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CHAPTER III

1. The second paragraph following equation (3.33) should read:

"For small attenuation coefficients the elastic displacement
U is small compared to the elastic displacement u
( Knopoff and MacDonald, 1958). As a result, we may expect
the coupling effect given by the fifth term of (3.31b)
to be negligible. The sixth and seventh terms, etc.

2. Equation (3.36b) should read:

o A

3. The term

should be added to the right member of eq. (3.72).

4. Equation (3.75) should read

0

5. Equation (3.90) should read
-3 2- -. 3

oC '~t 10 f W+ t0 o a

None of these corrections alters the conclusions of the original
study in any way whatsoever.

Sven Treitel
Havana, Cuba, November 1959
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The progressive decay of a seismic disturbance is traced
from its inception as a large amplitude shock front to its
attenuation to small amplitude stress waves and ultimate conversion

r into thermal energy. It is assumed that excess stress accumulates
over prolongued periods of time in certain parts of the earth's
crust, and that sudden release of such stress at local points of
weakness can give rise to a shock wave that will propagate
radially outwards from the source zone.

The hydrodynamic equations of supersonic flow are well known,
but the dominant effect of their non-linear terms has made it
impossible to find exact solutions for shock wave propagation
through solids and fluids. A more fruitful approach to this
problem can be made through consideration of the Rankine-
Hugoniot equations, which relate conditions across an infinitely
thin shock front. Combination of these expressions with the
Birch-Murnaghan equation of state permits one to perform
dissipation calculations in the shock zone. This shock zone is
here defined to be that region surrounding the source of the
disturbance in which the excess pressure across the shock
discontinuity exceeds the yield stress of the rock, 8.
The small amplitude zone will then be the region in which the
excess pressure has decayed to magnitudes of the order of or
less than (8

It is shown that enormous amounts of energy are injected
into the shock zone by the rapidly decaying front, but that
attenuation in the small amplitude zone is quite negligible in
comparison. The familiar Gutenberg-Richter earthquake energy
formula is based on observations of small amplitude ground
motion at the surface. If near-focal shock waves are generated
as a result of an earthquake, the total energy estimates of
Gutenberg and Richter may be too conservative, perhaps by a
factor of ten. The theory of shock wave decay presented in this
thesis also suggests that near-source dissipation in seismically
active regions over periods of only several hundred thousand
years can accumulate sufficient heat in localized areas to
cause vulcanism or emplacement of abyssal igneous bodies.



Knopoff and MacDonald (1958, in press) have demonstrated
that no solid model of the small amplitude zone, describable
by linear differential equations with constant coefficients,
can lead to a frequency independent specific dissipation
function, 1/4. Yet this is exactly what has been observed for
rocks and glasses both from seismological and laboratory
measurements. Most attenuation treatments in the literature
do not take the effect of a finite thermal conductivity into
account. Strictly speaking, no dissipation model that neglects
associated heat flow is tenable from the thermodynamic viewpoint.
Knopoff and MacDonald have derived a theory based on permanent,
plastic strain as well as recoverable, elastic strain. In this
thesis their work is generalized to take thermal as well as
their coupling effects into account. The resulting equations of
motion and temperature contain small non-linearities, but solutions
can be established by the method of first approximation of
Kryloff and Bogoliuboff. It is found that damping in such a
medium is describable in terms of two attenuation coefficients,
only one of which is a function of the thermal conductivity.
This "thermal" attenuation coefficient is probably small
compared to the other, which is identical to that of Knopoff and
MacDonald, and wh ch leads to a l/Q independent of frequency.

Two linear models are also considered. The first of these
is a solid with finite thermal conductivity, and the second a
similar medium with viscous damping as well. Both models are
shown to lead to damping mechanisms that are not in agreement
with observation.

Finally, it is demonstrated that Zener's concept of
relaxation by thermal diffusion is inapplicable to seismic wave
attenuation, although the theory has yielded good agreement
with experiment in the case of many metals. Zener's work is
based upon the assumption that the wave length is of the same
order of magnitude as the diameter of a crystallite of the
medium; this hypothesis cannot be upheld for ordinary seismic
frequencies.

It is suggested that experimental work on shock wave
propagation through solids will serve to clarify many points
that cannot be settled from theoretical considerations alone.
In view of the results of Knopoff and MacDonald and the
present writer, further work on linear dissipation models
does not appear promising.

Thesis Supervisor: Dr. Gordon J.F. MacDonald

Title: Associate Professor of Geology
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N O T A T IO N

An effort has been made to avoid usage of symbols for more
than one quantity throughout the text, but this has not
always been possible. The following tabulation lists the
symbols used together with their principal meaning; in any
event, duplication of symbols previously used occurs only
in Section 3 of Chapter IV.

SYMBOL MEANING

RO Hydrostatic Pressure

Excess over hydrostatic pressure

Density at pressure P

e0  Density at pressure P0
V Specific Volume at pressure P

V0  Specific Volume at pressure P0
Solid yield stress

Width of shock front

Particle velocity behind shock front

V0  Particle velocity ahead of shock front

E Specific internal energy behind shock

Specific internal energy ahead of shock

U Shock velocity

T Absolute Temperature

Radial distance

Coefficient of thermal expansion at pressure P

Coefficient of thermal expansion at pressure P

Bulk modulus at pressure P

0 Bulk modulus at pressure P0

Compressibility



SYMBOL

t

Co

T
01

M

A

C.

e

MEANING

Exponents in generalized Birch equation of state

Specific entropy

Thermal conductivity

Density ratio =(e )

P Wave Velocity

Time

Distance

Acoustic Velocity

Dimensionless Radial Distance

Dimensionless Travel Time

Radius of source sphere

Shock wave damping coefficients

Total energy dissipated in shell of thickness m

Wave amplitude

Temperature amplitude

General elastic wave velocity

Displacement

Complex wave number =P

Real part of

Imaginary part of - = attenuation coefficient

Total strain

Elastic strain

Circular frequency

Elastic modulus

-9



SYMBOL

VI

21)

c c

CI

AMV

MEANING

"Viscous" modulus

Viscous parameters

Elastic parameters

Permanent (plastic) displacement vector

Elastic displacement vector

Elastic strain tensor

Total rate of deformation tensor

Rate of permanent deformation tensor

Kronecker Delta

Total stress tensor

Total velocity vector

Position vector

Thermoelastic stress tensor

Derivative "following the motion"

i th invariant of elastic stress tensor

th
i invariant of time rate of change of

elastic stress tensor

Plastic constants

Thermal diffusivity

Specific Heat at constant strain

Phase angles

O Wt +W

Total displacement Vector

Time attenuation coefficients



SYMBOL

M

M

I)

.AT

2

x
VT

MfA.

M

MEANING

Distance attenuation coefficients

Tensile stress

Relaxation time of stress at constant strain

Relaxation time of strain at constant stress

Relaxed modulus

Unrelaxed modulus

Comolex modulus

Angle of lag of strain behind stress

Geometric mean of and

Geometric mean of MR and M .

Specific Dissipation Function

Diffusion distance

Wave length

Isothermal bulk modulus

Isothermal P wave velocity

Adiabatic P wave velocity

aAT

Specific shell energy

Ambient rock temperature

Earthquake magnitude



C H A P T E R

INTRODUC T ION



The propagation of seismic waves through the earth's

crust is usually treated with the aid of classical elastic

theory alone. Yet it is well known that no physical medium

behaves like a perfectly elastic substance. Any disturbance

that arises in the medium will eventually be damped to zero

amplitude, and the input energy will ultimately appear as

heat. If the amplitude of the disturbance is small, that is,

if the describing equations of motion are linear or only

slightly non-linear, the departures from perfect elasticity

are not considerable, and elastic theory may be used with

confidence. The observed attenuation of seismic waves is

very small. One usually studies damping in a medium by

considering an attenuation coefficient DC

A(- AI
(1.1)

where Ao is the initial amplitude of the disturbance, x the

distance from the source, and A(x) the amplitude at the

distance x. Gutenberg (1951) has estimated the average value

of oC for the transmission of compressional waves through the

earth to be of the order of 10~4/Km. Studies of seismic

surface wave attenuation as well as extensive laboratory

work on silicates yield similarly small values of the

coefficient oC . Much of the available empirical data on

silicates has recently been reviewed by Knopoff and

MacDonald (1958, in press).
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In the immediate neighborhood of the source of a major

disturbance, such as an earthquake or a large subterranean

blast, the small amplitude assumptions cannot be upheld.

The sudden and concentrated release of major amounts of energy

gives rise to pulses of large finite amplitudes, which are known

as shock fronts, or shock waves. The fronts are formed in solids

when the pressure exceeds the yield stress of the medium,

For rocks, la is of the order of 10 dynes/cm2 -O0 bars.

Enormous gradients exist across these fronts: as a result,

the shock wave must decay very quickly as it propagates, with

consequent rapid injection of large amounts of dissipated energy

into a small volume surrounding the source. Shock wave phenomena

are thus of considerable interest in the study of conditions

existing near the focus of an earthquake, or near the site of

an underground explosion.

The problem is of considerable interest to the exploration

geophysics industry, since the mechanism of seismic wave

generation by explosives is not at all well understood. A

considerable amount of work along these lines has been reported

in the literature, but most of it is of an empirical nature

and of little value to the formulation of a more general

theory (Leet, 1951; Habberjam and Whetton, 1952). The

experimental difficulties involved are quite formidable, since

it is extremely hard to build strain gauges that can withstand

the enormous oressures developed near the source of the

disturbance. Morris (1950) has recognized that the detonation

of an exiosive in rock creates a shock wave, which spreads out



spherically. As the disturbance travels outwards, the stresses

decrease until the yield stress of the rock is reached. From

that point on, the wave is transmitted as a small amplitude

disturbance. Morris does not attempt to place his statements on

a more rigorous mathematical basis, nor did he study the

dissipation mechanisms that must act while the disturbance is

still a shock wave. W.I. Duvall (1953) has reported experimental

work performed by the Bureau of Mines near the sites of major

rock blasts. He found that the shock amplitude decayed according

to a 1/Rn law, where n ranged in value between 1.6 to 2.5 for

various rock types and explosives.

The propagation of shock waves in water has been extensively

studied during the Second World War. Most of this work has been

summarized in a book by R.H. Cole, "Underwater Explosions"

(1948). As we shall see in the next chapter, much of this theory

can be very conveniently adapted to the study of shock wave

propagation in solids.

From time to time major rock blasts have been set off in

many parts of the world for various purposes, and in several

instances the resulting disturbances have been recorded by

seismographs up to a distance of several hundreds of miles

from the detonation site. Unfortunately no strain gauges were

placed in the rock in the immediate neighborhood of the source,

so that no shock wave observations could be made. Willmore (1949)

has written a detailed report of seismic measurements made in

connection with the blasting of German fortifications on the

island of Helgoland in 1946. Several thousand tons of dynamite
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were detonated simultaneously, whose total energy was estimated

at 1.3xl020 ergs. The energy appearing in the form of small

amplitude seismic waves was calculated by Willmore to be of

the order of 1017 ergs. In 1921, 4500 tons of dynamite were set

off at Cppau, Germany. Jeffreys (1952) calculated that the

energy liberated by this explosion was about 6x101 9 ergs,

while only 5x10 16 ergs appeared as small amplitude waves. In

both these cases only 0.1% of the input energy went into small

amplitude stress waves. While it is undoubtedly true that a

substantial amount of this input energy was imparted to the air,

a considerable fraction must also have been dissipated near the

source, where the disturbance was still a rapidly decaying shock

wave. When major blasts are detonated far underground, on the

other hand, there will be no loss into the atmosphere, and all

the input energy will then be imparted to the surrounding rock.
1)

On September 19, 1957, a 1.7 Kiloton atomic bomb was

detonated in a tunnel under a mountain at the Nevada A.E.C.

Test Site. A preliminary report containing some declassified

data about this explosion (OPERATION PLUMBBOB) has been

published recently (Johnson et Al, 1958). The near-source

observations of the blast, insofar as they have been made

available, will be discussed in Chapter V of this thesis.

It thus appears appropiate to examine the theory of

shock wave propagation in rocks more closely at this time,

and in particular to investigate the dissipation mechanisms

1) 7.1xo1l9 ergs total energy release
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that may be expected to hold for these waves. We shall

investigate this question in considerable detail in Chapter II

of this thesis, and discuss its seismological implications in

Chapter V.

Once the shock front has decayed to pressure levels

considerably below the yield stress of the solid, recourse may

be taken to linear and slightly non-linear perturbation theory

in order to study the propagation of the resulting small

amplitude wave. Knopoff and MacDonald (1958) have made an

exhaustive survey of observational and experimental data

available for the attenuation of small amplitude waves in

silicates, and find that the attenuation coefficient oC is

a linear function of the circular frequency A) in the range

10-24 Q ,< 107 rad/sec. They then proceed to show that no

linear dissipation model can yield an attenuation coefficient

that is proportional to an odd power of 0 , and as a result

conclude that recourse must be taken to permanent strain

mechanisms in order to develop a theory in better agreement

with observation.

Any compressional wave travelling in a medium of finite

thermal conductivity I will suffer damping. This occurs

because the propagation process is only isentropic and rever-

sible for a medium of zero thermal conductivity. Such a medium

is, of course, physically impossible. As a result, all propagation

models that do not take thermal phenomena into account are,

strictly speaking, thermodynamically incorrect. However,

since S is quite small for silicates (of the order of

0.005 cal/cm-sec-deg.C), such "thermo-elastic" damping, as it
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will be termed here, is quite small. Nevertheless, thermal terms

cannot be neglected in any rigorous development of the equations

of motion of small amplitude waves.

We shall accordingly concern ourselves with a model

exhibiting permanent strain in Chapter III. This problem has

been solved by Knopoff and MacDonald (1958) in the absence of

thermal terms. In this thesis, their work is generalized to

take thermal phenomena into account. The assumed model, which

involves both permanent as well as recoverable strain, leads to

non-linear equations of motion. Solutions to these equations

can be found by the method of Kryloff and Bogoliuboff

(Minorsky, 1947) provided that the non-linear terms are small

compared to the linear ones.

In Chapter IV we investigate two linear models in the

oresence of thermal terms. The literature dealing with the

propagation of small amplitude stress waves in solids that

exhibit a finite thermal conductivity is quite extensive, but

in a rather confusing state. Much of the work that has been

ddne suffers from serious flaws in thermodynamic arguments;

and even many of the papers that use a correct and rigorous

thermodynamic approach fail to express the final formulae

in a form amenable to quantitative examination of resulting

attenuation coefficients. The first of the linear models to

be investigated in this thesis is an ordinary elastic solid

of finite, non-zero thermal conductivity, while the second takes

viscous dissipation into account as well. We shall find that

neither of these models gives results that agree with obser-

vational evidence for silicates, although the former may be



applicable to propagation in the megacycle frequency range.

Such frequencies are, of course, of no seismic interest.

Chapter V summarizes the results obtained in the three

previous chapters, and discusses the geological implications

of the work reported there. The propagation of a discontinuity

is traced from its origin as a large amplitude shock pulse

to its eventual decay to a small amplitude acoustic wave.

We shall, then, first proceed to a detailed study of shock wave

phenomena in solids. This will be accomplished in the next

chapter.



C H A P T E R I I

SHOCK WAVE DECAY NEAR THE SOURCE
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1. Shock Wave Propagation Theory in Solids

Although the literature dealing with the generation and

propagation of shock fronts in physical media is quite extensive,

most of the treatments available restrict themselves to the

study of these phenomena in gases. During the Second World

War considerable effort was devoted to the study of shock waves

generated by underwater detonations. The results of this work

are admirably presented and summarized in R.H. Cole's book,

"Underwater Explosions" (1948). Unfortunately, a substantial

part of this war-time research has not yet been declassified and

is therefore unavailable. There is little doubt in the writer's

mind that restricted work on shock wave propagation in solids

has been done both here and abroad in connection with the study

of energy liberated in atomic and nuclear explosions. The release

of results of such investigations would obviously be of great

interest to seismology.

The main reference work in this field is the well known

book by R. Courant and K.O. Friedrichs, "Supersonic Flow and

Shock Waves" (1948). The unlinearized hydrodynamical equations

and approximation techniques for their solution are presented

in considerable detail. The Rankine-Hugoniot expressions, which

relate conditions across a travelling shock front (see below)

are also derived from basic principles. However, the discussion

of shock phenomena in solids is very brief and sketchy. A

similarly short and rather heuristic discussion of shocks in

solids may be found in H. Kolsky's "Stress Waves in Solids"

(1953), pp. 178-182.
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The pressures required to maintain a propagating shock

discontinuity in a solid are far above the materialb yield

stress. It is therefore possible to treat the solid as a fluid

for such phenomena, since the shear modulus is bound to lose

its significance at these high pressures, (Kolsky, 1953),

(Gilvarry and Hill, 1956). The strength of rocks as established

by laboratory measurements is usually taken to be of the order

of 109 dynes/cm 2 (Birch et Al, 1942). In this work we shall

define any travelling pressure discontinuity of magnitude

greater than the solid's strength to constitute a shock wave.

Walsh and his coworkers (Walsh and Christian, 1955; Walsh,

Rice and Yarger, 1957) have carried out extensive experimental

work with shock wave propagation at the Los Alamos A.E.C.

laboratory. Their measurements have enabled them to find the

equations of state that describe the pressure-volume-temperature

relationships of twenty-seven different metals. Goranson et Al,

(1955) have performed work of a somewhat similar nature on

duralumin in the pressure range from 0.15 to 0.33 megabars.

They distinguish between isentropic and isothermal equations

of state, and succeed in fitting their experimental data to an

empirical equation of state of the form,

P,= ( K *O)+- K/(

where P. e isentropic pressure, ks= isentropic bulk modulus,

ks' z second order coefficient, = density at zero pressure,

and (* density at pressure Ps . Shock wave measurements on

metals are also being undertaken by G.E. Duvall and associates
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at the Poulter laboratories of the Stanford Research Institute

(Duvall and Zwolinski, 1955; Drummond, 1957). The only

laboratory work with shock waves in rocks has recently been

reported by Hughes and McQueen (1957). They have succeeded in

measuring the density of two gabbro and one dunite specimens

in the pressure range from 0.15 to 0.75 megabars. These large

pressures were attained across shock fronts generated by high

explosives. Dunite was compressed from (o= 3.25 grs/cm3 to

f = 4.93 grs/cm3 at 0.72 megabars, and gabbro from 1F: 3

to f= 5 grs/cm 3 at 0.75 megabars. Both gabbros so tested

showed evidence of polymorphic phase transition at a pressure

between 0.1 and 0.35 megabars to a more dense and less

compressible phase. The theory to be developed in the following

pages does not take the possibility of such phase transitions

into account. We moreover restrict ourselves to isothermal

equations of state (see Section 3 of the present chapter).

Even though such idealizations are not strictly correct, they

should be adequate to provide us with orders of magnitude of

shock wave phenomena.

2. The Formation of a Shock Front

Let P0 z hydrostatic pressure, P-Po= the excess over the

hydrostatic pressure, je= density at pressure Po, and

= z density at pressure P. Within the elastic limit,

P-P0 << 1 , where 8 = yield stress of the solid, and one has

~~ con S.
- (2.1)
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so that all elastic strains are propagated at the same speed.

When P-Po )) , however, the quantity will either

decrease asymptotically toward zero, or increase with increasing

P. In the former case, a plastic wave with a velocity of

propagation less than that of the elastic wave will be produced;

in the latter, the larger strains will be propagated faster

than the smaller ones, so that such disturbances travel through

the medium at super-sonic speeds. Sonic speeds are here assumed

to be those that correspond to ordinary elastic waves. The

formation of a steep shock front may be schematically illustrated

by Figure 2.1 below:

b b b
-- 04

a a

(1) (2) (3)

FiE. 2.1----Formation of a Shock Front in a Wave of Finite
Amplitude (adapted from Cole, 1948).

Let us assume that the pressure at b is greater than that at

a, Pb> Pa, and that both Pa and Pb )S . Then the disturbance

at b will travel faster than at a, so that the distance d

diminishes as the pulse travels toward the right. The pulse

front will become steeper and steeper, and would ultimately

become infinitely steep (Fig. 2.1, (3)), so that dZO. This

ultimate condition cannot be attained physically, since the
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differences in pressure and temperature of the material in the

disturbed region relative to the undisturbed medium ahead of

the pulse become larger and larger as the front steepens,

that is to say, the gradients of these quantities approach

infinitely high values. In this situation, however, considerable

amounts of energy will be dissipated, and the pulse front will

only approach, but not actually reach infinite steepness.

A pulse that approximates the idealized state illustrated in

Fig. 2.1 (3) is known as a shock front. The interval required

by a pulse to reach its maximum steepness is called its rise

time. So far as is known from exoerimental measurements, such

rise times are exceedingly small, of the order of microseconds

in many instances (Cole, 1948). The equations of state that have

been found to describe the behavior of rocks in the earth's

crust (see below, Section 3 of this chapter) show that

increases with increasing P, so that shock waves, rather than

plastic waves must form when an earthquake occurs.

In order to make the mathematical analysis of shock

phenomena at all tractable, it is necessary to make a number

of idealizations. It has turned out, fortunately, that

measurements agree very well with theory in spite of the great

simplifications that must be made. The region of greatest

interest for shock wave behavior lies in the immediate neighbor-

hood of the source of a large disturbance, but it is just in

this region where measurements cannot be made, since the best

pressure gauges have upper endurance limits far below pressures

that appear to be developed near the source. Thus pressures are
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recorded as close to the origin as is feasible, and the results

extrapolated to smaller source distances. This method is used

in work with underwater detonations, and has also been employed

in the study of disturbances caused by rock blasts (W.I. Duvall,

1953).

The fundamental equations that describe the shock wave

are the so called Rankine-Hugoniot relations, (hereafter

referred to as the R.H. relations). Since their derivation can

be found in basic reference works (see e.g. Courant and Friedrichs,

1948), we merely state them here without proof. They are obtained

by a consideration of the zones immediately ahead and behind the

actual discontinuity. If the wave front becomes infinitely steep

(d =0; See Fig. 2.1, (3)), the pulse has zero width.Now let

U = velocity of shock front relative to the fixed origin 0,

DISTURBED ZONE U UNDISTURBED ZONE

P,) EV, vo ,

SHOCK FRONT
(6= 0)

0 X

Fig. 2.2-----A shock front propagating into an undisturbed
zone from left to right at velocity U relative
to a fixed origin 0.

and let PO, eEo, and vo be the hydrostatic pressure, density,

internal energy, and particle velocity in the undisturbed zone

ahead of the shock and P, ( , E, and v the corresponding
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quantities immediately behind the shock. Since, by definition,

no excitation has occurred in the undisturbed zone prior to

the passage of the shock front, vo = 0. Application of the

laws of conservation of mass, momentum, and energy to both

sides of the shock front yields the equations

e(u- v)= ' U
P- P = (' Uv <t=

(- E0? 0)(L )

(2.2 a,b,c)

These are the R.H. relations. It should be pointed out again that

these exoressions were derived subject to the condition d 0,

a situation which can only be approached physically, since

d=0 corresponds to infinitely large gradients across the

discontinuity.

Little work has been published on the actual thickness of

the shock zone-----or transition zone, as some writers chose

to call it. The quantity d is undoubtedly a function of the

dissipative forces which become increasingly important as the

gradients grow larger. In fluids d is of the order of one

molecular mean free path (Kolsky, 1953), but no results are

available on the probable thickness of this zone in solids.

Nevertheless, agreement between observation and theory is so

good that one may safely assert that this restriction on the

R.H. relations is not serious.

Conditions in the disturbed zone after the passage of the

first shock front are extremely complicated, and involved
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hysteresis effects must probably be taken into account.

Moreover, such shock waves can be reflected from boundaries

just as in the case of ordinary elastic waves, so that complex

interactions between incident and reflected shock pulses must

arise. In this work we must assume,(a) that no reflection of

the shock wave occurs within the area of interest and (b) that,

at least as far as earthquakes and rock blasts are concerned,

the shock phenomena can be adequately described by the passage

of a single shock front of infinitesimal width.

3. The Equation of State

If equations (2.2 a,b) be solved simultaneously for the

shock velocity U and particle velocity v, one has

CO U (2.4)

If the equation of state of the medium, P:{((,T), where T is

the absolute temperature, is known, it becomes possible to express

the shock velocity U, the particle velocity v, and the internal

energy difference E-E across the discontinuity as a function

of the excess pressure P-POor density increase C-Co alone.

In particular, if the behavior of P-P0  as a function of the

distance from the source, R, be known, then the dependence of
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-g upon R can be found from the equation of state, and

thus the functions U(R), v(R), and E-E (R) established uniquely.

Knowledge of these functions permits detailed calculations of

supersonic flow and associated energy losses that one might

expect to find near earthquake focii or large rock blasts,

such as underground atomic explosions. Obviously, the larger

the initial pressure difference P-P i.e., the larger the

quantity (P-P o). , the greater will be the volume of material

around the source in which shock phenomena take place. We recall

here that P0 is the hydrostatic pressure, and P-P0 the excess

over this hydrostatic pressure as referred to the disturbed and

undisturbed sides of the advancing shock front. In seismological

applications, P0 will of course itself be a function of the depth

below the surface.

A successful attack on this problem therefore hinges

on two factors:

(1) Knowledge of the equation of state,

(2) Knowledge of the pressure distance decay law.

Now (2) can only be established explicitly if the exact

solutions of the non-linear hydrodynamical equations that

describe the motion of a shock pulse are known. In particular,

the decay law may not only be a function of the equation of

state itself, but also of such mechanisms as viscosity and heat

conduction. Here we only consider (1), and return to the problem

of the hydrodynamical equations in the next section.

Birch (1938,1947,1952) has made an exhaustive study of

the behavior of rocks at high pressures, based on the finite
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strain theory of Murnaghan (1937,1951). Birch's equation of

state, which is independent of T, is

P ?4 [(v./v) - ( /v)] (2.5)

Here4f,= bulk modulus (or incompressibility) corresponding to

zero pressure, V0 = specific volume at zero pressure, and

V= specific volume at pressure P.

Gilvarry (1957) writes (2.5) in the more general form

P: (n, - M).
(2.6)

He calls this equation the generalized form of Birch's

isothermal equation of state. Eq. (2.6) reduces to (2.5) by

setting nl= 7/3 and ml= 5/3. Gilvarry has also lifted the

isothermal restriction on Birch's equation, and finds that in

this case the equation of state is given to first order by

P =. P(T, +O ni\

) [T (2.7)

T,

where

* n -M, V v,)

is the generalized isothermal Birch equation (2.6), T -initial

temperature, T =final temperature, /= coefficient of thermal



expansion at temperature T0 and zero pressure, and

Equation (2.7) permits the calculation of the temperature

rise, T-To, that corresponds to a pressure increase of P-Po

in a solid describable by such an equation of state. Again,

the behaviour of the parameters/I, andy 0 in a shock zone is

not known, so that the use of (2.7) in preference to the

isothermal equation (2.5) does not appear to be warranted at

this time.

A question of equal importance is the Upper pressure limit

below which (2.5) can be assumed to be applicable. Birch (1952)

presents a curve for iron that he has computed from (2.5) up

to a pressure of - 7x106 bars, which corresponds to a density

of ~15. Walsh and Christian (1955) have measured shock pressures

in metals up to ~v5x105 bars. It is of course difficult to

speculate about the magnitude of P-Po across the shock front

generated by an underground atomic blast or an earthquake, and

in the following pages we shall assume that this pressure difference

does not exceed 106 bars. In this case we are probably well

within the region of validity of (2.5). Above pressures of

107 bars it appears likely that the equation of state must be

found on the basis of quantum-mechanical, rather than the

elastico-plastical considerations that have led to Murnaghan's

theory. In the former case, the solid is treated as an electron

gas. Calculations along such lines have been made by a number

of workers (Feyrnan, Metropolis, and Teller, 1949), but their



30

results hold only for pressures greater than 107 bars

(1013 dynes/cm2 ). It is extremely unlikely that pressures of

this magnitude are ever developed across shock fronts in
1)

rocks; accordingly, we shall restrict ourselves here to a

consideration of the Birch-4urnaghan isothermal equation alone.

4. The Hydrodynamical Equations and Shock Decay

It was pointed out in the previous section that the exact

form of the pressure-distance decay law is not only a function

of the assumed equation of state, but also of dissipative

mechanisms such as viscosity and heat conduction. Since a

shock front is actually a very large finite amplitude pulse,

the classical linearized hydrodynamical equations cannot be

used to describe the propagation of shock waves through any

physical medium. Where the deviations from linearity are not

considerable, as in the case of the small amplitude waves

treated in Chapter III of this thesis, perturbation techniques

applied to known solutions of the corresponding linearized

equations yield very satisfactory results. In the present case,

however, the non-linear terms are so large that any such

approximation method breaks down completely. Thus the

equations of continuity and motion in one dimension in the

absence of viscosity and heat conduction can be written in their

(1): at least, in the case of earthquakes and non-nuclear blasts.
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Eulerian form as

+

((v)+ (ta+ P) =0
t +(2.8 a,b)

The subscripts x and t denote differentiation with respect to

the space and time variables, and v = particle velocity in the

x direction. The isothermal equation of state, P= (),could be

used to eliminate P from the above system, so that it might in

theory be solved for u(x) and C (x). But, as was pointed out

above, the non-linear terms of (2.8) become so large for a shock

wave that linear perturbation techniques are not applicable.

The system (2.8) is amenable to an exact solution by the

"method of characteristics" (Courant and Friedrichs, 1948,

p. 38 ff.) in the case of gases,. for which simple linear

equations of state P= () hold. For solids, however, this is

not the case at pressure levels that must exist across the

shock front. Since the exact solution of (2.8) is not known,

only cumbersome numerical iteration methods can be used to

attack the problem. Unfortunately these iterative procedures

are strongly dependent upon initial conditions in the immediate

neighborhood of the source, and it is exactly here where adequate

data, either experimental or theoretical, is almost totally

lacking. Calculations of this nature have been made for under-

water explosions (Cole, 1948), but in this instance some

empirical data from near source measurements was at least
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available. Since up to this time little or no such data exists

for rock blasts, and is obviously unattainable directly in the

case of earthquakes, such iterative calculations appear to be

rather futile.

Generalizations of equations (2.8) are given by Courant

and Friedrichs (1948, p. 134) for a viscous and heat conducting

fluid. In this case one has for one dimensional flow

+ (( 0

(,st + ( + P AX v),: O
T S + (vT S= 4/3 ^ v- + (K,,0

(2.9 a,b,c)

Here 8 =specific entropy, \: bulk viscosity (see Ch. III),

and If thermometric conductivity. The left side of (2.9 c)

represents the heat acquired by a unit volume in unit time; the

first term on the right represents the heat generated by viscous

friction, and the second the contribution due to heat conduction

directly. Again, Gilvarry's generalized equation of state (2.7)

could be used as an additional relation in conjunction with

(2.9), but such computations are subject to the same

difficulties as explained above.Moreover, it is by no means

certain that viscosity and heat conduction represent meaningful

concepts when one deals with processes occurring in the shock

front"itself.



We must therefore conclude that shock amplitude decay

laws cannot be found from consideration of the hydrodynamical

equations because

(1) Their non-linear terms are dominant

(2) The meaning of viscosity and thermal conductivity in

shock fronts is as yet obscure.

Under these circumstances the only remaining avenue of

approach lies in the postulation of certain shock decay laws,

and to establish the physical implications to which such

assumptions lead. One then hopes that considerations of this

nature will at least shed some light on the problem of energy

dissipation and supersonic flow in the neighborhood of large

sudden disturbances in solids, and yield an idea of the order

of magnitude of such quantities. The theory to be presented

below is of a rather general nature, since it does not require

knowledge of the exact shock decay mechanism until the final

stagEs of the calculation are reached. The chief advantage of

this approach lies in the fact that any number of decay laws

may be tested in this way, and their physical feasibility

established.

5. The R.H. Relations for the Birch Isothermal Equation of State

It was already pointed out in Section 3 that combination

of the R.H. relations with a suitable equation of state

permitted the unique calculation of shock velocity U, oarticle

velocity v, and energy difference across the shock discontinuity

E-E as a function of the quantity C- Co alone. Here
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( z density of material at a hydrostatic pressure P, and

6z density of the material ahead of the shock front, which

is at a hydrostatic pressure P0 0

We select the Birch isothermal equation of state (here-

after termed the Birch equation), which can be written in the

more convenient form

P? 3 e )5S 
2/3

* 2. A ( \)/ (2.10)

as our fundamental relation. Here we set -/ and jv
When e= , -P 0 =0 or P:P . Since rarefaction shock waves

in solids and liquids cannot arise (Lamb, 1932), VO >V

and > fo always, so that %l,/ I .

Substituting (2.10) into (2.3), one has

U:- - -| (2.11)
- ( e -e. \ L' J

Consider for a moment (2.3):

U [ ( (-:o (2.3)

if we expand P in a Taylor series in ('-g.) about P ,

(2.12)

The coefficients PoP ,P, P2,. '..are actually functions of
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temperature, but since we are dealing here with the isothermal

case, these coefficients may be considered to represent

elastic constants. If the quantity is small compared

to , we need only retain the first term in the

expansion (2.12), and thus have

It is shown in Slater's "Chemical Physics" (1939, p. 203)

that P1 v -k , where O = isothermal incompressibility.

In this case,

(2.13)

For small f- , we can set roughly . Then,

substituting (2.13) into (2.3),

U - - . 2 cc (2.14)

where we recognize co to be the ordinary acoustic velocity.

We have thus shown that an acoustic pulse is actually a weak

shock. Mathematically, the transition from (2.3) to (2.14) is

difficult to establish. One gets around this ambiguity by

arbitrarily defining the pressure excess, P-P0 , below which the

pulse may be considered to be acoustic, i.e., adequately

represented by (2.14). If ( = yield stress of solid, we shall

term the pulse acoustic when P-Po< C8 . Thus any decaying
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shock will eventually decay to an ordinary acoustic pulse.

For convenience in later work, we set

(2.15)

which implies

(2.16)

Equations (2.10) and (2.11) may

o771

then be written

/ 3 
, 1 (2.17)

and

C

by (2.14). These relations may also be expressed in the

convenient dimensionless form

-3-
2/3 2

- 1) >11

U
C 0

r f. . >
>1I

(2.19 a,b)

For y) 1, it is easy to see that both * and c are

(2.18)

Y -- I 1/r a

f - eo = f. (Y 1')

%
UC 3 -a
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monotonically increasing functions of y. When y=l, application

of L'HO"pital's rule to (2.19b) shows that

Lim - - I
plC0

If (2.19a) be substituted in (2.2c), one gets a relationship

between the difference in internal energy across a shock front,

E-E0, as a function of y and the constants Co,, Po, and AO

E - 1' ys/, +

E- E + (2.20)

Similarly, the particle velocity, v, is given by

1 ±(2.21)

Duvall and Zwolinski (1955) have investigated the problem of

entropy increase in a medium through which a shock front is

propagating. It has been shown by Rayleigh (1910) that a pressure

discontinuity can be maintained in an ideal fluid only if the

entropy of the fluid increases as the shock oasses through it.

Courant and Friedrichs (1948, p. 142) have furthermore shown

that the entropy change across a shock front for "weak" shocks

(see below) is of third order in . Duvall and Zwolinski

make use of the results of Rayleigh and Courant and Friedrichs,

and give the following expression for entropy increase across a

weak shock:

-s= -I * LzP
- 2 (2.22)12T
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Here s = specific entropy behind shock front, = 0 specific

entropy in undisturbed region ahead of shock, T = absolute

initial temperature, and P = isothermal pressure. Duvall

(personal communication, 1958) has informed the writer that

(2.22) holds for compressions up to approximately 15%, at

whatever initial pressure P these may take place. A "weak"

shock is thus one across which 15%. Duvall has further-

more pointed out that the entropy increase thus calculated is

only that given by reversible thermodynamics. This is due to

the fact that Courant and Friedrichs (1948), upon whose work

Duvall and Zwolinski's derivation is based, do not consider

dissipative mechanisms in that part of their analysis.

Combination of the Birch equation (2410) with (2.22),

and use of (2.15) yields the dimensionless relationship

gTe ( - S 5 73 7 r_7 -3

9 4 J[YJ (2.23)

However, since this equation has been derived on the basis of

reversibility, and since in any event it is limited to

compressions less than 15%, it cannot be used for dis-

sipation computations. For this purpose we shall make use of

(2.20), as will be shown in the next section of this chapter.

It should be remarked here that the terms "weak shock"

and "infinitely weak shock" are very loosely used in the

literature. Courant and Friedrichs (1948, p. 131) define an

"infinitely weak shock" as an ordinary sound wave. We shall



39

adhere to this convention in the present work.

6. The Decay of Shock Amplitude with Distance and Associated

Energy Dissipation

We have seen that the dominance of the non-linear terms in

the hydrodynamic equations does not permit us to find solutions

in the case of large amplitude shocks. It was also pointed out

that iteration techniques near the origin were equally futile

as far as these phenomena in solids are concerned, since almost

no empirical data is available for the region in the immediate

neighborhood of the shock source. We accordingly proceed to

derive erwgy relationships under the assumption that the

relation of pressure to distance, P(R), is known. Methods

somewhat similar in nature have been applied to the study of

underwater shock propagation (Brinkley and Kirkwood, 1947;

Arons and Yennie, 1948; Cole, 1948).

It is well known that the attenuation factor of seismic

waves that propagate in the small amplitude regions, far from

the focus of the disturbance, is very small (see Chapter I).

One may then conclude that the zone of significant energy dis-

sipation must be restricted to that volume around the source in

which -

In other words, a seismic pulse may be expected to suffer its

greatest rate of attenuation, and consequently impart a large

proportion of its energy to the surrounding medium, in that
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region in which the pulse is still a shock wave. When

U/c0 v 1, the pulse has degenerated into an acoustic wave,

and its propagation will be governed by small amplitude

theory (see Chapters III and IV).

Let us assume that the pressure across a propagating

shock discontinuity decays according to some inverse power

of the distance from the origin of the disturbance. Let us

assume further that the source region may be represented

by a sphere of radius a, , which at time t-- to suddenly expands

and imparts an ideal, infinitely steep compressive pulse of

zero width and magnitude P-P0 to the surrounding medium.

At successive times t =t, t2 ,........ the shock front may

thus be considered to be representable in space by an exoanding

sphere concentric with the sphere R 0 . We may thus write

( - P = ( P - O Pc
(e- 4' >/ > (2.24)

where R =radial distance from surface of source sphere,

(P-P )R= pressure difference across discontinuity at distance

R, (P-P0 ) = original pressure difference at R =- 0 , and

n = arbitrary exponent, greater than one. A detailed discussion

of this decay law and its implications will be relegated to the

end of this section.

Once the pressure distance decay law (2.24) has been

postulated, it becomes possible to express the quantities

U/c0 and E-E0 as functions of R and the initial amplitude of
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the shock pulse, (P-P ) .

Elimination of y between (2.19 a,b) yields

P -aS/3 
- 1 -

- -j (2.25)

P-P0
This relation could be solved for U/c in terms of ,

but the algebra required is rather formidable. Instead, we

prefer to use (2.19 a,b) directly as a pair of parametric

equations in y ( y ). Plots of the two dimensionless

quantities and are shown as functions of y

in Figure (2.3). Thus knowledge of the magnitude of C/f,

at any point R permits us to find the shock/acoustic velocity

ratio at this point. For values of y higher than 4, Table I

in the appendix should be consulted.

Equation (2.24) may also be written in the more convenient

dimensionless form,

\ ) f R/ >(2.26)

If suitable values of the quantities and n be

assumed, U/c0 may be found as a function of /R with the aid of

Fig. 2.3 or Table I of the Appendix. In order to render the

numerical computations as general as possible, we shall work with

the dimehsionless distance m, where m R , m 1. Then (2.26)
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becomes

( ) ) 0  (2.27)

Once the function , is known, we may proceed to the

calculation of shock front travel time curves in the neighbor-

hood of the source region. Let a spherical shock front of initial

amplitude (P.-P ) leave the surface of the source sphere

at time to= 0. Then at any subsequent time t one has

(R (2.28)

R

In terms of m and the quantity U/co, (2.28) may be written

(2.29)

where T = is a dimensionless time. This function must be

evaluated by numerical integration, since the algebraic solution

of (2.25) is so intractable.

It is a matter of considerable interest to compare the

travel time curve of a shock front with that of an ordinary

P wave that has left the surface of the source sphere 0-

at the same time to as the shock. Whether both types of waves

are generated at this time, or whether the P wave observed at

large focal distances from the earthquake is merely a degenerate

shock pulse, is a question that cannot be settled without adequate

experimental evidence. However, let us assume here that a shock
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pulse and a P wave are simultaneously generated at time to.

S waves cannot be produced in this idealized source model.

If the initial magnitude of P-P is sufficiently high, the

shock pulse will be propagated at a greater velocity than the

P wave. At a subsequent time t, however, the shock will have

decayed to M ( . As it loses amplitude it approaches

the sonic velocity co, where

C =

The P wave is travelling at a velocity c given by

~+ '13AF

where :e ordinary elastic rigidity modulus of the medium.

Thus two situations may arise:

(1) The initial shock velocity U is greater than the P

wave velocity, c. In this case the shock will first

lead the P wave, but at a later time t will have decayed

sufficiently so that the P wave will catch up and overtake

it.

(2) The initial shock velocity U is equal to or less than c.

In either case the P wave will lead the shock pulse for

all t),t . We notice that the shock wave leads the P

wave only as long as

The shock which leaves the source sphere at tt 0 thus decays to

an acoustic wave, or "an infinitely weak shock". It may thus be
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considered to degenerate into a P wave.

At distances far from the source of a disturbance it might

therefore be possible to observe two direct P wave phases,

where one corresponds to the degenerate shock pulse and the other

to the comoressional wave that left the source sphere simul-

taneously with the shock. Which phase arrives first depends

upon satisfaction of initial conditions (1) or (2) above.

We must mention that possible interaction between the two

pulses at their points of intersection is not considered here.

The objection may also be raised that it is meaningless to speak

of the rigidity, A, in the near-source region. It must be borne

in mind, however, that the solid behaves as a liquid only at

pressures developed across a shock front, and that one can there-

fore not neglect rigidity in discussing the passage of small-

amplitude disturbances even through the near-source region.

A somewhat related point 1z the variation of the bulk

modulus, or incompressibility, ( with pressure. Birch (1952)

has investigated the dependence of the compressibility,

( 7 )upon pressure, and found that application of Murnaghan

finite strain theory yielded the following results

1.000 4.00
1.315 3.31 T= isothermal
1.656 3.03 compressibility
2.024 2.87

Table 2.1: ( PTXas a function of compression.
Source: Birch (1952), p. 246.
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Since this variation is negligible compared to the change of

(P-P0 ) in the near-source region, use of the isothermal bulk

modulus at zero pressure, , is justified for the rough

calculations presented here.

The solid curves in Figure 2.4 represent travel time paths

for shocks whose initial amplitude is given by

1,5,10, and 100,

and which have been calculated from equation (2.29). The value

of n in (2.27) has been taken to be two (see below, p.55 ff.).

The dashed curves represent possible travel-time paths of the

P wave pulse that has left the source sphere together with the

shock. For a radially outward travelling P wave, we thus have

or,

vpt V ~T iT
0 o

and therefore

T V C0  5 m(2.30)

where s c0 /c. Since both pulses are assumed to originate at

m= 1, the equation of the P wave travel time curve in the near

source region is

T -(2.31)
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in the (Tm) plane. These P wave travel-time curves have been

plotted in Figure 2.4 for s= 1, 0.9, 0.8, 0.6, 0.4, and 0.2.

When Vp = co, s= 1, and (2.31) gives T = (m-1), which yields

the travel time path of the infinitely weak shock that travels

at constant acoustic velocity c0 . Such a wave.can, of course,

never actually be produced in a solid, since the acoustic pulse

will travel at velocity Vp, where Vp is a function of the rigidity,

, as well as of and e. .

Intersections of the solid shock curves with the dashed

P wave curves will then give the particular values of T and m

beyond which the shock will trail the P wave. If the P curve is

tangent to the shock curve at m =1, Uni initial, and the

P wave will lead the shock for all T >/O. If Uinitial< cinitial'

the final lead of the P wave over the shock pulse will be

correspondingly greater still. As the shock gradually becomes

an acoustic pulse, its travel time curve will tend to become

parallel to the curve T = s (m-l) .

Now it may be argued that the final velocity of the shock

pulse, c 0 , at which it travels once P-P <A 3 , should be given

by 4

rather than by

C: 0
c eo

since the propagation velocity of an infinitely weak shock, or

ordinary acoustic pulse, should be a function of the solid rigidity
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as well. However, it is not at all clear at this time at

what point one must cease to treat the solid as a liquid

as far as the reaction of the medium to a shock wave is con-

cerned. Experimental work is required to clarify this question.

Let us consider an actual example illustrating the use

of Fig. 2.4. Assume that ( R )100, and that s : /Y 0.6.

In this case the shock and P travel time curves intersect at

T -~13.5 and m1 I o23.5. For T < 13.5 and mi1 < 23.5, the shock will

lead the P wave; for T > 13.5 and m > 23.5, the converse will

be true. The dimensionless times and distances may be converted

to their standard equivalents, t and R, if the appropiate values

for CL and. m be substituted into the expressions

c, T
C 1

(2.32 a,b)

Thus, if in the present case we take 0,= 1 Km and c0:2 Km/see,

ti:1 x 13.5 6.8 seconds and Ri= 23.5 x lr 23.5 Km. If we take

the bulk modulus, , as 1010 dynes/cm 2, the shock pulse has

an initial amplitude given by (P-P ) = 102.1010Z 1012 dynes/cm2 =

106 bars. This example illustrates the flexibility of plotting

the shock and P wave travel time curves in the (T,m) plane.

The analysis outlined so far enables us to make estimates

about the actual size of the zone around a source sphere in

which shock phenomena may be expected to play a significant

role. Moreover, knowledge of near-source travel time curves
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would permit us not only to arrive at a function

by a reversion of the procedure presented here, but also to

establish the exact values of the constants of the equation

of state (2.6) or (2.7). Work somewhat along these lines has

been done by Walsh and co-workers (Log. Cit., p. 20) on metals,

and by Hughes and Mcueen (1957) on rocks.

We now proceed to the discussion of a method that will

provide us with a quantitative estimate of the actual amounts of

energy dissipated in the neighborhood of the source sphere. For

this purpose we return to eq. (2.20), which can be written in

the form,

(2.33)

where A E= E-E . This formula gives the difference in internal

energy, A E, between the disturbed part of the medium immediately

behind the shock discontinuity, and the undisturbed medium ahead.

(See Fig. 2.2). Without loss of generality, we may take E0 and

P to be zero, since we are only interested in the internal

energy decrease,AE, across the shock discontinuity as a

function of distance from the source sphere. Eq. (2.33) thus

becomes

2 "oaE = '01
Z 0 (2.34)

where (2.19 a) has been used to eliminate the term in the

square brackets.
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For an assumed decay law (2.24), A E(R) is easily calculable

from (2.34). Before passage of the shock front, the region

ahead of it is assumed to be undisturbed. Therefore the decrease

in internal energy across the discontinuityA E, may be assumed

to represent the amount that is "leaking" from the shock front

into the medium. If we then sum all the increments AE(RjR+AR)

over a succession of spherical shells of thickness b R, we shall

have arrived at the total amount of energy dissipated within a

spherical shell of thickness R- 0 , in whose geometric center

is embedded the source sphere of radius 0, . Eq. (2.34) expresses

the principle of conservation of energy across the shock front.

At time t= 0, all the energy is contained in the shock pulse; as

this pulse decays, it loses energy to the medium through which it

is travelling. As t -* 00 , the pulse will have decayed to zero

amplitude, and all its original energy will then have been imparted

to the medium.

The energy transferred from the shock pulse to the medium

in a spherical shell of thickness 6 R is A E (.) R+AR). Consequent-

ly the amount of energy transferred to the medium in a spherical

shell of radius ROW, Ecum, is given by

ECUfl ) R+ (2.35)

01

or, in terms of the dimensionless distance m,

E 4 c{ OE(M, )M+Am) J(m m
CUM (2.36)
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For the assumed decay law of form (2.24), the quantity A E

will be known as a function of m from (2.34). Accordingly

one writes

Ez

(2.37)

(2.37) is evaluated by numerical integration with data computed

from (2.34).

Before proceeding to an examination of the results of such

calculations, it will .be fruitful to take a closer look at the

assumed decay law (2.24),

I - n n> (2.24)

As it stands, (2.24) does not permit us to distinguish between

the familiar phenomenon of spherical divergence, a purely

geometrical effect, and actual wave attenuation, which results

in a transfer and ultimate degradation of energy from the shock

pulse to the medium. Spherical divergence reduces the amplitude

of a propagating disturbance as the inverse first power of its

distance from the source; since it is a purely geometrical

phenomenon, all pulses, be they large amplitude shocks or

infinitesimal acoustic waves, are affected in a like manner, as

long as they are spherical waves. Let us therefore modify (2.24)

in such a way that the two effects can be considered separately.

We write
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+(- ) J(2.38)

where the exponent 6 corresponds to dissipative processes alone.

The first term in the denominator of the factor within braces

will then correspond to spherical divergence,.while the second

will account for actual dissipation. If there is no damping,

the exponent 6 is zero, and (2.38) will reduce to

(I>) (P- ) 0- ( (2.39)

which is a special case of (2.24) with n=l. Eq. (2.39) does

therefore not represent a damping law as such, since it only

expresses the geometrical spreading effect. We now rewrite (2.38)

in the form

(?- P.9- Q.

+ (2.40)

Since < for <$ / I and R >/I , (2.40) becomes
R

0- (241
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Eq. (2.41) is similar to (2.24) except that we chose to express

(2.24) in such a form that (P-P)R (P-Po) at 'R =0,. It is

evident from (2.41) that for any 6 ) t , the error in neglecting

spherical divergence is small, this error decreasing rapidly with

increasing R. One may therefore conclude that (2.24) is an

adequate representation of a damping law involving spherical

geometry. In other words, even though we should use (2.40) as

the form of our damping law, the error incurred by taking the

simpler form (2.24) is not great. Essentially, this approxim-

ation is equivalent to the assertion that the exponent n in

this equation corresponds exclusively to dissipative damping,

and not to geometric spreading..

The actual value of the exponent n, which may itself be

a function of R and other parameters of the medium, must be

found either from a rigorous solution of the non-linear

hydrodynamic equations of motion, or from empirical measure-

ments. However, we have seen that the first of these approaches

is futile until the theory of non-linearity is better under-

stood. The second alternative has been used both in under-

water explosion studies, as well as in laboratory experiments

on metals. W.I. Duvall (1953) has published the results of some

experimental work done with rock blasts at the Bureau of Mines

(see also Chapter I of this thesis). He found that the decrease

of peak stress with distance close to the shot point could be

given by a law similar to (2.24), where the exponent n ranged

in value from 1.6 to 2.5 for various rock types and explosives.

In the present work, however, we are primarily interested in the
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dissipative processes that occur near earthquake focii. Although

it is of course impossible to secure stress measurements of this

nature in the case of earthquakes, such data could presumably

be gathered from underground atomic blasts. The question arises

whether the detonation of such a small volume of material leads

to near focus dissipation processes that might be expected to

be of a nature similar to those occurring near an earthquake

focus. Yet little is known about the mechanics of earthquake

generation, so that no definite statements can be made in this

connection.

In view of these considerations, we shall:

(1) Postulate that the stress release in a focal region

is of a sufficient order of magnitude that an ideal

shock front can be assumed to have formed in the interior

of a focal sphere of radius & within a few milliseconds

after the major stress release has taken place.

(2) Postulate that a representative value of the exponent

n in (2.24) is n= 2.

The calculations that have been carried out here on the

basis of equations (2.24), (2.28), and (2.35) are thus all

restricted to the case n =2. Nevertheless, the formulas can

easily be evaluated for other values of n, n>1, since

the computations, although rather laborious, are straight-

forward. Because of the dearth of adequate empirical data, more

general calculations do not appear warranted. In any event, the

particular case n=2 chosen here will serve to provide us with

a good feeling for the orders of magnitude of shock velocity
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and energy dissipation.

The energy calculations have again been carried out in

terms of the dimensionless distance m ( m P = o.) for the cases

(± - ) =0.01, 0.1, 1, and 10. Tables 2.2 to 2.5 present the

results of this anlysis, together with corresponding values for

the dimensionless time, T, and the shock-to-acoustic velocity

ratio, U/c0 previously computed. The quantity is

plotted against m in Figure 2.5 for the cases 0.1, 1,

and 10.

If one wishes to gain a still more quantitative insight

into the results of these computations, it is necessary to

assume specific values for the bulk modulus, ; the acoustic

velocity, C. ; and the radius of the source sphere, 0-

Tables 2.6 to 2.9 have been prepared by taking:

O.= 1 Km

-O %1011 dynes/cm 2

C:= 2 Km/sec

In addition, Table 2.7 b was calculated for the case O:z 10 Km,

1 and G. remaining as above.

The first column of these tables gives R in Km; the second

the time t taken by the shock front to reach a point on a spher-

ical surface at a distance R from the surface of the source

sphere R= 0, ; the third the ratio U/c0; and the fourth, the

cumulative energy, in ergs, transmitted by the pulse to the

medium up to that point. The fifth column gives the total

volume of the shell, of thickness R, surrounding the source

sphere. From entries in the fourth and fifth columns it is
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possible to calculate the mean energy density, or specific

energy, that exists within successive spherical shells of thick-

ness A R immediately after the passage of the decaying shock

front. The left half of the sixth column gives this specific

energy in ergs/cm3 ; the right half, in calories/em 3.

We assume that all the energy that is dissipated during

the passage of the shock appears as heat. Thus the specific

energies computed here only hold strictly for brief times

after the disturbance has traversed the shell, However, since

the thermal conductivity of rock is so small, a considerable

period of time will be required to conduct the heat so produced

away.This problem will be treated in greater detail in Chapter V.

A mathematical difficulty is presented by the question of

convergence of the integral (2.37). The small horizontal lines

that intersect the energy curves of Figure 2.5 have been drawn

at the points at which (P-PO)R has reached the value 109 dynes/cm

for an assumed c o10ll dynes/cm2 . Now equation (2.24) shows

that (P-P0)R can only vanish at R 00, i.e., at an infinite

distance from the source sphere. This means that in practice,

no matter how far the shock front may have travelled, energy

increments will still contribute to the total value of Ecum'

eq. (2.37). A little reflection will convince us, however,

that this is merely a mathematical, rather than a physical

difficulty, for by far the greatest part of the contribution

to the integral (2.37) will take place before the shock has

degenerated into an acoutic pulse. This can be clearly seen

from the three curves plotted in Figure 2.5; in all three cases,
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the Ecum curves rapidly become parallel to the vertical axis

for (P-P ) < w .
o R

If the theory developed here is tenable, then it is only

the energy that is propagated- in the form of acoustic waves

that can contribute to the energies measured by seismograph

stations at the surface of the earth. Now acoustic propagation

can only take place when (P-P )R << ; thus the energy dissipated

in the shock zone will only be detectable in the form of heat

flow at the surface a long period after the earthquake has

occurred. We shall return to this question in Chapter V.

In the next two chapters, we shall switch our attention to

propagation problems that may be expected to arise in the

acoustic region, where the shock front has decayed to a

small amplitude pulse, (P-P)R <(, ( $= 109 dynes/cm 2 for

rocks). In the final chapter we shall then attempt to take an

overall glance at the propagation of the original shock front

from the source sphere RO-. to its final conversion into

a train of acoustic waves of infinitesimal amplitude.
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(9 , oxi'
1.00x10-2

6.94x10-3
5.08
3.91
3*09
2.50
1.11 .4
6.25x10 4

4.00
2.78
2.05
1.56
1.23
1.00 52.50x10 5

1.11 66.25x10~
4.00
0

Table 2.2: -
A/M:1

0.0
0.2
0.4
0.6
0.8
1.0
2
3
4
5
6
7
8
9
19
29
39
49
om

0
2. 14x10 4

3.66
4.66
5.42
6.30
8.45
9.45
1.01x10-3
1.05
1.08
1.10
1.12
1.14
1.20
1.22
1.23
1.235
1.256

-0. oI-, vica

1.00x10~1

2.50x10-2

1.11
6.25x10 3

4.00
2.78
2.04
1.56
1.23
1.00
4.00x10-5

Table 2.3:

1.001.0
1.2
1.4
1.6
1.8
2
3
4
5
6
7
8
9

10
20
30
40
50
co

1
2
3
4
5
6
7
8
9
10
50

1.11
1.04
1.01
1.00

0.00
0.99
1.99
3.00
4.00
5.00
6.00
7.00
8.00
9.00

49.00

.000

.056
-080
-090
.098
-102
.105
.107
.109
.110
.120

( -? _(.2
At/ -.
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1.0 1.00 0.00 0.00 1.69
1.1 0.826 0.06 0.35 1.61
1.2 0.694 0.15 0.74 1.54
1.4 0.508 0.27 1.4 1.42
1.6 0.391 0.40 2.1 1.35
1.8 0.309 0.58 2.6 1.28
2.0 0.250 0.79 3.1 1.24
3 0.110 1.6 4.6 1.12
4 0.0625 2.6 5.4 1.07
5 0.0400 3.6 6.0 1.05
6 0.0278 4.6 6.5 1.04
7 0.0204 5.6 6.8 1.03
8 0.0156 6.6 7.0 1.02
9 0.0123 7.6 7.2 1.01

10 0.0100 8.6 7.3 1.01
20 0.0025 18.6 8.0 1 01
40 0.0006 38.6 8.3
60 0.0003 58.6 8.4

Table 2.4: - . .

1.0 10.00 0.00 0.0 3.88
1.1 8.26 0.04 8.0 3.58
1.2 6.94 0.08 14.5 3.33
1.4 5.08 0.13 30.0 2.96
1.6 3.91 0.20 45.5 2.68
1.8 3.09 0.29 58 2.06
2.0 2.50 0.4 72 1.94
3 1.11 0.9 114 1.74
4 6.25xlo10 1.6 163 1.50
5 4.00 2.3 195 1.35
6 2.78 3.1 220 1.27
7 2.04 3.9 240 1.20
8 1.56 4.8 255 1.17
9 1.23 5.7 269 1.13
10 1.00 6.6 280 1.11
20 2.50xl- 2 15.8 340 1.04
30 1.11 25.0 360 1.01
40 6.25xlo-3 34.2 370 1.01
50 4.00 43.4 378

100 1.00 89 395
200 2.50x10~ 181 400

Table 2.5', (?-P:) [ , ) fl
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R (-P)R t U Ecum Shell Vol, Specific Energy
(Ki) dyn/cm 2 sec co (ergs) (cm3 ) ergs/cm3 cals/cm3

1.0

1.2

1.4

1.6

1.000.0

0.1

0.2

0.3

0.4

0.5

1.0

3.5x10 6

1.8x10 6

8.8x10 5

6.1

4.2

1.4

3.2x10

1.3

5.3x103

2.8

1.00x109

6.94xl0 8

5.08

3.91

3.09

2.50

1.11

6.25x107

4.00

2.78

2.04

1.56

1.23

1.00

2.50x10

1.11

6.25x10 5

4.00

0

2

3

4

5

6

7

8

9

10

20

30

40

50

00

8.4x10-2

4.3

2.1

1.5

1.0

3.3x10 3

7.7x10 4

0

1. 07x1 2 2

1.83

2.33

2.77

3.15

4.23

4.73

5.05

5.25

5.40

5.50

5.60

5.70

6.00

6.10

6.15

6.18

6.28

3.06x1015

7.29

1.30x10 1 6

2.02

2.93

1. 09x10 17

2.64

5.19

9.00

1.43x1018

2.14

3.05

4.18

3.35x10 19

20
1.13x10

2.68

5.24

00

Table 2.6
\fi- A, /g= Km

For: A. t 1Km; -1011 dynes/cm 2

c0 : 2 Km/sec.

1.1

8.8x10 2

1.0

13

3

3. 1x10

1.3

6.7x10 5

3.3

2.6

2.1

2.4x10 6

3.1x10 7

7.2x10 8

2.4x10 8

1.81

_________________ I ________ I __________ I ___________________ I ___________________

-0.01 ' %'
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k 0? R t U Ecum . Shell Specific Energy

(dyn/cm2) (sec) co (ergs) Volume. ergs/cm3 cals/cm3

1 1.OOxlO0 0.00 1.11 0.0 0.00 7

2 2.50x109 0.49 1.04 2.8x1024 2.93x1016

1.5 0.36
3 1.11 0.99 1.01 4.0 1.09x10 6 -2

8 3.2xlO 7.7x10-
4 6.25x10 1.50 1.01 4.5 2.64

1.6 3.8
5 4.00 4.9 5.20

5.3x105  1.3
6 2.78 5.1 9.00

7 2.04 5.25 1.43x1018  2.8 6.7x10
1.4 3.4

8 1.56 5.35 2.14
1.1 2.6

9 1.23 5.45 3.04 4
4.3x10 1.0

10 1.00 5.50 4.19

50 4.OOxlO6 6.oo 5.24x1020 9.6x10 2.3xl0

Table 2.7 at ( -o 0.)19/ tv I v<%

For O.=1 Km ' :4=1011 dynes/cm2
co = 2 Km/sec.

') 4



Table 2.7 b:

For 0.= 10 Km; A 10 11 dynes/cm2

a = 2 Km/sec.
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R (P-PO)R t U Ecum Shell Specific Energy
(km) (dyn/cm2 ) (sec) co (ergs) volume. ergs/cm3 cals/cm 3

10 1.0010 0.0 1.11 0.00 0.00
9 27 19 9'6x107 2.39

20 2.50x10 4.9 1.04 2.80x10 2.93x10

17 1.5 0.36
30 1.11 9.9 1.01 4.0 1.09x10 6

8 3.2x106 7.7xl0-2
40 6.25x108  15 1.01 4.5 2.64

1.6 3.8x10 2

50 4.00 4.9 5.20 53x105 1.3

60 2.78 5.1 9.00

70 2.04 5.25 1.43x10
1.4 3.4

80 1.56 5.35 2.14
1.1 2.6

90 1.23 5.45 3.04 4.3x104  1.0
100 1.00 5.50 4.19 2 -5
500 4.00x106 6.00 5.24x10

( /R-#0k
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R (P- t U E0 M Shell Specific Energy
o(R - cum

(Km) (dyn/cm2 ) (sec) co (ergs) Volume. ergs/cm3 cals/cm3

1.0

1.1

1.2

1.4

1.6

1.8

2.0

3

4

5

6

7

8

9

10

20

40

60

1. 00x1011

8.26x1010

6.94

5.08

3.91

3.09

2.50

1.10

6.25x10 9

4.00

2.78

2.04

1.56

1.23

1.00

2.50x108

6.00x10

3.00

0.00

0.03

0.08

0.14

0.20

0.29

0.40

0.80

1.30

1.80

2.30

2.80

3.30

3.80

4.30

1.69

1.61

1.54

1.42

1.35

1.28

1.24

1.12

1.07

1.05

1.04

1.03

1.02

1.01

1.01

3.04x102

2.77

1.9

1.5

84

0.00

1. 75x1025

3.70

7.00

1.05x102 6

1.30

1.55

2.30

2.70

3.00

3.25

3.40

3.50

3.60

3.65

4.00

4.15

4.20

0.00

1. 38xlO1 5

3.06

7.29

1.30x10 1 6

2.02

2.93

1. 09x1017

2.64

5.19

9.00

1.43x101 8

2.14

3.05

4.18

3.35x10 1 9

2.68x10 20

9.05

Table 2.8: )

\ oA* Km

For 0' 1 Km; A :1011 dynes/cm2

a = 2 Km/seo.

1. 27x10 10

1.16

7.80x109

6.10

3.50

2.70

9.40x108

2.60

1.10

6.60x107

2.80

1.40

1.10

4.40x10 
6

1.20

6.40x10

7.90x103

0.03

1.5x10 3

1.9x10 4

65

23

6.2

2.6

1.6

0.67

0.33

0.26

0.11
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R (P- ) t U E Shell Specific Energy

(Km) (dyn/cm2) (sec) co (ergs) Volume. ergs/cm 3 _}cals/cm 3

11.0

1.1

1.2

1.4

1.6

1.8

2.0

3

4

5

6

7

8

9

10

20

30

40

50

100

200

1. 00x10 12

8.26x10 1

6.94

5.08

3.91

3.09

2.50

1.11

6.25x10 10

4.00

2.78

2.04

1.56

1.23

1.00

2.50x10

1.11

6.25x10

4.00

1.00
7

2.50x10

1.89

1.98

2.00

0.00

0.02

0.04

0.07

0.10

0.15

0.20

0.45

0.80

1.15

1.55

1.95

2.40

2.85

3.30

7.90

12.5

3.88

3.58

3.33

2.96

2.68

2.06

1.94

1.74

1.50

1.35

1.27

1.20

1.17

1.13

1.11

1.04

1.01

0.00

4.00x1026

7.30

1. 50x10 2 7

2.30

2.90

3.60

5.70

8.20

9.80

1. 10x1028

1.20

1.28

1.35

1.40

1.70

1.80

1.85

1 I & I I ____________

Table 2.9: A7 /R I
For 0. I1 Km; *-10 dynes/cm 2 ; c0 = 2 Km/sec.

0.00

1.38x101 5

3.06

7.29

1. 30x10 16

2.02

2.93

1. 09x1017

2.64

5.19

9.00

1.43x10 18

2.14

3.05

4.18

3.35x1019

1. 13x10 20

2.68

5.24

4. 19x102 1

22
3.35x10

2.9x10 11

2.0

1.8

1.4

8.3x10 10

6.6

2.6

1.6

6.3x10

3.2

1.9

1.2

7.7x1 8

4.4

1.0

1.3x10 7

3.2x10

1.6

2.5x105

6.8x103

7.0x10 3

4.8

4.3

3.4

2.0

1.6

6.2x10 2

3.8

1.5

77

46

28

19

11

2.4

0.31

7.7x10-2

3.8

6.0x10 3

1.6x10 4

I0
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THE ATTENUATION OF NON-LINEAR SMALL AMPLITUDE STRESS

WAVES IN SOLIDS
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1. Introductory Remarks

Up to this point we have been concerned with the region

around the source of a disturbance in which the resulting

pulse amplitude is so large that its propagation is subject

to shock wave theory. It was shown that as this pulse travelled

outward from the source and decayed, it would eventually move

at acoustic velocity and thus become an "infinitely weak shock",

that is, a simple elastic wave. Clearly, very different physical

processes govern the propagation of the wave once it has reached

acoustic speeds. In particular, evidence from both exploration

and earthquake seismology as well as from laboratory data

indicates beyond any doubt that the damping that these waves

suffer is extremely small. This is in marked contrast to the

situation which exists while the pulse is still a shock, when

the gradients across its front are of such magnitude that dissipa-

tive processes must be very strong, perhaps much stronger in

many instances than the R-2 law of decay postulated for the

numerical calculations in the last chapter.

When does a shock cease to be a shock and become an ordinary

acoustic pulse? This question is perhaps somewhat ambiguous,

because this transition point could be defined in various ways,

none of which would necessarily lead to unique results. One

convenient criterion is the yield stress of the solid,

which for rocks is about 10 dynes/cm . We shall use this

convention here, and thus consider pressure discontinuities

to constitute shocks or sound pulses according to whether

0-
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The small horizontal lines that intersect the energy curves

of Figure 2.5 have been drawn at the points at which (P-P ) has

reached the value 10 dynes/cm2 for an assumed k 0v 101 dynes/cm2

Obviously, the larger the value of (P-P ) , the more distant

from the source sphere will this transition point lie. It will

be noticed that the energy curves. still continue to grow

beyond this point, although at a steadily decreasing rate.

When the curves become parallel to the m axis, the total energy

dissipated up to that point, Ecum, remains constant for all m

larger than this critical value. But this occurs only at

J.Em:o, where CVM., and where the amplitude of the pulse

has decayed to zero. One might be led to conclude that the

propagation of the acoustic wave continues to be describable

in terms of shock wave theory for (P-P0  <<

Now classical elastic theory predicts that a pulse will be

propagated without damping through any solid in which Hooke's

law holds. Large amplitude shock pulses, on the other hand,

must decay rapidly because of the enormous gradients that exist

across their fronts. Neither state of affairs is in agreement

with what is known from observation about the damping of small

amplitude waves in solids. The Rankine-Hugoniot relations, upon

which the aniysis of the previous chapter is based, were derived

under the assumption that the solid could be treated as a liquid

when (P- P0) C . This condition of course no longer holds when

(M) a< .

Let us consider again the exact equation of motion for

plane one-dimensional fluid flow (2.8 b),
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( + ( v + (2.8 b)

The second term of this expression is always non-linear, while

the third may or may not be linear, its non-linearity depending

upon the relation that exists between P, the total acting

pressure, and the strains produced as a result of P. In treating

liquids one expresses this relationship in terms of a parameter

/$4 , rather than in terms of the strains e, as is done in

the case of solids. The two methods are equivalent, nevertheless,

because / and e are related in simple ways (Birch, 1952).

Thus the third term is non-linear if P( (/ ), 0 P f(y)1 or,

equivalently, if P(e) is a non-linear relationship. In the case

of an elastic medium, P(e)= Me, (where ME = an elastic modulus)

represents a linear equation, and consequently the third term

in (2.8 b) is linear. But if, say, P(y) is given by the Birch

equation of state (2.17), which is a non-linear relation, then

this term will be non-linear also. The strains e are the

generalized higher order strains of Murnaghan (1937), and only

reduce to the elastic strains, 6 , in the infinitesimal

theory.

In the case of shock waves one must thus consider non-

linearities in both the second and third terms of (2.8 b).

However, we have already seen in the previous chapter that

both non-linearities are so great in this case that solutions

of (2.8 b) cannot be found.

Once the amplitude of the wave has decayed, so that

P-P becomes of the order of 8 , the yield stress of the
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solid, the particle velocity v has decreased sufficiently so

that its square can be neglected with slight error. This can

easily be appreciated from eq. (2.4),

V &U(2.4)

since, when (P-P) becomes small, . As a result, the

second term of (2.8 b) can be dropped when P-P\<( It is

now only necessary to deal with the non-linearity of the

third term of (2.8 b). One accomplishes this by considering

the possible forms that P(e) or, more generally, P(e, 4, T),

where * denotes differentiation w.r.t. time, may be expected

to have in solids.

It has already been pointed out that the E curves of

Fig. 2.5 continue to grow beyond the point P-P . Now

we shall postulate here that the difference between the value

of E cu at P-P=. 3 , and the value of E at P-P = 0 is

exactly equal to the energy imparted to the medium by the

pulse, which has become acoustic for P-P 03. On the other

hand, we have seen that the upper limit of E at the point
cum

P-P 0 0 is impossible to establish in any physical situation

unless one knows the original energy content of the entire

shock front itself. But it has also been shown (see Tables

2.6 to 2.9) that the specific dissipation energies of shells

in which P-P has fallen to O(S ) is very small. Accordingly,

we shall shift our attention from an attemnt to estimate the

amount of energy transferred to the medium beyond the point
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P-P ( $ , which we know is quite small, to a detailed

examination of the forms that a wave attenuation coefficient

oC ,x

A A's (3.1)

will have in the region P-P 4(S. Here, A. amplitude at a

distance x from the point P-= , and A amplitude at

point P-P
0

It will be shown in the present as well as in the

subsequent chapter that fruitful attacks on this problem can

be made both in the linear and in many non-linear cases of

great physical interest.
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2. The Equations of Small Amplitude Waves in Solids.

The attenuation of stress waves in solids has been the

subject of exhaustive investigation by countless workers ever

since Stokes wrote his classical treatise on liquid viscosity

in 1849. Detailed surveys of the literature have been

published at various times, so that no attempt will be made here

to duplicate these efforts. The interested reader is referred

to Markham, Beyer, and Lindsay (1951), Kolsky (1953),

Hunt (1957), and particularly to Knopoff and MacDonald (1958,

in press). A distinguishing feature of all the classical treat-

mebits is the fact that they are almost all based on linear

theory, that is, the equations of motion are linear differential

equations with real constant coefficients.

In what follows, we shall investigate the propagation of

sinusoidal stress waves in considerable detail. We shift from

the study of a single travelling disturbance, such as is

constituted by a shock wave, to a consideration of sinusoidal

propagation theory. This is done for mathematical convenience,

since the introduction of singularity functions at this point

would lead to additional complexities. In any event, we shall be

here primarily concerned with the frequency dependence of the

attenuation coefficient -C ; this frequency relationship must

be the same for a single pulse as for a continuous train of

sinusoidal waves.

Knopoff and MacDonald (1958) have reviewed the experimental

data that has been published, and find that for most solids the

attenuation coefficient.C is proportional to the first power of
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the circular frequency of vibration W . Certain ferromagnetic

materials and some inorganic plastics do not satisfy this rule,

but such substances are of little interest to the seismology

of the earth's crust. Data for the damping of stress waves in

rocks as established from seismograms also appears to confirm

the laboratory evidence. Although no single substance has been

investigated over a broad spectrum, Knopoff and MacDonald

conclude that aC is proportional to the first power of W for

most inorganic solids in the range 10- 2 CA) 107 rad/sec.

The work of Zener (1948) has shown that attenuation of stress

waves in some metals and glasses is a variable function of CW ,

with very pronounced absorption peaks. More will be said about

this phenomenon in Chapter IV of this thesis.

It is possible to analyze the behavior of any damping

mechanism described by a linear differential equation by

considering a perturbed form of the one-dimensional wave

equation,

A- ____ _AV

Ca mV~- 32

where u =displacement, cm velocity of the elastic wave, and

mn real and constant coefficients. Knopoff and MacDonald

have shown that this equation can only lead to an attenuation

coefficient which is a function of an even power of tW , if a

solution of the form

,W: (3.3)
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be assumed for (3.2). The complex wave number o- is given by

0- =P9 1jC . All equations of motion that describe linear

mechanical loss mechanisms may be obtained from (3.2) by

suitably specializing the coefficients 0-A . Thus the

classical Visco-elastic, or Kelvin-Voigt solid, which is

defined by the linear stress-strain relation, or equation

of state

E V (3.4)

where MEzelastic modulus, viscous modulus, and e infinites-

imal strain, yields the equation of motion (Kolsky, 1953)

(3,5)

If in (3.2) C. M and all other O

it can easily be seen that this equation will reduce to (3.5)

for these values of the parameters. In this case the attenuation

coefficient eC can be shown to be

2
Oc TroM V (3.6)

a well-known result, (see e.g. Kolsky, 1953).

Since experimental evidence for most solids indicates that

cC is a linear function of C , while (3.2) can only lead

to an attenuation coefficient which depends on an even power of

C) , Knopoff and MacDonald were able to deduce that no model
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described by (3.2) can yield results in agreement with obser-

vation. In view of such considerations, these workers were led

to investigate the equations of motion that arise If the

linearity restriction on the stress-strain relations " th)

or, more generally, F: f(e,e,(.,..T) is lifted.

When a perfectly insulated solid element is compressed

elastically by an applied stress P(* ), where P(e.) is a linear

function of the elastic strain 6 , it will return to its

original state as soon as the stress is removed. Since the

element is insulated, there is no outward flux of heat, and

the process is therefore adiabatic. Equivalently, one may say

that the thermal conductivity of the medium, , is zero.

No net entropy has been generated in this process, which is thus

thermodynamically reversible. If = , then any heat formed

during compression will be conducted away instantaneously, so

that there is no net rise of temperature in the element. This

process is then isothermal, but no longer isentropic.with respect

to the element's surroundings. No physical medium has either a

zero or an infinite thermal conductivity, and therefore any

actual deformation of a solid will involve a net outward flux

of heat, and consequently the creation of irreversible entropy.

In particular, the entropy thus generated will be in addition

to that produced by any viscous or other dissipation mechanisms.

When one speaks of an elastic deformation, therefore, one should

specify that the thermal conductivity of the medium is zero;

for otherwise the process is not reversible, as usually postulated.

It is obvious that any rigoroulsy correct damping theory must
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take thermal phenomena into account. A substance possessing

a finite Y, even when subjected to an infinitesimal stress

dP, therefore loses a part of the energy of compression in

the form of heat that is conducted away---- this phenomenon

is usually known as thermal damping, and was first attacked by

Kirchhoff (1868) for heat-conducting gases. A large number

of treatments about this type of damping have been published

since then for the case of solids and liquids as well, but a

good number of them are based on fallacious thermodynamic arguments.

In this and the subsequent chapter an attempt will be made to

place the question of thermal damping in solids on a sounder

footing.

Although Kelvin was the first investigator to realize that

no problem involving deformation could be treated with rigor

without recourse to thermodynamics, comparatively few writers

have done so. Notable exceptions are Eckart (1940, 1948);

Bridgman (1950); and more recently, Synge (1955), and Hunt (1957).

Knopoff and MacDonald (1958) have developed a theory of solid

deformation in terms of the observable quantities mass,

elasticity, permanent deformation, and temperature. Their

analysis is patterned after that. of Eckart (1948). We shall only

outline their method here; for a detailed derivation, the reader

is referred to the authors' 1958 paper.

Consider an isotropic, homogeneous,, and infinite solid.

Let the Cartesian position vector of a point in the solid, x; (t) ,

be given by
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. (t +I(t +. t

Y, iW = 10 W +AI; W(3.7)

where X0 = position vector at an initial time t , W

permanent, or non-recoverable (plastic) displacement vector,
i

and J elastic displacement vector. The elastic strain

tensor can be given as a function of w :

\ (3.8)

The total rate of deformation tensor, , is defined by

3x f (3.9)

where V total velocity vector. In the presence of both

elastic strain as well as permanent, non-recoverable plastic

strain, one has

+ (3.10)

where C is the rate of permanent deformation tensor.

Thdequation of conservation of momentum is

3 (3.11)

where total stress tensor, and 6: density in initial,

unstrained state. Let I '' = thermo-elastic stress tensor,



79

given by (Love, 1927, p. 108)

T (3.12)

where:

E ) elastic constants

linear coefficient of thermal expansion

bulk modulus

Kronecker Delta

A T T = uniform temperature of initial

reference state.

The summation convention is assumed to hold for all repeated

indices. In the presence of viscous resistance, the total stress

tensor Pj will not only be a function of T"' , but also of the

total rate of deformation j

3 iv (3.13)

where and are viscous constants. It should be emphasized

that and are not the usual viscosities that one

associates with the visco-elastic, or Kelvin-Voigt solid, but

only reduce to these when the rate of permanent deformation, C' ,

vanishes, in which case one has from (3.10):

(3.14)
at
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Substitution of (3.12) into (3.13) yields:

(XE + v A.T) (3.15)

The total displacerent vector Aw is given by the sum of the

permanent and recoverable displacements

AA, + AN I (3.16)

We may take Xo =O in (3.7) without loss of generality. Then

combination of (3.7), (3.11), and (3.15) yields the three

equations of motion

\(AO9, i- U (3.17)

+I/A + Z/t
4

V~i~

Relations (3.16) and (3.17) thus provide us with six equations

in the seven unknowns A , ,, and T. It is therefore

necessary to seek an additional relationship between these

quantities before formal solution can be attempted. This may

be accomplished by a consideration of the irreversible entropy

that is created in any deformation process occurring in a medium

of finite thermal conductivity . The equation of continuity

of entropy (Denbigh, 1951) is

t(3.18)
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where $= specific entropy (entropy per unit mass),

D Sir
rrate of generation of irreversible entropy, and

Dt

heat flux vector. The operator -- is given by

+ V (3.19)

Radiation effects are neglected in (3.18), that is, the heat is

assumed to diffuse only by conduction.

From the second law of thermodynamics, ' ' ' 0, where the
t

equality sign holds only if the process is reversible. Knopoff

and MacDonald show that

(3.20)

where C= specific heat at constant strain. The third term of

(3.18) may be broken down into two separate parts,

MECH HEAT FLOW (3.21)

is the rate of generation of irreversible entropy

due to all mechanical dissipation processes, while HEAT

the rate of generation of irreversible entropy due to heat trans-

fer in a medium of finite thermal conductivity.

Now,

' t E T (3.22)
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(Knopoff and MacDonald, 1958), and

't x (3.23)
HEAT FLOW

(Denbigh, 1951).

Combination of equations (3.18)-(3.23) can be shown to lead

to the so-called "temperature" equation,

t +

+ [ -T C .7 T(3.24)

where we have replaced in (3.18) by

i --j(3.25)

the familiar Fourier heat conduction law for an infinite

isotropic medium. Both the equation of motion (3.17) and the

temperature equation (3.24) can be expressed in terms of

AkWp and Ak by use of (3.16) and the defining relations

(3.8)-(3.10) and (3.12).

Knopoff and MacDonald assume that the rate of permanent

deformation tensor C can be written

~(t~I 1 )1 iT, 1113)(3.26)
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where ith invariant of the elastic stress tensor and

ith invariant of the time rate of change of the

elastic stress tensor (Sokolnikoff, 1952, p. 303). This relation

is, in general, non-linear in the stresses, so that the terms

involving in the equation of motion (3.17) are non-linear in

that case. If, however,

/" (3.27)

eqs. (3.26) and (3.17) are linear, and the latter is solvable

by familiar techniques (see Chapter IV of this thesis). A

model described by (3.27) is known as a Maxwell solid; the

constant is called the Maxwellian viscosity.

Consider now the temperature equation (3.24). The first and

fourth terms of the right member are always linear, while the

remaining terms are always non-linear, irrespective of the

functional form of C . In the absence of viscosity and

permanent deformation, and neglecting the term in V (which

is equivalent to setting , a valid step for small

deformations in solids), (3.24) reduces to

(3.28)

where VA=, is the thermal diffusivity of the medium.

Relation (3.28) resembles the standard Fourier heat flow

equation
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___- T (3.29)

except for the last term. It is usually assumed that the strains

produced by a thermal gradient in a solid are negligible; in

this case (3.29) gives quite satisfactory results. When one

investigates thermo-elastic or thermo-plastic phenomena, however,

the third term of (3.28) must be retained.

We are now in a position to recognize the formal similarity

of (3.11) and (2.8 b), since the second term of the latter can

be neglected in the case of small amplitude waves. The form of

P is, of course, different in each case------for shock waves,

we have chosen to use the Birch equation of state, while for

small amplitude waves we adopt the plastic theory described in

this section. The chief difference between both approaches lies

in the degree of non-linearity of the describing equations; as we

have seen, the shock wave equations cannot be solved satisfactorily

with any techniques available to us at this time. The equations

of small amplitude motion, however, can be solved by linear

perturbation methods. The assumption must be made that the non-

linearities involved are small with respect to some parameter,

because only in this case is the existence of such solutions

assured.

3. Solutions of the Small Amplitude Equations in Solids

In this section we shall investigate in some detail

solutions of the system of non-linear equations given by
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(3.16), (3.17), and (3.24). In order to simplify the mathematics,

we rewrite these equations in their one-dimensional form, and

consider the propagation of a compressional wave through the

medium. The results may then be suitably specialized for the

case of shear waves; in this instance, the terms modulated by

in (3.17) and (3.24) vanish, since for i/ j, .

Accordingly we write (3.16) in the form,
-- , I2.--

imAp ly , 0
))

3

or simply,

; I 'f AA (3.30)

Equations (3.17) and (3.24) then become?

-2 3

AA +x AN +
(3.31 a)

JT FT ~ Z]

jT T(3.31 b)

where
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(3.32)

From (3.30) one has that

+ (3.33)

Eq. (3.31 b) is the generalized heat flow equation. The first

term on the right hand side represents heat flow due to the

thermal gradient itself; the second yields the contribution

of elastic straining; while the third (which can be split into

three separate terms by eq. 3.33), gives the contribution due to

viscous and permanent deformation, as well as the coupling

between these two effects. The remaining terms of (3.31 b)

represent coupling between permanent and elastic strain,

temperature gradient and permanent strain, total particle velocity

and elastic displacement, and total particle velocity and thermal

gradient, respectively.

For small attenuation factors, the permanent displacement

A 9 is small compared to the elastic displacement AW . (Knopoff

and MacDonald, 1958). As a result, we may expect the coupling

effects given by the fourth and fifth terms of (3.31 b) to be

negligible. The sixth and seventh terms will also be vanishing-

ly small, because for small amplitude waves in solids, the

approximation
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i.e., V;% O certainly holds. Consequently we shall only retain

the first three terms of (3.31 b) in what follows. The non-linear
~a- \2

term in the square of the total rate of deformation, ( I , can

of course not be similarly neglected.

Now equations (3.30) and (3.31 a,b) are still expressed

in terms of the variables A,) g M' , and T. However, A, ,

and., as a result, M , are actually assumed to be functions

of the elastic stress and the rate of change of elastic stress,

along with suitable constants (see eqs. 3.26 and 3.27). In the

one-dimensional case, (3.26) reduces to

(3.34)

where g is a scalar function of zeroth order in stress. This

particular form of g is assumed because it is found experimentally

that for small amplitudes, attenuation is independent of amplitude.

We next rewrite (3.31 a,b) in the form,

o ( ; E+2) 4' --

+ F ? 1 4ll (3.35 a)

,T R T A___TO A(35+

2. (3.35 b)
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where we have assumed that T may be approximated by its

equilibrium value T -in the second term of the r.h.s. of

(3.35 b), and where:

- (3.36 a)

t (3.36 b)

The functions f and f2 thus incorporate the entire non-

linearities of (3.35 ab). As explained in connection with (3.34),

one can treat (3.35 a,b) as a system of non-linear partial

differential equations in the variables u and T. By hypothesis,

the non-linearities expressed by f5 and f are small------in1 2
other words, we assume that the permanent, plastic strains

are small compared to the elastic strains. If this requirement

be upheld, solutions of the system (3.35 a,b) can be found by

a technique which will be developed in the present section.

The approach is a generalization of the theory of first

approximation of Kryloff and Bogoliuboff (Minorsky, 1947).

Essentially, the method assumes that wave amplitude and phase

are slowly varying functions of the time t, so that they may

be approximated by a constant mean value in some interval

(t, t+'i'), where period of oscillation. This assumption can

be shown to convert the original non-linear equation into two

subsidiary relations, one in amplitude, and one in phase. Thesej

although still non-linear in the general case, are always



89

integrable in terms of elementary functions. Space does not

permit a detailed description of the method here; the reader is

referred to the reference cited above.

Our point of departure is the system (3.35 a,b). In order to

forestall a mathematical difficulty which will become evident

later, we differentiate both members of (3.35 a,b) w.r.t. time.

The system to be solved is then

A = A(T - 2/. + =n

at (3.37 a,b)

We assume solutions of this system in the form

T~=8 () s n 0- x - cujt + t) = A (t) Sin G

(3.38 a,b)

If f f2= 0, (3.37 a,b) would be linear, and solutions (3.38 a,b)

can be found by standard methods. In this case, both the amplitudes

A,B and the phase angles44 are constants independent of time.

We now assume that solutions of type (3.38 a,b) can be found such

that (3.37 a,b) be satisfied when fl and f 0, where the amplitudes

A,B and phase angles 4 f are explicit functions of time. If

expressions for these four quantities can be found, their substi-

tution into (3.38 a,b) yields the desired complete solution.
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Differentiating (3.38 a,b) w.r.t. time, one has

,=- A < , + A si , n A cos

CO cos& + 13 Sin + 1c Cos&

(3.39 a,b)

where the dot denotes differentiation w.r.t. time. In the linear

case, where A, B, , and are constant, these relations would

yield

A -WA~ A os

T~ ~&.~(CosG
(3.40 ab)

So that (3.39 a,b) reduce to (3.40 a,b) in the linear case,

we accordingly must require that

A ezin e,+ A ipCose,=

i3 S iv) + BQco S. =
(3.41 a,b)

Furthermore, remembering that A,B, , and ' are not exolicit

functions of x, one calculates from (3.35 ab), (=

T = + 3 or cos

- Bo- sin a
(3.42 a,b)

+ A - Cos

-i (3.43 a,b)



91

and from (3.40 a,b):

TN - (A3 A sie- cos0 + A36si~

S2 - <4'- A cosp, + w A v I 4,

+ c- A a- Cos,
(3.44 a,b,c)

From (3.40 b):

T = coa-Bsi

(3.45 a,b)

and from (3.40 a):

to 2 A cos'

(3.46 ab)

If relations (3.40 a,b) and (3.42)-(3.46) be substituted into

the system (3.37 a,b), one has

C.O Cos 9A4 eoA sin e, 7
-Mf A o iv DIne + MV to 0oa 0 9

-M 6 r cos 0 + r A si;+,

(3.47 a)
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+ M y CA a<: co! ID, =

Y, tO a-a13 0 co 5
(3.47 b)

where:

M+ 
/' v

M ?

I* ST

M MT

Relations (3.47 a,b), In conjunction with (3.41 a,b), yield

four linear algebraic equations in the unknowns A, i, ,

and ?. These four equations may be written in the more

compact form:

Mt A + mna a

aA
+ 22

+ m a

4 (3

+ 3 + m

+ m 4 $

F

:0 (3.49)

where

- C os co 9,

+M c. A i ,

+ si, T i.

Is - W CO 1%

Yn31'2 +C " '
M 3 : + A Cos e-,

m % + 13 co S

(3.48)

(3-50)
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- t cr A co 2. - M, A a SiY, O,

~ * I C O r + Si V , r ,

'= CCo 13 cos E) +E2.a

(3.51 a)

(3.51 b)

After much laborious but straightforward algebra, one finds

that the solutions of (3.49) are given by

A = - co O, F
eo

1 2 sia&a F1 (3.52 a,b)

- tO 0 & FZ
C~A

sie os iv, (3.53 a,b)

Relations (3.52 a,b) can be written with the aid

in the form

E =* M, W <-o0: ,A - M sitA

+ Icsin e, A- M o T c o ,6 +

2. ]

of (3.51 a,b)

B =

(3.54 a)

(3.54 b)
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Consider now the generalized heat flow equation (3.35 b).

Substituting from relations (3.40)-(3.46) into this expression,

and solving for B(t), one has

6 () =fa- M too-sin D, A
KC- - C cs (3.55)a a

This formula may be substituted into (3.54a), to yield:

- cA- sio-, A
- c- CosI A 1 00 0(3.56)

K 6r sins 00Cosa er

We have thus been able to exoress the rate of change of the

wave amplitude, A(t), as a function of circular frequency (A) ,

wave number o- , and the appropiate moduli of the medium.

It is now evident why it was necessary to differentiate

(3.35 b) w.r.t. time in order to solve the resulting system

(3.37 a,b) for u and T, since this step enables us to use

(3.35 b) as a separate relation with which to express A in

(3.54) as a function of A and the appropiate constants alone.

In a similar way, we find that and are given by
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Si [ M

+ WSieI,- r a- CosbOa is
A

=' 5 2 0 45 +

Let us fix our attention on (3.56).

non-linear terms,

co T (7- CosDa

K e- sin - CAo) &a 0

SA A F1]

FZ]

(3.57 a)

(3.57 b)

This equation contains two

I- (3.58 a)

and

Cos F
6 W (3.58 b)

Up to this point, our treatment has been exact. Now the general

method of Kryloff and Bogoliuboff assumed that the right hand

members of (3.54 a,b) and (3.57 a,b) can be expanded in a

Fourier series of period 2Tr. In particular, the theory of

first approximation of Kryloff and Bogoliuboff shows that to

first order, these right-hand members are given simply by the

first term of the expansion. This is equivalent to averaging

the equations over a period, so that higher order terms of the

series vanish identically (Minorsky, 1947).

S i 0
MP
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In the present situation, (3.54 a,b) and (3.57 a,b) are

functions both of 0, and G , where 9, and are given

191 -;K ~ ' +

, =+ 0-o (+)

(3.59 a,b)

Equation (3.56) can be written in the form

-: . , [Cos

F(01.)1) (3.60)

where F stands for the expression within square brackets of

(3.56). We assume that F1 can be expanded in a double Fourier

series in 9,, 0 (Carslaw and Jaeger, 1947, pp. 158-162):

KSV n 91 2

K sin vv cos n +
n in a

?Vi: n=O

0O 00

+

O o

c o s O n I

L. tos we cos1

mn

(3.61)

where theK ;k / ;L and L are the appropiate two-

dimensional Fourier coefficients. To first order, however,

the first three terms of (3.61) vanish, so that one has simply

0o 00

(O e)19Z )
0o 00

Cc$ VVI(, 61'V)nn( ; +



00 o

H (e,, ) le,

0 0

Combining

A~

(3.60), (3.62), and (3.63), one derives the relation

ai Cos r a&, re(-

where F (&1 ,) is given by

(fr, =l MW O- Cos1 A -N NE a Sin) O, A +00,W Sin I, A

CIO wi cr -- y 01 coA6

(3.65)

In a similar way, it can be shown that (3.52 b) and (3.53 a,b)

lead to the corresponding first order relations

-{{ , ea) cos 0 ,

0 'o
(3.66 a)

97

(, e)

where

(3.62)

L
0)10 (3.63)

0 0



98

F (e,,e9) si e, 4De, a

00

o j9

2T 3w

o 0

(3.66 b)

(3.66 c)

where F1 (0 ,9a) and F2 (e a ) are given by (3.51 a,b). If the

exact form of the non-linear terms f1 and f2 is known, the double

integrals in the above expression are evaluated first, and the

resulting differential equations then solved explicitly for

AB, and . These values are finally substituted into the

assumed solutions (3.38 a,b).

Let us first study the displacement amplitude equation

(3.64). Term by term integration of the right member will

involve, among others, integrals of the form:

0 for n odd

$0 for n even (3.67 a)

all

0

0 for n odd

0 for n even

3 23 I

i sin" e. Cos e ; = 0 for ali n

(3.67 b)

(3.67 c)
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C al- sin 49. =O for au n
4 C (3.67 d)

0

where n is an integer >/ 1, and i= 1,2.

Consider now the linear terms of (3.65) that is, all terms which

do not involve f, and f2. Then application of (3.67) with i 1

shows that all terms except the first vanish in the integration;

the integral of the first term is
au 2a

M tf A , , = M WOe A
v (3.68)

Consequently we may write (3.64) in the form,

M c)cos Md.osd.9

C- K (T_ a $in O - CA.) Cos,

0 0

' 's 2(3.69)

00

In order to evaluate the above double integral, we must consider

the explicit forms of the non-linear functions f1 and f given

by (3.36 a,b). Now Knopoff and MacDonald (1958) have shown that

the expression for the rate of permanent deformation (3.34)

can be simplified if it be assumed that the application of

hydrostatic pressure results only in elastic deformation. This

assumption has been amply confirmed by experimental high pressure

work performed by Bridgman (1949). Under these conditions,

C, is a function only of the elastic stress, the rate of change

of elastic stress, and three constants. For one-dimensional



100

P wave propagation, (3.34) can thus be written

+

- ~ ~ Y M1 -L )~ I _

x, (3.70)

where and are two constants having the dimensions of

inverse viscosity and inverse stress, respectively. When

vanishes, (3.70) becomes

C, = 'e 1(3.70')

which is seen to be identical to (3.27). Moreover, we have

neglected the thermal stress term of 'Tj (see eq. 3.12) in the

statement of (3.70), but the coupling terms thus discarded are

negligible, as has already been pointed out on page 86 off this

chapter.

Combining (3.70) with (3.10), and using dot and subscript

notation, one has

, N 9E - + -x' (3.71)

Substitution of this relation into (3.66 b) gives
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(AX )

L

Consider the second term of the right member of (3.69). Direct

integration over &2 yields
Z ir

Cos &era

K - Sin W Cos

0
(Aa + k y- A

In order to oerform the integration over , one substitutes

from relations (3.43)-(3.46) into (3.72), and enters with the

resulting expression into the second term of

to be evaluated is then
2 IT Z it

(3.69). The integral

M JV [(/ N (A ) 2 Cs63ID
[ , os

+ z Me)(A-) c4Cosb

+ ( M Cr)(A<o) cos 3 0

WA) Cos~ Itq
sinIs ,n +Z2.

tln' 2,

+ (Aa-) sin* 0,
(3.74)Cos I ,

Only those terms involving Itan, I and Itan'O, I do not vanish

and one finds that to first order,

M

LEo c.
(/~ C Me) (-*a

A4'A

(3-72)

(3.73)

( e)(A cos , ca Lsin

In the interval ID, (0,2x) ,

1A,,

er] ]a e,

M ")(AE
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Eli

W [ (3-75)~

Combining (3.75) with (3.73), (3.69) becomes

a a. a . __ _ _ ______'

A: V CAD_ A + Mt + fJT ~ C' E

+ C (3.76)

where we have integrated the last term over 9a directly, since

f is independent of 0 . The wave number a- has been replaced

in the above expression by z=' A, -- unperturbed elastic P wave

velocity. The quantity

since > Kw . Thus for rocks, K = 0(10 cm2/sec) and

V, 0(105 cm/sec), so that the above approximation holds

provided that W (< 1012 rad/sec. Eq. (3.76) then becomes

- l C(3.77)
+ Z ,(0 Cos, (377)

2 lT O co Cf
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Eq. (3.77) can still not be solved for the amplitude A unless

the third term of the right member is integrated. We recall

that f is given by (3.36 a), and represents the non-linearity

of the equation of motion. Knopoff and MacDonald (1958) have

evaluated this integral provided that interaction terms

between viscosity and permanent deformation can be neglected.

They find that

'0 (3.78)

where

Substituting (3.78) into (3.77)

algebraic simplification,

A My (A A 4- N
2 Mg 3'lT cv

'_ 
+

[M J2

gives, after some further

/A A Or W+ 2 C 23}A
V P it

(3.79)

where we have replaced M. by M= . This equation,

although still non-linear in the amplitude A, is nevertheless

easily integrable. For convenience, we write (3.79) in the form

aN
Ve =
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- < A+ -c2 A][ 1 ~I 2<(A ICP.2
(3.80)

where

jjV 7. C . W M f
(3.81 a)

3'Tif C
I3 Q +

(3.81 b)

The solution of (3.80) may be found by separation of variables

and is

0C
A*

AoCa +- '

A 10
A0Ca + *C I

-O

(3.82)

where we

t = x/V .

ed 1

C2

have replaced the time variable t by the distance x,

The quantities C, and -Ca are thus defined by

ev

VP

[1/distance]

[1/distance] (3.83 a,b)

and A is the wave amplitude at x= 0.

*C *I e P +

I -



105

An involved calculation similar to the one presented above

shows that, to first order, the amplitude phase angle 4 is

constant and independent of both x and t. Substitution of

(3.82) into (3.38 a) yields the solution for the displacement

u in the form

A10

Ao-. + -c,

MI~ A~cA 0  < ~ina-c~+~) (3.84)

|-C -C
o a

where constant.

The quantities C and C define two separate distance

attenuation coefficients and are related to the time attenuation

coefficients C, and Ca by (3.83 a,b) The coefficient eC is

a function of three terms, proportional respectively to the

zeroth, first and second powers of the circular frequency (W

The zeroth and quadratic factors correspond to linear terms in

the equation of motion and represent damping in the classical

Maxwell and Kelvin-Voigt (Visco-elastic) solids, respectively.

(See e.g. Kolsky, 1953). The factor linear in W is a direct

consequence of the non-linear stress-strain relationship (3.f0).

The second attenuation coefficient oC. contains terms

proportional to the second and third powers of Co . The first

of these is again a result of the linear terms of the original

system (3.35 ab), while the second is attributable to the non-



107

(1)
o;--e and , a rough calculation gives

-a 9
10~ « cA (( 10 ro~sec.

(3.88)

The second attenuation coefficient aC is given by2

2 3 TT I (3.89)

Taking A =1011 dynes/cm , c : 10 ergs/gram, 1-

and the values (3.86), one has

-14 . -14 3

a 10 1 0C(3.90)

For these values of the constants (3.86), it is obvious that

2c will be negligible-----one may then neglect thermal

damping with small error and use (3.85), rather than (3.84).

However, it must be borne in mind thatM and are very

poorly known; in particular, the magnitude of , is based on

a single calculation of Haskell (1935). If more refined

experimental work does show an amplitude decay mechanism faster

than is reconcilable with (3.85), the thermodynamically more

accurate form (3,84) should be useful. We notice that if : 0,

(see eq. 3.70), *C 0. This means that thermal damping is

(1): This assumption is quite a controversial one in the literature,
but it is probably justified for rough order of magnitude
estimates.
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negligible in the Maxwell solid, as was concluded by Knopoff

and MacDonald without formal proof.

The equation of motion (3.17) will not involve the

temperature T explicitly for the case of a shear wave. As

a result, there exists no coupling between the equations of

motion and of temperature and, to first order, thermal damping

will not arise in S-wave propagation. This problem has been

solved for a solid obeying the stress-strain relation (3.70)

by Knopoff and MacDonald.



C H A P T E R I V

THE ATTENUATION OF LINEAR SMALL AMPLITUDE STRESS WAVES

IN A SOLID EXHIBITING FINITE THERMAL CONDUCTIVITY.-
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1. Small-Signal Thermoelastic Theory

In the previous chapter we have concerned ourselves with

the study of solutions of the system (3.35 a,b), of which both

equations are non-linear. It was also pointed out that quasi-

harmonic solutions of the type (3.38 a,b) exist only when these

non-linear terms are small enough so that the resulting equations

may be treated by linear perturbation techniques. The theory of

first approximation of Kryloff and Bogoliuboff was then shown

to be a powerful tool in the attack of the non-linear problem.

We shall here investigate the behaviour of solutions of the

system (3.35 a,b) in the absence of non-linearity, f1 = 0,

f - 0:

(4.1 a,b)

Now reference to (3.65) and (3.67 a-d) shows that the

linear thermal term in the amplitude equation (3.64) vanishes

to first order, since
22 2T

AU To

T ~~ ToO,'K C t
CIO

(4.2)
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where

oCE (4.3)

from (3.48). Hence the effect of linear thermal terms on wave

amplitude decay, although small by (4.2), cannot be studied

by suitably specializing the quasi-harmonic solutions found in

the previous chapter. We must, then, seek other techniques that

will permit us to analyze the effects of thermal linearity

explicitly.

Weiner (1957) has recently drawn attention to the fact

that the Fourier Heat Conduction equation is an energy balance

which neglects the interconvertibility of mechanical and

thermal energy, a phenomenon which he calls "thermoelastic

coupling". Weiner shows that although such coupling terms are

negligible for cases in which heat is supplied from external

sources, the same is not true when temperature fluctuations

arise because of internal deformations within the medium.

The term (4.2) is an example of such thermoelastic coupling

which vanishes to first order, but whose influence we shall

nevertheless wish to investigate.

The oroblem of thermoelastic deformation has received

considerable attention in the literature,, although most

workers have treated static, rather than dynamic situations.

Again few of the dynamic treatments take viscosity or

permanent deformation into account, and in some instances false

thermodynamic premises invalidate results presented. Mark-
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ham, Beyer, and Lindsay (1951), Truesdell (1953), and

Hunt (1957), have made exhaustive studies of sound absorption

in fluids in the presence of viscosity and heat conduction.

The method to be employed in this chapter for the study of

attenuation in solids is in many respects similar to that of

Hunt. An important point to keep in mind is that the energy

dissipated due to thermoelastic coupling or, what is the same

thing, the energy dissipated due to infinitesimal elastic

deformations in a medium of non-zero thermal conductivity,

must be considered in addition to any energy dissipated by

viscous or other attenuation processes. Kasahara (1956), in

considering the problem of strain energy in a visco-elastic

crust, fails to take this fact into account, so that his

calculations are incorrect.

Synge (1955) has derived an equation of motion for a fluid

exhibiting both viscosity and non-zero thermal conductivity.

His work is based on that of Eckart (1940), and is thus thermo-

dynamically rigorous, since it considers the production of

irreversible energy. Synge's equations of motion and temperature

are non-linear, but the non-linear terms were dropped before

solution of the system was attempted. Solutions of the form

7~ T +A WO

(.x + ab)

(4.4 ab)

were assumed, and subsequent substitution of these relations
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in the equations of motion and temperature yielded a secular

equation in the generally complex wave number 0- . T and u1
are real constants that may be found by satisfaction of

prescribed boundary conditions.

Synge did not solve his secular equation, which is bi-

quadratic in the complex quantity a- . Lessen (1957) has

attempted to solve this equation by approximation procedures.

His equations have dimensional inconsistencies, however; nor does

he attempt to investigate the frequency dependence of the atten-

uation coefficient C . ( We recall that C Im(a-)

Im(O StC) ).

Biot (1955:1956) has developed a theory of thermoelasticity

based on irreversible thermodynamics. His arguments lack

generality, since he derives the equations of motion and

temperature from the reversible forms of the first and second

laws. He is therefore unable to arrive at the more general

theory of Synge (1955) and of Knopoff and MacDonald (1958).

Biot's relations are similar to those of Synge (1955) and

Lessen (1957), except that he prefers to express his temperature

equation as a function of the specific entropy, rather than of

the temperature explicitly, (see below, Section 2 of the present

chapter). Biot has not attempted to solve his equations in

closed form, nor has he studied attenuation of stress waves

in a thermoelastic medium. He also ignores the effect of

viscosity and permanent deformation.

Deresciewicz (1957) has made use of Biot's equations in a

study of plane wave attenuation in a thermoelastic solid.
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He finds that his secular equation is intractable, and then
2.

proceeds to show that an assumed W3 damping law,
2

.C (conS.)2

satisfies the secular equation for low frequencies. His

approximations are somewhat obscure and, since he does not

actually solve the secular equation, his results again lack

generality.

A totally different approach to the problem of thermo-

elastic dissipation has been made by Zener (1948). He assumes

that the non-elastic behavior of a solid can be described by

a model which he terms the "standard linear solid", and whose

stress-strain relation is given by (See Zener, 1948, p. 43 ff.):

P+ f = MP ( P T )(4.5)

where p= tensile stress, ;E tensile strain, T = relaxation

time of stress at constant strain, ep= relaxation time of strain

at constant stress, and MR "relaxed modulus". M can be identified

with the familiar elastic modulus ME, since for £ and p-*O,

(4.5) gives

P= M = M 6 (4.6)

For the sinusoidal steady state, he assumes solutions of (4.5)

in the form,
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E so e
(4.7 a,b)

where p0 and E0 are real constants. Substitution of (4.7 a,b)

into (4.5) yields

or

(4.8)

(4.9)

where the complex modulus e is given by

(4.10)

A convenient measure of internal friction is afforded by the

tangent of the angle by which strain lags behind applied stress.

Zener defines an angle & , such that

ton a=
Re(J)

which, after further manipulation, is shown to be

(4.11)

--- I

Coa MO Ir

+
+
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jz+ j (4.12)

In this expression T is the geometric mean of the two relaxation

times,

M" where KU is called the "unrelaxed" elastic

modulus, and M is the geometric mean of the two elastic moduli,

M = (MP M )ia

The quantity tanA will be at a maximum when 1 T l. It can

be shown (Zener, 1948, p. 62 ff.) that

I LE
ar E (4.13)

if A is small. Here AE= energy dissipated per cycle per unit

volume, and E= elastic energy per unit volume when the strain

is at a maximum. MacDonald and Knopoff (1958) write the right mem-

ber of (4.13) in the form

_1_.. Ta i ierr
Q alE. (4.14)

Combining (4.13) and (4.14), we have

(4.15)
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The quantity 1/Q, is called the "specific dissipation function"

by Knopoff and MacDonald, while Zener terms the ratio the

"specific damping capacity". It is further shown by Knopoff

and MacDonald that 1/Q is related to the coefficient of

attenuation 'C by

_j_, aOc c
W ((4.16)

where c = wave propagation velocity. Combination of (4.12),

(4.15) and (4.16) gives

M M ~

M M i + (Ct3 ) (4.17)

Now it was indicated in the last chapter that most available

evidence points to the fact that the attenuation coefficient

.r is a linear function of Wo for silicates. It is obvious that

a mechanism of the type (4.17) cannot be brought into agreement

with what is known empirically in the case of rocks and

glasses.

It should be emphasized that up to this point no thermo-

dynamical arguments have been introduced into Zener's theory.

In order to attack the thermo-elastic problem, Zener

presents the concept of relaxation by thermal diffusion,

(Log. Cit., p. 89 ff.). He states that the time of relaxation

for the establishment of temperature equilibrium is given

approximately by
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(4.18)

where D is of the order of the distance that heat must flow

for thermal equilibrium to be established, and K:thermal

diffusivity. The distance D is equivalent to the "mean diameter

of a crystallite" as defined by Mason (1957). Zener next

assumes that DpX, where X=wave length, and identifies the thermal

relaxation time (4.18) with the quantityr in (4.12) and (4.17).

No physical reason for this step is suggested by this worker,

although it does lead to a theory of thermo-elastic damping

in apparent agreement with experiments performed on many metals

(Bennewitz and R*tger, 1936; Randall, Rose, and Zener, 1939).

In this instance eq. (4.17) is found to reproduce quite

accurately the marked absorption peaks that characterize the

frequency dependence of attenuation in metals.

The wave lengths of seismic waves produced by earthquakes

or artificial explosions are of course larger by several orders

of magnitude than the diameter of a crystallite in the rock,

so that the assumption X Z D can under no circumstances be

upheld in seismology. In the megacycle frequency range, how-

ever, the wave length may become of the order of D; but even

in this case high-frequency measurements on rocks have failed to

show the absorption peaks observable in metals.

Zener's theory appears to agree with experiment in the

case of many metals, it is not, as has sometimes been stated,
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based on a rigorous thermodynamic development. In particular,

almost the entire theory hinges on (4.17), a relation which has

been derived without any recourse to thermodynamics,

2. The Thermo-Elastic Solid.

In this section we shall investigate in detail the solutions

of system (4.1 a,b). We will first treat the case(Ayt d=0, so

that we seek to solve

(4.19 a,b)

A solid describable by (4.19 a,b) will be called a "thermo-

elastic solid", while the more general model (4.1 a,b) will be

termed "visco-thermo-elastic solid". That model will then be

considered in the subsequent section of this chapter. It must

be emphasized that only comoressional infinitesimal waves

give rise to thermal phenomena, since for an infinitesimal

shear wave the equation of motion (3.17) reduces to the

familiar form,

(4.20)
at x2
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while the temperature equation (3.24) reduces to the ordinary

heat flow law (3.29), and no thermo-elastic coupling exists.

The general form of the equation of state of a solid may

be written in the form

(4.21)

since

and

where - and are the isothermal bulk modulus and thermal

expansion, respectively. Equation (4.21) can be shown to reduce

to the thermo-elastic stress tensor (3.12), which in one-

dimensional form is

r 1  ( T T(4.22)

where (E = isothermal elastic modulus.

Similarly the temperature equation (4.19 b) is

derivable from a combination of the first and second laws

of thermodynamics, which under equilibrium conditions may be
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written (Allis and Herlin, 1952, p. 105):

VC tVO'L05
T A /S &V

0O

where a = specific entropy. Differentiating (4.23) w.r.t. time

and letting e and
0Xv

, one has

)T To 6 T

t t ( C e s t

Relations (4.22) and (4.24) can be shown to lead to

(4.24)

system

(4.19 a,b), (Knopoff and MacDonald, 1958). The important point

to realize here is that the elastic constants in (4.19 a,b)

are actually the isothermal ones, so that we now write

W ~i~~ 7 ~i~A4

T / t

(4.22 a,b)

where we have replaced ( X+2l) Tby

one has also

aT_ . TT
r x C. Cx c Y

S t + 3 .From (4.23)

(4.23 )

(4.23)
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which, when substituted into (4.22 a) yields,

T. (4.24)

The adiabatic bulk modulus, -s is related to the isothermal

modulus by

.10k T (4.25)

(Bullen, 1952, p; 26), so that (4.24) may be written

aX to 4 x.x(4.26)

The equations of motion (4.22 a) and (4.26) express the same

relationship, except that the former has temperature and the

latter specific entropy as an independent variable.

Let i =0 In (4.22 a). In this case one has,
x

(4.27)

where

V = _ T + __3 (4.28)
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defines the isothermal P wave velocity. Now let -O in (4.26).

Then one writes

Stx(4.29)

where

V s
) (4.30)

defines the adiabatic P wave velocity. Since s T by (4.25),

p, is always greater than . The solutions of equations

(4.27) and (4.29) are well known; in particular, neither model

can give rise to attenuation, since neither contains dissipative

terms. The isothermal case corresponds to an infinite, and the

adiabatic to a zero thermal conductivity of the medium, (see

Chapter 3, Section 1).

Bullen (1952, p. 83) states that thermodynamical conditions

during the propagation of a seismic wave are very nearly adiabatic.

Some controversy exists in the literature about this point, but

as far as geophysical applications are concerned, the problem

is largely academic. Jeffreys (1931) estimates that the discrepancy

between the velocities (4.28) and (4.30) is only of the order of

1% in the earth, which is certainly well below present observa-

tional error.

Here we are primarily concerned with the propagation of

waves in a medium described by (4.22 a,b) i.e., one in which the

thermal conductivity is neither zero nor infinite. In this case
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thermal attenuation occurs, as has already been pointed out

in the orevious chapter. Again, let

MA,. = A aT

/o *

M' A /3 0

T (4.31 a,b)

We follow the method of Synge (1955) and substitute solutions

of the form (4.4 a,b) into (4.22 a,b). This leads to the

simultaneous algebraic system in u and T,

-(M T- o J-W + ( -+ j ) T =0
a, ) AA;+Q M/ 3T 0

IP) T~-~ T=
(4.32 a,b)

So that non-trivial solutions exist, the determinant of coefficients

must vanish,

-M Cr W K0-

=0

(4.33)

Expansion of the above determinant then gives the secular

equation

P T r T T e (4-34)

3
-j =O
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But

+ \1 2 = \12.

lp r Pr.,)

(<).

as can easily be seen from (4.24). Thus (4.34) becomes

(VT ') a + [ V 2 - ja - 0
(4.35)

This equation is biquadratic in the complex wave number 7- .

Its solution can be found by standard, although quite laborious

algebraic techniques.

Solving (4.35) for C-

one has

with the aid of the quadratic formula,

-1

a-- jV, ) 4 K-, + a o 2,

RV
Pj Ta: __ _ aa )L

-Va

(4.36)

It is convenient to express the

W P a-\14 Wk A

radical of (4.36) in the form

C)+ i. T
(4.37)

where

(aVe) = z \/ -a
p- T (4-38)

.35

Further calculation leads to the expressions

V

----- ne"-.90"

=M M'
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4 a a

- Wo'K'F
?V I + (2 k 1 v

V, -

(4-39 ab)

Thu& (4.36) may be written

a A F kA(

vT (4.40)

Since

2. a
4- .c (4.41)

combination with (4.40) and subsequent separation into real and

imaginary parts leads to the system

a
- (cA , * )

a *O

4 V o Kh

Solving for <,one has

-i fr'

(4.42)

W (+.3, - V I )I ? 5
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K C,' 2}(4.43)

This relation expresses the attenuation coefficient *C in

terms of the quantities (A), k V? , and V Numerical

calculations based on (4.43) are obviously quite laborious but,

as will be shown presently, approximations can be made that

reduce (4.43) to a much more tractable form. It is to be noted

that (4.43), in conjunction with (4.39 a,b), constitutes the

exact solution of damping in the thermo-elastic solid, subject

to no approximations of any kind. These results are thus more

general than those of Lessen (1957) and Deresciewicz (1957).

Consider now (4.38) and (4.39 a,b). Since V ,

we may write

2.

Moreover,

w V2

P5 (4.44)

When V >)c a k i.e., when V >)CAt( , (4.44) becomes
P,5 % ,s

A ~VF ~ k. a2i

Wa.~ [2A v
V VS

- -- W (4-45)
Va

a
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For silicates,
p

0( 105 cm/sec), K = 0(10-2 am2/sec),

and (4.45) will hold as

(A3 (< 10

which is certainly within any

interest. Inserting

4 . 2

v
?, b

frequency range of physical

(4.45) into (4.39 a,b), one has

+ _____________

(4.47 a,b)

To the approximation

+ (7 K)2
V *

so that (4.47 a,b) become

C : 2kI AIt (VT
~' I.,

V4

+ 2 K

V 4
P) (4.48)

a .

)j

- W 
K I

(4.49 a,b)

However, C can be written

long as

S ec (4.46)

*1-

(4.46),
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C( AQ }

which is to the approximation (4.46),

c= he k

Thus we have the simple relations

C V , 4 2K

(4.50 ab)

Inserting (4.50 a,b) into (4.43),

a TA,T

4 z1c / 1 I
where we have only used the positive values of Cl and Di, since

negative values of C 1 would cause the expression

sign of (4.43) to become infinite.

under the radical

The expression within square brackets under the radical

sign of (4.51) can be written

- K a )/
2f

lC%
a /

(4.51)

[ (v~4

- I

(4.52)

Wk
V 2.

Fj 5

4-V
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again to approximation (4.46). Substitution of (4.52) into

(4.51) gives

.'2_+ (4.53)

Expanding the radical of (4.53), one has to approximation (4.46),

a v a

PT

that is,

OKC

or simply

V, (4.54)

since V S V V, for brevity. We have thus deduced the

important result that the thermo-elastic attenuation coefficient

is proportional to the square of the circular frequency W0 for

all W0 of seismic interest.

In order to gain an idea of the order of magnitude of

thermo-elastic attenuation in rocks, we take:

0( V, ) 5 x 105 cm/sec

0( K ) 10- cz2/sec

The following table is then easily computed from eq. (4.54):
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(rad/sec)

10- 2

10

10

102

103

10 4

105
1066
10

107

108

109

1010

(cm-1)

-24

-22

-20

-18

a 16

-14

-12

-10

-8

-6

.4

-2

0

Lo gl 1

Table 4.1 : Values of the thermo-elastic
attenuation coefficient aC as
a function of frequency.

These values indicate clearly that thermoelastic attenuation

in rocks is significant only at very high frequencies. Thus

Gutenberg (1951) estimates the average value of aC for the trans-

mission of longitudinal waves through the interior of the earth

to be of the order of 10~ /Km. It is evident from the above table

that thermoelastic damping can yield an *C= 10 /Km only for

Log10  (Im-1)

-19

-17

-15

-13

-11

-9

-7

-5

-3

-1

-1

+3

45
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>> 105 rad/sec; accordingly one cannot expect that the observed

damping of earthquake waves is explainable in terms of thermo-

elastic attenuation. Moreover, we saw in the last chapter that

all available empirical evidence for rocks points to a first

power of C damping law, a condition which is not satisfied

by the present model.

Mason (personal communication to Knopoff and MacDonald, 1958)

has observed that glasses exhibit an attenuation coefficient

which depends on the square of the frequency for Wov2-3 x 106 cps.

It is difficult to ascertain at this point whether this behavior

is evidence of true visco-elastic or true thermo-elastic damping,

or whether it may not be a combination of both.

Before closing this section, it should be emphasized again

that thermoelastic damping must exist in any medium possessing

a finite and non-zero thermal conductivity. Whereas viscosity

in solids may or may not correspond to an actual physical

phenomenon, the damping mechanism discussed here is subject to

no such restrictions. It is quite conceivable that what has been

regarded as evidence of visco-elastic attenuation in solids

actually corresponds to thermo-elastic losses.

3. The Visco-Thermoelastic Solid

We now turn our attention to the system (4,1.a,b), which we

seek to solve in the presence of the viscous term in the

equation of motion. The technique to be followed is identical

to the one used in the previous section. Accordingly, we

substitute solutions of the form (4.4 a,b) into (4.1 a,b), which
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yields the algebraic system

-(Mr(Y4 +j (~~ j )T 0

0Vo- a + Ao- M - , Q -O-M M)T-0

(4.55 ab)

where

A +_ _ (4.56)

elo

and the elastic parameters are again the isothermal ones.

System (4.55 a,b) differs from (4.32 a,b) only in the presence

of the term ( 4 j /,a- a ) in the coefficient of the first

term of (4.55 b). The secular equation corresponding to (4.55 ab)

is

+ CO - - (W(V]K + o k o -4 e o a a ( 4 5 7 )

Solution of the bi-quadratic (4.57) is again straightforward,

although extremely laborious because of the presence of a
2.

complex coefficient in the first term. Solving for 0- ,

one gets,

0 + 4 W (4.58)
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where

+ E I + Z (r2 G)1
A 4 + B3 *+ E

(co) =Aw4 + 13wt +E | +
AU4 + 1%*+ E

+4(4.59 a,b)

a ~ (\af V\/2
T V) K

L 9 ,9

P4 k,

(4.60 b)V

>T

V af3, T

v4
PT

V.
(4.60 c)

(4.60 a)

(4.60 d)

k /
(4.60 e)

: 2

E. 
+

- a

A11

(4.61 a-e)

Since the wave number a-

At4 J G W

and

and

, (4.58) mayIs complex,

- 'q '4 4
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be separated into real and imaginary parts. The resulting two

simultaneous algebraic equations may be solved for the

attenuation coefficient *C ,

(1+ .4 W U)K to .W J
(4.62)

Eq. (4.62), in conjunction with relations (4.59) - (4.61),

again constitutes the exact solution for attenuation in a visco-
2

thermoelastic medium. In the absence of viscosity, /- =0 ,

relations (4.59) can be easily shown to reduce to (4.39 a,b),

and (4.62) to (4.43).

When k= 0, it is necessary to return to the secular

equation (4.57), since relations (4.60) become indeterminate

in this case. For zero thermal diffusivity, one thus derives

from (4.57) the secular equation of the standard visco-elastic

solid,

(A s ~ P 5 -~ ~A) j = 0( 4 .6 3 )

Separation into real and imaginary parts leads to the system,

(4.64 a,b)
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These equations, when solved for -P and aC , yield the

familiar attenuation and dispersion formulae in the classical

visco-elastic, or Kelvin-Voigt solid, see e.g. Kolsky (1953,

p. 117) and this thesis, (Ch. III, p. 75 ff). This visco-

elastic attenuation coefficient is, as we have seen, given by

V, (X,+2 f.) (4.65)

However, no physical medium has a vanishing thermal diffusivity,

so that this model is open to serious criticism on thermodynamic

grounds. In particular, it clearly violates the criteria of

Weiner (1957; this thesis, Chapter IV, p.111).

The exact expression for attenuation in a thermo-viscoelastic

medium, eq. (4.62), is again extremely ponderous. Fortunately,

simplifying approximations can be made that reduce the formulae

to more tractable form. Knopoff and MacDonald (1958) have shown

that for silicates the viscosityA v has as an upper limit a value

of 10 dyne sec/cm , while/A is of the order of loll dynes/cm2 .

If , and / , the viscous term of the equation of

motion (4.1 a) can be treated as a perturbation of the ordinary

thermo-elastic equation of motion. Thus, assuming that

is small, and that

V

in analogy to the thermo-elastic case, relations (4.60) can be shown

to reduce to
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VT

4 *

VT

(4.66)

and

V K
>T

while (4.59 a,b) become

C,~

(A 4 + 6J+ W )zi

(4.67 a,b)

where

S

Z = -L 4
v

.jT

V

(4.68)

k4P, T

Insertion of relations (4.67 a,b), and use of relations (4.68),

permits us to write (4.62) in the form

,A o + / A c -__ A W

PT ?1T r3 (4.69)S2.
f9JT
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This expression can be further simplified by reapplication of the
2 a

conditions - small and Vt >)CA . The final result of the

calculation is then

0C 4V 7  (470

where we have written V V for brevity. We have thus derived
P,T P

the result that the attenuation in a thermo-viscoelastic medium

is proportional to the fourth power of the circular frequency

for +- small and V C( >> . Relation (4.70) does NOT

reduce to (4.65) because the classical visco-elastic theory

does not take finite thermal diffusivity or, equivalently,

finite thermal conductivity into account. Since the classical

visco-elastic solid is derived on the basis of incorrect

thermodynamic assumptions, (4.65) can obviously not be derived

as a special case of (4.69) or (4.70).

In any event, the W0 frequency dependence of the

attenuation coefficient PC is again not in conformity

with a linear frequency damping mechanism. Consequently the

visco-thermoelastic model, even though it is based on a more

rigorous thermodynamic footing, cannot serve as a theoretical

interpretation of observed internal losses in silicates.



C H A P T E R

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK.-
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1. The Shock Zone and its Surrounding Regions

In the course of the past three chapters, we have traced

the propagation of a disturbance from its inception as a shock

front of arbitrary amplitude to its decay into an infinitesimal

wave and to its final conversion to heat. From all that has been

said so far, it is evident that no single propagation mechanism

can be used to describe the progressive decay of the shock

throughout its entire path. Instead, we will find it convenient

to speak of two separate regions which surround the source of the

disturbance. The first of these may conveniently be termed the

"shock zone": the second we will then call the "small amplitude

zone". As has been pointed out in Chapter III, no clear-cut

boundary between these regions exists, but one can arbitrarily

specify that the shock zone is that region surrounding the source

in which (P-P0 )))C ; the small amplitude zone will then begin

when (P-P )= 0((8). Energy dissipation in the former may be

treated by techniques developed in Chaoter II, and in the latter

by the methods of Chapter III or IV. Evidently, the larger the

magnitude of (P-P ) at t = 0, the larger will be the volume of
0

the shock zone surrounding the source.

Bullen (1953; 1953 a; 1955) assumes that the strained

region prior to a major earthquake can be represented by a

sphere of rock of minimum radius 25 Km, and maximum 50 Km.

Earthquake shock waves, however, are probably generated well

within the interior of this strained region. Accumulated stress

may not be uniformly distributed, but will probably tend to

concentrate at certain points inside the source sphere. A shock
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wave can then be formed as soon as such a localized stress accum-

ulation is suddenly relieved. As it moves into the strained

region, the front first builds up energy, in a way perhaps

somewhat similar to a detonation wave propagating inside an

explosive charge. As soon as it reaches rock under normal

hydrostatic stress alone, the shock will begin to decay, and

the dissipation mechanisms described in Chapter II may then be

expected to become operative. Accordingly, the calculations

in that chapter were carried out for a source sphere radius

= 1 Km, and in one instance (Table 2.7 b) for %,= 10 Km.

There is, of course, no a priori reason for selecting such

magnitudes of source sphere radii; but these values seem

reasonable when compared to Bullen's estimates of the total

volume of the strained region prior to the occurrence of an

earthquake.

If 109 dynes/cm = for rocks, then

obviously no shock wave can be generated, and the propagation

of the resulting wave can be treated by small amplitude stress

wave theory alone.

If the sudden release of localized stress accumulation

simultaneously produces a shock wave as well as an ordinary

P wave that leave the surface of the source sphere R =Q, at

time t= 0, then the travel time curves of Chapter II clearly

show that at least two separate and direct P wave phases should

be observable on a seismogram. One of these will be the degenerate

shock wave, which at sufficiently large distances from the focus

has decayed into an ordinary acoustic disturbance, while the other
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will be the P wave that was generated at O =0 together with

the shock front.

2. Energy Dissipation in the Shock Zone.

The problem of energy dissipation in the shock zone has

already been treated in great detail in the latter part of Chap-

ter II. Here we return to the results of that discussion, inso-

far as its influence on a number of seimological problems is

concerned.

Tables 2.6 - 2.9 present results of energy dissipation

calculations in the shock zone that have been carried out for

the cases

oX 0.01, 0.1, 1, and 10.

It was assumed furthermore that

( 1 Km
.0 111 2
- 10 11dynes/cm

CO 2 Km/sec,

except for Table 2.7 b, whoch was calculated for the case

(L = 10 Km. We recall that the specific energies recorded in

the last column of the tabulations are those which exist in the

shock zone immediately after the passage of the pulse. At all

subsequent times, the heat so produced will of course diffuse

radially outward, away from the source sphere. It will be noted

that for the value of assumed here, significant heat production
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in the shock zone will only occur for the cases

(P PO 1 and 10.

As a matter of fact, the second value above corresponds to an
122 6initial (P-P): 0,= 1012 dynes/cm.= 10 bars. It is open to

question whether this magnitude of stress accumulation prior to

an earthquake is possible at given points of the earth's crust,

For such pressures, moreover, the validity of the Birch equation

of state may also be somewhat in doubt, since quantum mechanical

effects may have to, be taken into account at that point. In the

case of underground atomic blasts, on the other hand, these high

stresses do appear to be developed.

On September 19, 1957, a small atom bomb was detonated in

a tunnel under a mesa in the Nevada A.E.C. Test Site, (Operation

PLUMBBOB). A preliminary report containing some data declassified

to date has been published recently (Johnson et al, 1958). The

total energy released by the device was about 7.1 x 1019 ergs.

A rough estimate of the shock pressure as a function of radial

distance from the cavity (whose original diameter was eight feet)

is given by Johnson et al to be of the order of 6 x 106 bars. At

a point some 200 feet from the cavity, the shock pressure is estim-

ated to have fallen to 1 x 100 bars=109 dynes/cm2 . Since

O( 109 dynes/cm2 ) for rocks, the diameter of the shock zone in

this instance is about 400 feet.

Regrettably the report does not explain how these pressures

were calculated, except to state that they are based on initial
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energy densities; neither is any mention made of the magnitudes

of these energy densities nor of the techniques of their

measurement. Accelerometer readings were made in the neighbor-

hood of the detonation site, but the data has not been declas-

sified. This is rather unfortunate, since the availability of

both pressure and velocity data as a function of radial distance

from the detonation cavity would enable one to calculate the

equation of state of the rock by the methods of Chapter II.

This, in turn, should help to settle the question of pressure

ranges within which the various equations of state may be

expected to hold satisfactorily.

Table 2.8 probably furnishes a good estimate of the order

of magnitude of energy dissipation in the shock zone for an

earthquake, while Table 2.9 may be more applicable to the

situation arising for a major underground nuclear blast.

Thus for 10=l011 dynes/cm 2

(P-P )= 105 bars (Table 2.8)
0 'L 06

(P-P )= 10 bars (Table 2.9) (5.1)

The value of 0-= 1 Km is excessively large for an atomic blastj

O. =10 meters is much more realistic. The specific energies

remain unchanged in this case, but the values of Ecum (Table 2.9)

must be reduced by a factor of 10-6, and the R entries by a

12factor of 10. (Compare also Tables 2.7 a and 2.7 b in this

connection.)

All present computations have been carried out for
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Ao = 1011 dynes/m 2. Bullen (1953, P. 220) has calculated

that the bulk modulus increases rapidly with depth in the earth,

and estimates its value at a depth of 33 Km to be already

1.16 x 1012 dynes/cm2 . A bulk modulus of the order of 1012 dynes/cm2

would increase the values of (P-P ) and E of Tables 2.6-2.9

by a factor of 10. This problem cannot be solved from theoretical

considerations alone; further shock wave work in rocks along the

lines of the recently reported investigation of Hughes and

McQueen (1957) is necessary to settle the question.

The specific energies afford a convenient method to estimate

mean initial temperatures within each shell immediately after the

passage of the shock front. If specific energy, in calories/cm 3,

then

T-T = ATF*
AM TC (5.2)

where T AM= ambient temperature in rock prior to passage of front.

The quantity A T is thus immediately calculable and will yield

an estimate of the mean initial temperature rise in each shell

surrounding the source sphere R To'. Computations of this

nature have been carried out for the specific energy distributions

(5.1), and are tabulated in Table 5.1. It is to be emphasized

that the initial temperatures thus computed are mean values for

each shell; the continuous temperature-radial distance curve could

be found by performing such calculations over successively thinner

shells, but such refinement is unwarranted in view of the uncertain-

ties of the values of the various parameters involved.
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The mean initial temperatures for the case 10 are

enormous near the source sphere. Physically, of course, such

high temperatures signify that fusion must occur in this

region. Indeed, exactly such a phenomenon has been observed

in rock surrounding the original cavity of the "Operation

Plumbbob" underground atomic blast. Johnson et al report that

a shell of fused tuff rock, 10 cm thick, was formed at a distance

of 50 feet from the source. These workers also estimate that

about 7 x 108 grams of rock reached an initial temperature in

the range between 1200 to 15000C. Latent heats of fusion have

not been taken into account for the calculations of 10

in Table 5.1. The computed temperatures have accordingly been

bracketed in order to indicate that they should merely be

considered to represent orders of magnitude.

The temperatures calculated for the case = 1 would
not indicate that the heat developed in the rock is sufficient

to melt it. However, we recall that these entire calculations

are based on a 1/R2 decay law. If the decay rate near the source

sphere is greater, correspondingly larger amounts of energy will

be dissipated per unit shell thickness traversed by the shock

wave, and in this event fusion of rock may occur even in the

case of earthquakes. This question cannot be settled without

empirical data, whose procurability is certainly a mute point

at present. An alternate fusion mechanism will be discussed in

Section 4 of the present chapter.

Up to this stage we have been concerning ourselves only

with the temperature distribution in the shock zone immediately
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Table 5.1: Mean Initial Shell Temperatures in Shock
Zone (Based on specific energies of
Tables 2.8 and 2.9).
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after the passage of the pulse. The heat evolved by the progres-

sive decay of the shock will eventually be conducted away:

however, because the thermal diffusivity of rocks is so small,

very long periods of time will elapse before heat produced in the

focal region of an earthquake appears at the surface.

The time, t, required for heat to diffuse through a shell

of thickness R is given by

R
4 Yg (5.3)

where K= thermal diffusivity (Carslaw and Jaeger, 1947, p. 33).

t
(years)

8.0 x 103

3.2 x 10 4

7.3

1.3 x 10 5

2.0

8.0

3.2 x 106

7.3

1.3 x 107

2.0

R
(Km)

100

200

300

400

500

600

700

t
(years)

8.0 x 107

3.2 x 108

7.3

1.3 x 109

2.0

2.9

3.8

Table 5.2: Thermal diffusion times a a unc ion
of radial distance R, K= 10 cm /sec.

R
(KM)

1

2

3

4

5

10

20

30

40

50
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Table 5.2 has been computed for a number of radial distances

with K: 10-2 cm2/sec, the usual value taken for rocks.

We note at once that even for an earthquake whose focus

is merely 5 Km deep, 130,000 years will have to elapse before

the heat generated by the shock wave reaches the surface.

During the course of geologic time, the earth has under-

gone a number of large-scale tectonic revolutions. These periods

were undoubtedly characterized by increased seismic activity in

the major orogenic belts. It is thus quite conceivable that

anomalously high values of heat flow may be detectable in

regions which have experienced tectonic upheavals in the past.

In particular, it would be interesting to compare heat flow

measurements on island arc systems with readings in less dis-

turbed areas of the world. Such measurements have not yet been

made extensively. Admittedly, the separation of heat flow due to

primary heat, vulcanism, and radioactivity may be difficult to

effect, but anomalous values over island arc systems might

indicate that oart of the total flow is attributable to past

earthquakes. A related problem, vulcanism, caused by dissipation

in the shock zone, will be treated in detail in section 4 of this

chapter.

The heat from deep focus earthquakes may take billions of

years before it arrives at the surface. Even if radiative trans-

fer cannot be neglected, as has recently been suggested by

Clark (1957), enormous times will have to elapse for the heat

generated by the shock wave to diffuse away.
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3. The Small Amplitude Zone and Related Problems

We have already seen in Chapter III that energy dissipation

beyond the shock zone is quite negligible in comparison to the

large amounts of heat that are evolved while the pulse is still

a shock. On the other hand, the observeddamping of small

amplitude seismic waves cannot be explained in terms of a

pure elastic theory. Knopoff and MacDonald (1958, in press)

first showed that an attenuation coefficient proportional to

the first power of the circular frequency is irreconcilable with

any linear model treated in the literature. They then demonstrated

that a model characterized by the stress-strain relation (3.26)

did lead to an attenuation coefficient proportional to the first

power of W) . In the present work their technique was

generalized to take the effect of thermal terms into account.

It was shown that these considerations led to the displacement

relation (3.84), but that the second "thermal" attenuation

coefficient OCa (eq. 3.89) is probably quite small in comparison

to Oc, (eq. 3.81 a). However, the question cannot be settled

without recourse to experiment.

In Chapter IV we then proceeded to study two linear damping

models in order to investigate whether the thermal terms might

still bring thermodynamically more rigorous linear theory into

agreement with observation. However, we found that neither the

"thermo-elastic" nor the"thermo-viscoelastic" solids yielded

attenuation coefficients that checked with empirical measurements,

although it is possible that thermo-elastic damping may become

important in the megacycle range. Finally, it was shown in that
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chapter that the work of Zener is not applicable to rocks,

although it has given good agreement with observation in the

case of many metals.

If the theory of energy dissipation in the shock zone

surrounding the source of an earthquake is tenable, then the

total seismic energies computed from the well-known Gutenberg-

Richter formulae are in all likelihood much to small. This is

evidently so because Gutenberg and Richter calculate the total

seismic energy release from observed ground motion amplitude at

the surface. In other words, only the energy that is not

dissipated in the shock zone will contribute to ground motion at

the surface; and, as we have seen, attenuation beyond the shock

zone is quite negligible.

Let us thus consider an earthquake that may be described

by the example computed in Table 2.8, for which 0. = 1 Km.

Some 4.3 seconds after the generation of the shock, the rapidly

decaying front has reached a point 10 Km from the center of the

source sphere. At this position, the magnitude of (P-P0)R is

109 dynes/cm 2 , and from here outwards the disturbance becomes

essentially a small amplitude stress wave, subject to only slight

further attenuation (see Chapters III and IV). Now Gutenberg

and Richter calculate the total energy of an earthquake only

from observed ground motion at the surface, and assume that

dissipation can be neglected. This assumption is undoubtedly true

for the small amplitude zone, but it breaks down completely in the

shock region, which in our particular example here is a shell of

rock of inner and outer radius 1 and 10 Km, respectively.
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Table 2.8 indicates that a total of 3.7 x 1026 ergs have been

injected into this shell due to rapid decay of the shock front.

The energy dissipation calculations have been carried beyond
0 2the point (P-P ) 10" dynes/cm ; strictly speaking, however, theO R

propagation of the disturbance is no longer describable in terms

of the shock wave theory of Chapter III. This means that, to

first order, energy dissipation in the small amplitude zone

may be neglected. Just what happens when (P-PO)R= 0(%) is not

clear; experimental work is necessary to settle the question.

For this reason, the shock decay computations were extended to

excess pressures less than 109 dynes/cm 2 in Tables 2.6 to 2.9.

Let us then postulate that losses of energy are small for

R>10 Km. As a first approximation, we assume further that

prior to the occurrence of the earthquake, P-P = 1 throughout the

source sphere. Taking -A,=10 dynes/cm , the excess stress accum-
11 2

ulation at t<O is (P-P ) 10 dynes/cm . The volume of a source
0

sphere of 1 Km radius is 4.2 x 1015 cm3 . Then the total potential

energy stored initially in this strained region is roughly

4.2 x 1026 ergs. Assuming that all this energy leaves the

source sphere in the shock front and in the P waves generated

simultaneously, about 4.2 x 1026 - 3.7 x 1026= 5 x 1025 ergs

will appear in the form of small amplitude stress waves

beyond the sphere R = 10 Km. Since energy transmission may

be expected to be radially uniform, roughly half this energy,

or 2.5 x 1025 ergs say, will contribute to ground motion

observable at surface observatories, (Jeffreys, 1952, p.101 ).

The magnitude, M, of such an earthquake, computed on the
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basis of the formula

o %0E =- s. S + 2. 4 M (5.4)

(Gutenberg, 1957), where E =total small amplitude stress wave

energy, would be

M= lok (a.s-t - s.8
Me 0 )(5 .5 )
2.4

Thus roughly 10% of the total input energy of 4.2 x 1026 ergs

will be detectable at the surface, and the energy releases

computed on the basis of the Gutenberg-Richter magnitude

formulae are accordingly much too small-----in the present

example, by at least a factor of ten.

4. Vulcanism Associated with Near-Source Dissipation

The theory of shock wave decay near the source of a major

earthquake may provide a possible explanation for vulcanism.

Bullard (1954) has expressed the view that the source of

volcanic heat may be sought in the dissipation of energy by

friction near the focus of an earthquake. Energy may also be

dissipated by plastic distortion and fracturing of rock. In

order to illustrate this suggestion quantitatively, he has

discussed observed annual energy release in the Japan-Kamchatka

area, a region which in present times exhibits an abnormally

high seismicity. The total annual seismic energy release

calculated from observed ground motion at the surface is
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roughly 1.7 x 10 26 ergs per year. The area of the region is

about 2 x 106 Km 2, and the focil of most of the earthquakes

are at an average depth of 60 Km. Assuming a specific heat

for rocks of 1 cal/0C cm , and that the energy dissipated near

the focus equals the energy radiated away as small amplitude

stress waves, Bullard has calculated that at the present rate

of seismic activity, all rock between depth 20 to 60 Km would

be molten within a span of 30 million years.

If the theory of shock wave dissipation expounded in the

present thesis is tenable, Bullard's estimate for the time

required to melt such a deep layer of rock can be considerably

reduced. Consider a slab 10 Km thick, whose upper and lower

faces are 50 and 60 Km below the surface, respectively. Let us

assume further that the earthquake focii are all located in the

interior of the slab. If the area of the horizontal faces is

6 2 22 3
2 x 10 Km , the total volume of the slab will be 2 x 10 cm .

Assume now that, as in the example treated in the previous section,

only 10% of the total earthquake energy can be observed at the
27

surface. Then the total annual energy release will be 1.7 x 10
27 27 27

ergs, of which 1.7 x 10 - 0.17 x 10 1.5 x 10 ergs will be

dissipated in the shock zone. The mean specific energy of the
27 14 3

slab will thus be raised by 1.5 x 10 ergs - 7.5 x 10 ergs/cm

22 3
2.0 x 10 cm

= 1.8 x 10 cal/cm3 per year. Taking C= 0.2 cal/gr O0, and

(O= 2 gr/cm , this would correspond to a mean temperature rise

in the slab of 4.5 x 10-3 oc/year. From Table 5.2, we note

that some 8 x 105 years must elapse before the heat generated
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by shock wave decay will have uniformly diffused through the

10 Km slab. Consequently, provided 1.7 x 10 ergs are released

in the slab every year, the temperature will have risen within

800,000 years to (8 x 105 years) x ( 4.5 x 10-3 oC/year)=

3600 0C above the ambient temperature existing at that depth

prior to the commencement of seismic activity.

This calculation is admittedly very rough, and is again

only meant to suggest orders of magnitude. Nevertheless, it may

be possible not only to account for vulcanism in this way, but

also for the emplacement of large igneous bodies such as

batholiths and laccoliths. Bullard (1954) proposes that current

volcanic activity might well indicate seismic activity in the

oast. The results of the computations performed here certainly

support such a hypothesis.

5. Suggestions for Future Work

A considerable amount of experimental research has been

reported to date on shock wave propagation in metals and in

water, but no work along such lines appears to have been carried

out for rocks, except for the recently reported work of Hughes

and McQueen (1957). Underground nuclear blasts afford an

excellent method to study the propagation of shock waves in

the earth, but unless complete and adequate data about such

explosions is released to the scientific community at large, the

bennefit of these measurements to seismology is limited. Further

shock wave measurements on silicates should be carried out in the

laboratory, and theory checked with observation.
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The shock wave calculations of Chapter II are entirely

based on the isothermal Birch-Murnaghan equation of state.

It might be fruitful to perform similar computations for

equations of state that hold above excess pressures of 107

bars, as for example the equation of Feynman, Metropolis,

and Teller (1949). As has been pointed out before, these

equations of state probably hold at pressures that are developed

near an underground nuclear explosion, but not near t'he focus

of an earthquake.

Further theoretical research into linear dissipation

models does not appear to be promising in view of the results

of Knopoff and MacDonald (1958) and the present work.
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APPENDIX I P- p
-VtVs

C,

P- Po U 4 F- g, U

o.oo 1.00 1.00 o.40 1.35 1.29
0.01 1.01 1.01 0.50 1.42 1.33
0.02 1.03 1.02 0.60 1.48 1.37
0.03 1.04 1.03 0.70 1.54 1.41
0.04 1.05 1.04 0.80 1.59 1.46
0.05 1.06 1.05 0.90 1.64 1.50
0.06 1.07 1.05 1.00 1.69 1.53
0.07 1.08 1.06 1.1 1.74 1.56
0.08 1.09 1.07 1.2 1.79 1.59
0.09 1.10 1.08 1.3 1.83 1.63
0.10 1.11 1.09 1.4 1.88 1.66
0.11 1.12 1.09 1.5 1.92 1.69
0.12 1.13 1.10 1.6 1.96 1.72
0.13 1.14 1.11 1.7 2.00 1.74
0.14 1.15 1.12 1.8 2.03 1.77
0.15 1.16 1.12 1.9 2.07 1.79
0.16 1.17 1.13 2.0 2.11 1.82
0.17 1.18 1.14 2.1 2.14 1.84
0.18 1.18 1.14 2.2 2.18 1.87
0.19 1.19 1.15 2.3 2.22 1.89
0.20 1.20 1.16 2.4 2.25 1.92
0.21 1.21 1.16 2.5 2.28 1.94
0.22 1.22 1.17 2.6 2.31 1.96
0.23 1.23 1.18 2.7 2.34 1.98
0.24 1.23 1.18 2.8 2.37 2.00
0.25 1.24 1.19 2.9 2.40 2.02
0.26 1.25 1.20 3.0 2.43 2.04
0.27 1.26 1.21 3.1 2.46 2.06
0.28 1.27 1.21 3.2 2.49 2.08
0.29 1.27 1.22 3.3 2.52 2.10
0.30 1.28 1.22 3.4 2.54 2.12

3.5 2.57 2.14

VS.



u_ u

3.6 2.60 2.16 6.6 3.27 2.60
3.7 2.63 2.18 6.7 3.29 2.61
3.8 2.65 2.19 6.8 3.31 2.62
3.9 2.68 2.21 6.9 3.32 2.63
4.0 2.70 2.22 7.0 3.34 2.64
4.1 2.73 2.24 7.1 3.36 2.65
4.2 2.75 2.26 7.2 3.37 2.66
4.3 2.78 2.28 7.3 3.39 2.68
4.4 2.80 2.29 7.4 3.41 2.69
4.5 2.83 2.31 7.5 3.42 2.71
4.6 2.85 2.32 7.6 3.44 2.72
4.7 2.87 2.34 7.7 3.47 2.73
4.8 2.89 2.35 7.8 3.49 2.74
4.9 2.91 2.37 7.9 3.51 2.75
5.0 2.94 2.38 8.0 3.53 2.76
5.1 2.96 2.40 8.1 3.55 2.77
5.2 2.98 2.41 8.2 3.57 2.78
5.3 3.01 2-43 8.3 3.59 2.80
5.4 3.03 2.44 8.4 3.61 2.81
5.5 3.05 2.46 8.5 3.62 2.82
5.6 3.08 2.47 8.6 3.64 2.83
5.7 3.10 2.49 8.7 3.66 2.84
5.8 3.12 2.50 8.8 3.67 2.85
5.9 3.14 2.52 8.9 3.69 2.86
6.0 3.16 2.53 9.0 3.71 2.87
6.1 3.18 2.55 9.1 3.72 2.88
6.2 3.20 2.56 9.2 3.74 2.89
6.3 3.22 2.57 9.3 3.76 2.91
6.4 3.24 2.58 9.4 3.78 2.92
6.5 3.26 2.59 9.5 3.79 2.93

9.6 3.81 2.94
9.7 3.83 2.95
9.8 3.84 2.96
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F-fo U -_
. c. e

9.9 3.86 2.97
10.0 3.88 2.98
11.0 4.03 3.10
12.0 4.18 3.18
13.0 4.32 3.27
14.0 4.46 3.35
15.0 4.60 3.44
16.0 4.73 3.52
17.0 4.86 3.59
18.0 4.98 3.66
19.0 5.10 3.73
20 5.21 3.80
30 6.2 4.4
40 7.1 4.9
50 7.9 5.3
60 8.5 5.7
70 9.2 6.1
80 9.7 6.3
90 10.2 6.6

100 10.7 6.8
110 11.2 7.1
120 11.6 7.4
130 12.1 7.6
140 12.6 7.9
150 13.0 8.1
160 13.4 8.3
170 13.7 8.5
180 14.1 8.6
190 14.5 8.8
200 14.8 9.0
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0.76 2.33x10-1  1.7 7.26x10 4.8 2.76
0.77 2.37 1.8 7.84 4.9 2.83

0.78 2.42 1.9 8.41 5.0 2.90

0.79 2.47 2.0 9.02 5.1 2.97
0.80 2.51 2.1 9.62 5.2 3.05
0.81 2.56 2.2 1.02x1 5.3 3.12
0.82 2.60 2.3 1.09 5.4 3.19
0.83 2.65 2.4 1.15 5.5 3.26
0.84 2.70 2.5 1.21 5.6 3.33
0.85 2.74 2.6 1.27 5.7 3.41
0.86 2.79 2.7 1.34 5.8 3.48
0.87 2.83 2.8 1.40 5.9 3.55
0.88 2.88 2.9 1.47 6.0 3.63
0.89 2.93 3.0 1.53 6.1 3.70
0.90 2.98 3.1 1.60 6.2 3.77
0.91 3.03 3.2 1.66 6.3 3.85
0.92 3.07 3.3 1.73 6.4 3.92
0.93 3.12 3.4 1.80 6.5 3.99
0.94 3.17 3.5 1.86 6.6 4.07
0.95 3.22 3.6 1.93 6.7 4.14
0.96 3.27 3.7 2.00 6.8 4.21
0.97 3.32 3.8 2.07 6.9 4.29
0.98 3.37 3.9 2.13 7.0 4.36
0.99 3.42 4.o 2.20 7.1 4.44
1.00 3.47 4.1 2.27 7.2 4.51
1.1 3.97 4.2 2.34 7.3 4.59
1.2 4.49 4.3 2.41 7.4 4.66
1.3 5.01 4.4 2.48 7.5 4.74
1.4 5.56 4.5 2.55 7.6 4.81
1.5 6.12 4.6 2.62 7.7 4.89
1.6 6.69 4.7 2.69 7.8 4.96
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7.9 5.04 20 14.8
8.0 5.12 30 23
8.1 5.19 40 32
8.2 5.27 50 41
8.3 5.34 60 49
8.4 5.42 70 58
8.5 5.50 80 67
8.6 5.58 90 76
8.7 5.65 100 85
8.8 5.73 110 95
8.9 5.80 120 104
9.0 5.88 130 113
9.1 5.96 140 122
9.2 6.03 150 132
9.3 6.11 160 141
9.4 6.19 170 150
9.5 6.27 180 159
9.6 6.35 190 169
9.7 6.42 200 179
9.8 6.50
9.9 6.58

10 6.66
11 7.4
12 8.2
13 9.0
14 9.8
15 10.7
16 11.5
17 12.2
18 13.1
19 13.9



B(~l 'A Ml oY xiama3ay

oILd



171

m a R/a a
_____ _ (~)

3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

0.278
0.270
0.263
0.256
0.250
0.244
0.238
0.233
0.227
0.222
0.217
0.2128
0.2083
0.2041
0.2000
0.1961
0.1923
0.1887
0.1852
0.1818
0.1786
0.1754
0.1724
0.1695
0.1667
0.1639
0.1613
0.1587
0.1563
0.1538
0.1515
0.1493
0.1471
0.1449
0. 1429
0.1408
0.1389
0.1370
0.1351
0.1333
0.1316
0.1299
0.1282
0.1266

___________________________________________ I

7.73
7.29
6.92
6.55 -2
6.25x10 2

5.95
5.66
5.43
'5.15
4.93
4.71
4.53
4.34
4.17
4.00
3.85
3.70
3.56
3.43
3.31
3.19
3.08
2.97
2.67
2.78
2.69
2.60
2.52
2.44
2.37
2.30
2.23
2.16
2.10
2.04x10- 2

1.98
1.93
1.88
1.69
1.78
1.73
1.69
1.64
1.60

2.15
1.97
1.82
1.68 2
1. 56x10~
1.45
1.35
1.26
1.17
1.09
1.02
9.64x10-3
9.04
8.50
8.00
7.54
7.11
6.72
6.35
6.01
5.70
5.40
5.12
4.87
4.63
4.40
4.20
4.00
3.82
3.64
3.48
3.33
3.18
3.04
2.92x10-3

2.79
2.68
2.57
2.47
2.37
2.28
2.19
2.11
2.03
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m = R/a a

8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

0.1250
0.1235
0-.1220
0.1205
0.1190
0.1176
0.1163
0.1149
0.1136
0.1124
0.1111
0.1099
0.1087
0.1075
0.1064
0.1053
0.1042
0.1031
0.1020
0.1010
0.1000
9.09x10-2
8.33
7.69
7.14
6.67
6.25
5.88
5.56
5.26
5.00
4.76
4.55
4.35
4.17
4.00
3.85
3.70
3.57
3.45
3.33
3.23
3.13
3.03

1.56
1.53
1.49
1.45
1.42
1.38
1.35
1.32
1.29
1.26
1.23
1-21
1.18
1.16
1.13-
1.11
1-.09
1.06
1.04
1.02
1.00x10-2
8.26x10-3
6.94
5.91
5.08
4.45
3.91
3.46
3.09
2.77
2.50
2*27
2.07
1.89
1.74
1.60
1.48
1-37
1.27
1.19
1.11
1.04
9-80x10- 4

9.18

1.95
1.88
1.82
1.75
1.69
1.63
1.57
1.52
1.47
1.42
1.37
1.33
1.28
1.24
1.20
1.17
1.13
1.10
1.06
1.03
1.00x10-3
7.51x10~4

5.78
4.55
3.64
2.97
2.44
2.03
1.72
1.46
1.25
1.08
9.42x10- 5

8.23
7.25
6.40
5.71
5.07
4.55
4.11
3.69
3.37
3.07
2.78
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