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i

1. The second paragraph following equation (3.33) should read:

"For small attenuation coefficients the elastic displacement
p 1s small compared to the elastic displacement u
(“Knopoff and MacDonald, 1958). As a result, we may expect
the coupling effect given by the fifth term of (3. 31b)

to be negligible. The sixth and seventh terms, etc.”

2. Equation (3.36b) should read:

- 2
I A +2m,) 3w (M _+2 ) M I
Fl:(:z; ( v (bx)t) M e /e Ixdt o=
3. The term 2 . 2
Hag 7 . |

should be added to the right member of eq. (3.72).

4, Equation (3.75) should read

(A ] 2 2,2
J“ 0) 8,140, « 20 Me o A %wz+ (re+ VMV)'«J.
2 1 \ 3 62 Ce ~J

5. Equation (3.90) should read

oCa '~ \O—n{ooz + \o"swa}

None of these corrections alters the conclusions of the original
study in any way whatsoever.

Sven Treltel
Havana, Cuba, November 1959
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The progressive decay of a seismic disturbance is traced
from 1ts inception as a large amplitude shock front to its
attenuation to small amplitude stress waves and ultimate conversion
into thermal energy. It is assumed that excess stress accumulates
over prolongued periods of time in certain parts of the earth's
crust, and that sudden release of such stress at local points of
weakness can glive rise to a shock wave that will propagate
radially outwards from the source 2zone.

The hydrodynamic equations of supersonic flow are well known,
but the dominant effect of their non-linear terms has made it
impossible to find exact solutions for shock wave vropagation
through solids and flulds. A more fruitful approach to this
problem can be made through consideration of the Rankine-
Hugoniot equations, which relate conditions across an infinitely
thin shock front. Combination of these expressions with the
Birch-Murnaghan equation of state permits one to perform
dissipation calculations in the shock zone. This shock zone is
here defined to be that reglon surrounding the source of the
disturbance in which the excess pressure across the shock
discontinuity exceeds the yleld stress of the rock, $ .

The small amplitude zone will then be the region in which the
excess pressure has decayed to magnitudes of the order of or
less than € .

It is shown that enormous amounts of energy are injected
into the shock zone by the rapidly decaying front, but that
attenuation in the small amplitude zone is quite negligible in
comparison. The familiar Gutenberg-Richter earthquake energy
formula 1s based on observations of small amplitude ground
motion at the surface. If near-focal shock waves are generated
as a result of an earthquake, the total energy estimates of
Gutenberg and Richter may be too conservative, perhaps by a
factor of ten. The theory of shock wave decay presented in this
theslis also suggests that near-source dissipatlon in seismically
active regions over perliods of only several hundred thousand
years can accumulate sufficient heat in localized areas to
cause vulcanism or emplacement of abyssal igneous bodles.



Knopoff and MacDonald (1958, in press) have demonstrated
that no so0lid model of the small amplitude zone, describable
by linear differential equations with constant coefficients,
can lead to a frequency independent specific dissipation
function, 1/Q. Yet this is exactly what has been observed for
rocks and glasses both from seismological and laboratory
. measurements. Most attenuatlon treatments in the literature
do not take the effect of a finite thermal conductivity into
account. Strictly speaking, no dissipation model that neglects
assoclated heat flow 1s tenable from the thermodynamic viewpoint.
Knopoff and MacDonald have derived a theory based on permanent,
plastic straln as well as recoverable, elastic strain. In this
theslis their work is generallized to take thermal as well as
their coupling effects into account. The resulting equations of
motion and temperature contain small non-linearities, but solutions
can be established by the method of first approximation of
Kryloff and Bogoliuboff. It is found that damping in such a
medium 1is describable in terms of two attenuation coefficients,
only one of which is a function of the thermal conductivity.
This "thermal" attenuation coefficient is probably small
compared to the other, which is identical to that of Knopoff and
MacDonald, and wh ch leads to a 1/2 independent of freguency.

Two linear models are also considered. The first of these
is a 8011d with finite thermal conductivity, and the second a
similar medium with viscous damping as well. Both models are
shown to lead to damplng mechanisms that are not in agreement
with observation.

Finally, it is demonstrated that Zener's concept of
relaxation by thermal diffusion is inapplicable to selsmic wave
attenuation, although the theory has ylielded good agreement
with experiment in the case of many metals. Zener's work 1s
based upon the assumption that the wave length is of the same
order of magnitude as the diameter of a crystallite of the
medium; this hypothesis cannot be upheld for ordinary seismilc

frequencies.

It 1s suggested that experimental work on shock wave
propagation through solids will serve to clarify many polints
that cannoct be settled from theoretical considerations alone.
In view of the results of Knopoff and MacDonald and the
present writer, further work on linear dissipation models
does not appear promising.

‘Thesis Supervigsor: Dr. Gordon J.F. MacDonald

Title: Assoclate Professor of Geology
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NOCTATION

An effort has been made to avoild usage of symbols for more
than one quantity throughout the text, but this has not
always been possible. The following tabulation lists the
symbols used together with their principal meaning:; in any
event, duplicatlion of symbols previously used occurs only
in Section 3 of Chapter IV.

SYMBOL MEANING
Po Hydrostatic Pressure
P-FL Excess over hydrostatic pressure
(’ Density at pressure P
EL Density at pressure Po
Vv Specific Volume at pressure P
\Q Specific Volume at pressure PO
<4 So0lid yield stress
d Width of shock front
\'4 Particle velocity behind shock front
Vo Particle velocity ahead of shock front
E Specific internal energy behind shock
Eo Speciflc internal energy ahead of shock
V) Shock velocity
T Absolute Temperature
R Radlal distance

Coefficient of thermal expansion at pressure P
Coefficient of therral expansion at pressure P

o)
Bulk modulus at pressure P

Bulk modulus at pressure Po

Leed™

Compressibility



SYMBOL

3
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MEANING
Exponents in generallzed Birch equation of state
Specific entropy

Thermal conductivity

- Density ratio = (FV%B )

P Wave Velocity

Time

Distance

Acoustic Velocity

Dimensionless Radial Distance

Dimensionless Travel Time

Radius of source sphere

Shock wave damping coefficients

Total energy dissipated in shell of thickness m
Wave amplitude

Temperature amplitude

General elastic wave velocity

Displacement

Complex wave number = & + <

-1

Real part of

Imaginary part of g~ = attenuation coefficient
Total strain

Elastlic strain

Circular frequency

Elastic modulus



SYMBOL
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MEANING
"Viscous" modulus
Viscous parameters
Elastic parameters
Permanent (plastic) displacement vector
Elastlc displacement vector
Elastic strain tensor
Total rate of deformation tensor
Rate of permanent deformation tensor
Kronecker Delta
Total stress tensor
Total velocity vector
Position vector
Thermoelastic stress tensor
Derivative "following the motion"
1 'B invariant of elastic stress tensor

i th invariant of time rate of change of
elastic stress tensor

Plastic constants

Thermal diffusivity

Specific Heat at constant strain
Phase angles

s % -wb + @(t)

: o'x-oolify»(t)
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Total displacement Vector

Time attenuation coefficients
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MEANING
Distance attenuation coefficients
Tensile stress
Relaxation time of stress at constant strain
Relaxatlion time of strain at constant stress
Relaxed modulus
Unrelaxed modulus
Complex modulus
Angle of lag of strain behind stress
Geometric mean of '?£ and 42, .
Geometric mean of MR and MU .
Specific Dissipation Function
Diffusion distance
Wave length
Isothermal bulk modulus
Isothermal P wave velocity
Adlabatic P wave velocity

@elml

Specific shell energy
Ambient rock temperature

Earthguake magnitude
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INTRODUCTTION
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The propagation of seismic waves through the earth's
crust 1s usually treated with the ald of classical elastic
theory alone. Yet 1t is well known that no physical medium
behaves like a perfectly elastic substance. Any dlsturbance
that arises in the medium will eventually be damped to zero
amplitude, and the input energy will ultimately appear as
heat. If the amplitude of the disturbance 1s small, that is,
if the describing equations of motion are linear or only
slightly non-linear, the departures from perfect elasticlty
are not conslderable, and elastic theory may be used with
confidence. The observed attenuat}on of selsmic waves 1s
very small. One usually studles damping in a mecdium by
considering an attenuation coefficient e ,

Al = A

b S

(1.1)

where Ay is the initial amplitude of the disturbance, x the
distance from the source, and A(x) the amplitude at the
distance x. Gutenberg (1951) has estimated the average value
of X for the transmission of compressional waves through the
earth to be of the order of 10‘4/Km. Studies of seismic
sﬁrface wave attenuation as well as extensive laboratory

work on silicates yield similarly small values of the
coefficient oC . Much of the avallable empirical data on
silicates has recently been reviewed by Xnopoff and

MacDonald (1958, in press).
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In the immediate neighborhood of the source of a major
disturbance, such as an sarthquake or a large subterranean
blast, the small amplitude assumptions cannot be upheld.

The sudden and concentrated release of major amounts of energy
gives rise to pulses of large finlte amplitudes, which are known
as shock fronts, or shock waves. The fronts are formed in solids
when the pressure exceeds the yleld stress of the medium, ?? .
For rocks, % 15 of the order of 10° dynes/cm? = 107 bars.
Enormous gradients exist across these fronts; as a result,

the shock wave must decay very quickly as it propagates, with
consequent rapid injection of large amounte of dlssipated energy
into a small volume surrounding the source. Shock wave phenomena
are thus of considerable interest in the study of conditions
existing near the focus of an earthquake, or near the slte of

an underground explosion.

The problem is of considerable interest to the exploration
geophysics industry, since the mechanism of selsmle wave
generation by explosives is not at all well understood. A
considerable amount of work along these lines has been reported
in the literature, but most of it is of an empirical nature
and of little value to the formulation of a more general
theory (Leet, 1951; Habberjam and Whetton, 1952). The
experimental difficulties involved are quite formidable, since
it 1s extremely hard to build strain gauges that can withstand
the enormous oressures developed near the source of the
disturbance. Morris (1950) has recognized that the detonation

of an exlosive 1n rock creates a shock wave, which spreads out
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spherically. As the disturbance travels outwards, the stresses
decrease until the yield stress of the rock is reached. From
that point on, the wave is transmitted as a small amplitude
disturbance. Morris does not attempt to place his statements on
a more rigorous mathematical basis, nor did he study the
dissipation mechanisms that must act while the disturbance is
8till a shock wave. W.I. Duvall (1953) has reported experimental
work performed by the Bureau of Mines near the sites of major
rock blasts. He found that the shock amplitude decayed according
to a 1/R? 1law, where n ranged in value between 1.6 to 2.5 for
various rock types and explosives.

The propagation of shock waves in water has besn extensively
studied during the Second World War. Most of this work has been
surmarized in a book by R.H. Cole, "Underwater Explosions"
(1948). As we shall see in the next chapter, much of this theory
can be very conveniently adapted to the study of shock wave
propagation 1n solids.

From time to time major rock blasts have been set off in
many parts of the world for various purposes, and in several
instances the resulting disturbances have been recorded by
selsmographs up to a distance of several hundreds of miles
from the detonation site. Unfortunately no strain gauges were
placed in the rock in the immediate neighborhood of the source,
80 that no shock wave observations could be made. Willmore (1949)
has written a detalled report of selsmic measurements made in
connection with the blasting of German fortifications on the

island of Helgoland in 1946. Several thousand tons of dynamite
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were detonated simultaneously, whose total energy was estimated
at 1.3x1020 ergs. The energy appearing in the form of small
amplitude seismic waves was calculated by Willmore to be of
the order of 1017 ergs. In‘1921, 4500 tons of dynamite were set
off at Cppau, Germany. Jeffreys (1952) calculated that the
energy liberated by this explosion was about 6x1019 ergs,
while only 5x1016 ergs appeared as small amplitude waves. In
both these cases only 0.1% of the input energy went into small
amplitude stress waves. While 1t 1s undoubtedly true that a
substantial amount of this input energy was imparted to the alr,
a considerable fraction must also have been disgsipated near the
source, where the disturbance was still a rapidly decaying shock
wave. When major blasts are detonated far underground, on the
other hand, there will be no loss into the atmosphere, and all
the input energy will then be imparted to the surrounding rock.
On September 19, 1957, a 1.7 Kilotonl)atomic bomb was
detonated in a tunnel under a mountain at the Nevada A.E.C.
Test Site. A preliminary report containing some declassified
data about this explosion (OPERATION PLUMBBOB) has been
published recently (Johnson et Al, 1958). The near-source
observations of the blast, insofar as they have been made
avallable, will be discussed in Chapter V of this thesis.
It thus appears appropiate to examine the theory of
shock wave propagation in rocks more closely at this time,
and in particular to investigate the dissipation mechanlsms

- > W R o . -

1) 7.1x1019 ergs total energy release
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that may be expected to hold for these waves. We shall
Investigate this question in considerable detail in Chapter II
of this thesis, and discuss 1ts seismological implications in
Chapter V.

Once the shock front has decayed to pressure levels
considerably below the yield stress of the solild, recourse may
be taken to linear and slightly non-linear perturbation theory
in order to study the propagation of the resulting small
amplitude wave. Knopoff and MacDonald (1958) havs made an
exhaustive survey of observational and experimental data
available for the attenuation of small amplitude waves in
silicates, and find that the attenuation coefficient = 1is
a linear function of the circular frequency W in the range
1072¢ W < 107 rad/sec. They then proceed to show that no
linear dissipation model can yleld an attenuation coefficient
that is proportional to an odd power of w , and as a result
conclude that recourse must be taken to permanent strailn
mechanisms in order to develop a theory in better agreement
with observation.

Any compressional wave travelling in a medium of finlte
thermal conductivity ¥ will suffer damping. This occurs
because the propagation process 1s only isentropic and rever-
gible for a medium of zero thermal conductivity. Such a medlium
is, of course, physically impossible. As a result, all propagation
models that do not take thermal phenomena into account are,
strictly speaking, thermodynamically incorrect. However,
since ¥ 1is quite small for silicates (of the order of

0.005 cal/cm-sec-deg.C), such "thermo-elastic" damping, as it
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will be termed here, is quite small. Nevertheless, thermal terms
cannot be neglected in any rigorous development of the equations
of motion of small amplitude waves.

. We shall accordingly concern ourselves with a model
exhibiting permanent strain in Chapter III. This problem has
been solved by Knopoff and MacDonald (1958) in the absence of
thermal terms. In this thesis, their work 1s generalized to
take thermal phenomena into account. The assumed model, which
involves both permanent as well as recoverable strain, leads to
non—linear equations of motion. Solutlions to these equatlons
can be found by the method of Kryloff and Bogolliuboff
(Minorsky, 1947) provided that the non-linear terms are small
compared to the linear omnes.

In Chapter IV we investigate two linear models in the
presence of thermal terms. The literature dealing with the
propagation of small amplitude stress waves in solids that
exhibit a finite thermal conductivity 1is quite extensive, but
in a rather confusing state. Much of the work that has been
dsne suffers from serious flaws in thermodynamic arguments;
and even many of the vapers that use a correct and rigorous
thermodynamic approach fail to express the final formulae
in a form amenable to gquantitative examination of resulting
attenuation coefficients. The first of the linear models to
be investigated in this thesis is an ordinary elastic solid
of'finite, non-zero thermal conductivity, while the second takes
viscous dissipation into account as well. We shall filnd that
neither of these models gives results that agree with obser-

vational evidence for silicates, although the former may be
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applicable to propagation in the megacycle frequency range.

Such frequencies are, of course, of no seismic interest.
Chapter V summarizes the results obtained in the three

previous chapters, and discusses the geological implications

of the work reported there. The propagation of a discontinulty

is traced from its origin as a large amplitude shock pulse

to 1ts eventual decay to a small amplitude acoustic wave.

We shall, then, first oroceed to a detalled study of shock wave

phenomena in solids. This will be accomdplished in the next

chapter.



CHAPTER ITI

SHOCK WAVE DECAY NEAR THE SOURCE



19

1. Shock Wave Propagation Theory in Solids

Although the literature dealing with the generatlon and
propagation of shock fronts in physical media 1is qulte extensive,
most of the treatments avallable restrict themselves to the
study of these phenomena in gases. During the Second World
War considerable effort was devoted to the study of shock waves
generated by underwater detonations. The results of this work
are admirably presented and summarized in R.H. Cole's book,
"Underwater Explosions" (1548). Unfortunately, a substantial
part of this war-time research has not yet been declassified and
1s therefore unavallable. There is little doubt in the writer's
mind that restricted work on shock wave propagation in solids
has been done both here and abroad in connection with the study
of energy liberated in atomic and nuclear explosions. The release
of results of such investigations would obviously be of great
interest to selsmology.

The main reference work in this field is the well known
book by R. Courant and K.O. Friedrichs, "Supersonic Flow and
Shock Waves" (1G48). The unlinearized hydrodynamical equations
and approximation techniques for their solutlon are presented
in considerable detail. The Rankine-Hugoniot expressions, which
relate conditions across a travelling shock front (see below)
are also derived from basic principles. However, the discussion
of shock phenomena in solids is very brlef and sketchy. A
similarly short and rather heuristic discusslion of shocks in

solide may be found in H. Kolsky's "Stress Waves 1n Solids"

(1953), pp. 178-182.
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The pressufes required to maintain a propagating shock
discontinuity in a solid are far above the materialk yleld
stress. It 1s therefore possible to treat the solid as a fluid
for such phenomena, since the shear modulus 1s bound to lose
its significance at these high pressures, (Kolesky, 1953),
(Gilvarry and Hill, 1956). The strength of rocks as established
by laboratory measurements 1is usually taken to be of the order
of 109 dynes/cm2 (Birch et Al, 1942). In this work we shall
define any travelling pressure discontinuity of magnitude
greater than the éolid's strength to constltute a shock wave.

Walsh and his coworkers (Walsh and Christian, 1955; Walsh,
Rice and Yarger, 1957) have carried out extensive experimental
work with shock wave propagation at the Los Alamos A.E.C.
laboratory. Thelr measurements have enableé¢ them to find the
equations of state that describe the pressure-volume-temperature
relationships of twenty-seven different metals. Goranson et Al,
(1955) have performed work of a somewhat similar nature on
duralumin in the pressure range from 0.15 to 0.33 megabars.
They distinguish between isentropic and 1sothermal equatlons

of state, and succeed in fitting thelr experimental data to an

empirical equation of state of the forn,

P = K (f (’o) S’(Ce‘aﬁoa'

where P, ® 1lsentropic pressure, kg = isentropic bulk modulus,
ks' = second order coefficlent, (o== density at zero pressure,
and <’= density at pressure Py . Shock wave measgurements on

metals are also being undertaken by G.E. Duvall and assoclates
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at the Poulter laboratories of the Stanford Research Institute
(Duvall and Zwolinski, 1955; Drummond, 1957). The only
laboratory work with shock waves in rocks has recently been
reported by'Hughes and McQueen (1957). They have succeeded in
measuring the density of two éabbro and one dunite specimens
In the pressure range from 0.15 to 0.75 megabars. These large
pressures were attained across shock fronts generated by high
explosives. Dunite was compressed from ¢@o= 3.25 grs/cm3 to
€ = 4.93 grs/cm’ at 0.72 megabars, and gabbro from Co: 3
to g= 5 grs/cm3 at 0.75 megabars. Both gabbros so tested
showed evidence of polymorphic phase transition at a pressure
between 0.1 and 0.35 megabars to a more dense and less
compressible phase. The theory to be developed in the following
pages does not take the possibility of such phase transitlons
into account. We moreover restrict ourselves to isothermal
equations of state (see Sectlon 3 of the present chapter).
Even though such 1ldealizatlions are not strictly correct, they
should‘be adequate to provide us with orders of magnitude of

shock wave phenomena.

2. The Formation of a Shock Front

let Po= hydrostatic pressure, P-P, = the excess over the
hydrostatic pressure, ¢, density at pressure P,, and
€== density at pressure P. Within the elastic limit,
P-P, & 9 , where f - yield stress of the solid, and one has

p-p, . AP

— =~ consh.

€-Co % (2.1)
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80 that all elastic strains are propagated at the same speed.
When P-P, ») % , however, the quantity A%g will either
decrease asymptotically toward zero, or increase with increasing
P. In the former case, a plastic wave with a velocity of
propagation less than that of the elastic wave will be produced;
in the latter, the larger strains will be propagated faster

than the smaller ones, so that such disturbances travel through
the medium at super-sonic speeds. Sonlc speeds are here assumed
to be those that correspond to ordinary elastic waves. The
formation of a steep shock front may be schematically illustrated

by Figure 2.1 below:

(2) (3)

Fig. 2.l1----Formatlon of a Shock Front in a Wave of Finite
Amplitude (adapted from Cole, 1948).

Let us assume that the pressure at b is greater than that at
a, Pb} Py, and that both Py and Py >>‘£ . Then the disturbance
at b will travel faster than at a, so that the distance d
diminishes as the pulse travels toward the right. The pulse
front will become steeper and steeper, and would ultimately
become infinitely steep (Fig. 2.1, (3)), so that d%0. This

ultimate condition cannot be attained physically, since the
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differences in pressure and tempsrature of the materiai‘in the
disturbed region relative to the undisturbed medium ahead of
the pulse become larger and larger as the front steepens,
that 1s to say, the gradients of these quantities approach
infinitely high values. In this situation, however, considerable
amounts of energy wlll be dissipated, and the pulse front will
only approach, but not actually reach infinite steepness.
A-pulse that approximates the ideallized state 1llustrated in
Fig. 2.1 (3) 1s known as a shock front. The interval required
by a pulse to reach its maximum steepness is called its rise
time. So far as 1s known from exverimental measurements, such
rise times are exceedingly small, of the order of microseconds
in many instances (Cole, 1948). The equations of state that have
been found to describe the behavior of rocks in the earth's
crust (see below, Section 3 of this chapter) show that €
increases with increasing P, so that shock waves, rather than
plastic waves must form when an earthquake occurs.

In order to make the mathematical analysis of shock
phenomena at all tractable, it 1s necessary to make a number
of idealizations. It has turned out, fortunately, that
measurements agree very well with theory in spite of the great
simplifications thaf must be made. The reglon of greatest
interest for shock wave behavior lies in the immedlate neighbor-
hood of the source of a large disturbance, but it 1s Jjust in
this region where measurements cannot be made, since the best
pressure gauges have upper endurance limits far below pressures

that appear to be developed near the source. Thus pressures are
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recorded as close to the origin as 18 feasible, and the results
extrapolated to smaller source distances. This method is used
in work with underwater detonations, and has also been employed
in the study of disturbances caused by rock blasts (W.I. Duvall,
1953).

The fundamental equations that describe the shock wave
are the so called Rankine-Hugoniot relations, (hereafter
referred to as the R.H. relations). Since their derivation can
be found 1in basic reference works (see e.g. Courant and Friedrichs,
1948), we merely state them here without proof. They are obtained
by a conslderation of the zones immediately ahead and behind the
actual discontinuity. If the wave front becomes infinitely steep
(d =0; See Fig. 2.1, (3)), the pulse has zero width.Now let

U = velocity of shock front relative to the fixed origin O,

DISTURBED ZONE U UNDISTURBED ZONE
P) E)€)V — P°’E°)€°:v°

SHOCK FRONT
/ (6=0)

o X

Fig., 2.2---~-=~ A shock front propagating into an undisturbed
‘zone from left to right at velocity U relative

to a fixed origin O.
and let Po,(;,Eo, and v, be the hydrostatic pressure, density,
internal energy, and particle velocity in the undisturbed zone

ahead of the shock and P, ¢ , E, and v the corresponding
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quantities immediately behind the shock. Since, by definition,
no excitation has occurred in the undlsturbed zone prlor to

the passage of the shock front, v, = O. Application of the

o}
laws of conservation of mass, momentum, and energy to both

sides of the shock front ylelds the equatlons

e(V-v) =gV ‘
P-¢ = 65\)V

ek (4 F)

5 4

"
o

’ (2.2 a,b,c)

These are the R.H. relations. It should be pointed out again that
these expressions were derived subject to the condition 4 = O,
a situation which can only be approached physically, since
d=0 corresponds to infinitely large gradients across the
dlscontinuity.

Little work has been published on the actual thickness of
the shock zone----- or transition zone, as some writers chose
to call it. The quantity d is undoubtedly a function of the
dissipative forces which become increasingly important as the
gradients grow larger. In fluids d 1s of the order of one
molecular mean free path (Kolsky, 1953), but no results are
avallable on the probable thickness of this zone in solids.
Nevertheless, asgreement between observation and theory 1is so
good that one may safely assert that this restriction on the
R.H. relations is not serious.

Conditions in the disturbed zone after the passage of the

first shock front are extremely complicated, and involved
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hysteresis effects must probably be taken into account.

\ Moreover, such shock waves can be reflected from boundaries
just as in the case of ordinary elastic waves, so that complex
interactions between incident and reflected shock pulses must
arise. In this work we must assume,(a) that no reflection of
the shock wavé occurs within the area of interest and (b) that,
at least as far as earthquakes and rock blasts are concerned,
the shock phenomena can be adequately described by the passage

of a single shock front of infinitesimal width.

3. The Equation of Btate

If equations (2.2 a,b) be solved simultaneously for the

shock velocity U and particle veloclty v, one has

- P- Py
v -g(f‘ CO) (2.3)

v €€y . [e-C0 (p-0) (2.4)
€ €Co

If the equation of state of the medium,:P:.&(ej?, where T 1is

the absolute temperature, is known, it becomes possible to express

the shock velocity U, the particle velocity v, and the internal

energy difference E-E, across the dlscontinuity as a function

of the excess pressure P-Po,or density increase €-€o alone.

In particular, if the behavior of P-PO as a function of the

distance from the source, R, be known, then the dependence of
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(-e; upon R can be found from the equatlion of state, and
thus the functions U(R), v(R), and E—EO(R) established uniquely.
Knowledge of these functlons permits detailed calculations of
supersonlc flow and assocliated energy losses that one might
expect to find near earthquake focll or large rock blasts,
such as underground atomic explosions. Obviously, the larger
the 1initial pressure difference P—Po i.e., the larger the
quantity (P'PQ)RPO , the greater will be the volume of material
around the source in which shock phenomena take place. We recall
here that Po is the hydrostatic pressure, and P—Po the excess
over this hydrostatic pressure as referred to the disturbed and
undisturbed sides of the advancing shock front. In seismological
applications, Po wlll of course itself be a function of the depth
below the surface.

A successful attack on this problem therefore hinges
on two factors:

(1) Knowledge of the equation of state,

(2) Knowledge of the pressure distance decay law.
Now (2) can only be established explicitly if the exact
solutions of the non-linear hydrodynamical equations that
describe the motion of a shock pulse are known. In particular,
the decay law may not only be a function of the equation of
state itself, but also of such mechanisms as viscoslty and heat
conduction. Here we only consider (1), and return to the problem
of the hydrodynamical equations in the next sectlion.

Birch (1938,1947,1952) has made an exhaustive study of

the behavior of rocks at high pressures, based on the finlte
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strain theory of Murnaghan (1937,1951). Birch's equation of

state, which is independent of T, 1s

P23 [ ()" - (N Ny ]

(2.5)

Her94%°= bulk modulus (or incompressibility) corresponding to
zero pressure, Voz specific volume at zero pressure, and
V =z gpecific volume at pressure P.

Gilvarry (1957) writes (2.5) in the more general form
~1 V 0, m,
P=(n-m *Y& (——") - ( )
( | \ o \/ (2.6)

He calls this equation the generalized form of Birch's

VO
3

isothermal equation of state. Eq. (2.6) reduces to (2.5) by
setting ny = 7/3 and my = 5/3. Gilvarry has also lifted the
isothermal restriction on Birch's equation, and finds that in
this case the equation of state 1s glven to first order by
Pep(T) + %o ,,,(_ﬁ)"' AAW
n-m, VvV ‘ (\\/;)

RICRON IS

]

(2.7)

where
4]

P(T,) = n,efem (y\/—o)n' ) (%.-) |

is the generalized isothermal Birch equation (2.6), T, = initial

temperature, T = final temperature,/@°=coefficisnt of thermal



29

expanslilon at temperature To and zero pressure, and
Je, p7 (28
7.0 A (35),

Equation (2.7) permits the calculation of the temperature

rise, T-T that corresponds to a pressure increase of P-P

o’ o)

in a solid describable by such an equation of state. Again,
the behaviour of the parameter3/4, andjyo in a shock zone 1is
not known, so that the use of (2.7) in preference to the
isothermal equation (2.5) does not appear to be warranted at
this time.

A quespion of equal importance is the upper pressure limit
below which (2.5) can be assumed to be applicable. Bireh (1952)
presents a curve for iron that he has computed from (2.5) up
to a pressure of «'7x106 bars, which corresponds to a density
of ~15. Walsh and Christian (1955) have measured shock pressures
in metals up to 'V5x105 bars. It is of course difficult to
speculate about the magnitude of P-PO across the shock front
generated by an underground atomic blast or an earthquake, and
in the following pages we shall assume that thils pressure difference
does not exceed 106 bars. In this case we are probably well
within the region of validity of (2.5). Above pressures of
107 bars it appears llkely that the equation of state must be
found on the basls of quantum-mechanical, rather than the
elastico-plastical considerations that have led to Murnaghan's
theory. In the former case, the solid is treated as an electron
gas. Calculations along such lines have been made by & number

of workers (Feynman, Metropolis, and Teller, 1949), but their
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results hold only for pressures greater than 107 bars

(1013 dynes/cmz). It is extremely unlikely that pressures of
this magnitude are ever developed across shock fronts in
rocksi)accordingly, we shall restrict ourselves here to a

consideration of the Birch-Murnaghan isothermal equation alone.

4, The Hydrodynamical Equatlions and Shock Decay

It was nointed out in the previous section that the exact
form of the pressure-distance decay law is not only a function
of the assumed equation of state, but also of dissipative
mechanisms such as viscosity and heat conduction. Since a
shock front is actually a very large finite amplitude pulse,
the classical linearized hydrodynamical equations cannot be
used to describe the propagation of shock waves through any
physical medium. Where the deviations from linearity are not
considerable, as in the case of the small amplitude waves
treated in Chapter III of this thesis, perturbation techniques
applied to known solutions of the corresponding linearized
equatione yield very satisfactory results. In the present case,
however, the non-linear terms are so large that any such
approximation method breaks down completely. Thus the
equations of continuity and motion in one dimension in the
absence of viscosity and heat conduction can be written in their

- - w w> a — dw a - -——- —

(1): at least, in the case of earthquakes and non-nuclear blasts.



31

Eulerian form as

¢ * (ev), =9
(ev), + (ev®+P) <0 (2.8 a,b)

The subscripts x and t denote differentliation with respect to
the space and time variables, and v = particle veloclty in the

x direction. The isothermal equation of state, P’-g(CXcould be
used to eliminate P from the above system, so that 1t might in
theory be solved for u(x) and 6’(x). But, as was pointed out
atove, the non-linear terms of (2.8) become so large for a shock
wave that linear perturbation techniques are not applicable.

The system (2.8) is amenable to an exact solutlon by the

"method of characteristics" (Courant and Friedrichs, 1948,

p. 38 ff.) in the case of gases,. for which simple linear
equations of state p‘-?({) hold. For solids, however, this 1is
not the case at pressure levels that must exist across the

shock front. Since the exact solutién of (2.8) 1s not known,
only cumbersome numerical iteration methods can be used to
attack the problem. Unfortunately these iteratlive procedures

are strongly dependent upon initial conditions in the immediate
neighborhood of the source, and 1t 1s exactly here where adequate
data, either experimental or theoretical, is almost totally
lacking. Calculations of this nature have been made for under-
water explosions (Cole, 1948), but in this instance some

empirical data from near source measurements was at least
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avallable., Since up to this time 1little or no such data exists
for rock blasts, and is obviously unattainable directly in the
case of earthquakes, such iterative calculations appear to be
rather futile.

Generalizations of equations (2.8) are given by Courant
and Friedrichs (1948, p. 134) for a viscous and heat conducting

fluid. In this case one has for one dimensional flow

et + (<v)x=0
(€V)t*(€va+ P-%kvvx)xﬂ)
(T5t+ evTSs, - 4/3va:+ (XQ)X=0

(2.9 a,b,c)

Here S = specific entropy, )V= bulk viscosity (see Ch. III),

and § = thermometric conductivity. The left side of (2.9 ¢)
represents the heat acqulired by a unit volume in unit time; the
first term on the right represents the heat generated by viscous
friction, and the second the contribution due to heat conduction
directly. Again, Gilvarry's generalized equation of state (2.7)
could be used as an additlional relation in conjunction with
(2.9), but such computations are subject to the same
difficulties as explained above.Moreover, it 1is by no means
certain that viscosity and heat conduction represent meaningful

concepts when one deals with processes occurring in the shock

front itself.
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We must therefore conclude that shock amplitude decay
laws cannot be found from consideration of the hydrodynamical
equations because

(1) Their non-linear terms are dominant
(2) The meaning of viscosity and thermal conductivity in
shock fronts is as yet obscure.

Under these circumstancesg the only remaining avenue of
approach lies in the postulation of certain shock decay laws,
and to establish the physical implications to which such
agsumptions lead. One then hopes that considerations of this
nature will at least shed somellight on the problem of energy
dissipation and supersonic flow in the neighborhood of large
sudden disturbances in solids, and yield an idea of the order
of magnitude of such gquantities. The theory to be presented
below is of a rather general nature, since 1t does not require
knowledge of the exact shock decay mechanism until the final
stages of the calculation are reached. The chief advantage of
this approach lies in the fact that any number of decay laws
may be tested in this way, and their physical feasibllity

established.

5. The R.H. Relations for the Birch Isothermal Equatlion of State

It was already pointed out in Section 3 that combination
of the R.H. relations with a suitable equation of state
permitted the unique calculation of shock velocity U, particle
velocity v, and energy difference across the shock diécontinuity

E-Eo as a function of the guantity (’-65 alone. Here
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¢ = density of material at a hydrostatic pressure P, and
o= density of the material ahead of the shock front, which
is at a hydrostatic pressure Po .

We select the Birch isothermal equation of state (here-
after termed the Birch equation), which can be written in the
more convenient form

p-p %—4«( & -C)

° Co Co (2.10)

as our fundamental relation. Here we set (= y\/ and €, * \/\/O
When e = 60 R P—PO = O) or P:Po. Since rarefaction shock waves
in solids and liquids cannot arise (Lamb, 1932), V; >V
and ( > @o always, so that e/eo > .
Substituting (2.10) into (2.3), one has

9/3 A

-ﬁ) - (2.11)
(f Co e° €o

Consider for a moment (2.3):
(e P-fa
U '/(co ¢-Co (2.3)

if we expand P in a Taylor series in (¢-¢,) about P,

PP + P (;%%ﬁg) + 8 (Si%fﬁ)a+

(2.12)

The coefficlents Po’ Pl, P2,.......are actually functions of
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temperature, but since we are dealing here with the isothermal
case, these coeffliclients may be considered to represent
elastic constants. If the quantity(ﬁ%;gﬁéfis small compared

to .ﬁ:;gi_ , we need only retain the first term in the

¢

expansion (2.12), and thus have

P-P, = P\ (€é€o2

It is shown in Slater's "Chemical Physics" (1939, p. 203)
that Pl % 4k° , Where *ko = 1sothermal incompressibility.

In this case,

Je
P’?o = (e"fo
¢ )

(2.13)
For small ¢-g¢, » we can set roughly e® ¢, . Then,
substituting (2.13) into (2.3),
e&o ((-e') ko
U= - z = ¢ (2.14)
e(e-e.) e, €.

where we recognize c, to be the ordinary acoustic velocity.

We have thus shown that an acoustic pulse 1s actually a weak
shock. Mathematically, the transition from (2.3) to (2.14) 1is
difficult to establish. One gets around this ambiguity by
arbitrarily defining the pressure excess, P-Po, below which the
pulse may be considered to be acoustic, 1i.e., adequately
represented by (2.14). If 4 - yleld stress of solid, we shall

term the pulse acoustic when P-P < % . Thus any decaying
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shock will eventually decay toc an ordinary acoustic pulse.

For convenlence in later work, we set

Y © (/(o (2.15)

which implies
¢-€ = €. (y-1) (2.16)

Equations (2.10) and (2.11) may then be written

5/:

P-F = (7 i |) (2.17)
and
y@
U: -;-— -%;9 ’) o (y -,)
I y-l a(y ) (2.18)

by (2.14). These relations may also be expressed in the

convenient dimensionless form
3 i ¥
v G,y

Y : /379/391/3_'> Y)\
C 2 (y-1) g

o
(2.19 a,b)

- v
For y» 1, it 1s easy to see that both 1%53- and ¢, are

-]
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monotonically increasing functions of y. When y=1, application
of L'HOopital's rule to (2.19b) shows that

y>! Co
If (2.19a) be substituted in (2.2¢), one gets a relationship
between the difference in internal energy across a shock front,

E-E,, as a functlon of y and the constants Co s Po’ and 420 :

e - 7 Jage SR
vy 2oy (T e R

(2.20)

Similarly, the particle velocity, v, is given by

..l V
v j—-U (2.21)

Duvall and Zwolinski (1955) have investigated the prcblem of
entropy increase in a medium through which a shock front 1is
propagating. It has been shown by Rayleigh (1910) that a pressure
discontinuity can be maintained in an ideal fluid only if the
entropy of the fluild increases as the shock passes through 1t.
Courant and Friedrichs (1948, p. 142) have furthermore shown
that the entropy change across a shock front for "weak" shocks
(see below) is of third order in _fllii_ . Duvall and Zwolinski
make use of the results of Rayleigh S;d Courant and Friedrichs,
and give the following expression for entropy increase across a
‘weak shock:

3
AR S (6" )

o

w
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Here 8 = specific entropy behind shock front, 8,® specific
entropy in undisturbed region ahead of shock, T°= absolute
initial temperature, and P1= isothermal pressure. Duvall
(personal communication, 1958) has informed the writer that
(2.22) holds for compressions up to approximately 15%, at

whatever initial pressure Po these may take place. A "weak"

shock is thus one across which eé&’ \< 15%. Duvall has further-

more pointed out that the entropy increase thus calculated 1is

only that given by reversible thermodynamics. This is due to

the fact that Courant and Friedrichs (1948), upon whose work
Duvall and Zwolinski's derivation 18 based, do not consider
dissipative mechanisms in that part of theilr analysis.
Combination of the Birch equation (2.:10) with (2.22),
and use of (2.15) yields the dimensionless relationship
€o To (S‘So) 5 “/3 Z Z/3-\ _\[_13
o 9 =Y Y (2.23)

However, since this equation has been derived on the basis of
reversibility, and since in any event 1t is limited to
compressions less than 15%, it cannot be used for dis-
sipation computations. For this purpose we shall make use of
(2.20), as will be shown in the next section of this chapter.
It should be remarked here that the terms "weak shock"
and "infinitely weak shock" are very loosely used in the
literature. Courant and Friedrichs (1948, p. 131) define an

“infinitely weak shock" as an ordinary sound wave. We shall
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adhere to this conventlion in the present work.

6. The Decay of Shock Amplitude with Distance and Associated

Energy Dissipation

We have seen that the domlnance of the non-linear terms in
the hydrodynamic equations does not permit us to find solutions
in the case of large amplitude shocks. It was also pointed out
that lteration techniques near the origin were equally futile
as far as these phenomena in solids are concerned, since almost
no empirical data is avalilable for the region in the immediate
neighborhood of the shock source. We accordingly proceed to
derive emrgy relationships under the assumption that the
relation of pressure to distance, P(R), 1s known. Methods
somewhat similar in nature have been applied to the study of
underwater shock propagation (Brinkley and Kirkwood, 1947;
Arons and Yennie, 1948; Cole, 1948).

It is well known that the attenuatlon factor of seilsmic
waves that propagate 1n the small amplitude regions, far from
the focus of the disturbance, 1s very small (see Chapter I).
One may then conclude that the zone of significant energy dis-
sipation must be restricted to that volume around the source in
which 8 -) l

]

In other words, a selsmic pulse may be expected to suffer its
greatest rate of attenuation, and consequently impart a large

proportion of its energy to the surrounding medium, in that
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region in which the pulse is still a shock wave. When
U/coz 1, the pulse has degenerated into an acoustlc wave,
and 1ts propagation will be governed by small amplitude
theory (see Chapters III and IV).

Iet us assume that the pressure across a propagating
shock discontinuity decays according to some inverse power
of the distance from the origin of the disturbance. Let us
assume further that the source region may be reoresented
by a sphere of radius o , which at time t= to suddenly expands
and lmparts an ideal, infinitely steep compressive pulse of
zero width and magnitude P--Po to the surrounding medium.
At successive times t = tl, tz,........ the shock front may
thus be considered to be reoresentable in space by an expanding
sphere concentric with the sphere R:=o . We may thus write

n RY o
p-p,). = (p-p %

where R = radial dlstance from surface of source sphere,
(P—PO)R= pressure difference across discontinuity at distance
R, (P-P,) = original pressure difference at R =0, and
n = arbitrary exponent, greater than one. A detalled discussion
of this decay law and 1ts implications wlll be relegated to the
end of this section.

Once the pressure distance decay law (2.24) has been
postulated, 1t becomes possible to express the quantities

U/co and E—EO ag functions of R and the initial amplitude of
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the shock pulse, (P-PO)G .
Elimination of y between (2.19 a,b) ylelds

i (U)a 1% ([ -(.U_a”/a )
3 Co 1 Co a0 b

P-f, 3
k, 2 (.g_)‘%fz (&2-%& (2.25)

Co o

& S

P- Py
This relation could be solved for U/c0 in terms of -1;;— ’

but the algebra required is rather formidable. Instead, we
prefer to use (2519 a,b) directly as a palr of parametric
equations iny ( y-= GQQQ ). Plots of the two dimenslonless
P-Fo and M are shown as functions of y

RO Co
in Figure (2.3). Thus knowledge of the magnitude of F/ﬂ

quantitiss

at any point R permits us to find the shock/acoustic velocity
ratio at this point. For values of y higher than 4, Table I
in the appendix should be consulted.

Equation (2.24) may also be written in the more convenient

dimensionless form,

<%>R ] (P"'J;:o>a (%—)n , R (2.26)

P- P°>
If suiltable values of the quantitles <T4CT" o and n be
0.
assumed, U/co may be found as a functlon of /R with the aid of
Fig. 2.3 or Table I of the Appendix. In order to render the
numerical computations as general as vossible, we shall work with

the dimensionless distance m, where m = RQ, m » 1. Then (2.26)



42

becomes

(P*Po) z (.je__?-ﬂ’) m-n
lio m ° /Q (2.27)

Once the function '%%'(WJ is known, we may proceed to the
calculation of shoek front travel time curves in the neighbor-
hood of the source region. Let a spherical shock front of initial
amplitude (P‘Po)a, leave the surface of the source sphere

at time t,= O. Then at any subsequent tlime t one has
te | 25
V(R) (2.28)
R

In terms of m and the quantity U/c,, (2.28) may be written
. m

-\
T - cot z .9_ d
"o j[ CJ (m) " (2.29)

where T = ;‘ is a dimensionless time. This function must be
evaluated'by numerical integration, since the algebraic solution
of (2.25) is so intractable.

It is a matter of conslderable interest to compare the
travel time curve of a shock front with that of an ordinary
P wave that has left the surface of the source sphere R=a
at the same time to ag the shock. Whether both types of waves
are generated at this time, or whether the P wave observed at
large focal distances from the earthquake 1s merely a degenerate
shock pulsse, is a question that cannot be settled without adeduate

experimental evidence. However, let us assume here that a shock
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pulse and a P wave are simultaneously generated at time to.
'S waves cannot be produced in this 1idealized source model.
If the initial magnitude of P-Po is sufficiently high, the
shock pulse will be propagated at a greater velocity than the
P wave. At a subsequent time t, however, the shock will have
decayed to m-h (P'P°>w . As 1t loses amplitude it approaches

the sonic vselocity Co» where

The P wave 1is travelling at a velocity ¢ given by

- [Ae i
Co

where M = ordinary elastic rigidity modulus of the medium.
Thus two situations may arise:

(1) The initial shock velocity U is greater than the P
wave velocity, ¢. In this case the shock will flrst
lead the P wave, but at a later time t will have decayed
gufficiently so that the P wave will catch up and overtake
it.

(2) The initial shock veloclty U is equal to or less than c.
In either case the P wave will lead the shock pulse for
all tzfto . We notice that the shock wave leads the P

wave ounly as long as

U 7/3‘0* /e
e

The shock which leaves the source sphere at t=t_ thus decays to

an acoustic wave, or "an infinitely weak shock". It may thus be
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considered to degenerate into a P wave.

At distances far from the source of a disturbance it might
therefore be possible to observe two direct P wave phases,
vhere one corresponds to the degenserate shock pulse and the other
to the compressional wave that left the source sphere simul-
taneously with the shock. Which phase arrives first depends
upon satisfaction of initial conditions (1) or (2) above.

We must mention that possible interaction between the two
pulses at their points of intersection 1is not considered here.
The objection may also be raised that it is meaningless to speak
of the rigidity, Mo in the near-source reglon. It must be borne
in mind, however, that the 8011d behaves as a liquid only at
pressures developed across a shock front, and that one can there-
fore not neglect rigidity in dlscussing the passage of small-
amplitude disturbances even through the near-source region.

A somewhat related point ie the varlation of the bulk
modulus, or incompressibility, 42 , with pressure. Birch (1952)
has investigated the dependence of the compressibility, Tyi ,
(’3i‘ V&) upoén pressure, and found that application of Murnaghan

finite strain theory ylelded the following results

3%1->

Y 3P v

1.000 4,00

1.315 3.31 ’b&r= isothermal
1.656 3.03 compressibility
2.024 2.87

3K+
Table 2.1: QP )ras a functlion of compression.
Source: Birch (1952), p. 246.
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- 8ince this variation is negligible compared to the change of
(P-P,) in the near-source region, use of the isothermal bulk
modulus at zero pressure, {Qc , 1s justified for the rough
calculations presented here.

The solid curves in Figure 2.4 represent travel time paths

for shocks whose initial amplitude 1s given by

P- P, __
——1;:— o = 1,5,10, and 100,

and which have been calculated from equation (2.29). The value
of n in (2.27) has been taken to be two (see below, p.55 ff.).
The dashed curves represent possible travel-time paths of the
P wave pulse that has left the source sphere together with the

shock. For a radially outward travelling P wave, we thus have

R:vpt
or,
R, YNbt, Yoo Voo
o Q o <, <o
and therefors
C
'T': L 2 sm .
\/F,m (2.30)

where 8 = co/c. Since both pulses are assumed to originate at
m=1, the equation of the P wave travel time curve in the near

source region 1s

T

v, (m-n) : S(m—l) (2.31)
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in the\(T,m) plane. These P wave travel-time curves have been
plotted in Figure 2.4 for s=1, 0.9, 0.8, 0.6, 0.4, and 0.2.

When Vp: ¢, s8=1, and (2.31) gives T =(m-1), which ylelds

0!
the travel time path of the infinitely weak shock that travels
at constant acoustic veiocity Cye Such a wave.can, of course,
never actually be produced in a solid, since the acoustic pulse
wlll travel at velocity Vp, where Vp is a function of the rigidity,
/e » as well as of jko and €, .

Intersections of the s0lid shock curves with the dashed
P wave curves will then give the particular values of T and m
beyond which the shock will trail the P wave. If the P curve 1is
tangent to the shock curve at m=1, U

initial® ®init1a1’ 300 the
P wave will lead the shock for all T»O0. If U

init1a1< ®1nit1al’
the final lead of the P wave over the shock pulse will be
correspondingly greater still. As the shock gradually becomes
an acoustic oulse, 1ts travel time curve willl tend to become
parallel to the curve T=s(m-1).

Now it may be argued that the final velocity of the shock

pulse, co, at which it travels once P-Po « 9 , should be given

‘eQO-P 4/3/4«6
eo

by

[a)
[1]

rather than by

¢ = o)

o
o
since the propagation velocity of an infinitely weak shock, or

ordinary acoustic pulse, should be a function of the solid rigidity
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/e as well. However, 1t is not at all clear at this time at
what point one must cease to treat the solid as a liquid

as far as the reaction of the medium to a shock wave is con-

cerned. Experimental work 1s required to clarify this question.

let us consider an actual example illustrating the use

of Fig. 2.4. Assume that 3@%21:100, and that s =co/Vp= 0.6.

In this case the shock and P travel time curves intersect at

T,~ 13.5 and m_~ 23.5. For T

i i i i
lead the P wave; for Ti>-13.5 and m1>>23.5, the converse will

< 13.5 and m, < 23.5, the shock will
be true. The dimensionless times and distances may be converted
to thelir standard equivalents, t and R, if the appropiate values

for @ and m be substituted into the expressions

t: 2T
Co
R mo

(2.32 a,b)

Thus, i1f in the present case we take a= 1 Km and ¢ =2 Km/sec,

ty=1x13.5+- 6.8 seconds and R, = 23.5 x 17 23.5 Km. If we take

2
the bulk modulus, &o , as 1010

i
dynea/cmg, the shock pulse has

12

an initial amplitude given by (P°Po)a.= 102'1010= 10 dynes/cm2=

106 bars. This example i1llustrates the flexibility of plotting

the shock and P wave travel time curves in the (T,m) plane.
The analysis outlined so far enables us to make estimates

about the actual size of the zone around a source sphere in

which shock phenomena may be exvected to play a significant

role. Moreover, knowledge of near-source travel time curves
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would permit us not only to arrive at a -gk%L(nQ function

by a reversion of the procedure presented here, but also to
establish the exact values of the constants of the equation

of state (2.6) or (2.7). Work somewhat along these lines has
been done by Walsh and co-workers (Log. Cit., p. 20 ) on metals,
and by Hughes and McQueen (1957) on rocks.

We now proceed to the discussion of a method that will
provide us with a quantitative estimate of the actual amounts of
energy dissipated in the nelghborhood of the source sphere. For
this purpose we return to eq. (2.20), which can be written in

the form,

%€ pg - y-'[3 G’ 2.k
AR R AR Aol [

o

where A E::E-Eo . This formula glves the difference in internal
energy, A E, between the disturbed part of the medium immediately
behind the shock discontinuity, and the undisturbed medium ahead.
(See Fig. 2.2). Without loss of generality, we may take E, and

Po to be zero, since we are only Iinterested 1n the internal
energy decrease,AE, across the shock discontinuity as a

function of distance from the source sphere. Eg. (2.33) thus
becomes

Zeo AE - -113 5/3 z/a_ . -l e-p
&, 1)7-’3‘7 Gy _}’7__‘%_:

(2.34)

where (2.19 a) has been used to eliminate the term in the

square brackets.
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For an assumed decay law (2.24), 4 E(R) is easily calculable
from (2.34). Before passage of the shock front, the region
ahead of it 1s assumed to be undisturbed. Therefore the decrease
in internal energy across the discontinuity,A E, may be assumed
to represent the amount that 1s "leaking" from the shock front
into the medium. If we then sum all the increments AE (R) R"’AR)
over a succession of spherical shells of thickness A R, we shall
have arrived at the total amount of energy dissipated within a
spherical shell of thickness R"O—, in whose geometric center
1s embedded the source sphere of radius O . Eq. (2.34) expresses
the principle of conservation of energy across the shock front.
At time t= 0, all the energy is contained in the shock pulse; as
this pulse decays, 1t loses energy to the medium through which it
is travelling. As t - 0© , the pulse will have decayed to zero
amplitude, and all its original energy will then have been imparted
to the medium.

The energy transferred from the shock pulse to the medium
in a spherical shell of thickness O R is lkE(“,“*“Rl Consequent-
ly the amount of energy transferred to the medium in a spherical

shell of radius R-o » Equm» 18 given by
R
2
EC\)M < 4’“€OJAE(R)R+ AR)R dR (2.35)
Q

or, in terms of the dimensionless distance m,
3 m 2
com ° ’ (2.36)
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2
For the assumed decay law of form (2.24), the quantity —k—egAE
Q
will be known as a function of m from (2.34). Accordingly

one writes
™

€ Ecom 47 | £€o pE(m m+Am)mzo\m
B R, (m, (2.37)

°

(2.37) is evaluated by numerical integration with data computed
from (2.34).

Before proceeding to an examination of the resulte of such
calculations, 1t will be fruitful to take a closer look at the
assumed decay law (2.24),

- = - _3;_“ Ry o
(P-2), = (P-%), (R) N (2. 20

As it stands, (2.24) does not permit us to distinguish between
the familiar phenomenon of spherical divergence, a purely
geometrical effect, and actual wave attenuation, which results
in a transfer and ultimate degradation of energy from the shock
pulse to the medium. Spherical divergence reduces the amplltude
of a propagating disturbance as the inverse first power of its
distance from the source; since 1t is a purely geometrical
phenomenon, all pulses, be they large amplitude shocks or
infinitesimal acoustic waves, are affected in a like manner, as
long as they are spherical waves. Let us therefore modify (2.24)
in such a way that the two effects can be considered separately.

We write
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P- P (p-¢
( °>a ) {R +(R®- \)} $> 0 (2.38)

where the exponent 3 corresponds to disslpative processes alone.
The first term in the denominator of the factor within braces
will then correspond to spherical dlvergence, while the second
will account for actual dissipation. If there 1s no damping,

the exponent & is zero, and (2.38) will reduce to
p- = (p- L
(PRo)q o). ( R> (2.39)

which is a special case of (2.24) with n=1l. Eq. (2.39) does
therefore not represent a damping law as such, since 1t only
expresses the geometrical spreading effect. We now rewrlte (2.38)

in the form

O.
P-p)g = (P-R)a RS

|+ < %) (2.40)

Since &RT <| for | and R )| , (2.40) becomes

#-7), * (P %), 2 x—( ) ( ..... ]
(2.41)

“~ (P'Flhw.igz ) 82/

-
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Eq. (2.41) 1s similar to (2.24) except that we chose to express
(2.24) in such a form that (P-PO)R = (P-P ), at R=Q . It is
evident from (2.41) that for any S > ! , the error in neglecting
spherical divergence 1s small, thie error decreasing rapidly with
increasing R. One may therefore conclude that (2.24) 1is an
adequate representation of a damping law involving spherical
geometry. In other words, even though we should use (2.40) as
the form of our damping law, the error incurred by taking the
simpler form (2.24) is not great. Essentially, this approxim-
ation is equlvalent to the assertion that the exponent n in
this equation corresponds exclusively to dissipative damping,
and not to geometric spreading..

The actual value of the exponent n, which may ltself be
a function of R and othér parameters of the medium, must be
found elther from a rigorous solution of the non-linear
hydrodynamic equations of motion, or from empirical measure-
ments. However, we have seen that the first of these approaches
is futile until the theory of non-linearity 1is better under-
stood. The second alternatlive has been used both in under-
water explosion studies, as well as in laboratory experiments
on metals. W.I. Duvall (1953) haé published the results of some
experimental work done with rock blasts at the Bureau of Milnes
(ses also Chapter I of this thesis). He found that the decrease
of peak stress with distance close to the shot polnt could be
given by a law similar to (2.24), where the exponent n ranged
in value from 1.6 to 2.5 for various rock types and explosives.

In the present work, however, we are primarily interested 1in the
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dissipative processes that occur near earthquake focii. Although
it is of course impossible to secure stress measurements of this
nature in the case of earthquakes, such data could presumably

be gathered from underground atomic blasts. The question arises
whether the detonation of such a small volume of material leads
to near focus dissipatlion processes that mlght be expected to

be -0of a nature similar to those occurring near an earthquake
focus. Yet little is known about the mechanics of earthquake
generation, so that no definite statements can be made in this
connection.

In view of these considerations, we shall:

(1) Postulate that the stress release in a focal region

is of a sufficient order of magnitude that an ideal

shock front can be agssumed to have formed in the interior

of a focal sphere of radius A& within a few milliseconds

after the major stress release has taken place.
(2) Postulate that a representative value of the exponent
n in (2.24) is n= 2.

The calculations that have been carried out here on the
basis of equations (2.24), (2.28), and (2.35) are thus all
restricted to the case n=2. Nevertheless, the formulas can
easilly be evaluated for other values of n, n>»1l, since
the computations, although rather laborious, are stralght-
forward. Because of the dearth of adequate empirical data, more
general calculations do not appear warranted. In any event, the
particular case n=2 chosen here will serve to provide us with

a good feeling for the orders of magnitude of shock velocity



CUMULATIVE ENERGY CURVES
FOR NEAR - SOURCE DISSIPATION

n=2 — " POINT OF YIELD STRESS OF ROCK
FOR kg =10" DYNES/cm?

SN

P-P
( °) =0.1
ko a

4 1 1

107! i 10
FIG.25

99



57

and energy dissipation.
The energy calculations have again been carried out in
terms of the dimensionless distance m ( W\='34~) for the cases

o
results of this anlysis, together with corresponding wvalues for

(ﬁfz&)o. = 0.01, 0.1, 1, and 10. Tables 2.2 to 2.5 present the

the dimensionless time, T, and the shock-to-acoustic velocity

2 EcvM
ratio, U/co previously computed. The quantity 73272;—- is
plotted against m in Figure 2.5 for the cases (?-Fb ) = 0.1, 1,
:ﬁo o

and 10.

If one wishes to gain a still more guantitative insight
into the results of these computations, it 1sg necessary to
agsume specific values for the bulk modulus, 4%0 ;s the acoustic

. and the radius of the source sphere, & .

velocity, C, ;

Tables 2.6 to 2.9 have been prepared by taking:

Q= 1Knm

4k°= 101t dynes/cm2

C,* 2 Km/sec
In addition, Table 2.7 b was calculated for the case @ = 10 Km,
440 and ¢, remaining as above.

The first column of these tables gives R in Km; the second
the time t taken by the shock front to reach a point on a spher-
ical surface at a distance R from the surface of the source
sphere R=0. ; the third the ratio U/c,; and the fourth, the
cumulative energy, in ergs, transmitted by the pulse to the
medium up to that point. The fifth column gives the total
volume of the shell, of thickness R, surrounding the source

sphere. From entries in the fourth and fifth columns it is
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possible to calculate the mean energy density, or specific
energy, that exists within successive spherical shells of thick-
ness AR immediately after the passage of the decaying shock
front. The left half of the sixth column gives this specific
energy in erga/cmB; the right half, in calories/em”.
We assume that all the energy that 1s dissipated during
the passage of the shock appears as heat. Thus the specific
energies computed here only hold strictly for brief times
after the disturbance has traversed the shell, However, since
the thermal conductivity of rock is so small, a considerable
period of time will be required to conduct the heat so produced
away.This problem will be treated in greater detail in Chapter V.
A mathematical difficulty is presented by the question of
convergence of the integral (2.37). The small horizontal lines
that intersect the energy curves of Figure 2.5 have been drawn

9

at the points at which (P--Po)R has reached the value 10 dynes/cm2

for an assumed ‘&o= 1011 dynes/cme. Now equation (2.24) shows
that (P-Po)R can only vanish at R =00, 1i.e., at an infinite
distance from the sourcs sphere. This means that in practice,
no matter how far the shock front may have travelled, energy
increments will still contribute to the total value of E,um?
eq. (2.37). A 1ittle reflection will convince us, however,
that this is merely a mathematical, rather than a physical
difficulty, for by far the greatest part of the contrlbution
to the integral (2.37) will take place before the shock has

degenerated into an acowtic pulse. This can be clearly seen

from the three curves plotted in Figure 2.5; in all three cases,
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the Ecum curves rapidly become parallel to the vertical axis
for (P-P )_ < < .
o R
If the theory developed here is tenable, then 1t is only

the energy that 1s propagated. in the form of acoustic waves

that can contribute to the energies measured by seismograph

stations at the surface of the earth. Now acoustic propagation

can only take place when (P—Po)R <<Sg; thus the energy dissipated
in the shock zone will only be detectable in the form of heat
flow at the surface a long period after the earthquake has
occurred. We shall return to this question in Chapter V.

In the next two chapters, we shall switch our attention to
propagation problems that may be expected to arise in the
acoustic region, where the shock front has decayed to a
small amplitude pulse, (P-P )g &8, (X-= 107 dynes/cm2 for
rocks). In the final chapter we shall then attempt to take an
overall glance at the propagation of the original shock front
from the source sphere R=Q to its final conversion into

a train of acoustic waves of infinitesimal amplitude.
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]
R (P'PO)R t U Ecum Shell Vol/ 8pecific Energy
(Em) dyn/cm?2 |sec | %o (ergs) (cmd) ergs/cm’ GalS/Om3
1.0{ 1.00x10°|0.0 | 1.00 0 0 ¢ .
8 5o 18 3.5x10° | 8.4x107
1.2} 6.94x107| 0.1 1.07x10 3,06x10 6
1.8x10 4.3
1.4{5,08 0.2 1.83 T.29 5
16 8.8x10 2.1
1.613.91 0.3 2.33 1.30x10
6.1 1.5
1.8{3.09 0.4 2.77 2.02
4.2 1.0
2 2.50 0.5 3.15 2.93 -3
17| 1.4 3.3x10
3 |1.11 1.0 4,23 1.09x10 4 4
7 3,2x10 7.7x10
1.3 3.1x10
5 4,00 5.05 5.19
5.3x10° | 1.3
6 2.78 5.25 9.00 -5
7 2.04 5.40 1.43x10
1.4 303
8 1.56 5.50 2.14
1.1 2.6
9 1.23 5.60 3,05 5
8.8x10 2.1
10 |1.00 5.70 4.18 P
6 19 1.0 2.4X10
20 2.50x10 6.00 3.35x10 -7
0| 13 3.1x10
30 |1.11 6.10 1.13x10 -8
5 3 T.2x10
1 2.4x10
50 4,00 6.18 5.24
00 0 6.28 oo
P-fo : 0.0 « a:2
Table 2.6 <TI:_>«=|Km )

For: a= 1 Km;

¢ = 2 Km/sec.

11
kf 1077 dyne s/cm2
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kR (p_po)R %, U Eoum Shell Specific Energy
m' -
(dyn/em?) |(sec)| ©o | (ergs) Volume. lergs/cu | cals/cm”
1| 1.00x10%°|0.00] 1.11| 0.0 0.00 7
9.6x10' | 2.39
2| 2.50x109 |0.49| 1.04| 2.8x102*| 2.93x1016
1.5 0.36
3| 1.11 0.99| 1.01| 4.0 1.09x10%7 6 "
3.2x10° | 7.7x10
4| 6.25x10° [1.50] 1.01| 4.5 0.64 i
1. 3.8
5| 4.00 4.9 5,20 c
5.3x10° | 1.3
6| 2.78 5.1 9.00
18] 2.8 6.7x107°
1. 3.
81| 1.56 5.35 2.14 ¢
1.1 2.
9| 1.23 5.45 3.04 vy A1,
« DX .
10 | 1.00 5.50 4.19
6 50 9.6x10° | 2.3x107°
50 | 4.00x10 6.00 5,24x10
Table 2.7 at (P‘Q) = 0.1 yn:2
o R Um

For a1l Km )

Ah°=loll dynes/cm?

¢, =2 Km/sec.
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R (P-Po)R t U E Shell | Specific Energy
(km) | (4 A - ( cum) volume. 3 3
yn/cm2) | (sec) 0 ergs ergs/cm’| cals/cem
10 | 1.00x101°| 0.0 1.11 |0.00 0.00
9 27 19| 9-6x107 [2.39
20 | 2.50x10 4,91 1.04 | 2.80x10 2.93x10
17 105 0036
30 | 1.11 9.9 | 1.01 | 4.0 1.09x10 p -
8 3.2x10° | 7.7x10
40 | 6.25x10 15 1.01 ] 4.5 2.64
1.6 3.8x1072
50 | 4.00 4.9 5.20
5.3x10° | 1.3
60 | 2.78 5.1 9.00 3
21 2.8 6-7x10
T0 | 2.04 5.25 1.43x10
1.4 3.4
80| 1.56 5.35 2.14
1.1 2.6
90 | 1.23 5.45 3.04 4
4.3x10 1.0
100 | 1.00 5.50 4,19 5 s
6 o3| 9.6x10° | 2.3x10
500 | 4.00x10 6.00 5.24x10
Table 2.7 b: (—P—f-’) = 0.1, n:e
Ao R 0w
For Q = 10 Km; /&o'- 101t dynes./c:m2

c

o

= 2 Km/sec.
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c, * 2 Km/sec.

R (P_PO)R % U Ecum Shell Specific Energy
(Km) (dyn/cm?)| (sec)| Co (ergs) | Volume. ergs/cm® |cals/cm”
1.0 [1.00x10%t | 0.00 [1.69 |0.00 0.00 o .
10 05 15 1.27x10 3,04x10
1.18.26x10%° | 0.03 [1.61 [1.75x10°°|1.38x10
1.16 2.77
1.216.94 0.08 |1.54 [3.70 3.06
7.80x10° [1.9
1.45.08 0.14 |1.42 [7.00 7.29
og 6.10 1.5
1.6(3.91 0.20 |1.35 |1.05x10°°| 1.30x1016 5 .50 o
1.8/3.09 0.29 |1.28 |1.30 2.02 '70 o
2.
. X
3 |1.10 0.80 |1.12 [2.30 1.09x10%7 e .
4 |6.25x10° | 1.30 | 1.07 |2.70 12.64 1'10 iy
5 |4.00 1.80 | 1.05 | 3.00 5.19 6°60 7 e
. X .
6 |2.78 2.30 | 1.04 | 3.25 9.00 s o
7 |2.04 2.80 | 1.0%3 | 3.40 1.43x1018 1'40 0.33
8 |1.56 3.%0 | 1.02 | 3.50 0.14 1.10 oo
9 |1.23 3.80 | 1.01 | 3.60 3.05 4.40 N
. X .
10 |1.00 4.%0 | 1.01 | 3.65 4.18 oo 003
20 |2.50x10° 4.00 3.35x1012 6'40 ot |1 ;0_3
. X « DX
4 |6.00x10" 4.15 2.68x10°° 5 4
\ ] 7.90x10° |1.9x10
60 |%.00 .20 9.0
Table 2.8: (?' P°) = | ) he R
&o R:} Ken
For @* 1 km; Ro'107" aynes/om”
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R (P_PO)R t H Ecum Shell Specific Energy
(Km) | (ayn/cm?)| (sec) Co (ergs) Volume. ergs/cm3 cals/cm”
. 1.0/1.00x10>%|0.00 | 3.88 |0.00 0.00 11

1 26 15 | 2-9x107" | 7.0x10°
1.1]8.26x10 " |0.02 | 3.58 |4.00x10 1.38x10
2.0 4,8

1.216.94 0.04 |3.33 | 7.30 3.06
‘ o7 1.8 4.3

1.4|5.08 0.07 | 2.96 |1.50x10 7.29 .

1. 3.4

1.6/3.91 0.10 | 2.68 [2.30 1.30x10°° . 10

.3x10 2.0

1.8/3.09 0.15 | 2.06 | 2.90 2.02

6.6 1.6
2. .2x10
3 (1.11 0.45 | 1.74 | 5.70 1.09x10%7
10 ' 1.6 3-8
6.3x10 1.5
5 |4.00 1.15 | 1.35 | 9.80 5.19
& |2.78 1.55 | 1.27 | 1.10x10 9.00 ,
1.9 6
7 |2.04 1.95| 1.20 | 1.20 1.43x10%8 .
1.2 2
8 |1.56 2.40 | 1.17 | 1.28 2.14 8
7.7x10 19
9 |1.23 2.85| 1.13 | 1.35 3.05
4.4 11
10 [1.00 3,30 | 1.11 | 1.40 4.18
g 19| 1-0 2.4
20 |2.50x10° [7.90| 1.04 | 1.70 3.,35x10 7
1.3x10 0.31
30 |1.11 12.5| 1.01 | 1.80 1.13x10°° P
8 3.2x10 7.7x10"2
40 6.25x10 1.85 2.68
1.6 3.8
50 | 4.00 1.89 5.24
51| 2.5x10° | 6.0x1077
100 |1.00 1.98 4,19x10 3 -4
7 oo | 6.8x10 1.6x10
200 |2.50x10 2.00 3.35x10
P‘? = ‘O . n:a
Table 2.9 ( 9 = )
}:a R:l K

For O =1 Km; /ho‘-lc}l1 dynes/cm2; ¢, = 2 Km/sec.




CHAPTER ITII

THE ATTENUATION OF NON-LINEAR SMALL AMPLITUDE STRESS
WAVES IN SOLIDS



68

1. Introductory Remarks

Up to thies point we have been concerned with the region
around the source of a disturbance in which the resulting
pulse amplitude 1s so large that its propagation is subject
to shock wave theory. It was shown that as this pulse travelled
outward from the source and decayed, it would eventually move
at acoustic velocity and thus become an "infinitely weak shock",
that 1s, a simple elastic wave. Clearly, very different physical
processes govern the propagation of the wave once it has reached
acoustic speeds. In particular, evidence from both exploration
and earthquake selismology as well as from laboratory data
indicates beyond any doubt that the damping that these waves
suffer 1s extremely small. This is in marked contrast to the
situation which exists while the pulse is still a shock, when
the gradients across 1ts front are of such magnitude that dissipa-
tive processes must be very strong, perhaps much stronger in

2 law of decay postulated for the

many instances than the R~
numnerical calculations in the last chapter.

When does a shock cease to be a shock and become an ordinary
acoustic pulse? This questlion is perhaps somewhat amblguous,
because this transition point could be defined in various ways,
none of which would necessarily lead to unique results. One
convenlent criterion is the yleld stress of the solid, &g ’
which for rocks is about 107 dynes/cmz. We shall use this

convention here, and thus consider pressure discontinuities

to constitute shocks or sound pulses according to whether

P- PQ)) « g’
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The small horizontal lines that intersect the energy curves
of Figure 2.5 have been drawn‘at the points at which (P—Po) has
reached the value 109 dynes/cm2 for an assumed koz 1011 dynes/cmg.
Obviously, the larger the value of (P'Po)a,,' the more distant
from the source sphere will this transition point lie. It will
be noticed that the energy curves.still continue to grow
beyond this polnt, although at a steadily decreasing rate.

When the curves become parallel to the m axis, the total energy
dissipated up to that point, Ecum’ remalins constant for all m
larger than this critical valus. But this occurs only at

m=00 , where-%g%ﬂizQ>and where the amplitude of the pulse

has decayed to zero. One might be led to conclude that the
propagation of the acoustic wave continues to be describable

in terms of shock wave theory for (P—PO)Q«(S .

Now classical elastic theory predicts that a pulse will be
propagated without damping through any solid in which Hooke's
law holds. Large amplitude shock pulses, on the other hand,
must decay rapidly because of the enormous gradients that exist
across thelr fronts. Nelther state of affairs 1s in agreement
with what 1s known from observation about the damping of small
amplitude waves in solids. The Rankine-Hugoniot relations, upon
which the ardysis of the previous chapter 1s based, were derived
under the assumption that the solid could be treated as a liguld
- when (P-8)»% . This condition of course no longer holds when
(P' Po) &S,

Let us consider again the exact equation of motion for

plane one-dimensional fluid flow (2.8 b),
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(V) + (6"2 + P).:0 (2.8 b)

The second term of this expression is always non-linear, while
the third may or may not be linear, its non-linearity depending
upon the relation that exists between P, the total acting
pressure, and the strains produced as a result of P. In treating
liquids one expresses this relationship in terms of a parameter
g;?z , rather than in terms of the strains e, as is done in

the case of solids. The two methods are equivalent, nevertheless,
because f;éh and e are related in simple ways (Birch, 1952).
Thus the third term is non-linear if P( €}€% ) [E f’(y)] or,
equivalently, if P(e) 1s a non-linear relationship. In the case
of an elastic medium, P(e)= MEe, (where Mg = an elastic modulus)
represents a linear equation, and consequently the third term
in (2.8 b) is linear. But if, say, P(y) is given by the Birch e
equation of state (2.17), which is a non-linear relation, then
this term will be non-linear also. The strains e are the
generalized higher order strains of Murnaghan (1937), and only
reduce to the elastic strains, & , in the infinitesimal
theory.

In the case of shock waves one must thus consider non-
linearities in both the second and third terms of (2.8 b).
However, we have already seen in the previous chapter that
both non-linearities are so great in this case that solutlons
of (2.8 b) cannot be found.

Once the amplitude of the wave has decayed, so that

P-Po becomes of the order of ES s the yleld stress of the
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80lid, the particle velocity v has decreased sufficiently so
that its square can be neglected with slight error. Thls can

easily be appreciated from eq. (2.4),
v: €6 (2.4)

since, when (P-Po) becomes small, €~>€° . As a result, the
second term of (2.8 b) can be dropped when P-P°$<O(3} It 1s
now only necessafy to deal with the non-linearity of the
third term of (2.8 b). One accomplishes this by considering
the possible forms that P(e) 6r, more generally, P(e, e, T),
where * denotes differentiation w.r.t. time, may be expected
to have in solids.

It has already been pointed out that the Ecum curves of
Fig. 2.5 continue to grow beyond the point P-Po * ((3 . Now
we shall postulate here that the difference between the value
of E,y, 2t P-P = Q , and the value of Ecum at P-P_= O 1s
exactly equal to the energy imparted to the medium by the
pulse, which has become acoustic for P—Po<3 . On the other
hand, we have seen that the upper limit of Ecum at the point
P-Po= O is impossible to establish in any physlcal situation A
unless one knows the original energy content of the entire
shock front itself. But it has also been shown (see Tables
2.6 to 2.9) that the specific dissipation energies of shells
in which P-P_ has fallen to 0(% ) 1s very small. Accordingly,
we shall shift our attention from an attempt to estimate the

amount of energy transferred to the medium beyond the point
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P-Po < ¥ » Wwhich we know i1s quite small, to a detailled
examlnation of the forms that a wave attenuation coefficient
< |,

X

A - Atsedc (3.1)

will have in the region P-P_ & K. Here, A= amplitude at a
distance x from the point P-PO=3 , and Ag = amplitude at
point P—PO -8 .

It will be shown in the present as well as in the
subsequent chapter that fruitful attacks on this problem can

be made both in the linear and in many non-linear cases of

great physical interest.
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2. The Equations of Small Amplitude Waves in Solids.

The atﬁenuation of stress waves in solids has been the
subject of exhaustive investigation by countless workers ever
since Stokes wrote his classical treatise on 1liquid viscosity
in 1849, Detailed surveys of the literature have been
published at various times, so that no attempt will be’made here
to duplicate these efforts. The interested reader is referred
to Markham, Beyer, and Lindsay (1951), Kolsky (1953),

Hunt (1957), and particularly to Enopoff and MacDonald (1958,

in press). A distinguishing feature of all the classical treat-
ments 1s the fact that they are almost all based on linear
theory, that is, the equations of motion are linear differential
equations with real constant coefficients.

In what follows, we shall investigate the propagation of
sinusoidal stress waves in considerable detall. We shift from
the study of a single travelling disturbance, such as 1is
constituted by a shock wave, to a consideration of sinusoldal
propagation theory. This is done for mathematlical convenlence,
since the introduction of singularity functions at this point
would lead to additional complexities. In any event, we shall be
here primarily concerned with the frequency dependence of the
attenuation coefficilent « ; this frequency relationship must
be the same for a single pulse as for a continuous train of
sinusoidal waves.

Knopoff and MacDonald (1958) have reviewed the experimental
data that has been published, and find that for most sollds the

attenuation coefficient «£ 18 proportional to the first power of
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the circular frequency of vibration @ . Certain ferromagnetlc
materials and some inorgani¢ plastics do not satisfy this rule,
but such substances are of little interest to the selsmology
of the earth‘s erust. Data for the damping of stress waves in
rocks as established from seismograms also appears to confirm
the laboratory evidence. Although no single substance has been
investigated over a broad spectrum, Knopoff and MacDonald
conclude that «C 1is proportional to the first power of W for
most inorgani¢ solids in the range 10°2$<» ES 107 rad/sec.
The work of Zener (1948) has shown that attenuation of stress
waves in some metals and glasses 1is a variable function of & ,
with very pronounced absorption peaks. More will be sald about
this phenomenon in Chapter IV of this thesis.

It 1s possible to analyze the behavior of any damping
mechanism described by a linear differential equation by
considering a perturbed form of the one-dimensional wave

equation,
m &N

2
.-L azw = b dd O" b m M/Y\
R Y LA T :; AR YRY:

(3.2)

where u = displacement, ¢ = velocity of the elastic wave, and
& .° real and constant coefficients. Knopoff and MacDonald
have shown that this equation can only lead to an attenuation
coefficient which is a function of an even power of w, 1if a
solution of the form
j(c:(—oo\'l)
e : (3.3)

ws A
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be assumed for (3.2). The complex wave number o~ is given by
O :)7+)«< . All equations of motion that describe linear
mechanlical loss mechanisms may be obtained from (3.2) by
sultably specializing the coefficilents & ., . Thus the
classical Visco-elastic, or Kelvin-Voigt solid, which is
defined by the linear stress-strain relation, or equation
of state

P: ME£+MV€ (3.4)

where ME=elastic modulus, MV= viscous modulus, and &€ infinites-
imal strain, yields the equation of motion (Kolsky, 1953)

Xw M Bw . M D
f’ 3 t v

d e YRRY: (3.5)

2
If in (3.2) ¢ = Me/e y @, c %s and all other G,, #O ,

it can easily be seen that this equation will reduce to (3.5)
for these values of the parameters. In this case the attenuation
coefficient «€ can be shown to be

2
oC: Im (0j>= Mv @
b tﬂE c

(3.6)

a well-known result, (see e.g. Kolsky, 1953).

Since experimental evidence for most solids indicates that
oC is a linear function of ¢ , while (3.2) can only lead
to an attenuatlon coefficient which depends on an even power of

w » Knopoff and MacDonald were able to deduce that no model
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described by (3.2) can yield results in agreement with obser-
vation. In view of such considerations, these workers were led
to Investigate the equations of motion that arise if the
linearity restriction on the stress-strain relations P = F(e),
or, more generally, P-= F(ﬁ,é)é,"“T) is lifted.

When a perfectly insulated solid element is compressed
elastically by an applied stress P(e ), where P(& ) is a linear
function of the elastic strain &€ , it will return to its
original state as soon as the stress is removed. Since the
element is insulated, there is no outward flux of heat, and
the process ls therefore adiabatic. Equivalently, ome may say
that the thermal conductivity of the medium, 3‘, is zero.

No net entropy has been generated in this process, which is thus
thermodynamically reversible. If § = OO , then any heat formed
during compression will be conducted away instantaneously, so
that there 1s no net rise of temperature in the element. This
process is then isothermal, but no longer isentropic.with respect
to the element's surroundings. No physical medium has either a
zero or an infinite thermal conductivity, and therefore any
actual deformation of a s0lid will involve a net outward flux

of heat, and consequently the creation of irreversible entropy.
In particular, the entropy thus generated will be in addition

to that produced by any viscous or other dissipation mechanisms.
When one speaks of an elastic deformation, therefore, one should
specify that the thermal conductlvity of the medium 1s zero;

for otherwlse the process is not reversible, as usually postulated.

It 1s obvious that any rigoroulsy correct damping theory must
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take thermal phenomena into account. A substance possessing

a finite ¥ , even when subjected}to an infinitesimal stress
dP, therefore loses a part of the energy of compression in

the form of heat that 1s conducted away----thls phenomenon

is usually known as thermal damping, and was first attacked by
Kirchhoff (1868) for heat-conducting gases. A large number

of treatments about this type of damping have been published
since then for the case of solide and liquids as well, but a
good number of them are baseé on fallaclous thermodynamic arguments.
In this and the subsequent chapter an attempt will be made to
place the question of thermal damping in solids on & sounder
footing.

Although Kelvin was tne first investigator to realize that
no problem involving deformation could be treated with rigor
without recourse to thermodynamics, comparatively few writers
have done so. Notable exceptions are Eckart (1940, 1948);
Bridgman (1950); and more recently, Synge (1955), and Hunt (1957).
Knopoff and MacTonald (1958) have developed a theory of solid
deformation in terms of the observable quantities mass,
elasticity, permanent deformation, and temperature. Theilr
analysis is patterned after that of Eckart (1948). We shall only
outline thelr method here; fof a detalled derivation, the reader
i1s referred to the authors' 1958 paper.

Consider an 1sotropic, homogeneous, and infinite solid.

Let the Cartesian position vector of a point in the solid, X;(t) ,

be given by
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x; (B2 X, + w, () +m () 5

i ]
where ‘Xo = position vector at an initial time to’ Mo

permanent, or non-recoverable (plastic) displacement vector,

and M *®* elastlic displacement vector. The elastic strain

1
tensor 65 can be given as a function of ' :

| i bMi I3
€3 2 bx~‘+bx‘ (3.8)

;
The total rate of deformation tensor, d’J , 1s defined by

e >y % —3—\5‘
dj* 7\ A (3.9)

where V' = total veloclty vector. In the presence of both
elastic strain as well as permanent, non-recoverable plastic

strain, one has

(3.10)

i. = l'. di.;'
dJ c, t 3
dt

where C3 is the rate of permanent deformation tensor.

Thdequation of conservation of momentum 1s

bzxi, 2P,
¢ 3t bx;,‘ | (3.11)

where F“s: total stress tensor, and @,= density in 1nitial,

unstrained state. Let ¢"5= thermo-elastic stress tensor,
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given by (Love, 1927, p. 108)

~i Wi i _alk aT S
it ety $°+a/~eaj r 2 (3.12)

where

XE.>/~E: elastic constants

/3= linear coefficient of thermal expansion

{k= bulk modulus

3:‘ Kronecker Delta

AT=:T-T  ; T = uniform temperature of initial

reference state.

The summation convention 1s assumed to hold for all repeated
indices. In the presence of viscous resistance, the total stress
tensor P% will not only be a function of ¢dj , but also of the
total rate of deformation djj :

TP b (i i
Py = Ty A4y és*'a/"vd“s (3.13)

where xv and‘/wv are viscous constants. It should be emphasized
that xv and/wv are not the usual viscosities that one
assoclates with the visco-elastle, or Kelvin-Voigt solld, but

only reduce to these when the rate of permanent deformation, C‘J ,

vanishes, in which case one has from (3.10):

&.'3 e
at

(3.14)
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Substitution of (3.12) into (3.13) yields:
k .
(N &n +2, 4, - phaT) s
\ |

The total displacerent vector }Z; is given by the sum of the

(3.15)

permanent and recoverable displacements

- i i .
My = AVP + W , Vel §)3. (3.16)
i
We may take %o =O 1in (3.7) without loss of generality. Then
combination of (3.7), (3.11), and (3.15) yields the three

equations of motion

Co b:g": abx {()\ €0+ A, dy - ‘e””)é“'j (3.17)
) +-a/~ J + 2/~ d }
i,y 12,3.

Relations (3.16) and (3.17) thus provide us with six equations
in the seven unkznowns AV;,, A~i . and T. It ie therefore
necessary to seek an additional relationship between these
quantities before formal solution can be attempted. This may

be accomplished by a conslderation of the irreversible entropy
that 1s created in any deformation process occurring in a medium
of finite thermal conductivity ¥ . The equation of continulty
of entropy (Denbigh, 1951) is

e - 2 (ﬁ_) (3.18)
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where 5= specific enhtropy (entropy per unit mass),

D Sirr

zrate of generatlion of irreversible entropy, and
Dt

q' = heat flux vector. The operator -iz~ is given by

Dt

.2,
T bt+ 33;‘ (3.19)

Radliation effects are neglected in (3.18), that is, the heat is

assumed to diffuse only by conduction.

j) s{tr

. Tt
equallity slgn holds only 1f the process is reversible. Knopoff

From the second law of thermodynanmics, =0, where the

and MacDonald show that

h
¢ %é : PTC‘ g:— t {(ﬁ—r%—%‘- (3.20)

where C£= epecific heat at constant strain. The third term of

(3.18) may be broken down into two separate parts,.

Q Siee . 9 Siee + D Sice (3.21)
t t k .2
? D MECH ? HEAT FLOW
1>Shr
¢ is the rate of generation of irreversible entropy
2 MECH

due to all mechanical dissipation processes, while.%;iﬁi HEAT is
FLOW

the rate of generation of irreversible entropy due to heat trans-

fer in a medium of finite thermal conductivity.

Now,

DSiee . l_{PE&J; “"rl’j (dj;“cij)}
Dt T (3.22)

MECH
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(Knopoff and MacDonald, 1958), and

DSiee . ¥ (3T V
Dt T2z (30 (3.25)

HEAT FLOW

(Denbigh, 1951).
Combination of equations (3.18)-(3.23) can be shown to lead

to the so-called "temperature" equation,
2 " ; | .
Vo h
+c3¢°i—k/sr%zt;‘ (3.24)
— | RAT 50 ¢, 3T | gi i
[ (T30 € o

where we have replaced q' in (3.18) by

.- T
qi l ¥ 2l (3.25)

dx

the familiar Fourler heat conduction law for an infinite
isotropic medium. Both the equation of motion (3.17) and the
temperature equation (3.24) can bé expressed in terms of
Av; and A»i by use of (3.16) and the defining relations
(3.8)-(3.10) and (3.12).

Knopoff aﬁd MacDonald assume that the rate of permanent

deformation tensor CB can be written

Cu : F (I‘llz)‘Esi In:Ig)Is> (3.26)
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= th
where I(U i

invariant of the elastic stress tensor and
Ly = 1*" ynvariant of the time rate of change of the
elastic stress tensor (Sokolnikoff, 1952, p. 303). This relation

is, in general, non-linear in the stresses, so that the terms

1nvolv1ng<rj in the equation of motion (3.17) are non-linear in

that case. If, however,
C: .
VAL (3.27)

eqs. (3.26) and (3.17) are linear, and the latter is solvable
by familiar techniques (see Chapter IV of this thesis). A
model described by (3.27) is known as a Maxwell solid; the
constant /l/’c is called the Maxwelllan viscosity.

Consider now the temperature squation (3.24). The first and
fourth terms of the right member are always linear, while the
remaining terms are always non-linear, irrespective of the
functional form of cg’ . In the absence of viscosity and
permanent deformation, and neglecting the term in Vi (which
is equivalent to setting ag} ] -f% , a valid step for small
deformations in solids), (3.24) reduces to

2T,k T kaT 2
Y

at dx' (3.28)

Y
where % * /éci is the thermal diffusivity of the medium.
Relation (3.28) resembles the standard Fourler heat flow

equation
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i iﬂjt (3.29)
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except for the last term. It is usually assumed that the strains
produced by a thermal gradient in a solid are negligible; in
this case (3.29) gives quite satisfactory results. When one
Investigates thermo-elastic or thermo-plastic phenomena, however,
the third term of (3.28) must be retained.

We are now in a position to recognize the formal similarity
of (3.11) and (2.8 b), since the second term of the latter can
be neglected in the case of small amplitude waves. The form of
P is, of course, different ln each case------ for shock waves,
we have chosen to use the Birch equation of state, whlle for
small amplitude waves we adopt the plastic theory described in
this section. The chief difference between both approaches lies
in the degree of non-linearity of the describing equations; as we
have seen, the shock wave equations cannot be solved satisfactorily
with any techniques avallable to us at this time. The equations
of small amplitude motion, however, can be solved by linear
perturbation methods. The assumption must be made that the non-
linearities involved are sméll with respe¢t to some parameter,
because only in this case 1s the existence of such solutions

agsured.

3, Solutions of the Small Amplitude Equations in Solids

In this section we shall investigate in some detail

solutions of the system of non-linear equatlons given by
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(3.16), (3.17), and (3.24). In order to 8implify the mathematics,
we rewrite these equations in their one-dimensional form, and
consider the propagation of a compressional wave through the
medium. The results may then be sultably specialized for the
case of shear waves; in this instance, the terms modulated by
8‘3 in (3.17) and (3.24) vanish, since for 1# j, éf5=0.
Accordingly we write (3.16) in the form,

_ - ) 2 s . 0

W= N

) 3
el s om0
e e

ot c >0
or simply,

Mo (3.30)

Equations (3.17) and (3.24) then become:

2 - 2 3 —
Cod m  (Ngt2u )dm (A, +2n) M
o Tt ad %t Y o )bxzbt
= *‘-gi (3.31 a)
XL

AT 1w 2T - [ AT 2wl [ A 420, )*,u)z
> dx* ¢oC. Ot oCe ax ot

+ [32"”2}[ o\e"a/*e)é’”] -[ﬁ*‘” 3w
.

focg Ixdt X focg PR
S| ARAT Puw| da _ [T 3w (3.31 b)
€% x| ot TR

where



&' . 57',1 (_' = éz)w € = dmw
. ; | Py om
dx 3L ax At d X (3.32)

bzﬁ _ bz/wp bz,w
Y YR R YEY): (3.33)

Eq. (3.31 b) is the generalized heat flow equation. The first
term on the right hand side represents heat flow due to the
thermal gradient itself; the second yields the contribution
of elastic stralning; while the third (which can be split into
three separate terms by eq. 3.33), gives the contribution due to
viscous and permanent deformation, as well as the coupling
between these two effects. The remaining terms of (3.31 b)
represent coupling between permanent and elastic strain,
temperature gradlent and permanent strain, total particle velocity
and elastic displacement, and total particle velocity and thermal
gradlent, respectively.
For small attenuation factors, the permanent displacement
Ao 1s small compared to the elastic displacement A . (Knopoff
and MacDonald, 1958). As a result, we may expect the coupling
effects given by the fourth and fifth terms of (3.31 b) to be
negligible. The sixth and seventh terms will also be vanishing-
ly small, because for small amplitude waves in solids, the
approximation
_2_: .i{.\/i _é_x —b_
S TERERY YLEEEY
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108.’ V;xo

certainly holds. Consequently we shall only retain

the first three terms of (3.31 b) in what follows. The non-linear

term in the sguare of the total rate of deformation,

can

of course not be similarly neglected.

Now equations (3.30) and (3.31 a,b) are

in terms of the variables W, Wo, W , and

and, as a result, A , are actually assumed
of the elastic stress and the rate of change
along with suitable constants (see eqs. 3.26

one-dimensional case, (3.26) reduces to

6223 2
bx)t)'
8t1ll expressed
T. However,Avp ’
to be functions
of elastic stress,

and 3.27). In the

(3.34)

where g 1s a scalar function of zeroth order in stress. This
particular form of g is assumed because 1t is found experimentally
that for small amplitudes, attenuation is independent of amplitude.

We next rewrite (3.31 a,b) in the form,

°m AN 42 3 Ay +2, ) 3w A LT
Co e E‘wo/“‘) YRl Oy WV)),&at & Y
+ f bsmp 32MP
! ST ) 30 (3.35 a)
_b_[:k,b"T~J4,/5To éle +
At dx* Po e 3x 2t
A 2 (3.35 b)
v f [ az;v). Vg, Im
2 |3zt 2 \3x3t/ 7 Jxdt ) Ix
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where we have assumed that T may be approximated by its
equilibrium value Tovin the second term of the r.h.s. of

(3.35 b), and where:

X ,
( 1-2/&\/)( th> eo btt (3;36 a)

. ) 4
FZ + /bv
bx) (3.36 b)

The functions fl and f2 thus incorporate the entire non-

linearities of (3.35 a,b). As explained in connection with (3.34),
one can treat (3.35 a,b) as a system of non-linear partlal
differential equations in the variables u and T. By hypothesis,
the non-linearities expressed by fl and f2 are small------ in

other words, we assume that the permanent, plastic strains

are small compared to the elastic strains. If this regulrement

be upheld, solutions of the system (3.35 a,b) can be found by
a technique which will be developed in the present section.

The approach is a generalization of the theory of first
approximation of Kryloff and Bogoliuboff (Minorsky, 1947).
Essentlally, the method assumes that wave amplitude and phase
are slowly varying functions of the time t, so that they may
be approximated by a constant mean value in some interval
(t, t+7 ), where 7= period of oscillation. Thie assumption can
be shown to convert the original non-linear equation into two
subsidlary relations, one in amplitude, and one in phase. These;

although stlll non-linear in the general case, are always
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integrable in terms of elementary functlons. Space does not
permit a detaliled description of the method here; the reader 1is
referred to the reference cited above.

Our point of departure is the system (3.35 a,b). In order to
forestall a mathematical difficulty which will become evident
later, we differentiate both members of (3.35 a,b) w.r.t. time.

The system to be solved is then

2 2 3 T
o S Demored S e Ovripafgs - phg vk

NT o« z:T VAP 3% . 2f,
a2 3x? )t Po ¢ dx It° 2t

),
Y34 (3.37 a,b)

We assume solutions of this system in the form

m = A(L) sin [O‘X-cot +d)(t)] = A(t)sin O
T- B(t) Sin [a'x~o,>t +§b(t)] = B(Y) sinez

(3.38 a,b)
It f1= f2= 0, (3.37 a,b) would be linear, and solutions (3.38 a,b)
can be found by standard methods. In this case, both the amplitudes
A,B and the phase angles@%yVare constants independent of timse.
We now assume that solutions of type (3.38 a,b) can be found such
that (3.37 a,b) be satisfled when f, and fz#'o, where the amplitudes
A,B and phase angles 4% Y are explicit functions of time. If

exoressions for these four quantities can be found, thelr substi-

tution into (3.38 a,b) yields the desired complete solution.
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Differentiating (3.38 a,b) w.r.t. time, oune has

W =

- A cos O ¢+ A sin O, ¢ A(i)cos D,

T :-wB cos O, + B sin 8, + B¢cos O,

(3.39 a,b)
where the dot denotes differentiation w.r.t. time.

In the linear

case, where A, B,?’, and %’ are constant, these relations would
yield

)},= -Q)ACOS 9‘

T - —ooBcosea

(3.40 a,b)

So that (3.39 a,b) reduce to (3.40 a,b) in the linear case,

we accordingly must require that
A sin 9‘ + A Q Cos 9; =0
B sind, + B b cos @ = O
" Y 2 (3.41 a,b)

Furthermore, remembering that A,B, § , and ¥

are not exolicilt
functions of x, one calculates from (3.35 a,b), (X' o

" 3% )

T, =+ Bo cos .

2
7;x= - Bo sin 82

(3.42 a,b)

w, + Ao cos E?,

2
mw,.* "Ao sin D,

(3.43 a,b)
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and from (3.40 a,Db):

W - waA $in&|" m/.\cos 8. + m(?Asin 8,

—:

- w?B sinl, - o.)‘.BCose'z + QJSZB S(n@'a

g.

C oA cosB + w0 Ao sin D,
+w&Ao- cos O,

(3.44 a,b,c)

From (3.40 b):

-i— 2 O o B 5:“6
X 2
. -3 &
-I:x= wo B cos 5
(3.45 a,b)
and from (3.40 a):
A.h = a)a—A Sinﬁ'
S
W w o A cos ¥
KX
(3.46 a,b)

If relations (3.40 a,b) and (3.42)-(3.46) be substituted into
the system (3.37 a,b), one has
6060605 Q‘AzfomA sin 9‘3:
“MeAC' Sine|+MVOOO‘AC059,
A 2 )
- M, Bo cos§, +@ﬂaAavq+&

(3.47 a)
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-w coseaé + w B sin ez.Yi 4 MTwa~ S\‘nG‘A
’rMTco Ao cos O _Qf

a e
Kwo BeosO, t FZ.

(3.47 b)
where :
s T
ME-XE‘\Z/”e Mo _e’.&ce_
Mv : )v + Z/"v MT= &/3 (3.48)

Relations (3.47 a,b), in conjunction with (3.41 a,b), yield

four linear algebraic equations in the unknowns A, é, 4) ,

and }0 . These four equatlons may be written in the more

compact form:

muA +mtaQ - F-I
. . . . . F
m, A tm, @ o+ m,, B +m, ¥ 5
+ ' =0
m Ao, @
tm, B +m ¢ =0 (3.49)
where
m,* -6 W cos 9, mzs- ~ W Cos 32
m, +€°<»0A sin B, Mu‘*wBs{ne,_
My * v Moo sin O, WM, * + sin O
(3.50)
mzzg ;.MTGQAG ces U, m32= +ACO$ e’,
My, * +5in 0O, M, " +B cs®,
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and

fie My oo Acos®-M Ao sin b,
- ’I:fr B g cos e'a + eo w"A $iv 6" + ?‘ (3.51 a)

F = Kma-aﬁcosez + Fa

2 (3.51 p)

After much laborious but straightforward algebra, one finds

that the solutions of (3.49) are given by

A = - (0% e, F‘ (? = Siw B\ F, (3.52 a.,‘b)
Co @ ‘ Ap, w

é = - €05 el F2 y.j B Si“ eZ. Fg_ (3'53 a’b)
) B w

Relations (3.52 a,b) can be written with the aid of (3.51 a,b)

in the form

A= - cos b Mvwa-zcos B‘A -MEO}Sine,A*
Co w0

+€°wzsin®, A - MTo- cos GaB + F‘J (3.54 a)

L] z .
B: -¢s 0 ko cosﬁz B + Fz.

o (3.54 b)
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Consider now the generalized heat flow equation (3.35 b).
Substituting from relations (3.40)-(3.46) into this expression,

and solving for B(t), one has

B(t): £, - M_wo sing A

Kot sin ©, - w cos O, (3.55)

This formula may be substituted into (3.54a), to yileld:

A 2
A = -cos O Mvmo— tos B\A-MEQ-z sm@ A

Co @
+‘€gcnz Sﬁxfi A.~

~ ] . (3.56)
"MTo'Cos@z £, MTcoc-smﬁlA }*‘F,

Ko‘zsin B,_— w cosne'2

We have thus been able to express the rate of change of the
wave amplitude, A(t), as a function of circular frequency w ,
wave number o= , and the appropiate modull of the medium.

It is now evident why it was necessary to differentiate

(3.35 b) w.r.t. time in order to solve the resulting system
(3.37 a,b) for u and T, since this step enables us to use
(3.35 b) as a separate relation with which to express A 1in
(3.54) as a function of A and the appropiate constants alone.

In a similar way, we find that (P and ? are given by
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. 2
@ = sin 9,[ My o_a c0s0, - Mg o o 0,

€° eow

+wsin® - M o csb, B . \ [
Co w A Guwh (3.57 a)

W= Sl'nez Kc-zcose

2 f, (3.57 b)

PR
B
Let us fix our attention on (3.56). This equation contains two

non-linear terms,

cos 8‘ &Ta‘ cos Bz (
Co © |Ko'sin® -weos®, |2 (3.58 a)
and
- cos O, (
\ (3.58 b)

€o ©

Up to this point, our treatment has been exact. Now the general
method of Kryloff and Bogoliuboff assumed that the right hand
mermbers of (3.54 a,b) and (3.57 a,b) can be expanded in a

Fourier series of period 2T . In particular, the theory of

first approximation of Kryloff and Bogolliuboff shows that to

first order, these right-hand members are given simply by the

first term of the expansion. This 1s equilvalent to averaging

the equations over a period, so that higher order terms of the

series vanish identically (Minorsky, 1947).
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In the present situation, (3.54 a,b) and (3.57 a,b) are

functions both of O  and 92 , where 9, and 62' are given

by
6, = ox-wl + @(t)
0, ox - wkt + W(t)
(3.59 a,b)
Equation (3.56) can be written in the form
A = - €09 8‘ ~ .
_€o—°_°_- Fl(e., 93) (3.60)

where F. stands for the expresslon within square brackets of

1
(3.56). We assume that Fl can be expanded in a double Fourler
series in 9‘,02 (Carslaw and Jaeger, 1947, pp. 158-162):
© 00
F‘ (Q)Gz) = E E Kva\ Sin me‘ Sin n@e
m=| n=\
0 a0 0 o0
/ /
+ K sin mB cos n0. 4+ L swmb sinn®_ +
™M n ! 2 m 2
m:l n=0 m=0 n =
@0 00
+ % % L cos w® cos nO
", n 2
m=0 n:0 (3-61)

/ 1
where the Km)n ;Kmm ;L“‘l“ s and Lm)“ are the approplate two-

dimensional Fourier coefficlente. To first order, however,

the first three terms of (3.61) vanish, so that one has simply



97

o~ e ]
F(8,,8,) L, 5.62)
where
2T 2
= l o
00 ‘

Combining (3.60), (3.62), and (3.63), one derives the relation

T

2
E. (9,J z) cos U, 48, 48, (3.64)

4Tl‘ Co W

0]

°¢——————~§L

~
vhere Fl(O' ,92) is given by

~ 2
F, (3‘)97_) =[Mvwcr cos B A - Neo-z sin O, A + ¢, W’ sin 6, A

"F"T"C"Sea t, -ZMTwc' sin O A . Fu
Ko sin D, ~ 0 cos O,

(3.65)

In a similar way, it can be shown that (3.52 b) and (3.53 a,b)

lead to the corresponding first order relations

21 271
. |
B - - 4-11'2 oD F?- (9‘) z) ‘°5® 46 ‘iea (3.66 a)

o
o
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2T 2m

. l

F, (®,,9,) s1n© 49,48,

Q- 47 A g w (3.66 D)
00
2T 2T
] l {
Y 41T 6 w F(8,,0,)sin0, 4000, o)
o 9o

where F, (% ,8,) and F,(©

\

,0,) are given by (3.51 a,b). If the

exact form of the non-linear terms f1 and f, is known, the double

2
integrals in the above expresslon are evaluated first, and the
resulting differential equations then solvsd exoliclitly for
A,B,{, =and ¢ . These values are finally substituted into the
assumed solutions (3.38 a,b).

Let us first study the displacement amplitude equation
(3.64). Term by term integration of the right member will

involve, among others, integrals of the form:

2T
3"= JSinn G; dBi = O for n odad

7(0 for n even (3.67 a)
2T
J - Jcoe," 0. 46. = O for n odd
2 \ \
o }1 O for n even (3.67 b)

om
J3 2 j s(nn 8; cosei AB; = (Q for alln
° (3.67 ¢)
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EA\

n
J- - j cos e; Sin e'l dei = O for all n (3.67 d)
0

where n 1is an integer >, 1, and 1:=1,2.
Consider now the linear terms of (3.65) that is, all terms which

do not involve £, and f,. Then application of (3.67) with 1=z 1

20
shows that all terms except the first vanish in the integratilon;

the 1Integral of the first term 1is
2n 2%

2
Mvcoo-zA cosze‘ 49,46, - 2T Mvooa-aA

(3.568)
09
Consequently we may write (3.64) 1n the form,
A - - Mvo’ A M g J Cose F (9>C058 dejde
R €o 4“- Co w0 Ko Sm 9 - w cos O,
00
2% 2
|
- & 49
+ 411'26000 : (9|) cos ©, 46 49, (3.69)
090

In order to evaluate the above double integral, we must consider

the explicit forms of the non-linear functions fl

by (3.36 a,b). Now Knopoff and MacDonald (1958) have shown that

and fg given

the expression for the rate of permanent deformation (3.34)

can be simplified if it be assumed that the application of
hydrostatic pressure results only in elastic deformation. This
assumption has been amply confirmed by experimental high pressure
work performed by Bridgman (1949). Under these conditions,

Cﬂ is a function only of the elastic stress, the rate of change

of elastic stress, and three constants. For one-dimensional
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P wave propagation, (3.34) can thus be written

C" - M . 3(1“i')’|“: = | et >ﬂc _.I'_ 0d
Il

dx 2t
3%
o A R TR M 3w
dw E ¥x
* 3 X (3.70)

where/ﬂzand.%c are two constants having the dimensions of
inverse viscoslity and inverse stress, repectively. When V&

vanishes, (3.70) becomes
! (3.70")

which 1s seen to be identical to (3.27). Moreover, we have
neglected the thermal stress term of’rs (see eq. 3.12) in the
statement of (3.70), but the coupling terms thus discarded are
negligible, as has alread& been pointed out on page 86 of this
chapter.

Combining (3.70) with (3.10), and using dot and subscript

notation, one has

MW,

| —
dﬁ : AN& i /MZ'WE M * %2 P4E

+ M, (3.71)
X

Substitution of this relation into (3.66 b) gives
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()"

My

o M (e Mef(,wx)‘ r2( o M5z>, "

(3.72)

Consider the second term of the right member of (3.69). Direct

integration over ei yields

A )
cos ©, 49, - 2m
Ko sin B, ~wcosh, T o wt kP (3.73)
0

In order to verform the integration over Eﬁ , one substitutes
from relations (3.43)-(3.46) into (3.72), and enters with the
resulting expression into the second term of (3.59). The integral

to be evaluated 1s then
2T

[T, 00 cos ], « M j (e (hoy ee’®

2T

J €<
o]

e (/"'c 2 M;)(A G)zm'c0530' 'tan 6,
+2 (/“'c ME)(AO‘)Q(«) cos B, sin® +2(y, ME)(Amc)zcosze’ sin©)
+ (%, Ma)z(chr)zcosaﬁ‘ 'tomz 8,,

+(Awg)  sin®®, cos e,]ae, (3.74)

taw®,

2
Only those terms involving [tan| and  |tan O,| do not vanish

in the 1nterva1.9|(0)zv), and one finds that to first order,




102
2T

j [Fz (8,) cos 9']39| .

0

2 2,2

=4MV¢CMEG‘A
3¢, <

3
[ g o+ 3/% ‘*’] (3.75)

Combining (3.75) with (3.73), (3.69) becomes

. 2 ~ 2 2 me
A= - Mvsz 4 2 M, M Y M. Y. +—7ﬁ'—w
2, Ve 3T, S Co L+ W' 14 Kot
4 4
2n VP VP
{
+ — £, (©) cos ©, d ©, 76
P ) cos ©, (3.76)

Y]

where we have integrated the last term over 9;_,_ directly, since
fl is 1ndependent of 92_ . The wave number g~ has been replaced
in the above expression by ""yvp, VP= unperturbed elastic P wave
velocity. The gquantity |

2

Iy K \+(Kw)~‘

4 - : ~
VP VP

2
since VP >?Kew . Thus for rocks, K = 0(10 2 cm?/sec) and
V, = O(lO5 cm/sec), so that the above approximation holds

P
provided that W K 1012

A - M, e A, {__Q.l_. M}{%o& +2/wcw2}éa

rad/sec. Eq. (3.76) then becomes

T
200 Ve 3Mea S Pop

l 4l (3.77)
+ f.(g) cos ©, 48
21\'(0 ) !
0
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Eg. (3.77) can still not be solved for the amplitude A unless
the third term of the right member 1is integrated. We recall
that fl is given by (3.36 a), and represents the non-linearity
of the equation of motion. Knopoff and MacDonald (1958) have
evaluated this integral provided that interaction terms
between viscosity and permanent deformation can be neglected.
They find that

2T
Ft (BQCQe,B‘dQ' ) {%/%( Ve + _y'c 26 A
(3.78)

anga:

vwhere a2 M
V% ) i/é%

Substituting (3.78) into (3.77) gives, after some further

algebraic simplification,

AA = rﬂv{ﬂal&,*— 2 b1 P1E Jk/ggbc}{y9cw *'E/Wc ‘}==f
P

ZMe 3."60 €
2 2
+{%/’“c€o Ve r sy w0V Cv}ﬁ\: (3.79)

where we have replaced M_ by MT:')WA . This equation,

although still non-linear in the amplitude A, 1s nevertheless

easily integrable. For convenience, we write (3.79) in the form
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dt (3.80)
where
=2 VE . A 4y NYe oo, LM, 2
Com /e Coe ay /e "C°—+3ME§' (3.81 a)
y M. M 3- 3
L = vy '€ Jk/gyéc a w ¢+ @A
¥ 3me,c, / e (3.81 b)

The solution of (3.80) may be found by separation of variables

and is

- A, e_.ec\x
b AL, + oC,
A() - - —
| - s ° e
AO«Ca ¥ o (3.82)

where we have replaced the time variable ¢t by the distance x,

t= x/Vp. The quantities <, and «<C, are thus defined by

o, <L [1/a1stance]
Ve
o 1/distance (3.8% a,b)
o<, <, [ ]
Ve

and Ao is the wave amplitude at x= 0.
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An involved calculation similar to the one presented above
shows that, to first order, the amplitude phase angle 47 is
constant and independent of both x and t. Substitution of
(3.82) into (3.38 a) yields the solution for the displacement

u in the form

< A, N
A<, + <€,
M = sin{ox-wt +
| — < A, - X ( CVO) (3.84)
2 . e
Aoocz t

where Q°= constant.

The quantitiesOC‘ andéCé define two separate distance
attenuation coefficients and are related to the time attenuation
coefficients -?:', and :}z by (3.83 a,b) The coefficient o£, 1s
a function of three terms, proportional respectively to the
zeroth, first and second powers of the circular frequency W .
The zeroth and quadratic factors correspond to linear terms 1n
the equation of motion and represent damping in the classical
Maxwell and Kelvin-Voigt (Visco-elastic) solids, respectively.

(see e.g. Kolsky, 1953). The factor linear in «> is a direct

consequence of the non-linear stress-strain relationship (3.70).

The second attenuation coefficientecacontains terms
proportional to the second and third powers of w5 . The first
of these 1is again a result of the linear terms of the original

system (3.35 a,b), while the second is attributable to the non-
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(1)
AE%/WE and Av%/h' , @& rough calculation gives

9
1072 Lo KL 10 {‘oul/sec.

(3.88)
The second attenuation coefficient -C} is given by
‘ 2 3
o R M ABY, 2 pr, 0+, 0o
2 3T C, ¢ (3.89)

Taking K= 1011 dynes/cmg, Ce® 107 ergs/gran, /ﬁ 10-5/ °¢c,

and the values (3.86), one has

-4

22 2 -4 3
L, ® 10 10 o +10 “} (3.90)

2

R

For these values of the constants (3.86), it is obvious that
oL

damping with small error and use (3.85), rather than (3.84).

2 will be negligible----- one may then neglect thermal

However, 1t must be borne in mind th.at/wc and %Q are very
poorly known; in v»articular, the magnitude of//~c is based on
a single calculation of Haskell (1935). If more refined
experimental work does show an amplitude decay mechanism faster
than 1s reconcilable with (3.85), the thermodynamically more
accurate form (384) should be useful. We notice that 1if %z: o,
(see eq. 3.70), dCa= 0. This means that thermal damping is

- - - - ap W G s = o - -

(1): This assumption is quite a controversial one in the literature,
but 1t 1is probably Jjustified for rough order of magnitude
estimates.
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negligible in the Maxwell solid, as was concluded by Knopoff
and MacDonald without formal proof. ‘

The equation of motion (3.17) will not involve the
temperature T explicitly for the case of a gshear wave. As
a result, there exlists no coupling between the equations of
motion and of temperature and, to first order, thermal damping
will not arise in S-wave propagation. This problem has been
solved for a solid obeying the stress-strain relation (3.70)

by Knopoff and MacDonald.



CHAPTER IV

THe ATTENUATION OF LINEAR SMALL AMPLITUDE STRESS WAVES
IN A SOLID EXHIBITING FINITE THERMAL CONDUCTIVITY.-
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1. Smal¥rSignal Thermoelastic Theory

In the previous chapter we have concerned ourselves wlth
the study of solutione of the system (3.35 a,b), of which both
equations are non-linear. It was also pointed out that quasi-
harmonic solutions of the type (3.38 a,b) exist only when these
non-linsar terms are small enough so that the resulting equations
may be treated by linear perturbation techniques. The theory of
first approximation of Kryloff and Bogoliuboff was then shown
to be a powerful tool in the attack of the non-linear problem.

We shall here investigate the behaviour of solutions of the

system (3.35 a,b) in the absence of non-linearity, fl= o,

f2=-0:

Pa (N r2pug) Xm (A, +2m,) Nw 5k AT
eo bt" [ /wf) bx" t ( v /~ )axz)t bx
AI;: k 3*T _ Ap To 3w
At dx? Po €  dxL

(4.1 a,b)

Now reference to (3.65) and (3.67 a-d) shows that the
linear thermal term in the amplitude equation (3.64) vanishes

to first order, since
21 27

~ ; 3
L oMW craA ©5 B,Z_ sin O, cos O, &9.&92=O
4]’[" Ko s.‘nea“ t.\Dcos@a

¢ 00

(4.2)
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where

L4

My Mo . T, M)Z
- €o ¢ \ fo

(4.3)

from (3.48). Hence the effeet of linear thermal terms on wave
amplitude decay, although small by (4.2), cannot be studied

by sultably specializing the quasi-harmonic solutions found in
the previous chapter. We must, then, seek other techniques that
will permit us to analyze the effects of thermal linearity
explicitly.

Weiner (1957) has recently drawn attention to the fact
that the Fourier Heat Conduction equation 1s an energy balance
which neglects the interconvertibility of mechanical and
thermal energy, a phenomenon which he calls "thermoelastic
coupling". Weiner shows that although such coupling terms are
negligible for cases in which heat 1s supplied from external
sources, the same 1s not true when temperature fluctuations
arise because of internal deformations wilthin the medium.

The term (4.2) 1s an example of such thermoelastic coupling
which vanishes to first order, but whose influence we shall
nevertheless wish to investigate.

The oroblem of thermoelastic deformation has recelived
considerable attention in the literature,, although most
workers have treated static, rather than dynamic situations.
Again few of the dynamic treatments take viscosity or
permanent deformation into account, and in some instances false

thermodynamic premises invalidate results presented. Mark-
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‘ham,  Beyer, . and Lindsay (1951), Truesdell (1953), and

Hunt (1957), have made exhaustive studies of sound absorption
In flulds in the presence of viscosity and heat conduction.
The method to be employed in this chapter for the study of
attenuation in solids is in many respects similar to that of
Hunt. An important point to keep in mind 1s that the energy
dissipated due to thermoelastic coupling or, what 1s the same
thing, the energy dissipated due to infinitesimal elastic
deformations in a medium of non-zero thermal conductivity,
must be considered in addition to any energy dissipated by
viseous or other attenuation processes. Kasahara (1956), in
conslidering the problem of strain energy in a visco-elastic
erust, falls to take this fact into account, so that his
calculations are incorrect.

Synge (1955) has derived an equation of motion for a fluid
exhibliting both viscoeity and non-zero thermal conductivity.
His work is based on that of Eckart (1940), and is thus thermo-
dynamically rigorous, since it considers the production of
irreversible energy. Synge's equations of motion and temperature
are non-linear, but the non-linear terms were dropped before
solution of the system was attempted. Solutions of the form

) )
-T-= -r e)(a—""‘wt

\
o M\eo(fx twt)

(4.4 a,b)

were assumed, and subsequent substitution of these relations
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in the equations of motion and temperature yielded a secular
equation in the generally complex wave number o . T1 and u;
are real constants that may be found by satisfaction of
prescribed boundary conditions.

Synge did not solve hls secular equation, which is bi-
quadratic In the complex quantity o . Lessen (1957) has
attempted to solve this equation by approximation procedures.

His equations have dimensional inconsistencies, however; nor does
he attempt to investigate the frequency dependence of the atten-
uation coefficient « . ( We recall that < = Im(o);

Im(22 t3eC) ).

Blot (1955;1956) has developed a theory of thermoelasticity
based on lrreversible thermodynamics. His arguments lack
generality, since he derives the equations of motion and
temperature from the reversible forms of the first and second
laws. He 1is therefore unable to arrive at the more general
theory of Synge (1955) and of Knopoff and MacDonald (1958).
Biot's relations are similar to those of Synge (1955) and
Lessen (1957), except that he prefers to express his temperature
equation as a function of the specific entropy, rather than of
the temperature explicitly, (see below, Section 2 of the present
chapter). Blot has not attempted to solve his equations in
closed form, nor has he studled attenuation of stress waves
in a thermoelastic medium. He also ignores the effect of
viscosity and permanent deformation.

Deresciewicz (1957) has made use of Biot's equations in a

study of plane wave attenuatlion in a thermoelastic solid.
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He finds that his secular equation is intractable, and then

2
proceeds to show that an assumed W damping law,

o = (umsl‘.) oua
satisfies the secular equation for low frequencles. His
approximations are somewhat obscure and, since he does not
actually solve the secular equation, his results again lack
generality.

A totally different approach to the problem of thermo-
elastic dissipation has been made by Zener (1948). He assumes
that the non-elastic behavior of a so0lid can be described by
a model which he terms the "standard linear solid", and whose

stress-strain relation is given by (See Zener, 1948, p. 43 ff.):
L3 N -
Pt p: Mo (erTpé) (4.5)

T

e relaxation

where p= tensile stress, € = tensile strain,
time of stress at constant strain, ¢}= relaxation time of strain

at constant stress, and MR "relaxed modulus". Mh can be identified
with the famlliar elastic modulus Mg, since for € and D=0,

(4.5) gives

= Maa = M e (4.6)

For the sinusoidal steady state, he assumes solutions of (4.5)

in the form,
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jwl
F(t) s Po,eﬂo

t
e (t)- soew

(4.7 a,b)

where Pg and €, are real constants. Substitution of (4.7 a,b)
into (4.5) yields

(Vv joo %)Fo’ MR('*S'&(‘VP)%

(4.8)
or
Po = Mg, (4.9)
where the complex modulus A 18 given by
M= L+ T (4.10)

P

A convenient measure of internal friction 1s afforded by the

tangent of the angle by which strain lags behind applied stress.
Zener defines an angle A , such that

Lan A M (4.11)
Re (M)

which, after further manipulation, 1s shown to be
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v Ma  w ¥

M I+ (o0 %)a

Lan A: ™

(4.12)

In thls expression 7 1is the geometric mean of the two relaxation

ti ’
mes B ‘/a
~ e (~
Ve (7 )
o~
'e
MU‘ /‘Vg MR s Where Mu is called the "unrelaxed" elastic

modulus, and M i the geometric mean of the two elastic moduli,
i
- 2
M = (Me Mu)
The quantity tand will be at a maximum when w T = 1. It can
be shown (Zener, 1948, p. 62 ff.) that |

| AE
2mn E (4.13)

1f A 1s small. Here AE-= energy disslpated per cycle per unit
volume, and E= elastic energy per unit volume when the strain
is at a maximum. MacDonald and Knopoff (1958) write the right mem-

ber of (4.13) in the form

1 TAS“‘[‘

Q emE (4.14)

Combining (4.13) and (4.14), we have

1l . Fen A
Q (4.15)



117

The‘quantity 1/Q 1s called the "specific dissipation function"

by EKnopoff and MacDonald, while Zener terms the ratio Aj?é the
"specific damping capacity". It is further shown by Knopoff
and MacDonald that 1/Q 1s related to the coefficilent of

attenuation eC by

| g GC

Q w (4.16)

where ¢ = wave propagation velocity. Combination of (4.12),

(&15) and (4.16) gives

a——
= MU—MR w v

2Mce I+ (w®)? (4.17)

Now 1t was indicated 1n the last chapter that most available
evidence polnts to the fact that the attenuation coefficient
C 1s a linear function of « for silicates. It 1s obvious that
a mechanism of the type (4.17) cannot be brought into agreement
with what is known empirically in the case of rocks and
glasses.
It should be emphasized that up to this point no thermo-
dynamical arguments have been introduced into Zener's theory.
In order to attack the thermo-elastic problem, Zener
presents the concept of relaxation by thermal diffusion,
(Log. Cit., p. 89 ff.). He states that the time of relaxation
for the establishment of temperature equilibrium is given

aoproximately by
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- (4.18)

where D is of the order of the distance that heat must flow

for thermal equilibrium to be established, and W thermal
diffusivity. The distance D is equivalent to the "mean dlameter
of a crystallite" as defined by Mason (1957). Zeuner next

agssumes that Dz)\, where Az wave length, and identifies the thermal

relaxation time (4.18) with the quantity & in (4.12) and (4.17).
No physical reason for this step is suggested by this worker,
although 1t does lead to a theory of thermo-elastic damping

in apparent agreement with exveriments performed on many metals
(Bennewitz and RStger, 193%6: Randall, Rose, and Zener, 1939).

In this instance eq. (4.17) is found tc reproduce quite
accurately the marked absorption peaks that characterize the
frequency dependence of attenuation in metals.

The wave lengths of seilsmic waves produced by earthquakes
or artificial explosions are of course larger by several orders
of magnlitude than the dliameter of a crystallite in the rock,

8o that the assumption A% D can under no circumstances be
upheld 1n selsmology. In the megacycle frequency range, how-
ever, the wave length may become of the order of D; but even

in thlis case high-frequency measursments on rocks have failed to
show the absorption peaks observable in metals.

Zener's theory appears to agree with experiment in the

case of many metals, it is not, as has sometimes been stated,
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based on a rigorous thermodynamic development. In particular,
almost the entire theory hinges on (4.17), a relation which has

been derived without any recourse to thermodynamics,

2. The Thermo-Elastic Solid.

In this section we shall investigate in detall the solutlonse
of system (4.1 a,b). We will first treat the case(lvfgﬁw)=0, 80

that we seek to solve

e t ()\e+2/~€) bazw_ Ja.a_;

2T, w *T | Lp To 2w
at BX eocg axdk

(4.19 a,b)

A s0lid describable by (4.19 a,b) will be called a "thermo-
elastic so0lid", while the more general model (4.1 a,b) will be
termed “visco—thermo-elastié s0lid". That model will then be
considered in the subsequent sectlon of this chapter. It must
be emphasized that only compressional infinitesimal waves

give rise to thermal phenomena, since for an infinitesimal
shear wave the equation of motion (3.17) reduces to the

familiar form,

a?
o 225 /~e (4.20)
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\

while the temperature equation (3.24) reduces to the ordinary
heat flow law (3.29), and no thermo-elastic coupling exists.
The general form of the equation of state of a solid may

be written in the form
Pl 2P
4P< (av)T‘W «(35), ¢7

: aV
v bbT‘JD)T ¥ /3*" T (4.21)

since
= -V (2P
‘&T ()V)T
and
RS
v (e

where Jb, and /3 are the igothermal bulk modulus and thermal

expangion, respectively. Equation (4.21) can be shown to reduce
to the thermo-elastic stress tensor (3.12), which in one-

dimensional form 1s

Tom et 2/"6)1'-/5&" At | (4-22)

where ()E~r%p%)7= isothermal elastic modulus.
Similarly the temperature equation (4.19 b) is
derivable from a combination of the first and second laws

of thermodynamics, which under equilibrium conditions may be
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written (Allis and Herlin, 1952, p. 105):

T ds | < &T*To,ﬂzr/ﬁd

\Y
o v, v, Vo (4.23)

where s = specific entropy. Differentiating (4.23) w.r.t. time
{ \
and letting /v°= €o and %°= € , one has

— -

t ot ¢, ¢ ot

oT % 06 _ T, k. e (4.24)
£

Relations (4.22) and (4.24) can be shown to lead to system
(4.19 a,b), (Knopoff and MacDonald, 1958). The important point
to realize here 1s that the elastic constants in (4.19 a,b)

are actually the isothermal ones, so that we now write

52_”’= _&7*44'/"'5'32’“'_ ﬁ"‘r oT
by A €o dx® 6, d X

(4.22 a,b)

where we have replaced (XE*Z/%>TEW /&1-* 1%%/~E. From (4.23)

one has also

b-r = TO bs - To *’T ﬁ 38
dx ¢, dx CoS  O%

(4.23")



122

which, when substituted into (4.22 a) yilelds,

Y | ket B To (kg Y0

YA Co e\ R /|3xF
AR To 3 (4.24)
éa -9
The adlabatic bulk modulus,Jks is related to the isothermal
modulus by
To ( ,&)z
Q
A, - X@T v 2 \(AARs (4.25)

Co e

(Bullen, 1952, p: 26), so that (4.24) may be written

3w ’9‘5*'4/3/“& Rmw AT, s

-
-

At Co 2x* €o dX (4.26)

The equations of motlon (4.22 a) and (4.26) express the same
relationship, except that the former has temperature and the
latter specific entropy as an independent variable.

Let 31 .0 1n (4.22 a). In this case one has,

X
At ) | Y™
btl B \V} 2 bxz (4-27)
. 6
where
3
v, ko o+ /3/*6 (4.28)
)

Co
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ds
defines the isothermal P wave velocity. Now let —:=0 in (4.26).

AxX
Then one writes
bz/w - | bl/‘”
T 2 2 ,
ot Vﬂs dx (4.29)
where
4
\Vj - *.s + /3/“‘5
f5 (4.30)
Co

defines the adiabatic P wave velocity. Since 4&5 >4&# by (4.25),

\Jgs is always greater than V%T—. The solutions of equations
(4.27) and (4.29) are well known; in particular, neither model
can give rise to attenuation, since neither contains dissipative
terms. The isothermal case corresponds to an infinite, and the
adlabatic to a zero thermal conductivity of the medium, (see
Chapter 3, Section 1).

Bullen (1952, p. 83) states that thermodynamical conditions
during the propagation of a selsmic wave are very nearly adiabatic.
Some controversy exists in the literature about this point, but
as far as geophysical applications are concerned, the problem
1s largely academic. Jeffreys (1931) estimates that the discrepancy
between the velocities (4.28) and (4.30) 1is only of the order of
1€ in the earth, which is certainly well below present observa-
tional error.

Here we are »rimarily concerned with the propagation of
waves in a medium described by (4.22 a,b) i.e., one in which the

thermal conductivity is neither zero nor infinite. In this case
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thermal attenuation occurs, as has already been pointed out

in the vrevious chapter. Again, let

P‘ = Jhr /3 T;

- )
M -é-e—-l (4.31 a,b)

We follow the method of Synge (1955) and substitute solutions
of the form (4.4 a,b) into (4.22 a,b). This leads to the

simultaneous algebraic system in u and T,

- (T%T.cr oq).wv + (\&<yﬁ + jcg)'r = 0
(Vazr“'z‘ w )w +(je™M) T:0

(4.32 a,b)

So that non-trivial sclutions exist, the determinant of coefficients

must vanish,

-M_ro—w K02+Jw
=0
2 2 2 . /
(V;:)Tc'-oo) jo M

(4.33)

Expansion of the above determinant then gives the secular

equation

t4 4 . / 2 2 2
(\/f,)T K)o+ [Jw(MTMT +ng - w K]o- (4.34)
. 3
-yw O
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But

2 2 2
Vo MMl vt oavt s T /”‘r)

e T T 6T b c, Co

as can easily be seen from (4.24). Thus (4.34) becomes

2 4 , 2 2 2, 3
(VF)T K)a- + [300\/?)3 - W k.]a' -jw =0 (4.35)

This equation is bigquadratic in the complex wave number o .
Its solution can be found by standard, although quite laborious
algebraic techniques. ‘

Solving (4.35) for cra with the aid of the quadratic formula,

one has

, , i
o N (“’K‘ive,s)i/wama-v?’; r2jok @V -V,)
a\/ w > 3 )

T

(4.36)

It is convenient to express the radical of (4.36) in the form

2 rt ) :
\/bo’vk, —\/P’s +2,3w\<,(AVP)= C'+39, (4.37)
where
(av,)=2v® -v°© “
% 6T £ (4.38)

Further calculation leads to the expressions
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4 2
C - Ve, -w K L+ / 2wk Ay, 2
' e V+-oozl€z) - |
s

J

/2

4 2,2 [ Ve
?: Vp)s-w K \+(2wk.AVP 2 1
! +
e V,’:‘wz\("
(4.39 a,b)
Thus (4.36) may be written
2 W ' VA
T Tav ik @k Cr 3D V) (4.40)
%T
Since
2 2 2 .
TP -l &L (4.41)

combination with (4.40) and subsequent separation into real and

imaginary parts leads to the system

)?Z~ ‘CZ = w(wK:l:CJ
2

4 2
Yo = w(*?n'\/gs)
4 v;T K (4.42)

' 2
Solving for <« , one has
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z
Ly w(iflfwlﬁ) \*'(*9.“/9; .
4 VPT K 1 Crwk (4.43)

J

This relation expresses the attenuation cocefficient ¢ 1in
terms of the quantities a% KU‘V}s , and VPT" Numerical
3 >

calculations based on (4.43) are obviously gquite laborious but,
as will be shown presently, approximations can be made that
reduce (4.43) to a much more tractable form. It is to be noted
that (4.43), in conjunction with (4.39 a,b), constitutes the
exact solution of damping 1n the thermo-elastic solid, subject
to no approximations of any kind. These results are thus more
general than those of Lessen (1957) and Deresciewicz (1957).

Consider now (4.38) and (4.39 a,b). Since Vg, xV%_r ,

J
we may write

2
V, ) =
(A P) V?)S
Moreover,
4 2 = z
Voo - w k° Ve s
| - w K
4
Vés (4.44)
4 2.2 2
When Vps »w K- i.e., when VPs >>wk , (4.44) becomes
GwkfVe 2wk |l +w Ko ] 220k 44
v Wikt Vv, : v 4 V 2 ’
9)5 ?,S P)S P,s
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For silicates, V%5== of 10° cm/sec), K= C)(l()“2 cma/sec),

and (4.45) will hold as long as

\2
w <« 10 m%“ (4.46)

which 1s certainly within any frequency range of physical

interest. Inserting (4.45) into (4.39 a,b), one has

— qa !
(Z,’{Vf;‘s“”""‘z /‘+<———awl:')a = | r/a
2 i Voo |

-

4
D= V?,s-“’zk’ /I+(8wk) + T
& 1. (4.47 a,b)

To the approximation (4.46),

\/u awlc) o+ 2k K
ekl
P (4.48)

so that (4.47 a,b) become

C i‘o"'(\/rs"w\‘*) Ve

1
Yy
V%s

J
o~

"

9!

| .
{ VAR K‘}/a (4.49 a,b)
P)s

However, C1 can be written



which is to the approximation (4.46),
C,: wk

Thus we have the simple relations

C

\

9‘ X {Vp): _ waka§‘/a'

w K

—
L

Inserting (4.50 a,b) into (4.43),

4 Y.
“Ca t.&’i_ { |+ (VP.s - Kamz) 1'"\/P,s

Lwk

(4.50 a,b)

(4.51)

where we have only used the positive values of Cl and Dl’ slince

negative values of C

sign of (4.43) to become infinite.

1 would cause the expression under the radical

The expression wlthin square brackets under the radical

sign of (4.51) can be written

\
(Vr:s - K ‘*’2) & B Vgas

"

l
(I - ¥62a55>/; -

2wk

2
|
=
&

V,:
2 wk

bs

(4.52)
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again to approximation (4.46). Substitution of (4.52) into
(4.51) gives

2 @ 2 \
Lo oot /l + (mwz ) _ l} (4.53)
2‘V€T J+V§s

Expanding the radical of (4.53), one has to approximation (4.46),

PN N i e ' e -1}
-3
a\/‘,JT 32 \/P)g
that is,
°C = _.!._ K ('02
e
g VPATV?,S
or simply
2 2
. l K w w K Ve
<T gV ’ " (4.54)

since VP g% VP T= V? for brevity. We have thus deduced the
)

P
important result that the thermo-elastic attenuation coefficient

is proportional to the square of the circular frequency W for
all W of seismic 1nterest.
In order to gain an idea of the order of magnitude of
thermo-elastic attenuation in rocks, we take:
o( Vo) 5x 10° cm/sec
o( kW ) 1072 cp2/sec

The following table is then easily computed from eq. (4.54):
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w

(rad/sec) Loslo (em™ 1) Log, (Km-1)
1072 -24 -19
107t -22 =17
1 -20 -15
10 -18 -13
102 16 -11
10° -14 -9
10% -12 -7
10° -10 -5
106 - 8 -3
107 -6 -1
108 -4 -1
107 -2 + 3
1010 0 i5

Table 4.1 : Values of the thermo-elastic
attenuation coefficlent «C as
a function of frequency.

These values indicate clearly that thermoelastic attenuation

in rocks is significant only at very high frequencies. Thus
Gutenberg (1951) estimates the average value of &€ for the trans-
mission of longltudinal waves through the interior of the earth
to be of the order of 10_4/Km. It 1s evident from the above table

that thermoelastic damping can yleld an °C==10-4/Km only for
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W >> 105 rad/sec; accordingly one cannot expect that the observed
damping of earthquake waves 1s explainable in terms of thermo-
elagtic attenuation. Moreover, we saw in the last chapter that

all available empirical evidence for rocks points to a first

power of @ dampling law, a condition which is not satisfied

by the present model.

Mason (personal communication to Knopoff and MacDonald, 1958)
has observed that glasses exhiblt an attenuation coefflclent
which depends on the square of the frequency for W~2-3 x 106 cps.
It is difficult to ascertain at this point whether thls behavior
is evidence of true visco-elastic or true thermo-elastic damping,
or whether 1t may not be a combination of both.

Before closing this section, it should be emphasized again
that thermoelastic damping must exist in any medium possessing
a finite and non-zero thermal conductivity. Whereas viscosity
in solids may or may not correspond to an actual physical
phenomenon, the damping mechanism discussed heré is subjeet to
no such restrictions. It is quite conceivable that what has been
regarded as evidence of visco-elastic attenuatlion in solids

actually corresponds to thermo-elastic losses.

3, The Visco-Thermoelastic Solid

We now turn our attention to the system (4,1.a,b), which we
seek to solve in the presence of the viscous term in the
equation of motion. The technlque to be followed is ldentical
to the one used in the previous section. Accordingly, we

substitute solutions of the form (4.4 a,b) into (4.1 a,b), which
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yields the algebralc system
e .
-(Mrau9M1+ (Koo +jw)T =0

(V;To-z +jnzo-zoo—m‘);w + (JoeM)T-0

(4.55 a,b)

where

2

P >\,+2/“'v : (4.56)
Co

and the elastic parameters are agalin the 1lsothermal ones.

System (4.55 a,b) differs from (4.32 a,b) only 1in the presence
.22

of the term (+3n o & ) in the coefficient of the first

term of (4.55 b). The secular equation corresponding to (4.55 a,b)

is

4 2

2 . 2 2 2
\/ K+Jw\(n}o- +|:’oo\/ - w \4,»,,2_‘)}0'
["” YT e ( (4.57)

-jw =0

Solution of the bi-quadratic (4.57) 1s again straightforward,
although extremely laborious because of the presence of a

2
complex coefficient in the first term. Solving for O ,

one gets,

Cra : -~ %a(go)- Q,QJ

R (1 +arw’) +j [9.(00)-408002-1):]}

(4.58)
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where
a -
C, (0) = Aw? + Bo® +E ) |l J 2w (Fwl+ G) o
R Aw*+ Bt E [
j):'(co):,‘\u:;4 t B+ E IJ 2w(Fuw?e6) +\‘
‘ 2 Aw* + Bw?+ E f
N J
and
2 2 1 2
n (\/‘,)s -VP)T) -VP)T K N
7 =
VP,T' K , (4.60 a)
v 4
. 4,
Vz?s =}r (4.60 b) 1'(4 A (4.60 a)
e v
I'Lz ) /
= (4.60 c) —: kb (4.60 o)
VI’,T “ ,g \/9,1 K
and
2 2
Arqg - 4ad
2
B: R Ab1g-4]-a
Aty -4
£E-A
£ - a,{az + 2 Ak
: b+ 2
G & (4.61 a-e)
Since the wave number ¢ 1s complex, O = +J°C , (4.58)

(4.59 a,b)

may
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be separated into real and imaginary parts. The resulting two
simultaneous algebraic equations may be solved for the

attenuation coefficient eC

’

2

L= oo[C|(<o)* 0.00] | + D‘(w)— ,Q,--nz wz}] ¢ _
4( 1+ A®) [C‘(co)-{a,w]% ) !

(4.62)

Eq. (4.62), in conjunction with relations (4.59) - (4.61),
again constitutes the exact solution for attenuation in a visco-
thermoelastic medium. In the absence of viscosity, ﬂ} =0,
relations (4.59) can be easily shown to reduce to (4.39 a,b),
and (4.62) to (4.43).

When K= 0, it is necessary to return to the secular
equation (4.57), since relations (4.60) become indeterminate
in this case. For zero thermal diffusivity, one thus derives

from (4.57) the secular equation of the standard visco-elastic
solid,

. \/z. 22 T a2
[Jw s ~ Pt —jyw =0 (4.63)

Separation into real and imaginary parts leads to the systenm,

2 \ 2
\I?s [Pa—ac'] —E,wn,zpoc —w =0

b

oonf'[va--cz] 2 V:s ye< = O
) (4.64 a,Db)
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fhese equations, when solved for 42 and <€ , yield the
familiar attenuation and diespersion formulae in the classical
visco-elastic, or Kelvin-Voigt solid, see e.g. Kolsky (1953,
p. 117) and this thesis, (Ch. III, p. 75 ff). This visco-
elastic attenuation coefficient 1s, as we have seen, given by

£ : | (A, + 2'/4,«) wa
T2V, Ogr2pg) (4.65)

However, no physical medium has a vanishing thermal diffusivity,
so that this model 1is épen to serious criticism on thermodynamic
grounds. In particular, it clearly violates the criteria of
Weiner (1957; this thesis, Chapter IV, p.1lll),

The exact expression for attenuation in a thermo-viscoelastic
medium, eq. (4.62), is again extremely ponderous. Fortunately,
8implifying approximatione can be made that reduce the formulae
to more tractable form. Knopoff and MacDonald (1958) have shown
that for silicates the viscosity W, has as an upper limit a value

11

of 10 dyne sec/cma, while/M% 1s of the order of 10 dynes/cma.

If )\,, ?»'/"v , and )\E x/“e , the viscous term of the equation of
motion (4.1 a) can be treated as a perturbation of the ordinary

thermo-elastic equation of motion. Thus, assuming that
2

V4 A Xv t 2/”“
€o

is small, and that

tA
Vv,r > wk

in analogy to the thermo-elastic case, relations (4.60) can be shown

to reduce to
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and

4
192
V4t
AT
while (4.50 a,b) become

C‘(w) SN (sz+6,>
(Awt s B E)yz

D () s (Awts Baw® +E)/

{(4.87 a,b)

A - n' F. _| G . |
2= 617,4 F. n4 (4.68)
Vor K V7

Insertion of relations (4.67 a,t), and use of relations (4.58),

permits us to write (4.62) in the form

0 . l + \/P\T ([ + T w + 2 Jt wZ)/@. - ([ + f}_‘* O\)a) !
v ? - % -
Vet g ke A Vor Vot (4.69)
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This expression can be further simplified by reapplicatlion of the
2 2
conditions /T = small and VPT 77w K . The final result of the
3

calculation is then

4
< - ()\Y+2/wv) w‘*’
4V, w ¢

(4.70)

where we have written VP’Tz‘VP for trevity. We have thus dgrived
the result that the attenuation in a thermo-viscoelastic medlium
is proportional to the fourth power of the circular frequency
for \*-Z/wv small and V: > @w W . Relation (4.70) does NOT
reduce to (4.65) because the classical visco-elastic theory
does not take finite thermal diffusivity or, equilvalently,
finite thermal conductivity into account. Since the classical
visco-elastic solid 1s derived on the basis of 1lncorrect
thermodynamic assumptions, (4.65) can obviously not be derived
as a special case of (4.69) or (470).

In any event, the 05+ frequency dependence of the
attenuation coefficient oG is again not in conformity
with a linear frequency damping mechanism. Consequently the
visco-thermoelastic model, even though it is based on a more

rigorous thermodynamic footing, cannot serve as a theoretical

interpretation of observed internal losses in sillcates.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK.-
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1. The Shock Zone and 1ts Surrounding Regions

In the course of the past three chapters, we have traced
the propagation of a disturbance from its inception as a shock
front of arbitrary amplitude to 1its decay into an infinitesimal
wave and to its final conversion to heat. From all that has been
gaid so far, it is evident that no single propagation mechanism
can be used to describe the progressive decay of the shock
throughout its entire path. Instead, we will find it convenient
to speak of two separate regions which surround the source of the
disturbance. The first of these may conveniently be termed the

"shock zone"; the second we will then call the "small amplitude

zone". As has been pointed out in Chapter III, no clear-cut
boundary between these reglons exists, but one can arbitrarily
specify that the shock zone 1s that reglion surrounding the source
in which (P—Po)>>qg 3 the small amplitude zone will then begin
when (P-Po)z 0(%Q). Energy dissivation in the former may be
treated by techniques developed in Chapter I, and in the latter
by the methods of Chapter III or IV. Zvidently, the larger the
magnitude of (P—Po) at t = 0, the larger will be the volume of
the shock zone surrounding the source.

Bullen (1953; 1953 a; 1955) assumes that the strained
region prior to a major earthquake can be represented by a
sphere of rock of minimum radius 25 Km, and maximum 50 Km.
Earthquake shock waves, however, are probably generated well
within the interior of this strained region. Accumulated stress
may not be uniformly distributed, but will probably tend to

concentrate at certain points inside the source sphere. A shock
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wave can then be formed as soon as such a locallized stress accum-
ulation is suddenly relieved. As 1t meoves into the stralned
region, the front first builds up energy, in a way perhaps
somewhat similar to a detonation wave propagating inside an
explosive charge. As soon as it reaches rock under normal
hydrostatic stress alone, the shock will begin to decay, and
the dissipation mechanisme described in Chapter II may then be
expected to become operative. Accordingly, the calculatlons

in that chapter were carried out for a source sphere radius
0.=1 Km, and in one instance (Table 2.7 b) for @ = 10 Km.
There is, of course, no a priorl reason for selecting such
magnitudes of source sphere radiil; but these values seem
reasonable when compared to Bullen's estimates of the total
volume of the strained region prior to the occurrence of an
earthquake.

(P P°> £ 10 dynes/cm = ®  for rocks, then
obviously no shock wave can be generated, and the propagation
of the resulting wave can be treated by small amplitude stress
wave theory alone.

If the sudden release of localized stress accumulation
simultaneously produces a shock wave as well as an ordinary
P wave that leave the surface of the source sphere R:=Q at
time t= O, then the travel time curves of Chapter II cleérly
show that at least two separate and direct P wave phases should
be observable on a seismogram. One of these will be the degenerate
shock wave, which at sufficlently large distances from the focus

has decayed into an ordinary acoustic disturbance, while the other
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will be the P wave that was generated at R:=o together with

the shock front.

2. Energy Dissipation in the Shock Zone.

The problem of energy dissipation in the shock zone has
already been treated in great detail in the latter part of Chap-
ter II. Here we return to the results of that discussion, inso-
far as its influence on a number of seimological problems is
concerned.

Tables 2.6 - 2.9 present results of energy dissipation
calculations in the shock zone that have been carried out for

the cases

(P- PO) = 0.01, 0.1, 1, and 10.
*’o R=0

It was assumed furthermore that

Q= 1 Knm

k- 1011 dynes/cm2

Co* 2 Km/sec,
except for Table 2.7 b, whoch was calculated for the case
O * 10 Km. We recall that the specific energies recorded in
the last column of the tabulatlons are those which exist in the
shock zone immediately after the passage of the pulse. At all
subsequent times, the heat 8o produced will of course diffuse
radially outward, away from the source sphere. It will be noted

that for the value afjhoaesumed here, significant heat production
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in the shock zone will only occur for the cases

(P’ f’o> = 1 and 10.
ko R’O»

As a matter of fact, the second value above corresponds to an
12

initial (P“Po)a=a: 10 dynes/cm?= 106 bars. It is open to
guestion whether~this magnitude of stress accumulation prior to
an earthquake 1s possible at given points of the earth's crust.
For such pressures, moreover, the validity of the Birch equation
of state may also be somewhat in doubt, since quantum mechanical
effects may have to be taken into account at that point. In the
case of underground atomic blasts, on the other hand, these high
stresses do appear to be developed.

On September 19, 1957, a small atom bomb was detonated in
a tunnel under a mesa in the Nevada A.E.C. Test Site, (Operation
PLUMBBOB). A preliminary report contalining some data declassified
to date has been published recently (Johnson et al, 1958). The
total energy released by the device was about 7.1 x 1019 ergs.
A rough estimate of the shock pressure as a function of radial
distance from the cavity (whose original diameter was eight feet)

6 bars. At

is given by Johnson et al to be of the order of 6 x 10
a point some 200 feet from the cavity, the shock pressure is estim-
ated to have fallen to 1 x 10° bars =107 dynes/cmz. Since %=

of( 10° dynes/cm2 ) for rocks, the diameter of the shock zone in
this instance 1is about 400 feet.

Regrettably the report does not explain how these pressures

were calculated, except to state that they are based on initial
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energy densities; neither 1s any mention made of the magnitudes
of these energy densities nor of the techniques of their
measurement. Accelerometer readings were made in the nelghbor-
hood of the detonation site, but the data has not been declas-
sified. This 1s rather unfortunate, since the avallability of
both pressure and velocity data as a function of radial distance
from the detonation cavity would enable one to calculate the
equation of state of the rock by the methods of Chaopter II.
This, in turn, should help to settle the questlon of pressure
ranges within which the various equations of state may be
expected to hold satisfactorily.

Table 2.8 probably furnishes a good estimate of the order
of magnitude of energy dissipation in the shock zone for an
earthquake, while Table 2.9 may be more applicable to the
situation arising for a major underground nuclear blast.

Thus for Jk°=1011 dynes/cmz,

(B-P ) = 10° bars (Table 2.8)
0O Wa
(P—Po%f 10 bars (Table 2.9) (5.1)

The value of =1 Km is excessively large for an atomic blasty
QL = 10 meters is much more realistic. The specific energles

remain unchanged in this case, but the values of E, (Table 2.9)

6

must be reduced by a factor of 10" °, and the R entrles by a

factor of 1072, (Compare also Tables 2.7 a and 2.7 b in this

connection.)

All oresent computations have been carried out for
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Jko = 10ll dynes/cma. Bullen (1953, p. 220) has calculated
that the bulk modulus increases rapldly with depth in the earth,
and estimates 1ts value at a depth of 33 Km to be already
1.16 x 1012 dynes/cme. A bulk modulus of the order of 1012 dynes/cm2
would increase the values of (P—PO)Q_ and Ecum of Tables 2.6-2.9
by a factor of 10. This problem cannot be solved from theoretical
considerations alone; further shock wave work in rocks along the
lines of the recently reported investigation of Hughes and
McQueen (1957) 1s necessary to settle the question.

The specific energies afford a convenlent method to estimate
mean initlal temperatures within each shell 1mmedliately after the
passage of the shock front. If"ﬁ::specific energy, in calories/cmj,

then

7 -pT - %
T TAM A Co < (5.2)

where TAM: amblent temperature in rock prior to passage of front.
The quantity A T is thus immediately calculable and will yield

an estimate of the mean inltial temperature rise in each shell

surrounding the source sphere R *0 , Computations of this

nature have been carried out for the specific energy distributions
(5.1), and are tabulated in Table 5.1. It 1s to be emphasized

that the initial temperatures thus computed are mean values for
each shell; the continuous temperature-radial distance curve could
be found by performing such calculations over successively thinner
shells, but such refinement 1s unwarranted in view of the uncertain-

ties of the values of the various parameters involved.
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The mean init;al temperatures for the case (ﬁi:?)n;i 10 are
enormous near the source sphere. Physically, of course, such
high temperatures signify that fusion must occur in this
region. Indeed, exactly such a phenomenon has been observed
In rock surrounding the original cavity of the "Operation
Plumbbob" underground atomic-blast. Johnson et al report that
a shell of fused tuff rock, 10 cm thick, was formed at a distance
of 50 feet from the source. These workers also estimate that
about 7 x 108 gramns of rock reached an initial temperature in
the range between 1200 to 1500°C. Latent heats of fusion have
not been taken into account for the calculations ofei%g = 10
in Table 5.1. The’computed temperatures have accordinglyF;;en
bracketed in order to indicate that they should merely be
conglidered to represent 5rders of magnitude.

The temperatures calculated for the case(ﬁ;f° = 1 would
Q

not indicate that the heat developed in the rock 1s sufficient
to melt it. However, we recall that these entire calculations
are based on a l/R2 decay law. If the decay rate near the source
sphere is greater, correspondingly larger amounte of energy will
be dissipated per unit shell thickness traversed by the shock
wave, and in this event fusion of rock may occur even in the
case of earthquakes. This question cannot be settled without
empirical data, whose procurability is certainly a mute point
at present. An alternate fuslon mechanism will be discussed in
Section 4 of the present chapter.

Up to this stage we have been concerning ourselves only

with the temperature distributlion in the shock zone immediately
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- @ -
(55, (522
(xm) ) aT (9 q(2) AT (o) | EEEE
ii: 300 750° 7000 (17,500°) fo: 2 gre/cm’
La 280 700° 4800 (12,000°) ¢ 0.2 cal/groc
L 190 480° 4300 (10,800°) | R, =10 dyne/cn?
e 150 370° 3400 ( 8,500°) L,
80 200° 2000 ( 5,000°)
L8 65 160° 1600 ( 4,000°)
2.0 20 500 620 ( 1,600°)
z 6 15° 380 ( 1,000°)
3 8° 150 350°
° 2 59 80 200°
° 0.7 29 50 125°
7 0.3 0.8° 30 75°
° 20 50°
7 10 25°
10 2.4 6°
20

Table 5.1: Mean Initlal Shell Temperatures in Shock

Zone (Based on specific energies of

Tables 2.8 and 2.9).
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after the passage of the pulse. The heat evolved by the progres-
sive decay of the shock will eventually be conducted away:
however, because the thermal diffusivity of rocks is so small,
very long perlods of time will elapse before heat produced in the
focal region of an earthquake apvears at the surface.

The time, t, required for heat to diffuse through a shell
of thickness R is given by

2

L- ;fi“ (5.3)

where WK : thermal diffusivity (Carslaw and Jaeger, 1947, p. 33).

(Kg) (ye;rs) (Kﬁ) (yles)
1 8.0 x 10° 100 8.0 x 107
2 3.2 x 107 200 3.2 x 108
3 7.3 300 7.3
4 1.3 x 10° 400 1.3 x 10°
5 2.0 500 2.0

10 8.0 600 2.9

20 3.2 x 10° 700 3.8

30 T3

40 , 1.3 x lO7

50 2.0

Table 5.2: Thermal diffusion times a a_guncéion
of radial distance R, K= 10°° cm</sec.
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Table 5.2 has been computed for a nunber of radial distances

2 cmz/sec, the usual value taken for rocks.

with K= 107

We note 'at once that even for an earthquake whose focus
1s merely 5 Km deep, 130,000 years will have to elapse before
the heat generated by the shock wave reaches the surface.

During the course of geologic time, the earth has under-
gone a number of large-scale tectonic fevolutions. These periods
were undoubtedly characterized by increased seismic activity in
the major orogenic belts. It is thus quite conceivable that
anomalously high values of heat flow may be detectable in
reglons which have experienced tectonic upheavals in the past.
In particular, it would be interesting to compare heat flow
measurements on lsland arc systems with readings in less dis-
turbed areas of the world. Such measurements have not yet been
made extensively. Admittedly, the separation of heat flow due to
primary heat, vulcanism, and radiocactivity may be difficult to
effect, but anomalous values over 1island arc systems might
Indicate that part of the total flow 1is attributable to past
sarthquakes. A related problem, vulcanism, caused by dissipation
in the shock zone, will be treated in detall in section 4 of this
chaptsr,

The heat from deep focus earthquakes may take billions of
years before it arrives at the surface. Even if radlative trans-
fer cannot be neglected, as has recently been suggested by

Clark (1957), enormous times will have to elapse for the heat

generated by the shock wave to diffuse away.
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3. The Small Amplitude Zone and Related Problems

We have already seen in Chapter III that energy dissipation
beyond the shock zone 1s qulite negliglible 1in comparlison to the
large amounts of heat that are evolved while the pulse is still
a shock. On the other hand, the observed &mping of small
amplitude selismic waves cannot be explained in terms of a
pure elastic theory. Knopoff and MacDonald (1958, in press)
first showed that an attenuation coefficient proportional to
the first power of the circular frequency is irreconcilable with
any linear model treated in the literature. They then demonstrated
that a model characterized by the stress-strain relation (3.26)
did lead to an attenuation coefficlent proportional to the first
power of W . In the present work their technique was
generalized to take the effect of thermal terms into account.

It was shown that these considerations led to the displacement
relation (3.84), but that the second "thermal" attenuation
coefficient ¢, (eg. 3.89) is probably quite small in comparison
to OC‘ (eq. 3.81 a). However, the question cannot be settled
without recourse to experiment.

In Chapter IV we then proceeded to study two linear damping
models 1in order to investigate whether the thermal terms might
sti1ll bring thermodynamically more rigorous linear theory into
agreement with observation. However, we found that neither the
"thermo-elastic" nor the"thermo-viscoelastic" solids yilelded
sttenuation coefficients that checked with empirical measurements,
although 1t 1is possible that thermo-elastic damplng may become

important in the megacycle range. Finally, 1t was shown in that
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chapter that the work of Zener is not apolicable to rocks,
although it has given good agreement wlth observation in the
case of many metals.

If the theory of energy dissipation in the shock zone
surrounding the source of an earthquake is tenable, then the
total seismic energies computed from the well-known Gutenberg-
Richter formulae are in all likelihood much to small. This 1s
evidently so because Gutenberg and Richter calculate the total

seismic energy release from observed ground motion amplitude at

the surface. In other words, only the energy that is not

dissipated in the shock zone will contribute to ground motlon at
the surface; and, as we have seen, attenuation beyond the shock
zone 1ls quite negligible.

Let us thus consider an earthquake that may be described
by the example computed in Tatvle 2.8, for which & = 1 Km.
Some 4.3 seconds after the generation of the shock, the rapidly
decaying front has reached a point 10 Km from the center of the
source sphere. At this position, the magnitude of (P—Po)R is
109 dynes/cm2, and from here outwards the disturbance becomes
essentlally a small amplitude stress wave, subject to only slight
further attenuation (see Chapters III and IV). Now Gutenberg
and Richter calculate the total energy of an earthquake only
from observed ground motion at the surface, and assume that
dissipation can be neglected. This assumption is undoubtedly true
for the small amplitude zone, but it breaks down completely in the
shock region, which in our particular example here is a shell of

rock of inner and outer radius 1 and 10 Km, respectlively.
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Table 2.8 indicates that a total of 3.7 x 1026

ergs have been

Injected into this shell due to rapid decay of the shock front.
The energy cissipation calculations have been carried beyond

the point (P-PO)R= 109 dynes/cng strictly speaking, however, the

propagation of the disturbance is no longér describable in terms

of the shock wave theory of Chapter III. This means that, to

first order, energy dissipation in the small amplitude zone

may be neglected. Just what happens when (P—PO)R= 0(%) is not

clear; experimental work 1s necessary to settle the question.

For thls reason, the shock decay computations were extended to

excess pressures less than 109 dynes/cm2 in Tables 2.6 to 2.9.
Let us then postulate that losses of energy are small for

R > 10 Km. As a first approximation, we assume further that

prior to the occurrence of the earthquake, P-PO= 1 throughout the

" source sphere. Taking/kh=1oll dynes/cmz, the %xness stress accum-

11 dynes/cmz. The volume of a source

ulation at t£0 1s (P-P ) =10
oo

sphere of 1 Km radius is 4.2 x 10%° cm’. Then the total potential

energy stored initially in thils strained region is roughly

4.2 x 1026 ergs. Assuming that all this energy leaves the

source sphere in the shock front and in the P waves generated

26 _ 3.7 x 1026: 5 x 1022 ergs

simultaneously, about 4.2 x 10
will appear in the form of small amplitude stress waves
beyond the sphere R =10 Km. Since energy transmission may

be expected to be radially uniform, roughly half thls energy,
or 2.5 x 1025 ergs say, wlll contribute to ground motion
observable at surface observatories, (Jeffreys, 1952, p.10l ).

The magnitude, M, of such an earthquake, computed on the
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basis of the formula

‘OS‘OE =58 v+ 2.4 M (5.4)

(Gutenberg, 1957), where E = total small amplitude stress wave

energy, would be

™

log\o (2.Sv \ozs>__ 5.8: g o

> 4 (5.5)

Thus roughly 10% of the total input energy of 4.2 x 1026 ergs
will be detectable at the surface, and the energy releases
computed on the basis of the Gutenberg-Richter magnitude

formulae are accordingly much too small----- in the present

example, by at least a factor of ten.

4, Vulcanism Associated with Near-Source Dissipation

The theory of shock wave decay near the source of a major
earthquake may provide a possible explanation for vulcanism.
Bullard (1954) has expressed@ the view that the source of
volcanic reat may be sought in the dissipation of energy by
friction near the focus of an earthquake. Energy may also be
dissipated by plastic distortion and fracturing of rock. In
order to i1llustrate this suggestion quantitatively, he has
discussed observed annual energy release in the Japan-Kamchatka
area, a region which in present times exhiblits an abnormally
high seismicity. The total annual seismic energy release

calculated from observed ground motion at the surface is
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roughly 1.7 x 10 26 ergs per year. The area of the reglon 1s
about 2 x 106 ng, and the focii of most of the earthquakes
are at an average depth of 60 Km. Assuming a specific heat

for rocks of 1 cal/°C cm3, and that the energy dissipated near
the focus equals the energy radiated away as small amplitude
stress waves, Bullard has calculated that at the present rate
of seismic activity, all rock between depth 20 to 60 Km would
be molten within a span of 30 million years.

If the theory of shock wave dissipation expounded in the
present thesis 1s tenable, Bullard's estimate for the time
required to melt such a deep layer of rock can be considerably
reduced. Consider a slab 10 Km thick, whose upper and lower
faces are 50 and 60 Km below the surface, respectively. Let us
assume further that the earthquake focii are all located in the
interior of the slab. If the area of the horizontal faces 1s
2 x 106 sz, the total volume of the slabdb wili be 2 x lO22 cm3.
Agsume now that, as in the example treated in the previous section,
only 10% of the total earthquake energy can be observed at the

27
surface. Then the total annual energy release will be 1.7 x 10

27 27 27
ergs, of which 1.7 x 10 - 0.17 x 10 = 1.5 x 10 ergs will be

dissipated in the shock zone. The mean soecific energy of the
27 14
slab will thus be raised by 1.5 x 10 ergs _ 7.5 x 10 ergs/cm3

22
2.0 x 10 (;m3

3 per year. Taking C_: 0.2 cal/gr ©C, and

-3
= 1.8 x 10 cal/em
o° 2 gr/cmB, this would correspond to a mean temperature rise
-3 o
in the slab of 4.5 x 10 C/year. From Table 5.2, we note

5
that some 8 x 10 years must elapse before the heat generated
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by shock wave decay will have uniformly diffused through the

10 Xm slab. Consequently, provided 1.7 X lO27

ergs are released
in the slab every year, the temperature will have risen within
800,000 years to (8 x 10° years) x ( 4.5 x 1077 OC/year)=

3600 °¢ above the ambient temperature existing at that depth
prior to the commzncement of selsmic activity.

This calculation 1is admittedly very rough, and 1is again
only meant to suggest orders of magnitude. Nevertheless, 1t may
be possible not only to account for vulcanism in this way, but
also for the emplacement of large igneous bodies such as
batholiths and laccoliths. Bullard (1954) proposes that current
volcanic activity might well indicate seismic activity 1In the

past. The results of the computations performed here certainly

support such a hypothesis.

5. Suggestions for Future Work

A considerable amount of experimental research has been
reported to date on shock wave propagation in metals and in
water, but no work along such lines appears to have been carried
out for rocks, except for the recently reported work of Hughes
and McQueen (1957). Underground nuclear blasts afford an
excellent method to study the propagation of shock waves in
the earth, but unless complete and adequate data about such
explosions is released to the sclentific community at large, the
bennefit of these measurements to seismology is limited. Further
shock wave measurements on silicates should be carried out in the

laboratory, and theory checked with observation.
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The shock wave calculations of Chapter II are entirely
based on the isothermal Birch-Murnaghan equation of state.
It might be fruitful to perform similar computations for
equations of state that hold above excess pressures of 107
bars, as for example the equation of Feynman, Metropolis,
and Teller (1949). As has been pointed out before, these
equatlions of state probably hold at pressures that are developed
near an underground nuclear explosion, but not near the focus
of an earthquake.

Further theoretical research into linear dissipation
models does not appear to be promising in view of the results

of Knopoff and MacDonald (1958) and the present work.
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-7, V) e
X, C, €o
9.9 %.86 2.97
10.0 3.88 2.98
11.0 4,03 3.10
12.0 4,18 3.18
13.0 4,32 3.27
14.0 4,46 3.35
15.0 4,60 3.44
16.0 4.73 3.52
17.0 4,86 3.59
18.0 4,98 3.66
19.0 5.10 3.73
20 5.21 3.80
30 6.2 4.4
40 7.1 - 4.9
50 7.9 5.3
60 8.5 5.7
70 9.2 6.1
80 9.7 6.3
90 10.2 6.6
100 10.7 6.8
110 11.2 T.1
120 11.6 T4
130 12.1 7.6
140 12.6 7.9
150 13.0 8.1
160 13.4 8.3
170 13.7 8.5
180 14.1 8.6
190 14.5 8.8
200 14.8 9.0
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P“ Pc afo E P- P'° 2(0 E
ko Ao %o Ho
7.9 5.04 20 14.8
8.0 5.12 30 23
8.1 5.19 40 32
8.2 5.27 50 4]
8.3 5.34 60 49
8.4 5.42 70 58
8.5 5.50 80 67
8.6 5.58 20 76
8.7 5.65 100 85
8.8 5.73 110 95
8.9 5.80 120 104
9.0 5.88 130 113
9.1 5.96 140 122
9.2 6.03 150 132
9.3 6.11 160 141
9.4 6.19 170 150
9.5 6.27 180 159
9.6 6.35 : 190 169
9.7 6.42 200 179
9.8 6.50
9.9 6.58

6.66

T.4

8.2

9.0

9.8

10.7

11.5

12.2°

1301

13.9
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2 3
" a a a

neR/a S ) ()
8.0 0.1250 1.56 1.95
8.1 0.1235 1.53 1.88
8.2 0.1220 1.49 1.82
8.3 0.1205 1.45 1.75
8.4 0.1190 1.42 1.69
8.5 0.1176 1.38 1.63
8.6 0.1163 1.35 1.57
8.7 0.1149 1.32 1.52
8.8 0.113%6 1.29 1.47
8.9 0.1124 1.26 1.42
9.0 0.1111 1.23 1.37
9.1 0.1099 1.21 1.33
9.2 0.1087 1.18 1.28
9.3 0.1075 1.16 1.24
9.4 0.1064 1.13 1.20
9.5 0.1053 1.11 1.17
9.6 0.1042 109 1.13
9.7 0.1031 1.06 1.10
9.8 0.1020 1.04 1.06
3.9 0.1010 1.02 1.03
10 0.1000 1.00%10"2 1.00x10"2
11 9.09x10~2 8.26x10™7 7.51x10~4
12 8.33 6.94 5.78
13 7.69 5.91 4.55
14 7.14 5.08 3,64
15 6.67 4.45 2.97
16 6.25 3,91 2.44
17 5,88 3,46 2.03
18 5.56 3.09 1.72
19 5.26 2.77 1.46
20 5.00 2.50 1.25
21 4,76 2,27 1.08
22 40 55 . 2-07 90“"‘2}(10-5
23 4,35 1.89 8.23
24 4,17 1.7% 7.25
25 4,00 1.60 6.40
26 3,85 1.48 5.71
27 3,70 1.37 5.07
28 3,57 1.27 4,55
29 3,45 1.19 4,11
30 3,33 1.11 3.69
31 3.23 1.04 337
%2 3,13 9.80x10~4 3,07
33 3,03 9.18 2.78
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