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ABSTRACT

Four hundred eruptions of 3 active vents within the summit crater

of the volcano Stromboli were recorded during 43.5 hours. The main vent

(1) typically erupts pasty molten bombs in a 2 to 5 second burst with a

mean frequency of 10.7 minutes. A second vent (2) normally fires a 1

second cannon-like burst of molten material averaging every 54 minutes.

A third vent (3) predominantly erupts hot luminous gas for 2 minutes

every 20.7 minutes on the average. Distributions of intereruption periods

for all three vents imply that at a given time the eruption probability

is independent of elapsed time from the previous eruption. Regression

techniques applied to the intereruption periods at each vent together

with parameters of activity at other vents (number of eruptions, time

since last eruption) reveal a striking linear correlation of the activity

at Vents 2 and 3 with the activity at Vent 1 (correlation coefficients

were +0.986 and +0.87 for Vents 2 and 3 respectively). Physically this

means the number of eruptions at Vent 1 is a far better indicator of the

time to the next event at Vents 2iand 3 than any other parameter such as

previous intereruption period; eruption duration, or time since the last

eruption.



INTRODUCTION

Volcanoes pose a threat and a question. They are the dynamic

representatives of a geologic process that has provided the earth

with the crust, oceans, and atmosphere we know today. How they work

is clearly an important question. In such parts of the world as

Japan, Indonesia, and Central America, volcanoes border dangerously

close to densely populated areas. When they will choose to erupt

again is a serious threat.

A key to understanding the volcanic process and developing a

capability to anticipate volcanic eruptions lies in monitoring.

The U. S. Geological Survey has maintained a long term monitoring

station at Kilauea in Hawaii over the past 40 years. Detailed

work there has shed light on relationships between magmatic reser-

voirs at depth and volcanic activity at the surface.

This study is based on field data acquired during a short-term

monitoring experiment at an active volcano. The purpose of this

field experiment is to measure physical parameters describing the

material flow at the vent-surface interface of a volcano in a state

of eruption. The temporal analysis reported in this study supports

the general experiment and will ultimately extend the implications

of 'point results' for single eruptions over longer periods of recur-

ring activity (see Chouet, 1973).



DEFINITION OF THE PROBLEM AND APPROACH

The purpose of this study is to determine the ability to pre-

dict eruptions for individual vents at the summit of the volcano

Stromboli on the basis of oberved times between eruptions, The

approach is statistical and employs a compilation of repose periods

observed by the author in September, 1971. At the outset it is

clear that a more meaningful approach to developing a prediction

capability would be to dynamically monitor physical parameters

such as ground tilt, seismicity, temperature, etc. which could

then be fit into an integrated model of the physical process driving

the eruptive mechanism. Unfortunately, few such models exist.

Furthermore, even where a consistently demonstrated relationship

between surface volcanism and conditions at depth is qualitatively

understood, the time resolution of the resulting model in antici-

pating an eruption is not always significantly enhanced.

The models that will be investigated here will be strictly

empirical. They are, of necessity, based on past behaviour and can

be no more accurate or representative of the volcanic process than

was the observed data employed in their formulation.



I. BACKGROUND

1. STROMBOLI

Stromboli is a member of a chain of volcanic islands and sea-

mounts situated to the north of Sicily in the Mediterranean Sea.

This chain is known as the Lipari Islands. Stromboli itself is a

massive stratovolcano rising 2750 meters above the adjacent sea-

floor, while only 920 meters protrude above sea level. The sur-

face expression of the island is approximately square, measuring

3.5 kilometers on a side. Human habitation is confined to two

ledges formed by successive lava flows which lay near sea level on

the flanks of the cone.

Stromboli lies in a corner of the Mediterranean referred to

as the Tyrrhenian Sea. The Tyrrhenian Sea roughly resembles a

right triangle, bound to the south by Sicily, to the west by Sardinia

and Corsica, with the western coast of Italy approximating the

triangle's hypotenuse (see Figure 1-1). A concise review of the

regional setting of the Tyrrhenian Sea is given by Ryan et. al.

(1971). In brief, the seafloor is overlain by thin sedimentary

deposits and observed heat flow is the highest in the Mediterranean.

Local magnetic anomalies are aligned parallel to rifting troughs in

the crustal floor. Seismicity in the Mediterranean Basin predomin-

antly occurs in the Tyrrhenian and Aegean Seas. Thus, the seafloor

is interpreted as a young, extensional feature by Ryan et. al (1971).

To the south, fault plane solutions suggest that the North African

plate is underthrusting Europe at a very slow rate (McKenzie, 1970).

However the tectonics of the area is complicated significantly by the
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existence of remnant Alpine orogeny which trends through- the Appenine

Mountains of Italy into the Atlas Mountains of northern Africa. It is

interesting to note that the Lipari Islands lie along a line connecting

the more famous volcanoes Vesuvius to the north and Etna to the. south.

This line may represent a young tensional crack opened by the compres-

sive forces operating a depth along the southern Sicilian coastline.

Currently Stromboli is producing olivine and pyroxene bearing

basalts. Earlier lavas are successively less mafic and more siliceous.

The deepest exposures on the island are near the summit and they reveal

the existence of pyroxene bearing andesites.

Volcanic activity at Stromboli was recorded by the Greeks more

than 2400 years ago. Recent historical activity can largely be cate-

gorized by two modes: one of continuous explosive activity at the

summit, the other involving major eruptions affectingthe entire vol-

canic cone. The remarkable persistence of the former mode throughout

the twentieth century has led volcanologists to coin the term 'Strom-

volian activity' (Rittman, 1962, Bullard, 1954). The term is used to

describe a steady series of moderately explosive eruptions which eject

discreet lava fragments as bombs or scoria to lateral distances very

much smaller than the diameter of the volcano. This mode of volcanism

contributes little to the areal growth of the volcano. Another unusual

feature of Stromboli's steady-state volcanic mode is the configuration

of the active summit vents. Throughout this century activity at the

summit has been confined to a broad elliptical crater which measured

300 meters by 100 meters in September, 1971 (see Bullard, 1954, and

Perret, 1907). Though the actual number of vents within the crater



emitting gases or lava is variable, the activity of two stable vents

within the summit crater at its western and eastern edges has been

documented over the past 20 years.

The alternate mode of volcanic activity affecting the entire cone

has involved combinations of severe explosive outbursts at the summit,

the extrusion of aerial and submarine, lava flows, and the generation

of tsunamis. Major eruptions of this sort were recorded in 1906, 1907,

1915, 1919, 1930, 1936, 1937, 1954, and 1959 (Imbo, 1964, Johnston and

Mauk, 1972).

The morphology of the summit crater in September 1971 is, shown in

Figure 1-2. Gas and lava appearred at the surface at five active vents.

These vents are characterized below by shape, product, and style of

eruption.

Vent 1. Physically this vent lay at the center of a gentle

depression about 30 meters in diameter. The vent itself was

roughly triangular with its longest dimension on the order

of 1 meter. A typical eruption consisted of a single pulsed

explosion which hurled molten lava in the form of bombs,

lapilli, and ash into the air and lasted for a period of a

few seconds. It erupted more frequently than any other vent.

Vent 2. This vent lay at the northern edge of the large

crater containing all the vents. It was canted in such a

fashion that ejected material was projected to the north away

from all observation stations. It was nicknamed 'Big Bertha'

as a typical eruption consisted of a cannon-like blast. This

vent appearred to be highly unpredictable in the field.



Figure 1--2A Summit Crater at Stromboli
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Vent 3. This vent was slightly elliptical in shape and proved

to be the site of intense fumarolic activity. No emission

of lava was observed at this vent though it was obscured a

major portion of the time by copious cloud-like emanations

which appearred to be steam.

Vent 4. A small cone-shaped spatter mound which stood approx-

imately 3 meters above the crater floor was labelled Vent 4.

Typically eruptions would commence with a muffled, relatively

weak explosion followed by a whining or roaring noise not

unlike a jet engine which would continue for one to three

minutes. In the field it was referred to as 'the jet'. Lava

would be ejected at the very inception of activity. After

15 - 20 seconds molten material appearred only intermittently,

the bulk of the fluid being 'erupted' was gaseous. The gas

appearred blue near the mouth of the spatter cone.

Vent 5. This vent was approximately circular, forming a

crater lying on the eastern inside flank of the summit crater.

Characteristically it would explode in a multiple pulsed

manner, ejecting molten material feebly in a ENE direction.

The first pulse announcing the eruption was typically the

strongest. Usually an eruption at Vent 5 was followed immed-

iately by an eruption at Vent 4. Upon initiation of activity

at Vent 4 the activity at Vent 5 would decay rapidly.
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2. DATA ACQUISITION

The Experiment

A chronologic record of eruptions within the summit crater of

Stromboli was compiled during September 5 - 7, 1971. Actual moni-

toring occurred over three discontinuous periods of observation total-

ling approximately 45 hours. A time log was kept using an ordinary

man's wrist watch with a sweep second hand. Observations were made

from Station B on a ridge overlooking the entire summit crater, Station

C on the western rim of the summit crater, and Station F on the eastern

rim of the summit crater.

The position of a station generally biased the quality of obser-

vations of the individual vents. Station C permitted detailed monitor-

ing of Vent 1 while Station F provided better 'seeing conditions' of

the activity at Vents 4 and 5. Copious emanations of steam, sulphur

dioxide and other fumarolic gases would occassionally obscure both the

visual and acoustic effects of an eruption occurring at the opposite

end of the summit crater. This was particularly true with regard to

observing Vents 4 and 5 while at Station B. As a result of such cloud-

ing conditions the activity at Vent 2 was primarily recorded on the

basis of the acoustic report of a given eruption. It should also be

pointed out that ovservation periods are preferentially oriented about

night time hours when sighting conditions were optimal.

Real time variation in the summit activity was commented upon by

several members of the field team. Specifically, a consistent increase

in eruption frequency at Vent 2 and an increase in the eruption duration

at Vent 3 were remarked upon while in the field.
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A subjective estimation of error bounds in clocking a specific

time is +2 seconds. Thus for clocking the beginning and end of an

eruption the error bound increases to +4 seconds. However, I noticed

that some sort of learning process tended to attenuate the error in

recording the time at the end of an eruption. The eruption style of

each active vent was distinct enough to permit anticipation of the

conclusion of an eruption fairly accurately (+ 1 second).

The major consequence of the above error estimation is to under-

mine confidence in the eruption durations reported for Vent 1 which

are typically on the order of 5 seconds. Error in other measurements

should cancel over the large number of observations made.

Detailed observations at Station F near Vents 4 and 5 were linited

to the last period of recording. From a distance only eruptions at

Vent 4 were detectable due to the long duration of the audio signal

accompanying the actual eruption. Observations at Station F, however,

were complicated by a different problem. There existed a marked dif-

ficulty in distinguishing between background 'sloshing' activity at

Vent 5 and an actual 'eruption' when weak transient behaviour failed

to be followed by an eruption at Vent 4. For these reasons Vents 4

and 5 are combined in the analysis presented here. I consider their

combined activity as the manifestation of a single 'event' driven by

conditions at some shallow depth. In other words, it is assumed that

Vent 5 never erupts unaccompanied by Vent 4. In this study Vents 4 and

5 were combined and given the designation Vent 3, replacing the field

designation of Vent 3 which was a relatively large fumarolic crater.

This change was made to facilitate computation.

A summary of the observational data for each observation period

is given in Table 2-1.
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TABLE 2-1 - SUMMARY OF OBSERVATIONAL DATA*

Observation Period

Period 1

Station B

9/5/71

Duration: 12.28 hr.

Period 2

Station C

9/6/71 - 9/7/71

Duration: 19.32 hr.

Period 3

Station F

9/7/71 - 9/8/71

Duration: 11.87 hr.

Average for all

periods combined

Vent 1

N = 70

E = 5.71

D = 4.80

N = 106

E = 5.48

D = 5.09

N = 58

E = 4.89

D = 4.07

E = 5.57

Vent 2

N= 5

= 0.41

= 1.0

N = 17

E = 0.88

D = 1.0

N = 15

E = 1.27

D= 1.0

E~ = 1.11

Vent 3

N = 36

E = 2.94

D = 29.6

N = 59

E = 3.06

D 201.0

N = 34

= 2.87

1= 315.0

E = 3.98

*Legend

N - number of eruptions observed

E - average eruption rate (eruptions/hr)

D - average eruption duration (second/eruption)
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3. PREVIOUS WORK

Earlier statistical analyses of volcanic repose periods have dif-

fered substantially in scope and purpose from the present study.

Previous work has focussed upon repose periods on the order of 100 - 102

years which characterize intervals of dormancy between catastrophic

re-awakenings of major eruptive centers. In this study repose periods

are on the order of 103 seconds (i.e. 10~ years). Furthermore, they

characterize a recurrent geyser-like process whose nature may be fund-

amentally distinct from the volcanic mechanism which releases pressures

of the magnitude witnessed in Krakatoan or Vesuvian types of eruptions.

The pioneering work of Wickman (1963, 1965a, 1965b, 1965c, 1965d,

1965e) in the last decade has essentially laid the groundwork for all

other studies. His approach involves the manipulation of three

straightforward functions which are defined by the distribution of

repose periods recorded for a specific volcano. It will be useful to

review these functions.

The most common representation of this sort of empirical data is

a histogram plot or frequency distribution. The frequency distribution

is simply the number of eruptions observed which were preceded by

repose periods of length t, for values of t > 0. Normalizing the

frequency observed by the total number of observations yields an estim-

ate of the probability of a present period of repose persisting for

some time interval t. This group of probabilities for periods of dif-

ferent lengths is termed the probability density function (PDF) and is

represented here as f(t). The cumulative probability distribution,

F(t), is simply the integral of the PDF

F(t) = ft f(t) dt (3.1)
0

The probability of an eruption within some time interval t following

the last eruption can be determined directly from the cumulative

frequency distribution F(t). The maximum likelihood of an eruption

at a time t following the last eruption will occur at the time coin-

ciding with the peak (if any) in the PDT, f(t).

An eruption rate function 0(t) can be defined as the limit of the

ratio of the probability of an eruption in the time interval h to that
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time interval, as h becomes very small:

limit (f(t+h) - f(t))(t) = h-*O h 3.2

This can be shown to be equivalent to the following (see Cox, 1962).

$(t) = f(t) 3.3
1 - F(t)

It should be apparent that the functions f(t), F(t), and $(t) are not

independent. Formulation of f(t) on the basis of empirical obser-

vations completely determines the form of F(t) and $(t).

Essentially Wickman's analysis consists of 1) re-expressing

the empirical frequency distribution in the form of a logarithmic

survivor function,log S(t), in order to 2) calculate the eruption

rate function $(t). It is easily demonstrated that

(t) = - - (log S(t)) 3.4dx e

The survivor function S(t) represents the number of observed repose

periods of length greater than time t. For example, the value of the

survivor function for the median intereruption period in a given

sample of observations would be half the total number of repose peri-

ods observed (N total). Because the empirical frequency distribution

(such that S(t) = Ntotal - F(t)) will also be rather 'lumpy'. In

calculating $(t) from log S(t), Wickman fits a smooth curve to log

S(t) by a least squares method.

Knowledge of $(t) provides insight into the relative changes in

the activity of the volcano over long periods of time. It can be used

to detect 'acceleration' or 'decceleration' in eruption occurrence.

Determination of no trend in #(t), or a constant rate, is indicative

of a simple Poisson process in which the time to the next eruption is

completely independent of all preceding repose intervals.
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Wickman applied this formal analysis on a regional scale to vol-

canoes in the East Indian Ocean and Japan and concluded that eruption

rates differed too greatly among neighboring volcanoes within indivi-

dual regions to permit any inference of regional contrasts. In a

general analysis of a variety of volcanoes he concluded that histor-

ical activity recorded for Etna in Italy, Mauna Loa in Hawaii, and

Popocatepetl in Mexico were in reasonable accordance with a simple

Poisson model.

Problems in this technique arise mainly in the quantity and qual-

ity of data. There has been little consensus over the last five hun-

dred years as to what constitutes a major eruption. Clearly Vesuvian-

type eruptions which take life and destroy property will leave a sig-

nature on historical records. Other phenomena such as fumarolic act-

ivity and severe ground motions commonly occur in the vicinity of

large volcanic piles. Variations in the intensity of these phenomena

fail to necessarily reflect a major change in eruptive activity for a

particular volcano. The modern definition of 'an eruption' is still

far from being a uniform concept. In fact, recent documentation of

volcanic activity has significantly increased with the creation of

the Smithsonian Institution Center for Short-Lived Phenomena. This

presents a problem in combining recent and historical records.

Problems in the data will effect the curve-fitting routine which

produces an exact expression for the logarithmic survivor function

prior to the calculation of $(t). Presence of a trend in the eruption

rate will clearly be sensitive to the fit for the 'tail' of the log S(t)

distribution. This tail represents the number of observations of

long repose periods. Typically these longer repose periods represent
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Historically older data when only catastrophic activity was recorded.

This implies an undesirable tendency for the results to depend strongly

upon the least reliable repose periods in the empirical data.

Wickman appears to be the only previous investigator who has at-

tempted to relate the results of a statistical analysis of repose per-

iods to physical processes producing the observed volcanic activity.

He has proposed that the subsurface movement of magma can be modelled

as a pumping phenomena in which material is transported from a primary

magma chamber at depth to a secondary near-surface chamber (1965e). In

applying this model to volcanoes with typical repose periods on the

order of 100 - 101 years, he hypothesized an eruption rate for each

reservoir and a 'death rate' for the near-surface chamber which reflec-

ted emptying and/or cooling. On a smaller time scale, similar to the

observations analyzed here, Wickman has proposed a different model for

recurrent volcanic activity (1963). His data for this second model is

taken from a record of the April, 1960 eruption of Northeast Crater,

Mount Etna. This eruption was Strombolian in character, with repose

periods in the range of 0 - 200 seconds. In this case Wickman hypo-

thesizes another multi-staged process consisting of 1) an ejection stage

of actual eruption, 2) a mixing stage during which lava fragments from

the preceding eruption falling back into the vent are re-melted and

3) essentially a waiting stage during which the lava column is capable

of erupting. The observable repose periods represent the simple addi-

tion of the length of time the process spends in stages 2 and 3.

Clearly, the two stochastic models describe phenomena which are

operating at significantly different time scales. Though both are
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based on ad hoc assumptions concerning the nature of the volcanic pro-

cess, each provides an interesting and convenient framework in which-

the results of the statistical studies can be viewed. Unfortunately,

there exists no means of substantiating these specific points of viaw.

A somewhat different approach to the same type of volcanologic

data has been taken by Reyment (1969). He purposely selects volcanoes

which have a relatively well documented eruption chronolgy and then

scans the resulting sets of repose periods for trends in the empirically

observed rate of eruption, dependence within individual series of repose

periods, and correspondence with Poisson-like probability densities.

Initially Reyment generates a series of repose periods by simulating

a series of eruptions at a 'perfectly Poisson' volcano. This simply

means that the resulting density distribution is described by the

Poisson PDF

t -v
f(t) = . e 3.5

t.

where p is a parameter characterizing the distribution. A special

property of a Poisson density is that y equals both the mean and the

standard deviation of the distribution. The simulated set of repose

periods is subjected to a comprehensive group of statistical tests

alongside empirical repose series as a 'control case' for comparison.

Reyment's results for Japanese and Indonesian volcanoes are consistent

with those of Wickman.

Clearly Reyment's analysis reflects a higher degree of statis-

tical sophistication than Wickman's earlier work. However, the results

remain qualitatively the same: Reyment is principally concerned with

characterizing the process underlying the empirical distribution as

Poisson or non-Poisson.
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To the author's knowledge, the first statistical study specifically

directed towards predicting future volcanic activity has been presented

by Thorlaksson (1968). The object of his study was to forecast the

probability of a major eruption at the Katla and Hekla volcanoes in

Iceland. This requires a knowledge of the functions f(t) and F(t).

The PDF can be constructed in a straightforward manner from the empir-

ical frequency distribution or some smooth curve fit to this distrib-

ution. Thorlaksson, however, developed a different approach. He

hypothesized a relationship between the ratio of the mean, m, and the

standard deviation, s, of the PDF and the eruption rate function $(t).

As pointed out previously, formulation of-the PDF defines the form of

the eruption rate function $(t). Thorlaksson reasoned that the mean

and standard deviation of the PDF were sensitive constraints on the

shape of the PDF. Therefore, he assummed the ratio s/m of the PDF would

be an accurate indicator of the form of the eruption rate function.

Specification of $(t) will then explicitly define the form of the PDF.

Constants in the resulting f(t) are, in turn, determined by m and s.

The categorization procedure he developed is summarized in Figure 3-1.

In support of this technique Thorlaksson must adopt certain ad

hoc relationships between the s/m ratio and the nature of the eruption

rate function. To proceed from these assumptions to infer the original

PDF is a highly convolutedprocedure. Though the proposed relationships

are not drastically counterintuitive, they also are not empirically

verifiable. In this method the exact nature of the PDF is not examined

on the basis of the empirical frequency distribution, rather it is

inferred as a function of m and s. These two parameters are not always



FIGURE 3-1 THORLAKSSON'S CATEGORIZATION PROCEDURE
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representative of the data from which they are computed. For example,

if the underlying distribution were bimodal the s/m estimator of $(t)

and thus f(t) would be seriously in error.

The only apparent advantage of Thorlaksson's method would be in

formulating a PDF for a small sample of repose periods where the accu-

racy of a fitted curve to the raw data would be poor while s and m may

be known with a greater degree of confidence. However, he fails to

demonstrate the magnitude of such an effect to various sample sizes and

underlying distributions. As was the case with Wickman, the prime con-

straint in manipulating f(t) and $(t) is the amount of data available

for specific volcanoes. Forexample, in applying the above anslysis to

Hekla in Iceland, Thorlaksson employs 13 repose periods to forecast a

7% probability of eruption between 1966 and 1976. In fact, a major

explosive eruption occurred in May, 1970.

In an allied field Schlien and Toksoz (1970) have examined the

distribution of times between earthquakes. Such periods are termed

recurrence times. In their work the recognition of the occurrence of

a family of aftershocks associated with single major events suggests

generalizing the simple Poisson representation of the recurrence times

to include finite probabilities for more than one event occurring at

the same instant of time. In other words, the generalized model admits

the possibility of superposition of one series of aftershocks on some

part of a previous or subsequent series. This more generalized Poisson

formulation provides a significantly better fit to the empirical dis-

tribution.
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II. ANALYSIS

4. CHARACTERIZATION OF THE EMPIRICAL DATA

The sequence of repose periods recorded during the three obser-

vation periods are combined in frequency histograms in Figures 4-1, 4-2,

and 4-3. Aggregation of the data is justified due to the great length

of the individual observation periods relative to the repose periods

at the individual vents.

In the field the two distribution parameters of immediate interest

were the mean and standard deviation of the sampled intereruption

periods. Both parameters can be maintained by simple calculation

while actually in the field. The mean represents a zero-order estimate

of the current repose period at a specific vent. The ratio of the

mean to the standard deviation can be roughly regarded as a measure

of signal to noise in the data and thus a measure of the confidence

to be placed in employing the sample distribution's average value as

an estimator of the time to the next eruption.

Additional intuition can be gained by carefully examing the

repose period distributions. In fact, experience has shown that mere

knowledge of a sample's mean and standard deviation can disguise the

true nature of the distribution for certain special cases such as an

underlying bimodal population (Rinehart, 1969). Therefore the higher

order moments of the individual distributions were calculated and are

summarized in Table 4-1. These parameters are commonly compared with

typical values for the summetric 'bell-shaped' curve of the normal or

Gaussian distribution in order to quantitatively assess the shape of
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TABLE 4-1 FREQUENCY DISTRIBUTION SHAPE COEFFICIENTS

Frequency
distribution

Vent 1

Vent 2

Vent 3

m
1

N Avr. Repose Period
(sec.)

233

36

121

645.15

3240.11

1204.39

1 2
2

Standard Deviation
(sec.)

427.56

2179.38

837.44

a
3

Coefficient of
skewness

1.46

1.45

2.26

a

Coefficient of
kurtosis

2.48

2.35

2.78

'Perfect'
Gaussian 0.0 3.0
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the sample distribution. The k-th moment of the data sample, Mk,' is

defined as

1 ) 4.1mk N E (X-X)4
i=1

where

N represents the number of samples or data points

X. represents the value of the i-th sample

X represents the mean value of the sample of X's

To permit a direct comparison of the sample distribution with a typic-

ally Gaussian distribution, the moment is normalized by the factor

1/(m k/2). This results in a dimensionless coefficient
2

a (m 4.2k )k/2

2
which can be employed in contrasting moments of order three and greater.

The quantity a represnts a coefficient of skewness which gauges
3

bias in the sample distribution towards values greater or less than the

distribution mean. The quantity a measures the degree of peakedness

in the distribution, or its kurtosis. Alternatively this statistic can

be conceptually considered a measure of the distribution's peakedness

relative to the size and length of the distribution 'tails' (i.e. extrem-

ities). Thisis a more sensitive gauge of the degree to which the sample

mean represents the entire sample distribution than simply determining

the ratio of the mean to the standard deviation.

Positive values of the skewness coefficient indicate a bias in the

sample distribution for values greater than the mean. Equivalently the

skewness coefficient discriminates between the longer 'tail' of the distribution,

A positive a simply indicates that the distribution has a longer tail
3
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to the right of the sample mean(i.e. towards higher values). The frequ-

ency distribution at each vent is positively skewed. In contrast, a

Gaussian distribution is completely unskewed with a = 0.0. The frequency
3

distribution at Vent 3 exhibited the strongest bias towards repose periods

greater than the sample mean.

Values of a , the kurtosis coefficient, greater than 3.0 are char-

acteristic of distributions with sharp, prominent peaks. Such distrib-

utions are termed leptokurtic. Values of a less than 3.0 describe
4

platykurtic distributions which are relatively flat-topped, or alter-

natively marked by no strong peak. The normal distribution which is

not dominated by an excessive peak nor by a flat top is referred to

as mesokurtic (i.e. a = 3.0). The frequency distribution at each vent

is platykurtic. The sample distribution at Vent 2 demonstrated the

strongest tendency to be flat-topped while the distribution at Vent 3

approaches a Gaussian peakedness more closely than the other two empir-

ical distributions.

Chi-squared test

Another standard technique that is helpful is interpreting the

sample distributions is to test the conformity of the sample distrib-

utions with common distributions such as the Gaussian and the Poisson

whose properties are well known. 'A successful fit of the sample with

the general form of a known distribution permits the investigator to

draw some general inference regarding the nature of the underlying

process.

The standard distributions which are relevant to this study are

the normal or Gaussian, the Poisson, and the Gamma density distributions.
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The mathematical representations of these distribution forms is sum-

marized in Table 4-2 (see Krumbein and Graybill, 1965, Benjamin and

Cornell, 1970, or Remington and Shork, 1970). The method of employing

a test statistic in determining goodness-of-fit is reviewed in Appendix

A. The statistical test employed here is the common chi-squared test.

The chi-squared statistic is a measure of the departure of the

observed data in lumped histogram form from the hypothesized distrib-

ution. It is given by the expression

R-1 (n - Np ) 2

2 E= 4.3
i=0 Np.

where

R represents the total number of intervals employed in

the test

n. represents the number of'observed points' in interval i
1

N represents the total number of data points

p. represents the average probability of an event in the
i-th interval predicted by the hypothesized distrib-

ution

Np. represents the expected number of events in the i-th

interval based on the hypothetical distribution

The test statistic is distributed with R-l-d degrees of freedom where

d equals the number of parameters estimated from the sample in form-

ulating the hypothesized density function. For example, the mean and

variance are estimated in representing the normal distribution, thus

d equals 2.

Remington and Shork (1970) cite work done by Cochran (1954) on

potential instabilities in applying the chi-squared goodness-of-fit

test to a frequency distribution. A major problem is encountered in

using the statistic for intervals where the expected number of occur-

rences (Np ), which occurs in the denominator of the summing expression,
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TABLE 4-2 COMMON PROBABILITY DENSITY FUNCTIONS

p(x) = - exp(-(x - m) 2 /2s 2 )
sV 271

x -V
p(x) = e

x.

p t) = 1e-At

p(t) = A2 te-At

where m = mean of the sample
distribution

s = standard deviation

V=m

m

In

Gaussian

Poisson

Gamma
r= 0

Gamma
r= 1
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becomes less than one. Individual terms for which this is the case

become very large. Cochran suggests, as a rule of thumb, that only

intervals in which Np. is greater than 1.0 be employed in the test.

This restriction was adopted in the test performed here.

Results

A tabulation of test statistics appears in Table 4-3. The results

are reported at the 99.9% confidence level. Values of the statistic for

which the hypothesized form of the frequency distribution cannot be

rejected are indicated by X's.

Vent 1. Application of the chi-squared test to the repose period

distribution at Vent 1 results in a rejection of the Poisson

hypothesis for the nature of the sample density. Neither the

hypothesis of a Gaussian or Gamma density (with r=0) character-

ization can be rejected.

Vent 2. The amount of data available for Vent 2 is too meager

to permit the chi-squared test to discrimate between a Poisson,

Gaussian, or Gamma representation of the sample distribution.

None of these hypothesized forms can be rejected.

Vent 3. As at Vent 1, application of the chi-squared test to the

repose period data for Vent 3 leads to a rejection of a Poisson

form for the empirical frequency distribution. The test fails to

discriminate between a Gaussian or Gamma (with r=0) characteri-

ation. Neither of these hypothesized forms can be rejected.

This is the same ambiguity which existed at Vent 1.



TABLE 4-3 RESULTS OF CHI-SQUARED TEST

Vent Distribution

Gaussian

Poisson

Gamma r = 0

Gamma r = 1

Gaussian

Poisson
2

Gamma r = 0

Gamma r = 1

Gaussian

Poisson
3

Gamma r = 0

Gamma r = 1

$2

45.0

210.54

66.25

221.60

12.5

6.23

6.93

28.70

37.44

42.08

39.47

115.34

(DOF) p2/(DOF)

(24)

(11)

(31)

(47)

(11)

(5)

(11)

(16)

(23)

(9)

(23)

(36)

1.87

19.1,

2.14

4.72

1.14

1.24

0.63

1.79

1.63

4.67

1.72

3.21

Acceptance region at 99%
confidence level with (DOF)

0.310 - 2.23 (24)

0.144 - 3.01 (11)

0.360 - 2.07 (30)

0.469 - 1.79 (50)

0.144 - 3.01 (11)

0.032 -4.42 (5)

0.144 - 3.01 (11)

0.221 - 2.58 (16)

0.291 - 2.30 (22)

0.108 - 3.30 (0)

0.310 - 2.23 (24)

0.394 - 1.98 (35)

Cannot be
rejected

x

x

X?

x

x

x

x

x

x
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Implications

The conclusions which can be drawn from the chi-squared test are

tenuous at best. It is interesting to note that the ambiguity in the

test results for the empirical sample of repose periods observed at

Vent 1 is identical to the ambiguity in the outcome of the test when

applied to the data for Vent 3. In bothcases there exists an inability

to discriminate between a Gaussian or Gamma density (with r=0) represent-

ation of the observed frequency distribution. At Vent 2 insufficient

data renders the test meaningless.

The properties of the Gaussian distribution are well known.

It is a summetrical distribution which implies no bias towards values

greater or less than the distribution mean, m. The standard, s, of the

Gaussian distribution can be used to characterize the nature of the

grouping which occurs within the distribution: 68.2% of recorded

values can be expected to fall in the region m + s, 95.5% fall in the

region m + 2s. The mode (value occurring the most frequently), the

median (value at the 50-th percentile of the cumulative distribution),

and the mean are identical:in the normal population density. A meas-

ure of the skewness and kurtosis of the empirical distributions at Vents

1 and 3 demonstrate a lack of conformity with the symmetry present in

a true Gaussian or normal curve. The chi-squared test suggests that

a Gaussian representation may not be a bad approximation of the true

distribution.

The Gamma density has not been extensively used in geology.

However, when the free parameter, r, for this distribution is set equal

to zero, the density function simply reduces to an exponential distribution.
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Benjamin and Cornell (1970) have shown that the distribution of inter-

arrival times in a Poisson process are distributed exponentially. (In

this study, eruptions would represent events in a Poisson process while

intereruption periods would correspond to interarrival times.) It has

been pointed out that previous studies of volcanic repose periods have

uniformly identified the timing of eruptions at a variety of volcanoes

as Poisson-like processes. Although the frequency distributions at

Vents 1 and 3 cannot be fit by a Poisson density, the hypothesis that

a random Poisson process is responsible for the observed volcanic

activity cannot be rejected because of the conformity of the repose

period distributions with an exponential distribution. What inter-

mediating factors may be modifying the process such that the empirical

distribution mean is not equal to the standard deviation at these two

vents are not known. (Recall that in the Poisson density function

the parameter v = m = S.)

All of the hypothesized distributions employed here in the chi-

squared test represent random processes. A feature common to all these

densities is the independence of successive values of the measured vari-

able, which in this case is the length of an individual repose period.

This means that the sequence of past repose periods at a specific vent

is not related to the length of the current intereruption period. This

implies that the best estimate of a current repose period is the average

repose period observed at that vent. Therefore, though the properties

of the empirical densities have been determined in detail, the basic

ability to predict a current repose period has not been significantly

increased over the capability which existed in the field.
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5. RELATIONSHIPS BETWEEN VENTS: MARKOV PROCESS MODEL

The Model

Many natural phenomena can be characterized as multistage processes.

A river, for example, could be modelled as a three state phonomenon

which can be classified as being'in either a 'low', 'normal', or 'flood'

stage. For some phenomena the present state serves as a strong indicator

of behaviour in the immediate future. In the case of the river, intu-

ition suggests that a flood stage a time t would most likely be followed

by a flood or normal stage at time t + dt, for small dt. One would

rarely expect a river in flood stage to make a direct transition to a

'low' stage. In a sense, past events can be said to influence future

events without actually exerting causal control. Such a process can

generally be termed a Markov process (Harbaugh and Bonham-Carter, 1970).

More rigorously, a Markov process can be defined as one in which

the probability of being in a given state at a given time can be estim-

ated by knowing the immediately preceding state of states. The probab-

ility of the process passing from some state s at time t to state s
1 .1 2

at time t2 is termed a transition probability.

Characterization of the repose period distributions as being consi-

stent with a random process implies that the current intereruption

period is completely independent of all past periods at the individual

vent. Invoking a Markov model for the sequence of 'activity stages'

observed for the volcanic process at Stromboli extends the earlier con-

sideration to include the influence that an eruption at one of the

vents will have on the probability of eruption at some other vent.

An illustrative example of a Markov process in a geological con-

text is the cyclothem phenomenon found in massive sedimentary deposits
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situated in the American Midwest (see Carr, 1966, Krumbein, 1968, 1967,

Harbaugh and Bonham-Carter, 1970). In the cyclothem deposit a basic

sequence of lithologies is repeated, with minor variations, thruout a

unit with extensive lateral and vertical dimensions. A Markov model can

be employed with great success in describing dependency relationships in

such sequence of 'events', in this case lithologies. Specifically

Krumbein (1967) has reported the results of strata identification within

the Chester formation of the Illinois basin. Based on 309 equal thick-

ness observations, he estimates a transition probability matrix for the

three basic lithologies contributing to the formation: sandstone, shale,

and limestone (see Table 5-1).

The observations are collected in a 'tally matrix' made up of i

rows and j columns. The i, j-th element of the tally matrix represents

the number of observed transitions from state i to state j. Calculation

of the transition probability matrix simply involves dividing each row

element in the tally matrix by its respective row sum. This insures

that the transition to some other state from state i will equal 1.0.

In the above example the model assumes a system with discrete

states (i.e. lithologies) which can be observed at discrete times (i.e.

at regular sampling intervals). Note that the diagonal-element is the

largest element in each row of the transition probability matrix in

Table 5-1. This insures that Krumbein's sampling interval is small

enough to yield a meaningful matrix. A larger sampling interval would

miss tha transition to thin strata altogether leading to a bogus set of

probabilities. The regular sampling interval also permits the straight-

forward formulation of the transition matrix by conceptualizing the
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TABLE 5-1 CYCLOTHEM EXAMPLE OF A MARKOV MODEL

Tally Matrix

Row
Totals

78sandstone

shale

limes tone

140

91

309 = N

Transition Probability Matrix

sandstone

shale

limestone C

0.74

0.11

0.06

B

0.23

0.61

0.38

C

0.03

0.28

0.56
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transition from one lithology to the next as occuring at 'discrete time

intervals' which are best observed in this case as discrete thickness

intervals. Krumbein does not want to imply that the sedimentation rate

was constant over the long time period represented by the Chester Form-

ation. Rather in characterizing the observed sequential depositional

process in a 'discrete-tine' Markovian model he interpretes the regular

sampling procedure as the "ticking of a conceptual Matkovian clock".

In Table 5-1 the transition probability matrix represents the com-

plete set of conditional probabilities describing the process being

modelled. The rows of this matrix sum to 1.0. The matrix is square and

is composed of non-negative elements that are not greater than 1.0. A

matrix with these properties is termed a stochastic matrix. The actual

probabilities are assumed not to vary as a function of time (i.e. samp-

ling interval in the above example).

For the case of the summit activity at Stromboli, the volcanic

process can be characterized by four states, namely eruption at any of

the three active vents, and a repose state of no explosive activity.

To include the activity at Vent 2 which erupts instantaneously, the

sampling interval can be no greater than one second. A review of the

summary of observational data (see Table 2-1) demonstrates that the

average amount of time during which some vent was erupting varied be-

tween approximately three and ten per cent of the total period of obser-

vation for different observation periods. An attempt at characterizing

the volcanic process as a discrete time Markov process with a one second

sampling interval will yield a transition matrix which is dominated by

the transition to the non-eruptive state from any other condition. In
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addition, the activity at Vent 2 will be negligible in such a model.

(The probability of a transition from inactivity to eruption at Vent 2

would be on the order of 10~4). At the same time, the choice of a larger

time interval will discriminate against recognition of eruptive activity

at Vent 2 and Vent 1.

Formulating a Markov model in this manner offers little insight

into the eruption phenomenon. It is already well recognized that most

of the time no eruption is taking place. A more powerful use of the

Markov model is to examine the sequence in which the vents erupt. In

this way the model becomes a means of probing for any consistent relation-

ship between an eruption at a given vent (such as Vent 1), and the prob-

ability that the following eruption will occur at some specific vent

(such as Vent 3).

The i x j tally matrix for a Markov model constructed in this

fashion will record the number of times an eruption at Vent i is fol-

lowed by an eruption at Vent j. In effect, each eruption represents a

unit advance of the 'Markovian clock'. In a sense, the time scale used

in the previous examples will be replaced by an 'eruption scale' on

which individual eruptions are uniformly spaced at an arbitrary samp-

ling interval of 1. This corresponds to uniform sampling intervals

with the dimensions of thickness in the cyclothem problem and uniform

sampling intervals in units of time for the river problem. Conditional

probabilities in the resulting transition matrix will describe the influ-

ence of past behaviour on where the next eruption is likely to occur

rather than when it probably will occur. The results for the three per-

iods of observation are presented in Table 5-2.
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TABLE 5-2 TRANSITION PROBABILITY MATRICES FOR OBSERVED

ERUPTION SEQUENCES

Observation Period 1 N = 114

Vent 1

Vent 2

Vent 3

Test statistic - 2 log X = 5.40

Observation Period 2 N = 195

Vent 1

Vent 2

Vent 3

B

0.070

0.000

0.027

0.549

0.667

0.756

0.504

0.667

0.767

Test statistic - 2 log X = 13.66

Observation Period 3 N = 111

Vent 1

Vent 2

Vent 3

0.373

0.938

0.639

0.380

0.333

0.216

B

0.103

0.056

0.083

0.393

0.278

0.150

0.186

0.000

0.111

0.441

0.063

0.250

Test statistic - 2 log eA = 21.43
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Test for Markoy Property

Not all transition probability matrices exhibit the Markov property.

Consider the following game. Suppose six marbles are placed in a black

box. A player draws a marble and returns it to the box. At the start

of the game the box is filled with three red marbles, two white marbles,

and one blue marble. A probability transition matrix describing the

game probabilities is given as follows.

A B C

red A 1/2 1/3 1/6

white B 1/2 1/3 1/6

blue C 1/2 1/3 1/6

Clearly the outcome of the previous draw has no effect on the next draw

once the marble chosen is returned to the box. The process has no 'memory';

it is not a Markov process.

There exists an explicit statistical test for the Markov property

(see Harbaugh and Bonham, 1970). The null hypothesis tested is that the

events considered are independent while the alternative hypothesis is

that they are dependent. The test statistic k is

. 'n..m m i 5.1

i=l j=l

where

p.. = the probability in cell i, j of the transition probability
matrix

p. = the marginal probability for the j-th column of the tran-
sition probability matrix T m

Z n /N

(j=l
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n.. = the transition frequency total of observed transitions from
i to j recorded in the tally matrix

m = the total number of transitions observed

The quantity - 2log A is known to be distributed in-conformity with a

chi-squared distribution with (m - 1)2 degrees of freedom. A more con-

venient expression for the test quantity is

m m p
- 2 log X = 2 E E n.. log i 5.2

3i=l e p

2
The number of degrees of freedom in the case of 3 states is (3 - 1) = 4.

The results of the test statistic computation are included in Table

5-2 for each observation period. At the 99.9% confidence level the null

hypothesis of independence cannot be rejected for values of the test

statistic in the range 0.064 - 20.00. This means that for observation

periods 1 (- 2 log A = 5.40) and 2(-2 log A = 13.66) the null hypothesis,

that eruptions in the sequence are independent of the preceding event,

cannot be rejected. Therefore Markov model of dependency is invalid.

Curiously, the value of the statistic for observation period 3 (- 2 loge A=

21.43) is consistent with the expectations of the Markov process.

It is not possible to pinpoint the cause of the unique conformity

demonstrated by the eruption sequence recorded during observation

period 3(OP3) with the Markov model on the basis of the data available

here. It is only possible to conclude that the model is a sometimes

valid description of Strombolian volcanic activity.

Test for Stationarity

Substantial variation in the value of the statistic employed in

testing the hypothesis of independence of events in the eruption sequences

is observed from one observation period to the next. This suggests that
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the conditional probabilities in the transition matrices may be varying

on the 'eruption scale' adopted here. A basic assumption of the discrete

Markov model is that the conditional probabilities remain constant.

Failure of the OP3 eruption sequence to exhibit this property will inval-

idate the hypothesized Markov model.

By segmenting an eruption sequence it is possible to determine the

degree of variation which exists between the component subdivisions and

the whole sequence. A standard statistical test permits calculation of

the significance of such variations (see Harbaugh and Bonham-Carter, 1970).

The test applied only to observation period 3 on the basis of its consis-

tency with the discrete Markov model.

The null hypothesis in this test is that the postulated Markov

process is stationary; the alternate hypothesis is that it is unstat-

ionary. The test statistic ' is

T m m p.. n..(t)

T' =]T7FT pt=1 i=1 j=1 ij
where

T = the number of subdivisions

n. . (t) = the frequency tally for transitions from state i to state
j in the t-th subdivision

p.. (t) = the probability in cell i, j of the transition probability
matrix for the t-th subdivision

The quantity -2 log A' is distributed as chi-squared with (T-1) (m(m-l))

degrees of freedom. Re-expressed in computational form the test quan-

tity is
T m m p..

- 2 log A' = 2 E Z Z n. . (t) log e t)5.4
t=1 i-l j=l ij

For 3 system states the number of degrees of freedom equals 6(T-1).
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TABLE 5-3 STATIONARITY TEST ON OP3 ERUPTION SEQUENCE

Number in
Subdivision

10

15

20

25

30

35

40

45

50

- 2 log A'

56.69

26.56

20.28

11.31

15.13

12.94

11.13

8.77

6.79

(DOF)*

(60)

(36)

(24)

(18)

(12)

(12)

(6)

(6)

(6)

- 2 logeA /DOF

0.946

0.737

0.845

0.630

1.261

1.079

1.858

1.444

1.130

Acceptance. Region
at 99.9%

Confidence Level

0.506 - 1.71 (60)

0.394 - 1.98 (35)

0.310 - 2.23 (24)

0.247 - 2.47 (18)

0.161 - 2.90 (12)

0.161 - 2.90 (12)

0.050 - 4.02 (6)

0.050 - 4.02 (6)

0.050 - 4.02 (6)

* (DOF) degrees of freedom
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The test was performed by initially breaking the sequence of events

for OP3 into groups of 10 eruptions. A tally matrix and a transition

probability matrix was then computed for each group. The statistic was

calculated, and a new interval including five more eruptions was defined.

The original sequence was then segmented into groups of 15 eruptions,

transition matrices are calculated, the statistic is computed and so on.

The results for each grouping is shown in Table 5-3.

The results indicate that the process is 'well behaved' during OP3.

The null hypothesis of stationary cannot be rejected at the 99.9% confid-

ence level for any subdivision of the observed eruption sequence ranging

in length from 10 - 50 eruptions.

Test for Higher Order Dependence

The Markov model employed thus far in characterizing the sequence

of eruptions documented for the three summit vents at Stromboli has only

investigated the influence of the immediately preceding eruption on the

probable location of the next event. Because the conditional probab-

ilities depend only on a single preceding state, the model process is

one of single-dependence and because the preceding state is the immedi-

ately preceding state the model process is termed first-order.

At this point it may prove useful to generalize the model inferred

for OP3 to include double-dependence effects. This requires introducing

a second variable in addition to the location of the immediately preced-

ing event. The second variable will be permitted to range over various

'eruption intervals' into past behaviour. The number of intervals is

referred to as the step length. For example, consider a sequence of

el, e2 ' eV 43' e 5 . . . .  A double-dependence, second-order model will

estimate the transition probabilities to one of th-e system states s. for
I-
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the e6 event on the basis of the states occupied during e5 and e .

Similarly a double-dependence, fourth-order model will estimate transi-

tion probabilities on the basis of the states occupied at e5 and e2 '

The order of the model reflects the size of the step length being used

in sampling past behaviour.

By increasing the level of dependence to two prior states occupied

by the system, the two dimensional square array representation of the

transition probability matrix will expand to a three dimensional cubical

array. The probability pijk indicates the probability of entering state

k, given the two prior states of i and j somewhere in the past history

of the phenomena.

To ascertain the significance of the double-dependence model versus

the single dependence model, a new test statistic is introduced. To be

able to compare the two directly, however, it is necessary to keep the

j-th state employed in the double-dependence model fixed to the immedi-

ately preceding event as in the single dependence model. The null hypo-

thesis to be tested is that there is no significant double-dependence

memory effect versus the alternative hypothesis that a double dependence

effect is present in the sequence.

The test statistic is

mm m P-k n..k 5.5

i=lj=l k=1 ijk

where the quantity -2 loge A" is distributed as chi-squared with m(m-1) 2

degrees of freedom. In the present case the number of degrees of freedom

2
equals 3(3-1) = 12. Again this test will only be applied to the eruption

sequence recorded for observation period 3. The acceptance region at the

99.9% confidence level for a chi-square distributed variable with 12 DOF



TABLE 5-4 DOUBLE DEPENDENCE MARKOV MODEL FOR OP3 ERUPTION

Model order -2 log A" Model order

2 219.83 26

3 221.78 27

4 217.28 28

5 216.70 29

6 213.55 30

7 215.31 31

8 209.68 32

9 207.91 33

10 204.12 34

11 207.50 35

12 203.57 36

13 201.24 37

14 196.64 38

15 197.41 39

16 195.85 40

17 196.22 41

18 189.41 42

19 189.80 43

20 188.28 44

21 183.64 45

22 185.28 46

23 179.10 47

24 180.38 48

25 179.58 49

50

52.

-2 log A

175.17

172.06

172.71

173.16

168.01

165.39

162.12

161.66

158.21

159.29

156.66

150.94

151.67

151.98

146.56

146.42

142.15

143.08

140.00

138.58

139.59

136.44

133.34

129.48

128.07
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TABLE 5-1 DOUBLE DEPENDENCE, SECOND ORDER MARKOV MODEL
FOR ERUPTION SEQUENCE OBSERVED DURING OP3

j = 1

i = 1 0.429

Eruption Sequence

state i -+ state j + state k

j = 1

i = 1 0.190

2 3

0.091 0.308

2 0.467 0.000 0.000 k = 3

3 0.435 0.000 0.111

2 3

0.000 0.077

2 0.067 0.000 0.000 k = 2

3 0.261 0.000 0.222

j = 1
i = 1 0.381

2 0.467

3 0.304

2

0.909

0.000

1.000

3

0.615

1.000

0.667

k = 1
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is comprised of values of the test quantity V lying in the range 1.93 -

34.80 test quantity.

The results of the test for double-dependence are presented in

Table 5-4. The numerical values show that the null hypothesis can

be rejected at the 99.9% confidence level, and that a strong double

dependence seems to exist in the empirical data. The general decrease

in the value of the test quantity is due to the forced shortening of

the data sequence with the investigation of higher order dependence.

For example, in testing for tenth-order dependence the original data

sequence can only be employed for events following e1 0 in the sequence

e1 , e2 ' 11111, en'

Although this test supports the hypothesis of double dependence,

it also reveals an inability to discriminate between the higher orders

of dependence. Keeping in mind the foreshortening of the input data

sequence previously described, there appears to be no criterion for

judging what sized step length yields the most accurate transition

matrix. Thus, for the sake of simplicity and on the basis of the test

result this study will assume a second-order, double dependence to be

the most accurate. The second-order, double-dependence matrix for OP3

is shown in Figure 5-1.

This same inability to discriminate discourages generalizing the

Markov model to higher levels of dependence.

Summary of Markov Results

The appearance of a significant 'memory effect' between an eruption

at a specific vent and the last vent to erupt occurs sporadically in the

observed eruption chronology. Only one- period of observation (OP3) out

of three appreciably demonstrated the existence of such a property, also

known as the Markov property. A hypothesized Markov process for OP3 was
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also able to pass a statistical test for stationarity within the ob-

served eruption sequence.

The principal outcome of the test for the Markov property is the

suggestion that activity at a specific vent may be influenced by

eruptions elsewhere in the summit crater. This implies a potential for

increasing prediction accuracy in forecasting eruptions over the simple

expectation of the average repose periods. The principal drawback of

the Markov model approach as employed here lies in creating an 'eruption

scale' in order to analyze the sequence of eruption events. In for-

feiting a time scale the model necessarily forfeits the ability to

quantitatively predict the time to the next eruption.
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6. RELATIONSHIPS AMONG THE VENTS: LINEAR REGRESSION

The Model

Regression is a common data evaluation technique which basically

expands the least squares fit approach to two dimensional data of the

form Y = f(X) to include an unlimited number of independent variables.

A linear regression model postulates a linear relationship of the

form

Y = + 1 X + 2 X .. . . + X + e 6.1
0 1 1 2 2 kX~~

where Y is some observable random quantity of interest (i.e. the'depen-

dent'variable), X1 , X2 , . . . . , Xk are observable quantities (i.e. the

'independent' variables), 3 , 1 , 3 ... k are unknown coefficients,
0 1 2k

and e is the error between the expected value of Y, E(Y), and the obser-

ved value where

E(Y) = 6 + 3 X.+ 3 X + .... + X 6.2
0 1 1 2 2 k k

The estimation of the unknown coefficients is performed by mini-

mizing the sum of the squared error e2. If L = Ze2 then for n sets of

data of the form Y = f(X , X2, ... , Xk

n n k
L = E e 2 = E (Y. - - E . X.) 2  6.3

j=1 j=1 J 0 i=1 ' 1

Minimizing L amounts to differentiating the above equation with respect

to each unknown coefficient and setting the resulting set of partial

differential equations equal to zero. This forms a set of k+1 equations

in k+1 unknowns, namely , , , ... which can be solved in a straight-
0 1'k

forward manner by matrix methods. Computer programs designed to deter-

mine S , S , ... k are available on most FORTRAN compilers as part of
0 1 k

a standard scientific library of subroutines while the theoretical
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development of the procedure is developed in detail in many places

(see Graybill and Krumbein, 1965). A full reiteration of the technique

will not be presented here.

Characterization of the volcanic process as a Markov process has

suggested that for some periods of observation the sequence of eruptions

is not completely random. Unfortunately the Markov approach developed

here is unsuited to the task of predicting, even approximately, the

time to the next eruption at a specific vent. Alternatively the regres-

sion approach is a tool which can be used in probing for more compli-

cated relationships between a single intereruption period and past

repose periods, eruption durations, and the level of activity at all

the other vents. The following symbols were adopted in applying the

method.

P' represents the repose period between the last two erup-
tions at Vent 1 (seconds)

P" represents the repose period immediately prior to P" (sec)

D - represents the duration of the last eruption at Vent 1 (sec)

N3 - represents the number of eruptions occuring at Vent 3. In
using N3 to describe the activity at Vent 1, N will repres-
ent the number of eruptions occurring at Vent 3 since the
last eruption at Vent 1.

L3 represents the amount of time since the last eruption at
Vent 3 (sec)

Generally a variable subscript refers to a specific yent and the super-

script refers to the order in the past sequence of values of the spec-

ific parameter.

Meaning of Results: Correlation

An evaluation of the degree to which the empirical data conform

to the hypothesized linear equation is provided by the correlation

coefficient r. This coefficient measures the ratio of the variability
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in the predicted Y values to the variability in the raw distribution.

If the variance is defined in sum-of-squares (SS) notation, the variance

in the raw distribution can be described by

n
SS- = ( - 2 6.4

7 j=l

where y is the distribution mean. Another measure of the variance in

an empirical distribution is the second moment of the distribution, m2

with respect to the mean

n
E (y. -y) 2

i SS
m - i=l - N 6.5

2N N

where N represents the total number of y values sampled.

The variance in the predicted value of Y when the linear equation

is employed is simply a sum of the error.

n k
SS = E (y.- - 6.X ) 6.6

reg jl 1 i=l 1

The correlation coefficient is then defined as

SS - SS
r2 yS reg 6. 7SS

y

The variance SS is a measure of how well Y represents the Y distribution,
y

while SS is a measure of the 'residual' variation which remains in the
reg

empirical Y data when the estimated linear equation is used to predict Y.

Clearly if SSreg is equal to SS , the regression equation can be no bet-

ter a predictor than the original distribution mean and the correlation

coefficient equals zero. As SS becomes small relative to SSy , the
regy

error in predicted Y values will be smaller than the spread in the orig-

inal data and r increases to a value not greater than 1.0.
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Though r is a convenient correlation parameter, the fraction of

the variance in the original sample of Y's which is 'accounted for' or

'explained by' the regression equation is actually r 2, This can alter-

nately be expressed as a 100r2 % increase in accuracy in anticpating

on the basis of the X. parameters involved in the correlation. This

does not imply that all predicted values will be more accurate by the

given percentage, but rather that the use of the equation with the data

employed in the regression procedure would yield an average increase in

accuracy of 100r2 % over simply anticipating the mean repose period.

It should be noted that the correlation coefficient is purely a

statistical yardstick which makes no assumption as to the cause-and-

effect relationship between the X. variables and Y. Inferring a depen-

dency relationship between the two variables solely on the basis of a

significant correlation cannot be justified. This method alone is

incapable of interpreting a natural process. In the same vein it is

important to note that the dimensions of the equation coefficients may

fail to represent anything meaningful in the physical world.

One-to-One Correlation

The aim of this study is ultimately to predict the actual time to

the next eruption at a specific vent. This is equivalent to estimating

the value of the current repose period at that vent P v, and simply sub-

tracting the time since the last eruption there, L . In selecting rele-

vant parameters for a linear equation model it is useful to construct a

correlation coefficient matrix for all the data available as input. Such

a matrix displays the one-to-one correlation which exists between all

input parameters. It follows that the matrix will be symmetric and that

all diagonal elements will equal 1.0. This diagonal property is the

result of the 'perfect' correlation between each parameter and itself.
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A simple

cing in input

and Krumbein,

organized in

points and j

eruption can

meters being

lished by an

Z. .

procedure for scanning potential variables involves redu-

data matrix , X, to a 'deviation matrix', Z (see Graybill

1965). This is done as follows. Initially the data is

an i x j matrix (X), where i equals the number of sample

equals the number of parameters supplied. Every i-th

be characterized by a certain set of values for the j para-

used in the data matrix X. The transformation is accomp-

element-by-element operation with

X i 
6.8

lJ 'S.

where

x.. = k om data set i value of parameter
1LJ

x. = average of parameter j over all input data (i.e. a column
3 average)

s. = standard deviation in parameter j calculated over the entire
data matrix

z.. = element i, j of the deviation matrix.
lJ

The correlation coefficient matrix R is obtained by left multi-

plying the deviation matrix by its transpose and multiplying the result

of the scalar l/(N-l)

R= 1 Z T z 6.9
N - 1

where

N = the total number of data points

ZT - represents the transpose of the deviation matrix

The results of this computation are shown in Tables 6-1, 6-2, and

6-3. They are summarized in the next section. An advantage in calcul-

ating correlation in this manner is that the sign of the coefficient

is preserved. A positive sign indicates that Y increases with an increase



TABLE 6-1

P 
1

P1 1.0000

Pt

N
2

N
3

D1

D

D3

D f

L 2

L 3

CORRELATION

Pf

-0.2318

1.0000

COEFFICIENT MATRIX R

N2 N3

0.2336 0.5274

0.0244 -0.0943

1.0000 0.0314

1.0000

Vent 1 N = 233

D 1

0.0523

-0.0132

0.0900

0.1208

1.0000

D

0.2298

0.0598

0.1660

0.2276

0.4619

1. 0000

D 3

0.0043

-0.0407

0.2129

-0.0335

-0.1691

-0.1135

1.0000

D f
3

-0.0229

0.0030

0.1471

-0.0402

-0.0722

-0.1159

0.5755

1.0000

L 3

0.0224

-0.0074

-0.3327

-0.0225

-0.2152

-0.1802

-0.3095

-0.3087

1.0000

-0.0736

-0.0091

0.0933

-0.5653

-0.1614

-0.1720

0.1,470

0.0238

-0.0108

1.0000



TABLE 6-2

S 2

P. 1. 000

CORRELATION

Pf
2

-0.1094

1.0000

COEFFICIENT MATRIX R

P' D
2 3

-0.1240 -0.2585

-0.189 -0.2759

1.0000 -0.1639

1.0000

Vent 2 N = 31

D'
3

-0.2352

-0.2079

-0.1823

0.4107

1.0000

N 1

0.9823

-0.1065

-0.0711

-0.2801

-0.2293

1.0000

L 1

0.1956

-0.2339

-0.2376

0.1972

0.0565

0.1340

1.0000

N
3

0.9371

0.0095

-0.1690

-0.2615

-0.2973

0.9067

0.1902

1.0000

L 3

0.3805

-0.3703

-0.0927

-0.0672

0.0470

0.4371

0.0234

0.1182

1.0000



TABLE 6-3 CORRELATION

3  P3

P3 1.0000 -0.1452

P; 1.0000

P'T
3PD:3

COEFFICIENT

P'T

3

-0.0576

-0.1354

1.0000

N3

N2

L

N 2

L 2

Vent 3 N = 122

MATRIX R

D 3

-0.0596

-0.0539

0.0322

1.0000

D'3

0.2313

-0.0368

-0.0300

0.5602

1.0000

DI'3

0.0007

0.2413

-0.0319

0.2961

0.5434

1.0000

N 1

0.8705

-0.1629

0.0421

-0.0695

0.2341

-0.0032

1.0000

L 1

0.0294

0.1056

-0.2818

0.0610

-0.1474

-0.0194

-0.2398

1.0000

N
2

0.3789

-0.1883

-0.0053

0.1448

0.3580

0.1658

0.3222

-0.1655

1.0000

L 2

0.0187

0.0515

0.0825

-0.2812

-0.3322

-0.3438

0.0295

0.1488

-0.3895

1.0000
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in X while a negative sign implies a decrease in Y with a positive

change in X. This data scanning technique reveals a wider variety of

correlations than obtained by testing Pv against other specific para-

meters.

Regression Results

Significant results from the correlation matrix R are reviewed

below for each vent. The data for the input matrix employed in calcul-

ating R was drawn from all three observation periods. The general level

of correlation appeared to warrant extending the regression analysis

to no more than five parameters.

Vent 1 N = 233

The parameter exhibiting the strongest correlation with the inter-

eruption peri6d at Vent 1 was the number of events occurring at

Vent 3 (r = +0.5274) and with the duration of the last event at

Vent 2 (r = + 0.2336) and with the duration of the last event at

Vent 1 itself (r = +0.2298)were exhibited. The period to the next

eruption at Vent 1 was negatively correlated with the last period

(r = -0.2318). A relatively strong positive correlation between

the duration of an event at 1 and the duration of the prior erup-

tion was also noted (r = +0.4619). Parameters selected for regres-

sion analysis included P', N N D', and L

Vent 2 N = 25

The intereruption period at Vent 2 was surprisingly well correl-

ated with the number of events at Vent 1 (r = 0.9860) and the

number of events at Vent 3 (r = 0.9413). A weaker correlation

with the length of time since the last eruption at Vent 3

(r = +04541) and the time since the last eruption at Vent 1
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(r = +0.2304) was also exhibited. The time to the next eruption

was negatively correlated with both the previous eruption period

(r = -0.1094) and with the duration of the last event at Vent 3

(r = -0.2352). Parameters selected for regression analysis in-

clude P, N1, L1 , N3, and L3 '

Vent 3 N = 122

The parameter demonstrating the strongest correlation with the

period between eruptions at Vent 3 was the number of events occur-

ring at Vent 1 (r = +0.8705). This was accompanied by a weaker

correlation with the number of events occurring at Vent 2 (r = +0.3789).

As was the case at Vent 1 and Vent 2 a negative correlation was ob-

served with the prior repose period (r = -0.1452) while in contrast

a positive correlation with the duration of the last event at Vent 3

(r = +0.2313). Parameters selected for regression analysis included

P>, D', N1, L1 , and N2.

The results of the regression analysis are presented in Tables 6-4,

6-5, 6-6 and 6-7. Results are reported for each observation period and

for the combined data from all three periods. Inspection of the tables

shows that significant variations (typically ± 0.10) in correlation (r)

occur from one observation period to the next for the same combination

of independent variables. However, the relative correlation of one

grouping of variables to another remains fairly constant across obser-

vation periods. Thus the absolute changes are interpreted as reflecting

variations in the number of 'data sets' employed for the different

observation periods.



TABLE 6-4 MULTIPLE REGRESSION CORRELATION COEFFICIENT, r

Observation Period

P'
1

N
2

N
3

D 1

L 3
P , N2

P{, N3

P , D1

P , L3
N2, N3

N2, DI

N2, L3

N3, L

3' 3

D{, L3
P , N2, N3

P{, N2, D

P{, N2, L3

P j, N3, D

Pj, N3, L3

PN, D2 , L3
N N D

2' 1

N2, N3, L3

N D, L

2'1 3

N3, DI, L3

P , N2, N3, D{

Pj, N2, N3, L3
P , N2, D{, L3

PT, N3, D L3

N2 , N3, D', L3

P ,3

1+2+3

N = 233

0.2318

0.2336

0.5274

O2298

0.0736

0. 3332

0.5582

0.3367

0.2439

0.5703

0.3035

0.2525

0.5393

0.5935

0.2324

0.6008

0.3925

0.3475

0.5728

0.6154

0.3384

0.5757

0.6208

0.3093

0.6071

0.6081

0.6285

0.6314

0.3971

0.6436

0.6531

1

N = 60.

0.2909

0.2266

0.5399

0.1512

0.0844

0.3706

0.5725

0.3476

0.3025

0.5732

0.2393

0.2486

0.5413

0.6050

0.1612

0.6054

0.3886

0.3841

0.5771

0.6249

0.3506

0.5740

0.6248

0.2544

0.6084

0. 6055

0.6248

0.6315

0.3957

0.6457

0.6467

66.

VENT 1

N = 112

0.2586

0.3232

0.4602

0.3415

0.9342

0. 3929

0.5082

0.4232

0.2808

0.5323

0.4455

0.3398

0.5208

0.5095

0.3419

0.5649

0.4966

0.4101

0.5633

0.5424

0.4246

0.5763

0.5633

0.4468

0.5772

0.6069

0.6150

0.6046

0.4990

0.5872

0.6363

N = 56

0.1941

0.8871

0.6353

0.4305

0.8588

0.2374

0.6542

0.4655

0.2108

0.6615

0.4313

0.1347

0.6891

0.7096

0.4480

0.6918

0.4658

0.2591

0.7052

0.7261

0.4804

0.6969

0.7264

0.4481

0.7324

0.7199

0.7398

0.7475

0.4817

0.7517

0.7615



67.
TABLE 6-5 REGRESSION CORRELATION COEFFICIENT, r VENT 2

Observation Period 1+2+3 1 3

N = 25 N 15 N =13

p 0.1145 0.2103 0.1983

N 0.9860 0.9741 0.9294

L 0.2304 0.0701 0.3270

N3  0.9413 0.7727 0.8118

L3 0.4541 0.5036 0.0184

P, N1  0.9860 0.9749 0.9295

P1, L1  0.2357 0.2176 0.3363

P1, N3  0.9508 0.8156 0.8123

P1, L3  0.4565 0.5040 0.2050

N1, L1  0.9884 0.9839 0.9294

N1, N 3  0.9907 0.9834 0.9323

N1, L3  0.9868 0.9850 0.9298

L1 , N3  0.9424 0.7789 0.8377

L , L3 0.4916 0.5333 0.3272

N 3, L3  0.9786 0.9415 0.9044

P2' L1' N3  0.9885 0.9854 0.9295

P1, Ni, N3  0.9914 0.9834 0.9326

Pl, N1, L3  0.9871 0.9850 0.9298

P , L1, N3  0.9508 0.8195 0.8448

P9, L1, L3  0.5024 0.5334 0.3387

P, N3, L3  0.9794 0.9435 0.9074

N , L1, N3 0.9924 0.9928 0.9325

N1, L1, L3  0.9893 0.9912 0.9298

N1 , N3, L3  0.9916 0.9851 0.9405

L1, N3, L3  0.9791 0.9649 0.9300

P 9 N1, Li1, N3  0.9926 0.9928 0.9331

P 2, N1 , L1, L3 0.9929 0.9928 0.9441

P2 N1' N3, L3  0.9796 0.9653 0.9300

P2 L1, N1' L3 0.9920 0.9851 0.9406

N1, L1, N3, L3  0.9893 0.9913 0.9298

P, N1 , Li, N3, L3 0.9930 0.9928 0.9441
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TABLE 6-6 MULTIPLE REGRESSION CORRELATION COEFFICIENT, r VENT 3

Observation Period 1+2+3 1 2 3

N = 122 N = 32 N = 56 N = 33

P3 0.1452 0.2632 0.0773 0.1362

D 0.2313 0.5350 0.3222 0.2732
3

N 0.8706 0.8667 0.8457 0.9325

L 0.0294 0.0355 0.0922 0.0612

N2  0.3789 0.1778 0.3487 0.5960

P, D' 0.2688 0.5513 0.3223 0.3310
3' 3

P1 , N 0.8706 0.8671 0.8464 0.9354
3' 1

Pi, L 0.1520 0.2944 0.1167 0.1419
3' 1

PI, N2  0.3863 0.2746 0.3487 0.6092

D , N 0.8710 0.8707 0.8457 0.9325

D, L 0.2401 0.5487 0.3680 0.2732
D3 N
D' N2 0.3925 0.5529 0.4257 0.6016

N1 , L1  0.9045 0.8937 0.9004 0.9468

N 1 , N2  0.8767 0.8702 0.8567 0.9329

L1 , N2  0.3902 0.1834 0.3766 0.6126

P , D1, N 0.8710 0.8708 0.8466 0.9358

P , D1, L' 0.2800 0.5775 0.3695 0.3331

P, D , N2  0.4003 0.5594 0.4287 0.6117

p' 3 , N1, L1 , 0.9047 0.8985 0.9005 0.9484

Pl, N1 , N2  0.8768 0.8702 0.8567 0.9362

P>, L1, N2  0.3989 0.3017 0.3767 0.6311

D', N , L 0.9060 0.8988 0.9016 0.9470

D' , N 0.8767 0.8740 0.8573 0.9329

D', L1 , N2 0.4060 0.5677 0.4711 0.6174

N1 , L1 , N2  0.9135 0.8977 0.9150 0.9469

P , Dl, N1 , L 0.9062 0.9026 0.9016 0.9484
3' 3 1

P1, D', N, N2  0.9136 0.9027 0.9153 0.9470

P1, D', L1, N2  0.9135 0.9000 0.9154 0.9484

P, N1 , L1, N2  0.4152 0.5829 0.4783 0.6325

D , N1, L1 , N2  0.8768 0.8742 0.8574 0.9363

P , D', N, L1, N 0.9136 0.9043 0.9158 0.9484
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TABLE 6-7 EQUATION COEFFICIENTS

Vent 1 P + = + + 2 N + N D' + L
1 1

Observation
Period

1+2+3

N = 233

245.69

- 0.18

191.76

390.33

23.10

0.18

1

N = 60

295.90

- 0.18

241.57

449.43

6.11

0.21

N = 112

144.28

-0.17

202.32

292.20

56.40

0.13

N = 56

103.17

- 0.19

159.60

439.40

57.62

0.18

Vent 2 P = 0 + S + 2 N + 3 1 4 N + 5 L
1 1

Observation
Period

1+2+3

N = 25

-637.51

- 0.03

422.82

0.62

433.04

0.35

1

N = 15

-485.99

0.01

495.74

1.16

219.12

0.09

3

N = 13

-410.32

0.01

363.11

- 0.48

611.27

0.66

Vent 3 P 3 + 0 + S P3 + 2 D' + 3 N + L + 5 N

Observation
Period

259.93 1.61

1+2+3

N = 122

- 39.97

- 0.00

0.34

466.82

0.63

1

N = 32

137.98

-0.06

5.02

406.42

0.47

N = 56

-214.29

0.03

1.00

446.86

0.80

N = 33

-102.09

0.06

0.06

582.85

0.49

206.56 101.89
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The correlation coefficient computed for a linear equation with

several terms is more precisely referred to as a multiple correlation

coefficient. Simply grouping parameters X1, X2, and X3 will not result

in a linear equation with a multiple correlation coefficient equal to

the sum of the one-to-one correlations r1 , r2, and r3. The reason for

this is that the parameters used in the equations as independent vari-

ables are not independent of one another. This is demonstrated in the

correlation coefficient matrix R. For example, in the R matrix computed

for Vent 3 the one-to-one correlation for P3 = f(N1 ) is r = 0.8706 while

for P = f(D'), r = 0.2313. However when the variables N and D' are
3 3 1 3

combined in P3 = f(N, D') the multiple correlation coefficient equals

0.8710. Inspection of the correlation coefficient matrix reveals that

the correlation between N and D' was r = +0.2346. Thus because N and
1 3 1

D were weakly correlated, the addition of the parameters DI to the estim-
3 3

ation equation for Y failed to increase the average prediction accuracy

significantly. In a sense, the 'information' added was for the most

part redundant.

This effect dominates the tradeoff between increasing accuracy

and carrying additional terms in the algebra of the actual equations.

Specifically, consider the Vents 1 and 2. The current repose period

at Ventl, Pi, is best correlated on a one-to-one basis with the number

of events at Vent3, N 3, with r = 0.5275. Incorporating the additional

variables P', N2, D', and L into the linear equation increases r to

0.6531. The addition of each term corresponding to a specific para-

meter results in an incremental increase in the average ability to pre-

dict the current repose period at Vent 1. Alternatively to predict the
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current repose period at Vent 1. Alternatively the best singly correlf

ated parameter for P2 is N1, with r = 0.9860. The addition of four

other parameters, P', L1, N3, and L3, serves to increase r by less than

one percent (to r = 0.9930). Thus the ability to predict the current

repose period at Vent 2 fails to increase appreciably with the inclusion

of other variables. The behaviour of the linear model at Vent 3 is

essentially the same as that at Vent 2, with r = 0.8706 for P 3 = f(N1 )

increasing to r = 0.9136 for P3 = f(P, D, N1 , L1 , N2).

Summary

The most significant discovery of the regression modellis that the

time to the next eruption at both Vents 2 and 3 is best correlated singly

with the number of events occurring at Vent 1. Furthermore, the increase

in estimation accuracy with the consideration of other parameters proved

to be marginal at best. The overall capability of the linear model to

accurately anticipate intereruption periods was the greatest at Vent 2

(r = 0.9939), intermediate at Vent 3 (r = 0.9136), and poorest at Vent 1

(r = 0.6531).

It is important to recall that lOOr 2% represents the increase in

prediction accuracy relative to the variance in the empirical sample of

repose periods with respect to the sample mean. In terms of absolute

time consider the difference between the standard deviation in the raw

data and the standard deviation in the group of anticipated repose

periods (i.e. Pv = F(XV, X2' '''' k)) shown in Table 6-8. It has

already been pointed out that the variance in the anticipated distribution

is a measure of the error between predicted and observed repose periods.

On the other hand the variance in the empirical distribution is a measure
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TABLE 6-8 REGRESSION RESULTS IN ABSOLUTE TIME

E(P v) = expected value of the current repose period at Vent v

Standard deviation
in observed

distribution of P
v

E(P V) = P
Ev v

Vent 1 427 sec

Vent 2 2179

Vent 3 837

Standard deviation
in anticipated

distribution of P
v

E(Pv ,f(X111,Xk)

324 sec

260

344
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the degree to which the sample mean represents the whole range of obser-

ved values of P . The most dramatic reduction in the variabilty of P

occurs in employing the linear model to Vent 2. At Vent 2 the value of

a standard devistion is reduced by an order of magnitude and it becomes

more 'predictable' in an absolute sense than either Vents 1 or 3.

This is completely contrary to field intuition. In the field

the "'regularity' of eruption was predicted largely on the relative erup-

tion frequency observed for the three vents. Vent 1 erupted the most

frequently and hence was expected to fire regularly every 15 - 20 min-

utes. Vent 2 erupted the least frequently and, thus, no attempt to

anticipate an eruption at Vent 2 was made while actually monitoring in

the field.

The regression results generally corroborated teh implications of

the random nature of the repose period distributions regarding the inde-

pendence of the time to the next eruption at any single vent from immed-

iate past behaviour at that vent. Correlations of Pv with repose per-

iods in the immediate past (P', P", P"' ) were generally less thanv v v

r = 0.25. This means that only 6% of the variance in the repose periods

can be accounted for by the immediately preceding repose period at a

specific vent.

It has already-been pointed out that the correlation coefficient

for a particular linear equation relating some variable Y to a set ,of

variables X , X2, . Xk is a simple measure of the average accuracy in

the ability to predict Y within the same group of data employed in for-

mulating the linear equation. This means that the linear regression

model is not a dynamic model. Its ability to forecast future behaviour

is grounded solely on the tendencies exhibited by the data provided as

input. On the other hand the regression method represents a powerful
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quantitative technique. The dynamic evolution of the volcanic process

may be reflected in the time variation of the equation coefficients.

However, considerably longer monitoring periods would be required in

ascertaining the efficacy of the regression approach in detecting such

changes.
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III. SUMMARY

7. OVERVIEW AND IMPLICATIONS

In attempting to build an empirical predictive capability that can

be used to forecast eruptions, this study has considered three models.

The first 'model' was a characterization of the observed frequency dis-

tribution of repose periods in terms of common frequency distributions

whose properties are well known. Basically this type of model is useful

in describing how representative the mean repose period is in relation

to the entire distribution. The second model, a Markov model, probed

the observed eruption sequence for consistent relationships between an

eruption occurring in the recent past. Such a relationship is termed a

'memory effect' in a Markov process. The third model, a linear model,

attempted to integrate the behaviour of all the active vents in predic-

ting the time to the next eruption. Variables reflecting past repose

periods, eruption durations, number of eruptions and time since a

previous eruption were employed in the forecasting equation.

The Markov model is distinguished from the other two in that its

ability to anticipate an eruption is spatial in nature. The character-

ization and linear models are temporal and can be employed in quanti-

tatively anticipating the length of current repose periods. The linear

model has been shown to be a consistently more accurate predictor.

(Specific results are summarized in Chapters 4, 5, and 6.)

There is strong temptation to interprete the results of the linear

regression technique in terms of the physical relationships between the

vents. Wickman (1965e) has yielded to the same sort of temptation at the

conclusion of his characterization analysis. Although such interpret-

ations can be provocative and stimulate further research, they are no
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substitute for observed physical parameters in modelling the volcanic

process. Hawaiian studies of the geophysical (Eaton, 1966) and geochem-

ical (Murata and Richter, 1966, Wright and Fiske, 1971) relationships

which exist within a sequence of eruptions provide an insight which can

be extrapolated in understanding future volcanic behaviour. Alternatively

empirical studies of repose periods are strongly bound to ,past behaviour.

Eruption prediction based solely on past experience cannot anticipate a

perturbation at depth which results in a major reorientation of the vol-

canic activity at the surface.

Regression analysis of volcanic activity is a statistical technique

which has not been investigated in the past. The Strombolican setting,

in which three vents erupt several times per hour, represents a unique

opportunity to compile enough data to make the results of such a rech-

nique statistically significant. In addition, the process of data

acquisition consists essentially of maintaining an observer with a clock

at the volcano. There is no major equipment expenditure as is the case

in establishing and operating a geophysical station. By implication,

areas of the world which are characterized by high volcano densities

and low GNP's, such as Central America and the Southwest Pacific, might

find the regression approach to eruption prediction a cost effective

short term investment.

It has been suggested earlier that application of the regression

technique to long term monitoring may reveal gross changes in the levels

of correlation which may reflect real changes in thenature of the driving

mechanism operating at depth. The ability of such correlation changes

to forewarn of a major realignment of volcanic activity in a manner

analogous to shifts in seismic activity in and around volcanoes remains

to be proven.
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In conclusion, the -most accurate statistical model for predicting

current volcanic repose periods at Stromboli in September, 1971 was a

linear model based upon a regression technique. The results of such a

statistical model place temporal constraints on any physical model

which attempts to predict eruptive behaviour on the- basis of observed

physical parameters. Longer termed statistical analysis of observed

activity in conjunction with geophysical and geochemical monitoring may

be a useful tool in anticipating major changes in volcanic behaviour.
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APPENDIX A STATISTICAL HYPOTHESIS TESTING

Hypothesis testing can be thought of as an example of decision

theory in practice (see Remington and Shork, 1970). A statistical test

is performed when an investigator wishes to determine some specific

property of a group of sample data. The decision problem must be form-

ulated in a binary manner which admits to a yes-or-no answer.

The hypothesis to be tested is termed the null hypothesis (or tested

hypothesis). The other possible outcome of the test is termed the alter-

native hypothesis. The procedure followed is to 1) calculate some test

statistic from the sampled data which is known to be distributed as a

random variable in conformity with some standard statistical distrib-

ution; 2) calculate the degree of freedom present in the test; and 3)

specify an acceptable level of significance in the test. The level of

significance is equivalent to the probability of rejecting the null

hypothesis when it is, in fact, true. If the level of significance, a,

is set to 0.01, the investigator is willing to accept a 1% chance of

incorrectly rejecting the tested hypothesis when it is valid. A know-

ledge of the degree of freedom present in the test is required in

employing common tabulations of the standard distribution characterizing

the test statistic.

The level of significance determines an acceptance region and crit-

ical region within the standard statistical distribution. For a two-sided

test the critical region in which the null hypothesis will be rejected

consists of values of the test statistic at each extreme of the standard

distribution. Alternatively, the critical zone for a one-sided test

would consist of extreme values of the test statistic in one direction

only.
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An example of a one-sided test arises in the case of a coin toss-

ing game. Suppose there were a game in which each participant chose

'heads' or 'tails' for some group of throws, say for 10 tosses. Once

either 'heads' or 'tails' is chosen each participant must wager at least

one dollar on each of the 10 throws. One cannot switch from 'heads' to

'tails' or vice versa once a group of tosses starts. Suppose you have

chosen 'heads' in such a game. The only bias in the coin which costs

you money is a possible 'tails' bias. In this sense you are not con-

cerned by a 'heads' bias since it costs you nothing. A physical analogy

might be in measuring the average concentration of some infectious

germ in a person's blood. Only when the average concentration exceeded

some critical concentration would there be cause for alarm.

The level of significance, a, is more commonly translated into a

confidence level which equals 1 - a/2 for the two-sided test, and simply

1 -a for the one-sided test. In determining the degree of conformity of

the sample distributions with well known distribution densities, all

tests will be two-sided.




