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ABSTRACT

In this thesis a numerical model is used to study the
spin-down of a stratified, rotating tluid. Simplified
Boussinesq equations are used. The model results are com-
pared to analytical results derived by imposing conditions
on the one parameter, S, which appers 2in the non-dimen-
sionalized equations, where S = - N k /f . It is found
that for small S, spin-down is dominated by Ekman pumping,
with the model results corresponding to analytical results
of an Ekman boundary layer beneath a quasi-geostrophic
interior. For large S, the spin-down is dominated by
diffusion of the interior flow, with boundary layers unim-
portant. This also corresponds to analytical results.
Inertia-gravity waves are an important manifestation of the
spin-down process for small S. Attempts are made to lessen
their effects, so that the spin-down process itself may be
studied. Applications to the real atmosphere and to the
initialization of the boundary layer of numerical weather
prediction models a-e studied.
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SPIN-DOWN OF A STRATIFIED, ROTATING FLUID

I. Introduction

In this thesis, a numerical model is used to study the

spin-down of a stratified, rotating fluid. Simplified

Boussinesq equations are used. The model results are com-

pared to analytical results derived by imposing conditions

on the one parameter, S, which appears in the non-dimen-

sionalized equations, where S = V N2 k2/f3. This study has

applications to the boundary layer dynamics of the real

atmosphere and to numerical weather prediction models.

Previous studies of this problem have been analytical

and laboratory experimental. They have concentrated on the

linear case of small relative angular velocities and small

Ekman numbers (E = ratio of Ekman depth to container depth)

for a cylindrical laboratory vessel. Barcilon and Pedlosky

(1967a) considered the case of E not small. In my case, due

to the extreme simplifications of the equations and boundary

conditions, the Ekman depth is incorporated in the non-

dimensional parameter, S. Many of the results are the same.

Greenspan and Howard (1963) were the first to study the

problem for a neutrally stratified case. They defined three

time scales that are important to the problem. Holton (1965)

considered a slightly stratified case, corresponding to

small S in my model, and showed how the analytical Ekman and

quasi-geostrophic solutions matched his laboratory results.



Barcilon and Pedlosky (1967a) considered the highly strati-

fied case, corresponding to large S in my model, and showed

analytically that Ekman layers become unimportant in the

spin-down of the interior, which is found to be controlled

by diffusion. Later that year, Barcilon and Pedlosky (1967b)

studied the complete range of the parameter S and showed how

S as a function of E determined the type of motion present

in the fluid. Benton and Clark (1974) give a complete

review of all major work on the spin-up/spin-down problem.

II. Equations

A. Boussinesq Equations

The linearized, hydrostatic Boussinesq equations are

used in this model. There is no basic current, no beta

effect, uniform stratification, and uniform viscosity and

conductivity. The perturbation equations are:

~ -~ +

*4V 4fcAT

+ N (1

=0; N2 , f and -I are constants.

N = Brunt-Vaisala frequency

2 d ((-5.,, 2_ ()
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f = Coriolis parameter = 2.I\ sin

9 = eddy viscosity coefficient

= eddy conduction coefficient

These are a very simple set of equations with many

simplifying assumptions. This allows for a fairly simple

numerical integration of the equations, while still retaining

all the important physical aspects which are to be studied.

The region to be studied extends from z = 0 to z =ao,

with the following boundary conditions at z = Ot u = 0,

v = 0, w = 0, b = 0. The initial conditions at t = 0 are:

u = 0, w = 0. b = 0, and a barotropic, geostrophically

balanced meridional velocity vs

v(x,z,0) = vo sin kx

p(x,z,0) = - (fvo/k) cos kx

V0 = constant

Because v has.a constant, non-zero value at all z (except

when sin kx = 0), but v = 0 at z = 0, the viscosity and

conductivity will immediately begin to change u, v, w, p and

b. This is the spin-down process. It is as if at t = 0 a -

no-slip boundary condition is suddenly imposed at the bottom

of a uniform current.'This'thesis'will examine the flow

fields produced during this spin-down process.

B. Non-dimensionalization

The equations and boundary conditions are such that

each variable will maintain a single dependence on x,

either sin kx or cos kx. It is convenient to recognize
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this explicitly and to select new variables as follows:

u = U(z,t) sin kx

v = V(z,t) sin kx

p = (f/k) P(z,t) cos kx

b = (f/kD) B(z,t) cos kx
(2)

w = kD W(z,t) cos kx

where: zdimensional = D znon-dimensional

tdimensional = (1/f) tnon-dimensional

D = -v"/, = "Ekman depth"

Substituting (2) into (1) results in the following non-

dimensional equations:

-r V +(3)

-- = - (4)

it -S W (5)

* P(6)at

I - (7)

All the parameters collapse into one non-dimensional one:

S -D2 N 2k 2
X2  f3

where A= f/Nk = "Prandtl or Rossby depth." Boundary

conditions are:

z =0: U = V = W = a = O: all t (8a)

z + : W, B -+ 0; U, V finite; all t (8b)



-010-

t = 0: U = W = B = 0, V = ;all z (8c)

III. Theoretical Approximations for Small S

If the non-dimensional parameter S is small, approxi-

mate equations can be derived for an Ekman boundary layer,

and a quasi-geostrophic interior. This is generally the

case for mid-latitude synoptic scale motion. Reasonable

values of the parameters in this cese are: - = 10 m2 sec-",

k = 211/4000 km, N2 = 10-4 sec" 2 and f = 10-4 sec"', and

give S = 0.0025, which is small. In this case the Ekman

depth, D, is 316 meters.

A. Ekman Equations

Assume a steady state = 0), and that P is constant

with height. This means that = 0. Equation (6) then

gives B = 0. Equation (5) then gives SW = 0, implying that

S is small, since W is not (W-.v 0(1)). The remaining

equations then become:

V Tit  (9)

(4 ' (10)

' -U. (11)

with: P = V*

zV=V* j (12)

z =0: U= V = W =B =0

V* is the quasi-geostrophic forcing from above and equals

VQG (z=0), which will be defined in the next section.
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Let V' = V - V*. Equations (9-10) then become:

The solutions, using (12), are:

U = - V* e-N% Z sin A z UEK (13)

V = V* (1 - e' cos z) = VEK (14)

Integrating (11). and using (12) and (13):

W =1 V* (1 e-'if z(sin .F z + cos if z)) = WEK

As z -o: WEK -T V*.

B, Quasi-geostrophic Equations

In applying (3-7) to the interior, we ignore the

viscous terms. We also know that V = 0(1) and, from the

Ekman solution, that W = 0(1). By assuming quai-geostrophy,

we have P = 0(1) and - small. Assigning symbolic magnitudes

= St k,

= Sz

U = Su U

B = Sb B1

we find that the symbolic power of S must satisfy

(3)-+ t + u 0

(4+ t =u

(5)-4 t + b =1

(6)--+' z =b

(7)-- z u.
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These give, unambiguously, u = b = z = t = , showing that

the proper expansion is in powers of S . The resulting

equations, when non-dimensionalized, are:

Zero order: l: - First orders

\P,6

V-
(I, I

it

J ~Be (16)

1I

The matching condition on W is used as a lower boundary

condition:

z = O: W 1 = WEK (z.e) = V* (17)

Note that boundary conditions (8) apply to the zero order

equations. Also note that ' (S) was neglected compared

to Vi-' O(-{0), a condition that S be small.

The potential vorticity equation can be derived

from (16):

This equation is solved using conditions (8) and (17):

PO= v e z (1 - e-f§/2 t) - v0

where vo = V* (t=O)
}(18)

Letting vo = 1, putting (18) back into (16), and dropping

subscripts, the quasi-geostrophic equations are:
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V = 1 - e-45 z (1 . -05/2 t) = VQG

W = (1/2) e- 7 e-S2 t = WQG

U = (ifS/2) e e f =UQG (19)

P= -V

B = -s 5 e-O5 z e /2 t)

These equations all satisfy (8) for zero order, but the

U and W equations here are really for first order.

IV. Theoretical Approximation for Large S_- Diffusion

If S is large, approximations can be made which result

in a diffusion equation. Equations (5) and (7) suggest that

W and U are small, and that (4) reduces to#

T ~"0 0 (20)

With the boundary conditions

z = 0: V = 01 all t

Z -4, 00: V = 11 all t

t = O V = 1 all z,

this is Stokes' first problem.

Hildebrand (1962, pp. 462-464)

V = erf ( )
2-A

The solution, according to

is$

(21)

where erf (x) = (2/f7J) J e-u du, is the so-called error

function, whose values are tabulated.
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V. Results

The numerical model used in this study is described

in the Appendix. The results of the runs made with this

model are presented in this section.

A. Inertia-Gravity Waves and the Lid

Inertia-gravity waves are produced in this model by

the sudden imposition of friction at the bottom boundary.

They are not filtered out by the equations. An equation for

the frequency of these inertia-gravity (I-G) waves was

derived. By combining equations (3-7), the following

equation was derived for W:

- 1 ' + + S W =0

If W is considered to vary exponentially in time and height:

W = w0 ei(vz +ut),

the following equation is derived for the frequency of the

I-G waves:

where Y = nl/H, n = 1, 2, 3,

The first term in the frequency equation gives the frequency

of the periodic variations of the I-G waves and the second

term gives the exponential decay of the amplitude due to

viscosity. The period of the l-G waves is given by:

2're

A series of twelve runs were conducted to study these
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waves as a function of S and H. Graphs of the resulting W

are given in Figures 1-12, and the results are summarized

in Table 1, which also contains a summary of all runs made

in this study. Runs were made for H varying from 7.9 to

63.2, corresponding to a dimensional height ranging from

5 km to 20 km when f = 104 sec (mid latitudes) and

-0 = 10 m2 sec-l, with S varying from 0.4 to -0.01, thus

testing the model for neutral and unstable cases as well.

In Runs 1-11 (Figures 1-11), n = 1 I-G waves were

observed with periods corresponding to theoretical predic-

tions. In Run 11, I-G waves were present ,even for an un-

stable stratification, because the instabilities were

effectively damped by viscosity. In Run 12 (Figure 12),

W increased exponentially for the whole run, with no waves,

as was predicted. In Run 2, n = 2 waves appear to dominate,

as the period of the n = 1 waves becomes small. When the

period of the n = 1 I-G waves is below a certain critical

value, t. co2, higher mode waves begin to appear. As S and

H are increased, not only does the frequency of the I-G

waves increase, but the higher mode waves are relatively

larger (See Figure 2). Note that the n = 1 mode in W is

dominant at z = H/2; the n = 2 mode is more apparent at

z = H/4 and z = 3H/4, especially in Figures 2 and 4.

Runs 5-8 (Figures 5-8) with S = 0.01, and H varying

from 7.9 to 63.2 Ekman depths, show that for t 0 14 the

region below z = 16 is little affected by increasing H

above a value of 16. Nonetheless, H = 63.2 was used as a
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standard height for most later runs. One systematic occu--

rence shown in Figures 5-8 is the tendency, at z > 5, to a

second maximum in W at t somewhat greater than the pure

inertia period 21, approaching closer to 21 from above as

H is increased.

It should be noted, however, that while the I-G

waves markedly affected the U and W fields, the V fields

were much less affected, since the change in V from the

initial value of 1 in a sense corresponds to the time inte-

gral of U (Compare Figure 8 for W and Figure 15 for V). As

S became larger, as in Runs 13 and 14 (Figures 26, 27 and

33, 34), the U and W fields became much less important as

compared to the V field, so that even though the I-G wave

structure became more complex, it has less observable

effect on the V field. For a small S, however, the I-G

waves affect the V field to some extent, and it would be

nice to find a way to suppress them, so the spin-down

process could be studied unaffected by them.

B. Boundary Layer and Wmax

As can be seen in Figures 1-11, a boundary layer

develops in W. W grows from 0 to a maximum at a certain

z and t, and then after that in time, Wmax is at a somewhat

lower height. Data related to this was taken from these

figures and later runs, and tabulated in Table 2, and

plotted in Figures 13-14.

Figure 13 shows that there is a linear relationship

between the first Wmax (d) and its height (a):
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a : 1.65 + 3.75d . This is true independent of S or H,

although the first Wmax and its height both tend to de-

crease with increasing S. Figure 14 shows an almost

linear relationship between the first Wmax (d) and the time

of its occurence (c): c ~ 0.9 + 3 d . Wmax tends to stay

at slightly less than the height of the first Wmax (Com-

pare columns a and b in Table 2), and to decay slowly

quasi-exponentially in magnitude.

C, Small S 0.01

Run 8 (S = 0.01, H = 63.2) was used as a standard

small S case to be compared with Run 13 (S = 0.16, H = 63.2),

a case of moderate S, and Run 14 (S = 2.56, H = 63.2), a case

of large S. Figures 15, 16 and 8 contain plots of V, U and

W for Run 8. Theoretical Ekman and quasi-geostrophic plots,

using -equations (13, 14 and 19) and setting V* = e-S/2 t

were also made for Run 8 and are shown in Figures 17-22.

It can be seen in Figure 15 that initially anEkman-

like boundary layer is established near the surface and then

Ekman pumping and associated U flow (See Figure 16) produce

a quasi-geostrophic-like spin-down of the interior flow.

Figure 15 shows the establishment of the Ekman layer of

Figure 17. Figure 20, if raised one Ekman depth, shows

close correspondence of the numerical results to the quasi-

geostrophic solution. The U and W plots, Figures 16 and 8,

resemble the Ekman plots, Figures 18 and 19, near the

surface. However the quasi-geostrophic plots, Figures 21

and 22, show rough agreement with the numerical results



-18-

only when raised up about four units in z. If the Ekman

and quasi-geostrophic solutions were summed, the model

results would probably resemble this sum near the bottom

boundary, while the I-G waves in the interior.would cause

the two plots to be different.

An attempt was made to start the model with different,

more balanced initial conditions, so that there would be

less of a shock to the system and smaller amplitude I-G

waves resulting. This was done in Run 15, where the follow-

ing initialconditions were used instead of (8c):

t = Os U = UEK + UQG

V = VEK (which includes VQG)

B a 0

The UEK and VEK components are a reasonable boundary layer

structure for VQG, however the.UQG component does not have

a boundary layer and does not satisfy the boundary condi-

tion on U at z = 0. The results are plotted in Figures

23-25. Comparing these results to those for Run 8 (Figures

15, 16 and 8), it can be seen that the attempt was only

partly successful. Comparing the V fields, in Run 15 the

spin-down of the interior is slightly more rapid than that

in Run 8, since the boundary layer and counterflow have

already been established at t = 0. Some oscillations still

occur, but with less influence.

An earlier attempt starting with an Ekman profile

for U and V without the quasi-geostrophic adjustment in U

resulted in similar fields to those of Runs 8 and 15, but
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with larger I-G wave amplitude. An attempt starting with

combined Ekman and quasi-geostrophic profiles, except with

the quasi-geostrophic profiles moved up one Ekman depth, or:

t = O: U(z) = UEK(z) + UQG(z+1),, gave results almost iden-

tical to those of Run 15.

A run was also-made with a boundary layer structure

for UQG so that the initial U field satisfied the boundary

condition at t = 0. The following profiles were derived

from the paper by Young (1973) for the isallobaric flow in

the boundary- layer, since my UQG is just the isallobaric

winds

UIB = U* 1 -e',% Zcos z

+ (z/fg)(sin Th z + cos Ah z)]

VIB = U* e-1  Z[sin -A z +-(z/48)(sin irk z - cos il z))

U* = UQG (t = 0). The initial conditions for this run were

then: U = UEK + UIB

V = VEK + VIB

where UEK and VEK are the boundary layer corrections for

VQq and UIB and VIB are the boundary layer corrections for

UQG. The results were again almost identical to those of

Run 15. The Ekman boundary layer correction to the zero-

order quasi-geostrophic V field, therefore, appears to be

important, while the boundary layer correction to the first-

order quasi-geostrophic U field does not have a large effect.

D. Moderate S (0.16)

Run 13 was the same as Run 8, except that S = 0.16

in Run 13 (0.01 in Run 8). Model results for V and U are
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plotted in Figures 26 and 27, and Ekman and quasi-geostro-

phic theoretical results are plotted in Figures 28-31.

In this case, rs is not very small compared to 1.
The theoretical results valid for small S, therefore,

would not be expected to be good estimates for this case.

The V field (Figure 26) spins down more slowly than the

VEK (Figure 28) and the VQG (Figure 30) fields. The U

field (Figure 27) also spins down more slowly then the

UEK field (Figure 29) beyond t Z 8, but again it is hard

to compare to the UQG field (Figure 31) because boundary

conditions are not satisfied.

Neither is S large enough in this caseto be "large."

The V profile of equation (21), for the theoretical large

S case, is shown in Figure 32. When this is compared to

Figure 26, it is seen that while after t 24.5, the two

profiles have the same shape-, the V for moderate S has

spun down more rapidly than the diffusive solution for V.

The "jet" of positive U above the boundary layer in

Figure 27 is the interior divergence caused by the Ekman

pumping. A jet of magnitude greater than 0.05 is evident

from t . 1 to t - 4.5 in Figure 27, and the results of

this pumping are seen in Figure 26. Between t & 1 and

t ~ 4.5 in the V field a structure is observed similar to

that in the V field for Run 8 (Figure 15), caused by the

Ekman pumping. But after this time the pumping decreases,

a diffusion type regime is observed for V, and the weak

boundary layer formed at the beginning of the run disappears.
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E. Large S (2.56)

Run 14 was the same as Run 8, except that S = 2.56

(0.01 in Run 8). Numerical results for V and U are plotted

in Figures 33 and 34, and UEK and VQG are plotted in

Figures 35 and 36.

There is almost no resemblance between the numerical

results for large S and the theoretical results based on

small S. Only a diffusive regime is present in the V field,

with no boundary layer structure, and it is in fact almost

identical to the theoretical diffusive result of equation

(21) and Figure 32. The U flow is much smaller than when

S is small.

F, Dimensional Results

This section considers the physical meaning of

varying S. S is a function of four parameters:t, N, k

and f. Each in turn is varied while the other three are

held constant and the variation of S is interpreted as

a dependence on each of the parameters individually. This

was done by assuming that for S = 0.01; 9 = 10 m2 sec"I,

N = 10-2 sec'1 , and f = 10'4 sec"l, corresponding to a

latitude of 430. The horizontal wave number k was then

calculated and found be 3.16 x 10' m"1. This gives a

horizontal wave length of 2000 km. This is a minimum wave

length for the small S case. As the wavelength is increased

to values more closely corresponding to those observed in

mid latitudes, S becomes smaller and the theoretical re-

sults for small S will fit the model results even better.
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N does not appear in the scaling of the independent

and dependent variables in equations (3-7). Therefore,

comparisons based on variations in N imply only a change

in S without changes in z, t or the fluid variables. The

plots already constructed may be used for comparison

directly. The scaling does depend, however, on the other

three parameters. Care must be taken so that when they

are varied, the scaling definitions are accounted for. In

the following discussion the above values will be taken as

a reference; changes in each one of the four parameters will

be considered in turn in terms of changes in S and spin-

down process which it produces.

1. Varying f

Holding N, -i and k constant at the reference values

given above, dimensional height and time scales-have been

placed on Figure 15 (V, S = 0.01, f = 10" sec"i). Figures

37 and 38 are dimensional plots of V for S = 0.16, f =

4 x 10-5 sec" (17 degrees latitude) and for S = 2.56,

f = 1.6 x 105 seci (6 degrees latitude) on the same

scale as the dimensional coordinates of Figure 15. The

following analysis is valid only in the planetary boundary

layer, where the Boussinesq approximation is valid, and

only when other characteristics of the real atmosphere not

considered here, such as latent heat, are unimportant.

Below 1 km, and for time less than 1 day the spin-

down is most rapid for a large S and slowest for small S.

Between 1 km and 2 km, however, the character of the profiles
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changes dramatically. For small S. V actually decreases

momentarily with height in this region, and for moderate

s, decreases substantially from the larger values near

the ground. For large S, Al simply decreases gradually

with height. The net result is that at z a 2 km, the

small S case has spun down the most and the large S case

has spun down the least. The Ekman pumping, which has its

greatest effect in the 1-2 km region, dominates in the

small S case, causing a rapid spin-down, while in the large

S case, pumping is almost absent, and diffusion is the

dominant mechanism of spin-down. This is shown explicitly

by the dimensional plots of Wmax versus t(Wmax) in Figure

141 the larger S is, the longer it takes for Wmax to be

reached and the smaller is its magnitude. Since Wmax is

an indication of the magnitude of the Ekman pumping, this

again indicates that pumping is much more important for

small S than for large S as a spin-down mechanism. The

moderate S case is a transition between these two extremes.

Further evidence for diffusion dominating in the

large S case is a comparison of the dimensional V profile

(Figure 38) with the non-dimensional profile (Figure 33).

The shape and spacing of the iso-lines is almost exactly

the same, indicating that V is a function of the ratio of

the coordinate scaling. Since z is scaled by f" and t by

f, V must be a function of z/ijt. This is the case for

pure diffusion (See equation (21)).

It can be concluded then, subject to the above
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restrictions, that in mid and high latitudes Ekman pumping

dominates spin-down, while in low latitudes diffusion causes

spin-down. One other factor which might negate this con-

clusion is that f varies rapidly in the low latitudes,

while in the equations it was assumed to be constant.

2, Varyinge 4

If the results are interpreted by varying ,; and

keeping f, k and N constant as S changes, the effect of

viscosity may be studied. As would be expected, as V and

S are increased diffusion becomes more important and domi-

nates. For small i, Ekman pumping dominates. S is directly

proportional to ), so as S is varied by a factor of 256, so

is -. This would vary the vertical scaling by i = 16, but

not affect the time scaling. If V is taken as a reasonable

atmospheric value for small S, then for large S, both 7I and

the vertical scaling become unreasonable. This makes sense

since an "Ekman depth" = (V/f) would not be a reasonable

scaling when there is no Ekman layer and the spin-down is

dominated by diffusion, as is the case for large S.

3. Varying N

If N is varied with S, and f, -; and k are kept cons-

tant, these results verify those of Barcilon and Pedlosky

(1967a). As the stability is increased, N goes up and so

does S. This produces a viscous spin-down, because increased

stability inhibits vertical motion and therefore inhibits

Ekman pumping. The large S case, however, involves unrea-

listically large values of N for the atmosphere (dT/dz Z>
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+ 1000 degrees/km).

4, Varying k

An increase of k with S corresponds to a decrease in

wavelength of the horizontal forcing of the motion. This

indicates that for small scale motions, diffusion becomes

dominant over pumping as the spin-down mechanism. If L =

2000 km for the small S case, then the large S case corres-

ponds to L = 125 km. This indicates that spin-down in

meso-scale and smaller scale disturbances in mid latitudes

is dominated by diffusion.

VI, Conclusions

Spin-down of a stratified, rotating fluid is studied

with a numerical model. For a case of small S (0.01),

Ekman pumping is found to be the dominant spin-down mecha-

Pism. The resulting flow closely resembles an analytical

solution of a quasi-geostrophic interior with an Ekman

boundary layer. For a case of large S (2.56), diffusion

is the dominant spin-down mechanism. The resulting flow

closely resembles a purely diffusive analytical solution

to Stokes' first problem. A case of moderate S (0.16) is

a transition between the above two extremes, and exhibits

characteristics of both Ekman pumping and diffusive spin-

down.

When realistic atmospheric values of the parameter

S are introduced, it is found that the small S case corres-

ponds to mid and high latitude motion with large-scale
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horizontal forcing. The large S case corresponds to low

latitudes, or to meso- and smaller scale horizontal forcing.

Inertia-gravity waves are an important manifestation

of the spin-down process for small S. A partially success-

ful method is devised to lessen their effects. This has

applications in initialization of numerical weather pre-

diction models.

VII. Figures and Tables

Figures and tables refered to in the text follow

this description. Diagrams of W have a differentAscale

than those of V and U, as they are compacted so the entire

field can be studied for I-G waves. Figures with a dashed

(- - - -) upper boundary do not include the upper portion

of the data, as only the region near the ground is of

interest. Coordinates marked "z" refer to non-dimensional

height and those marked "t" refer to non-dimensional time.

Dashed coordinates ( -- ) marked with "1 km,"

"2 kmi," and "1 day," refer to dimensional coordinates as

described in Section V.F.1., p. 22. "Dimensional results"

and coordinates in Figure 14 are described in Section V.F.1.

p. 23.
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TABLE 1 - LIST OF RUNS AND INERT IA-GRAVITY WAVES

Run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n=1

0.4

0.4

0.1

0.1

0.01

0001

0.01

0.01

0

0

-0.01

-0.01

0.16

2056

0001

15.8

31.6

15.8

31.6

7.9

15.8

31.6

63.2

15.8

31.6

15.8

31.6

6302

63.2

63.2

3033

6.44

1*87

3.33

1003

1.12

1 .42

2.25

1.00

1.00

0.86

Im

8.12

32.21

2.25

Theoretical

1.89

0.98

3.35

1.89

6.10

5060

4.43

2080

6.28

6.28

7.32

Im

0.77

0.20

2.80

1.87

3.33

1.28

1.87

1.01

1.03

1.12

1.42

1.00

1.00

0.97

0.86

4.15

16.15

1.42

Observed
n=2 n=1 n=2

3.35

1.89

4.91

3*35

6.22

6.10

5061

4.43

6.28

6.28

6.48

7.32

1.51

0039

4.43

Run 15 started with an Ekman-quasi-geostrophic profile.

Re W = frequency of inertia-gravity waves

'C = period of inertia-gravity waves

n= 1
Ris *r_ Re wReo>

t 
Re 

u>



a - z (first Wmax)

Sz ~(Wmax after first peak)

t (initial Wmax)

Sinitial Wmax
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TABLE 2 - WMAX

Run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S

0.4

0.4

0.1

0.1

0.01

0.01

0.01

0.01

0

0

-0.01

-0.01

0.16

2.56

H

15.8

31.6

15.8

15.8

7.9

15.8

31.6

63.2

15.8

31.6

15.8

31.6

63.2

63.2

a

2.3

2.5

2.9

2.9

3.33

3.7

3.9

3.8

4.2

4.8

4.7

---

2.7

1.8

b

2.3

2.3

2.7

2.6

2.9

3.3

3.4

3.4

3.5

4.0

3.9

2.6

1.7

c

1.5

1.4

2.0

2.0

2.5

2.8

2.5

2.5

3.0

3.0

3.5

1.8

0.8

d

0.20

0.21

0.35

0.35

0.46

0.61

0.63

0.62

0.70

0.84

0.85

0.30

0.09
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Figure 34. U Run 14, S = 2.56, H = 63.2 See p. 26.
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Figure 39. Finite difference grid for numerical model.
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APPENDIX - Numerical Nodel

Numerical integrations of the complete equations

(3-7) were conducted on a staggered, uniformly spaced grid

in time and space. This grid is pictured in Figure 39.

Because of the manipulations used in deriving (3-7), the

resulting variables, U, V, W, P and B, are functions only

of height (z) in space. The finite difference forms of

the equations are then quite simple, being only one dimen-

sional in space. Centered differencing techniques were

used both in time and space. The resulting equations are:

(3)--+ -Uk+1 n+1 + § Uk n+1 - Uk-1 n+1 = Dk,

(7)-.. Wk n+1 = Wk-1 n+1 - &Uk n+1,

(5)-- -Bk+1 n+1 + *Bk n+1 Bk-1 n+1 = Gk,

(6)- Pk n+1 = Pk-1 n+I + &Bk-1 n+1,

(4) , - k+1 n+1 + Vk n+1 * k-1 n+1 = Rk

where & Dk = Uk+1 n - PUk n + Uk-1 n +

Gk * Bk+ 1

k = 2, ... , K-I

k = 2, ... , K-i

k = 2, ... , K-2

k = 3, ... , K-1

k = 1, ... , K

(Vk n + Pk n

n - k n + Bk- n SWk n+1

Rk Vk+1 n Vk n + Vk.1 n - 'Uk n-1

2(1 +

2(1 -

2ta

A2/fAt)
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A technique devised by Richtmyer and Morton (1967, pp. 198-

201) was used to solve the above U, V and B equations.

The equations were formulated to satisfy the boun-

dary consitions (8). Because it is not possible to have

infinite height in a numerical model, a vertical lid, at

height z = H, was placed on the model at a height which hope-

fully was far enough away from the bottom boundary, so that

it did not affect the motions near this boundary that were

to be studied. Experiments were conducted to determine

what H should be. The finite difference boundary condi-

tions are:

At z = 0: Uln = -U2n (no slip)

VIn = -V2n

Bln W in = 0

At z = H: UKn =UK-1 n (slip)

VK n  VK-1 n

BK-1 n = WK-1 n = 0

WKn and BKn are never used.

At t = 0: UkO WkO = Bk0 =O

Pk' a* "1

YkO 1 1

Using the von Neumann necessary condition for sta-

bility, criteria were developed to ensure the stability

of the numerical integration. The result was that both

the following conditions must be satisfied simultaneously:

(22)
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A; (23)

where: = vertical grid increment

At = time increment

Condition (22) is more restrictive in all cases considered

by at least an order of magnitude. The vertical grid

increment was specified as 4= 0.1. This means that there

were ten vertical grid points per Ekman depth. The time

increment was then determined from (22):

k = 0.1

At = 0.005

In most runs the integration was carried out 2800

time steps, until t = 14. This is the equivalent of one

"e-folding" time for the case when S = 0.01, which was used

as a standard case. One "e-folding" time is equal to IW7-.
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