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Abstract

Global models of the gravity fields of Earth and Venus are now available with a maxi-
mum resolution of about 600 km. In order to interpret these data sets in the context of
geodynamical models, we develop a method for spatio-spectral localization of harmonic
data defined on a sphere. For Venus, we calculate the localized RMS amplitudes of the
geoid and topography, as well as the spectral admittance between the two fields. We
conclude from the observed admittances that topography over 10 percent of the surface
of Venus can be explained by variations in crustal thickness, and that topography over
the remaining 90 percent of the surface is the result of vertical convective tractions at
the base of the lithosphere. We compare the localized admittance spectra to similar
quantities derived from a set of numerical convection models. With these models, we
show that an Earth-like radial viscosity structure can not be rejected by the geoid and
topography data and that admittance values alone can not constrain the thickness of
the thermal boundary layer of Venus.

For Earth, we look at the RMS amplitudes of geoid and topography and investigate the
spatial and spectral correlations among these and other geophysical data sets. Since
plate boundary processes generate geoid and topography with large amplitudes and lim-
ited spatial extent, localization permits us to look at mid-plate regions with minimal
contamination from plate boundary effects. Beyond using our localization method as a
descriptive tool, we use our approach to compare forward model predictions with ob-
servations. To this end, we consider both static and dynamic models of topographic
compensation. The latter model is investigated through a decomposition of the geoid
into three components related to post-glacial rebound, subduction zones, and hotspots,
all of which are found to contribute significantly to the middle- and long-wavelength
geoid. This decomposition is based on the local correlations of the observed geoid with
the tectonic distribution functions describing the spatial extent of each of these pro-
cesses. We compare the predicted fields from our decomposition with those predicted
by models of post-glacial rebound and dynamic models of mantle flow.
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Chapter 1

Introduction

The terrestrial planets lose the heat they acquired during their initial formation and
from the decay of radioactive elements in their interiors through subsolidus convection
of their mantles [e.g., Basaltic Volcanism Study Project, 1981; O’Connell and Hager,
1980; Sleep and Langan, 1981]. Our understanding of the dynamics of convection and
the resulting surface manifestations has relied heavily on the analysis of gravitational,
topographic, and seismological data [e.g., Kaula, 1968; McKenzie, 1977b; Woodhouse
and Dziewonski, 1984]. In this thesis, we present a new approach to analyzing these
data sets. This approach, based on non-stationary spectrum estimation techniques, is
used to analyze surface manifestation of convective processes for both Earth and Venus.

On Earth, surface manifestations of mantle convection are dominated by plate tec-
tonics and the formation of continents [e.g., Wilson, 1965; McKenzie, 1967b; Jordan,
1979; Burchfiel, 1983]. When viewed globally, the long-wavelength geoid anomalies
on Earth are influenced by the effects of subduction zone processes and lower mantle
structure [Crough and Jurdy, 1980; Hager, 1984]. At shorter wavelengths, the thermal
boundary layer structure of the lithosphere, crustal thickness variations, and the mass
deficiences caused by glacial unloading begin to have strong signatures, as may the ef-

fects of hot mantle upwellings [e.g., Parsons and Richter, 1980; Sleep, 1990; Mitrovica



and Peltier, 1989].

The relationships between topography and the geoid on the planet Venus differ
markedly from those on Earth. Crustal thickness variations can explain the observed
geoid and topography over approximately 10 percent of the surface, while the remain-
ing 90 percent is consistent with a model in which the two fields result primarily from
vertical normal tractions at the base of the lithosphere. Unfortunately, the task of us-
ing the observed gravitational field to constrain quantitatively convective flow dynamics
is non-unique. Without a model of the interior density structure, which is the situ-
ation for Venus, it is not possible to place tight quantitative constraints even on the
most fundamental aspects of the convecting system, such as the thermal boundary layer
thickness.

On Earth, of course, structural seismology and our understanding of the kinematics
of plate tectonics provides us with models of the interior density structure. The rela-
tionship between driving forces and the geoid is reasonably well understood for a model
planet with only radial variations in viscosity [e.g., Richards and Hager, 1984; Ricard
et al., 1984]. However, the effects of strong lateral variations in viscosity challenge our
ability to interpret the observed long wavelength gravity field. In particular, the effects
of weak plate boundaries can seriously modulate the expected results from an otherwise
spherically symmetric planet [e.g., Richards and Hager, 1989; Ribe, 1992; Zhang and
Christensen, 1993; Forte and Peltier, 1994].

We present a detailed illustration of this point with the mantle flow calculation
shown in figure 1.1. This model uses a cylindrical geometry and a layered viscosity
structure with a lower mantle 30 times more viscous than the upper mantle and a lid
100 times more viscous than the upper mantle. Flow is driven by a simple sinusoidal
temperature perturbation of angular order 6 added to a conductive geotherm. We use 8
unequally sized plates whose boundaries are simulated by introducing small zones of low

viscosity in the lid. Anticorrelated geoid and topography is predicted for a model with no
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Figure 1.1: From top to bottom: Isotherms, surface velocities, total dynamic topography,
long wavelength (angular order m = 2...12) geoid, and a horizontal temperature profile,
for a cylindrical flow model. Arrows indicate relative plate velocities. Arrow length and
width scales with velocity magnitude. Convergent and divergent plate boundaries are
indicated by the solid and unfilled triangles, respectively. The dotted line corresponds
to a weak zone viscosity, nuk, of 100 (i.e., same as the lid), the dashed line to 7y = 1,
and the solid line to 7, = 1/100.

11



lid and a lower mantle more viscous than the upper mantle [Richards and Hager, 1984].
The presence of a lid can mitigate the effect of the weak upper mantle, as indicated by
the model represented by dotted lines in figure 1.1, for which geoid and topography are
well correlated. The presence of weak zones in the lid, however, can reduce the effect of
the lid’s generally high viscosity (see the solid line in figure 1.1), and can yield geoid and
topography that are anti-correlated. For weak zones to affect the gravity-topography
relation, such zones must correspond to regions of high strain rate. Where upwellings
and downwellings do not coincide with weak zone locations (e.g., at positions of 170°
and 300° in figure 1.1), geoid and topography remain essentially correlated. While this
is a very simple model, it suggests that it is of critical interest for us to be able to isolate
different regions of the observational fields in order to advance our models of mantle
dynamics and flow properties.

In addition to dynamical complexity, we are hampered by the variable resolution
of available data sets, ranging from 1000’s of kilometers for global seismological data
le.g., Su et al., 1992], to 100’s of kilometers for global gravity and topography data [e.g.,
Pavlis and Rapp, 1990; Nerem et al., 1994]. Many of the observations associated with
plate boundary processes are characterized by steep gradients on the smallest of these
length scales. While it is both physically meaningful and practically useful to analyze
these global data sets in a spectral sense, the spatial combination of different geologic
provinces and geodynamic processes suggests that we should expect the spectra to vary
as a function of position, as in the illustration above. Typically, global data sets are
available only in the form of coefficients for spherical harmonics. As with Fourier series
for a Cartesian geometry, spherical harmonic functions are not well suited to regional
analysis. The spatial non-stationarity intrinsic to geophysical observations requires us
to consider new spectral methods.

Localization techniques attempt to estimate the frequency content of a signal at

different positions. There is a natural tradeoff between spatial and spectral resolution.
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Figure 1.2: Bottom left: Input signal composed of a single spike. Top: The wavelet
spectrogram. Bottom right: Fourier RMS spectrum (solid line) and the wavelet spectrum
at a position of 25 (dashed line).

We demonstrate the benefits (and pitfalls) of non-stationary spectrum estimation tech-
niques by considering a series of simple synthetic signals. These are shown in figures 1.2
to 1.8. Each of these figures has the original signal at the lower left, the Fourier root
mean squared (RMS) amplitude spectrum at the lower right, and a wavelet spectrogram
at the top. Local spectra at selected positons from the spectrograms are also shown at
the lower right. The wavelet used in this section is based on a Fourier (sinusoidal) basis
modulated by a gaussian with variance that scales with wavelength. A more complete
description of this localization method can be found in Stockwell et al. [1995].

As mentioned above, we seek a technique to isolate regions of high spatial gradients.
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Figure 1.3: Bottom left: Input signal composed of a single sinusoid. Top: The wavelet
spectrogram. Bottom right: Fourier RMS spectrum (solid line) and the wavelet spectrum

(dashed line).

This ability is demonstrated in figure 1.2. With a spike as an input signal, we see that
the wavelet transform is able to isolate the position of the spike, but the spectrum is that
of a spike convolved with the localizing window. This simple example also illustrates the
difference between characteristic length scales and characteristic wavelengths. The spike
has all wavelengths, but an infinitessimally small length scale. For contrast, we show a
pure sinusoidal input signal in figure 1.3. Here, the wavelet is able to detect the correct
input frequency, but because of the increased spatial resolution (although not helpful in
this example), we have given up resolution in the frequency domain. Unlike the example

of the single spike, the pure sinusoid has a characteristic wavelength (of 5 units) and an
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Figure 1.4: Bottom left: Input signal composed of a single sinusoid with variable ampli-
tude. Top: The full wavelet spectrogram. Bottom right: Fourier RMS spectrum (thick
line) and the wavelet spectra at positions of 5 (thin line) and 25 (dashed line).

infinite characteristic length scale. Even with a nearly sinusoidal input signal, however,
the wavelet has many advantages. These are demonstrated with the example of a signal
with a single frequency but variable amplitude (figure 1.4). We see that the Fourier
spectrum has averaged the entire region at a single length scale (i.e., over the entire
50 unit interval), whereas the localized spectrum successfully finds the local amplitude.
Note that the small ridges in the spectrum at the approximate positions of 15 and 35
correspond to the discontinuities that arise when the amplitude changes.

The tradeoff between spectral and spatial resolution is demonstrated with an input

signal composed of two spikes (figure 1.5). At high angular order we isolate the spikes
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Figure 1.5: Bottom left: The input signal composed of two spikes. Top: The wavelet

spectrogram. Bottom right: The Fourier RMS spectrum (thick line) and the wavelet
spectra at positions of 25 (thin line) and 30 (thick line).

very well. As we decrease the angular order, however, we localize at larger length scales
and at some point we can no longer distinguish between the two spikes, as their signals
merge. In figure 1.5 this occurs at an angular order of 5, which corresponds to a length
scale of 10, or the separation distance between the two spikes.
The power of the wavelet transform is further illustrated by using a chirp as an
input signal. In figure 1.6 we consider a signal composed of the sum of descending and

ascending chirps. The Fourier spectrum is not diagnostic of the input signal, but the
spectrogram clearly shows the changing frequencies.
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Figure 1.6: Bottom left: Input signal composed of ascending and descending chirps.
Top: The wavelet spectrogram. Bottom right: Fourier RMS spectrum (thick line), the
wavelet spectra at positions of 10 (thin line) and 25 (dashed line).

As a possibly more geophysically relevant example, we show the example of a signal
composed of two isolated psuedo-sinusoidal bursts (figure 1.7). The input signal is
created by the sum of two sinusoids of different frequency, with each sinusoid modulated
by a gaussian whose variance scales with the respective frequency. For comparison, we
include the localized RMS spectra for positions at the center of each burst. The ability
to localize both in space and frequency is clearly demonstrated in the spectrogram.

In practice, we always start with data of limited spectral content. For instance,
the currently available spherical harmonic representations of Earth’s geoid extends to a

maximum degree and order of 70 [Nerem et al., 1994], and reliable global whole mantle
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Figure 1.7: Bottom left: Input signal composed of two sinusoids with of 5 and 10,
modulated by gaussians with variance scaled to their respective frequencies. Top: The
wavelet spectrogram. Bottom right: Fourier RMS spectrum (thick line), the wavelet

spectra at positions of 10 (dashed line) and 35 (thin line).

seismic tomography models extend to a maximum degree and order of 20. In addition

to estimating the non-stationary spectrum, the wavelet approach also permits us to

quantify the extent to which we can analyze spatial variations in the models at different

wavelengths. In fact, for our one-dimensional Cartesian wavelet, we can derive a Nyquist

wavelength for localization that takes into consideration the limited spectral content of

our input data (model) [Stockwell et al., 1995]. We illustrate this point in figure 1.8.

Here our input data consist of the gaussian signal shown at the bottom; the same

signal spectrally truncated at a wavenumber of 10 is also depicted. The spectrograms of

both signals are identical up to a wavenumber of about 7 or 8, but in the spectrogram
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of the truncated signal a spectral ridge develops centered at the cutoff wavenumber,
demonstrating the effect of truncation.

In addition to dealing with data of limited spectral content, it is common in geo-
dynamics to consider spectrally band-passed signals, such as when the long wavelength
portions of the geoid are removed to isolate lithospheric signals and the residual is an-
alyzed spatially [e.g., Sandwell and Renkin, 1988; Moore and Schubert, 1995]. Various
data tapering and mirroring techniques have been developed to minimize spatial and
spectral truncation effects. These concerns are automatically accounted for when the
data are considered in the localized domain.

Non-stationary spectrum estimation techniques are not new. Wavelets or multi-
resolution methods are now common in the fields of time series analysis and image pro-
cessing [Daubechies, 1992]. These methods are non-parametric techniques. In contrast,
parametric techniques start with prior knowledge of the character of the non-stationarity,
implicitly requiring a reliable understanding of the underlying physics that generates sig-
nal. A geophysical example of such a parametric method is the generalized seismological
data functional [Gee and Jordan, 1992], which uses the knowledge of the expected arrival
times of different seismic waveforms to construct isolation filters, from which one can
analyze both the time and frequency variation of the seismogram. Unfortunately, as was
demonstrated earlier by the convection example (figure 1.1), our prior knowledge of the
expected spectral and spatial behavior of real geodynamic systems and their surface ob-
servables is not sufficiently mature at this time to permit a parametric approach. Hence,
we only consider here a non-parametric spectrum estimation technique.

There are many different non-parametric techniques for estimating nonstationary
spectra, of which wavelets form a subclass [e.g., Chui, 1992; Daubechies, 1992]. Tech-
niques exist for analyzing both one- and two-dimensional data. However, to date, all
these techniques are designed for a Cartesian domain. As a recent geophysical example,

Cazenave et al. [1995] use a one-dimensional Cartesian wavelet (very similar to the one

20



we used above) to isolate characteristic wavelengths in Pacific geoid lineations. They
present a spectrogram similar in character to that in figure 1.3, with a dominant stripe
at wavelengths of about 1200 km [Cazenave et al., 1995]. While not necessarily impor-
tant in that analysis, the effects of sphericity and two-dimensionality are ignored. More
importantly, Cazenave et al. [1995] begin by high-pass filtering the geoid data (tapered
from harmonic degree 25 to 35), which at best should not be necessary given that they
use the wavelet approach, and at worst, could introduce artifacts, such as a spectral
ridge at length scales between 1000 and 1600 km for their cut off frequency.

In this thesis, we introduce a technique for spatio-spectral localization of data on
a sphere. In the spirit of Cartesian wavelet transforms, our goal is to estimate non-
stationary frequency spectra. We use this formalism to look at the localized spectrum
of a single field, as well as the correlation and transfer function between two different
localized fields. For a given region, results from our localization methods can be com-
pared to those from classical treatments that average field statistics at a single length
scale regardless of wavelength. Furthermore, the method presented here will show how
to perform correctly the fixed length-scale analysis on a spherical domain. We also con-
sider the spectrogram, with which, as shown in figures 1.2 to 1.7, we can distinguish
features that have large amplitudes but are limited in spatial extent from those which
are truly long-wavelength and cyclic in character, i.e., we make the crucial distinction
between a characteristic length scale and a characteristic wavelength. This distinction
is epitomized by the example of the delta function (figure 1.2) which has a characteristic
length scale of zero but incorporates the entire spectral domain.

Our localization method, presented in chapter 2, relies on windowing of a data field
using smooth windows with characteric length scales that can be functions of the har-
monic degree being considered. This spatial windowing can be viewed either as spectral
convolution of the given scaling window with the data or as a projection of the data onto

a set of basis functions (wavelets) formed as products of a single spherical harmonic and
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the scaling window. As was illustrated in figure 1.8, in addition to providing theoreti-
cal elegance, the spectral-domain perspective illuminates potential spatial and spectral
aliasing problems that arise if one were to choose arbitrary spatial or spectral windows
when analysing the medium to long wavelengths characteristic of global data sets and
models.

We consider several applications of the localization technique. Chapter 3 focuses on
Venus, while chapter 4 focuses on Earth. For both planets, we start by analyzing global
data sets independent of any a priori model. For Venus, we calculate the localized RMS
amplitudes of the geoid and topography, as well as the spectral admittance between
the two fields. We conclude from the observed admittances that topography over 10
percent of the surface of Venus can be explained by variations in crustal thickness, and
that topography over the remaining 90 percent of the surface is the result of vertical
convective traction at the base of the lithosphere. We test this inference by comparing
the localized admittance spectra to similar quantities derived from a set of numerical
models. The high observed admittances on Venus have been cited as evidence for the
lack of an Earth-like increase with depth of mantle viscosity [e.g., Kiefer et al., 1986;
Kiefer and Hager, 1991b; Phillips, 1990; Smrekar and Phillips, 1991]. With the same set
of numerical models, we will show that an Earth-like radial viscosity structure can not be
rejected by the geoid and topography data. To the contrary, there is a suggestion in the
data for the existence of an Earth-like radial viscosity structure. The high admittance
values have also been cited as evidence for a 300-km-thick thermal boundary layer on
Venus, over twice the thickness of the thermal boundary layer in the Earth’s oceans.
We show that admittance values alone can not be used as constraints on the thermal
boundary layer structure of Venus.

For Earth, we look at the RMS amplitudes of geoid and topography and investi-
gate the spatial and spectral correlations among these data sets. Since plate boundary

processes generate geoid and topography with large amplitudes and limited spatial ex-
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tent, the wavelet approach can isolate much of these signals, and permits us to look
at mid-plate regions with minimal contamination from plate boundary effects. Beyond
using our localization method as a descriptive tool, we also use our approach to compare
forward model predictions with observations. To this end, we consider a simple model
of topographic compensation dominated by the effects of crustal thickness variations
in the continents and a cooling plate model in the oceans. Localization isolates the
spatial and spectral regions where this model succeeds or fails. The analysis of static
topographic compensation mechanisms is followed by a decomposition of the geoid into
three components related to post-glacial rebound, subduction zones, and hotspots, all
of which are found to contribute significantly to the middle- and long-wavelength geoid.
This decomposition is based on the local correlations of the observed geoid with the
tectonic distribution functions describing the spatial extent of each of these processes.
We compare the predicted fields from our decomposition with those predicted by models

of post-glacial rebound and dynamic models of mantle flow.
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Chapter 2

Spatio-Spectral Localization on a

Sphere

“As is usually the case with any statistical treatment beyond the simplest,
the benefits derived from application on the sphere of the covariance anal-
ysis, linear regression, etc., described herein often seem of dubious worth
compared with the effort required. However, the same can be said of almost
any technical or mathematical elaboration of general applicability: it is rare
that its complete application is appropriate, but it often happens that some
aspect thereof is conducive to better insight or greater efficiency in some

problem.”

[Kaula, 1967]

2.1 Introduction

In this chapter we develop a localization procedure for the spherical domain. This
procedure can be considered in the context of localizing data at either fixed or variable

length scales. The latter application involves spatial multiplication of the data with a
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localizing window whose length scale is proportional to the wavelength being considered.
In either case, the windowed field is tranformed into the spectral domain as a convolution,
using spherical harmonics, in order to take full advantage of known harmonic coupling
relations. Alternatively, we can view the problem in a classical wavelet perspective as
a projection of the data onto a set of localized basis functions, each constructed as
the product of a single spherical harmonic and the scaling window. The localization
procedure proposed here is invertible by spatial averaging of the localized data, and can
be used to determine estimates of position and wavelength dependent correlations and

transfer function between two global fields.

2.2 The Localization Transform

Following the normalization and phase conventions of Edmonds [1957] and Varshalovich

et al. [1988], we define a field A(Q) on a spherical domain Q = (6, ¢) by

A(Q) = IZ U Vi (D), (2.1)

where 0 <0< 7, 0< ¢ < 2m,

204+ 1) (I —m)!
(4r) (I+m)!

V() = (—)’"J ( Pim(cos 0)e™?, (2.2)

and where Py, is an associated Legendre polynomial of degree [ and order m, defined in

terms of the Legendre polynomials P; by

il —Py(cos 0) (2.3)

Pim(cos 8) = (sin G)mm
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such that

" . _ 2 \ (l+m)
/0 Pirm(c0s 8) Pyyi(cos 8) sin 8 df = byrbmm: (21 - 1) = (2.4)

Each spherical harmonic Y,,,(Q) is therefore fully normalized such that

fnYzm(Q)Yrm,(Q) dQ = 81:Spmm, (2.5)

where the asterix denotes complex conjugation, and unless otherwise specified, [ =

0,1...00 and m = —I,—1l+1...1. Each coeflicient g, is defined by

oy = /ﬂ A(Q)Y;(Q) d2, (2.6)

and we note that ¥}, (Q) = (—)"Y_,.(Q) and a},, = (—)™aq,_,,. Defining a window

function
Im
and the spatially localized version of A by

T(Q) = W(R)A(Q) = IZ Y1 ¥im (D), (2.8)

we derive the coefficients of the localized field as

Yim = [[ AW (Q)Yir,(2) d2. (2.9)

It is worth emphasizing here that ¥ or 4,,,, correspond to a window of a given length
scale and position. A different length scale or position would yield a different set of ¥, ’s.
Furthermore, we have not specified the character of the window. The development is

general, applying to both scalable windows and complex geographical windows.
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For comparison to the wavelet approach, we rewrite equation 2.9 as the inner prod-

uct of the data with the localized basis function,

Yim = [ AX;n(9) 40, (2.10)

where

Xim(Q) = W(Q)Y;,,(), (2.11)

and we have assumed that W(Q) is real-valued. When designing our window, care must
be taken to insure that X, () has zero-mean so that we measure the first moment of
our signal without bias from the zeroeth moment [e.g., Chui, 1992; Daubechies, 1992].
In addition, to maintain consistency across degrees, we require that W () have a mean

i Sk,

amplitude of one, i.e., that o
1 ' ﬂi T
Z;/QW(Q)dQ..l. Q TR | ”gz.lz)

Alternatively, for analysis with a fixed length scale window, one could require that W(Q)
have a maximum amplitude of one, analogous to classical windowing and the short time
window Fourier transform. The implementation of these constraints is addressed later.

Returning to the form used in equation 2.9, and using equations 2.1 and 2.7, we write

Yim= Y G, Wiy, [ Yimy ()i, (2)¥ir () d2 (2.13)

limilam;

The integral of the product of the three spherical harmonics is evaluated with Wigner

3-j symbols in conjunction with the appropriate selection rules [e.g., Varshalovich et al.,

1988], where

f Yiom @Y @¥(@ a0 =t (G 5 §) (2 2 L), )

(2L +1)(2l 4+ 1) -+ (20, + 1)
4T ’

iy, = (2.15)
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The brackets in equation 2.14 denote the Wigner 3-5 coefficients. To be non-zero-valued,

the 3-j coefficents must satisfy the conditions that

lh— b <I<hL+1, (2.16)
|m1| < ll) |m2| < 121 ]ml < l) (2'17)
and
my+my+m=0. (2.18)
Furthermore, we note that
L l, l ottt (B
( —-m; —my; —m ) = (=" ( my ms; m ) ’ (2.19)
and
lL+b+lodd — (BB 1Y) _g (2.20)
1752 0 00, ™ :

We then rewrite equation 2.13 as

m L I 1 L 1 [
Y= (" Y tumambiin (¢ 8 0) (o oy )y (22D)

limilam;

or equivalently,

. L1 1 L L 1
Yim = D allmlwlzm,fldgl(& 0 0) (Tf:1 ,”fz m)’ (2.22)

limylam;

If a window (e.g., the continent-ocean function, a spherical cap, or a degree-dependent
window) is expanded into spherical harmonics, it is straightforward to calculate the coef-
ficients of the windowed field. From the triangle inequality (identity 2.16), we find that if
the window can be expressed in terms of a finite number of coefficients with a maximum

degree L., then the degree [ coefficients of the windowed field receive contributions
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from data coefficients with {; < !+ Ly,. Given data with a maximum available degree

of Lo,, we then have an effective Nyquist degree for localization,

Lnyq = Lobs - Lwin- (223)

Recognizing that increasing spatial localization increases Ly, we must consider equa-
tion 2.23 when designing scalable windows. It may be desirable to use a window that
localizes less than optimally as a function of I. In other words, while a fixed harmonic
representation of a data field can never be localized at the highest available degree,
we can increase our maximum spectral resolution by decreasing our spatial resolution.
The estimate of Lpy, is obviously valid both for scalable windows and for arbitrary
windows such as the continent-ocean function or any other geographic window. To at-
tempt to localize at [ > Ly, involves convolving window coefficients with non-existent
(i.e., zero-valued) data coefficients, and is therefore the same as convolving the data with
a truncated window expansion.

It is worth emphasizing that we cannot generate information, only move it around.
Equation 2.22 can be viewed as a convolution operation on a spherical domain. The
purely spherical harmonic representation of a data field has perfect spectral resolution.
The convolution perspective emphasizes that localization produces spatial resolution at
the expense of spectral resolution.

We use a continuous spherical localization operator which can be viewed as the inner
product of the data with a basis function that is constructed as the product of a window
and a single spherical harmonic. Since these basis functions are neither orthogonal
nor linearly independent, the spectral estimate at a given spatial location is strongly
correlated to the estimate at a neighboring point. Similarly, the spectral estimate at a

given degree is strongly correlated to the estimate at a neighboring degree.
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2.3 The Inverse Transform

For any window, we need to define a reconstruction algorithm that maps the localized
coefficients back to the original field, or equivalently, to coefficients of the original field.
As shown below, we accomplish this by averaging over all possible positions and rotations
of the window.

We write the coeffients of the repositioned window as

wlm(a713:7) = prn'm(a7ﬂ7 ’7)'(1)&,, (224)

where (o, 3,7) represent the three Euler angles, D, (a,B,7) is a Wigner D-function,
which is a matrix element of the rotation operator, and © indicates the original window
(e.g., centered at the pole). Setting R = (a,8,v) and dR = da sin 8 df dvy, we rewrite

equation 2.22 as

. . L I 1 L I 1
¢lm(R) = Z a’llmlwlzmg(R)&ﬂzl ( 6 6 0 ) ( »n':l n:z m ) (2'25)

limylam,

and define the reconstruction as

1
AQ-_——/\I!Q dR 2.96
(@)= 57 [ 9O, R)dR, (226)
or, using equation 2.6,
1
G = 57 [ Yim( B) R (2.27)

To show that this reconstruction algorithm is successful, we write equation 2.27 explicitly

as

1 . . . L I, 1 Lol
=g, I foim it (4§ 5) (4 2 0) en
1122 (228)
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Noting that [ Varshalovich et al., 1988]

/R Di(R) dR = 6108 mobmio8? (2.29)

gives

* L 01 I 0 1
O = Z ahmlwg)O&ﬂ( (:)l 00 ) (,n:l 0 m ) . (230)
llml
Further noting that
L 01 L 0 1 m

5’1’( 0 0 0) ('rr:1 0 m) = (=)™ 6-mimb1,1Y50(92), (2.31)

gives
1 = w¥(Q), (2.32)

which is true by inspection given the definition of w,,, and the requirement that W(Q)
have an average amplitude of one. For isotropic windows, i.e., windows that are axisym-
metric in a given reference frame, we can eliminate the a rotation and the reconstruction

formula can be simplified to

1 2 pw
tim = 5 [ [ Yinl8,7) sin g dp dy (2.33)

or
1
Gy = - /ﬂ Dy () dO2. (2.34)

Here we have used the identities [ Varshalovich et al., 1988],

Wim(Q) = Dom (R)wi(Q), (2.35)

Dhyn(8,7) =\ g7 oy Yicm(6,7) (236)
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for any a, and

/n Y,,.() dQ = V4T 6106 mo. (2.37)

2.4 The Covariance Function

To develop an expression for the localized linear transfer function or correlation between
two fields we need to derive a localized cross-covariance function. We follow the formal-
ism of Kaula [1966, 1967] in which a spherical cap window was used. Here we consider
the case of an arbitrary window.

We introduce a second field B(?) with its corresponding localized field I'(2). Adopt-
ing a reference frame centered at ! and using A and 7 to represent, respectively, colat-

itude and longitude in this reference frame, we define the cross-covariance K(A) as

K(A) = /n A(Q)El; /()"B(A,T)drdn, (2.38)

where the integration over 7 accounts for all points a fixed distance, A, away from a
given point A(R?). We write equation 2.38 as a degree variance, o%5(l), by expanding

K(A) in terms of Legendre polynomials, P, giving

oig(l) = 2’%1 0" P(cos A)K(A) sin A dA, (2.39)

where P, = Pj. Rewriting this explicitly gives

™ 2x
odg(l) = 2—1—;—1 /0 Pi(cos A) /n A(Q)% /0 B(A,7)drdQ sinAdA.  (2.40)

Using the spherical harmonic addition theorem,

Bi(oos A) = 57— 3 Vi ()¥in(®) (2.41)
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and setting (' = (A, 1) and dQ’ = d7 sin A dA, we write equation 2.40 as
() =% [ [ A@)B" (@)Y (R)in () 20 (2.42)
m rJa

Replacing A(Q) and B(Q) with their harmonic representations using equation 2.1, we

arrive at the familiar form for the globally averaged degree variance,

UiB(l) = Za’lmbtm' (243)

However, as found by Kaula [1966], replacing A(Q) and B(2) with their windowed

counterparts, ¥(2) and I'(Q2), results in

3= [ [ W@)AQ)Ye( QW (R)B(X)Y;n() d2 S (2.44)

Rearranging, gives

)= T ([ W@ a@)vn@ ) ([ w@)B @)¥m@)de),  (245)
which combined with our definition of the localized field from equation 2.9, simplifies to
‘7\21:1“(1) = Z’ﬁzm’)’z*w (2.46)

For computational purposes (speed, storage, and numerical accuracy) we note that equa-

tion 2.46 can be written as

‘f\zpr‘(l) = YoM + 2 E [R(%1)R(Vim) + S(¥1) S (Vi) 1 (2.47)

m>0

where R and < are, respectively, the real and imaginary parts of their arguments.

We have shown how to calculate the localized covariance for two windowed fields.
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With a simple rotation, this method can be used to determine the localized covari-
ance, o3r(,1), as a function of ! for any point on the sphere. Below, we consider the
spherical harmonic expansion of the localized covariance, o2,,/(!), which produces a com-
pact representation of the covariance fields in the form of a set of harmonic coefficients
for localization at each I. Unlike the global periodogram estimate of the covariance,
02,(1)/V/Ar represents an estimate of the globally averaged covariance that is less spa-
tially biased to regions of locally high variance. This spatial bias has been previously
noted in admittance/coherence studies of regions encompassing several geologic terranes
[Forsyth, 1985]. While less spatially biased, the average wavelet spectrum is spectrally
biased, relative to the periodogram estimate, by the aforementioned convolution opera-
tions intrinsic to the transform.

We write the covariance as

75r( 1) = D him (Wi (V) (2.48)

or in terms of spherical harmonic coeflicients

Tt () = X [ $1m( )i ()Y (2) 2. (2.49)

More explicitly, we write

a-lz'm'(l) = Z a;‘lml blsma 611121613141 (‘/n wl*zmz (97 l)wlgm; (Q’ l) lrm'(Q) dQ)

mly  amy. 4
bl IN( L b U\ (bl i\(h I I
(0 0 0)(m1 ma m)(O 0 0)<m3 - m)'(2'50)

For the isotropic window assumed here,

W (O D0t (2, 1¥5 () 42 = (Do) [ Dl () Dl ()i () 2
(2.51)
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P D @@ i = (ante (G5 5 ) (L, ) @)

Noting that,

Aré&igibe = (20 + 1), 0, (2.53)

we rewrite equation (2.50) as

Ulzlm'(l) = (2l + 1) Z (_)""4 a’;;m]_ blama wgo(l)wgo(l)&llzlsld'

mly  amy 4

L I, 1 I3 Iy 1 lLb I, U
0 0 0 0 0O 0 0 0

(11 Iy l)(l;, L;l)(lz Iy l’) (2.54)
m; Mg M M3 Mg ™M —mMa M4 'rn' ) ’

As was seen with the windowed field estimate, the covariance estimate at degree [ is
sensitive to data with degree less than [ + Ly, (equal to 1.5/ when using f, = 2).
Similarly, from the third 3-j coefficient in equation 2.54, we find that the covariance
expansion at degree [ has a maximum degree of 2Ly, (equal to [ when using f, = 2),
providing a measure of the minimum length scale over which the covariance function
will vary. Note that this scale is a function only of the maximum degree of the window
expansion. If the window were a constant over the whole sphere, then it would have
only the single I' = 0, m' = 0 term, and as expected, the covariance would not vary over
the sphere.

The above derivation is useful for understanding the structure of the covariance
estimates. However, in practice we use the definition of the localized field from equation
2.47 to calculate the localized coefficients for a given geographic location and use these
coefficients to calculate the covariances at that point. This procedure is repeated for the
set of desired points (e.g., over a grid, a great circle, ...). While still too slow for our

purposes, we show for completeness in Appendix A the most computationally efficient
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method that we have found for direct calculation of the covariance coefficients.

2.5 Localized Transfer Function Estimation
The linear transfer function estimation problem can be written as
B(Q) = / F(, Q) A() 4, (2.55)
nl

where we want to estimate F'. Classically, F is restricted to be isotropic, i.e., it depends
on A, the separation distance between ) and €', and further, A and B are assumed to

be stationary, so that F' is independent of position. These assumptions result in
B() = / F(A)A(S) d. (2.56)
nl

In contrast, here we permit F(A) to vary spatially using the representations of A and

B localized at 0y and assume the relationship
T(Qo, Q) = / F(Qo, A)T(Qo, ') dOY'. (2.57)
nl

Using equation 2.46, we define, respectively, the rms amplitude of ¥, and the correlation,

transfer function (admittance), and error on the admittance between ¥ and I' as

5i() = —Z%Wﬁ) (2.58)

r(@) = -2 __ (2.59)
) Vo3e(Von(Q)
F(Q) = Zgi((?z)) (2.60)
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-4 e

In subsequent sections, we make use of these localized estimates, the global average of

the local estimates, indicated by an overbar (e.g., Si), and the unlocalized estimates,

indicated by a hat (e.g., 5;)

2.6 Window Design

We use a window that is generically defined to be smooth and to scale with wavelength.
Here we consider only isotropic windows (i.e., that depend only on ) centered at the
pole (6 = 0). This restriction can be generalized to other locations by a simple rotation
of the coordinate system.

Noting that pole-centered isotropic windows only have m, = 0 terms and using

identity 2.18, we find that m; = m, and equation 2.22 becomes

m L 1 L L, 1
Ym = (L amuotin (¢ ¢ o) (0 6 ) (@262)

Ly

We use equations 2.47 and 2.62 under the restrictions that

I = 0,1,... Loy, (2.63)
m = 0,1,...1 (2.64)
L = max(m,|l — Lyinl|),...min(Los, l + Luin) (2.65)
b = [l=4],ll=4L]+1,...min(l + , Lyin), (2.66)

where we have assumed Ly, < [, as will be shown later is neccessary for other reasons.
We desire a window that minimizes Ly, the maximum degree needed for accurate

representation of the window. This reduces potential spectral bias problems incurred
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from the repeated convolutions instrinsic to the wavelet transform. Furthermore, the
gravity data sets considered here impose severe Nyquist restrictions, which are amelio-
rated by using the most spectrally compact or spatially smooth window possible. In
addition, from a practical perspective, minimizing L, reduces computation time sig-
nificantly.
We use a scalable window based on a spherical cap, defined as
1, for 6 <86,

w(4,l) = , (2.67)
0, for 0> 6.

where 0 < 0 <7, 6. = W/\/ZZI,T, and I, = I/ f,, where the scaling parameter, f, > 1,
is the number of wavelengths (corresponding to [) that fit in the window. The spherical
analogue to a Cartesian boxcar, a cap has many well known disadvantages. However,
the window we use has only the first L,;, coefficents of the harmonic expansion of the
cap window, where L,;, is the next integer greater than or equal to [,. At [ equal to the

Nyquist degree, Lnyq, Luwin ™ Lnyq/fs, and using equation 2.23 we find

fs
Lnyq ~ ?;_:I_-—ILOIM. (2.68)

In addition to the issue of the local Nyquist degree, we have the constraint that our

basis function should have zero-mean, i.e.,
/ X,,.()dQ = 0, (2.69)
)

or more explicitly for a pole-centered window,

Lyin

[ Y 00%i0(@)Yim(2) d2 = 0. (2.10)

I5=0

To satisfy this relation, it is sufficient (and possibly more restrictive than necessary)

39



to require w;,_;, = 0. We accomplish this by imposing I, < I. From equation 2.68
we find that for Ly, = 70 and f, = 1, Lny, = 35; and for Lo, = 90 and f, = 2,
Ly, = 60. Obviously, f, = 1 provides optimum spatial resolution. However, when
analyzing real data with noise, it is desirable to minimize potential bias by using f > 1,
thereby localizing at length scales longer than the wavelength under consideration.
Examples of the windows and their spectra are shown in figure 2.1. In addition,
examples of W (0, Luin), Yim, and Xim, are shown for [ = 12 and f, = 1 and 4 in figures
2.2 and 2.3, respectively. We note that the spectrum of a spherical cap has multiple side
lobes (for example, see 2.4). Our windows incorporate only coefficients within the first
central lobe. As the windows get tighter spatially, the central lobe gets wider spectrally,
and in the limit of a delta function, will gives flat spectrum, i.e., perfect spatial resolution
with no spectral resolution. From figure 2.2 we see that a subset of the X, (Q)’s are
nearly zero-valued. This behavior arises because our windows are pole-centered, and for

a given [, Y}, (Q) has decreasing power near the pole with increasing m. We use this

fact to reduce computation by modifying equation 2.64 to
m = 0,1,... Mpas, (2.71)

where we have neglected all X, (Q)’s with maximum RMS amplitude relative to the
maximum RMS amplitude of X;,(2) less than a specified threshold, here chosen to be

0.01. An increase in f, will result in an increase in M,,qs.

The harmonic expansion of the windows are derived in the standard fashion, where
Wipo( Lwin) = /n W (8, Luyin)Yy2o(Q) d2. (2.72)

Since Y;o(£2) terms do not depend on ¢, we rewrite this explicitly in terms of Legendre
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Figure 2.1: The spatial (top) and spectral (bottom) representation of W (6, Luin) for
Luwin = 4,8, and 16 are shown by the solid, dash-dot, and dashed lines respectively.

polynomials as

wiyo(Luin) = /(20 + D) /0 " W(8, Luin) P, (cos 6) sin 8 df. (2.73)

For an aribitrary window, equation 2.73 is solved by numerical integration. However,
using the identity

Pi_1(cos 8) — Pyy1(cos ) & (2.74)

6,
/61 Py(cosf)sinfdf = A1 .

the coefficients for a cap with unit-amplitude can be calculated analytically, where

Who(Luin) = v/7(Po(cos 8.) — Py(cos b)) (2.75)
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Figure 2.2: W(#, Lyin) (top), pole-to-pole profiles of ¥;,,(8,0) (middle) and X;,,(8,0)
(bottom), for | =12, f, =1, and Ly, = 11.

and
™
wsz(LWiﬂ) = 212 + 1(})12—1((:05 95) - Hz+1(COS GC)) (276)

In order to have a mean amplitude of one, woo must equal v/47, and the remaining

window coefficients are rescaled accordingly. We write the complete expression for the

window coefficients as
Woo(Luwin) = VAT (2.77)

and
oy | 4m  P,_y(cosf.) — Pyy1(cosb.))
Wigo(Luin) = 21 +1  Py(cosb.) — Py(cosb.) (2.78)
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Figure 2.3: W(0, Lyin) (top), pole-to-pole profiles of Yim(6,0) (middle) and Xim(6,0)
(bottom), for I = 12, f, =4, and Lyin = 3.

As is evident from figure 2.1, these windows have sidelobes in the spatial domain with
amplitudes less than 5 percent of the peak amplitude. Windows with better statistical
properties surely exist, but the windows we have chosen satisfy our requirements of

spectral compactness (crucial for maximizing Ly, ) and provide a simple tradeoff between

spectral and spatial resolution.
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Figure 2.4: Longitudinal profile of a spherical cap (top with dash-dot line), the harmonic
expansion of this function to I = 75 (top with solid line), and the RMS spectrum
(bottom).

2.7 A Pictorial Dictionary

We show and discuss here results from application of our spherical localization technique
to a variety of example fields. We first consider fields representing very localized structure
such as spherical caps and equatorial annuli. We then consider fields consisting of a pure
spherical harmonic. In each case, we highlight the tradeoff between spectral and spatial
resolution, parameterized here by f,.

At the top of figure 2.4, we show a pole-to-pole profile of a spherical cap with angular
extent equivalent to the distance to the position of the first zero-crossing of Py20(cos 8).

A pole-to-pole profile of the spatial rendition of the degree 75 expansion of this field
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Figure 2.5: 5i(6,0) for the function shown in figure 2.4 using f, = 1 (top) and f, = 2
(bottom).

is also shown. The oscillations are Gibbs phenomena. The corresponding multi-lobed
spectrum is shown at the bottom of figure 2.4. Since the field is axisymmetric, we need
only consider the spectrogram on a pole-to-pole profile. This result is shown for f, = 1
and f, = 2 at the top and bottom, respectively, of figure 2.5. With f, = 1 we have
high spatial resolution, with the region of non-zero RMS amplitude more restricted to
the region near the pole than with f, = 2. However, while the spectral peak at [ = 12

is clear in both spectrograms, it is more pronounced with f, = 2. Futhermore, with
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Figure 2.6: Longitudinal profile of a function composed of two spherical caps and an
equatorial sheet (top with dash-dot line), the harmonic expansion of this function to
I =175 (top with solid line), and the RMS spectrum (bottom).

fs = 2 we are able to resolve the second spectral lobe. It is worth noting that at high
degree, with f, = 1, we isolate the edges of the cap. Essentially, the spatial localization

is sufficiently high, that when centered over the cap, we detect little variation in the

signal.

Similar behavior is seen when we consider a field constructed with a spherical cap
at each pole plus an equatorial annulus (figure 2.6). The size of each cap is the same
as in figure 2.4, and the annulus has a width equivalent to the distance between the
two zero-crossings of Pj;p(cos f) nearest to the equator. As is evident from figure 2.6,
this function is even when considered globally, i.e., all the odd harmonics have zero

amplitude. The spectrograms for this function, shown in figure 2.7, show the same
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Figure 2.7: RMS amplitude, S5i(6,0), for the function shown in figure 2.6 using f, =1
(top) and f, = 2 (bottom).

tradeoff between spatial and spectral resolution that we saw before. We also find that
at middle and high degrees, the annuli and the cap have the same RMS amplitude, and
that at length scales less than the separation distance between the caps the spectra near
each are nearly identical to the spectra for the single cap.

We use the above example to demonstrate the effect of exceeding the Nyquist con-
straint from equation 2.23. At the top of figure 2.8 we show the spectrogram for the

same field as in figure 2.6 but we have included coefficients only up to and including
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Figure 2.8: RMS amplitude, 5;(6,0), using f, = 1 for the function shown in figure 2.6
with the input truncated at { = 16 (top) and the percent error of the RMS amplitude
relative to the Lma; = 75 expansion shown in figure 2.7 (bottom).

! = 16, which corresponds to Ly, = 8 for f, = 1. At the bottom of figure 2.8 the percent
error relative to the L., = 75 expansion (with Lyyq = 35) is shown. We see that the
error rapidly increases when we exceed | = 8, but is zero-valued for [ < 8.

As a final set of examples, we consider three purely harmonic fields. We consider
different orders, m, of the harmonic corresponding to | = 12. We show the results
of localizing purely zonal (figure 2.9), tesseral (figure 2.10), and sectoral (figure 2.10)

harmonics. Results are shown for f, ranging from 1 to 4. With tight spatial localization
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Figure 2.9: The original function (47)72Y,4(2) (top left), the corresponding S:13(f2)
with f, = 1 (top right), the pole-to-pole profile (47)~2Y15,0(6,0) (middle), and the
corresponding Si(6,0) (bottom) with f, = 1 to 4 shown by the solid, dotted, dashed,
and dash-dot lines, respectively.
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Figure 2.10: The original function (27)72[Y}, () +Y;, _¢(2)] (top left), the correspond-
ing S12(2) with f, = 1 (top right), the pole-to-pole profile (27)~%[Y12,6(8,0)+Yi12 _6(8, 0)]
(middle), and the corresponding Si5(8,0) (bottom) with f, = 1 to 4 shown by the solid,
dotted, dashed, and dash-dot lines, respectively.
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Figure 2.11: The original function (21)72[Y},,,(2) + Y3, _15(2)] (top left), the corre-
sponding S12(Q) with f, = 1 (top right), the pole-to-pole profile (27)~2[Y1212(6,0) +
Y12,-12(6,0)] (middle), and the corresponding S12(6,0) (bottom) with f, = 1 to 4 shown
by the solid, dotted, dashed, and dash-dot lines, respectively.
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Figure 2.12: 5;(6,0) for the function shown in figure 2.11 using f, = 1 (top) and f, = 2
(bottom).
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(fs = 1), we are very sensitive to the local structure, as is apparent with the high
amplitudes of S;; at the pole in figure 2.9. As m increases, the power of each harmonic
concentrates at the equator, and S; = 0 at the poles. As expected, increasing f, results
in less spatial resolution, reaching the limiting case of perfect spectral resolution and
no spatial resolution. We show the entire spectrogam for the sectoral input field using
fs = 1 and 2 in figure 2.12. The tradeoff between the spatial and spectral domains
should be obvious. In practice, we generally use f, = 2, which has proven to be an

acceptable compromise for giving resolution in both domains.

2.8 Caveats

The method presented here is recent and has room for improvement. In particular, our
choice of windows, while not arbitrary, lacks a robust justification. As a beginning, we
are satisfied with reasonable control over the spatial localization (despite the obvious
sidelobes) and the spectral compactness that is so crucial for the maximization of Lny,.
Future work should consider tailoring the windows for the data type being considered.
In particular, there is the potential for bias in our method stemming from the analysis
of data with red spectra. While we note this bias, we are not able to quantify it given
the simplicity of our window construction. From the wavelet perspective, we have con-
structed a set of localized basis functions, X,,(€2), as the product of spatial windows
and spherical harmonics. It may be desirable to formulate a localization method that
constructs these basis functions directly. Indeed, as was noted previously in reference
to figure 2.2, many of the X, _()’s do not contribute to the final result, suggesting the
existence of a more efficient formulation. In other words, we would like a set of inde-
pendent basis functions. The choice of basis will become more important in the future
as the resolution of the global data sets increases and computational concerns become

more of a factor.
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Missing in our analysis is a discussion of the uncertainties in the derived statistical
estimates. Only the error in the transfer function between two localized fields is pre-
sented here. While this is the error typically presented for two fields with independent
harmonic coefficients free of errors, our localized coefficients are both correlated and
themselves contain errors, so our error for the transfer function is an underestimate.
From a practical perspective, we will analyze geoid and topography data. The harmonic
representations of these global fields are rarely reported with errors for each coefficient.
Future analyses should consider using the full covariance matrix derived in generating
these fields (although for the high-degree fields now available this objective may be
untenable). It should be of some comfort that the total error in the Earth’s geoid is
characterized by values less than 25 cm [Nerem et al., 1994], significantly lower than the
predictive ability of geodynamical models considered here. The situation is worse for
the geoid on Venus, and we have made an attempt to include the expected strength of
the geoid in our discussion of Ly, but we have not attempted to include errors from
each harmonic coeflicient.

Despite these warnings, the localization method used here provides new insights to
the structure of many global geophysical fields. The method draws its strength from its
simplicity and the similarities to conventional windowing techniques. The details of our
approach rely on the coupling relationships between spherical harmonics. Possibly the
most important outcome from our methdology is the existence of a localization Nyquist
degree, Lpn,,. In order to quantify L,,,, we have used spatial windows with compact
spectral representations. Indeed, for the standard fixed length-scale analyses common
in most global geophysical studies, the issue of the finite spectral resolution of most

global data sets is frequently overlooked or ignored.
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Chapter 3

Topographic Compensation and

Tectonics on Venus

3.1 Introduction

Much of the data analysis and discussion in this chapter is similar to that of Simons
et al. [1994]. While the methods used here are considerably improved over those we
used before, the main conclusions reached in Simons et al. [1994] are not changed, only
expanded upon.

Although Venus and Earth are similar in size, density, and bulk composition [ Phillips
and Malin, 1983], radar images of the surface of Venus obtained by the recent Magellan
mission show no evidence for global plate tectonics [Solomon et al., 1991, 1992]. Thus,
the surface manifestations of mantle convection are quite different on the two planets, a
result plausibly attributed to the extreme dryness and high temperatures of the Venus
surface [Phillips and Malin, 1983; Phillips et al., 1991a; Kaula, 1990]. The high surface
temperature makes the lithosphere on Venus more buoyant than its terrestrial coun-
terpart and may inhibit the subduction process [Phillips and Malin, 1983]. Further,

subduction requires throughgoing faulting of the lithosphere, and most models of spa-
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tially localized brittle faulting require the presence of water. In the absence of water,
the lithosphere of Venus may not be capable of faulting on the scale necessary to create
plate boundaries [McKenzie, 1977a).

Nevertheless, the composition of surface rocks, as determined at a handful of sites
by the Venera and Vega landers, is similar to that of oceanic basalts [Surkov et al., 1983,
1984, 1986, 1987]. Based on the earth-like abundances of the heat producing elements U,
K, and Th, as well as cosmochemical considerations [Basaltic Volcanism Study Project,
1981] it is reasonable to consider a simple scaling of terrestrial heat loss estimates to
Venus [Solomon and Head, 1982]. Such a scaling predicts a total heat loss of about 70
mWm™?2 for Venus [Solomon and Head, 1982). With no evidence for plate tectonics, we
must ask how Venus loses its heat. Therefore, of primary interest is our ability, or lack
thereof, to estimate the average thermal boundary layer (TBL) thickness of Venus.

Turcotte [1993] proposed a 300-km-thick TBL thickness on the basis of high spatial
geoid-to-topography ratios (GTR) [e.g., Smrekar and Phillips, 1991], large effective elas-
tic plate thickness estimates [e.g., Johnson and Sandwell, 1994], and the suggestion that
the lithosphere has conductively cooled for the last 300 to 500 My. This last point was
motivated by observations of impact crater density and degradation states suggesting
that the surface of Venus has been relatively undisturbed for nearly a half billion years
[Phillips et al., 1991a, 1992; Schaber et al., 1992; Strom et al., 1994]. Turcotte [1993)
interprets this result to be evidence for episodic plate tectonics, whereby the lithosphere
conductively cools for several hundred million years and thickens to a value beyond that
expected by marginal staiblity analysis, and then founders in a single short-lived event
(frequently referred to as catastrophic overturn). Parmentier and Hess [1992] proposed
a similar model, taking into account the effects of the depleted mantle layer that should
develop in a system lacking a mechanism for wholesale lithospheric recycling. Assuming
that our scaling from terrestrial values is reasonable, a 300-km-thick TBL does not per-

mit sufficient heat to escape the planet, so there is need for episodic resurfacing whereby
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the heat is lost in brief but intense events. In contrast, Solomon [1993] proposed that
the surface of Venus has experienced a monotonic decline in tectonic activity due to
secular cooling and rheological nonlinearities. Without a catastrophic resurfacing event,
this model requires a thinner lithosphere to permit sufficient heat loss. Thus, it is of
particular interest to test if analysis of surface tectonics and geophysical observations
can distinguish between an earth-like 100-km-thick TBL and one three times thicker.

The topography and gravity fields measured by the Magellan spacecraft, and the
relation between them, constitute crucial data which we have used to develop models of
the tectonic processes active on Venus. Variation in long-wavelength gravity and surface
topography are primary expressions of the underlying structure, mechanical constitution,
and dynamics of the mantle-lithosphere system [e.g., Crough and Jurdy, 1980; Watts
et al., 1980; Hager and Richards, 1989]. The processes associated with mantle convection,
lithospheric deformation, and the development of crustal thickness variations are not
mutually exclusive, and their expressions are frequently interrelated. We can constrain
how each of these processes influences a given region and horizontal scale by considering
how variations in geoid height relate to variations in topography.

Geoid and topography are typically related through an admittance function, esti-
mates of which have been used on Earth to calculate effective elastic plate thicknesses,
crustal thicknesses, and dynamic stresses imparted by the convecting mantle [e.g., Dor-
man and Lewis, 1970; McKenzie, 197Tb; McNutt, 1980]. In its simplest usage, the ad-
mittance for a given area is the variation in geoid height divided by the variation in
topography. Its sign and amplitude vary as a function of position and wavelength. At
long wavelengths the geoid is most sensitive to processes associated with mantle convec-
tion. In the absence of significant long-wavelength topography associated with crustal
thickness variations, a small or negative admittance value over a given area may imply
that a low-viscosity channel is present beneath the lithosphere, decoupling it from un-

derlying stresses in the convecting mantle [e.g., Robinson and Parsons, 1988a,b; Kiefer,

57



1993]. Such a situation may hold in oceanic regions on Earth [e.g., Robinson and Par-
sons, 1988a,b]. If crustal thickness variations are important in determining the geoid,
then the admittance can be used to determine the mean crustal thickness over a region.
In the absence of mantle convective processes, the admittance for such areas is positive
and increases as the crustal thickness increases. More precisely, in a static compensa-
tion model, the admittance is linearly related to the first moment of the radial density
distribution [Ockendon and Turcotte, 1977).

Before the Magellan mission [Saunders et al., 1990; Saunders and Pettengill, 1991],
tracking data from the Pioneer Venus Orbiter (PVO) indicated that the geoid height
and topography of Venus are highly correlated on a planetary scale [Sjogren et al., 1983;
Kiefer et al., 1986], but global analyses carried out with these data were limited to
spherical harmonic degree 18 and less, and only global averages of the admittance were
obtained. Several studies made use of line-of-sight (LOS) accelerations of the PVO
spacecraft over limited geographic areas on Venus to demonstrate that the geoid height
and topography correlate on shorter scales than could be represented with the global
spherical harmonic fields then available, but such studies were limited to a few selected
regions [e.g., Herrick et al., 1989; Smrekar and Phillips, 1991; Grimm and Phillips, 1991,
1992]. More recently, with the new global gravity coverage, most investigators have
switched to using only the spherical harmonic rendition of the gravity field [e.g., Simons
et al., 1994; Smrekar, 1994; Grimm, 1994a; Phillips, 1994; McKenzie, 1994; Schubert
et al., 1994].

We present maps of the geoid/topography admittance spectra for Venus from data
recently obtained during the Magellan mission [Ford and Pettengill, 1992; Konopliv and
Sjogren, 1994; Konopliv, 1995]). These maps demonstrate global variations in the admit-
tance and constitute a guide to the depths and modes of compensation of topography
associated with different large-scale features over much of Venus. Our results force us to

address the issue of the evolution of the style of surface deformation over the past half
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billion years. We will show that a static compensation model fits the geoid/topography
admittance spectra only over the highland plateaus, which encompass about 10 percent
of the surface and may represent fossils of a now extinct tectonic regime. The failure of
static models for the remaining 90 percent of the surface implies that admittance analy-
ses that rely on spatial GTR ratios [e.g., Smrekar and Phillips, 1991; Grimm and Phillips,
1991, 1992; Kucinskas and Turcotte, 1994; Schubert et al., 1994; Moore and Schubert,
1995, i.e., for which a single apparent depth of topographic compensation (ADC) at all
wavelengths is assumed, will give misleading results when applied to regions with inher-
ently dynamic signatures. The method used here will identify those few regions where
a single ADC does explain the observations well. However, this can be done only after
completion of the full spectral analysis. In addition, the localization method used here
exposes the limits to which we can simultaneously analyze both the spatial and spectral
behavior of the geoid given the finite resolution of the spherical harmonic degree and
order 90 field currently available for Venus. These limits have been exceeded by most
published analyses (especially given that until very recently, the available geoid models
extended to degree and order 60.)

Since we do not have the luxury of a reliable a priori model of the interior density
structure of Venus, we rely on numerical convection models to build intuition and to
provide a self-consistent interpretation of the geoid and topography observations. We
show that, due to the sensitivity of the geoid to the distribution of density anomalies and
viscosity variations, admittances alone cannot be used to constrain the TBL thickness,
and that there is no reason based on this evidence to favor a TBL thickness of 300 km
over a more Earth-like 100 to 150 km. Furthermore, we also show that, contrary to most
previous analyses, there is no reason to assume that Venus lacks an Earth-like mantle

viscosity increase with depth.
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3.2 A Brief Guide to Venus Surface Tectonics

The surface of Venus includes a wide range of geological structures. The global hyp-
sometric profile is unimodal, unlike the bimodal distribution for the Earth [Pettengill
et al., 1980], reflecting the lack of an ocean/continent dichotomy. A reference map of
global topography is shown in figure 3.1. Topography can be divided into highlands,
lowlands, and plains, and in turn, highlands are generally subdivided into plateaus and
long-wavelength swells.

The largest of the highland terrains is the equatorial region of Aphrodite Terra,
which spans half the circumference of the planet. Western Aphrodite Terra consists of
Ovda and Thetis Regiones, steep-flanked highlands rising approximately three kilome-
ters above the planetary mean and characterized by pervasive, dominantly compressive
deformational features [Solomon et al., 1991, 1992]. In contrast, eastern Aphrodite Terra
encompasses a broad rise, Atla Regio, topped by rift valleys and large volcanoes, with
little evidence for compressional deformation [Solomon et al., 1991, 1992; Senske et al.,
1992]. Beta and Eistla Regiones are each similarly characterized by a topographic rise,
large volcanoes, and rifting [McGill et al., 1981; Solomon et al., 1991, 1992; Senske
et al., 1992; Grimm and Phillips, 1992]. Frequently associated with the volcanic and
rift regions are chains of coronae, circular features consisting of concentric tectonic and
topographic rings [Pronin and Stofan, 1990; Squyres et al., 1992a]. Whether they each
represent surface expressions of individual mantle plumes, or lithospheric subduction,
or whether they are related to smaller scale phenomena, is currently unknown [Squyres
et al., 1992a; Stofan et al., 1991; Janes et al., 1992; Sandwell and Schubert, 1992a,b).

Ishtar Terra, which encompasses several mountain belts and blocks of highly de-
formed terrain, is the second largest compressionally deformed highland [Barsukov et al.,
1986; Basilevsky, 1986; Pronin, 1986; Solomon et al., 1991, 1992; Kaula et al., 1992].
Western Ishtar Terra consists of a plateau, Lakshmi Planum, approximately 2000 km

in diameter and 3 to 4 km high covered by volcanic plains. The plateau is surrounded
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Figure 3.2: Global distribution of the highland plateaus and tesserae [Price and Suppe,
1995].

by a ring of mountains which reach a maximum elevation of 11 km above the planetary
mean at Maxwell Montes. Models for the origin of Ishtar Terra include mantle upwelling,
mantle downwelling, or response to a distant source of stress [ Pronin, 1986; Bindschadler
and Parmentier, 1990; Bindschadler et al., 1990; Grimm and Phillips, 1991]. In addition
to Aphrodite and Ishtar Terrae, there are many smaller highland plateaus, or tesserae,
interpreted to be of compressive origin. Among these are Alpha and Tellus Regiones,
which are steep sided, complexly deformed terranes with lateral dimensions of over a
1000 km [Solomon and Head, 1991; Solomon et al., 1992; Bindschadler et al., 1992b]. A
global map of the distribution of highland plateaus and tessera terranes is shown in fig-
ure 3.2. This map is derived from analysis and interpretation of Magellan radar images
by Price and Suppe [1995].

Plains and lowlands, the lowest of which are Atalanta and Lavinia Planitiae, lie

between the highland terrains and make up most of the Venus surface. Ridge belts,
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compressional features with hundreds of meters of relief and dimensions of up to several
thousand kilometers in length and hundreds of kilometers in width, are frequently asso-
ciated with the lowest regions of the planet [Zuber and Parmentier, 1990; Zuber, 1990;
Solomon et al., 1992; Squyres et al., 1992b]. The plains are generally interpreted to be
covered by large volcanic lava flows and are sites for a multitude of volcanic land forms
[e.g., Head et al., 1991, 1992; Guest et al., 1992].

By combining the topographic information with the highland plateau and tesserae
map we are able to define a global tectonic regionalization. Topography greater than
half a kilometer above the planetary mean is divided into highland plateaus and tesserae
or highland volcanic swells (indicated by dark and light shading, respectively, on all
subsequent global maps in this chapter). All remaining regions are lowlands and plains

and show lower topographic relief than the highlands.

3.3 Global Geoid, Topography, and Admittance

The currently available spherical harmonic model of the geoid of Venus includes LOS
data from orbital cycles 4 and 5 of the Magellan mission and has a maximum degree and
order of 90 [Konopliv and Sjogren, 1994; Konopliv, 1995]. The spatial rendition of this
field is shown in figure 3.3. This solution includes data from tracking of the spacecraft
in a nearly circular orbit with an apoapsis of about 550 km and a periapsis of about 180
km [Konopliv and Sjogren, 1994]. The spherical harmonic expansion of the topography
is taken from values gridded every 0.25° in latitude and longitude [Ford and Pettengill,
1992] and is complete to degree and order 360 [Rappaport and Plaut, 1994].

The close association of highlands and geoid highs is remarkable, suggesting perhaps
that the geoid results from compensation of topography either isostatically [e.g., Hazby
and Turcotte, 1978] or dynamically [e.g., Richards and Hager, 1984]. Here, isostatic

compensation refers to the balancing of topographic loads with density variations at
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Figure 3.3: Global map of geoid model MGNP9YOLSAAP. Contours every 20 m, with
N(Q2) > 10 m and N(Q) < —10 m shown by solid and dashed lines, respectively. Unless
stated otherwise, all global maps have elevations > 0.5 km lightly shaded and highland
plateaus and tesserae, which also have elevatons > 0.5 km, darkly shaded for reference.
Winkel Tripel projection centered at 60° E.

depth. These variations can be either at discrete interfaces, such as the crust-mantle
boundary, or volumetrically distributed, such as contributions from the thermal and
chemical structure of the interior. In contrast, dynamic compensation refers to surface
topography supported by stresses from mantle flow.

We begin our analyses of topographic compensation on Venus by considering a set
of simple static models. In figure 3.4 we show the isostatic geoid anomaly from 6 models
where topography is treated as the result of a vertical load on a thin spherical plate
with effective elastic plate thickness, T., and where a density contrast occurs at mean
depth D across a crust-mantle interface that follows the deflection of the surface [Kraus,
1967]. We show results for D = 25,50, and 100 km and T, = 20 and 40 km, where we
have assumed a crustal density, p., of 2950 kg m~ and a mantle density, p,., of 3250

kg m™3. Values of D > 50 km overcompensate the topography in Ovda Regio, Lakshmi
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Figure 3.4: Maps of the isostatic geoid anomaly as a function of compensation depth,
D, and elastic plate thickness, T.. Contours every 20 m, with N(Q) > 10 m and
N(©2) < —10 m shown by solid and dashed lines, respectively.
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Figure 3.5: RMS amplitude spectra, S, of geoid (circles), topography (crosses), and
that part of the geoid which is not correlated with topography (dots).

Planum, and eastern Ishtar Terra. D = 25 km can account for about 70 percent of the
total geoid anomaly in Ishtar Terra and all of the anomaly over Ovda Regio. T, = 40
km does a better job than T, = 20 km at reducing the anomaly over Maxwell Montes
proper. For most other regions, we are unable to explain adequately the observed geoid
with a single ADC model, even one with D = 150 km, a value considerably greater
than any crustal thickness estimates for Venus, where the crustal thickness is limited
by the basalt-to-eclogite phase transition, believed to occur at less than 100 km depth
[Anderson, 1981]. Due to the red spectrum of the geoid and topography, the spatial
analysis represented in figure 3.4 is dominated by the very longest wavelengths, and we
are unable to evaluate the success of the single-ADC model for the smaller features.

In contrast to a purely spatial approach, we can also consider a purely spectral
approach. In figure 3.5 we show rms amplitude vs. spherical harmonic degree for both
geoid and topography. In figure 3.6 we show the degree correlation between the two fields,
as well as the least squares estimate of the degree-dependent global admittance function.

From the admittance function, we can construct a residual, or zero-correlation, geoid by
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Figure 3.6: Left: Geoid/topography admittance, ; with one standard deviation error
bars. For reference, we show theoretical Airy curves for compensation at 25, 50, 100,
and 200 km depth. Right: Degree correlation, 7, between geoid and topography for the
observed geoid (circles). The 98 percent confidence limits are shown by the solid lines.

removing a synthetic field derived by multiplying each degree of the topography by the
global admittance at that degree. The goal of this exercise is to quantify the ability of
a globally determined parameter to explain the observed field locally. The best global
estimate, £}, shows a certain amount of unphysical fluctuation from degree to degree.
While we could attempt to fit a smooth curve to this spectrum, it would not effect our
conclusions.

The spectrum of the residual geoid is shown in figure 3.5, and the spatial rendition
of this field is shown in figure 3.7. From the global admittance spectrum, we see again
that a single ADC does not fit the data when viewed globally, although there is a
suggestion in figure 3.6 that an ADC of about 25 km fits the data for [ > 40. From the
residual map we see a strong correlation between the tesserae and those regions which
are predicted to be overcompensated (i.e., regions which were associated with positive
geoid anomalies in the original field and with negative geoid anomalies in the residual

field). Specifically, the admittance calculated in this way predicts topography which is
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Figure 3.7: Residual geoid generated by removing that part of the geoid which is linearly
related to topography in a degree by degree global sense. Contours every 20 m, N(2) >
10 m and N(2) < —10 m indicated by solid and dashed lines, respectively.

overcompensated in Ishtar Terra and western Aphrodite Terra and undercompensated in
most other regions (figure 3.7). The residual map shows less small-scale structure than
those in figure 3.4, but again, due to the dominance of the long wavelengths, it is hard to
judge the success of this empirical admittance estimate spatially. The misfit of the large
scale features stems from the spatial combination of different modes of compensation at
long wavelengths. While the residual anomaly is uncorrelated with topography when
viewed spectrally in a global sense, we see a high correlation when viewed locally (figure
3.7). This apparent contradiction arises because the geoid and topography are positively
correlated for half the planet, and negatively correlated for the other half, resulting in a
net correlation of zero. Given that using the global admittance predicts topography that
is overcompensated in tesserae and plateaus and undercompensated at highland swells,
plains, and lowlands, we conclude that the geoid signal from latter group dominates the

total global signal.
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3.4 Calculation of Local Admittance Estimates

In order to progress beyond the purely spectral or purely spatial approaches, we must
consider methods to localize the geoid and topography data in the two domains simul-
taneously. We start by reviewing previous approaches to this problem. Historically,
investigations of geoid-topography relations on Venus made use of geoid-to-topography
ratios (GTR), which are spatial estimates of the covariance of geoid height and surface
elevation over a finite region [e.g., Smrekar and Phillips, 1991; Grimm and Phillips, 1992;
Kucinskas and Turcotte, 1994; Schubert et al., 1994; Moore and Schubert, 1995]. The use
of a single GTR relies on the premises that topography is locally compensated at one
depth and that the spectra of the geoid and the topography are both white. If incorrect,
as is indicated by the analysis at the beginning of this section, these premises can lead
to erroneous conclusions. Furthermore, GTR analyses for both Earth and Venus have
either included all wavelengths of the data [Smrekar and Phillips, 1991] or they have be-
gun by bandpassing the geoid and topography to isolate wavelengths of approximately
600 to 2000 km [Sandwell and Renkin, 1988; Sandwell and MacKenzie, 1989; Kucinskas
and Turcotte, 1994; Moore and Schubert, 1995|. Given the red spectra of these fields,
the estimated GTR is then dominated by the longest wavelengths passed. Furthermore,
spectral bandpassing followed by spatial localization can result in serious spatial aliasing,
as discussed in chapter 2.

The admittance is similar to the GTR, but in the wavenumber domain. However,
the assumption of a single compensation depth is not required because the admittance
can vary with wavelength, as was shown in figure 3.6. Unlike GTR analyses, the ap-
proach taken here is first to localize in space, then in frequency, while only considering
wavelengths less than the scale of spatial localization. Although some long-wavelength
bias still exists due to the spatial windowing of data with red spectra, this bias is con-
siderably less than from the GTR technique (and at least it is overt). Furthermore, as

long as comparisons are made to models that have had the same windowing applied to
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them, we are not seriously affected by this bias. This realization is important since most
of the forward models we use have parameters that vary with depth but not horizontal
position. Given that we are looking for horizontal variations, it is crucial to window
model predictions in exactly the same manner as the data. We note that while this win-
dowing has a minimal effect for Airy forward models, it has a strong effect on regional
compensation models. Previous analyses using spherical harmonic representations of
the data have not compared windowed observational estimates with windowed forward
models [Phillips, 1994; Smrekar, 1994; Kucinskas and Turcotte, 1994; McKenzie, 1994].

Following the practice in terrestrial studies [Dorman and Lewis, 1970], we assume
that geoid and topography are linearly related and determine the admittance in a least
squares sense using the method outlined in chapter 2. Strictly, the admittance then
depends on the topography and that portion of the geoid that correlates with the topog-
raphy. We use the localized representations of the geoid and topography and calculate
the RMS amplitude anomaly, Si, for each field, and the admittance, Fj, the error on
the admittance, op, and the correlation, r; between the two fields using equations 2.58
through 2.61.

For the spatio-spectral localization, we use a scaling parameter, f,, equal to 2. While
not providing optimal spatial resolution, this choice permits us to extend our analysis
to higher spectral resolution than with f, = 1. On the basis of the Nyquist discussion
in chapter 2, we have from equation 2.68 |

Lpyq ~ %Lw,. (3.1)
With f, = 2, Lnyg = (2/3)Lobs, and we can at best calculate the admittance up to a
maximum degree and order of 60, or down to wavelengths of about 600 km for Lo, = 90.
However, the geoid is not equally reliable at all points on the globe. Considerable

variation in field quality exists due to variations in data coverage and spacecraft viewing
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Figure 3.8: Global degree strength map for geoid model MGNP9OLSAAP. Contours
every 10 spherical harmonic degrees [Konopliv, 1995].

geometry. As an approximate estimate of the local reliability, we use the degree strength,
defined by Komnopliv and Sjogren [1995] as the degree at which the power of the total
error at a given location and degree exceeds that predicted from application of Kaula’s
rule. The degree strength for MGNP90OLSAAP is shown in figure 3.8. The large area
of low degree strength near eastern Aphrodite Terra corresponds primarily to regions
lacking periapsis coverage during the nearly circular orbit phase of the Magellan mission
[Konopliv and Sjogren, 1994; Konopliv, 1995]. We equate degree strength with L.,,
which results in a position dependent value of Ly,y,. The local estimate of Lpyq is really
an upper bound. In the future, it would be wise to estimate the degree strength using the
observed geoid as opposed to one based on a prediction from Kaula’s rule. Furthermore,
it may be more prudent to define the degree strength at the point when the error
reaches some percent of the observed power. Many previously published admittance

analyses exceed the Nyquist constraint by considering high-degree structure localized
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using windows having a large value of Ly, i.e., non-smooth, short-length-scale spatial
windows [e.g., Smrekar and Phillips, 1991; Grimm, 1994a; McKenzie, 1994; Smrekar,
1994; Phallips, 1994; Kucinskas and Turcotte, 1994; Schubert et al., 1994; Moore and
Schubert, 1995].

3.5 Local Geoid, Topography, and Admittance

Our analysis produces localized spectra for all positions. We present these spectra
as global maps for fixed ! and as spectra for a set of single geographic locations. A
location map for the individual spectra is given in figure 3.9. The global maps are
presented as AS, i.e., deviations of S; about S;, the global average value at each I.
Thus, AS; has negative as well as positive values. We apply this /-dependent shift to
establish a useful baseline on which to compare results at different [; otherwise the red
spectra characteristic of geoid and topography would dominate the figures. As shown in
chapter 2, a purely harmonic input field would appear in the AS; maps as having little
or no spatial variation at the particular frequency of the input data, and an isolated
discontinuity in the input data woud result in power at all degrees, centered at the
position of the discontinuity.

Maps of AS; using f, = 2 for topography and geoid are shown in figures 3.10 and
3.11. At [ < 8 the topography is dominated by Ishtar and Western Aphrodite Terrae.
At higher [, the volcanic rises become much more significant, although the plateaus
and regions of tesserae continue to have large topographic contributions, with a clear
dominance of Maxwell Montes at all I. A very different picture appears in the maps of
S for the geoid. The map of AS, is dominated by eastern Aphrodite Terra. At higher
[, the maps are dominated by the volcanic rises, and all the plateaus and tesserae have
very low values of AS;. Although Maxwell Montes is an exception to this observation,

it is also the region with the greatest topographic signal.
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Figure 3.9: Location map the individual spectra shown in figures 3.13 to 3.15.

To further illuminate the relationship between geoid, topography, and tectonic
regionalization, we calculate maps of the geoid/topography admittance (figure 3.12).
Global and regional admittance values range from 1 to over 60 m km™?, the latter value
several times greater than the highest values found for Earth. As previously discussed,
the global admittance is not well matched by an Airy model. The steady increase in
admittance with decreasing degree [, however, is similar to predictions from models of
mantle convection that ignore crustal thickness variations [e.g., Kiefer et al., 1986]. The
relationship to convective models is illustrated further in a later section. The local ad-
mittances at the highest degree considered here, as well as in global degree-by-degree
analysis (figure 3.6), are consistent with an average crustal thickness of no more than
about 25 km. From the AS; maps of the geoid, we find that power at the largest
length scales is dominated by Atla and Beta Regiones. These maps also show the clear
distinction between the highland plateaus and the highland swells.

The admittance for the plateaus and tesserae is consistently lower than for the
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I=4 §=5.55e-01

Figure 3.10: S; of the topography with f, = 2. All S; maps are shown with thin lines
for AS; > 0, thick lines for AS; = 0, and dashed lines for AS; < 0. Contour interval is
100 m.
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Figure 3.11: AS; of the geoid with f, = 2. Contour interval is 1 m.

75



. o o 565D ‘55_:‘.,\“ o
NN\

3
¥,
3

17 ;ﬁ‘
;’(;‘%‘

/. 2
!,,,
0

CALS

"‘4\ 14 PN

0"

[
)
e

Figure 3.12: F; with f, = 2. Contour interval is 4 m km™!, with F; > 0 m km™! and
Fy <0 m km™ indicated with solid and dashed lines, respectively.
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Figure 3.13: Geoid/topography admittance spectra for selected highland plateaus and
tessera regions. For reference, theoretical Airy curves for compensation at 25, 50, 100,
and 200 km, are shown by the thin lines. These reference curves are position-dependent
since they include the windowing operation and are sensitive to the spectrum of the
topography. The solid vertical line indicates the local Nyquist degree based on the
degree strength map shown in figure 3.8.
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Figure 3.14: Same as figure 3.13 for selected highland swells.
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Figure 3.15: Same as figure 3.13 for selected lowlands and planitiae.
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Figure 3.16: Gravity/topography admittance spectra for selected highland plateaus and
tessera regions. Theoretical curves for compensation at depths of 25 (solid line) and
50 (dashed line) with effective elastic plate thicknesses of 0, 20, and 40 km (in order
of increasing admittance) are shown for reference. The solid vertical line indicates the
local Nyquist degree based on the degree strength map shown in figure 3.8.
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Figure 3.17: Same as figure 3.16 for selected highland swells.
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Figure 3.18: Same as figure 3.16 for selected lowlands and planitiae.
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swells. Eastern and western Ishtar Terra (figure 3.13, frames 1 and 2) have admittances
of about 5 m km™! for I > 18 (X < 2000) km, corresponding to an ADC of about 40
km. Convective processes are not required to explain such admittance values. This
ADC value differs from an earlier estimate of 180 + 20 km [Grimm and Phillips, 1991],
presumably because the admittance derived here incorporates low-elevation data from
the nearly circular orbit of Magellan. Aphrodite Terra can be divided into two regions.
To the west of 135°E in Ovda and Thetis Regiones (figure 3.13, frames 3 and 4), ad-
mittances are 3 to 7 m km™!, whereas to the east in Atla Regio (figure 3.14, frame 7),

the admittances are much higher, with values of 20 to 30 m km™.

These values are
_ substantially lower than those computed for previous long wavelength ADC estimates
of 70 and 230 km for western and eastern Aphrodite, respectively [Herrick et al., 1989].
We note the bump in the admittance spectrum for Ovda Regio centered at I = 18 for
which we have no explanation. The admittance for Tellus Regio (figure 3.13, frame 6) is
similar to that of Ishtar and western Aphrodite Regiones, all about 4 m km™! for high
[. Although Alpha Regio (figure 3.13, frame 5) is also similar to these areas for [ > 25,
the admittance increases at small [. This difference at low degrees arises because Alpha
has a lateral extent of only about 1500 km, so that longer wavelengths mostly sample
the surrounding plains (especially with f, = 2).

The highland swells have much higher admittance values than do the highland
plateaus. At long wavelengths, the admittance for Beta Regio (figure 3.14, frame 8) of
about 30 m km™?! at [ < 18 agrees well with a previous estimate of 31 £ 2 km obtained
from PVO data [Smrekar and Phillips, 1991]. High admittances are also found in Atla
and Eistla Regiones (figure 3.14, frame 9). At degrees between 10 and 20, the results for
Eistla agree with those of an earlier regional analysis [Grimm and Phillips, 1992}, but
at higher degrees, the admittances are less, and the implied ADC is shallower. Many
of the previous local analyses display this long-wavelength bias. In Bell Regio (figure

1

3.14, frame 10), for instance, our admittance of about 18 m km™" at long-wavelengths
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agrees with the result of an earlier regional model [Smrekar and Phillips, 1991], but
decreases significantly at shorter wavelengths. This bias in previous estimates stems
from an implicit reliance on an Airy isostatic model, which our results suggest is not
generally valid and, as noted earlier, from the dominance of the long wavelengths given
the red spectra of geoid and topography.

None of the admittance estimates for Atalanta, Lavinia Planitia and the other
lowlands and plains (figure 3.15) fit a single ADC model. Their spectral behavior is
qualitatively similar to that seen in convection calculations, as is discussed later, but it
is not possible at this point to say anything quantitative about topographic compensation
in these areas on the basis of admittance estimates alone.

In order to avoid biases induced by windowing data with red spectra, McKenzie
[1994] has suggested that studies of compensation mechanisms should not make use of
geoid data but should be restricted to analyses of the gravity field. For completeness,
we repeat the preceding analysis using the gravity field instead of the geoid. The local
gravity /topography admittance spectra are shown in figures 3.16, 3.17, and 3.18. For
reference, we compare the observed admittance estimates with those predicted from
models which include elastic support, i.e., models in which the topography is that of
a top-loaded plate of elastic thickness T, and crustal thickness D. The six reference
models are for D = 25 and 50 km and 7. =0, 20, and 40 km. A value of the elastic plate
thickness such that 0 < T, < D implies that only the upper portion of the crust can
support finite stresses and that the lower crust is ductile. The difference in the reference
curves as a function of region underscores the need to apply the same localization to

both the data and the models.

The conclusion that topography in the tesserae and plateaus is primarily Airy com-
pensated is unchanged, as are the ADC estimates. We note that for a few of these
regions, there is a suggestion from the slight upturn in Fj at large [ that elastic support

may play a role in topographic compensation. However, given that our local Ly, prob-
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ably overestimates the local resolution of the gravity field, it is not clear which spectral
features at short length scales are due to elastic support and which are due to noise. We
therefore restrict ourselves to concluding that at the time of formation of the topography
of the tesserae and compressive plateaus T. was locally at most 20 km. Not only is this
estimate, e.g., for Lakshmi Planum, consistent with the 11 to 18 km estimates of T,
found beneath the Freyja Montes foredeep Solomon and Head [1990], but larger values
of T, would presumably be evident in the admittance spectra at length scales resolvable
with the current gravity field.

In contrast to the tesserae and plateaus, there is little evidence in the gravity /topography
admittances for elastic support over the swells, lowlands and plains. Many of these re-
gions, such as Atla, Themis, and Imdr Regiones, as well as Lavinia Planitia, are remark-
able for the flatness of their gravity/topography admittance spectra, with values that

range from 40 to 60 mGal km™ depending on the region.

3.6 Interpretation of the Local Admittance

The admittance at all wavelengths is consistently nonnegative for the entire portion
of Venus for which the geoid is well resolved and the admittance well constrained. In
addition, the mean admittance values for Venus for 10 > { > 60 exceed the maximum
values observed for the Earth in the same degree range (see chapter 4). High values of
admittance from earlier global and regional analyses formed the basis for the hypothesis
that Venus lacks an upper mantle low-viscosity zone and thus experiences strong coupling
between motions of the convecting mantle and the overlying lithosphere [Kiefer et al.,
1986; Kiefer and Hager, 1991a,b; Phillips, 1990; Smrekar and Phillips, 1991]. While these
new admittance estimates are consistent with the hypothesis of convective coupling, we
will show that it is not possible to distinguish between models with and without a

low-viscosity upper mantle.
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First, however, we must address the issue of coupling between mantle flow and
crustal deformation. There are three types of geological provinces that are important
in this discussion: the high plateaus and tesserae, the highland swells, and the plains
and lowlands. As described previously, high plateaus and tesserae are regions that are
characterized by pervasive compressional features which, together with the large topo-
graphic relief, suggest that the crust has deformed (thickened) in response to horizontal
shortening. This category includes Western Aphrodite, Ishtar Terra, and the other large
tessera regions, such as Alpha and Tellus Regiones. The admittances in these areas
suggest crustal thicknesses of between 25 and 50 km. We ask whether these regions
represent the surface expression of active crustal shortening and mantle downwelling.

In contrast, on the basis of large admittance values and evidence for extensive
volcanism, it is generally accepted that the highland rises Beta, Atla, Bell, Eistla, Imdr,
and Themis Regiones overlie sites of mantle upwelling; their high topography results
principally from a combination of vertical tractions on the base of the lithosphere and
crustal thickening by volcanism and magmatic intrusion. We note that there is no
evidence for significant extensional thinning of the crust over regions of upwelling mantle.
Impact craters in regions of postulated mantle upwelling show only limited amounts of
strain [Grimm, 1994b]. What strain is evident in these regions occurs primarily across
rifts, which show only limited amounts of horizontal separation. In addition, except for
isolated volcanic edifices, rifts show little evidence for voluminous magmatism [Senske
et al., 1992], in support of the view that the crust and lithosphere have not thinned
sufficiently to generate widespread pressure-release melting.

The plains and lowlands, like the highland rises, have high admittance values that
are not well matched by single ADC models. Tectonism in these regions is limited and
concentrated at the ridge-belts and wrinkle ridges [Solomon et al., 1992]. However, as
with the highland plateaus, we ask whether these regions are the surface expression of

mantle downwelling (incipient or fully developed), or whether they are unrelated to the
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planform of upper mantle flow. In other words, we ask whether mantle downwelling
is associated with the lowlands and plains, with some or all of the tesserae and high
plateaus, or with all of these provinces.

A model in which the crust acts only as a passive tracer, such that essentially
all long-wavelength topography is simply the result of the vertical tractions associated
with mantle convection, can fit the observed geoid and topography over the swells and
lowlands. In this model, highland swells overlie sites of mantle upwelling, and lowlands
overlie sites of mantle downwelling. In such a model, the ridge belts in the lowlands are
most likely the expression of limited lithospheric strain induced by mantle downwelling
[Zuber, 1987; Zuber and Parmentier, 1990; Zuber, 1990]. However, a model without
substantial crustal deformation induced by mantle flow can not explain the large-scale
compressional features seen in radar images of the highland plateaus and the pervasive
deformation recorded in the tesserae. Thus, this model can only be viable if such regions
are postulated to have formed during a now extinct phase of tectonic deformation.

In contrast, if some or all of the compressional highlands can be related to present
mantle flow patterns — that is, if the crust currently experiences significant deformation
in response to mantle-convective tractions — then the issue of the origin of the lowlands
remains. The lowlands have previously been hypothesized to be regions of incipient or
fully developed downgoing mantle flow, which eventually mature to states resembling
western Aphrodite Terra or Ishtar Terra [Bindschadler and Parmentier, 1990; Bind-
schadler et al., 1990; Bindschadler and Head, 1991; Bindschadler et al., 1992b,a; Zuber,
1990]. To accomplish such a metamorphosis, the topography must change sign (rela-
tive to the global mean elevation) during the evolution of the convective downwelling.
The sign of the topography would be dominated by vertical convective stresses (surface
depression) in the early stages of evolution and by crustal thickening effects (high to-
pography) in the later stages [Bindschadler and Parmentier, 1990]. In the absence of a

mechanism by which the sign of the geoid anomaly from a given convective phenomenon
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changes at the same time as that of the topography, this scenario involves an early low-
land period during which admittance is of one sign (for example, negative), a brief period
with no appreciable topographic expression when the admittance is unbounded (or the
geoid and topography are incoherent), and a late highland period when the admittance
has a sign opposite to that of the lowland period (for example, positive) [Bindschadler
and Parmentier, 1990]. Because observed admittances for both lowlands and highlands
are positive and bounded, this model is inconsistent with observation.

By this reasoning, in a model which includes significant convection-driven crustal
deformation in the recent past, lowlands must overlie regions where there is no substan-
tial vertical component of upper mantle flow, and a source of stress other than localized
downwelling is required to form the ridge belts. One possibility is that the lithospheric
instabilities believed to generate the ridge belts arise from shear tractions at the base of
the lithosphere. However, this mechanism for ridge belt formation has yet to be explored
in detail. In addition, the consistently positive values of admittance, together with ob-
servations of crustal deformation, suggest either that surface elevation over downwellings
in this model always be positive, or that our present view of Venus includes no juvenile
features. If we reject the latter hypothesis by an appeal to uniformitarianism, then the
thickening of crust and any buoyant residuum must always be sufficient to overcome the
effects of surface downwarping by flow in the underlying mantle.

On the other hand, topography over mantle upwelling must also be positive, requir-
ing that mantle convective uplift and magmatic additions to crustal volume dominate
the effects of convectively induced crustal extension and thinning. One possible solution
to this apparent paradox is that over mantle upwellings the crust is shielded from con-
vective shear tractions by the strong mantle portion of the lithosphere, such that crustal
thinning is either negligible or outweighed by constructional volcanism and magmatic
intrusion. In contrast to upwellings, where rising plumes impinge on the base of the

lithosphere, the development of convective downwelling instabilities would involve the
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entire lithospheric boundary layer. In this downwelling scenario, the crust would not be
shielded from convective tractions but would deform with the rest of the lithosphere as
the instability grows.

Since we reject the model in which lowlands become highland plateaus, the issue of
the location of active mantle downwelling revolves around the possibility that the surface
manifestation of convection on Venus has dramatically changed in the past. In fact, the
density of impact craters on the surface of Venus indicates an average surface age of
300 to 500 million years [Phillips et al., 1991b, 1992; Schaber et al., 1992; Strom et al.,
1994]. Furthermore, the low density of craters modified by volcanic flows or deformation
suggests that the rate of removal or modification of impact craters has been markedly
lower since 500 Ma than before that time [ Phillips et al., 1991b, 1992; Schaber et al., 1992;
Strom et al., 1994]. Therefore, although the premise that mantle convection couples to
the lithosphere provides a basis for our interpretation of the admittance maps, we should
distinguish between models in which the styles of surface deformation have been similar
for much more than 300 to 500 million years and models in which a significant change
occurred at about 500 Ma. We refer to these two classes of models as a steady regime
and a variable regime, respectively (figure 3.19). Under a steady regime, all observed
surface deformational features can be related to currently active processes. In contrast,
under a variable regime, some observed tectonic features are products of processes no
longer occurring.

With these definitions, we would categorize Earth as being in a steady regime and
Venus in a variable regime. While much of the continents on Earth are old and can be
considered as inactive, the processes associated with their formation (e.g., accretion of
island arcs and continental collisions) are ongoing processes. We find that the highland
plateaus on Venus, like old continents on Earth, are remnants of previous high crustal
strain prior to 500 Ma. But in contrast to Earth, the lack of geologic evidence for active

tessera formation and the positive and bounded admittances at all length scales and
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VARIABLE REGIME STEADY REGIME

Figure 3.19: Schematic illustration of the two permissible regimes that are consistent
with the geoid/topography admittance constraints: The variable regime (left) and the
steady regime (right). Curving arrows indicate direction of mantle flow, p. and pn,
indicate regions with crustal and mantle densities, respectively, and thrust faults symbols
denote highland plateaus and tesserae.

positions suggests that the processes responsible for their formation are no longer present.
This model for the evolution of the style of crust-mantle coupling on Venus is favored
by the results of several recent studies. The tesserae have a higher density of impact
craters larger than 16 km in diameter than do the plains, and only one-sixth of the large
impact craters in the tesserae have been significantly deformed [Ivanov and Basilevsky,
1993]; these results suggest that recent tectonic activity has not been widespread in
these regions. Further, new laboratory measurements indicate that the strength of
crustal rocks under dry Venus-like conditions is much greater than previously recognized
[Mackwell et al., 1995], implying that the large topographic relief and steep slopes found
in the crustal plateaus and mountain belts can be maintained over longer time periods
than previously assumed on the basis of the high surface temperature and the estimated
strength of crustal rocks on Earth. Consistent with these new measurement of creep
strength are Earth-like estimates of the thickness of the elastic lithosphere on Venus

from the flexural response to volcanic and tectonic loading [e.g., Johnson and Sandwell,

1994].
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3.7 Mantle Viscosity and Lithosphere Thickness

In the preceding sections, we conclude that the geoid and topography data over approx-
imately 90 percent of the surface are dominated by vertical convective tractions on the
base of the lithosphere. Given this inference, we essentially have a crude map of vertical
mantle flow in the venusian mantle. Ideally, we could use the admittance estimates
to constrain the thermal boundary layer thickness, a necessary parameter in order to
constrain heat flow and thermal evolution models. We can already forsee difficulties,
however, on the basis of previous theoretical studies that have shown the nonlinear sen-
sitivity of the geoid and topography to the distribution of viscosity and buoyancy forces
[e.g., Richards and Hager, 1984; Ricard et al., 1984; Revenaugh and Parsons, 1987].
These studies are based on the analysis of the dynamic response functions, or kernels,
which relate internal density variations to geoid and topography. For flow in a cylindrical

domain (r, §) with only radial variations in viscosity, this relationship can be written as

_A4mya e
N = 2lgo/c Gi(r) 6pu(r) dr, (3.2)

where r is the radius, a and c are the outer and inner radii of the mantle, respectively, N,
is the geoid, U; is the geoid kernel at a given radius, p; is the harmonic decomposition of
density variations at a given radius, go is the mean gravitational attraction at the surface,
and « is the gravitational constant. A similar expression holds for the topography. The
derivation of the kernels for a cylindrical geometry used here can be found in appendix
B.

The geoid kernels are very sensitive to variations in mantle viscosity [e.g., Hager,
1984; Richards and Hager, 1984]. Examples of both topography and geoid kernels are
shown for three different viscosity profiles in figures 3.20, 3.21, and 3.22. Each of these
figures shows the predicted geoid, topography, and admittance response as a function

of harmonic degree and depth of an infinitesimally thin mass sheet. It is worth noting
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Figure 3.20: Dynamic response kernels for a cylindrical self-gravitating planet. The
viscosity model is shown at the bottom left. This model is isoviscous except for a 100-
km-thick high-viscosity lid. Topography kernels, A;, and geoid kernels, U;, for angular
order [ = 2, 5,10, 30,50,100] (! = 2rR/)) are shown top left and top right respectively.
The admittance response, Fy, for a sheet mass at a single depth is shown at the bottom
right.

that although a given density model can be convolved with the geoid and topography
kernels to generate complete spatial fields, the same can not be done for the admittance
since it is the ratio of the total geoid and topography fields.

Figure 3.20 shows that for an isoviscous system with a high-viscosity lid, (which is
very similar to a model with no lid), a positive density anomaly will generate negative
geoid and topography anomalies, and the admittance will therefore always be positive
[Richards and Hager, 1984]. The topography kernels remain negative for all models in
which viscosity only varies with depth. As shown in figures 3.21 and 3.22, this behavior

is not true for the geoid kernels. An increase in viscosity with depth can cause the geoid
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Figure 3.21: Same as in figure 3.20 but with a 30-fold increase in viscosity at 1500 km
depth and a 3000-fold increase between the upper mantle and the lid.

kernels to switch sign, so that the final sign (at different length scales) of the complete
geoid, and therefore the admittance, is sensitive to both the depths of driving density
anomalies and their spectral distributions.

Here we employ a finite element convection model to investigate the viability of using
long-wavelength admittance spectra to constrain the TBL thickness and the variation
of mantle viscosity with depth. Our model is based on the Cartesian finite-element code
developed by King et al. [1990] for Boussinesq convection and modified to a cylindrical
(r,8) computational domain by Zhong and Gurnis [1993]. From this convection model
we calculate topography, geoid, and the resulting admittance as a function of position
and wavelength. We use a single density model which we convolve with different viscosity

models to show that GTRs and single-ADC models fail to represent our dynamic models
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Figure 3.22: Same as in figure 3.21 but with the 30-fold increase in viscosity at 700 km
depth.

well. The goal of this exercise is not to provide a match between observed admittances
and those calculated from a convection model, nor is it an attempt to investigate fully the
effect of the numerous parameters involved on geoid and topography; rather we simply
use this model to illustrate that once dynamic stresses are considered, the relationship
between admittances and interior density contrasts is sufficiently non-unique that we
cannot make inferences regarding the TBL thickness and viscosity structure without
additional information.

Our temperature structure is shown in figure 3.23. In generating this snapshot we
have applied boundary conditions of no horizontal velocity at the top surface and no
shear stress at the bottom surface. The calculation is done using an isoviscous mantle,

a Rayleigh number for bottom heating of 10°, and sufficient internal heat production
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Figure 3.23: Input temperature structure derived from a numerical convection model.
Temperature contours are every 250°C.

such that in steady state this model has between 60 and 70 percent internal heating.
The model is constructed in this way to provide a density structure that is character-
istic of mantle convection in a system with negligible horizontal surface motions, as is
appropriate for Venus. We investigate the affects of assuming different radial viscosity
models by convolving the temperature (density) field with the previously discussed re-
sponse kernels. We see in figure 3.24 that even models with a low-viscosity upper mantle
generate geoid anomalies with 100’s of meters of peak to peak amplitude, and that the
characteristic length scales of the features are not affected. As is expected from the
kernels, the topography is mostly sensitive to the viscosity variation at shallow depths,
and therefore is not affected greatly by the increase in viscosity between the upper and

lower mantle. When viewed spatially, we see that topography and geoid are positively
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Figure 3.24: Geoid (top) and topography (middle) derived by convolving the tempera-
ture field shown in figure 3.23 with three viscosity models; no upper mantle low-viscosity
zone (thick line), thin low-viscosity zone (thin line), and thick low-viscosity zone (dashed
line). The topography for the first two solutions are not distinguishable on this plot.
Bottom: Temperature profiles at constant depths of 500 km (thick line) and 2500 km
(thin line).

correlated for all three viscosity models.

Localized geoid/topography and gravity/topography admittance spectra using a
conventional wavelet method are shown in figures 3.25 and 3.26 for two regions overly-
ing upwelling mantle and two regions overlying downwelling mantle. The model admit-
tances are not as smooth as the observed admittances for Venus, presumably because the
observed admittances are calculated by averaging over azimuths, which is not possible
with our two-dimensional model. The geoid/topography admittance spectra over the
four regions are very similar, exhibiting the rapid increase in F} with decreasing ! that is
characteristic of most of Venus. The effect of a low-viscosity upper mantle, or more ex-

plicitly, an increase in viscosity with depth, is to decrease the admittance at low degree.

96



35} O Qo || 285¢°

350 185° | 245°

10 20 30 40 5060 10 20 30 40 5060
Harmonic Degree, / Harmonic Degree, /

Figure 3.25: Localized geoid/topography admittance spectra for three viscosity models:
no upper mantle low-viscosity zone (circles), thin low-viscosity zone (plusses), and thick
low-viscosity zone (crosses). The location of each spectrum is indicated at the top right
hand corner of each frame. Top frames are for regions of upwelling mantle and bottom

frames for regions of downwelling mantle. Spectra for Airy compensation at depths of
25, 50, 100, and 200 km are shown for reference.

As the depth of the increase in viscosity becomes shallower, the admittance deviates
from a model with no weak upper mantle at progressively greater values of I. However,
in all cases F} is positive. While not conclusive, it is interesting to note that the observed
geoid /topography admittance over many regions on Venus also exhibits flattening at low
degree. This behavior may suggest that the venusian mantle indeed has a low-viscosity
upper mantle. Indeed, if the jump in viscosity believed to occur between the upper and

lower mantle on Earth is related to phase changes, it is not unreasonable to expect the
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Figure 3.26: Same as figure 3.25 but for gravity/topography admittances.

same jump on Venus.

None of the spectra follow that predicted for a single compensation depth, and by
logical extension, the admittance spectra cannot be interpreted in the context of an
Airy compensation model. GTRs or other single-ADC models will fail to estimate the
TBL thickness because they are static models that do not account for dynamic stresses
induced by mantle flow. We note that static compensation models include thermal or

Pratt isostasy. We have interpreted the observed admittances in the context of a model
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in which highland plateaus are remnants of an earlier regime of high crustal strain, the
crust does not thicken or thin significantly in response to mantle-convective tractions,
and most long-wavelength topography not associated with the earlier regime arises from
normal convective tractions at the base of the lithosphere. Given the modelling results
presented here, this scenario is able to match qualitatively the slope of the observed
admittance specra. However, these values cannot be used to constrain the average TBL
thickness on Venus without additional constraints.

Estimates of the effective elastic plate thickness can constrain the TBL thickness
[e.g., McNutt and Menard, 1982; McNutt, 1984; McNutt and Judge, 1990]. Published
estimates of mechanical plate thickness, Ty,, based on elastic plate modelling span a
range of 15 to 60 km for coronae, rifts, and volcanoes. If we assume that this depth
corresponds to a mantle temperature of 750°C, that the surface is at 500°C, and the
interior temperature is 1250°C, we predict a TBL thickness of 50 to 150 km. We also
note that the volcanoes have an average surface age between one half and one fourth
the average (300 to 500 Ma) age of the plains [Namiki and Solomon, 1994], and overlie
lithosphere with estimated T, values in the middle of the 15 to 60 km range [McGovern,
1995]. Furthermore, a 50 to 150 km TBL thickness is within a factor of two of that
estimated by scaling terrestrial heat flow to Venus [Solomon and Head, 1982], assuming
that both planets have identical heat production per unit mass and a similar radial
distribution of heat producing elements, and that heat loss is solely by steady-state
conduction through the lithosphere. Given these assumptions, the estimates of Tp,, and
the realization that single GTRs or admittance values do not constrain TBL thickness,
a 100- to 150-km-thick TBL cannot be rejected on the basis of current geophysical
inferences. Furthermore, a 300-km-thick TBL is neither required nor favored by any

geophysical observation.
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3.8 Conclusions

From the relationship between gravity and topography on Venus, we find that topo-
graphic compensation over the highland plateaus and tesserae can be simply explained
as the result of Airy isostasy with local mean crustal thicknesses averaging about 25
km and reaching maximum values of about 50 km. Furthermore, at the time of forma-
tion the effective elastic plate thickness in these regions was probably less than about
20-km-thick. Because of the consistency with gravity, cratering, and geologic data, we
conclude the crust does not thicken or thin significantly in response to present convective
tractions. It then follows that the compressional highlands and tesserae are products of
past, rather than current, mantle processes, and most other long-wavelength topographic
features are principally the result of vertical tractions at the base of the lithosphere.

If this model of topographic compensation is correct, then we are effectively pre-
sented with a crude spatial map of the vertical convective motions in the upper mantle.
While it is tempting to use admittance estimates to constrain the TBL thickness and
mantle viscosity structure, because of the inherent non-linearities involved in mantle dy-
namics, such efforts are doomed to be inconclusive without a prior model of the interior
density structure of the planet. Counter to analyses conducted by others, a qualita-
tive comparison of observed and model-derived admittance spectra suggests that an
Earth-like radial viscosity structure and TBL thickness is plausible, and that there is no

geophysical evidence that suggests otherwise.
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Chapter 4

Localizing Earth’s Geoid

4.1 Introduction

Using high resolution global geoid models, we can investigate how different physical
processes contribute to the geoid as a function of length scale and position. In this
chapter, we begin with a first attempt at non-parametric spatio-spectral localization of
the Earth’s geoid on a global scale, and discuss the implications for different processes
that contribute to the geoid at length scales greater than 800km. With the guidance
and intuition provided by the non-parametric analysis, we use the localization method
to provide a decomposition of the geoid parameterized in terms of the known spatial
distribution of selected tectonic processes.

The best currently available global model of the geoid for studies of the solid earth,
JGM-2G, extends to spherical harmonic degree and order 70 and is based on a combi-
nation of satellite tracking data, surface gravimetry, and satellite altimetry observations
[Nerem et al., 1994, 1995]. Higher resolution fields exist, but they incorporate topo-
graphic information as a constraint in their construction [e.g., Rapp et al., 1991]. The
spatial rendition of JGM-2G, referenced to the hydrostatic equilibrium figure [ Nakiboglu,

1982], is shown in figure 4.1 and the global root-mean-squared amplitude, S, of the geoid
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Figure 4.1: Global map of geoid model JGM-2G. Contours every 20 m, N > 10 m
indicated by thick lines and N < —10 m by thin lines. Unless stated otherwise, all
global maps use a Winkel Tripel projection centered at 45° E.

as a function of degree is shown in figure 4.2.

As observed by Nerem et al. [1994, 1995], the S; spectrum does not decay with a
spectral slope of —2 as predicted by Kaula’s rule [Kaula, 1963]. In fact, S; has a change
in slope around [ = 13, with a spectral slope of 2.3 for I < 12 and of 1.6 for [ > 13. This
difference from previous geoid models occurs because JGM-2G is the first such model
for which sufficient data exist to eliminate the need for damping the geoid solution using
Kaula’s rule [Nerem et al., 1994]. We do not explore the physical significance of the break
in spectral slope here; we note only that wavelengths corresponding to I = 13 equal the
depth to the base of the mantle and that removing the effect of isostatically compensated
topography on the geoid does not appreciably change these spectral characteristics.

Most of the total variance of the geoid can be explained by fluid dynamical models

of the mantle [e.g., Richards and Hager, 1984; Ricard et al., 1984; Hager and Clayton,
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Figure 4.2: Left: RMS amplitude spectra of geoid (circles), topography (crosses), and
that part of the geoid which is not correlated with topography (dots). Top Right:
Global geoid/topography admittance estimates compared with theoretical Airy admit-
tance curves from equation 4.1 for compensation at 25, 50, and 100 km depth (in order
of increasing admittance). Bottom Right: Degree correlation of observed geoid and
topography (dots). 98 percent confidence levels are indicated by solid lines.

1989; Forte et al., 1994]. These models depend on the magnitude and location of mantle
density anomalies and on the spatial variation of viscosity. A model with only radial
variations of viscosity convolved with an assumed model of the density anomalies due
to subducting lithosphere and those inferred from seismic tomography can explain 90
percent of the total global variance in the geoid [e.g., Hager and Clayton, 1989; Hager and
Richards, 1989; Forte et al., 1994]. The details of the best fit radial viscosity model are
non-unique, but generally incorporate a viscosity increase going from the upper to the
lower portions of the mantle, as well as a moderately high-viscosity surface layer [e.g.,

Hager, 1984; Richards and Hager, 1988; Forte et al., 1994]. The viscosity model and
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Figure 4.3: Left: The favored radial viscosity model of Hager and Clayton [1989]. Right:
The corresponding geoid response kernels for [ =2 (dashed line), 4 (thin solid line), 8
(dotted line), and 16 (thick solid line).

corresponding geoid response kernels for one such successful model is shown in figure 4.3
[Hager and Clayton, 1989]. The salient feature of this model is the increase in viscosity
with depth, which causes the geoid kernels at the lowest degrees to be positive in the
upper mantle (i.e., a positive density anomaly would produce a positive geoid anomaly)
and negative in the lower mantle.

It is worth noting that the success of a given flow model is usually measured by
global variance reduction. However, because of the red spectrum of the geoid, most of
the variance reduction is accomplished by matching the longest wavelengths of the geoid.
In particular, the aforementioned 90 percent variance reduction is found using only the
| = 2,3,4 components from global seismic tomography models and ! = 2 through 9
of the subduction model [e.g., Hager and Richards, 1989]. While convective processes
undoubtedly contribute to the higher degrees of the geoid, their inclusion in the current
generation of flow models increases the variance of the geoid [e.g., Hager and Richards,

1989).

In addition to global flow models, we can consider the global covariance of geoid with
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topography. At ! < 10 the global correlation, 7;, between the two fields is either anti-
correlated or insignificant (figure 4.2). However, at higher degrees the global correlation
is positive and significant above the 98 percent confidence level [e.g., Rapp, 1982]. The
global geoid/topography admittance, F}, at these shorter wavelengths is consistent with
an Airy compensation model, with compensation at depths of about 25 km (figure 4.2).
However, this estimate is deceptive since it is global, combining a multitude of tectonic
provinces. The geoid predicted by using the global admittance fails to reduce the degree
variance of the geoid markedly, as is shown by the S spectra of the residual field (figure
4.2).

Given that the geoid model is complete to degree and order 70, we would like to
develop a description of the geoid that includes both the longest and the shortest wave-
lengths, one that permits us to evaluate the success of synthetic models as a function of
position and length scale. With this perspective, we can isolate where and at what length
scales to look for anomalous signal related to specific geologic regions and phenomena.
We begin with an attempt to explain the observed localized structure using a series of
simple forward models, consisting of crustal thickness variations, ocean-continent differ-
ences, and oceanic plate cooling. We also include the effects of oceanic trenches, which
we treat as uncompensated [Chase and McNutt, 1982].

At long wavelengths the localized geoid is dominated to a greater extent by processes
associated with mantle convection and to a lesser extent by the effects of incomplete
glacial rebound. The gravity signature of these processes has been the focus of extensive
modelling efforts. Here, we take a different approach by using the localization transform
to perform a tectonic decomposition of the gravity field. In other words, given an a prior:
estimate of the spatial distribution of a tectonic phenomenon (e.g., subduction zones,
hotspots, and ice melting history), we determine the global average of the geoid which
is locally correlated with each phenomenon. Limited by the resolution of the observed

geoid, our slab, hotspot, and glacial rebound geoids extend to [ = 46. We compare our
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slab and hotspot geoids with those derived by dynamic flow modelling, although due
to limitations in the flow models, this comparsion can only be done at low harmonic
degree. Similarly, we develop a glacial rebound geoid that represents the minimum
geoid anomaly that can be expected from incomplete glacial rebound and compare our

rebound geoid with predictions made from published viscosity models.

4.2 Observed Geoid and Topography

For illustrative purposes, we begin with localizing a spherical harmonic rendition of
topography. Here, and in all subsequent use of topography, we use the spherical harmonic
degree and order 360 expansion of equivalent rock topography (ERT360) derived by
Pavlis and Rapp [1990], in which ice a