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ABSTRACT

A simple one dimensional model is developed to account for the ob-
served vertical temperature structure of the mid-latitude troposphere.
The model includes radiative heat fluxes through a simple linearized law
and convection via a convective adjustment. The novel feature of the mo-
del is the inclusion of the vertical heat fluxes due to baroclinic eddies.

Given an initial vertical temperature profile,the structure of the
eddies is calculated from linear stability theory and the amplitude is
determined from a finite amplitude equilibration condition. The vertical
heat flux due to the eddies is then computed and this flux is used, with
the radiative flux, to integrate the thermal equation forward in time
to obtain a new temperature profile. A convective adjustment is performed
if necessary, and the process is continued until an equilibrium tempera-
ture profile is reached.

The model is first integrated without the eddy heat fluxes to obtain
a radiative-convective temperature profile. This serves as both a start-
ing point for the radiative-dynamical calculations and as a basis for
comparison of the results of the radiative-dynamical calculations.
Radiative dynamical equilibrium (RDE) profiles are then calculated for
baroclinic waves of zonal wavenumber 3, 6, and 9. The RDE profiles for
wavenumbers 3 and 6 do not differ significantly from the radiative-convec-
tive equilibrium OCE) state; in particular the profiles stillhave fair-
ly deep convective regions at the bottom of the atmosphere. The RDE
profile for wavenumber 9, however, is stable all the way to the ground
and, except for being somewhat too cold, is remarkably similar to the
observed temperature profile at 450 N . It is thus suggested that the
small scale cyclone waves observed in the atmosphere are responsible for
maintaining the observed static stability.

Thesis supervisor: Peter H. Stone
Title: Professor of Meteorology



ACKNOWLEDGEMENTS

I would like to express my thanks to my thesis advisor, Professor

Peter H. Stone, whose advice and comments concerning this thesis have been

invaluable and from whom I have learned what I know of the philosophy of

atmospheric modelling. Appreciation is also due to Prxofessor Jule G. Charney

from whom I have learned something of geophysical fluid dynamics and whose

intuitive understanding of physical processes has been a continual inspi-

ration. And were it not for Professor Eugenia Kalnay de Rivas' course

on numerical weather prediction and her help when I was faced with numeri-

cal problems, this thesis would clearly not have been possible.

Finally my deepest thanks to Maria Rowe, who typed this manuscript

when time was running short.



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . .

Acknowledgements . . . . . . . . . . . . . . . . ...

Table of Contents .. . . . . .. .0.0 .

1. Introduction .. . . . . .... .

2. The Model . . . . . . . . . . . . . .o . . .

2.1 The Predictive Equations . . .. . . . . . . .

2.2 Fluxes Due To Baroclinic Eddies . . . . . . .

2.3 Integration of the Predictive Equations . . .

2.4 Boundary Layer Heat Flux, Surface Temperature,

and Convective Adjustment . . . . . . . .

2.5 Computation of the Equilibrium Profile . . . .

3. Results . 0. 0 0 . a. 0 . 0 .. . . . . . .

3.1 Radiative Convective Equilibrium . . . . . . .

3.2 Radiative Dynamical Equilibrium . . . .

4. Conclusion . . . . . . . . . . . . . . . . . ..

4.1 Discussion of Results . . . . . . . . . . . .

4.2 Suggestions for Further Research . . . . . . .

Appendices

Appendix A. Solution of the Eigenvalue Problem .

Appendix B. The Crank -Nicholson Scheme . . . . . .

References .. . . . . . . . . . . . . . . .

. .* . 2

. .0. . 3

4

5

. .. .. 13

. 13

16

30

33

. .. .. 37

. . . 39

. . . 39

. . . 49

. . . 63

. .. 63

.. .. 68

71

74



1. Introduction

One aspect of the atmosphere in mid-latitudes that has recieved insuf-

ficient attention to date is the average vertical temperature structure,

shown in figure 1.1. In this graph, based on data from Oort and Rasmusson

(1971), we see that the atmosphere may be divided into three regions.

The lowest of these is the troposphere, extending from the ground to about

11 kilometers, where the temperature varies essentially linearly with height,

the lapse rate being about 5.3 K km~. Above this lies the stratosphere,

where the temperature profile is again linear, with a laipse rate of about

.5 K km~.' Between these two regions is the tropopause, a sharp break in the

temperature profile. Considering the rather basic nature of these features,

it is fairly surprising to discover that there have beem few attempts to

explain their existence. Admittedly, the results of multi-layer GCMs bear

a fairly close resemblance to the observations, but these models contain

so many physical mechanisms that it is essentially impossible to determine

which processes are relevant to the problem and which processes can be

ignored. What is needed is a simple model which, because of its limited

scope, clearly defines the processes contributing to the final result.

It is hoped that this paper is a step in the right direction.

The simplest model of the temperature distribution in an atmosphere

is the radiative equilibrium (RE) model. Given the distribution of the

radiatively important gases (H20, COz, 03) in the atmosphere, the require-

ment that the incoming flux of solar (visible) radiation and the outgoing

flux of thermal (infrared) radiation must balance in a state of equilibrium

is sufficient to determine the vertical distribution of temperature. This
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Figure 1.1 Annual average temperature as a function of height at 450 N

latitude. From Oort and Rasmusson (1971)



sort of calculation has been carried out by Manabe & Weatherald (1967) for

the earth's atmosphere with fixed relative humidity and surface temperature

with the result shown in figure 1.2.

The RE profile shown in figure 1.2 is not, however, a very good re-

presentation of the real atmosphere-in particular the average lapse rate

in the lowest 5 km is about 13 K kin, considerably greater than the dry

adiabatic lapse rate of 9.8 K km.' Thus, the atmosphere is statically unstable

and convection will occur until the lapse rate does not exceed 9.8 K km-'

anywhere in the atmosphere. Manabe and Weatherald (1967), noting that in

actuality the lapse rate never exceeds 6.5 K km', made this value the criti-

cal lapse rate at which convection occurs in a radiative-convective equili-

brium(RCE) model in which radiative and convective heat fluxes are balanced;

the temperature profile obtained from this model is shown in figure 1.3.

The RCE profile bears a reasonable resemblance to the observed profile

of figure 1.1, and because of this the RCE model is often invoked to explain

the temperature distribution in the troposphere and the existence of the

tropopause. This however, is a misinterpretation of Mamabe and Weatherald's

results. Free thermal convection cannot occur in an atmosphere with a lapse

rate of less than 9.8 K km,' so it certainly cannot contribute to the main-

tainance of a lapse rate of 6.5 K km.' Manabe and Weatherald realized this

and pointed out that some process other than dry convection must be involv-

ed in maintaining the stable lapse rate; however, as their concern was

primarily with the radiative aspects of the problem, they treated these

unknown processes as convection in order to simplify the calculation.

What then is the process which maintains the statically stable pro-

file of the mid-latitude troposphere against the destabilizing influence
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Figure 1.2 Radiative equilibrium temperature as a function of height.

From Manabe and Weatherald (1969)
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of radiative processes? A possible mechanism which is investigated in this

paper is the upward transport of heat by large scale baroclinic eddics.

Baroclinic eddies (see for example Charney, 1973) are essentially large

scale convective cells which can occur in an atmosphere that is statically

stable but which has a horizontal temperature gradient. To see how such con-

vection can occur and how it can transport heat upward, we refer to figure

1.4, showing lines of constant temperature in a vertical cross section of

an atmosphere which is statically stable and in which temperature decreases

towards the pole. Examining this system via the "parcel" method of stabi-

lity analysis, we note that an exchange of parcels along the line AB raises

a denser parcel than it lowers, increasing the potential energy of the system.

If, on the other hand, air parcels are exchanged along the line AC, a light

parcel is raised and a heavy parcel is lowered, releasing potential energy

and allowing the disturbance to grow. This sort of disturbance is barocli-

nic instability, a quasi-horizontal convective process which, as can be seen

from the figure, transports warm air poleward and upward.

Stone (1972b) suggested that these eddies might be responsible for

maintining the static stability of the atmosphere against the radiative heat

fluxes and developed a simple analytical model for the radiative-dynamical

equilibrium(RDE) state of the atmosphere. Using previous results from

calculations of wavelength, growth rate, and heat transports of baroclinic

eddies in Eady's (1949) model of baroclinic instability (Stone, 1966, 1972a),

he balanced the vertical and horizontal fluxes of heat due to the eddies with

the radiative fluxes and obtained a single algebraic equation for the mean

tropospheric Richardson number of the RDE state. Using typical atmospheric

values of the parameters in this- equation,.he obtained a value of 1.6 K km-'
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Figure 1.4 Lines of constant potential temperature in a meridional

cross section of an atmosphere which is statically stable

and in which the temperature decreases towards the pole.

Exchange of parcels A and B increases the potential energy

of the system, whereas exchange of parcels A and C decreases

the potential energy and gives rise to baroclinic

instability.

pte.



for the static stability (potential temperature lapse rate) of the tropo-

sphere. While this is only half the observed value of the static stability

(3.3 K km), it is a considerable improvement over the value of 0 K km'

given by the dry RCE model.

Stone's model, however, only dealt with the vertically averaged static

stability, not the detailed vertical temperature structure. It thus assumed

that the RDE profile was linear and was incapable of dealing with such things

as the tropopause. This paper is an attempt to extend Stone's model by

making it one-dimensional so as to allow variations of quanitities in the

vertical. The greater amount of information to be gained from such amodel

naturally exacts its price: we will be forced to do a numerical calculation

instead of Stone',sanalytic one and consequently will not be able to under-

stand the processes at work quite as well.



2. The Model

2.1 The Predictive Equations

In this chapter we will develop the radiative-dynamical model to be

used in this study. The model will make use of the Boussinesq approximation,

which assumes the atmosphere to be incompressible, so that we may write the

continuity equation as

a K (2.1.1)

where a, v, and w are, resectively, the zonal, meridional, and vertical

velocities. The use of this approximation in a model which includes the

lowest 20 km of the atmosphere (about three density scale heights) is some-

what dubious, but as the results obtained should be qualitatively correct

we will adopt the approximation to simplify the computations.

The model will be based on the thermal equation

+ - L + V

where & is the potential temperature (which equals the temperature in a

Boussinesq fluid) and Q, is the radiative heat flux divergence. Using

the continuity equation, this may be written in flux form as

In this study, however, we are not concerned with the detailed



three-dimensional temperature structure given by this equation but in the

horizontally averaged temperature structure. We thus average the above

equation around a latitude circle to get

+ - + (2.1.2)

where the overbar denotes the x average. Averaging this equation over y

and requiring the meridional heat flux, vb , to vanish at the as yet un-

specified boundaries of the averaging region, we have

< 0(2.1.3)

where the angle brachets denote the y average. This is a predictive

equation for the horizontally average temperature: given an initial ver-

tical temperature profile and a knowledge of the radiative, and dynamical

fluxes on the right hand side of equation 2.1.3, the equation can be inte-

grated in time to yield the vertical temperature structure at any future

time. At some point the temperature will be such that the radiative and

dynamical fluxes balance and we have the RDE solution which we seek.

In order to calculate the RDE state, then, we must know the fluxes on

the right hand side of equation 2.1.3. As this study is primarily concerned

with the effects of large scale dynamics upon the temperature structure,

the radiative heating will be modelled somewhat crudely by the familiar

linearized law which sets

(2.1. 4)Q, = (= T --3 )



where Se is the radiative equilibrium temperature and t an appropriate

radiative time constant. Putting this expression into equation 2.1.3 gives

t (2.1.5)

We will include two types of dynamical fluxes in this model: convec-

tive fluxes (to be treated in section 2.4) and fluxes due to baroclinic

eddies (section 2.2). Since the driving force of the hmaroclinic eddies

is the meridional temperature gradient (see the introduction), it is clear

that a knowledge of the eddy structure at a give time requires a knowledge

of the meridional temperature gradient at that time. 'e obtain a predictive

equation for this, differentiate equation 2.1.2 with respect to y and then

average over y , giving

- - >(2.1.6)

where it has been assumed that the vertical heat fluxes do not vary with y

(this assumption will be made more explicitly in the next section).



2.2 Fluxes Due to Baroclinic Eddies

In order to calculate the fluxes due to the baroclinic eddies, we use

a model somewhat similar to that used by Eady (1949) to investigate barocli-

nic instability. In Eady's model the basic state of the atmosphere is as-

sumed to be a purely zonal flow (no meridional or vertical velocities)

in which both the zonal velocity and potential temperature increase linear-

ly with height. This flow is found to be unstable to small perturbations

which will then grow to become finite amplitude baroclinic waves (though

since the model is a linear model it is not valid for the finite amplitude

waves). The model used in this study will differ from Eady's model in allow-

ing for vertical structure in both the zonal wind and potential temperature.

The continuity, momentum, and thermal equations for a Boussinesq fluid

are

-0



where + IT+ V + is the advective de-

rivitive, f the Coriolis parameter, o the constant density, p the

pressure, g the gravitational acceleration, and the thermal expansion

coefficient, oc' is given by o= -T where T. is the average atmospheric

temperature. In writing the thermal equation in this manner, it has been

assumed that the eddy time scale is small enough compared to the radiative

timescale that direct radiative effects on the eddies can be neglected.

We now write the fields in the above equations as

where the barred quantities are the basic state fields and the primed quan-

tities are small perturbations on these fields. The basic state fields are

given by

AAW +

where M() - is the magnitude of the meridional temperature

gradient at each level. Putting these expressions into the equations of

motion and retaining only those terms which are linear in the primed quan-

tities gives the linearized equations of motion:



+ 0 ~

L4A - U

Assuming that the perturbations are baroclinic waves with no meridion-

al structure, we write

where k is the wavenumber, c the phase speed, and &= kt the frequen-

cy of the wave. Leaving out the meridional structure off the wave, as has

been done, will create problems later, as it is the merdidional variation

of the horizontal heat flux which changes the meridionaAl temperature gradi-

ent (see equation 2.1.6). Correct modelling of the merdIdional structure

of the waves, however, requires the inclusion of the mesridional variation

of the basic state (see Stone, 1969) and this would comuplicate the present

model by requiring the addition of a second dimension. We will thus ignore

the meridional variation of the wave except when it is required for the

evaluation of equation 2.1.6, where we will introduce a particular form for

the horizontal heat flux.
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Using the above form for all perturbation quantities in the lineariz-

ed equations of motion, we get a system of equations in which the only

variable is :

+ ~0 (2.2.1)

c~ + 0 Z= Sv- ?(2.2.2)

c =-Su (2.2.3)

(2.2.4)

A(C+ - eg 3M%/ = + (2.2.5)

These equations may be combined to give a second order ordinary differenti-

al equation for w, the perturbation vertical velocity:

This equation may be simplified considerably by making the quasi-ge-

ostrophic assumption, i.e. by assuming that the Rossby number of the dis-

turbance is small compared to one. Writing the bracketed quantity in the

first term as i we recognize the second term of

this sum as the square of the Rossby number and thus neglect it. Then com-

paring the last term in the equation to what remains of the first, we have

again the



squareof the Rossby number. Thus, with the qurasi-geostrophic asssumption,

the equation for the perturbation vertical velocity is

zJjci 0-4~%)~ (2.2.6)

Equation 2.2.6 is of the form

where D is a second order non-linear (the coefficients depend on I

through a and 0 ) differential operator which has a parametric

dependence on c a . This equation, with two boundary conditions on

, constitutes an eigenvalue problem for c awd k ; given a value of

k there are only certain values of C for which both the equation and the

boundary conditions on o are satisfied. One of these is easy enough to

come by: we simply require that 0 vanish at the earth's surface ( = 0

The other boundary condition should presumably be some sort of radiation

condition at 2 - c but this would be difficult to use in our model, go we

will instead require that a also vanish at some height, a , in

the atmosphere. If we pick 1A to lie in the stratosphere, the high sta-

tic stability there should lead to small y anyway, so setting w

equal to zero should not drastically affect the results.

The details of the solution of the eigenvalue problem presented by

equation 2.2.6 are given in Appendix A. Essentially, the derivatives in

equation 2.2.6 are replaced by finite difference representations based on



the values of w and at N specif ied levels -,,.4 , --- aI (see

figure 2.2.1), resulting in a system ofiN algebraic equations for o. w.

. The eigenvalues of this system of equations are the roots of

a polynomial of order N in (ct a) ; had the approximations leading to

equation 2.2.6 not been made, the polynomial would have been of order 3N

requireing more computer time and creating problems with computational sta-

bility. When the resulting problem is solved, one gets, for a specific val-

ue of k , N possible values of C ; these values are the phase speeds

for i pairs of growing and damped baroclinic modes. For this problem we

pick the gravest baroclinic mode, as this has the fastest growth rate and

is thus likely to dominate the flow at finite amplitude.

To find the structure of the gravest baroclinic mode, one solves the

eigenvalue problem for a particular value of - and then puts this .

and its associated C back into the system of algebraic equations for

* , , (equation A.6) and solves for the value of W at the

8 levels. To compute the other relevant fields, we note that from equa-

tions 2.2.1, 2.2.3, and 2.2.5

U (2.2.7)

(2.2.8)

3-.. - [.,0 - a l .(2.2.9)

Written in finite difference form, these allow one to compute the temper-

ature and meridional velocity fields of the. eddy from a knowledge of
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Figure 2.2.1 The vertical grid used in solving the eigenvalue

problem for the eddies



In the preceeding analysis of the baroclinic eddies, the assumption

was made that the amplitude of the eddies was small enough that the equations

of motion could be linearized about the basic state. The result of this as-

sumption is that the solution for the eddies has an unknown amplitude which

grows exponentially with time. In a physical flow the eddies would soon

reach a large enough amplitude that they would interact with the mean flow,

changing the flow and eventually reaching some sort of equilibrium with it.

As a linear model like ours is not capable of describing this equilibration

process, it will thus be necessary to add it as a seperate part of the model.

A detailed approach to the finite amplitude problem is quite complex

(see e.g., Pedlosky,1970) and well beyond the scope of this model, so we

will have to use a much simpler approach. The two bits of knowledge requir-

ed are the structure and the amplitude of the eddy when it has equilibrated

with the mean flow. The first is easily dealt with by imaking the so-called

"shape assumption", i.e. by assuming that the structure of the finite amp-

litude wave is the same as that of the linear wave. Thius we assume that the

V,) I , and fields of the finite amplitude wave are given by equations

2.2.6, 2.2.8, and 2.2.9 but that these fields are multiplied by some com-

plex amplitude factor A.

To determine the amplitude factor, we note that in Pedlosky's (1970)

model, an inviscid flow with p : o (section 6 of Pedlosky) equilibrates

when the perturbation meridional velocity is of the same order as the total

shear of the zonal flow (if the meridional and zonal wavelengths of the dis-

turbance are approximately equal). This appears to be true of flows in

the laboratory and nature as well, and since the total shear of the zonal



flow is of the same order as the zonal velocity, we will pick the ampli-

tude so that the eddy meridional velocity, Av , is of the order of

ai . Thus we write

0 A

or

0V/

where the asterisk denotes the complex conjugate. This result is by no means

exact, though, so the model should be checked for its sensitivity to the

amplitude.

Given the amplitude of the wave, we are now in a position to compute

the heat fluxes VA and (<aA0 required by equations 2.1.5 and

2.1.6 It should be noted that in the notation of the present section these

fluxes are (v P )+ -[4t)(kKx ) 1 and { e - e- e

respectively. To simplify these expressions, we ignore the time dependence

(which does not enter any of the calculations), do a bit of algebra, and

perform the X average, getting

-
k



Similarly,

As noted before, the present form of the meridional flux is not ade-

quate for the model because it lacks the dependence which will contri-

bute to the change in the meridional gradient through the flux divergence

in equation 2.1.6. We will thus add a meridional variation to the flux by

multiplying Ie (v) by 6 -) , where L is the

distance over which the flux goes from zero through a maximum and back to

zero. That this is a fairly good representation of the flux may be seen

from figure 2.2.2, which shows the meridional heat flux due to transient

eddies as determined by Oort and Rasmusson (1971) plotted with a parabola

which goes to zero at ZO*tA latitude and the pole ( L 8000 Ltm).

That this form agrees well with the data arises from the fact that in an ex-

pansion of the flux in, say, Legendre polynomials, the lowest order term,

representing a heat flux across the equator, must vanish identically so

that the first term in the expansion resembles a parabola. Thus we write

Putting the expressions for vO aA /39) into equations 2.1.5 and

2.1.6 gives

w&_A+(2.2.11)
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Figure 2.2.2 Yearly average mean sensible heat transprort due to transient

eddies, (v~T'1 as a function of latitude. From Oort and

Rasmusson (1971)

0 Oort and Rasmusson's data

parabolic fit to data



and

S+ e - (2.2.12)

These are the predictive equations to be used in our model; equation 2.2.11

is applied at each of the levels in the model while egmation 2.2.12 is ap-

plied only in a vertically averaged sense.

The reason for the restriction on the use of equation 2.2.12 is that

a one dimensional model cannot incorporate processes (such as horizontal

variations of the vertical heat flux) which play an important role in de-

termining the meridional temperature gradient. Thus, What we will do is spe-

cify the shape of the vertical distribution of (S ) and use equation

2.2.12 to determine its magnitude. Figure 2.2.3 shows the vertical dis-

tribution of the mean zonal wind speed at 45 *O as determined by Oort

and Rasmusson (1971). We will use this to specify the shape of the Zk pro-

file and thus, through the thermal wind relation, the (Z ) profile used in

the model. The nearly linear a profile below 11 km in figure 2.2.3 in-

dicates that the meridional temperature gradient is a constant, say O

in this region. If we average equation 2.2.12 over the region, we have

an equation telling how this averaged gradient, , changes with

time in the model. Then at any time we will determine ithe '5 and

profiles needed by the model from the observed profiles and

by the relations
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Figure 2.2.3 Annual average mean zonal wind at 450 N latitude as a function

of height. From Oort and Rasmusson (1971)
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and

The profiles thus always have the same shape as the observed profiles but their

amplitude is greater or less than observed depending on whether

is greater or less than .



2.3 Integration of the Predictive Equations

In order to find the RDE state it should thus only be necessary to

integrate equations 2.2.11 and 2.2.12 forward in time from some initial

state until an equilibrium profile is reached. It should be pointed out

here that while the process to be described below will be refered to as

a " timeintegration", it is really an iterative procedure based on the no-

tion of a time integration. Thus the initial profile will actually be an

initial guess of the RDE temperature structure and equations 2.2.11 and

2.2.12 will be used to make corrections to this profile in a manner similar

to finding the zeros of a function by Newton's method. This distinction

is made because the major concern is with the equilibrium state, not with

the details of how the state is reached. Thus it may on occasion be conve-

nient to use a numerical procedure which, while not strictly valid for a

time integration, will be good when applied to an equilibrium state. With

this explanatory note,we return to the language of time integration.

The integration of equation 2.2.12 is fairly straightforward; given the

temperature structure at a particular timestep, we use the model of barocli-

nic instability to compute the eddy flux divergence on the right hand

side of the equationand then do a forward timestep. Thus, with

denoting at the 4 timestep, equation 2.2.12 is written as

I I Pe-V
11 1~ Ze'J ~~ V~ )L

so that the new meridional temperature gradient is



L.K >V(T_ (2.3.1)

where At is the length of the timestep.

More care must be used in the integration of equation 2.2.11. After many

months of encountering a numerical instability that did not succumb to the

use of a smaller timestep interval, at , the author finally discovered

that the equation is a disguised diffusion equation with a non-constant

diffusion coefficient and is thus unstable when a forward or leap-fro.g

timestep is used. To see this, recall that by equation 2.2.9

so that the eddy flux on the right hand side of equation 2.2.11 is

where



and

Thus, equation 2.2.11 may be written as

- (2.3.2)

where the diffusion term is explicitly exhibited as the first term on the

right hand side.

The time differencing scheme used to avoid the numerical instability

arising from this term was the Crank-Nicholson scheme, an implicit scheme

which is discussed in Appendix B. One characteristic of this scheme is that

it requires values of the temperature at the upper and lower boundaries

to obtain a solution to equation 2.3.2; it should be emphasized that these

are not required by the physics of the problem, but are ronly needed by this

particular computational scheme. These boundary conditions and processes

other than the baroclinic eddy transports are the subject of the next sec-

tion.



2.4 Boundary Layer Heat Flux, Surface Temperature, and Convective Adjustment

The preceding discussion has been limited to processes occuring

in the free atmosphere. In reality there is a lower boundary to the

atmosphere and heat fluxes across this boundary will be important in

determining the atmosphere's thermal structure. Rather than including

a detailed model of the boundary layer in our computations, however,

we will simply specify the sensible heat flux from the surface to the

atmosphere. Over ground, this flux is of the order of 100 to 200 W m-z

(Taylor, 1956; Yap, Black, & Oke, 1974 ) and over the ocean it is about

20 W m~ (Pond, et.al., 1971) . Averaging these values and accounting

for the fact that there will be a small flux from the atmosphere to the

ground at night, we will pick a value of

H = 50 W m-z (2.4.1)

for the boundary layer heat flux.

We will assume that this heat flux is deposited in the lowest layer

of the atmosphere, so that the total amount of heat, AM , added to

this layer in the period of time A (one timestep ) is A9= 9A

The columnar mass of the lowest layer is pA where p is the density and

A the layer thickness, so the columnar heat capacity is cPA

and the change in temperature of the lowest layer at each timestep due

to the heat flux is



- A t(2.4.2)

For the lower temperature boundary condition required by the Crank-

Nicholson scheme, we will simply extrapolate downward from the temper-

atures at the two lowest levels in the free atmosphere in the previous

timestep. Since in most cases these two levels will lie within a con-

vecting region (i.e. a region of neutral stability) this will usually

mean setting the surface temperature equal to the temperature at the

lowest level. In actuality there will always be an unstable region

close to the surface which gives rise to the surface sensible heat flux,

but this region is restricted enough in vertical extent that it will not

affect the eddy dynamics. The use of temperatures from the previous

timestep to obtain the surface temperature is one of the numerical pro-

cedures mentionedpreviously which, while not accurate in a time-march-

ing problem, is legitimate for an equilibrium state.

Because of the high static stability of the stratosphere, dynami-

cal effects at the upper boundary will be small. We will thus set the

temperature there equal to the radiative equilibrium temperature.

If for some reason (such as the boundary layer heat fluxes) a

portion of the atmosphere becomes statically unstable, a convective

adjustment is needed to bring it back to neutral stability. Consider

the two levels, shown in figure 2.4.1 at which we know the temperature.

Each of these levels is considered to be at the center of a layer of air

of thickness A , and the temperature at a level is taken to be

the average temperature of the corresponding layer. If the temperature

of the lower layer, ea , is less than that of the upper layer,

.IA 0 -



Figure 2.4.1 The layers of the atmosphere, centered on the grid

levels, which are used to do convective adjustments

Ar
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the configuration is stable and nothing need be done. If,

however, ,,< k , the system is unstable and convection will occur,

mixing the air masses adiabatically until both layers are at the same

temperature V' . If the total heat is to remain constant (i.e. if

the process is to be adiabatic), the temperature of the layers after

convection must be

+ (2.4.3)

To adjust an unstable temperature profile, we start at the bottom

of the atmosphere and compare two adjacent layers. If the layers are

stable, we move up one level and compare the next two layers. If the

configuration is unstable, we perform the adjustment given by equation

2.4.3 and then move up to check the next two layers. When we reach the

top of the atmosphere we return to the bottom and start again, continu-

ing until there are no regions of instability left.



2.5 Computation of the Equilibrium Profile

Having developed the details of the model, we now proceed to the

calculation of the RDE equilibrium state. Given k and a temperature

profile, the eigenvalue problem (equation 2.2.6) is solved for W , which

is then used to compute U9 , v, and - from equations 2.2.7, 2.2.8,

and 2.2.9, and from these the amplitude of the wave is calculated (e-

quation 2.2.10). A forward timestep is then made using equations 2.3.1

and 2.3.2, the heat from the boundary layer is added to the lowest at-

mospheric layer (equation 2.4.2), and a convective adjustment is per-

formed if necessary (equation 2.4.3). This.procedure, shown in the flow

diagram of figure 2.5.1, is continued until an equilibrium profile is

reached.



Figure 2.5.1 Flow chart for the radiative -dynamical equilibrium

calculation.



3. Results

3.1 Radiative Convective Equilibrium

Before proceeding with the full radiative-dynamical equilibrium

calculation we will compute the radiative-convective profile which we

get by leaving the eddy dynamics out of the model. This will serve

several purposes. First, by repeating Manabe and Weatherald's radiative-

convective calculation we will be able to check the present model and,

in particular, see how well the Newtonian cooling law of equation 2.1.4

approximates their more detailed radiative calculation. Also, compari-

son of a true RCE calculation (one in which convection gives a neutral

lapse rate rather than the stable rate used by Manabe and Weatherald)

with the full radiative-dynamical calculation will enable us to dis-

tinguish between the effects of radiation and convection and the effects

of the baroclinic eddies.

In all the model runs to be discussed in this chapter the upper

boundary at which we set W to zero is taken to be at2l kilometers, and

between this height and the ground there are,at one kilometer intervals,

20 levels at which the various fields will be computed. We must also

specify a number of quantities at these levels. The potential temperature

of the radiative equilibrium state, A , will be that computed from

the radiative model of Manabe and Weatherald. This 4 profile is shown

in figure 3.1.1. The profile of the zonal wind, U , will be that of

figure 2.2.3, and from this the profiles of C and A will be calcu-

lated. The meridional gradient of the radiative equilibrium temperature,

at 450 N can be computed from satellite observations of
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Figure 3.1.1 Potential temperature as a function of height for the radia-

tive equilibrium model of Manabe and Weatherald (1969)



albedo, and is found to be about 1.3 x 10 KkInf'. The time step used in

the calculations was At= 0.2 day, relatively short compared to the

typical time scale of a few days for baroclinic waves.

For the radiative time constant of the troposphere we will pick the

constant value r: 30 days. In actuality the radiative properties of the

atmosphere, and thus the time constant, vary with height, but this refine-

ment will not be included in our model. To see how the results depend

on the value of t that we choose, calculations will also be done for

Z days and T= 40 days. These calculations will also serve another

purpose, as can be seen by writing equation 2.2.11, the predictive

equation for the vertical temperature structure, in its equilibrium form

(i.e. for & ' ):

Inspecting this equation, we see that T only enters the problem through

the product UIA t , (A being the amolitude of the baroclinic wave.

Thus it is the relative magnitudes of the radiative time constant and the

eddy amplitude which determine the temperature structure, not their

separate absolute magnitudes: a system with vigorous eddies and large

radiative fluxes (large iME , small t ) can have the same vertical tem-

perature struture as one with weak eddies and small radiative fluxes

(small bt- , large T_ ) provided the product JALT is the same for both sys-

tems. A calculation in which we keep IAt constant and change t by a

factor of a may thus be interpreted as one in which t is held con-

stant and lW is changed by the factor a 'tt.

To compare our model to the RCE model of Manabeand Weatherald, we



note that in their equilibrium profile (figure 3.1.2) the potential tem-

perature lapse rate in the lower half of the atmosphere is 4.9 K kfl. We

will thus leave the baroclinic eddies out of the model and take the cri-

tical lapse rate at which convection occurs to be 0 Klan. The result of

this calculation for t=30 days and H = 50 W mLZ (equation 2.4.1) is

shown in figure 3.1.3. We see from this figure that our model has a much

shallower convective region than that of Manabe and Weatherald (8 kilo-

meters in our model as opposed to 13.5 kilometers in theirs) and that

the atmosphere in our model is also considerable colder than theirs.

The reason for this difference is not entirely clear, though it is pro-

bably due to a difference in the heat flux from the lower boundary.

To see how this heat flux affects the profile in our model, figure 3.1.4

shows the result of calculations for heat fluxes of H = 25,H= 50, and H =100

W m'i ; we see that increasing the flux raises the temperature of the lower

atmosphere and increases the depth of the convecting layer. It appears

that a boundary layer heat flux of 400-500 W m- would be sufficient to

bring our profile into correspondence with that of Manabe and Weatherald.

Heat fluxes of this magnitude could be obtained by the inclusion of latent

heat fluxes as well as the sensible heat flux which we have specified,

but the inclusion of latent heat would require some sort of mechanism for

its release via condensation, which would make the model considerably

more complicated. Furthermore, without knowing the value of the boun-

dary layer flux obtained in Manabe and Weatherald's computation we cannot

be sure that this flux, rather than some other difference, is the cause

of the discrepancy between the models. Thus we will stick with the value

of H=50 W mlas the "best value" of the surface heating and interpret
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Figure 3.1. 2 Potential temperature as a function of height for the radiative-

convective equilibrium model of Manabe and Weatherald.
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Figure 3.1.3 The radiative - convective equilibrium solution of Manabe and

Weatherald (solid line) and the RCE solution computed with

the present model using the critical lapse rate of Manabe and

Weatherald (dashed line).
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Figure 3.1.4 The RCE solution of the present model computed with the

critical lapse rate of Manabe and Weatherald for different

values of H, the surface heat flux with S = 30 days.
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the results in a qualitative, rather than a strictly quantitative, man-

ner.

As was pointed out in the introduction, Manabe and Weatherald's

RCE model was not a true radiative-convective equilibrium model since it

took 4.9 K km- rather than 0 K kmnf as the critical potential tempera-

ture lapse rate below which convection would occur. As a basis with which

to compare the RDE profiles to be discussed later, we want RCE profiles

in which a neutral lapse rate is the critical rate. These are shown in

figures 3.1.5 (for various values of H with T= 30 days) and 3.1.6

(for various values of C with H=50 W m'-). The variation of the profiles

with the surface heat flux is similar to that of figure 3.1.4. In figure

3.1.6 we see, as expected, that., as the radiative time constant decreases,

the radiative cooling of the lower atmosphere increases and the profile

tends to look more like the radiative equilibrium profile.
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Figure 3.1.5 RCE solutions of the model for various values of the surface

heat flux with t = 30 days.



48

12.,

10

(k~i
8- 

4 -Il

=30 da

t20 s

11
Z40 20 80 300 3Z0

i m(K)

Figure 3.1.6 RCE solutions of the model for various values of the rad-

iative time constant, ' , with H = 50 W m~2 .



3.2 Radiative-Dynamical Equilibrium

The radiative-convective profiles of figures 3.1.5 and 3.1.6 are

the first order approximations to the vertical temperature structure of

the atmosphere and, as such, will be used as the initial state in our

calculations of the second order approximation, the radiative-dynamical

equilibrium state. The RDE calculations will be carried out for barocli-

nic eddies of three different wavelengths, zonal wavenumbers 3,6, and 9,

as well as for various values of the radiative time constant and surface

heat flux. Zonal wavenumber 3 corresponds to the very long planetary

scale waves, wavenumber 6 is the wavenumber of maximum instability of the

zonal flow, and wavenumber 9 will be used to represent the short sur-

face-trapped cyclones; with these three values we thus cover the range

of scales of baroclinic eddies fairly well (though, for reasons which

will be clear later, we have not included the surface-trapped waves of

wavenumber 12-15).

Figure 3.2.1 shows the RDE profile (solid line) for the "best val-

ue" or control case with ki= 6 , T-30 days, and H=50 W m as well as the

corresponding RCE profile (dashed line). We see that above 12 kilometers

the profile does not differ from the radiative-convective profile while

below this the RCE profile has been modified by the baroclinic eddies.

In particular, the eddies have cooled the lowest 4 kilometers of the

troposphere and heated the region between 4 and 12 kilometers, the net

result being that the lower troposphere has been stabilized. Thus in

RCE convection occurs in the lowest 6 kilometers of the atmosphere, lead-

ing to a neutral lapse rate there, whereas in RDE this region has an
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Figure 3.2.1 The RDE solution for kz = 6, <- = 30 days, and H = 50 W m-f

(solid line) and the corresponding RCE state (dashed line).



average stability of 1.6 K km-. To see how the eddy does this, we re-

fer to figure 3.2.2, which shows the vertical heat flux, pco?(a) , of the

eddy as a function of height. The heating due to this flux is -pc?(43)

so we see that below 3 kilometers the eddy is cooling the atmosphere and

between 3 and 12 kilometers it is warming the atmosphere.

The variation of the RDE profile with the surface heat flux and

with the radiative time constant is shown in figures 3.2.3 and 3.2.4.

Increasing the surface heat flux, H, tends to warm and destabilize the

lower troposphere, so that, for example, the H = 100 W m-?profile is

warmer and has a deeper convecting region than the H = 50 W m~ profile.

Corresponding to this change in the vertical temperature structure there

is a change in the structure of the eddies, as can be seen in figures

3.2.5, 3.2.6, and3.2.2 (for H = 50 W m~L). What we see is that the ed-

dies tend to be concentrated near the regions of low stability, so

that the maximum vertical heat flux of the eddy of figure 3.2.5 is depres-

sed relative to the maximum vertical heat flux of the eddy of figure

3.2.2, and the maximum of figure 3.2.6. is higher than that of figure

3.2.2. Since the magnitude of the maximum eddy flux is essentially the

same in each of the three cases the heating and cooling by the eddies,

being proportional to - (<3) , is greater for the small scale

eddies of figure 3.2.5 than for the larger scale eddies of figure 3.2.6,

which is evident when we compare the RDE profiles of figure 3.2.3 with

their corresponding RCE profiles (dashed lines). The same sort of dis-

cussion is applicable to the profiles for various values of the radiative

time constant shown in figure 3.2.6

Finally, in figure 3.2.7 we show the RDE profiles produced by the
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Figure 3.2.2 The eddy heat flux, pc ?(tZ> , for the kz =6 wave with

T = 30 days and H = 50 W nt (see figure 3.2.1).
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Figure 3.2.3 RDE solutions (solid lines) for the kz = 6 wave with t = 30 days

and various values of the surface heat flux, H, and the cor-

responding RCE states (dashed lines).
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Figure 3.2. 4 RDE states (solid lines) for the k = 6 wave for H = 50 W m
z

and various values of the radiative time constant 'c , and

the corresponding RCE states (dashed lines).
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T= 30 days and H = 25 W m-,
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Figure 3.2.6 The eddy heat flux, , for the kz= 6 wave with

t= 30 days and H = 100 W m-2
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three different scales of eddies when tz=30 days and V= WA. We see

that the profile produced by the eddy of zonal wavenumber 3 differs very

little from the RCE profile while the profile for wavenumber 9 is consi-

derably more stable than RCE. For the wavenumber 9 profile there is,

infact, no convecting region which is resolvable by the one kilometer

grid employed in these calculations. As before, the differences in the

equilibrium profiles can be understood by examining the heat fluxes

due to the eddies, shown in figures 3.2.8, 3.2.9, and 3.2.1 (for k.=6).

We see here that a low wavenumber eddy has a large vertical scale while

a higher wavenumbercorresponds to a smaller vertical scale. Since the

RCE state of each of the eddies is the same, this variation of the ver-

tical scale is not, as in the previous cases, due to the eddy being

trapped in the region of low static stability; what is operating here is

the tendency for geostrophic disturbances such as the eddies under dis-

cussion to maintain a constant aspect ratio . Thus, if L, is the

zonal scale and Lj the vertical scale of the eddy, the two are related

approximately by Lt'~Nwhere N is the Brunt-Vaisala frequency and 6

the Coriolis parameter. This constant aspect ratio is the reason that

higher wavenumber eddies such as k= mQ and k=6 were not included in this

study: their vertical scales would be even smaller than that of the

kaz 9 eddy and could not be adequately resolved by our one kilometer

grid spacing.

Assuming the fluxes of the various eddies to be of the same order

of magnitude, this relation between the vertical & horizontal scales would

imply that the low wavenumber eddies, haveing large vertical scales, would

do less heating and cooling than high wavenumber eddies with samll
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Figure 3.2.8 The eddy heat flux for the kz = 3 wave with T = 30 days

and H = 50 W m-L.
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vertical scales. In the present case this difference is enhanced by

the fact that the magnitude of the heat flux of the small scale eddies

is greater than that of the large scale eddies; because of our amplitude

condition (equation 2.2.10), small scale eddies must be much more vi-

gorous than large scale onesin order to have a total kinetic energy equal

to that of the mean flow.

One very interesting feature of the k,9 profile is thatdue to the

strong cooling by the eddy heat flux, the lowest 3 kilometers of the

atmosphere are actually more stable than the atmosphere directly above

them. This is also true of the real atmosphere as observed by Oort and

Rasmusson (1971), whose data for the annual average potential temperature

at 450 N is plotted with the profile for k,= A in figure 3.2.10.

Except for the shift of the k 9 profile towards the cold end of the

graph, the two profiles are virtually identical below 13 km. While, be-

cause of the deficiencies of our model, this correspondence must be con-

sidered purely fortuitous, the qualitative similarity of the two profiles

suggests that it is the short wavelength eddies which play the major

role in determining the stability of the troposphere.
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Figure 3.2.10 Observed annual average potential temperature at 45* N

latitude from Oort and Rasmusson (1971) (solid line) and

the RDE solution of the model for kz = 9, T- = 30 days, and

H = 50 W m-z' (dashed line).-



4. Conclusion

4.1 Discussion of Results

Despite some deficiencies in our model, the results obtained in

the previous chapter provide us with some idea of how the mean static sta-

bility of the mid-latitude troposphere is maintained. That the tempera-

ture structure cannot be due to a radiative-dry convective balance was

mentioned in the introduction. As was pointed out then, and as can be

seen from figures 3.1.5 and 3.1.6, these processes can only lead to a con-

vecting region (with neutral stability) underneath a region in radiative

equilibrium; since dry convection cannot transport heat against atemper-

ature gradient, it is impossible for it to produce a stable temperature

profile. Baroclinic eddies, however, can transport heat upward in a

statically stable atmosphere and are thus possible candidates for main-

taining the observed temperature structure. The purpose of this paper

is to find out how well these eddies can account for the observed temper-

ature profile.

In discussing the model results, we distinguish between two types of

equilibrium state: radiative-convective-dynamical equilibrium (RCDE) and

radiative-dynamical equilibrium (RDE) The RCDE states are characteriz-

ed by three regions (see figure 4.1.1): a convective region several ki-

lometers deep in which dry convection is the dominant process, a dyna-

mical region from the top of the convective region to about 10 to 12

kilometers in which baroclinic eddies play the major role, and above these

regions, a region in which the atmosphere is in radiative equilibrium.
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Figure 4.1.1 Schematic diagram of the radiative- convective -dynamical

equilibrium state.



The equilibrium states for baroclinic waves of zonal wavenumber 3 and

6 (figure 3.2.7) fall into this RCDE catagory. Due to their large hori-

zontal scale, these eddies also have a fairly large vertical scale, and

consequently the cooling by the eddies in the lower atmosphere is not enough

to offset the sensible heat flux from the ground. Thus the surface heat

flux destabilizes the lower atmosphere and the convecting region is form-

ed.

For baroclinic waves of small horizontal scale (the kz9 eddy of

figure 3.2.9, for example) , the vertical scale is correspondingly small

and the cooling near the ground correspondingly large. These eddies are

thus able to overcome the destabilizing surface heat flux and keep the

atmosphere near the ground stable, leading to the RDE profile of figure

4.1.2. Because of the stabilization of the lower atmosphere by the small

eddies this profile lacks the convective region of the RCDE case and

the dynamical region reaches all the way to the surface.

The observed atmosphere (figure 3.2.10) clearly lacks the convect-

ing region of the RCDE states; in fact near the ground where we would

expect to find the convecting region, the atmosphere is actually more

stable than it is higher up. This is exactly what we see in the RDE

state produced by the zonal wavenumber 9 eddy (figure 3.2.10); for this

wave, the cooling near the ground is so strong that it more than offsets

the surface heat flux and actually stabilizes the atmosphere. While the

RDE state of the wavenumber 9 eddy is significanly cooler than the ob-

served profile, the qualitative similarity between the two suggests that

the static stability of the real atmosphere in mid-latitudes is maintained

by the dynamical heat fluxes of small scale baroclinic waves. There is
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an ample supply of such eddies to do this: at 45*N , zonal wavenumber

9 corresponds to a wavelength of about 3000kilometers, a typical scale

for the cyclones which produce much of our weather. (See Palmen and Newton,

1969, figure 6.10 for such a wavenumber 9 case.)

In conclusion, it should be pointed out that we are in no way making

the claim that dry convection does not occur in the atmosphere. The mean

temperature structure of the atmosphere is by no means observed every-

where at every time: there are many situations in which convection

does occur and in which it is an important mechanism for transporting heat.

What we have tried to do in this paper is show that the explanation of the

mean vertical temperature structure of the mid-latitude tropopause does

not require the invocation of dry convection, as is oftendone, but can

be adequately accounted for in terms of a balance between radiative heat

fluxes and the heat fluxes due to baroclinic eddies. While a number of

deficiencies in the present model prohibit us from claiming that this

contention has been demonstrated to be true, the results obtained tend

to lend support to the hypothesis. Hopefullyfuture models, free of the

shortcomings of the present one, will clarify the matter.



4.2 Suggestions for further research

One of the major shortomings of the model used in the preceeding

work is that it does not include latent heat fluxes which are a very im-

portant source of heat transport in the real atmosphere. In particular,

the surface heat flux of the present model would be increased considerably

if latent heat fluxes were included. Inclusion of latent heat fluxes

in the model would require a parameterization of the release of this

heat by condensation, and while this would not be too difficult an ad-

dition there was not adequate time in which to do it for this paper.

Another hortcoming of the present model was pointed out by P. H.

Stone as the work was drawing to a close: namely that the radiative e-

quilibrium profile used in the model is not the appropriate one for the

purpose of the model. The RE profile used is the profile computed by

Manabe and Weatherald for an atmosphere with a fixed distribuiton of re-

lative himidity This is the true RE profile, i.e. the one which would

occur if there were no dynamics in the atmosphere. In a model such as

ours, however, dynamics is assumed to play an important role, and the

temperature and humidity profiles will not be too much different from

the observed profiles. In this case the appropriate RE profile to use

is that of Manabe and Strickler (1964) in which the observed distribu-

tion of absolute.lumidity is used in the computation. The profile thus

obtained is shown in figure 4.2.1 and is seen to be considerably differ-

ent from the profile of Manabe and Weatherald (figure 3.1.1).

Finally, the present model suffers from limited resolution in the

vertical. With a one kilometer vertical grid it is just possible to
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Figure 4.2.1 Radiative equilibrium potential temperature profile

computed for a fixed distribution of absolute humidity.

From Manabe and Strickler (1964).



adequately represent the vertical structure of the k=9 wave of figure

3.2.9: higher wavenumber eddies cannot be represented well at all.

An attempt was made to run the model with double the present resolution,

but difficulties were encountered in solving the eigenvalue polynomial

(equation A.7) for the phase speed of the baroclinic wave, as doubling

the resolution doubles the order of the polynomial. Solving a high

order polynomial with complex coefficients for its complex roots in an

efficient manner (time is important, as a typical run requires solveing

for the roots at each of 2000 timesteps) is somewhat touchy, but

by no means impossible. One possibility for avoiding polynomials of too

high an order would be a variable grid, with fine resolution near the

ground where we want to resolve the eddy structure and coarser resolution

higher up where the main processes are radiative.

It is hoped that someone will, in the future, correct the deficien-

cies mentioned above and thus clarify the role of baroclinic eddies in

maintaining the static stability of the mid latitude troposphere; it

is an aspect of mid-latitude atmospheric dynamics which, despite the ef-

forts of the present paper, has received too little attention to date.



APPENDIX A: Solution of the Eigenvalue Problem

The eigenvalue problem which we wish to solve is that of equation 2.2.6,

i.e.

S:oIt C+Lk z (A.1)

subject to the boundary conditions that )= o 84 = o, 1.

To solve this numerically, the variables are assumed to be known at N le-

vels in the atmosphere, Z= s, --- where ; i-A

The derivatives in equation A.1 are then written in centered finite difference

form:

and

IA wi,-zw

When these are substituted into equation A.1 and the terms are rearranged,

one gets the equation

A; m + 0

where

(A.2)



Ai= .(c4 ) - (A.3)

+- C (A. 4)

and

t (A. 5)

Writing equation A.2 for i1 , N and remembering the boundary con-

ditions u7: and uO,,to , we get a set of algebraic equations which can

be written as a tridiagonal matrix equation:

B, A, o
C, bt At

C3  ' A3  0 (A.6)

0.....

In order for this equation to hold for a given value of k , the de-

terminant of the matrix must vanish. Expanding this determinant gives a

polynomial of order N in C , ? ~c) , which can be computed by the

recursion relation



The zeros of p Cc are the phase speeds of the iflz pairs of growing and

damped baroclinic modes. Newton's method was used to find these roots, but

as this method is very temperamental in the complex plane, especially with

polynomials of as high an order as ours, a fairly good initial guess for

the root is needed. If the initial temperature profile in the model is

linear, we may use Stone's (1966) model to get a good guess for the phase

speed during the first timestep. Once we have the root for one timestep

this root is usually an adequate guess for the root in the next timestep,

but if the initial profile is not linear or if a root is not a good guess

for the succeeding timestep, we must obtain a guess by other means. In

this case LSQNK2 , a subroutine developed at MIT to find ze-

ros of functions by employing some techniques from complex analysis, was used.

This is a much more certain way to find roots, but because it is also very ~

slow (taking 5 to 30 seconds to find one root), its use was limited to those

cases which Newton's method could not handle. Once the phase speed, C ,

of the desired baroclinic mode is found it is put back into the expressions

for the coefficients A;, Bi, an\AC (equations A.3, A.4, and A.5)

giving numerical values for these. Then Richtmyer's "double sweep" meth-

od (Richtmyer and Morton, 1967, pg. 200) is used to compute the vertical

velocities, w,,ou,,.., , , at the N levels from equation A.6.



APPENDIX B: The Crank-Nicholson Scheme

The Crank-Nicholson time differencing scheme is an implicit scheme-

that is, in an equation of the form = , it uses the predicted

value of K , as well as its past value, in the evaluation of

While this makes the scheme rather complicated computationally, it also

frees it from the numerical instabilities encountered with, say, the leap-

frog method. The equation for which we wish to use this scheme is equation

2.3.2:

() - (B .1)

where

C, ~

and

Writing the last two terms of equation B.1 as

.1 \/

letting the

at level j

overbars for

4 o-o 4

symbol (E) denote the finite space difference centered

at the At timestep, and dropping the angle brackets and

notational ease, we write equation B.1 as



3

- 2- Sr - m.a4~

ZA' LLJ~p~ 341 3
- I~ Y4 -~

4LA.1;~ b4 a 4
3

. Rearranging these terms gives the equation

(B.2)~A4'
/3j4~ ~

/j- 1. j.I
3

. Writing

equation B.2 may be written as

,A + + c4

- ~ At E.

j5- 1 1,4

where

where

C =

(B. 3)

k

A+l

Wlk
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whidh, when written for =1, with the boundary conditions r,: . a = o

andT a ? zL% , is a tridiagonal matrix equation which can be solved

for the new values of the temperature, , , 8 .. . ,by

Richtmyer's "double sweep" method. From equation B.3 we see that we need

values of . (when ) and DA (when - ) in order to solve the

system of equations. It is this, and not the physics of the problem, which

requires the boundary conditions of section 2.4.
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