear whether discrepancies are due to a model deficiency or to observational

uncertainty, especially if we use higher order diagnostics. It is important to be able

to generalize features of the waves to different basic states and damping. To this

end, looking at time variations of vertical wave structure can be very useful, because

the response to time variations in the basic state is reflected in the large scale wave

structure, which is easily and relatively accurately observed. Also, the wave geometry

framework allows us to estimate the effects of unknown parameters like damping,

hence to account at least for some of the discrepancies between modeled and observed

waves.

Most of the variations in vertical structure, both in models and in observations,
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have to do with reflection of the waves at a turning surface. Since there is no source
for the waves in the mesosphere, waves with an eastward phase tilt with height (which
are downward propagating) have to be transient. Sources of transience may either
be variations in the forcing at the bottom, in the presence of a turning surface, or
variations in the basic state that either create or shift an existing turning surface.
It is interesting that in most cases we analyzed both seem to happen. It is unclear
whether this is only coincidence, and if it is not, which is the cause and which the
effect. This leads us to the following issue: what causes stratospheric waves to grow at
some times and not at others. In particular, waves appear in episodes of a few weeks.
To what extent does the existence of waves depend on the tropospheric forcing, and
to what extent does it depend on the stratospheric basic state? Is it the lower strato-
spheric basic state or is it the wave geometry in the middle and upper stratosphere
as well? A better understanding of the sources of waves in the troposphere, as well
as a comprehensive observational study of both the troposphere and stratosphere are
needed. Our wavenumber diagnostic may be a useful diagnostic for studies of these
issues.

Another aspect of the question of what causes stratospheric waves to grow when
they do is the seasonal cycle in wave amplitude. As we have shown in the introduction
(figures 1.4, 1.5), some years in the southern hemisphere have a mid-winter minimum
in wave variance, but other years show a succession of wave events throughout the
winter. One explanation for the mid-winter minimum (Plumb, 1989) is that the waves
respond linearly to the seasonal cycle of zonal mean winds, and that in mid-winter
the zonal mean wind becomes large enough for a turning point to form, which causes
the wave response to decrease. Although we have analyzed a year where we do not
find a characteristic mid-winter minimum cycle, our results suggest that a turning
point does not necessarily inhibit wave growth. On the contrary, we are more likely
to find a turning point in late winter, when the jet peaks in mid-stratosphere. This
turning point is of the second kind, which is due to the strong positive curvature
above the jet, and not due to the winds being too strong as in the Charney-Drazin
criterion. Results of our study do suggest however, that at least in terms of their
vertical structure, observed waves respond quasi-linearly to the seasonal evolution of
the basic state in the southern hemisphere middle to late winter. Note that Wirth
(1991) did not manage to reproduce the seasonal cycle using a Matsuno type steady
state model using monthly mean basic states (he did not manage to reproduce the
early winter peak). Calculations of vertical and meridional wavenumbers, using the
steady state solution to observed monthly mean winds of various years, may shed
some light on this issue. Also, the question remains as to what causes some years
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to have the characteristic mid-winter minimum cycle, some years to only have a late

winter peak, and other years to have a succession of wave events? In particular,

are the differences due to the tropospheric forcing or to the stratospheric basic state

structure or to both?

We have chosen to study the transience of the waves as a daily time scale vari-

ability in the vertical structure. This makes sense given that we find a corresponding

variability of the basic state. A different approach, which is common in the literature,

is to assume the total wave field is made up of many different modes and to study the

variability using a time-space Fourier decomposition of the waves (e.g. Mechoso and

Hartmann, 1982). We argue that for much of the variability, these are two different

approaches to looking at the same thing, since downward reflection and the associated

structure changes appear as an eastward phase propagation at some levels, and they

are quite abundant in the years we have looked at. A more comprehensive study of

more years is needed to estimate how much of the transience can be accounted for by

vertical structure changes.

Finally, we should note that the observational examples we have shown are from

the southern hemisphere, however, we believe that our results are relevant to the

relatively quiescent periods of the northern hemisphere, when waves behave more

linearly.
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Appendix A

The 'Virtual Satellite' problem

A.1 The basic state temperature

The temperature field we use for our retrieval exercise consists of a zonal mean and a
perturbation. We calculate the zonal mean from the thermal wind relation as follows:

_ Y f T"
T(y, z) = - g Uzdy + T(y0, z) (A.1)

where z is log pressure, H = R is a reference density scale height, T a reference
9

temperature and R the gas constant. T(yo, z) is the temperature profile that cor-
responds to the basic state N 2 . yo is chosen at some mid-channel latitude (we use

yo = 3900km). Other model details and parameters are given in appendix B. An
example of a basic state temperature field is shown in figure 3.8.

The temperature perturbation field is calculated from the model geopotential
height perturbation:

Oo= g T (A.2)
0z TO

since our model is linear, the wave amplitude is arbitrary, and we choose it specifically
for each case, depending on the wave field itself. Wave amplitudes we use vary between
a few degrees and 20 degrees Kelvin, which is the normal range of wave amplitudes
observed in the stratosphere.

A.2 The minimum variance constraint

The diagonal constraint:

We specify the variance of temperature as the diagonal terms in the error covariance
matrix, and use the zonal mean basic state at the middle latitude as the constraint.
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We also use other profiles as the constraint in some runs.

The non-diagonal constraint:

The constraint is calculated using 50 days of a time dependent run where we have

a superposition of a transient wave with a phase speed of 153 and a stationary

wave, both wave 1. We turn the forcing on, equally for both waves, over a period

of 8 days and let them evolve. The wave field changes periodically (with a period

of 20.6 days), due to the different phase superpositions of the standing and traveling

waves. The vertical structures of the combined wave fields are quite different from the

stationary wave alone. Our control experiments use all the grid points between y=1

and y=4, and all days, as a climatology from which to calculate the constraint. The

waves in this run reach a maximum amplitude of 10'K. In our 'control' constraint,

we multiply the wave by an amplitude factor of 4.0 before adding it to the basic

state. The constraint profile is just the time and spatial average of temperature, and

the error covariance matrix is calculated as shown in section 3.3.3, in the footnote.

The choice of an amplitude factor of 4 for the control run needs to be explained

because the control run waves reach an unrealistic amplitude of 40'K on some of

the days. However, the total variance (square root of the diagonal elements of the

covariance matrix, see table A.1) reaches much more reasonable values, which is why

we chose this value as the control. It is important to remember that in reality, there

are variations of the basic state as well as variations in the forcing at the bottom,

which would be additional sources of variance.

Variations on the control run include choosing a different latitude range over which

to average and choosing a different linear wave amplitude (ranging from 0.0 to 8.0).

We are free to calculate an error covariance matrix using one climatology and the

constraint itself using another. None of our results depend on the exact parameter

values we use.

A spatially dependent constraint:

We use a specific wave field (a single day out of the runs described above or a wave

field from a steady state model run) to specify a different constraint profile at each grid

point (referred to as the constraint field). The error covariance matrix is calculated

in the fashion described above. We assume it is the same for all grid points, out of

computation time considerations.

A.3 The operational constraint

A dynamic data set of a few thousands co-located radiance measurements and ra-

diosonde profiles is constantly compiled out of the previous few weeks of observations.
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Height (km) Variance (*K)
14.0 3.2
20.5 10.2
27.0 11.2
33.5 11.7
40.0 12.5
46.5 13.4
53.0 11.0
59.5 5.1

Table A.1: The variance of the standard constraint (see text for details).

For each grid point, a constraint profile is chosen by searching this data set for the

10 closest sets of radiances. The mean of the corresponding temperature profiles is
taken to be the constraint profile. In the upper stratosphere, where there are no ra-
diosondes, the profiles are extrapolated upward using the covariance of a rocketsonde
data set. There are different rocketsonde data sets for high, middle and low latitudes
and the different seasons. Note that most rocketsonde stations are in the northern
hemisphere. The constraint field is non-zonal, since its shape at high altitudes is

determined by the observed field at lower altitudes (the radiosonde measurements)

and its upward extrapolation using the rocketsonde data. Since the constraint has a

set of radiances that is close to the measured ones, it is to some extent close to the
true profile, however, all the limitations of the observing system apply here.

The error covariance matrix is calculated once every few weeks from the ra-
diosonde/rocketsonde data set, and it is the same for all grid points in a specific
region (high, middle or low latitudes). The constraint is therefore a non-diagonal
one.
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Appendix B

The models used

B.1 The 1 dimensional model

B.1.1 Parameters and nondimensionalization constants

The linear QG pseudo-PV equation in height coordinates is derived as in Pedlosky

(1987). The geopotential stream function and temperature variables are defined as

follows:
Ptot PS (B.1)

Ps

T* = Tot  * (B.2)
TS

0* - 6tot - T' (B.3)
Os

where the subscript tot denotes the total dimensional field, while the subscript s

denotes a representative horizontal mean of the total dimensional field. Note that

since (), is a horizontal average, ()tot - (), has a zonal mean component that varies

with latitude.

Equations 4.1-4.3 are derived by nondimensionalizing the linear pseudo-PV equa-

tion and the definition of PV in terms of # as follows (' denotes a deviation from the

zonal mean, T*, * and #* are as defined above, otherwise, * denotes the dimensional
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variables):

z =T
(k,l) = (k*,l*)L

UI 
____

= U

C ~ UT
W w1* L

U= U*-U(O)
= UT

UTOL

0' = gH gr
UT.foL

UTfoL

N 2 NT

4*H 2N2
qy U

N* is given by N*2 = -L = (T+ ), where C, is the heat capacity of air at0, dz* T. dz*

constant pressure and g the gravitational acceleration.

There are two nondimensional parameters, e =_ H 2N2 (equations 4.3, 4.7) which

is the nondimensional #, and a factor multiplying the horizontal wavenumbers y =

HN, which we set equal to 1 by choosing the horizontal scale to be the radius of
LfoI

deformation: L = Ld = NoH
fo

Standard values are used for the different parameters: UT = U* (z* = H) =

22msec- 1, To = 285K, N 2
0 = 1.1x10-4sec-2, H = 8.9km, # = 1.14x10-11sec- 1 m~1,

#e = 0.29. Unless specified differently, the tropopause is taken at z = 1 i.e. at 8.9km.

The top of the 'troposphere-stratosphere' model is chosen at z = 6 (53.5 km). Also,

fo = -1.26 x 10-4 (corresponding to a latitude of -60*), and the radius of deformation
is Ld = N-H- = 745km.

The numerical method, which is described in Harnik and Lindzen (1998), is es-
sentially the algorithm used by Kuo (1979). We have 400 grid points in the vertical

(a grid spacing of 134m for the top at z* = 53km).

B.1.2 The boundary conditions

Our lower boundary condition is either a rigid surface or an Ekman pumping con-

dition. We use the temperature equation on the lower boundary, and specify the

vertical velocity according to the boundary condition.

For a rigid surface, the ground is our lower boundary and we set the vertical
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velocity to zero there:

-- + U a'1+ o'-- = 0 (B.5)

To implement an Ekman parameterization, our lower boundary represents the top

of the Ekman boundary layer, and we use the Ekman pumping parameterization for

the vertical velocity there:

+U + V- = -w'N 2 = -N 2 Ek(' (B.6)
at ax ) By

where Ek = N o is the Ekman damping coefficient, v is the vertical eddy viscosity
UT 6&0

coefficient, and (' is the vertical component of the vorticity. To solve, we write 0' and (
in terms of the geopotential stream function (4.4), and solve along with equation 4.6.

The top boundary condition is a radiation condition. To implement it, wind and

temperature are held constant at the top scale height of the model. We use the

transformation 4.9 to put the equation in canonical form (equation 4.8). Taking into

account that N 2 is constant at the top, the solution becomes analytically tractable,

and has the form of a superposition of an upward and a downward propagating waves.

Only the upward propagating part is chosen. The solution is then transformed back

into our original variable o:

Pz + (4 + inref(c)) W=O atz=Top (B.7)

where

n~f= -I(k2 + 12 2 N2 _ -- + "_(.8ref4 U- (B.8)

and we choose the square root that yields Im(nref) > 0.

B.2 The 2D steady state f-plane channel model.

We use the 2D model to solve the forced problem (equation 5.2). The nondimen-

sionalized linear QG #-plane pseudo-PV equation in log-pressure coordinates, as well

as the definitions of PV, winds and temperature in terms of the geopotential stream

function (equations 4.1-4.3 and 4.4) are similar to their height coordinate versions,

only the geopotential stream function is the geopotential height, and the temperature

variables are the total temperature fields:

z* P -Hl =H zg dzg =To z dz(B9
P0 1 H Jo T*
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d#* = gdzg #* = gz,(z) (B.10)

T* = Tot (B.11)

0* = 6tot (B.12)

The same notation as in section B.1.1 is used, with the exception that z* and z are

the dimensional and nondimensional log pressure vertical coordinates, while zg is the

geometric height. H = R* in the density scale height, and H, = - and To are refer-
g 9

ence scale height and temperature. All variables (including the newly defined #*, T*,
and 0*) are nondimensionalized as in the ID model, and z* is nondimensionalized by
HO. The parameters we use in our model control run are: Ho = 7km (corresponding

to To = 239*K) UT = 30 m sec-1, N 2
0 = 4.1 x 10- 4sec- 2, # = 1.31 x 10-11 sec-1 m- 1,

fo = -1.19 x 10-4 (corresponding to a mid-channel latitude of -55*), and the radius

of deformation is Ld = NoH1 = 1190km.

The bottom of our model is at 2 scale heights (14 km). We force the model by
specifying a zonal wavenumber and a wave amplitude and phase at the bottom. At

the top and side boundaries we set the perturbation to zero. We have a sponge layer

at the top and equatorial boundaries, resulting in an absorption of the wave there.

We make sure reflections from the boundaries and the sponge layer are minimal by
running the model with a larger sponge layer (by increasing the model domain) and
making sure the results are similar. We find that it is necessary to include Rayleigh

damping of momentum in order to absorb the waves in the sponge layers (using only

Newtonian damping results in much less absorption). The polar boundary, which

has no sponge layer is fully reflecting. Since in spherical coordinates the index of
refraction becomes negative close to the pole (equation D.14), we expect Rossby

waves to be reflected equatorwards anyway. Also, in our #--plane model, waves reflect
off the poleward side of the waveguide (section 5.3.1).

The sponge layer damping is specified as follows:

r(y, z) = a(y, z) = jA1 tanh(-A2) - tanh(z bA2))+
2_ A3_A3_ + (B. 13)

(B 1 tanh(YB2) - tanh( ypoleB 2 )

where the Rayleigh (r) and Newtonian (a) damping coefficients are equal. In the

control run A1 = 1.5, A2 = 10.5, A3 = 2.5, B 1 = 1.0, B 2 = 8.75, B 3 = 1.5. To
test the effect of thermal damping, we raise the sponge layer by 5 scale heights (i.e.

A2 = 15.5), and add the following a (following Dickinson, 1969b):

=y z* - 50km 2
a = 0.45(days-1)e_ 13km ) + 0.05(days-1) (B. 14)
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We solve equation 5.2 for the steady state solution by finite differencing the equa-

tions and using a direct solver, based on Lindzen and Kuo (1969). We have 71 grid

points in the vertical direction and 64 in latitude. The top of our model (unless

specified otherwise) is at 15 scale heights (105km), and the latitudinal boundary is

at y=10.27.

The basic state wind and temperature are specified analytically. The latter we

specify to be similar to a US standard winter midlatitude stratosphere profile. N 2 is

then calculated from temperature, and q, from U and N 2 , using equation 4.3. The

control run basic state is shown in figure 5.1.

B.3 The 2D time dependent /-plane channel model.

Our time dependent model consists of solving equation 4.1, assuming a normal mode

solution in the zonal direction:

'= '(y, z, t)eikx (B.15)

plugging in equation 4.1, we get:

= F(q') = -ik(Uq' + p'qy) + D' (B.16)

where D is a damping term. We solve this as follows:

1. Start with a PV perturbation distribution, q'(t).

2. Invert q'(t) to get W'(t), using equation 4.2.

3. Calculate 'q(t) using q'(t) and W'(t) (equation B.16).

4. Integrate equation B.16 in time to get q'(t + At).

5. Return to step 2 and repeat for t = t + At.

To get geopotential height we invert equation 4.2 using the same numerical algo-

rithm, and the same boundary conditions (# = 0 at the top and sides, # specified at

the bottom) as in the steady state model.

The time integration of equation B.16 is done using a third order Adams-Bashford

method (we follow Durran, 1991):

At
q'(t + At) = q'(t) + - [23F(t) - 16F(t - At) + 5F(t - 2At)] (B.17)

12
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We integrate the first two time steps using a second order Runge-Kutta method.

The basic state and the forcing at the bottom are specified every time step, and

are either constant or time dependent. The damping is held constant in all runs, and

is equal to the #-plane model damping, except that we add a constant damping in the

form of an imaginary phase speed (constant and equal Newtonian and Rayleigh damp-

ing coefficients) with a damping time scale of 25 days to assure numerical stability.

The spatial resolution is the same as in the #-plane model. Unless otherwise specified,
we output our results every 50 time steps (At = 0.02) which is every 1 nondimensional

time unit. In dimensional terms, a model time unit is r = 0.46days. For simplicityLd .Frsmlct

we call this half a model day.

B.4 The 2D steady state spherical hemispheric model.

Since we use the spherical coordinate model mostly in order to calculate the steady

state solution to observed basic states, we keep the variables dimensional and use log-

pressure coordinates. The dimensional, linear, QG PV equations, written in terms of

a geopotential stream function are described in appendix D. We solve for the steady

state solution to a prescribed forcing using the same numerical algorithm, and essen-
tially the same forcing and boundary conditions as in the 2D 3-plane model, with the

following differences. The latitude and width of the sponge layer are B 2 = -20' and

B 3 = 10* respectively (equation B.13). The model domain is the southern hemisphere

(-90*to 00). The vertical resolution is the same as in the #-plane model but latitudinal

resolution is the same as the operational observations product (2latitude)l.
The basic state is either taken from observations, or specified analytically. In

the latter case, the wind and temperature profiles are as in the #-plane model, but
the corresponding -, is different (compare equations 4.3 and D.8). When we use
observations, we first extend the fields in the vertical to the model domain (15 or 20
scale heights, depending on the run) by keeping wind and temperature constant above
0.4mb, and then interpolate in the vertical to the high resolution model grid using

a cubic spline interpolation. We calculate the PV gradients from the high resolution

interpolated fields using equation D.8.

'This resolution is of the operational product, which is interpolated from the satellite retrievals.
The actual resolution of the observations depends on the scanning patters of the satellite instruments
(see the Kidwell, 1986, for actual numbers).
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Appendix C

Tracking wave packets: a wave

activity based coordinate

C.1 The relation between the Jacobian and V - Va.

We show the relation between a velocity field and the Jacobian of the transformation

to coordinates that follow the velocity (equation 6.12). The mathematics was devel-

oped for studying the kinematics of fluids, but it applies to our wave activity flow

field as well. The following derivation is taken from Aris (1962).

We define a coordinate system that follows our velocity field, and denote a unit

volume in this new coordinate as a packet. At time t, the packet which is at the

Cartesian position (x 1,x 2 ,x3 ) is denoted by its initial (t = 0) Cartesian position

(fi(x, t), 2(x, t), 3 (x, t)). Thus (1,42,43) follow a single packet (material coordinates).
A volume element in the Cartesian coordinates, relates to a volume element in

the material coordinates as follows:

dV = dx1 dx 2 dx 3 = (XI, X2,X3) d12d3= J -dVo (C.1)

where J is the Jacobian of the transformation:

a(Xb 3) o9i a2 a93
9x1 ,x 2,x3) - __ a (C.2)

8(C1, C2, C3) 19Ci 19C2 abs

aXi aX2 aX3

To calculate the material derivative of J we use the rule that the derivative of a

determinant equals the sum of three determinants with one row differentiated at a

time. Using A (1) = 12, the result of differentiating only the first row is:
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-9VI eXk a8V2j 19k -9V3 -Xk
IOXk 06i OXk 496 OXk C96

OX1 aX 2  &X2

Oci 096 496

where we use the summation rule. For k = 2 we get Ovi multiplying a determinant
OX2

with the first and second rows equal, which is zero. Similarly, for k = 3 we get zero.

Thus we are left only with the k = 1 term: J - v. Differentiating the second and

third rows, and summing, we get:

dJ = 8 (a1 +ov2 + a3 yd Jt( i +a 2 + 3 ) JVVa (C.3)

resulting in equation 6.12.

C.2 Calculating the s - r coordinate from Va

We calculate our coordinate system by integrating along Va. The variables defined in

the previous section (C.1) relate to the variables we use in chapter 6 as follows:

Xi 1 XS

X2 Ys

X 3 =Z (C.4)

i= rX

= S

where the subscript s denotes a Cartesian location of the s - r coordinate grid point

(or wave packet). Since in our case everything is constant along the zonal direction,
x1 = (1 = x, we drop the first coordinate and are left with a 2 dimensional system.

The Jacobian is therefore:

aX2 OX3  OX 2 aX3  
9Yzs ay, 1Z, (5

O~2 k3 - osu~~(C.5)
i%2 a 3 a&3 82 Or Os as or

To obtain (y,(y, z), z,(y, z)), we integrate the following set of equations for a set

of equally spaced emanation latitudes (yo):

dy= V (C.6)
dt a
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, =V (C.7)
t Vaz

dt

d s
-=1 (C.8)
dt

-d=r (C.9)

subject to the following initial conditions at t = 0:

z8 (t = 0) = 2

ys(t = 0) = yo (C.10)
s(t = 0) = 0

r(t = 0) = yo

r equals the latitude at which the Va integral line emanates at the bottom (z = 2

scale heights), and s is the time it takes to reach the given location (Ys(y, Z),Zs(y, z))

from the initial location (yo, 2 ). V is non-divergent in the new coordinate system,

and constant s lines are spaced proportionally to |fal in geometric space.

Numerically, the calculation is done as follows: Starting from the bottom of our

model, we integrate equations C.6-C.9 using a Runge-Kutta integration method, to

obtain the location of the wave packets after one time step (Ys,z,). From our model

generated wave we calculate the velocity field Va on the regular model grid (y,z), and

interpolate it to (Ys, zS), using a two dimensional fifth order polynomial interpolation

We then use this interpolated value to integrate equations C.6-C.9 by an additional

time step, and so on. Our time step is -day, and we output the results only every 4

integration steps, resulting in a resolution of 0.25 day for s2. We stop our integration

after 400 time steps (100 s points). When the packet location reaches the boundaries

of our model domain, we set V, to zero. Typically, we have 80 r grid points between

y = 0.2 - 5.5.

In the time dependent model run (see appendix B for details of the model), we

calculate the s - r coordinate in the same way, taking into account that V, is now

a function of time. In general, our model integration time step is larger than the

coordinate integration time step (the model At is 1 day, while the coordinate in-

'The interpolation of Va to a given point (y,, z,) is done from a 6 x 6 sub-grid of the regular

model grid, centered (as much has possible) as around the point y., z,. If y,, z, is closer than three

grid points to one of the boundaries of our domain, we use a 6 x 6 grid starting from that boundary.
2We need a small integration step because there are regions of very large Va, especially near

regions of very small, zero or negative PV gradients, where the wave activity is small. On the other

hand, we want an integration long enough for the packets to traverse the stratosphere, and we do

not want more than 100 grid points of s.
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tegration At is I day). We therefore interpolate V at each grid point to all the
integration time steps using a fourth order polynomial interpolation in time. We use
a linear interpolation for times shorter than the model At. We then proceed as in
the steady state case, by interpolating V in space to y,(y, z, t), z8 (y, z, t), integrating

equations C.6-C.9 in time, interpolating in space, and so forth.

We follow the same scheme when we use observations, only the observations have

an even lower time resolution of 1 day. Also, we use the spherical coordinate version

of the coordinate calculation, which is described in appendix D.

C.3 Transforming scalar fields between the geo-
metric and s - r grids

The transformation of scalar fields onto the new s - r grid is simply an interpolation

of these fields from the regular y, z model grid onto the irregular ys, z, grid. Since

some of our calculations involve differentiating the scalar field in s - r space, we

use a bicubic spline interpolation, which insures continuity of first and second order
derivatives. The interpolation back to geometric space is slightly more involved since

it is an interpolation from an irregular to a regular grid. Since we do this part
of our calculations using MATLAB, we use the 'griddata' routine with the 'cubic'

option, which fits a surface to the irregularly spaced field values (e.g. A(y 8, z,)), and

interpolates this surface to the regularly spaced grid, using a triangle-based cubic

interpolation.
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Appendix D

Spherical coordinates

D.1 The PV equations.

Formulating the quasi geostrophic equations on a sphere is more complicated than

on a #-plane, for two reasons. First, the QG scaling requires the characteristic length

scales of the flow to be much smaller than the radius of the earth, which allows us to

ignore meridional derivatives of the geometric sphericity factors relative to meridional

derivatives of the flow. The characteristic length scales of our waves (planetary) are

larger than an earth's radius. In Spite of this, we assume QG and test its validity

retroactively, because it is necessary for the formulation of the equations in terms

of wave propagation-wave geometry. The results of our observational analysis may

be viewed as an assessment of the applicability of QG linear theory to stratospheric

planetary waves.

The second complication is that the geostrophic velocity, when defined in the

traditional way, is divergent on a sphere. As a result, the EP flux divergence is not

proportional to the PV flux as it is on a 3-plane (Palmer, 1982). To get round this

problem, past studies (e.g. Matsuno, 1970, Palmer, 1982) have essentially redefined

the vertical component of the vorticity perturbation as follows: (= fV x (6f). For

our calculations we take the approach of Plumb (1999, personal communication1 ),

where instead of redefining the vorticity, we redefine the geostrophic winds by using

the geopotential height scaled by the Coriolis parameter, as follows:

(D.1)

'The derivation can be found in R. A. Plumb's Middle Atmosphere class notes. A less detailed
derivation is also found in Wirth, 1990.
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1 8a'
v'= 1(D.2)

a cos o aA

1' = IM(D.3)
a op

, To &#' f To 8v D'Tq f 0 O''(D.4)
g CIz g Oz

where f = 2Qsin(W) is the latitude dependent Coriolis parameter, W and A are the

latitude and longitude angles, z is log pressure, a the earth's radius, Q the earth's

rotation rate, and all other variables are as in the #-plane model, except that we use

dimensional variables. Since we use spherical coordinates as a diagnostic of observa-

tions it is simpler to keep the variables dimensional.

Using these relations, the vertical component of vorticity is:

, _ 1 Bo' 1 9(u' cos W)(= Vx V = (D.5)
a cos W iA a cosW 89

The corresponding potential vorticity equations are derived following Plumb (1999,
personal communication, see footnote 1), from the momentum, temperature, and

continuity equations. The derivation is essentially the #-plane one, where we neglect

meridional derivatives of sphericity factors. The derivation is also similar to Matsuno

(1970), except for the differences in the definitions above.

The potential vorticity equations are as follows:

a U a IV' -q f a pW
q' -- = -- --t + (V x77') k- (D.6)8~t a cos W i9A a 89 p az N2

f g (pT' 1 82J! 1 a &g +2 9 (_ 19
q =< +-- = - - Cos 0-

pTo az N2 a2 cos2 W i9A2  a cos W op W p 5z N 2  z
(D.7)

_ 1 _g 1 a 1 a(U cos W) f2 a p aU(
ioy a 89 a2 19W COS W 19 pa2 ioz N2 oz

where p = poe-z/Ho is pressure, and #= 2ncoS '. All other variables are as defined in

the #-plane model.
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D.2 The transformed Eulerian mean zonal momen-

tum equation.

The residual mean meridional circulation in spherical coordinates is defined as follows 2

1 19
p 19z

* os- 1
a cos <p

TON 2 I

( g cos
9<p TON2 V

Plugging into the zonal momentum equation, and taking a zonal mean results in

the following second order equation for the zonal mean wind acceleration:

- f )
aU
az

1-
- V -F

pa cos W
(D.11)

The term V - F, is plotted in figures 7.1 andpa cos Wo 7.14 and is expected to be

larger than the actual acceleration since part of it goes into the mean meridional

circulation.

D.3 The linear, QG, spherical wave equations: In-

dex of refraction and wavenumbers.

To get the linear wave equation we assume a normal mode solution in longitude and

time, and use the transformation 4.9:

-= .s(A-c t) = V/ek1Nes(A- c t) (D.12)

Using relations D.1-D.4, and equations D.7, and D.12 in equation D.6, and rearrang-

ing:

o4p
costpo V 0)

f 2a2 g2p
N 2 az2

(aq
U - C

- +a2f2F(N2) 0 =damping
cos 2 . (D.13)

where F(N2 ) is defined in 4.10. As in the #-plane, we define an index of refraction

and meridional and vertical wavenumbers (equations 4.11, 5.6, and 5.5):

2The derivation in this section was first suggested by Boyd (1976) and Andrews and McIntyre
(1976).
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n2 N 2  aq s2 + a 22F(N2) (D.14)
ref U -c cos 2 <

Re sp (CosW ))= Re O - 0 tantp _12 (D.15)

Re _ m2 (D.16)

Note that Plumb's derivation of the equations results in a cleaner definition of
the meridional wavenumber because the meridional derivative term is the meridional

component of V 2 in spherical coordinates. Matsuno's (1970) derivation, on the other
hand, results in a different, more complicated meridional derivative term.

D.4 Wave activity conservation and the wave based

coordinate.

The wave activity equation in spherical coordinates is derived the same way as in the
#-plane (see section 6.2), and is exactly like equation 6.3, only the definitions of A,
F, V- F, and D are different:

A =a2p cos W g/2  (D.17)
24q

Fw = -ap cos pu'v' (D.18)

Fz = -ap cos <p 2 vIT (D.19)

-. 9Fz 1 O(F.costp)
S-F = + -(D.20)

Oz acosp O<p

To calculate the wave activity coordinate of chapter 6, we define the wave activ-
ity velocity as in the #-plane (equation 6.10), and integrate D.21 along with equa-
tions C.7-C.9:

dy_ Vay (D.21)
dt a

subject to the initial conditions C.10, where yo = apo.

The transformation to wave activity coordinates and the calculations of wave
activity budget that follow are similar to the #-plane model (see chapter 6 and ap-

244



pendix C), with the exception that we add a term to the Jacobian, to account for the

effects of sphericity:

OX3 192
(y, Oz,
Or Os

y, z" a2 cos pi8s iDr)
(D.22)
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