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ABSTRACT

Automated manipulation systems operating in unstructured
environments, such as undersea or in space, will be required to
determine the identity, location and orientation of the various
objects to be manipulated. Vision systems alone are inadequate
for the successful completion of some of these recognition tasks,
especially when performed where vision is partially or totally
occluded. Tactile sensing is useful in such situations, and
while much progress has been made in tactile hardware develop-
ment, the problem of using and planning to obtain tactile infor-
mation has received insufficient attention.

This work addresses the planning problem associated with
tactile exploration for object recognition and localization.
Given that an object has been sensed and is one of a number of
modeled objects, and given that the data obtained so far is in-
sufficient for recognition and/or localization, the methods de-
veloped in this work enumerate the paths along which the sensor
should be directed in order to obtain further highly diagnostic
tactile measurements. Three families of sensor paths are found.
The first is the family of paths for which recognition and
localization is guaranteed to be complete after the measurement.
The second includes paths for which such distinguishing
measurements are not guaranteed, but for which it is guaranteed
that something will be learned. The third includes paths for
which nothing will be learned, and thus are to be avoided.

The methods are based on a small but powerful set of ge-
ometric ideas and are developed for two dimensional, planar-faced
objects. The methods are conceptually easily generalized to
handle general three dimensional objects, including objects with
through-holes. A hardware demonstration was developed using
thick "2-D" objects, and it is shown that the strategy greatly
reduces the number of required measurements when compared to a
random strategy. It is further shown that the methods degrade
gracefully with increasing measurement error.
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CHAPTER 1 Introduction

Automated manipulation systems operating in unstruc-

tured environments, such as undersea or in space, will be

required to determine the identity, location and orientation

of the various objects to be manipulated. It has been known

for some time that vision systems alone are inadequate for

the successful completion of some of these recognition

tasks, especially when performed where vision is partially

or totally occluded [1-4]. Tactile sensing is useful in

such situations, and while much progress has been made in

tactile hardware development [4,51-53], the problem of using

and planning to obtain tactile information has received in-

sufficient attention [2,3,5]. A few researchers in the en-

gineering community have made attempts to develop sensing

strategies [5,6] but most of the attention focused on so-

called "active touch" has originated in the psychological

community [7,8].

This work focuses on the planning problem associated

with tactile exploration for object recognition and

localization (the determination of object position and

orientation). Given that an object has been sensed and is

one of a number of modeled objects, and given that the data

obtained so far is insufficient for recognition and/or

localization, the methods developed in this work enumerate

the paths along which the sensor should be directed in order

to obtain further highly diagnostic tactile measurements.



Three families of sensor paths are found. The first is the

family of paths for which recognition and localization is

guaranteed to be complete after the measurement. The second

includes paths for which such distinguishing measurements

are not guaranteed, but for which it is guaranteed that

something will be learned. The third family is made up of

paths for which nothing will be learned, and thus such paths

are to be avoided.

The recognition of an object and the determination of

its position and orientation in space is a task domain that

may be categorized into two classes. The first may be de-

scribed as the domain of passive information gathering, in

the sense that an object is presented to some suitable tac-

tile sensor and as much information is extracted from the

sensor output as is possible. An example of this is when an

object is dropped onto a tactile array and the object's

"footprint" is analyzed [50]. Given that most objects of

interest have a finite number of stable poses on the plane

and that the footprint is often unique for each pose of each

object, an assessment may be made of an object's identity,

location and orientation. These procedures are open-loop in

the sense that feature information is extracted from the

sensor "snapshot" and no attempt is made to actively pursue

the gathering of more information. Such procedures are not

addressed in this work because they are primarily useful

only in reasonably structured environments.



The open-loop procedures contrast with the other class

of recognition and localization problems in which infor-

mation is actively sought by a tactile system. An example

of the latter is where some suitably instrumented

manipulator scans the surface of an object of interest, ob-

tains tactile data, and performs additional planned data

gathering based upon an analysis of the previously obtained

data. The salient description of this (serial) process is:

1. obtain data

2. analyze the data

3. plan where to direct the sensor to obtain more data,

if necessary

4. repeat as appropriate.

A good tactile scanning strategy should provide an

evolving plan or schedule of sensor moves for a system to

make in order to efficiently obtain tactile data of high

diagnosticity. Such a plan bases the next sensor move on

what has been learned from all previous measurements,

including the last. As will become evident in the remainder

of this thesis, a small but powerful set of geometric ideas

is central to the development of such a strategy. Before

proceeding directly to the development of these ideas, how-

ever, we will first explore the issues by way of a simple

example, and then delve more deeply into the nature of tac-

tile information, the notion of features, object representa-

tion and recognition, and the issues of real-world



applications and hardware requirements.

The thesis is therefore structured as follows: The re-

mainder of-this chapter presents a simple example to

motivate the problem and introduce some of the issues.

Chapter Two provides a review of tactile work to date and

explores some of the common object representation and recog-

nition schemes (most of which were developed primarily for

vision work) with critical attention paid to their

suitability in the tactile domain. It is here that a repre-

sentation and recognition scheme is selected and explained.

Chapter Three develops a tactile scanning strategy in a two

dimensional environment, assuming perfect touch sensing

measurements. In Chapter Four the effects of measurement

error are assessed in terms of their impact on system per-

formance and software implementation. The generalization of

the work to include three dimensional objects is discussed

in Chapter Five.

A hardware demonstration system was developed that in-

corporated the ideas presented in this thesis. A descrip-

tion of the system, including the manipulator arm and tac-

tile sensor, and an assessment of performance issues is pro-

vided in Chapter Six.

Conclusions and recommendations for further work are

found in Chapter Seven.



1.2 A Simple Example

Let us assume that there is a stationary 2-dimensional

object in the environment that we can obtain contact

measurements from, and let us further assume that we know it

is one of two objects (see figure 1.1) we are familiar with.

Figure 1.1. Two Simple Object Models

Our job is to determine which object model represents

the real object and what the transformation between model

and world coordinates is by reaching out and exploring the

real object using touch. We are immediately faced with the

following question: What is the nature of our measurements?

If the objects are of different stiffness, we have only to

grope until we contact the object and then simply press

against it and monitor the force/displacement behavior to

recognize the object. We would still be required to explore

the object's surface in some (presumably) intelligent way to

determine orientation. If the objects are stiff and made of

the same material, then we are forced to rely exclusively on

tactile surface exploration for both recognition and



localization.

It is evident that, except possibly for the case in

which the object is smaller than some sensor array (in which

case the sensor might obtain a "snapshot"), tactile

exploration of the object's surface will in general be

necessary. With a contact-point sensor we have to obtain

surface information from multiple contacts between the sen-

sor and the object. If we have an array of sensitive

elements, we can obtain local patches of surface data from

which we might calculate surface properties such as the

local surface normal and surface curvature. (This is nothing

more than a parallel implementation of a single point con-

tact sensor that provides the data in a more serial manner).

In this way we can

of the object with

Let us assume

contact points and

We have to map the

equivalently, fit

unique the job is

be multiple possib

cases the data is

objects,

build up a sparse spatial tactile image

a series of contacts.

, then, that tactile data is comprised of

measured or derived surface properties.

data onto the object models or,

the models to the data. If the mapping is

complete. In general, however, there will

le interpretations of the data. In such

insufficient to distinguish between the

or if it is sufficient to distinguish, we may still

be unable to determine position and/or orientation. Figure

1.2 shows an example of contact data consisting of contact

position (at the base of the arrows) and measured surface

normal (represented by the arrows) which do not distinguish



between the objects. The same data fits each object in only

one way equally well.

A A

B B

C C

Figure 1.2. Non-Distinguishing Data

Figure 1.3 depicts the case where the data distin-

guishes between the objects but we are left with multiple

orientations of the object.

A A

C B C B

C C

Figure 1.3. Non-Distinguishing Data

We must now determine what measurements to make next.

This raises another question: Under what constraints do we

operate? We have to know the relative costs of movements,

measurements and time in order to respond to this question.

If the cost of information processing (processing time,

noise smoothing, etc.) is higher than the relative cost of



moving the sensor (travel time, risky movements in an

unknown environment, etc.) then it is appropriate to seek

distinguishing features wherever they might be. If, conver-

sely, information processing is relatively inexpensive and

long range movements expensive, it might be more appropriate

to explore a local surface. This can be very wasteful, how-

ever. For example, in Figure 1.2, local exploration of the

surfaces at either B or C will yield no useful information.

This lends support to the assertion that in general, a pur-

poseful, active tactile sensing strategy should direct the

sensor to the most distinguishing features available.

As an aside, we make the intuitive observation that in

general, the more complex the objects, the more features

there are available, hence the more likely a random strategy

is to be powerful and successful. It is when the objects in

a set are similar that we find we need a good strategy.

Maximally different objects can possibly be distinguished on

the basis of local surface analysis, whereas minimally dif-

ferent objects are more likely to require global or struc-

tural analysis.

1.2.1 Features

We have used the term feature without rigorously defin-

ing it. One definition (from Webster's) that is appropriate

in our context is that a feature is a "specially prominent

characteristic". For our purposes, the characteristic must



be measurable or derivable from measurements. We therefore

assume a feature to be a measurement (or a quantity derived

from a measurement) that provides us with information. We

notice immediately that this is dependent on the object set

under consideration. For example, in Figure 1.4 the object

set is comprised of objects A and B. Surface normal

measurements from the triangular structure on object B,

along with normal measurements from other parts of the ob-

ject, inform us that the object cannot be object A.

Figure 1.4. Object Set for which surface

normals distinguish.

However, in figure 1.5, simply measuring surface nor-

mals is insufficient to discriminate between objects. Con-

tact position must also be measured.



Figure 1.5. Object set for which surface

normals and associated contact

positions distinguish.

We see, then, that discriminating features depends upon

the composition of the object set. If a scanning strategy

is to be useful, i-t should automatically perform feature se-

lection from among the object models and should require no

more of us than correct models. We should not be required

to select features a-priori (assuming that we are sophis-

ticated and patient enough to do so) and we should be able

to add objects to the object set and delete them at will.

If we are to automate active touch, we must have some

way of representing objects in a computer in a way that is

natural, efficient, and allows for fast processing. While

these may be subjective notions, it is clear that techniques

which require more computer memory than is reasonably avail-

able or routines that take days to run on standard, powerful

equipment are to be avoided. The next chapter reviews many

of the standard representation and recognition schemes in

view of tactile sensing requirements, and describes the one
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chosen for this work.



CHAPTER 2 Recognition and Representation

Our ultimate objective is to produce a strategy for ob-

taining tactile data, but we must first discuss how we plan

to represent objects and how we can recognize them using a

computer. The purpose of this chapter, then, is to briefly

review the previous work in tactile recognition and comment

on why the various methods have proven unsatisfactory, to

discuss various representation schemes that have been devel-

oped (historically, primarily for vision work), and to de-

scribe the representation and recognition methods chosen for

this work. The review is rather brief because there are al-

ready a few very thorough reviews in the literature. The

interested reader is referred to two reviews by Harmon

[1,4], a review by Gaston and Lozano-Perez [35], and a

review by Grimson and Lozano-Perez [27].

2.1 Previous Work in Recognition

There are two major alternative approaches to recog-

nition in the tactile sensing domain: pattern recognition

and description-building and matching. The basic notion in

classical pattern recognition is the notion of a feature

vector [9-13]. The available data is processed and a vector

is created to represent the results of the processing. For

example, the pressure pattern on a tactile array can be

processed to determine the first, second, and higher moments



of inertia of the pattern, and these moments can be used as

the elements of a vector (the feature vector). The recog-

nition process is performed by comparing the feature vector

with previously computed vectors for different objects.

Recognition is typically assumed complete when the feature

vector matches a model vector fairly closely. The matching

criterion is typically the Euclidean distance between the

vectors. If the feature vector does not match any of the

model vectors closely enough, then typically another feature

is extracted from the data and the process is repeated.

Most of the previous work in tactile recognition using

these ideas used either pressure patterns from two dimen-

sional objects on sensor arrays [50,54] or the joint angles

of the fingers that grasp the object [55,56] as the data.

Some work combined the two approaches [57]. There are two

major objections to these approaches. The first is that we

can not expect a two-dimensional sensor array to provide

enough data for recognition of complex three-dimensional

shapes. Furthermore, the range of possible contact patterns

that might arise in practice can be quite large and precom-

putation of them would be impractical. The second objection

is that the range of possible graspings of an object can

also be quite large, which effectively prevents precom-

putation of all possible finger positions and joint angles.

In summary, tactile recognition based on classical pattern

recognition is limited to simple objects, primarily because

of the great cost in precomputing feature vectors for more



complex objects. Another point, expressed in [27], is that

the methods are limited because they do not exploit the rich

geometric data available from complete object models.

A relatively recent branch of pattern recognition

theory is called syntactic pattern recognition and is based

on the observation that object shapes can in some sense be

associated with an object "grammar" or rules of structure

[10]. It has enjoyed some success in two dimensional vision

work but has been relatively unsuccessful in 3-D recognition

because the appropriate grammars are extremely difficult to

devise for even fairly simple 3-D objects.

In description-based recognition methods, a partial

description of an object is built up from sensor data and an

attempt is made to-match the partial description to an ob-

ject model. Approaches have included building the descrip-

tion using multiple contacts of a pressure sensitive array

[58] or from the displacement of the elements in a sensor

comprised of long needles [59,60]. Although the

description-based approach may be more general than the pat-

tern recognition approach in its ability to handle complex

3-D shapes, it suffers from the requirement that a great

deal of data must be obtained. Furthermore, there are few

methods for actually matching the data to object models, and

the methods are computationally expensive.

Most current researchers in the tactile field

implicitly (and I feel correctly) assume that tactile sen-

sors will be integral components of manipulation systems,
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and will be required to impart forces to objects as well as

obtain surface information from them. This will require

some moderate stiffness of the sensors, so we can not assume

that we can ever obtain a great deal of dense surface data

from an object with a single measurement, since that would

require a very soft, easily deformable sensor that can be

draped over a large part of an object. Tactile sensors

useful in manipulation systems will, by their very nature,

provide fairly sparse surface data. While we might obtain

dense surface data from an object by an exhaustive tactile

scan, it is clearly inefficient to do so, because intrinsic

geometric constraints [27] associated with any object can be

exploited to yield recognition and localization with only a

few tactile measurements.

For this reason we assert that classical pattern recog-

nition and description-based techniques that require dense

surface data are of limited utility to the tactile problem.

While the essential goal of of these methods, that of recog-

nizing and localizing an object based on sensor

measurements, is essentially what we wish to accomplish, the

methods available are inappropriate in our problem context.
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2.2 Previous Work in Representation

Automated recognition, or the matching of sensor

data to object models, requires some representation struc-

ture that can be described mathematically or algorithmically

and programmed into a computer. We need some way of rep-

resenting objects that is natural and appropriate to the

data we will obtain. For the case of tactile recognition,

we require a surface-based representation that allows for

fast, efficient processing of sparse data. Representation

structures such as solid modelling (28], oct-trees [30],

generalized cylinders [31,32], tables of invariant moments

[22,23], fourier descriptors [29,38], and such are basically

volumetric representations and generally require extensive,

dense collections of data, and are therefore not particu-

larly acceptable for tactile work.

Surface-based representation schemes have been de-

veloped for use in CAD/CAM systems [33], for object recog-

nition using laser range data [19,27], and for some vision

work [34]. These typically belong to one of two categories.

In the first category, object surfaces are modeled by

patches of parametric surfaces such as quadric polynomials

[19-21], bicubic spline patches [33], Bezier patches and

cartesian tensor product patches [33]. These patches are

typically selected by the analyst and used to build up a

model of an object. An objection to the use of such methods

is that they are computationally very expensive. The local



matching of data to model surfaces is complicated, es-

pecially if there is sensor error.

The second category of surface-based representation

methods is in some sense a subset of the first, but has dis-

tinct features that make it important in its own right.

This method segments an object's surface into planar facets

[17-21,34], where a least squares analysis is made of the

error between the modeled planar facet and the true object

surface. During the modeling phase, planar model faces are

"grown" until the error reaches some prescribed threshold,

whereupon a new facet is started (There will be, admittedly,

a large number of faces in regions of moderate to high cur-

vature using this technique, with a concurrent increase in

model complexity). An important aspect of this representa-

tion is that, during the recognition phase of contemplating

where data might have come from, there is a bounded finite

number of interpretations of the data, i.e., of assignments

of data to faces. This still requires fairly dense sensor

data, but it considerably simplifies the model matching

problem that is so severe in the general parametric surface

representation.



2.3 An Appropriate Representation and Recognition

Scheme for Tactile Sensing

The tactile sensing work of [27,35] employs a represen-

tation and recognition structure that is quite appropriate

in light of the preceding discussion, and is the one chosen

for this work. It uses a surface description that segments

objects into planar patches and assumes that tactile

measurements are comprised of the single point of contact of

the sensor with a face of an object and the surface normal

of the face at that point.

Object representation is embodied in tables of face

vertices, normals, and tables of constraints between dis-

tances, normals and directions between all pairs of faces

for each object. The set of possible assignments of data to

model faces can be structured as an Interpretation Tree

[27], which is quickly and efficiently pruned by first

exploiting the constraints and then performing model checks

on remaining branches to determine what possible positions

and orientations of which objects are consistent with the

data. The method is quite fast and degrades gracefully with

increasing measurement error. It is limited to planar ob-

jects and makes no use of derived properties of surfaces

such as curvature, although it is easily generalized to

include such information. (Such information is useful only

if.it can be reliably obtained. Since curvature is essen-

tially a second derivative, it is quite sensitive to



measurement error, and hence may not be useful if a

numerical value is required. It may be possible, however,

to reliably measure and use the sign of the curvature.)

A demonstration of the method assuming fairly complex

three-dimensional objects, as well as a detailed analysis of

the process, is given in [27]. A presentation of the impor-

tant equations in modified form is given in Appendix 1. We

motivate and discuss the salient points in what follows.

2.3.1 The Interpretation Tree

We assume that the sensed object is one of a number of

modeled, possibly non-convex polyhedra. In the general

case, the object may have up to six degrees of positional

freedom in the global coordinate system. As previously men-

tioned, the sensor is capable of conveying the contact

position and object surface normal in the global system.

The goal of the system is to use the measurements to deter-

mine the identity, positions and orientations of objects

that are consistent with the data. If there are no al-

lowable positions and orientations of a candidate object

that are consistent with the data, we can discard the object

as a contender. Thus, we can solve the recognition process

by doing localization, and we therefore concentrate on that

problem.

Given a set of sensed points and normals and object



models, we proceed as follows:

- Generate Feasible Interpretations: There are

only a few credible mappings of data to faces based upon

local constraints. Mappings of data to faces that violate

these constraints are excluded from further attention.

- Model Test: Only a few of the remaining in-

terpretations are actually consistent with the models in the

sense that we can find a transformation from model coor-

dinates to global (or data) coordinates. An interpretation

is allowable if, when the transformation is applied to the

model, the data lie on the appropriate finite faces, and not

simply on the infinite surfaces defined by the face

equations.

We generate feasible interpretations of the data as

follows. When we obtain our first sensed point, we can as-

sign it to any of the faces of any objects if we have access

to no other information. This is graphically depicted on

what is called the Interpretation Tree (IT) [27].
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0e

Z

Figure 2.1 Interpretation Tree (from [27]).

At each level we have another sensed point, and if we

do no analysis, we can assign that point to any of the ob-

ject's faces. Each branch of the IT represents the in-

terpretation that the sensed point at that level belongs to

a particular face. There is a total of s levels in the

tree, where s = number of sensed points. Since two or more

points might possibly lie on the same face, each node of IT.
J

has e. branches. This essentially represents the search
J

space for feasible interpretations of the data. If we can

perform some analysis to prune away entire subtrees, we can

reduce the number of computationally expensive model tests

to perform.

The number of possible interpretations of the sensed

points is [27]
m

(n. S
i=1

where m = number of known objects

n. = number of faces on object i

s = number of data points.



This can become quite large, which implies that it is

not feasible to perform a model check on every conceivable

interpretation. Note that the number of possible in-

terpretations (possible combinations of assignments of data

to faces) increases exponentially with the number of sensed

points, whereas the set of feasible interpretations is

reduced. We exploit local geometric constraints to exclude

large sets of possible interpretations (subtrees) and gener-

ate the much smaller set of feasible ones.

2.3.2 Pruning the Interpretation Tree

We can make use of geometric constraints to prune the

IT without having- to perform model checks. Although there

are many constraints that can be exploited, the following

three are quite powerful [27]. The reader is referred to

Appendix 1 for a detailed explanation of the constraints and

of the pruning process.

1. Distance Constraint. If we are to con-

template assigning sensed point 1 to face i, and sensed

point 2 to face j, then the distance between points I and 2

must be between the minimum and maximum distances between

any points on faces i and j. See figure 2.2.



2. Angle Constraint. The angular relationship

between sensed normals must be the same as that between the

assigned faces in an interpretation. If we allow for an-

gular error on the sensed normals, the range of possible

angles between the sensed normals must include the angle be-

tween the normals of the assigned model faces paired with

them in an interpretation.

3. Direction Constraint. The range of values

of the component of the vector from sensed point 1 to sensed

point 2 in the direction of the measured normal at point 1

must intersect the range of components of all possible vec-

tors from face i to face j in the direction of the modeled

normal of face i, where faces i and j are paired with sensed

points 1 and 2 in the interpretation. The same must be true

in the other direction, from point 2 to 1 and face j to i.

Note that, in general, the ranges are different in the dif-

ferent directions; this test is not symmetric.

Figure 2.2 Exploiting Geometric Constraints



The application of the constraints has the effect of

pruning entire subtrees of the IT, thereby vastly reducing

the required number of model checks. In general, a few in-

terpretations will survive constraint pruning and model

checking. This means that there is not enough information

in the data to decide on a single interpretation (presuming

the object(s) is (are) not biaxially symmetric, in which

case multiple interpretations are equally correct.)

We perform model checks on the surviving in-

terpretations to insure that the data actually fits on the

finite model faces, and not simply on the infinite faces de-

scribed by the face equations. For each feasible in-

terpretation we calculate the the angle e which rotates

the model, and the translation V0 which translates the model

so that the model matches the data. The transformation

equation applied to each vertex Vm of the model to produce

V in the global system is

V = R V + V
-g -m -0

or 0 1 1 V]

where R is 2x2 and V and V are 2xl for our case. For



our 2 D case,

R = [ ) -sine and 0= [ tr
sin8 cos9)Yt

We find e by computing the difference between the

sensed normal direction and the normal direction of the face

assigned to that sensed normal in the interpretation. If we

allow for measurement error, we calculate e by averaging

the computed differences for all sensed normals.

(Determining orientation in three dimensions is considerably

more complex. See Grimson and Lozano-Perez [27] for devel-

opment.)

We use position and normal measurements to determine

the translation component of the transformation. The devel-

opment of the expression relating these measurements to V0

appears in Appendix 1. The relation is

[k.(Rni x Rnk)]VO = (Rng.V k-d)(R x

(R-k' gk-dk)(k x Rn ).

Again, if we allow for measurement error, we compute V0

for all data pairs and average the results.

We now have to contemplate obtaining another

measurement, and it is here that the notion of a strategy

becomes important. We could simply choose another sensing

direction at random, which might leave us with as many in-

terpretations as we now have, or we can try to choose a path
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which gives us a measurement with highest information con-

tent.

We focus on 2-D objects in order to more clearly

motivate and more simply develop a sensing strategy. The 2-D

representation and recognition case is contained in the more

general 3-D case with no significant change in the process

[35]. The generalization to three dimensions of the ideas

comprising the strategy are discussed in Chapter Six.
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CHAPTER 3 A Sensing Strategy Assuming

Perfect Measurements

This chapter addresses the planning problem associated

with active touch, i.e., determining some "intelligent"

schedule of sensor moves based upon a knowledge of modeled

objects and the tactile information obtained thus far. Spe-

cifically, given that an object is in the environment and is

one of a number of modeled objects, the objective is to

determine the identity, location and orientation of the ob-

ject, using tactile signals only, by selecting the best path

along which to direct the sensor for the next measurement.

The best path at any stage in the process is the path for

which the ratio of the cost in taking the measurement with

the expected gain in information is minimum. We woud.-

typically choose paths for which recognition and

localization would be complete after the next measurement (a

"distinguishing measurement"). If constraints such as

maneuverability or time are important, however, a system

might choose to take somewhat less diagnostic measurements,

but under no circumstances should it take measurements of

zero diagnosticity. Purposeful, directed tactile

exploration should not include making moves when it is cer-

tain that nothing will be learned.

Therefore, the "strategy engine" for a system should

generate three generic families of sensor moves for use by a

higher level strategist, one that itself bases candidate



moves on the strategy engine's output, knowledge of the

physical arm configuration, torque limits, task specifica-

tions, etc.[61j. The first of these is the family of moves

that guarantee recognition and localization with the next

measurement, if such moves exist. The second family pro-

vides suboptimal moves in the sense that there is no guaran-

tee of a distinguishing measurement, but at least something

will have been learned. It will be shown that, assuming

perfect measurements, this family of paths is not null ex-

cept in the case of a single, biaxially symmet.ric object,

where it is meaningless to talk about absolute orientation

anyway. Finally,~the third family contains paths that will

provide absolutely no new information after the next

measurement is made (and thus are to be avoided). It will

be shown that this family is also not null if perfect sers-

ing is assumed.

If one intentionally probes a specific surface in

order to distinguish between objects (which implies that

some minimal amount of information has already been

obtained), one must have an idea of the positions and orien-

tations for all the interpretations in order to decide upon

a path. Therefore, the problem of object recognition and

localization using a strategy contains the problem of ob-

ject localization when the object is known. Hence, to fix

ideas and motivate the method, we will solve the following

simple problem: What are the conditions for generating the

three families of paths, and what are these paths, for the



case of localization of a single, known, planar 2-D object

with perfect measurements of tactile contact positions and

measured surface normals?

3.1 ACTIVE TOUCH: A SENSING STRATEGY

When an automated tactile recognition system begins its

search, there is no more information available than perhaps

that there is an object in the environment. Any strategy

would simply be forced to implement some sort of blind

search. Once contact has been made the situation is dif-

ferent, although the first measurement may not tell us much.

For instance, if we are dealing with planar objects and ob-

tain a point and normal at a face of an object of n faces,

there are n possible orientations with a one-parameter fam-

ily of translations for each orientation. Any other

measurements m such that In..n j1, where n -is the -th nor-

mal measurement, lead to a similar result, although perhaps

the number of orientations and the allowable ranges of

translations may be reduced. The only reliable way to

constrain the interpretations is to obtain at least two

measurements with normals obeying fn|*.2I|l, because then

the translational degrees of freedom disappear.

Some methods for selecting a second measurement point

might include approaching the object from a random direc-

tion, or sliding along the object, or, preferably, moving to

outside the envelope of translations and approaching the ob-



ject in a direction orthogonal to the first measured normal,

along a ray that intersects faces for every interpretation

as close to orthogonally as possible, as shown in figure

3.1.

Figure 3.1 Obtaining a constraining measurement.

Once we have constrained the object we are left with

some finite number of interpretations of the data, as shown

in figures 3.2 and 3.3. The composite image resulting from

overlaying the interpretations will be called the Multi-

Interpretation Image (MII).

At this point it is appropriate to introduce

definitions of the entities we shall be using for strategic

path generation. Denote the enclosed area (volume in 3-D)

of interpretation n by A We will treat all areas (or

volumes) as infinite sets on which we can perform the union

and intersection set operations. See figure 3.2 for visual

support of the definitions.

Definition 1: The area of a single interpretation i is



Figure 3.2 Object and Multi-Interpretation Image
with respect to the data represented
by the arrows .

Figure 3.3 Object and Multi-Interpretation Image.

V_

A



denoted by Ai and is bounded by an Interpretation Boundary.

Definition 2: The area AI such that

A1 = A I A2fn ... fAn

is the Intersection Area of the interpretations with respect

to the data. The boundary containing A is called the In-

tersection Boundary. In two dimensions, it is the boundary

traced out by starting at a data site and travelling along

an Interpretation Boundary in a counter-clockwise direction,

always choosing the left-most path at any fork.

Definition 3: The area AU such that

AU = AIUA 2 U...UAn

is the Union Area of the interpretations with respect to the

data. The boundary containing AU is called the Union Bound-

ary. It is obtained in 2-D in precisely the same way as for

the intersection boundary except that the right-most path at

any fork is chosen.

Definition 4: Any boundary or section of boundary of the

composite multi-interpretation image that is common to more

than one interpretation is called an Overlapping or Blocking

Boundary. For example, in figure 3.4, interpretation bound-

ary AB overlaps CD. The blocking boundary for this

situation is CB.



A B

C D

Figure 3.4 Boundary Segment CB is

a Blocking Boundary.

A blocking boundary has a Degree or Strength associated

with it that is determined by the number of interpretation

boundaries that share it. A blocking boundary is of degree

n-1 when at least n interpretation boundaries are common to

it. In the example above, blocking boundary CB is of -degree

1. For reasons that will become clear later, this

definition allows us to view a high degree blocking boundary

as a lower degree boundary. For example, a blocking bound-

ary of degree 2 (at least 3 boundary segments overlap) can

be viewed as a blocking boundary of degree 1 because at

least 2 boundaries overlap. In general, then, any higher

degree blocking boundary can (and will) be viewed as any

lower degree blocking boundary when necessary.

With these definitions we are now in a position to

introduce some observations that lead to two basic theorems

in strategic path generation.



3.1.1 OPTIMAL PATHS

Optimal paths are those which are guaranteed to lead to

a distinguishing measurement. In order to develop a method

for finding them, an assumption and a series of observations

are made regarding the nature of the measurements.

Assumption: Although we speak of the normal to a surface

at a point, any device measuring a surface normal samples an

area of finite size. Indeed, the surface normal is un-

defined at an edge or a vertex. We will therefore say that

the distance and normal measurements are obtained from a

data patch or site, and this patch is of finite length. (In

3-D, it is of some finite area.)

The following observations 1-3 are considered self-

evident and are stated without proof (refer to figures 3.2

and 3.3). They are useful for automating the determination

of intersection, union and blocking boundaries for 2-D

planar objects. They are true simply because all data

points are common to the interpretations.

Observation 1: Given the multi-interpretation image arrived

at from the constraining data, each data site is a segment

of the intersection boundary.

Observation 2: Given the multi-interpretation image, each
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data site is a segment of the union boundary.

Observation 3: Given that data sites are finite and non-

zero, data sites always lie on finite blocking boundary seg-

ments of degree n-1, where n is the number of in-

terpretations.

Observation 4: There will always be at least one finite,

non-empty intersection area in the multi-interpretation

image.

Proof: Part 1: Finite - The intersection area is obtained

from the intersection of n finite interpretation areas. The

intersection of n finite areas is less than or equal to the

smallest of the areas, which will always be finite.

Therefore, the intersection area is finite, and it follows

that the intersection boundary is closed.

Part 2: Non-Zero - From Observation 1, the data

site is a part of the intersection boundary. Assume the in-

tersection area is zero. Then either the area of at least

one of the interpretations is zero, or at least one inter-

section area does not have a common overlap with the others.

But we know that the areas of the interpretations are all

non-zero, and there is at least one finite data patch (from

the assumption) common to all the interpretations, which

implies overlap to some extent; the intersection area must

be non-zero. //



Observations 1-4 motivate and support theorems 1 and 2,

which form the basis of the sensing strategy. First, let us

view an example. Figure 3.5 shows the object and in-

terpretations from figure 3.2 along with members of the fam-

ily of paths that are guaranteed to produce data unique to

only one interpretation. Notice that for each path, there

are three distinct intersection positions and/or surface

normal orientations at the intersections of the paths with

each of the three interpretations. In this case, each of

the paths is guaranteed to produce a distinguishing

measurement.

Figure 3.5 Paths for distinguishing measurements.

Theorem 1 describes when such families of paths are

available and what distinguishes them from other paths.



Theorem 1: Assuming no measurement error, any path that

originates outside the Union Boundary and terminates inside

the Intersection Area without passing through a Blocking

Boundary is certain to provide a distinguishing measurement.

Proof: There can be no boundaries outside of the union

boundary by definition. Likewise, there can be no bound-

aries within the intersection boundary. Any ray that passes

from outside the union boundary to inside the intersection

boundary necessarily passes from outside to inside the area

of each and every interpretation. In order to do this it

must cross the boundary of each and every interpretation at

least once. If, furthermore, the path does not cross a

blocking boundary, then it crosses the boundary of each and

every interpretation uniyuel at least once. Therefore,

since one of the interpretations is the "true" one, if the

sensor is directed along such a path, it is guaranteed to

touch the boundary corresponding to the true interpretation

and report a unique measurement belonging only to that in-

terpretation. //

Theorem 1 implies that if a certain condition is met,

namely that the blocking boundary is not closed, then at

least one family of paths exists that will provide recog-

nition and localization with the next measurement. It says

nothing about when one can expect the the blocking boundary

to be open. Indeed, the problem of determining whether the
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blocking boundary is open is a very difficult one that I

suspect has no analytic solution. It appears that a

detailed geometric analysis must be performed for every

situation, after every measurement, in order to derive the

nature of the blocking boundary.

Theorem 1 also says nothing about the nature of any

paths that might be found. In the system developed,

straight-line paths are sought. Straight-line paths are not

guaranteed, however, and candidate paths can be curved in

some situations. Finding a path in such situations is es-

sentially a maze-running problem where the blocking bound-

aries act as maze walls. Automating the development of such

paths is beyond the scope of this work.

Figures 3.6 and 3.7 show the results of using the theorem

in a software system that performs the geometric analysis

necessary for path generation. Each figure shows a known ob-

ject along with the multi-interpretation image with

highlighted blocking boundaries. Note path examples for which

distinguishing measurements are guaranteed. Each of these

cases takes on the order of 10 seconds to run on a PDP11/34.

Figure 3.6 Highlighted Blocking Boundaries
with distinguishing paths.



Figure 3.7 Highlighted Blocking Boundaries

with distinguishing paths.

We have assumed nothing about what a single object's

shape must be, other than tacitly assuming closed boundaries

and finite, non-zero area. Indeed, the theorem is equally

valid in the case of multiple objects, where there might be

multiple interpretations of different objects with respect

to the data. Here the full power and utility of the method

become apparent. For example, the difficult problem of dis-

tinguishing between two very similar objects is handled

quite routinely and correctly. As an example, consider the

similar objects A and B in figure 3.8 along with the multi-

interpretation image associated with the constraining data

shown.



A

Figure 3.8 The discrimination of two similar objects.

The appropriate family of paths is easily found.

3.1.2 SUB-OPTIMAL PATHS

Let us now focus on a different problem. There may be

situations in which an optimal path is unreachable or un-

desirable, or it is determined that the blocking boundary is

closed. In any event, we may be willing to settle for a

measurement that is more or less likely to provide recog-

nition and localization in lieu of one that is certain to.

The problem then becomes one of determining such paths and

providing some measure of how likely they are to provide

distinguishing measurements. Theorem 2 is concerned with

this.

Theorem 2: Assuming that each of the interpretations in

the multi-interpretation image is equally likely, any path

originating outside the Union Boundary and terminating in-



side the Intersection Area that passes through each in-

terpretation boundary once and through a single Blocking

Boundary of degree m will, with probability (n-m-1)/n, pro-

vide a distinguishing measurement, where n is the number of

interpretations.

Proof: Consider a path penetrating n boundaries, one

from each of the interpretations, m+1 of which overlap.

Then there are n-(m+l) distinct, distinguishable boundaries

from which. to obtain distinct data. Now, since we are given

equal likelihood of the interpretations, the chances of ob-

taining the "true" data from any chosen one of the n bound-

aries is simply 1/n. The chances of obtaining the "true"

data from any of the non-overlapping boundaries is therefore

equal to the number of such boundaries divided by n, or

n-(m+1)

n

This theorem states that if a path does cross a single

blocking boundary, the chances are reduced that a fully dis-

tinguishing measurement will be made. Equivalently, the

chance of being left with m+1 interpretations after the

measurement is (m+1)/n. This has some interesting conse-

quences. The first is that, since any data site is on a

blocking boundary of degree n-1, any path near the site that



passes through the blocking boundary will generate a

measurement such that the chance of being left with (n-l)+l

= n interpretations is ((n-1)+1)/n = 1. In other words, no-

thing will be learned. The theorem essentially advises us

to avoid taking measurements near data sites. The second

consequence of the theorem is that we can now trade off

movements sure to produce distinguishing data with perhaps

more desirable moves less certain to produce such data.

Such moves might be more desirable because of geometric,

mobility, or time constraints, etc.

A third consequence of the theorem is that we now have

a way of dealing with the case of a low degree closed block-

ing boundary. It should be evident that, except for the

case of a single symmetric object, there can never be a

closed blocking boundary of degree n-1 everywhere, where n =

number of interpretations. The blocking boundaries at the

data sites will be of degree n-1 and extend for some length,

but at other sites the boundaries will be of some lower de-

gree. This means that we have only to shift our attention

to blocking boundaries of higher degree until the single

closed blocking boundary "opens up". In other words, the

path-finding algorithm is applied to the multi-

interpretation image as before, but paths are sought that do

not intersect strength 2 blocking boundaries. At this point

the path-finding routine will generate families of straight

paths (if possible) just as before, only now distinguishing

data is not guaranteed because candidate paths will pass



through degree 1 blocking boundaries. We will, however,

have obtained the best paths available in the sense that the

chance of recognition and localization is as high as pos-

sible. As an example, consider figures 3.9 and 3.10. Here

we have a situation in which the degree 1 blocking boundary

is closed. By simply shifting our attention to degree 2

boundaries we can find a family of paths that, while not

guaranteeing recognition and localization, gives us the hig-

hest probability of such (0.5 in this case).

Figure 3.9 Degree 1 Blocking Boundary is closed.

A

Figure 3.10 Degree 2 blocking boundary is open.

Note in figure 3.10 that the path intersects a single

blocking boundary (shown in figure 3.9). If the path were

to pass through Face A, which is also a blocking boundary,
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there would be no chance of making a distinguishing

measurement. We know a-priori that there would be two in-

terpretations remaining after taking the measurement.

An uniform, discrete distribution of the in-

terpretations is assumed in the statement of Theorem 2.

Clearly, if the physics of the problem is such that some ob-

jects or orientations are more likely than others, then some

interpretations will be more likely than others. If this is

the case, the more likely interpretations should be weighted

more heavily in the analysis. This is discussed in the next

section.

3.1.3 Unequal distribution of Interpretations

Theorem 2 assumes an equal, discrete distribution of

the interpretations and states the probability of obtaining

a distinguishing measurement if the sensor is directed along

a path that passes through a single blocking boundary.

There are certain situations in which the physics of the

problem imply that some interpretations are more likely than

others, however. For instance, consider an object resting

on a plane. Some poses of the object are more stable in the

presence of disturbances than others, and if the object is

randomly thrown onto the plane, one would expect to observe

the more stable poses more often than the less stable poses.

It may also be that some faces are more likely to be sensed

than others (randomly oriented object and random sense



directions), which also affects the probability of occur-

rence of the various interpretations.

Under such circumstances it is appropria'te to assign

unequal probabilities to the various feasible in-

terpretations one might obtain. This is a more general case

and includes the uniform case as a subset.

We treat the problem by weighting boundaries associated

with more likely interpretations more heavily than bound-

aries associated with less likely ones, and by slightly

changing the definition of blocking boundary strength. Con-

sider figure 3.11, which shows a fragment of a multi-

interpretation image (MII) through which we contemplate

directing the sensor. Each boundary segment is from a dif-

ferent feasible interpretation and is labeled with the prob-

ability of occurrence of that interpretation. The two left-

most boundary segments are drawn so that they may be seen

separately but they are assumed to overlap and be of the

same orientation. Since the interpretations are considered

to be mutually exclusive events, the probability of obtain-

ing a distinguishing measurement (P(DM)), that is, of con-

tacting one of the two non-overlapping segments, is simply

the sum of the probabilities of their occurrence, or P(DM) =

0.2.
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Figure 3.11 MII fragment.

In figure 3.12, the probabilities are assigned dif-

ferently, and P(DM) = 0.8.

0.1 0.1 0.7 0.1

IA

Figure 3.12. Same MII Fragment with Different Prob-

ability Distribution

Clearly, one would direct the sensor through the

location depicted in figure 3.12 in preference to the one

depicted by figure 3.11 because P(DM) is higher in figure

3.12. If we redefine blocking boundary strength as the sum

of the probabilities of the boundaries comprising the block-

ing boundary, then the strategy remains the same; find the

path(s) for which the strength of the intersected blocking

boundary is minimum.

0.7 0.1.

onI



Figure 3.13 shows a case where, even though the block-

ing boundary is comprised of three boundary fragments, it is

better to direct the sensor through this fragment than

through the one depicted in figure 3.11.

0.1 0.1 0.1 0.7

Figure 3.13 Relatively low strength blocking boundary.

3.2 Implementation

This section presents blocking boundary generation and

path generation algorithms and discusses general imple-

mentation issues. All of the algorithms were developed

using computational geometry (explicit manipulation of

boundary vertices), and I point out some of the problems

related to the "special cases" that always seem to arise

when using the geometric approach. This material is here

for completeness, and the reader interested in implementing

the ideas discussed in this thesis are advised that it is

very difficult to avoid algorithm failure due to unforeseen

circumstances when using the geometric approach. Instead,

the MII should be discretized using the idea of cellular

decomposition [28] as discussed in the next chapter.
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3.2.1 Blocking Boundary Generation

We present the case where all interpretations are as-

sumed equally likely (The generalization to the case of une-

qual probability of interpretations is straightforward).

The implementation of these ideas on a computer was per-

formed by first generating the feasible interpretations of

the data by constraint pruning and model checking (Chapter

Two). The interpretations are described by ordered lists of

vertices in global (or sensor) coordinates. These vertex

lists were fed to a routine that generates blocking boundary

vertices according to a blocking boundary "algebra", the ex-

planation of which follows. In order for any two boundary

segments to contribute to a .blocking boundary, they must

have the same normal and overlap.

One can intuitively visualize the process by imagining

the interpretation boundary segments to be made of opaque

glass. As the boundaries are stacked on top of each other

(allowable only if they have the same orientations) and one

looks from above or below at some light source, boundaries

of strength 1 will be a degree darker than boundaries with

no overlap, boundaries of strength 2 will be a degree darker

than strength 1 boundaries, and so on. Each of the bound-

aries is identified in the system by endpoints and strength.



Assume the interpretation image in the lower left of

figure 3.14. It is comprised of single interpretations of

each of three objects. To show the method, we develop the

blocking boundaries from the boundaries with surface normals

pointing downwards. The boundaries from object A are com-

bined with the boundary of object B to produce the inter-

mediate results shown. The result is a lengthening of one

of the interpretation boundaries and the creation of a

strength 1 blocking boundary. The boundary from object C is

then introduced for analysis. The result is one long multi-

interpretation boundary, the lengthening of the previous

strength 1 blocking boundary, the creation of another

strength 1 blocking boundary, and the creation of a strength

2 blocking boundary.
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3.2.2 Path Generation

Once the multi-interpretation-image (MII) has been

created (with associated blocking boundaries) we can search

for sensing paths. The best paths are those that originate

outside the union boundary and terminate within the inter-

section area without intersecting the blocking boundaries of

interest. The process is easily visualized in figures 3.15

and 3.16 below.

IA B

A

Figure 3.15 Path examples.

IA -

Figure 3.16 Path determination.

Paths A and B are members of the family of paths for

which minimum strength blocking boundaries are not inter-

sected. In order to compute them we can imagine a lumines-



cent intersection area that projects light through the open-

ings in the boundary as in figure 3.16. We can think of the

openings in the boundary as "windows" through which we must

direct the sensor. Since the sensor is presumably of some

finite size, we should direct the sensor through the center

of a window if the opening is large enough. The best entry

angle is obtained by requiring the path to be as close to

normal to the opening as possible and still enter the inter-

section areas, because the projected size of the opening as

it appears along the path is greatest for such an angle.

(If necessary, we could take into consideration the effec-

tive diameter of the sensor and the entry angle by using,

for example, the configuration space approach of Lozano-

Perez [62].) There are many problems associated with the

actual implementation of this approach, however. One arises

as shown in figure 3.17. In this case the sensor is

directed along a path that places it on a potential discon-

tinuity (one of the interpretation vertices).

Figure 3.17 Sensor directed toward discontinuities.

Presumably situations such as these can be checked for



but the check is difficult to make. (If object discon-

tinuities are included in the representation as features and

the sensor is capable of measuring them, then of course

there is no problem.) A more serious problem arises when

one tries to develop algorithms for determining windows. As

shown in figure 3.18 an algorithm that searches for windows

by sweeping a test ray through 3600 at intersection area

vertices and monitoring when the ray is blocked and not

blocked will have problems when blocking boundary vertices

are colinear with the sweep vertex. If the point D is a

fraction above B (by the smallest number representable by

the computer), then the vertices A and C will define a win-

dow. If D is lower than B, then A and B will define a win-

dow. This shifts the location of the window center and ef-

fectively defines two different windows.

window if window if
D >B D <B

AY Al
Cy v

C Blockingy B +. 4-*Boundaries D

IA vertex

Figure 3.18 Computational geometry problems.

Another implementation problem arises when one tries to

simulate the "luminescent" intersection area in real time.

Loosely speaking, we are interested in determining where the

blocking boundary casts shadows on some enclosing container.



These are areas from which no paths may emanate. The illu-

minated areas contain an infinite number of allowable paths,

only one of which (for each window) meets the criterion of

passing through a window center as close to perpendicular as

possible. It is surprisingly difficult to implement this

rather trivial geometric construct algorithmically. The im-

plementation that was finally selected considered all pair-

ings of effective window vertices with all intersection area

(IA) vertices. Windows were tallied for each IA vertex and

a list was kept of all IA vertices associated with the vari-

ous windows. In this way the aperture angle for each window

could be obtained and used for the final selection of entry

angle. Problems arise when an intersection boundary vertex

coincides with a blocking boundary edge vertex. (The algo-

rithm must allow an IA vertex to play the role of a window

vertex. The details become very tedious.) Similar con-

sideration must also be paid when a disconnected segment of

blocking boundary exists. Both of these cases appear in

figure 3.19.

Figure 3.19 Further computational geometry problems.



There are many geometric computation problems like

these that arise when the analysis is carried out

analytically using vertices. The problems are exacerbated

when one considers the generalization to three dimensional

objects, and of course the analysis becomes extremely dif-

ficult when one allows curved boundary segments. A poten-

tial solution to this problem is presented in the next chap-

ter where we investigate the effects of measurement error.

In summary, we have developed a method for determining

strategic moves of a tactile sensor, assuming perfect

measurements, that addresses some of the issues discussed in

the beginning of this chapter. We can find straight paths

that guarantee distinguishing measurements, if such paths

exist. We have determined that some paths are clearly bet-

ter than others from the viewpoint of the probability of

recognition and localization, and have a reliable meth-

odology for finding them. Finally, we can determine what

measurements not to make, such measurements being a waste

of time. The system that has been developed demonstrates

that the process can be performed in real-time in the ab-

sence of measurement error.

The inclusion of error on the measurements, however,

results in uncertainty about the positions and orientations

of the interpretations. This necessarily affects the analy-

sis and we focus attention on it in the next chapter.



CHAPTER 4 Strategy in a Real Environment:

Measurement Errors

The previous chapter assumed no error on the positions

and orientations of the interpretations after model check-

ing. In this chapter we recognize that errors on position

and normal measurements give rise to errors in the transfor-

mations from model to global coordinates, and hence to un-

certainty in the positions and orientations of the in-

terpretations. We show how these uncertainties can be

included in the multi-interpretations image and how they

influence the performance of our strategy. Also an alter-

native representation of the multi-interpretation image

which eliminates the problems of computational geometry al-

luded to in the previous chapter will be presented.

Measurement error results in uncertainty n the com-

puted positions and orientations of the feasible in-

terpretations in the interpretation image. Bounds on the

uncertainties due to contact measurement errors and surface

normal measurement errors are described in the next section.

Section 4.2 describes how to include the uncertainties for

each interpretation in the interpretation image. Section

4.3 discusses the methods chosen for implementing the ideas.

A method for representing the interpretation image in a way

which allows for considerable simplification of computation

algorithms is described.



4.1 Bounds on Transform Error

Grimson (5] investigated the effects of measurement

error on the computation of the transformation matrix for

the general 3-dimensional case. The results of the analysis

for the specialized 2-dimensional case is presented here.

We assume (See Chapter 2) that a vector in the model

coordinate system, Vm, is transformed into a vector in the

global system, Vg, by the following transformation:

V = R V + V
-g -m -0

or V R iV 0 V
10 1 1

where R is 2x2 and Vg and Vm are 2x1 for our case. For

our 2 D case,

R [cos -sin8 and V = x tr
sin8 cose Ytr

where e is the counter-clockwise rotation angle through

which the vector is rotated and xtr and ytr are the x and y

translation components, respectively, of the vector. Two

dimensional specialization of the work of Grimson shows that

the upper bound on Ae, the angle error, is:

Ae ~- +
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nm > En = cose

and where

nm is the true unit normal vector of the object face,

ns is the measured unit surface normal

+ is the included angle of the surface normal error cone

associated with the measurements.

This says that for the 2-D case the worst case error in

the rotation component of the transformation is simply the

error cone associated with the normal measurements. T1-IS Is

sensible because we know that e is obtained by clustering

the differences between measured and modeled surface normals

for each interpretation, and that in the worst case all

measured normals can simultaneously be in error by the same

amount $, with the result that the computed value of e

will be in error by .

The error associated with the translation component of

the transform was also obtained by Grimson (5]. The form

for V 0 in three dimensions is obtained in a similar way to

that shown in Appendix 1 and is given by

. j( x nk)] = ('-d.)(n. x n)

+ (n.P -d.)(n' x n') (4.1).-Ij -j j-k -

+ (kPk-dk)(ni x n,)
S-j

where n , is a face normal in model coordinates, n' is the

transformed normal in global coordinates, P. is the



position of the contact point in global coordinates, and

dg is a constant offset for face i. The error ranges

are considered for each of the components

d x n)

separately. Grimson shows that the upper bound on the mag-

nitude of the error is given by

[s sinc - (s+&)sin(c-2$)]2 + (s+A)2sin(2c)sin(4+) (4.2)

where

s = nJ.P, - dk

A <1C + 12 /2,I '-FE

cosc = n'..nJ k

= contact point in model coordinates

Cd = distance error

C = surface normal error

As 0 tends to zero the bound reduces to jAsincl.

This expression itself tends to zero as Ed does, so that

the error in the computed translation tends to zero as t.he

error in the measurements do, which is a result we expect.

If we further restrict ourselves to the cases where faces

are roughly orthogonal, then c z n/2 (cosc z 0) and the

bound becomes

Is - (s + A)cos(20)1.

We note that the result is the same in 2-D as it is in

3-D by observing that the bound is computed for each com-



ponent in Eqn.4.1, where we deal with two instead of three

components.

4.2 Bounds on Computed Positions and Orientations

We now investigate the effects of the transform error

bounds on the orientation and location of the in-

terpretations and discuss how this impacts the analysis of

path generation. The effects of uncertainty will be shown

to be equivalent to a widening of the boundaries of each in-

terpretation. These widened boundaries will be used in the

multi-interpretation image.

4.2.1 Effects of Orientation Uncertainty

We consider a single interpretation without loss of

generality. Figure 4.1 shows a simple example of the effect

of orientation uncertainty for a single interpretation of a

box.

Figure 4.1 Orientation uncertainty.

The true orientation lies somewhere between ±0/2 of
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the nominal.

If angular error were the only error, we could say that

the true boundary lies somewhere within the union boundary

and outside of the intersection boundary of the multi-

interpretation image shown. Even for the single object

shown, the shape of the allowable interpretation region is

irregular and difficult to describe analytically. It is far

easier to use the following conservative approach: Deter-

mine the vertex most distant from the model origin (the

"center" of the object) and determine the distance between

its endpoint positions as the interpretation is rotated from

nominal - V/2 to nominal +0/2. This distance is the

greatest error of position of any boundary point of the in-

terpretation due to orientation uncertainty. Consider an

error disk with this distance as the diameter and place it

on the distal vertex, where it just encloses the allowable

extreme vertex positions. Then run the disk along the

boundary of the nominal interpretation interpretation as

shown in figure 4.2. The interpretation boundary must lie

within the region swept out by the error disk.

"N N

True Boundary Must Lie Within Swept RegionFigure 4.2



This is a conservative method in that it applies the

worst case error to the entire interpretation boundary. For

objects with large aspect ratio and sufficiently large &,

this can have the effect of eliminating the interior of the

interpretation and preventing the existence of a non-zero

intersection area, as shown in figure 4.3. In such cases, a

more elaborate and less conservative analysis must be per-

formed. Fortunately, this can be determined off-line, and

only those objects with the problem need be handled dif-

ferently. (Methods for doing this are beyond the scope of

this thesis.)

Figure 4.3 Prevention of intersection area.

A sense of the order of magnitude of the error disk may

be obtained by considering a square object with 12 inch

hypotenuse and 10* error on the measurements. The error

disk diameter is diam ~ 6.0 * 0.175 = I inch.
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4.2.2 Effects of Translational Uncertainty

The development is precisely the same as in 4.2.1. The

analysis is simplified by the fact that we can choose any

vertex for analysis. Conservatively, simply choose the lar-

gest member of the set of errors, Eq. 4.2, for each direc-

tion and each data pair, and use it as the diameter of an

error disk that sweeps out an area in which the true in-

terpretation must be found. Figure 4.4 shows a simple

example. In figure 4.4a, the dashed outer boundary

delineates the limits outside of which no boundary will be

found, while the inner

A B

Figure 4.4 Translational error bounds.

boundary delineates the inner limits. In Figure B an error

disk of diameter e/2 conservatively sweeps out the region.

For this example, if we assume errors in contact position

measurement to be on the order of 0.1 inch, the error disk

diam z 0.14 inch. Note that the translational error disk

does not depend on the relative size of the object, whereas

the rotational error disk does.



4.2.3 Combining Uncertainties

We combine rotational and translational uncertainty by

creating an error disk with diameter c, = C a + : d

where ea is the diameter of the error disk associated

with angular uncertainty and c d is the diameter of the

disk associated with translational uncertainty. The area

swept out by this disk as it travels around an in-

terpretation is certain to enclose the entire boundary of

the interpretation. as long as we have properly characterized

the errors.

The use of an error disk is geometrically appealing but

computationally burdensome because we can no longer simply

deep track of vertices; there are curved boundaries that

must be represented. We avoid this problem by "growing"

each 2-D linear face. The face is widened by c, and

each end is lengthened by t/2. Each face is then rep-

resented by four corner vertices. This is more conservative

than using an error disk because more area is swept out by

"squaring out" the rounded corners; the swept area still

encloses the interpretation.

Figure 4.5 demonstrates the effect of increasing total

error on the multi-interpretation image. Note the shrinkage

of the intersection area. Note further that smaller

features become less defined as the error increases, and

blocking boundaries become blocking regions and can assume

complicated 2-D shapes.



Figure 4.5

A - no error
B - 2% error
C - 10% error
D - 17% error

Percent error based on effective
object diameter.
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4.3 Implementation with Transform Error

The inclusion of transform error in the analysis places

extra burden on computer memory requirements and algorithm

complexity if we continue using geometric entities such as

vertices for representation. Each face of each in-

terpretation requires four representative vertices after

error growing, and blocking boundaries can assume complex 2-

dimensional shapes with no easily obtainable strong upper

bound on the number of vertices required. Furthermore,

checking for path obstruction is cumbersome when blocking

boundary areas are represented as (necessarily) ordered

lists of vertices. For this reason the problem is

discretized and mapped into a grid (cellular decomposition

[28]). This allows the establishment of multi-

interpretation images, intersection volumes and blocking

boundaries using simple addition and subtraction operations

on the grid. The entire strategy is then performed by in-

vestigating the grid.

4.3.1 Discretization of the Multi-Interpretation Image

The first consideration is the spatial resolution of

the grid. There is an obvious qualitative positive rela-

tionship between MII detail and the number of elements re-

quired in the grid. Unfortunately, memory requirements (and

in some sense processing time) increase as the square of the



size of the grid. There must therefore be some trade-off

between desired spatial fidelity and reasonable computer

resource requirements.

There is a somewhat subtle point with regard to this

issue that is worth dwelling on for a moment. The necessary

spatial.resolution of the grid is a function of the object

set and sensor accuracy. Since we will be mapping the MII

onto a grid, there will necessarily be a loss of detail, and

we must be sure that the spatial resolution of the grid is

sufficient to adequately preserve important object features.

We also realize that we need not preserve features so small

as to be unmeasureable by our sensor. The analyst must

therefore exercise some judgement and perhaps experiment

with different spatial resolutions in order to strike a good

balance between computer resource use and acceptable perfor-

mance of the method. For the work described here a square

70x70 grid was used with very good results for the simple

objects used.

4.3.2 Scaling and Mapping the MII onto the Grid

We have to scale the MII to fit into the grid with

enough room left to perform the boundary growing process as-

sociated with uncertainty. The vertices of the MII in

global coordinates are related to the vertices in grid coor-

dinates by the following transformations (see Appendix 2 for

equation development).



In the forward mapping,

A/A
=0

L0

x-gr

0

A/A

0

A/A(et - X glmin) + 1

A/A(ct - yglmin) + 1 Xg1

*1I

where

= A(B+2)/(A+2et)

= grid size = 70

= max(Axniax' Amax)

t = diameter of total uncertainty disk.

In the reverse mapping

A/A

X~g = D~ IC- Ngr =0

L0

0 -Ct - A/A + xg1min

A/A -t - A/A + xglmin -g'

0 1 J

The effect of the forward transformation is to take the

MII in global coordinates and scale and position it so it is

centered in the grid and will have room enough for the

boundary growing process. By allowing it to fill the grid

we retain as much detail as possible.

The reverse transformation is necessary when any sensor

paths found in the graph system must be converted back into

the global system so that the system may direct sensor movement.
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4.3.3 Boundary Growing

We present the development of boundary growing here for

completeness.

The boundaries of the MII are lengthened by c%/2,

where c is the effective error disk diameter, and each

boundary is widened by an amount t. We wish to deter-

mine points a, b,

A
r

x-l1

Let

Then

r = 2 -x1

fE t
e =x 2 + -

4Et
- -1 2

c and d shown in figure 4.6.

A

d e"*
- c

-2

a

f % b

Figure 6 Face growing.
r

A
r(Axy), r

A
r

A A A A A
Now, p = r x k = (r, -r

Therefore,

Et
a=f -

Et
b =f + 2

- - 2

Ct
c =e +

d = -

I X

k out of plane
of paper



These points are used as rectangular corner points on

the grid so that the associated defined rectangle for each

face of each interpretation may be filled in.

4.3.4 Developing the MII on the Grid

We are finally in a position to construct the multi-

interpretation image on the grid. It is here that advantage

is taken of simple grid operations to determine blocking

boundary extent. Recall that a blocking boundary exists

only when two or more boundaries simultaneously overlap and

have the same normals to within angular sensor error.

We use two grids, one on which the MII is built

(MGRID), and a working grid (WGRID). We start by adding all

grown faces for every interpretation into MGRID, and then

setting all nonzero grid elements to a 1. The result is the

MII with no blocking boundary information. We next consider

the first face of the first interpretation and fill it into

WGRID. (Each grown face is delineated by 1's surrounded by

O's). We then add to WGRID all other faces of this in-

terpretation and of all other interpretations whose surface

normals match the first face to within sensor error. What

WGRID holds after this operation is an image of all

similarly oriented faces of the MII. WGRID is zero where no

faces appear, 1 where a single face appears, and greater

than 1 when faces overlap. The areas where WGRID (I,J) > 1



are blocking boundary regions, and we wish to increment

MGRID locations by the blocking boundary strength of the

corresponding WGRID locations. We do this by decrementing

all nonzero elements of WGRID and sum WGRID to MGRID or,

equivalently, we let

MGRID(I,J) = MGRID(I,J) + MAX(O,WGRID(I,J)-1) (4.3)

The next step in the process is to look at the next

face of the first interpretation. If the surface normal is

different from the first, we perform the same analysis for

the rest of the faces in that interpretation and all the

faces of the rest of the interpretations. In this way we

step consecutively through all of the interpretations, only

considering faces with surface normals different than any of

the preceding normals. When we are finished MGRID contains

the multi-interpretation image, complete with blocking

boundaries.

Figures 4.7 and 4.8 show examples of the results of

this analysis for various errors E t and various blocking

boundary strengths.

Note the regions in figure 4.7 where the blocking

boundary is of greater strength than expected (at the

"corners"). These regions are the result of the summation

process and represent the overlap of blocking boundaries

with different orientations. We could develop methods to

prevent the occurrence of such regions, but we may choose to
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view their occurrence as serendipitous insofar as they rep-

resent "zones of confusion" about the location of vertices.

If we employ a sensor that measures surface normals we will

experience problems obtaining measurements at vertices be-

cause the surface normal is undefined there. It is

therefore advisable to avoid such regions when taking

measurements, and in this work we allow the blocking bound-

ary regions to advise us of their existence.

If we object to the existence of artificial blocking

boundary regions, we need only change equation 4.3 to read

IF MGRID(I,J) = 1 THEN

MGRID(I,J) = MGRID(I,J) + MAX(O,WGRID(I,J)-1)

ELSE IF MGRID(I,J) < WGRID(I,J)-1 THEN

MGRID(I,J) = WGRID(I,J) - 1

in this way we add in the blocking boundary, replace

values, or do nothing, whichever is appropriate.

There are two situations where we would object to the

existence of such "artificial" blocking boundaries. The

first is when we use a sensor that actually measures discon-

tinuities (edges), where it is appropriate to use measured

vertex information. The second is a bit more subtle. All

of the object shapes used here have had "hard" edges in the

sense that vertices represent true corners. In situations

where we approximate smoothly curved surfaces by many



straight segments we would observe artificial blocking

boundaries at the connections of some of the segments.

There is nothing to be gained by allowing the existence of

artificial boundaries in this case because the true faces

are smooth. In this case we would be ignoring valid

measurement areas on the object.

4.3.5 Path Generation

Once we have obtained the complete MII we search for

paths using the same rules as presented in Chapter 3. We

try to find paths from outside the union boundary which ter-

minate within the intersection area without passing through

a blocking area. If no such paths exist, we seek paths

which intersect single blocking boundaries. We note as an

aside that we assume that we can distinguish between sepa-

rate blocking boundary regions as a path is traversed. As

it has been developed here, the grid contains no explicit

information of this sort per se, and some rule can be for-

mulated such as: If, when you travel along a path, the grid

values change from blocking boundary to "clear" and back to

blocking boundary, then you have intersected another block-

ing boundary.

A complete analysis may now be made as described in

Chapter 3. We determine the intersection area(s) and deter-

mine the "windows" between the blocking boundary areas

through which we establish paths. For what follows, how-
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ever, we simply search for paths that terminate at the

centroid of the intersection area, providing the centroid is

contained within the area. If there is more than one area,

we search for paths that terminate at the centroid of each.

The primary reason for this restriction is that we are in-

terested in very fast performance. We pay for this by ig-

noring potentially highly diagnostic paths that may not be

directed at the centroid.

We therefore proceed as follows. We determine the in-

tersection areas and their centroids (see Appendix 4 for an

explanation of how they may be determined simultaneously).

From each centroid we imagine a ray that extends to the grid

boundary. Starting at a ray orientation of 0* (along the x-

axis), we sweep the ray through 3600 while continuously

monitoring when the ray is obstructed by a blocking boundary

region of the strength of interest. We then bisect the

included angles between obstructing zones and use the

results as paths (see figure 4.9).

obstructed
zone

Figure 4.9. Paths to Centroid of IA through

Unobstructed Zones
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If no paths are found, we shift our attention to higher

strength blocking boundary zones as before. We will even-

tually obtain a path or paths that will be the most diagnos-

tic straight paths to the centroid along which we can direct

the sensor.

Figure 4.10 shows some familiar examples with paths

generated in this way. Note that, as the error increases,

there are in general fewer paths found.

The siutoni odifrn we enetgaeml

.~~~~~~ .......... .

tiple interpretations of multiple objects. Figure 4.11 shows

two objects, the left of which is assumed to be the "true"

one. Figure 4.12 shows assumed data, the resultant MII, and

contending paths for the next measurement.



Li] Li
Figure 4.11 Object set.

Data

Path

Data

Path

Figure 4.12 Data, MII, and available paths

for the objects of figure 4.11.

4.3.6 Simulation Results

Simulations of a random sensing strategy and the

strategy presented in this work were performed for com-

parison purposes. The simple object on the left in figure

4.11 was used for the first two simulations. Further

simulations were run assuming the object set of figure 4.11;

the "true" object was again the left object of the figure.

Note that for all cases an error disk of 10% of the effec-

tive object diameter was used.

NO
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EXPERIMENT I. This experiment simulated the perfor-

mance of a random strategy on the localization of a single

object. Sensing rays were directed toward the object center

from random directions, and the position of the point of in-

tersection of the ray with the outermost object boundary,

along with the surface normal at that point, were fed to the

recognition and localization routines. In all cases the

true object position was the same.

The results of running 469 recognition and localization

cases are shown in Table 4.1. The numbers in each box rep-

resent the percentage of the total number of cases run that

a particular number of probes were required for recognition

and localization. For experiment I, for example, more than

ten probes were required for thirty percent of the cases.

Note that this percentage would decrease for more

complicated objects.

Table 4.1 Simulation results

Required Number of Measurements

2 3 1 4 5 6 1 7 8 9 110 >10
Exp I

Exp II

Exp III

12 13 10 9 6 5 4 6 4 30

5 29 34 32 - - - - - -

4 19 25 52
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EXPERIMENT II. This experiment simulated the perfor-

mance of the strategy presented in chapters 3 and 4. Again,

the single object on the left in figure 4.11 was the assumed

object, and the number of probes required for localization

was recorded for each case. The experiment was conducted by

first choosing a sense ray toward the object center from a

random direction and obtaining the sense data as in experi-

ment I. The second sense point was obtained by choosing a

sense ray orthogonal to the first. If the resulting sensed

normals were parallel or anti-parallel, another ray was

chosen with random direction. (This actually never happens

with the object chosen. This was a test in the simulator to

insure that the number of interpretations was constrained.)

The data was then presented to the recognition and

localization routines. The strategy routines then deter-

mined what the next sense path should be by selecting at

random from among the most highly diagnostic family of

paths.

The results of 115 cases are also shown in Table 4.1.

In this experiment the effect of the strategy is clear.

There were no cases for which more than five probes were re-

quired. Intuitively, this is correct, since the strategy

essentially hunts for a measurement from the triangular

structure on the object. At worst, only five measurements

are necessary: two to constrain the interpretations and

three probes to determine where the triangular structure is.



Note that a fourth probe is not required because the pre-

vious three will have eliminated all but the final in-

terpretation.

EXPERIMENT III. This experiment simulated the perfor-

mance of the strategy for recgonition and localization as-

suming the object set of figure 4.11. The "true" object was

the same as in the previous experiments. This experiment

was conducted as experiment II was except for the number of

assumed objects.

The results of 116 cases are shown in Table 4.1. The

performance of the strategy is still quite good when com-

pared to the random strategy. The maximum number of probes

was still five, but this maximum was required in more of the

cases. Intuitively, we would expect that more probes would

be necessary because of the extra interpretations for the

extra object at each stage. We would not expect the same

maximum number of probes with the addition of extra objects,

however. Further simulations of more complex objects would

probably show a small increase. The reason for this is that

we would expect extra probes to be made to prune the extra

branches of the interpretation tree due to the extra ob-

jects. The fact that the maximum number of required probes

was the same in experiments I and II points out the ef-

ficiency with which the strategy effectively prunes the in-

terpretation tree.
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CHAPTER 5 Hardware Demonstration System

The two-dimensional case was implemented in hardware in

order to investigate the kinds of problems that can arise

and the issues that affect successful performance. The setup

consisted of a PDPll/34 computer, a master/slave

manipulator, an object jig and associated objects, and a 2-D

tactile sensor and associated electronics. Objects were

thick (3/4 inch) "2-D" plywood shapes that were mounted on

the jig and could be spun about their centers and clamped

into position.

Measurements were taken when the arm brought the sensor

tip into lateral contact with an object's edge. All move-

ments around the object took place along a predefined "safe

circle" within which the object was guaranteed to be

located. This circle served as the delineator for the

manipulator workspace in the plane of the object. All con-

tact measurements were initiated from the circle.

The first measurement was obtained by a lateral move-

ment of the sensor to the left from the 0* point on the

circle, and the object was always positioned so that contact

was guaranteed. Once contact was made, the sensor was

removed from contact, recalibrated at zero load, and brought

back into contact until a force threshold was met. The

recalibration helped to combat angular measurement errors

introduced by differential drift in the two instrumentation

channels.



The second measurement was made downward from the 90*

point on the safe circle. (Again, contact was always

guaranteed). At this point the algorithms for strategic

path generation were invoked. All suitable paths were

directed toward the centroid(s) of the intersection area(s).

The system selected the path whose associated path ray in-

tersected the safe circle closest to the sensor position.

Figure 5.1 on the next page shows the system at various

stages during the recognition process for a single modeled

object.

For this case object recognition was not important (the

object was known). The system was required to determine

position and orientation only. Notice that, as one would

expect, the system probed for the triangular feature on the

object. For each measurement after the first, the monitor

shows the multi-interpretation image with blocking bound-

aries and paths. The blocking boundaries shown are of a de-

gree such that openings are available and paths can be

found.

Figure 5.2 shows a similar sequence for the case of

multiple modeled objects. Here the system had to determine

which of two objects was in the environment as well as its

position and orientation. Note that, as expected, the

behavior changed with the inclusion of a new object model.
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Measurement Sequence for a Single Object.
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Figure 5.2

Measurement Sequence for two Modeled Objects.



5.1 E2 Master/Slave Manipulator

The E2 master/slave manipulator is a six degree-of-

freedom (DOF), bilateral, force reflecting manipulator sys-

tem, developed during the early 1950's primarily for the

purpose of manipulating hazardous substances in nuclear hot

rooms. The two arms communicate electronically and the con-

nection can be electronically severed to allow for independ-

ent computer control of either arm.

Control of the E2 is somewhat complicated by the

separation between the fourth and fifth degrees of freedom

(Figure 5.3). This offset is about 1.5 inches. Such off-

sets are typically designed into human-controlled

manipulators to help prevent gimbal lock during

manipulation. However, it prevents us from finding a

closed-form solution to the inverse kinematics problem,

which means an iterative solution is required. (Computer-

controlled manipulators are usually designed so that the

last three axes of rotation intersect at a point. This can

simplify considerably the inverse kinematic solution because

the 6 DOF problem can be broken down into two 3 DOF problems

[39].) A fairly fast approximate solution to the inverse

kinematics of the E2 appears in [40], where the arm is first

analysed as if the offset were not present, and a correction

is made to the resulting solution.

The links of the arm are controlled by cables that are

wound on capstans mounted on servo motors at the base of the
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arm. These cables act like springs when loaded, and the arm

has a very high compliance as a result. When all joints are

"locked" there is considerable hand deflection (about 1

inch) when reasonably small loads (less than 1 lb) are im-

posed. There is also considerable backlash in the wrist

gearing which allows for around 10* of play in the hand.

The combination of these results in considerable error in

measured position (about 1 inch) when the arm is under load,

and error in measured normal (about 10*) in addition to that

of the sensor itself.

Further errors arise when the arm is in use for any

length of time greater than about 10 minutes. Joint angles

are inferred from servo motor angular positions which are

measured by potentiometers mounted on the motors. The

motors become quite hot during use and heat the poten-

tiometers to the point that there are significant

measurement errors. Although I did not analyse these errors

in any depth, they were significant enough to cause recog-

nition failures, even with allowable modeled position error

of twenty percent. The solution to this problem was to shut

the system off and allow it to cool before attempting anoth-

er trial.

All of these errors taken together presented a formid-

able challenge to the methods. The fact that the methods

were at all successful points out their power. We recog-

nize, of course, that more complex objects with feature

scales on the order of or smaller than the accumulated error



are likely to cause recognition failure or indecision, no

matter how many measurements are made.

There is one interesting aside to be made here. The

arm compliance actually prevented recognition failures when

the sensor was placed on protruding vertices. If the arm

were stiff, the sensor would likely measure a surface normal

that matched with no object face, and there would not likely

be any correct (or even feasible) interpretation of the

resulting data. Because of the compliance of the E2, the

sensor flops to one side or the other of the vertex and ob-

tains a correct measurement. Recent work by Grimson and

Lozano-Perez [63] develops a method for handling erroneous

data. Their methods may prove useful in situations such as

those described above.

5.2 Tactile Sensor

Figure 5.4 shows a schematic of the sensor. It is

grasped by the manipulator and the tip is brought into

lateral contact with an object edge. Orthogonal stresses

induced at the base of the "finger" are measured by strain

gages, and the resulting signals are amplified and sent to

the A/D converter for use by the computer. The bearing on

the fingertip helps prevent lateral friction forces that

would corrupt surface normal measurements. A complete

description and design analysis of the sensor is given in

Appendix 3.
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Figure 5.4 Schematic Diagram of the 2-D Tactile Sensor

Since the finger is very stiff, there are essentially

no errors due to bending. The major error associated with

the sensor is due to the amplifier electronics. The signal

gain is 2000 for each of the two channels, and fairly rapid

and large output drift can take place due to thermal tran-

sients. This problem has been isolated and is caused by a

poor selection of bridge resistances (Appendix 4). High

tolerance, low temperature-coefficient resistors should be

used in bridge circuits.

The drift led to sizeable angular error measurements,

and its effect was minimized by recalibration. After con-

tact was first made, the sensor was pulled slightly away

from the object, calibrated under no-load conditions, and

again brought into object contact. Electronic interference

noise played a small role, and the resulting overall error

"cone" was about 5*.



The compliance of the arm also caused sensor error.

The sensor was designed for lateral contact between the fin-

gertip bearing and an object edge. The axis of the finger

was supposed to be perpendicular to the object plane, but

the twisting of the arm under load resulted in skewed con-

tact that corrupted the normal measurement. This problem

was particularly troublesome in cases where large vertical

surface normal components were present.

5.3 Computer and Software Structure

All computations were performed on a DEC PDPll/34 sys- -

tem operating under RSXll-M. This system is fairly fast,

even by today's standards, but available memory is severely

restricted. The entire machine has less than 256K bytes of

available RAM, a portion of which is occupied by the opera-

ting system. As a result, a great deal of task overlaying

was employed, with a concurrent loss in speed. The computer

communicated with the manipulator and sensor through a

multi-channel Analogic AD5400 A/D, D/A converter. All

routines were written in FORTRAN IV. (This made for some

very interesting code). Figure 5.5 shows the basic struc-

ture of the software.
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Figure 5.5 Software Structure.

A brief description of the routines follows. The reader

interested in the actual code should contact the MIT

Man/Machine Systems Laboratory for listings.

INTRP - Root routine that established data bases

and orchestrated subroutine calls

ACHECK - Performed angle pruning

CCHECK - Performed direction pruning

DCHECK - Performed distance pruning

ORLOC - Determined orientation and position for

each feasible interpretation

MODCHK - Performed model checking

STRGRD - Performed grid analysis (setup, scaling,

etc)

BB - Determined blocking boundaries on the grid

GROW - Grew object faces on grid

DRW - Line drawing routine for raster vector

draws on the grid
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5.4 Performance

Typical completion times for object localization only

were on the order of one to two minutes. For tasks involv-

ing both object recognition and localization the times were

on the order of a half minute more. Most of this time

(about 70%) was spent determining blocking boundaries and

searching for paths.

In most cases the object was correctly identified

and/or located. Incorrect conclusions were occasionally

made but were the result of heating problems in the

manipulator hardware (section 5.1). Allowing the system

FILL

WITHIN

TEST
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cool and trying again led to correct performance.

The problems that arose during the implementation of

this demonstration system had little to do with the

strategic method itself. Indeed, correction of the backlash

and compliance problems in the arm and thermal problems of

the sensor should result in almost flawless performance. As

it was, the method proved quite robust in spite of the

hardware limitations.
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CHAPTER 6 Generalization to Three Dimensions

We are interested ultimately in the practical imple-

mentation of our method in systems capable of operating in

unstructured environments. The viability of our method

therefore hinges upon our ability to incorporate it into

systems capable of dealing with real objects. In truly

unstructured environments, therefore, we must expect to

handle three dimensional objects with a full six degrees of

freedom of motion. We discuss in this chapter the

implications of this generalization in terms of its effect

on the method and its effects on the computational re-

quirements. Full development of the 3-D case is considered

to be outside the scope of this thesis and should be the

focus of further work.

6.1 Strategy in 3 Dimensions

The strategy conceptually generalizes fairly easily to

general three dimensional objects. The intersection area

generalizes to an intersection volume, the union area to the

union volume, and the blocking boundaries become three

dimensional. Conceptually, the strategy remains essentially

unchanged; in order to obtain a distinguishing measurement,

we search for paths that originate outside the union volume

and terminate within the intersection volume that do not

pass through blocking boundaries. We can further rate, in
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order of decreasing probability of distinguishing

measurements, those moves that pass through object bound-

aries once and through a single blocking boundary, as in the

2-D case.

Note that the method naturally handles 3-D objects with

through-holes. Consider the case where only a single in-

terpretation for each of two objects is feasible, and that

the objects differ only in that one of them has a through-

hole. The only paths for which a distinguishing measurement

is guaranteed are those paths that pass into the hole of the

appropriate interpretation. Our method would find such

paths.

Although it might seem natural to assume that the meth-

od is not as powerful in three dimensions as in two (a com-

mon sentiment expressed by those newly introduced to these

ideas), a moment's reflection reveals that the addition of

the third dimension introduces the possibility for more

discriminating features. There is therefore no reason to

expect a reduction in the efficacy of the method when one

deals with three dimensional objects.

6.2 Generating 3-D Volumes

The computational burden is certainly increased when

one considers the general three dimensional case. In fact,

it can be stated with some assurance that determining the

intersection and union boundaries, even for fairly simple
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planar 3-D objects, can not now be performed analytically in

real time with present techniques. It is almost imperative

that these operations be performed volumetrically on a three

dimensional grid, if we assume arbitrary object orientation.

We present the basic techniques for boundary growing and

determining blocking regions, intersection volumes and union

volumes without developing detailed equations.

6.2.1 Boundary Growing

We discuss boundary growing associated with measurement

error for the case of 3-D, planar objects only. This is

performed in much the same way as for 2-D, except that

instead of simply widening and lengthening the 2-D boundary,

we must thicken and expand the 3-D boundary. This is shown

conceptually in Figure 6.1, where the boundary is thickened

by Et , (which is determined in the same way as for the

2-D case) after the nominal planar boundary face is widened

by tracing an error disk of diameter c t around the face

boundary.

Figure 6.1 Boundary Face Growing.
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We can simplify this process in a conservative manner

by simply lengthening each boundary segment of the face by

Ct//7 and insisting on geometric similarity, and then

thickening by defining two identically shaped faces placed

Ct/2 on either side of the nominal face. We then

typically have 2m vertices that define the face volume,

where m = number of vertices defining the original face.

(Note that vertices at concavities may disappear after

boundary growth.)

6.2.2 Blocking Boundaries

Since we work with a grid, it is probably com-

putationally fastest to develop blocking boundaries in a way

similar to the 2-D case. We would build them up on a work-

ing grid and add them to the master grid. An algorithm must

be developed to fill the boundaries defined by the approxi-

mately 2m vertices of 6.2.1. There is a variety of ways to

approach the development of this algorithm, but I suspect

that the fastest way would be the following. First, fill in

all defining faces (all 2-D faces that define the boundary

volume) in the grid. This requires an algorithm for drawing

a plane in a grid that is similar to that required for draw-

ing a line. When this is complete the result is, concep-

tually, an "empty box" in the grid that must be filled.

Simply scan through the grid by, for example, fixing x and y

and scanning through z, filling in the scan line between
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pairs of non-zero values (which are the defining face

values). Of course, scanning through an entire 70x70x70

grid would be extremely time consuming, and one should

define a cube on the grid which just barely encloses the

boundary region, and scan through that.

6.2.3 Determining Intersection and Union Volumes

Since the 3-D multi-interpretation image has been

(presumably) scaled to fit within the grid, it is not neces-

sary to determine the union boundary explicitly. The

extreme elements of the grid lie outside it and any of them

may serve as a path origin. The intersection volume must be

determined, however.

In the 2-D case we took advantage of a simple method

for tracing out the intersection area boundary and identi-

fying the area by "filling it in" with an identifying number

(Appendix 4). There is, unfortunately no analogous method in

three dimensions. We offer two approaches to this problem.

The first is to repeatedly perform the 2-D method by fixing

one of the coordinates, say z, and looking for 2-D intersec-

tion areas in the x-y slices of the image obtained at each

z. There will have to be some method of linking adjacent

slices so that emerging intersection volumes are correctly

identified and labeled from one slice to the next.

An alternative method is conceptually simpler to

implement. We build an image of each interpretation by it-
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self on the working grid during boundary growing. Once we

find a single zero-valued element within the interpretation,

we use it to start the process of filling in the volume with

a unique value in the manner explained in the previous para-

graph (filling in 2-D slices). We then add a 1 to the main

grid whenever the corresponding elements in the working grid

with the unique value are found, and start the process over

again with the next interpretation. After doing this for

all interpretations, the main grid will typically have

elements with values 0 through n, where n = number of in-

terpretations. The intersection volume exists wherever the

values are equal to n.

The relative desirability of the two methods depends

upon what sorts of discoveries can be made to speed up the

manipulations. It is not clear to me which method is fas-

ter. The first method requires 2-D slice projections of all

the interpretations simultaneously, whereas the second re-

quires that a large number of element checks be made for

each interpretation. I suspect that the two methods present

similar computational burdens and I would therefore opt for

the latter because of its conceptual simplicity.

6.3 3-D Objects Using 2-D Techniques

If we restrict ourselves to the case of planar faced

objects resting on a support plane, we can take advantage of

the 2-D techniques developed in this work. Gaston and
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Lozano-Perez [35] were among the first to realize this in

their work on planar object recognition. We consider making

all contact measurements at a constant height (or heights)

above the plane (figure 6-2). For each height, each of the

stable poses of each object will be associated with a 2-D

planar object model. The 2-D analysis developed in this

work may then be applied.

:h

Figure 6.2 Measurements at constant height above

support plane.

It is interesting to note that, if we use this method,

we can and should employ an extra constraint table during

the recognition phase. Associated with each modeled 2-D

face is a measured component of the surface normal out of

the plane for the corresponding 3-D face . A-constraint

table should be utilized that has the range of possible out-

of-plane normal components for each face.
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6.4 Computational Issues

The most obvious result of generalizing to 3-D is the

increase in the number of elements in the grid. A 70x70x70

grid has 343000 elements, as compared with 4900 for the 2-D

case. Although memory is relatively inexpensive and avail-

able now, accessing even a moderate fraction of the full

grid takes time. This has a deleterious effect on blocking

boundary region and union volume development, since for

these cases full grid additions take place from the working

grid to the main grid. The advent of parallel processing

hardware may considerably brighten the outlook in this

regard [41,42,43].

The search for paths is also negatively affected by the

generalization to 3-D., Even if we limit ourselves to paths

which terminate at the centroid of the intersection volum:e

(if it is located within the volume) the search space is

considerably larger. In the 2-D case we step through 3600

in 10 increments. To do the analogous search in spherical

coordinates requires 180x360 = 64800 checks, although we

probably can reduce this considerably, since we would not

make 10 steps at large azimuth angles. This may still leave

us with an unacceptable number of checks with present

hardware.

There might be strong heuristic rules one can apply to

combat these problems, although we do not discuss them in

this work. Future work should concentrate on developing
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such rules. Considerable attention should also be paid to

investigating the theoretical foundations of the idea of a

luminescent intersection volume as discussed in section

3.3.2. It may be that ray tracing is the only reasonable

solution, but it is worth investigating other potential

techniques.
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CHAPTER 7 Summary, Conclusion and Recommendations

The objective of this thesis was to develop a strategic

framework for scheduling tactile sensor moves during the

process of automated tactile object recognition and

localization. Such a framework is useful whenever surface

data is sparse, measurements are expensive to make or to

analyse, and it is known that the inspected object is one of

a number of modeled objects. It is an important step towards

the realization of truly autonomous machines capable of per-

forming tasks in unstructured environments.

We have shown the strategic framework presented in this

work to be successful for two-dimensional planar objects and

conceptually easily generalized to three dimensional planar

objects. Specifically, given that we have obtained enough

data to limit the number of feasible interpretations of such

data, we can find paths along which to direct the sensor

that guarantee a distinguishing measurement, if such paths

exist. We have determined that some paths are clearly bet-

ter than others from the viewpoint of the probability of

recognition and localization, and have a reliable meth-

odology for finding them, even in the presence of

measurement error. Finally, we can determine what

measurements not to make, such measurements being a waste of

time. Our ability to determine and rate paths gives us a

rational basis with which to make measurement planning deci-

sions.
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Our method drastically reduces the number of

measurements necessary for recognition and localization when

compared to a random strategy. A very important result of

this work is that this reduction is due to the natural and

automatic selection of features that discriminate between

interpretations in the multi-interpretation image. We do

not have to concern ourselves with predefining them, which

is convenient, not only because they change as object models

are added to or deleted from the object set, but also be-

cause they depend on the state of information of the system.

The method is conceptually applicable to any general

three dimensional objects. We are limited only in our

ability to describe and efficiently manipulate such objects

computationally. Furthermore, the nature of the

measurements bears only indirectly on the method. Future

implementations could very well use tactile arrays capable

of providing local surface properties such as surface cur-

vature. It reasonable to generalize the representation and

recognition method of Grimson and Lozano-Perez [27] to

include such information, provided sufficiently accurate

measurements can be made.

The sensor paths obtained in the hardware imple-

mentation were all directed to the intersection area

centroid. For the object set that we used, this was accept-

able, but for general objects, many highly diagnostic paths

would be missed (Consider also that the centroid of an area

is not always located within that area). An algorithm
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should be developed to efficiently search for highly diag-

nostic paths throughout the intersection area. An exhaus-

tive search at each point in the intersection area is

clearly inefficient, but perhaps heuristic rules or a clever

algorithm can be found that capture most of the paths that

an exhaustive search would provide.

One of the most important areas for further research is

the generalization to three dimensions. We discuss the as-

sociated issues and suggestions for further work in chapter

six and will not repeat them here.

We have always assumed the existence of a single

unoccluded object in the environment. The general environ-

ment will probably contain many objects, some of which might

overlap (consider the bin-picking problem [14]). Lozano-

Perez and Grimson investigate the recognition problem for

such occluded objects [63], and an important problem for

future work would be to determine the applicability of our

strategic method in that domain and rework it as necessary.

We were careful in theorem 2 to state the assumption

that we consider only those paths that intersect the bound-

ary for each interpretation once, and pass through a single

blocking boundary. There are certainly other path examples

that violate this assumption. Consider figure 7.1.
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sense
a. IA 6-direction

b. IA

Figure 7.1

There are six interpretations and we show two possible

path examples. We assume each interpretation to be equally

likely to simplify matters. If we choose the path of figure

7.1a, we have a 0.5 chance of obtaining a distinguishing

measurement, and the same chance of being left with three

interpretations. In figure 7.1b, we are guaranteed of being

left with two interpretations. It is impossible to say

which path is "better" because it is not clear what "better"

means. If we always maximize our chances of obtaining dis-

tinguishing measurements, then we choose the path of figure

7.1a. If, however, we are interested in some optimal per-

formance which minimizes the expected number of

measurements, then an analysis might show that path b is the

appropriate choice. Work should be done to develop this

analysis. It may be that results from the field of opera-

tions research would be applicable.
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Another area for further research is motivated by fig-

ure 7.2.

1 2 3 1 4 2

IA

Figure 7.2

In this case there are four interpretations and the

boundary fragments are identified with the interpretations

to which they belong. We are guaranteed a distinguishing

measurement even though the path crosses a blocking bound-

ary. It is extremely difficult, however, to obtain an

example of such a situation. To date, I have not found one.

The questions to be answered include:

1. Can a situation of this type occur?

2. If it can occur, does it matter? That is, even if

it occurs, are there other paths that pass through the

boundaries without passing through a blocking boundary?

These are questions of global topology and are likely

to be answered only after a great deal of theoretical devel-

opment.
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APPENDIX 1 Representation, Recognition and

Localization Equations

In this appendix we present the equations for gener-

ating the feasible interpretations of the data that satisfy

the distance, angle and direction constraints. We also de-

velop the equations for computing the translation component

of the transformation between model and global coordinates.

A1.1 Constraints

The constraint checks presented in Chapter 2 can be

implemented in a very fast table lookup, where constraint

tables are generated off-line, based on model vertices. The

following implementation equations are modified versions of

those found Grimson & Lozano-Perez [27]. The reader in-

terested in full developmental details is referred to that

report.

A1.1.1 Distance Constraint

For an object j with f. faces, we can construct an

f i by f distance constraint table, the entries of which

represent the minimum and maximum distances between any

points for all pairings of faces. For some pair of faces

(i,k) where i=k, we can construct the table D. (off-line)

such that the maximum distance between faces i and k is

located at D.[max(ik), min(i,k)] and the minimum distance
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is located at D.[(min(i,k),

If i=k, we simply store the

the diagnonal element (i,i)

tance is necessarily zero.

max( i k)].

largest distance

of D., since the

Implementing the

of the face on

smallest dis-

distance

constraint for some measured inter-sensed-point distance d

is performed by realizing that the set of all pairs of faces

(i,k) on object j consistent with d is given by

((i.k) |D (min(i,k),max(i,k) < d <

D .(max(i,k),min(i,k)))

plus the pair (i,i) if d < D.(ii).
J

For

distance

point is

a new sensed

between this

d , the set

point at level k, where the measured

point and any other previously sensed

of possible faces that can be as-

signed to the new poi

k-1
(i I D.(min(i,i

nt is given by

g),m x~i g))< di, <,

D -(max( i i ) ,min( i,g))

unioned with the set

k-1

nfi 1 0 < d i, < D .(ii ) .

A1.1.2 Angle Constraint

This is a constraint on the allowable range of sensed

normal directions consistent with the pairing of those nor-

mals to model faces. Figure Al-1 shows an example of the
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situation for the 2-D case. If u 1 and u2 are measured nor-

mals, but we allow for some error on the measurements, then

the "true" normals are located within the error cones

depicted by dashed lines.

-1 emax

\ I

\) min

u2

Figure A1-1 Angle constraint.

The minimum included angle is labeled e .i and the

maximum is labeled e max. If the nominal angle is close to

TT the measurement error could lead to the situation depicted

in Figure A1-2.

Figure A1-2 Nominal angle near Tr.

The minimum included angle is e and the maximum is iT.

If the measured normals are such that the error cones over-

lap, the minimum included angle is 0.
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We give a slightly different statement of angle pruning

than that given in Grimson and Lozano-Perez [27]. in their

development, a lower diagonal f. by f. table a. is created

for object j of f faces such that

a.[max(i,k),min(i,k)] = V . k

where i and k played roles identical to those in the

distance constraint development, and v. is the normal of

model face i for object j. They then show that the set

of all pairs of faces (i,k) on object j consistent with

the known object normals, measured normals, and angular

error is given by

{(ik) cos[min(TT,Y,
2 +c 1 2 )' (

a .[max(i,k),min(i,k)] 

cos[max(O,Y
1 2-~X1 2)]}

where a12 = 24 and 0 = error cone angle (if it is the same

for all sensed normals), and Y12 is the included angle between

measured normals. This implementation requires that min, max,

sum and difference operations take place on measured data in

return for a slight reduction in memory requirements for the

table.

We can implement the check in a different way that re-
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quires a full f. by f . table that contains the angle ranges

within it, so that we are not required to operate on the

data. This trades table storage memory with computation

time. With this check the set of all pairs of faces (ik)

consistent with the known object normals, measured normals

and angular error is given by

{(i,k) | A.[min(i,k),max(i,k) < . 2

A .[max(i,k),min(i,k)]}

where u and u2 are measured normals and

A.[min(i,k),max(i,k)] = cos[min(r,Y1 2 +a 1 2)]

A [max(i,k),min(i,k)] = cos[max(O,Y 1 2 ~U 1 2 )]

A.(ij) = cost (because the max defaults to 1).

This check was used in the demonstration system because

of its ameliorative effects on real-time computational re-

quirements.
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A1.1.3 Direction Constraint

We consider the situation depicted in Figure A1-3.

face face j

Figure A1-3 Dir'ection constraint.

For any pairings of sensed point 1 with face i and

point 2 with face k to be consistent with the direction

constraint, the range of dot products of the vector from

point 1 to point 2 ( ) with the vectors in the error cone

range about u must intersect the range of dot products of

the transformed model normal (y,) of face i with the range

of possible vectors from face i to face k (E <--> r3 )-

This can be seen more clearly in Figure A1-4.

range (61, 2) must

intersect

range (03104).

S-measured normal vi - transformed
~ model normal

Figure A1-4

Ul

r3
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This constraint may be implemented in a form similar to

the distance and angle constraints. For object j with

f faces, we create an f. by f. table C such that

C (i,k) = range [Yi.2 'Yl'i]. Then the set of all pairs of

faces (i,k) on object j consistent with the measured ranges

of surface normals is given by

{(i,k) range[cos(en-c/2),cos(eo+c/2)] C.(i,k) t 0}

where c is the error cone angle..

We note that we can include the effects of angular

measurement error and the range of direction vectors simul-

taneously in table C. and consequently reduce the real-

time computational requirements (as we did with the angle

constraint). We isolate the left portion of Figure Al-3 in

figure A1-5.

r
ur3 02

-11

-3

r2

Figure Al-5

The check is simply that the measured angle between the

normal and direction vectors be between e1 and e2 in
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figure A1-5. The previous method compares 2 smaller ranges

of angles for intersection, whereas this alternative method

checks a single, larger range. The first may be a bit

stronger, but the second is faster.

If we describe the range of vectors between r2 and r3

in figure A1-5 as a ik±ik' then we let

C (min(i,k),max(i,k)) = cos[min(r,a ik+pOik)]

C.(max(i,k),min(i,k)) = cos[max(O,aik~4ik)

and

C.(i,i) = cos(TT/2 - (ik)

since the minimum defaults to zero. Then the set of all

pairs (i,k) consistent with the direction constraint is

given by

{(i,k) C .(min(i,k),max(i,k)) <, ug r m

C.(max(i,k),min(i,k))}

for sensed points 1 and m. Since this constraint is not sym-

metric, the roles of 1 and m must be reversed and the check

made again.

A1.2 An Example of the Necessity of Model Checking

It would seem that the constraints would weed out all

but the correct interpretation, but this is sometimes not

the case. It is instructive to view an example where an in-
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terpretation can only be discarded during model checking.

In figure A1-6 we see two contact points and the associated

measured normals. If we assign sensed point 2 to face C of

the model, then careful scrutiny shows that we can assign

point 1 to either face A or B if we only check constraints.

The distance between point 2 and point 1 for either as-

signment is the same, the relationships between normals are

the same, and the direction constraint is not violated in

either interpretation.

A B

2

Figure Al-6 Model checkfing necessary.

A model check would show, however, that the assignment

of point 1 to face B would not allow point 2 to remain on

face C, and this interpretation would be pruned.

A1.3 Translation Component of Transform: 2-D

The angular component e of the 2-D transform is

simply found by averaging the difference between measured

and modeled surface normals for each pairing in an in-

terpretation. The translation component requires more com-
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putation and is developed here for completeness.

Any vector V in the global system is related to the

same vector in model coordinates by the expression

V =RVm +V 0

where

cose -sine

R [=

Lsine cose

We wish to obtain VO. Note that the vector in the

model system is described by

I2V =R'V - V 1
Vm -o ~-gl-

In the model system, any face f. of object j is de-

scribed by the set of vectors V given by

| V-ng = dg) (3

where n. = unit surface normal for f.

d. = offset scalar for the line representing fg.

The following expression may be obtained in the global

system by using (2) in (3) to give

(1)

)

)



130

[R~ 1 (gj - YOQ)Iaj = d1 (4)

Each argument in the dot product may be transformed by

R without altering the dot product relationship because R is

an orthonormal rotation matrix. -Therefore

(V g - V0).Rn, = dg. (5)

Including another measurement for face fk yields the

following set of equations

(Rnj).YO = (Rng)-y - d. (6)

(Rn k 'O = (Rnk)'Ygk - dk

Straightforward algebraic manipulation of (6) yields

the following expression for V0

[k.(Rn x Rn k 0 = (Rng.V -d.)(Rnk x k) +

(Rn.k'gk-dk)(k x Rn.) (7)

where k is the unit normal out of the paper. But Rn. and

Rnk are the surface normals in global coordinates, and are

the measured values if we assume perfect measurements. If

the measured values of n. and nk are n ' and n', respec-

tively, and V g and Vgk are measured contact positions, then V0

is obtained from measurements by
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n o ) ] ~ (n'.V * -d ) (n'-i -gi i 'k

(n kvgk-dk)( x

Note that, for numerical stability,

be strongly orthogonal directions.

n' ) (8)

n' and n' shouldi -k

[k. (n', x k)
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AFENDIX 2 Grid Equations

We wish to transform the multi-interpretation image

from global to grid coordinates in a way that will allow the

growing process to take place without extending beyond the

grid bounds. Consider Figure A2-l.

4- Ct *scale + I

Figure A2-': Map MII into A so that Growing Proce s

Fills to B.

If we scale and translate the MII so that it just con-

tacts perimeter A, then, since the worst-case growth of any

face is s ,/2/2, we conservatively select the growing

region to be ct*scale+1, where scale is the scale factor

for the mapping.

We proceed via an intermediate mapping. The first

transformation translates the MIT so that it contacts the

and y axes of an intermediate coordinate system with global

scale, as in Figure A2-2.

A

B

0
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Figure A2-2. Intermediate System

We have =C X ,.9cx

If we denote by x g-Imin the minimum

component of any vertex in the MII, and

minimum y-component, then C is given by

C = 0

L

value of the x-

let y - be the

g n 3
g 4a

The next transformation scales and translates the inter-

mediate MII to fill A. This is accomplished by enlarging so

that the largest of the maximum x or y component differences

of MII vertices fills to A. In other words, let the largest

difference in x values of the vertices of the MII be denoted

by AXmax and the largest difference in y values be AYmax'

Then

A = max(AX max' AYmax

X, (A1)
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and scale so that S-) A. This transformation is given by

A/A 0 0

0 A/A 0

0 0 1

We then translate by ef

Y- to position the origin at

* scale + 1 in both X, and

point 0 in Figure A2-2. Then

-gr = D XI

where

D = 0

L0

(A2)

0 E *A/,& +1 A/A 0 0 A/A 0 C t*A/A +1

1 Ct*A/A +1 0 A/A A/A +1] (A3)

0 1 0 0 1 0

Combining (Al), (A2), (A3) gives

A/A

xgr = DC~g= 0

0

0 A/A(Ct - Xglmin) + 1

A/A A/A(ct - yglmin) + 1 xgI

0 1

This is the forward mapping from global to grid coordinates.

The reverse mapping from grid to global coordinates is simply

C~ D- or

gl= D- C gr

A/A

= 0

0

0 - A/A + xglmi-n1

A/A -"t - A/A + xgimin g (A5)

0 1

(A4)



135

The value of A is determined from figure A2-1 as

A = B - 2 (ct*A/A + 1)

Simple manipulation yields

A = A(B+2)/(A+2c ).
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APPENDIX 3 Sensor Design

The important requirements of the design were the

following:

1. Detect contact

2. Measure contact force

3. Measure surface normal

4. Reject friction-induced corruption of surface

normal measurement

5. Measurements obtained from "thick" 2-D objects

Many approaches were considered but the most natural

one was selected and is described here.

The sensor is basically an instrumented cantilevered

beam, on the end of which is mounted a ball bearing to help

eliminate friction-induced surface normal measurement er-

rors. The "ground" end of the sensor is held by the

manipulator gripper. The sensor is shown in Figure A3-1.

Figure A3-1 2-D Tactile Sensor.
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The sensing element is a length of aluminum bar stock

with two sets of strain gauges mounted at the base. A

single BLH FAE-12-35-S13-ET metal strain gauge is mounted

lengthwise on each quadrant of the bar. Gauges diamet-

rically opposed on the bar form two legs of the classic

Wheatstone Bridge Circuit [46,47]. This is shown

schematically in Figure A3-2. There are three reasons for

this arrangement: 1. Each bridge circuit is sensitive only

to strains due to moments about its associated axis, with

the result that the applied bending moment is obtained by a

linear combination of the orthogonal measurements. 2. The

strain gauges applied in this configuration are temperature

compensated. 3. The bridge output is doubled, hence

measurement sensitivity is increased.

BLH strain

Base of gauges

finger 1 2 3 4.
End-On 404 r3
View 350 50^350 501L

2
Vertical Horizontal
Bridge Bridge

Figure A3-2 Gauge Arrangement and Bridge Circuits.

The guage style was chosen for its narrowness and rela-

tive ease of handling.

The bridge excitation and instrumentation is provided

by Analog Devices 2B30 and 2B31 instrumentation modules.
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These temperature compensated modules contain buffering cir-

cuitry, instrumentation amplifiers, and output signal con-

ditioning filters. They are shown schematically in Figure

A3-3. The output filters are 3-pole Butterworth, with break

frequency selected at 25 Hz.

9022 PMeIn SUPPLY

coM -. 15V +16V

CALE ALL 10 OFSET GLO
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1.is exciatio votae U8vtsK
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Assume a voltage sensitive bridge with all initial

resistances nominally equal, and with a single strain gauge.

It can be shown that [48]

Ae 0  1/R

e 4 + 2(AR 1 /R)

where Ae =

e =

AR =

R =

change in output bridge voltage

bridge excitation voltage

change in resistance of the active gauge

nominal resistance of all legs of the

bridge

Since c = ARI / FR , where c is the strain of the

gauge (and hence of the underlying material ) and F is the

gauge factor, then

e.F
Ae 0

4 + 2FE

For ei = 8 volts and F = 2,

0 = 0 = 4E volts.

4

For E = 1 microstrain, e = 4 microvolts.

For our situation the bridge factor is 2, hence e0

8c volts. A nominal maximum output of 5 volts resulting
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from a gain of 2000 implies e0 = 5/2000 = 2500 uv. This

would arise from a stain of e0/8 or 313 ustrain. This is

assumed caused by a bending moment of 4 lb x 3 inch = 12

inch-lbs.

The relationship between strain and bending moment is

obtained from classical strength of materials (49] and is

given by:

M-ymax M(D/2) (A3-1)

E I EI

where E = strain

M = applied bending moment

E = Young's modulus (10.E1O for aluminum)

I = rD 4/64 = moment of inertia for rod

D = Diameter of rod

We are interested in obtaining D, the nominal diameter

of the sensor body. Simple algebraic manipulation of (A3-

1), substituting the expression for I, gives

D- 32M
EC 7

Substituting nominal values gives D = 0.34 inches. A

0.375" diameter bar was therefore chosen. There is a slight

reduction in sensitivity with the larger.diameter but it is

completely acceptable. The larger diameter also allows more

space for the strain gauges and implies that the gauge width

is a smaller fraction of the circumference. This helps
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reduce the effects of slight placement errors of the gauges.

We see that this design satisfies the criteria listed

at the beginning of this appendix. The sensor transduces an

applied tip force in directions orthogonal to the sensor

axis only. An object's surface normal is transduced because

a force is generated normal to the surface when the sensor

is in put into contact with the object. Axial stresses are

not transduced because the strain sensitive elements of each

bridge cancel each other's effect. The tip bearing helps

prevent off-normal components of the force vector from being

generated.
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APPENDIX 4 Finding The Intersection Area and Its

Centroid

An inherent requirement of the strategic method is

finding and identifying intersection areas on the grid. We

wish to know how many there are and, for our specific imple-

mentation, where the centroids are located so that we may

determine potential sensor paths in their directions. We

could try to determine the areas and centroids analytically,

which is difficult, or we could simply work with the multi-

interpretation image on the grid after boundary growing.

(There is a third method mentioned in Chapter 5).

The first part of the search is comprised of a simple

raster scan of the grid array. Any zero-valued element is a

potential member of the intersection area, except for the

leading and trailing zeros on any scan line. A potential

member must survive the check of whether it is contained by

the nominal boundary of each and every interpretation simul-

taneously. The check is simply performed by considering a

ray drawn from the point under consideration to the midpoint

of every boundary face of each interpretation. If the point

is within the interpretation, the dot product of the vector

associated with the ray with the normal vector associated

with the closest face of that interpretation intersected by

that ray, must be positive or zero. If it is negative, the
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point is outside the interpretation. See Figure A4-l.

Figure A4-1 Checking membership in the IA.

We could, of course, perform this check for all zero-

valued elements to determine the IA, but that would be com-

putationally expensive and unnecessary. Instead, we proceed

as follows. We choose the following because it does not re-

quire dynamic memory allocation in its implementation. We

trace the boundaries of the IA's -and fill their interiors

with some identifying preassigned number, such as 100, 200,

etc. We do this by scanning to the right from the point in

the IA until we find a non-zero element. This is a boundary

element. We fill the scan line to the left. We then trace

the boundary counter-clockwise, filling scan lines to the

left on upward movements -and to the right on downward move-

ments. See Figure A4-2 for visual support of what follows.

g(i,j) = element at position i,j.

-1IL

Figure A4-2 IA boundary tracing.
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We assume that after any move to a boundary element,

the x and y indices are i and j, respectively. After our

initial scan to the right and fill to the left, we find our-

selves at location g(i,j). Since we know that elements im-

mediately to the left are filled and we wish to move

counter-clockwise from one boundary element to the next, we

contemplate a move to g(i-l,j+l), or upwards and to the

left. If the element there is non-zero and <100 we make the

move. If it is zero or >100, however, we contemplate the

next move clockwise, or to g(i,j+l), and so on, always con-

templating the next clockwise move as long as we encounter

an IA element. We will eventually find the next appropriate

IA boundary element.

Note that this process is described by the following

linked list.

i+1 j

i+1 j-1

i j-1

1-1 j-1

1-1 a
i-1 j+1

i j+1

i+1 j+1
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If we denote the first element of the list as move. 1,

the second as move 2, etc., then we start with move 6 and

step through the list as necessary. Each consecutive

element of the list represents a contemplated move in a

clockwise direction relative to the move represented by the

previous element in the list.

We now note that we can usually predict where the ad-

jacenct IA grid element will be located with respect to the

grid element we've just made the move to. For instance, if

we have just decided to make a 1 move directly to the right,

we expect to find an IA grid element directly above the new

site. In this case we would then contemplate a move not

directly upward, but upward and to the right. This logic is

also embodied in the linked list. We expect an IA grid

element to occupy the location pointed at by the list

element 6 entries away from the contemplated move entry for

purely horizontal and vertical moves, and 5 entries away for

diagonal moves. We therefore expect that the next move

we'll have to make is 7 or 6 entries away for vertical and

horizontal or diagonal moves, respectively. These expected

moves are used as the next contemplated moves. If we do not

find an IA grid element where we expect it, then we again

contemplate moves by cycling consecutively through the list,

starting from the expected move element.

If this logic is followed the intersection area will be
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filled and we are guaranteed to return to the boundary

element with which we started, regardless of the shape of

the intersection area. This method, while perhaps

complicated-sounding, is very fast.

Once the intersection area is filled, we continue

scanning the grid for other intersection areas as we did in

the beginning. In this way all intersection areas will be

identified.

In the implementation in this work, we need the

location of the centroid of the intersection area. The x

and y elements of the centroid are defined by

x. y.
x y = (A5-1)

n n

where n = number of elements in IA

yi = y position of the ith element

xi = x position of the ith element

Again, we could blindly perform the calculations, but

there is a much faster way of proceeding. Since we are*

tracing the boundary, we simply use boundary element

locations for the calculations. It is fairly easy to show

that the following is the appropriate equation:
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- - zJ1Y

X =Y (A5-2)
nx n

where

x= x position of the ith element and is only used for

vertical and diagonal moves.

y= y position of the jth element and is only used for

horizontal and diagonal moves.

n = number of x elements used

ny = number of y elements used.

In this case the xI's in the x-equation are only

tallied when there has been a vertical or diagonal move

along the IA boundary on the grid. Likewise, y.'s are only
J

tabulated during horizontal or diagonal moves.

This provides a fast method for calculating the

centroid based only on the boundary elements, which we

determine during the IA identification process anyway. This

method is very much faster than (A4-1).


