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ABSTRACT

Tumor Vasculature and Microenvironment during Progression
and Treatment: Insights from Optical Microscopy

Ryan M. Lanning

Submitted to the Harvard/MIT Division of Health Sciences and Technology on June 9, 2009 in

Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Medical

Engineering

ABSTRACT:

In addition to cancer cells, solid tumors consist of a variety of cell types and tissues defining a complex
microenvironment that influences disease progression and response to therapy. To fully characterize and
probe the tumor microenvironment, new tools are needed to quantitatively assess microanatomical and
physiological changes during tumor growth and treatment. Particularly important, is the metabolic
microenvironment defined in tumors by hypoxia (low p02) and acidity (low pH). These parameters have been
shown to influence response to radiation therapy and chemotherapy. However, very little is known about
spatio-temporal changes in P0 2 and pH during tumor progression and therapy. By modifying the technique of
intravital multiphoton microscopy (MPM) to perform phosphorescence quenching microscopy, I developed a
non-invasive method to quantify oxygen tension (p02) in living tissue at high three-dimensional resolution. To
probe functional changes in the metabolic microenvironment, I measured in vivo P0 2 during tumor growth
and antiangiogenic (vascular targeted) treatment in preclinical tumor models.

Nanotechnology is rapidly emerging as an important source of biocompatible tools that may shape the future
of medical practice. Fluorescent semiconductor nanocrystals (NCs), also known as quantum dots, are a
powerful tool for biological imaging, cellular targeting and molecular sensing. I adapted novel fluorescence
resonance energy transfer (FRET) -based nanocrystal (NC) biosensors for use with MPM to qualitatively
measure in vivo extracellular pH in tumors at high-resolution.

While intravital multiphoton microscopy demonstrates utility and adaptability in the study of cancer and
response to therapy, the requisite high numerical aperture and exogenous contrast agents result in a limited
capacity to investigate substantial tissue volumes or probe dynamic changes repeatedly over prolonged
periods. By applying optical frequency domain imaging (OFDI) as an intravital microscopic tool, the technical
limitations of multiphoton microscopy can be circumvented providing unprecedented access to previously
unexplored, critically important aspects of tumor biology. Using entirely intrinsic mechanisms of contrast
within murine tumor models, OFDI is able to simultaneously, rapidly, and repeatedly probe the
microvasculature, lymphatic vessels, and tissue microstructure and composition over large volumes. Using
OFDI-based techniques, measurements of tumor angiogenesis, lymphangiogenesis, tissue viability and both
vascular and cellular responses to therapy were demonstrated, thereby highlighting the potential of OFDI to
facilitate the exploration of pathophysiological processes and the evaluation of treatment strategies.

Thesis Supervisor: Rakesh K. Jain, Ph.D.
Andrew Werk Cook Professor of Tumor Biology, HMS, MGH
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The microenvironment of solid tumors is complex and heterogeneous consisting of a

variety of cell types. The interactions between the components of the tumor

microenvironment and pathophysiology are not well understood. This Thesis focuses on

studying the metabolic microenvironment and microvasculature, both critical

determinants of disease progression and response to therapy. The overall goal is to

develop new minimally invasive tools to perform multiparametric analysis of the tumor

microenvironment during both tumor growth and response to therapy.

Oxygen is a key player in the metabolic microenvironment of tumors, which is typically

characterized by hypoxia. Techniques exist to measure in vivo oxygen tension (p02),

however each method has its intrinsic limitations. No single technique exists to perform

high-resolution spatio-temporal quantification of P02 in the context of the tumor

microenvironment. In this Thesis I develop a method to quantitatively measure oxygen

tension by applying the principles of phosphorescence quenching to multiphoton

microscopy (MP-PQM; Chapter 3). I demonstrate that MP-PQM is able to measure

oxygen in the interstitial space with a resolution as low as 1pm3 using phosphorescent

palladium-porphyrins, previously believed to be unattainable due to transport

characteristics of the porphyrin oxygen sensors. The two-photon excitation properties of

Pd-porphyrin is fully characterized for the first time including the effects of

phosphorescence saturation, an important consideration using mode-locked pulsed

laser sources, and the theoretical in vivo resolution. Finally, I show that the Krogh tissue

cylinder model for oxygen diffusion in skeletal muscle may not be applicable in real-

world capillary networks due to the anisotropic arrangement of the muscle fibers.

In the tumor microenvironment, oxygen has been shown to be heterogeneous and

many models have been postulated to explain the tumor oxygenation due to the

vascular geometry. However, few direct measurements of tumor PO2 exist with spatial

correlation to the tumor vasculature. Secondly, the effect of targeted anti-cancer

therapies, such as antiangiogenic agents, on the tumor PO2 is not well known. Here, I

develop a method to map oxygen tension onto the tumor vasculature with high three-
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dimensional resolution and deep penetration (~400pm) using MP-PQM (Chapter 4).

With this technique, I illustrate the differences in oxygen consumption and spatio-

temporal profiles in PO2 across a variety of tumor types. Further, I introduce a model to

predict tumor oxygenation and tissue PO2 profiles using a simple metric describing the

microvasculature and associated tissue volumes. The results exhibit good agreement

with in vivo oxygen measurements using MP-PQM. Finally, the metabolic tumor

microenvironment is probed with MP-PQM during either VEGF-R2 blockade or

trastuzumab (Herceptin) treatment. Both are treatment protocols translatable to clinical

treatments. The results suggest that antiangiogenic therapies should be titrated for a

limited dose response to transiently increase P02 and therefore the efficacy of radiation

therapy and many chemotherapeutics.

A related metabolic parameter to P02 is the pH of the tumor microenvironment, which

is often found to be acidic. The pH gradients found in tumors across the cancer cell

membranes have protective effects against many chemotherapeutics, reducing their

cytotoxicity. More understanding is needed about how this parameter changes during

tumor progression and therapy so that therapeutic regimens with better prognostic

outcome can be designed. To this end, I introduce a novel F6rster resonance energy

transfer (FRET)-based semiconductor nanocrystal (NC; also known as quantum dots)

biosensor, developed in collaboration with investigators from the Bawendi and Nocera

labs at MIT, for in vivo measurements of pH in tumors (Chapter 5). I show that

nanocrystals act as a two-photon antenna, conferring the ideal photophysical properties

of the NC to acceptor dyes under excitation in the nonlinear regime with MPM. Through

multiple evolutions of NC construct design, a biocompatible pH sensor with limited non-

specific interactions is developed and shown to qualitatively measure pH. Finally, the

NC-biosensor is demonstrated to perform ratiometric pH measurements during

hyperglycemia in the tumor microenvironment and correlate the results with the local

tumor vasculature using multiphoton fluorescence ratiometric imaging. Further, I

present sensing schemes and evidence of NC-biosensors for other analytes important in
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tumor biology as well as the potential for targeting these constructs to the tumor

microenvironment(Chapter 7).

While the metabolic microenvironment plays a critical role in tumor progression and

therapeutic response, other components of the tumor microenvironment also influence

the same parameters. Methods exist to assess each component individually although

many are invasive or require administration of exogenous contrast agents. A non-

invasive multiparametric imaging method is needed to characterize the tumor

microenvironment. In collaboration with investigators in the Wellman Labs, we show

that optical frequency domain imaging (OFDI) is capable of simultaneously imaging the

tumor vasculature, lymphatics, tissue viability and tumor microanatomy with high-

resolution over significant tissue volumes (Chapter 6). Through the development of

novel techniques, instrumentation and algorithms, we demonstrate the unique

capabilities of OFDI to quantitatively image in vivo the microenvironment of model

tumors rapidly and persistently over time without requiring exogenous contrast agents.

We also show that OFDI can study the multiparametric response to both vascular- and

cellular-targeted therapies. The abilities of OFDI for studying tumor biology are

impressive and I introduce additional concepts that may potentially permit non-invasive

measurement of blood flow velocity, vascular permeability, macromolecular transport,

cellular metabolism, edema and spontaneous tumorigenesis (Chapter 7).

The technologies introduced and developed in this Thesis are hopefully only the

beginning of a new era in non-invasive multiparametric analysis of the tumor

microenvironment. Many unanswered questions about in vivo cancer biology and

response to treatment remain and additional tools are always needed to find solutions

and pose new more directed questions. Each new step in advancing our understanding

of the tumor microenvironment may help develop new methods and drugs for treating

cancer translatable to the clinic.
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II.1 Introduction and Motivation:

Solid tumors are complex and heterogeneous tissues consisting of a variety of cell types.

The tumor microenvironment can be ascribed to all components outside of the tumor

cells themselves. This is a broad definition encompassing the vasculature, stromal cells,

extracellular matrix, host tissues and metabolic parameters. All of these biological

components have been shown to play a critical role in both tumor progression and

treatment'. In vivo heterotypic interactions between the tumor microenvironment and

the cancer cells themselves are multifaceted and not well understood. New minimally

invasive tools are needed to perform multiparametric analysis of the tumor

microenvironment to elucidate these underlying mechanisms.

This Thesis will focus on the development of quantitative in vivo imaging tools that

probe the tumor microenvironment. In particular, this work focuses on studying the

metabolic microenvironment and microvasculature, both important determinants of

disease progression and therapeutic response. In this Chapter, I define the metabolic

microenvironment and its important implications on tumor growth, metastasis, and

therapy. I also describe the anatomical and molecular characteristics of the blood and

lymphatic vasculature of solid tumors including consequences of antiangiogenic

therapy. The advances and limitations of current techniques for studying both the

tumor vasculature and metabolic microenvironment are also described. Finally, I give a

brief background of the technologies employed in this Thesis: multiphoton microscopy,

fluorescent semiconductor nanocrystals and optical coherence tomography. This

Chapter concludes with the specific aims and hypotheses driving the work presented in

the following Chapters.

11.2 Metabolic Microenvironment

Hypoxia and low pH are hallmarks of the tumor microenvironment. These physiologic

parameters are important determinants of tumor growth, gene expression 2, metastatic

potential3 , metabolism, prognosis4 -6, and response to therapy''8 . Additionally, these
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physiological parameters vary with tumor location in the host and within the same

tumor from one day to the next9-12 . Furthermore, oxygen consumption and increased

metabolic waste by cancer and endothelial cells coupled with poor perfusion by

abnormal tumor vasculature contribute to the hypoxic and acidic environment of the

tumor. Oxygen sensitizes a tissue to radiation'4 ; therefore, the hypoxic tumor

microenvironment effectively shields cancer cells from radiotherapy. Additionally, many

chemotherapeutics, such as paclitaxel, are pH sensitive and demonstrate reduced

cytotoxic efficacy at the acidic pH's found in solid tumors8,15. Thus, further

understanding of the dynamic relationship between P02 and pH in the tumor

microenvironment during disease progression and treatment is critical to improve

response to therapy.

Energy metabolism in tumors is complex and experimental studies have provided

contradictory results. In vitro studies have demonstrated that the rate of oxygen

consumption is dependent on both P02 and glucose1'6" 7. The Warburg hypothesis

proposes that cancer cell oxidative metabolism is grossly disturbed instead relying on

glycolysis18 . However, this concept has been challenged because many cancers

demonstrate high levels of oxygen consumption19-21. Further, it has long been known

that many tumor types demonstrate high levels of respiration (oxidative metabolism)

relative to aerobic or anaerobic glycolysis . High levels of glycolysis increases the

concentration of lactic acid in tissue and thus was believed to be the sole source of

acidic pH. However, resultant tumor acidity has also been attributed to increased

carbon dioxide (CO2) due to oxidative respiration. Interestingly, an in vivo study

simultaneously measuring P02 and pH demonstrated no correlation between the two

metabolic indicators24, suggesting that tumor cell metabolism is uncoupled utilizing

whatever substrates (oxygen and/or glucose) are available.

11.3 Vasculature of the Tumor Microenvironment

Two types of vasculature, blood and lymphatic, play critical roles in cancer progression

and response to treatment. In solid tumors both are abnormal structurally and
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functionally contributing to pathophysiology. Intravital microscopy methods have

permitted in situ visualization of both vascular networks in the tumor

microenvironment2s-31. Additional techniques have provided insights into in vivo

function (or dysfunction) of the tumor microvasculature and their impact on transport,

metastasis and treatment 3 3. It should be noted that cancer is a complex disease and

the characteristics of the vascular networks, like the metabolic microenvironment is

heterogeneous across tumor types and even within a single tumor.

1.3a BLOOD AND LYMPHATIC VASCULATURE: STRUCTURE AND FUNCTION

Tumor vascular networks are morphologically irregular consisting of dilated and

tortuous vessels with ill-defined routes of transport typified by blind ends and loops29,39-

41. Flow through the blood vessels is intermittent and heterogeneous with many regions

of stasis or flow reversa 4 2-46. Both the abnormal structure and high hematocrit in

tumors influence the variable resistance to fluid flow in the tumor vasculature47'48.

Additionally, heterogeneous expression of vascular cell surface markers reduces

leukocyte-endothelial cell interactions in the tumor vasculature49. The vascular wall in

tumors is also found to be immature in cellular makeup leading to high permeability due

to the presence of fenestrations in the endothelium, absence of supporting cells,

irregular endothelial cell placement, and mosaic structures with interspersed cancer

cellsSO53. Finally, solid stress from the surrounding cancer cells over-burdens the vessel

structural capacity leading to compression of many vessels in the microenvironments4-s7

The striking characteristic of intratumoral lymphatics is that they do not exist in a

functional form38'58'59. The walls of lymphatic vessels are not designed for high pressures

and in fact are found in a collapsed state in many normal tissues. Compression from the

surrounding cancer cells in a solid tumor inhibits any lymphatic transport. Reduction of

the tumor cell burden through cellular-targeted therapy can relieve some of the stress

permitting patent lymphatic vessels in the tumor microenvironment57. Conversely, the

lymphatics at the tumor margin are found to be dilated in many tumors suggesting
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lymphatic metastasis must occur by these routes6o-62 . These lymphatic vessels may be

pre-existing or recruited through lymphangiogenesis63.

Structural and functional malformations in both blood and lymphatic tumor-associated

vessels promote significant interstitial fluid pressures (IFP) in solid tumors64-66. The

combination of increased vascular permeability and lack of functional lymphatics, which

reduce tissue fluid volume, leads to increased IFP. Further, both the oncotic and

hydrostatic pressure gradients across the tumor vessel wall are severely decreased due

to the leakage of macromolecules (protein) and equilibrium between mean vascular

pressure and IFP, respectively 67. These effects in addition to inefficient transport within

the vascular networks are physicochemical barriers to drug delivery to the tumor

microenvironment 34,68

II.3b TUMOR ANGIOGENESIS

The formation of new vessels to supply a growing tumor is a critical step in disease

progression. The requirement of vascular recruitment for tumor growth has been

known for some time 1-71. The limitations of oxygen diffusion in metabolically active

tumors place constraints on continued cell proliferation unless new vessels are

recruited. This process, termed angiogenesis, typically occurs through sprouting or

intussusception from adjacent normal vessels. Vasculogenesis can also contribute to

tumor vessel formation from recruitment of endothelial cell precursors to newly

forming vessels73 . These processes actively occur in embryogenesis and many normal

tissues including during wound healing49'7 4.

Angiogenesis has proved a predictive indicator of tumor progression and response to

therapy in clinical disease 36,75,76. The degree of angiogenesis in the primary tumor has

been shown to be linked to metastases77. In breast cancer in particular, it has been

demonstrated that angiogenesis plays a central role in the progression of disease both

locally and in metastases 78. Clinicopathologic studies have also shown that angiogenesis,

as determined by microvascular density (MVD), correlate strongly with both the

aggressive nature of primary disease and metastatic potential in breast cancer79 -81

30
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Angiogenesis in tumors is hypothesized to be caused by an imbalance between pro- and

anti-angiogenic factors2 . The "angiogenic switch", when the imbalance shifts to pro-

angiogenic factors, is widely understood to be a critical step in tumorigenesis83. The

angiogenic phenotype is not ascribed to all cells within the tumor, but is often found in a

subpopulation that influences vessel formation for the whole tumor. A variety of

soluble factors have been implicated in promoting angiogenesis, but none more so than

the vascular endothelial growth factor (VEGF) family of proteinS84. VEGF has been shown

to be upregulated in both tumor cells and tumor-associated stromal cells51,85. Increasing

VEGF expression leads to increased angiogenesis and tumor growth in animal

models8'',8. Levels of VEGF expression have been positively correlated with poor clinical

prognosis in a variety of cancers80'88' 89. Other factors such as basic fibroblast growth

factor and platelet derived growth factor have been implicated in angiogenesis as

well90' 91. These angiogenic pathways may be more important in some cancers or as

alternative routes of angiogenesis during vascular targeted therapies. Besides directly

supporting angiogenesis through growth factors, these cells often induce down-

regulation of antiangiogenic factors such as thrombospodin through heterotypic

interactions between the cancer cells and stroma92

Lymphangiogenesis is also regulated by the VEGF family of proteins. One isomer of

vascular endothelial growth factor (VEGF-C) has been implicated in peripheral lymphatic

hyperplasia in solid tumors93. Upregulation of VEGF-C has been shown to increase

metastases in animal models37 . Expression of VEGF-C and its receptor VEGF-R3 have

been associated with the presence of distance metastases and poor prognosis in a

number of clinical cancers94-96.

II.3c IMAGING ANGIOGENESIS IN THE TUMOR MICROENVIRONMENT

A number of methods exist to image, blood and lymphatic vessels in the tumor

microenvironment. Histological techniques permit molecular phenotyping of tissue, but

must be performed ex vivo. Further, complications exist in drawing conclusions from

histological samples for both angiogenesis and lymphangiogenesis. Microvascular
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density (MVD) is typically the metric used to characterize tumor angiogenesis. However,

the link between this parameter and what occurs in vivo is questioned in the

literature97. In histology of lymphatic vessels, the commonly used molecular marker of

lymphatic endothelial cells (LYVE-1) has been shown non-specific as it can be expressed

on other cells types98. Non-invasive imaging methods such as magnetic resonance

imaging99, micro-computed tomographyl'o and positron emission tomography01 have

progressed significantly in their ability to assess angiogenesis and vascular functionio2

However, the minimum resolution of these techniques is in the 50-100pm range.

Further, the results of the various techniques used with MRI have proved to be indirect

measures of angiogenesis and vascular function with much debate in the literature on

qualitative meaning03 ,104.

Figure 1I-1 Intravital optical microscopy of murine window chamber models. (a) Dorsal skinfold chamber
model (DSC). (b) Cranial window model (CW). (c) Mammary fat pad chamber. (d) Normal vascular
networks in the dorsal skin of a SCID mouse taken in a DSC (a). Both capillary networks and larger arteries
and anterioles are seen paired with veins. (e) Vasculature in a murine brain from a CW (b). The large
venous sinuses are visible as well as the convolute cortical capillaries. (f) Vasculature in the mammary fat
pad of a female SCID mouse bearing a MFP chamber (c). Upon closer inspection the optical distortion
effects of the adipocytes can be seen. The lower right of the image also contains a mammary duct
containing fluorescent contrast. All images are mosaic colorized depth projection from MPM angiograpy.
Mouse model animations courtesy of L.L. Munn. Scale bars - 500pm.

32



CHAPTER 2

Intravital microscopy has proved a useful tool in understanding both angiogenesis and

lyphangiogenesis in the tumor microenvironment 05. This term is ascribed to a variety of

optical techniques that employ non- or minimally invasive methods to image in vivo

vascular networks. The resolution of intravital microscopy ranges from less than one

micron for multiphoton microscopy (MPM) to 10 microns for wide-field epifluoresence

or transillumination microscopy. With modified techniques, functional parameters can

also be quantified or assessed with intravital microscopy. Many of these methods will be

discussed in greater detail below.

Coupling intravital microscopy with animal models generally requires special tissue

preparations to provide access to the tumor. In situ preparations using tumors grown

subcutaneously in regions of thin epidermis such as the murine ear, tail or foot can be

used although light penetration is limited. Acute preparations such as extiorization of

the abdominal mesentery'06 or surgical exposure of subcutaneous tumors through a

skin flap provide direct access, but also disturb the microenvironment and have limited

repeatability. Chronic window chamber preparations provide relatively long-term non-

invasive access to the tumor vasculature microenvironment2 (Figure 1l-1). In this Thesis,

nearly all imaging was performed in murine tumor models bearing dorsal skinfold

chambers (DSC), mammary fat pad chambers (MFP), and cranial windows (CW).

II.4 The Role of Oxygen in Solid Tumors

Hypoxia, or low oxygen in the tumor microenvironment has been known for some time

to be an important indicator of progression and response to therapy. However, only in

the last two decades have the various techniques to measure oxygen become readily

available in both the laboratory and clinic. This has permitted clinicians to study the

prognostic significance of tumor oxygenation and laboratory investigators to study the

sources and potential implications in the tumor microenvironment. Three areas of focus

have arisen from these studies. The first is the tumor cell selection and genetic

alterations influenced by hypoxia107. The second involves the pathophysiological

origination of these oxygen fluctuations and their implication in disease progression and
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treatment"'-"'. Lastly, the complex effect of certain treatments on the tumor

oxygenation and the role this may play in rationally scheduling combined therapies is a

major focus of translational researchio,82,112-116. Regarding oxygen tension in the tumor

microenvironment, this thesis will focus on the latter two avenues.

1.4a MOLECULAR EFFECTS OF TUMOR OXYGENATION

The major molecular target identified in modulating cancer cell response to hypoxia is

hypoxia inducible factor a (HIF-la). This protein is constitutively expressed, but typically

undergoes degradation in normoxic environments. When not degraded, HIF-la acts as a

transcription factor regulating many cellular responses to hypoxia such as growth

factors2 , angiogenesis" , metabolism (increasing glycolosis and decreasing pH) 18 ,

apoptotic pathways1"9 and metastatic potentia120. The regulatory pathways controlled

by HIF-1 pathway are very complex and their effects on tumor growth can be

contradictory. Typically the effects of HIF-lc are enhanced by oncogenes or mutations

in tumor suppressors that may interrupt some of the pathways that inhibit tumor

growth'.

Expression of HIF-1a has served as a prognostic marker for unfavorable outcome

in many cancers 1-123 Therefore, HIF-1 would appear to be a good target of therapy in

tumors. Unfortunately direct inhibitors of HIF-1c are still under investigation and the

result of inhibition is difficult to realize due to its complex regulation in the cell124,2 .

Investigations have therefore also focused on other regulatory downstream or upstream

elements in the HIF pathway126 ,127. The majority of studies have focused on three major

targets of HIF-la. The first is a glucose transporter involved in glycolysis - GLUT1.

Increased expression of this gene in tumors has been indicative of increased or

deregulated glycolysis12 8. The second is CAIX, a carbonic anhydrase that regulates cell

pH and is an isozyme found only associated with cancer 2 9. Finally, HIF-1a has been

shown to directly upregulate vascular endothelial growth factor (VEGF) and other
107,117angiogenic promoters ' In neoplasia, the VEGF family of proteins is correlated with

angiogenesis, vessel permeability, tumor growth and clinical outcome49. Using both
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GLUTI and CAIX as molecular markers, hypoxic regions of the tumor can be specifically

determined in some cancer models1 , however results in clinical cancers are mixed13.

Similarly, in vivo VEGF expression has been shown to be regulated by oxygen gradients

rather than absolute levels of hypoxia3 2 ,1 3

II.4b CLINICAL MEASUREMENTS OF TUMOR OXYGENATION

Hypoxia has been demonstrated to be a negative prognostic indicator for both disease

progression and therapeutic response in a variety of tumors in the clinical setting. Using

polarographic electrode methods, oxygen tension was measured in metastatic

squamous cell carcinoma patients prior to radiotherapy. Tumors with complete

response exhibited mean P02 around 21mmHg, while non-responding tumors had

hypoxic mean values around 5mmHg 4. Studies using Eppendorf needle measurements

in cervical cancer patients found the level of hypoxia (< 10mmHg) to predict survival for

advanced disease135. However, this prognostic significance has never been observed

with histological assessment of hypoxia136. This is likely due to the fact that only viable

cells can be stained with the bioreductive markers for hypoxia eliminating any necrotic

regions from the hypoxic determination. This discrepancy between P0 2 electrode and

histological measurements has been demonstrated in animal models137 . Hypoxia has

been shown to be a significant prognostic indicator of disease progression regardless of

stage in head and neck cancers13. Interestingly, direct measurements of hypoxia have

not been demonstrated as a significant indicator of disease progression139 . However,

indirect measurements of genes, such as HIF and CA-IX, have shown strong correlation

with disease progression in many different types of breast cancer14 4'141.

Brain cancers have proved challenging to directly study tumor oxygenation given their

anatomical location. However, some limited studies have been carried out using both

polarographic and histological methods. While the histological grade of glioma patients

was prognostic of survival, intra-operatively measured median tumor oxygenation was

not142 . Further confounding results, hypoxic fractions determined by EF5 did prove a
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negative indicator of survival, but did not correlate with direct measurements of

p 2137,143,144

The challenge in quantifying oxygenation in the clinical setting, such as brain tumors,

has lead to the development of additional non-invasive imaging methods. These have

been briefly mentioned in the previous section. Technologies such as (18)F-FMISO

positron emission tomography1 45 and BOLD-MR1146 prove promising for clinical

evaluation of tumor oxygenation147. However, non-invasive clinical imaging modalities

have only, thus far, proven prognostic in animal models 148. Therefore, most studies

focusing on the direct measurement of oxygen in the tumor microenvironment and its

pathophysiological significance have been performed in preclinical models.

I1.4c DIRECT MEASUREMENTS OF P02 IN THE TUMOR MICROENVIRONMENT

The sources of hypoxia in tumors are three-fold. One is chronic due to the

heterogeneous, abnormal and tortuous tumor vascular networks creating regions of

tissue >70[tm from a vessel' 49. Due to limitations on the diffusion of oxygen, large

regions of avascular tumor tissue are often found to be hypoxic. The second is acute

hypoxia due to transient fluctuations in vascular perfusion150 . Finally, hypoxia due to

decreased hematocrit, or oxygen carrying capacity, due to anemic paraneoplastic

syndromes 51 or shunting in the tumor vascular network15 2. The multiple determinants

of tumor oxygenation suggest a very complex relationship between the vasculature,

tumor cells, and metabolic microenvironment.

Using non-invasive optical measurements of P02 such as PQM, many studies have

provided direct assessment of oxygenation in multiple tumor types and preclinical

models. Much of this work has focused PO2 in the intravascular compartment in tumors.

Multiple studies have demonstrated that mean intravascular oxygen tension is lower

than that found in normal tissue i3-16. Specifically, across tumors, vascular P0 2 has been

found to both correlate with perfusion157 and not 24 ,150 .The effect of hyperoxia on tumor

vascular oxygenation has likewise produced conflicting results in the literature. Dewhirst

et al found that the PO2 increase with carbogen (95% 02 and 5% CO2) inhalation in rats
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was only transient 153, while others found a constant level up to 15mmHg higheriss,1s8

Surprisingly, the transient increase in P02 was found not to be accompanied by

vasomotor activity in the tumor vasculature. Increased PO2 induced by hyperoxia has

also been shown to be stable in subcutaneous tumors by fiber optic oxygen probes159.

Importantly, anesthetics have also been found to perturb tumor oxygenation; indicating

an important consideration when performing P02 measurements. Ketamine/xylazine

mixtures have been found to decrease mean tumor oxygen tension by 10-15mmHg

compared to awake animals'55. Pentobarbital anesthesia has been shown to induce
160changes in blood gases likely due to fluctuations in the depth of anesthesia over time

By far the best anesthetic appears to be isoflurane which induces a transient (~20min)

decrease in PO2 before stabilizing 57159.

While some of these studies have been performed in subcutaneously implanted tumors

many have utilized the optically accessible window chamber models for rats 61 and

mice64. These have permitted unique access to quantify macroscale spatio-temporal

properties of tumor models. The difference in intravascular oxygen tension across

different regions of the microenvironment has been observed to decrease towards the

tumor center156. Normal vessels adjacent to the tumor were found to be ~70mmHg,

while those in the tumor margin were ~25mmHg and near the core close to 12mmHg.

Further, these same investigators have shown decreasing longitudinal gradients in

vascular PO2 exist from the fascial surface of the chamber (skin capillary bed) to the

tumor surface 2,13. However, a significant difference between the two surfaces was not

found in mean P02, but only in the 10 th and 25th percentiles of the oxygen distributions,

i.e. number of hypoxic measurements. These effects may be an artifact of the model as

other investigators have not observed such steep gradients between surfaces24

Evidence of this is suggested by the fact that the microvascular density (MVD) is

significantly different between the two regions. Nonetheless, decreasing oxygen tension

towards the core of a tumor would not be unexpected. Even many decades ago,
164histology of human lung tumors revealed a viable margin and necrotic core
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Increasing hypoxia has been further confirmed in the lab as evidenced from in vitro

tumor spheroid experiments165.

Less commonly reported in the literature are interstitial measurements of P0 2

correlated with the microvasculature. A debate exists regarding the tumor compartment

probed by PO2 measurements with PQM. The large anionic charge and binding to

albumin of the water soluble phosphor have lead some to suggest that P02

measurements are dominated by the intravascular space1. Others highlight the

permeable and leaky tumor vasculature as a source of oxygen sensor evtravasation into

the interstitium. Even in normal tissue, interstitial measurements of PO2 have been

successfully performed166' 167. This is likely due to the exchange of albumin between the

vascular and interstitial spaces168.

Noninvasive measurements of tumor oxygenation in the interstitial space have been

performed in colorectal adenocarcinoma xenotransplants in the dorsal skinfold chamber

of SCID mice. A number of interesting findings have resulted from these studies. The P02

in well vascularized regions was found to be equivalent to that in normal tissue and drop

only a maximum of 5mmHg away from a vessel in the region 5 . In less vascularized

regions (vessel spaces > 200pm) heterogeneous shapes in the interstitial oxygen profiled

were found as well as hypoxic and anoxic P0 2 at distances 70-80ptm and 150-200p m

away from the vessel wall, respectively24,1s . Further, no correlation was found between

blood velocity or vessel diameter. In fact, intravascular measurements revealed

perfused vessels with hypoxic PO2 values (<5mmHg). Investigators following the mean

tumor P02 during growth found the values decreasing with time 24 . Given the depth

limitations (~50tm) of the PQM due to tissue absorption and scattering of the excitation

light, this may be due to the hypoxic tumor surface effect observed by othersi6 3 . Many

of the results found using PQM have been confirmed in other studies in the chamber

models employing oxygen microelectrodes. These studies demonstrated the differential

of P02 across regions of the vascular network 5 6 and also realized an inverse correlation

of P02 with vascular distanceso
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Recent studies have focused on temporal fluctuations in tumor P02 and their impact on

hypoxia. Microelectode measurements in the tumor interstitium have demonstrated

instability in median PO2 due to alterations in red blood cell (RBC) flux even at distances

around the diffusion limit of oxygen in the model (140tm) 150. On a macroscopic scale,

up to 50% of the presumed intravascular PO2 has been shown to dynamically change

>5mmHg over 10s of minutes169. The pathophysiologic source of these perturbations are

likely traced to changes in vascular flow 45 and provide evidence of episodic hypoxia170.

Acute hypoxia induced by such fluctuations may have a profound effect on the selection

of malignant cell populations171 ,17 2. Such changes due to transient hypoxia have been
173shown to increase lymphatic metastases in mice

II.4d MODELING TUMOR OXYGENATION

Coupling characteristics of the tumor vascular network with direct oxygen

measurements has permitted the application of mathematic models to describe the

metabolic microenvironment of the tumor. The simplest model employs cylindrical

geometry, originally proposed by Krogh174. Applied in a semi one-dimensional geometry

to intravascular P02 measurements in the tumor, the Krogh cylinder model suggests

hypoxia at distances >140pm from a vessel and in the tumor center 56 . Of course this is

dependent on both the blood velocity in the source vessels and tissue oxygen

consumption (002). Interestingly, the rate of oxygen delivery to the tumor is not

independent of oxygen consumption. Early in vivo experiments demonstrated that

tumor tissue oxygen consumption varied with changes in blood oxygen concentration

and perfusion 5.

More advanced models have taken into account vascular geometry in both two- and

three-dimensional networks. Generally, the heterogeneous structure of the tumor

vasculature is a significant factor in reducing the thresholds (oxygen consumption and
176distances to nearest vessel) required to reach hypoxia . Similar diffusion based models

using exogenous staining of in vivo hypoxia and MVD reveal hypoxic regions even in the

presence of vessels, although the oxygen tension within these vessels is very low154 .
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Other models have included additional metabolic factors related to oxygen. Combining

the diffusion-reaction relationships of oxygen with glucose transport reveals that

reducing oxygen consumption or decreasing the intervessel distance can eliminate

hypoxia in tumor vascular networks177. More complex models that account for

metabolic changes dependent on the local concentration of oxygen reveal gradients in

glycolytic factors.178 The gradients imply that regions of hypoxia can alter the

metabolism of entire macroscopic regions of the tumor. Many of these models have

focused on the formation of chronic hypoxia. However, meathematical simulations have

suggested that the same structural and functional vascular parameters that define

chronic hypoxia also characterize acute hypoxic events, particularly vascular geometry

(distance to nearest vessel)179.

II.4e P02 IN THE CONTEXT OF ANTI-CANCER THERAPY

Beyond the challenges of delivering drugs to tumors34, cancer therapies can both be

influenced by and affect tumor oxygenation. It is well known that oxygen is a sensitizer

for radiation therapy 1 4. However, the efficacy of many chemotherapeutics are subject to

the level of oxygen in the tumor microenvironment. The activity of bioreductive drugs

and alkylating agents are increased in hypoxic environments1'0"8 . Increased

bioreduction in low oxygen is the basis of hypoxic histological stains such as

pimonidazole and EF-5. In fact, many investigators have proposed clever drug designs to

take advantage of hypoxia creating pro-drugs that are activated through
182,183bioreduction ',. Other agents demonstrate reduced cytotoxicity in low oxygenated

tumors, particularly those, like radiation, that create free radicals to damage
110,114tissue '4. Many cytotoxic agents rely on proliferating cells to induce cellular damage.

Tumor cells have been shown to decrease metabolic rates and become senescent in

hypoxic environments2, thus evading some chemotherapeutics 85 . Further, hypoxia can

select for therapeutic resistance and more malignant phenotypes107,172.
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II.5 Methods for Quantitative Oxygen Sensing In Vivo:

There are a number of methods that permit in vivo measurement of oxygen. However,

some are indirect measurements of oxygen concentration, while others are invasive or

require histological examination. It is important to note whether a method measures

oxygen tension (p02), which is related to the oxygen concentration ([02]) through the

specific solubility in a given medium, or a related, but independent measure such as

oxygen saturation (S02) or a molecular marker responsive to a given range. Many of the

methodologies presented here have been reviewed in detail by others86'-88 .

II.5a POLAROGRAPHIC METHODS:

Polarographic microelectrodes have long been considered the "gold-standard" in

biological measurements of oxygen. These microelectrodes, often termed Clark-type

microelectrodes, quantify dissolved oxygen through modulation in the electrical current

due to reduction of molecular oxygen to water at the platinum cathode'89. Due to the

electrochemical reaction, oxygen electrodes consume oxygen within the small

catchment volume surrounding the cathode. Further, the electrodes require

maintenance of equilibrium, a stable immediate microenvironment, for accurate

measurements. This is often obtained by allowing stabilization after application and

utilizing a recessed and coated electrode 190. Advancements in electrode design have

minimized their catchment volume (~' 1 pm) and significantly reduced oxygen

consumption188 . However, biological application of the electrode is an invasive

procedure requiring mechanoreceptors for proper application, perturbs the local

microenvironment due to the occlusion of tissue and is not typically repeatable. Further,

microelectrodes are less sensitive at low PO2 values (<10mmHg)191. A comprehensive

study across a number of laboratory sites examining both clinical and pre-clinical

measurements of PO2 using Eppendorf electrodes demonstrated significantly variability

even in the same tumor models192. However, given the sensitivity, minimal probed

volume and significant resolution (0.01-1 pM [021), the microelectrode is often used as a

reference in the development of other techniques87.
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II.5a HEMOGLOBIN SATURATION SPECTROPHOTOMETRY:

The optical absorbance of hemoglobin changes with the binding of oxygen. Using at

least two wavelengths of light it is possible to determine the fraction of oxyhemoglobin

and therefore the oxygen saturation193 '194 . This method has been applied both in optical

microscopy in pre-clinical models and near-infrared spectroscopy of humans19s. Because

the signal depends on hemoglobin concentration, the oxygen saturation values

correspond only to the intravascular component of the tissue. Current studies are mixed

on the ability to differentiate the contribution of myoglobin from hemoglobin, which

would provide oxygen saturation of the muscular compartment as well196"1 97. While

these methods are optically-based and non-invasive, the relation of oxygen saturation

to P02 is complex. To convert measurements to quantitative oxygen concentrations,

knowledge of the oxy-hemoglobin dissociation curve and local carbon dioxide and pH

required. Further, even in microscopic implementations, the volume sampled is larger

than polarographic methods 87.

I.5b HISTOLOGY - MOLECULAR AND CHEMICAL MARKERS OF OXYGENATION STATUS

Given both the radiobiological significance of oxygen14 and the potentially prognostic

indicator of oxygen levels in tumors2, concerted efforts have been made to develop

histological techniques for assessing oxygen content. While these methods are invasive,

either performed on biopsies or post-mortem, they do provide insight into hypoxic

fractions and molecular profiling. The most common histological markers of hypoxia are

the nitroimidazoles: pimonidazole 98 and EF5199. Under hypoxic conditions, these

compounds are metabolized by cells in vivo leading to reactive anionic species that form

adducts with intracellular macromolecules. Identification is performed by using

antibodies against these adducts. Both compounds have been utilized in the clinical

setting to assess tumor hypoxia 143,200 , and have also demonstrated staining in normal

tissues with physiological hypoxia201. Because adduct formation is dependent on cellular

metabolism, necrotic regions must be excluded from histological assessment. This fact

may also explain the discrepancy with other methods where low PO2 measurements are
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not always correlated with staining137. Recently, 18F-fluoromisonidazole compounds

have been used for non-invasive imaging of tumor hypoxia in the clinical setting using

positron emission tomography 202,203.

In the past decade, additional endogenous molecular markers of hypoxia have been

investigated as immunohistochemical markers. These include the hypoxia inducible

factor 1 (HIF-1) and its target genes CA9 (of the carbonic anhydrase family) and the

membrane glucose transporter GLUT-1 204,20s. However, these molecules are also

regulated by factors other than hypoxia making them indiscriminate markers oxygen

status1
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Figure 11-2 Quenching of phosphorescence by molecular oxygen. The Jablonski diagram illustrates the
electronic energy levels of a luminescent molecule. Single photon absorption is shown for two excited
singlet electronic states (violet and blue). Phosphorescent molecules undergo intersystem crossing to the
triplet state. The excited electron in the triplet state shares the same spin orientation as the ground state
preventing simple relaxation to the ground singlet state. This "forbidden" transition increases the lifetime
of the photosensitized molecule so that relaxation and photon emission occur over a longer time scale.
For a group of excited molecules, this emission is termed phosphorescence to differentiate its longer
lifetime (milliseconds to days) and origin from the triplet state from fluorescence (nanoseconds).
Molecular oxygen, which is paramagnetic and already in a triplet state, can "quench" phosphorescence by
promoting intersystem crossing through collisional non-radiative decay.

........................................... .. .............. I ....................
ow-



CHAPTER 2

II.5c PHOSPHORESCENCE QUENCHING METHODS

The effect of oxygen on the quantum yield of luminescence has been known for quite

some time 20. Further, it was rapidly realized that these changes in luminescence

intensity could be used to quantify the amount of oxygen present207 . For a population of

luminescent molecules, the quantum yield and therefore intensity is directly

proportional to the lifetime of the excited state prior to relaxation to the ground state

and release of a photon. Paramagnetic molecular oxygen can quench most luminescent

molecules by inducing intersystem crossing from the singlet excited state to a dark state

that is either long lived eventually experiencing non-radiative decay to the ground state

or chemically modified 208. A subset of luminescent molecules undergo spontaneous

intersystem crossing to the triplet state after excitation experiencing a longer radiative

rate of decay, phosphorescence, due to the spin-forbidden transition to the ground

state. Molecular oxygen can quench the long lived phosphorescence (microseconds to

days) through collisions with the excited triplet state molecule inducing non-radiative

decay (Figure 11-2).

For most luminescent quenching reactions, collisional quenching by molecular oxygen is

well described by the Stern-Volmer relationship208 , shown in Eq. (11.1)

= = 1 + kqTo[0 2] = 1 + Ksv[o2]I T

The ratio of the emission intensity in the absence, I0, and presence, I, of oxygen is

related to the concentration of oxygen through the Stern-Volmer constant, Ksv, where

kqis a diffusion limited second order rate constant209.

kq = 4rirRDN A/10 3  (|.2)

Here, D is the sum of the diffusion constants for the phosphorescent sensor and oxygen,

R is the radius of interaction and r is the quenching efficiency, usually 1. The Stern-

Volmer relationship can easily be derived by considering the luminescent quantum

efficiency of the sensor in the absence and presence of oxygen,
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10 
p

kp + knr (11.3)

I oc CD = k
kp + knr + kq[O2 ] ([1.4)

where k, and knr are first order decay rates for emissive and non-radiative processes,

respectively. By taking the ratio of 1 to I and substituting for the definition of the

lifetime in the absence of quencher, to = 1/(k, + kny), the Stern-Volmer relationship

[Eq. (11.1) 1 is obtained for a dynamic quenching process. A similar result is obtained if

the ratio of the luminescent lifetimes is used instead. The Stern-Volmer relationship is

non-linear for some compounds depending on the oxygen concentration' 1 .

Probes for oxygen sensing by quenched luminescence utilized constructs based on

palladium(II) or platinum(II) porphyrin moieties, ruthenium (l1) compounds, or osmium

(11)186. The quenched fluorescence of ruthenium(II) is utilized in many fiber optic sensors

such as the OxyLiteTM system 212 and the FOXYTM system 213. Fiber optic sensors have

been applied in both industrial and biological settings. However, similar to the

polarographic electrodes, inserting a fiber optic probe into tissue perturbs the

environment. Osmium probes are in development214; however the long wavelength

emission (> 700nm) makes their use difficult.

By far the most commonly used optical oxygen sensors are the metalloporphyrins. Their

long lifetime (10-100s pis) and large quenching constant, kg, makes them very sensitive

to low oxygen states1'8'188,21s. Palladium metalloporphyrins are widely used for

biological sensing and many water soluble and biocompatible forms have been

developed 215-219. The platinum metalloporphyrins have shorter lifetimes220, unless

bound in a polymer21, making them less useful as soluble probes. The soluble palladium

porphyrins have been applied in a variety of experimental imaging setups including

fluorescence lifetime microscopy24,155,167,222,223 and frequency domain lifetime

instruments22 4
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II.5d OTHER METHODS FOR MEASURING OXYGEN

In addition to the optical methods for determining oxygen status, other relatively non-

invasive methods exist and have been applied in both animal models and the clinical

setting. The relative merits and limitations have been reviewed in detail

elsewhere 187,22. A number of methods have been developed utilizing nuclear magnetic

resonance (NMR) techniques. The spin relaxation rate of 19F nuclei in perfluorocarbons

directly injected into the site of interest is sensitive to the oxygen tension. In

magnetic resonance spectroscopy, endogenous molecular metabolites that are related

to oxygen status of the tissue can be non-invasively quantified . Further, specific pulse

sequences in magnetic resonance imaging are sensitive to paramagnetic

deoxyhemoglobin in the blood (BOLD-MRI) allowing non-invasive assessment of vascular

oxygenation 228. All of these nuclear magnetic resonance techniques are beholden to the

minimum resolution of the instrumentation (~ 100 m3) and measure oxygen status (or

related parameters) over minutes. A related technique to NMR is electron paramagnetic

resonance (EPR), which measures the broadening of the hydrogen electron spin spectral

linewidths of an administered spin probe 229 . The width of these lines is related to the

collision rate of molecular oxygen with the spin probe. EPR oxymetry is less sensitive to

low P02 tissue values than phosphorescent methods187 . However, the technique has

rapidly progressed towards clinical applications230 .

I.6 The Role of pH in Solid Tumors

Similar to oxygenation, solid tumor pH plays a significant role in tumor progression and

response to therapy. It is well known that the tumor microenvironment is typically

found to be acidic8 ,231-234 . The extracellular pH (pHe) in tumors ranges from ~6.3-7, while

by comparison in normal tissue pH is maintained by homeostatic mechanism around

neutral (7.3-7.4)231,23s. In discussing tumor pH, it is important to distinguish between the

extracellular and intracellular compartments. The in vivo intracellular pH (pHi) of cancer

cells is often found to be alkaline relative to normal tissue (7.12 - 7.65 versus 6.99 -

7.20)235. There are three major areas of research regarding the pH of the tumor
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microenvironment. The first is the origination of low microenvironment pH and the

associated transcellular gradient. The second is the effect of pH on tumor progression

including direct effects on cellular genes. Finally, the implications of tumor pH on

therapy have been a major focus in the cancer field for decades.

1.6a ETIOLOGY OF LOW PH IN THE METABOLIC MICROENVIRONMENT OF TUMORS

The cause of acidic pH and the transmembrane gradient in tumors has been long

debated. Hypoxia has been shown to increase glycolysis a process known as the Pasteur

effect 236 . The regulation of glycolysis by hypoxia is directed through the HIF-1

pathway237. However, many tumors do not exhibit the Pasteur effect suggesting acidosis

is caused by other mechanisms. The Warburg hypothesis postulates that acidosis is due

to a metabolic disturbance of cancer cells promoting glycolysis even in aerobic

environments18,20,'s. Highlighting the complex nature of tumor metabolism, it has been

demonstrated that inhibiting glycolysis does not prevent acidification of pHe118 . In fact,

carbon dioxide in addition to lactate has been identified as a significant source of tumor

acidity23 ,232. Instead it is likely that tumors metabolize whatever substances are present

utilizing multiple metabolic reactions including glutaminolysis and the pentose

phosphate pathway. Demonstratably, administration of glucose does increase glycolysis

and lower pH in the tumor microenvironment 231,239,240. Of course not all of the pH

changes are due to glycolytic metabolism as a bolus of glucose also enacts

hemodynamic effects241 '242 . Of particular interest in tumors is how both the

transmembrane and interstitial vascular pH gradients are established.

It has been well established that a pH drop exists across the cellular membrane of

cancer cells in tumors23s,243-246. It is now understood that this gradient exists due to

active transport processes occurring in tumor cells. The Na*/H* exchanger (NEHI) and

H*/lactate cotransporter (monocarboxylate transporter, MCT) acidify the tumor

microenvironment by forcing protons into the extracellular space247 248. Intracellular

alkalinization drives both cancer cell proliferation and glycolysis249. Further supporting

this mechanism is the fact that proton pump inhibitors abolish the transmembrane pH
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gradient 250. These mechanisms protect the cancer cells from the clastogenicity of the

acidic microenvironment 251 ,252 and have profound implications for therapy.

In addition to transmembrane gradients, tumors display decreasing pH from the

vascular wall inward and across the tumor as a whole. In many experimentally studies

tumors, vascular gradients have been measured24 70 234 2 s3 2 s4. The pH drop along these

gradients ranges from 0.1-0.5 units. Gradients have also been found to exist at the

periphery of solid tumors255. These gradients are possibly formed by two different

mechanisms. Poor perfusion and transport of metabolic products from the tumor due to

the tortuous and inefficient vasculature decrease tumor P02 within the interstitium 256.

Second, hydrogen ion diffusion along concentration gradients to the tumor periphery

creates a pH drop across the tumor255. The transport of hydrogen ions is likely carried

with buffers allowing such gradients to be modeled25 7. It should be noted that while

interstitial pH gradients do exist in tumors, they are in no way universal. pHe has been

found to be heterogeneous within a tumor 258, across tumor types259 and even in

patients with similar cancers24.

H.6b EFFECT OF TUMOR PH ON PROGRESSION

The pH of the tumor microenvironment has been shown to promote aggressive

phenotypes. Tumors with increased glycolysis and lactate production demonstrate

increased metastasis in both animal models 257,2o-262 and patients263,264. These results

have led investigators to propose the acid-mediated tumor invasion hypothesis255 ,265

The proposed mechanism for invasion is multistep. The endogenous mechanisms of the

cancer cells decrease pHe which induces normal cell death through p53-mediated

apopotosis2,267 . By upregulating both VEGF 133,268 and interleukin-8269, low pH promotes

angiogenesis increasing tumorigenicity. The acidic microenvironment also indirectly

promotes degradation of the extracellular matrix270272 Finally, low pH reduces immune

screening of the tumor in the microenvironment27 3. Interestingly, a recent study treating

preclinical animal models with sodium bicarbonate, which raised pHe, showed a
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reduction in spontaneous metastasis24. The activity of the Na*/H* exchanger has been

associated with metastatic phenotype248

II.6c IMPLICATIONS OF TUMOR PH ON THERAPY

Analogous to PO2, the pH of the tumor microenvironment exhibits a spectrum of effects

on different cancer treatments. The main culprit in controlling the cytotoxicity of certain

therapeutics is the transmembrane gradient. The interstitial gradients also affect

treatment, but more by spatial heterogeneities in the response of groups of cells to

therapeutic agents. Chemotherapeutics that are weak bases like anthracyclines, Vinka

alkaloids and misonidazole are unable to penetrate the cell membrane to induce
844,275damages,2  . Increasing in vivo pHe through the administration of bicarbonate has

demonstrated increased cytotoxicity of these agents27 6. Conversely, the transmembrane

pH gradient increases the cytotoxicity of weak acids2 77. Drugs that utilize the existing

gradient by modifying pHi are under active investigation ,278 . Interestingly, low pH has

also been shown to confer resistance to radiation therapy 27 9-28 .

A unique approach to treating solid tumors has employed hyperthermia. Coupling

hyperthermia with hyperglycemia, which reduces pHe eliminates or reverses the

transmembrane pH gradient 279,282,283. Presumably, this occurs through a lowering of pHi

and blockage of the hydrogen ion transporters284 . However, in light of recent

understanding regarding the effect of low pH on the malignant phenotype, combined

hyperthermia and hyperglycemia may not be advisable.

I.7 In Vivo Methods for Quantitative pH Sensing in Tumors

A variety of techniques exist for measuring hydrogen ion concentration (pH) in cells and

tumors. Similar to quantification of oxygen, these methods vary in their level of

invasiveness. Some also permit collection of additional parameters to assess pH in

association with other physiological or anatomical features. In discussing the

quantification of pH, it is important to note what in vivo compartment is contributing to

the measured value. The procedures employed can either measure only pHe or pHi,
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although use of multiple probes or applications can simultaneous detect both. Another

difference between techniques that can influence measured values is the spatial

resolution and depth limits of the pH measurements.

II. 7a INVASIVE TECHNIQUES: MICROELECTRODES AND MORE

One of the older methods for in vivo quantification of pH is the application of

microelectrodes sensitive to hydrogen ions (H*). Analogous to the polarographic method

for P02 sensing, pH microelectrodes are invasive and measure pH in the catchment

volume, which varies depending on the probe. Much has also been made about

potential artifacts in the pH values due to disturbance of the tissue acid/base balance

through insertion and consumption235 . Measurements with microelectrodes have been

performed both in patients234 and animal models8 ,25 4,285. These investigators found

intratumor pH gradients ranging in pH drops from 0.1 - 0.5 across the tumor. The

implantable Guillino micropore chamber has also been employed to measure pH and

other metabolites in the tumor microenvironment232. However, the technique lacks any

spatially localized information. Finally, recent work has focused on the development of

fiber optic probes that do not consume hydrogen ions 286 -288. These measurement tools

employ changes in the emission or excitation of pH sensitive dyes placed in permeable

membranes at the tip of the probe. While such probes may not consume the anylate,

they do mechanically disturb the tumor microenvironment.

II.7b NUCLEAR MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY

Intrinsic nuclei and those introduced by exogenous probes are sensitive to the pH of the

local environment. The spin relaxation of the stable isotope of inorganic phosphorous

(31P) is sensitive to the local pH289. Changes in pH induce a chemical shift in the 31P

resonance that can be calibrated for using the Henderson-Hasselbach equation. The

endogenous signal from 31P arises from the intracellular compartment allowing for

differentiation from extracellular pH in tumors243 . In tumor xenografts, the technique

has demonstrated that pH decreases during tumor growth290. The amount of

endogenous 31p is small limiting the signal to noise of pH measurements. Exogenous
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probes labeled with 31P provide greater signal to noise ratios and highlight the

extracellular compartment 24 ,291. The in vivo spatial resolution of 3P magnetic

resonance spectroscopy (MRS) is around 4mm 3292.

Similar to 31P nuclear magnetic resonance measurements, the most common stable

isotope of fluorine ('9F) is also sensitive to pH. Fluorinated exogenous probes have been

developed for 19F MRS that permit simultaneous measurement of both pHi and pHe

quantifying the transmembrane gradient2 46 ,293 . Probes employing the 1H hydrogen

nucleus have been found to be the most sensitive to pH. Intrinsic 'H resonances cannot

be employed due to interference from other endogenous metabolites and water 235 . Due

to higher sensitivity, 'H MRS uses shorter times (20 minutes) and smaller voxel sizes

(~2mm 3) 294 . The use of 'H MRS also allows for correlation of vascular parameters with

MRI 29 and with other metabolites like choline and lactate296. Gadolinium complexes

that are pH-sensitive have also been developed for use at the higher spatial imaging

resolution of MRI (~100pm) 245. Other imaging techniques, such as positron emission

tomography, have also demonstrated potential for noninvasive measurements of pH297

II.7c OPTICAL IMAGING OFPH

Numerous fluorescent dye molecules exist that have absorption or emission properties

that are sensitive to local pH. The two most common dyes used in vivo are BCECF (2',7'-

bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) 298 and SNARF-5F) 299, which are based

on fluorescein derivatives. BCECF is often employed as a excitation ratiometric dye given

that its absorption spectrum changes with pH3oo, 301. The pKa of the dye is in the relevant

physiological range ~6.98. SNARF-5F is also used as a ratiometric dye, though typically

through the ration of its emission. However, the dye is both excitation and emission

sensitive with a pKa near neutral (7.3 - 7.4)299. Both dyes are available as cell permeable

compounds for measurement of pHi.

pH sensitive dyes have been used to measure tumor pHe using fluorescence ratiometric

imaging (FRIM) in a number of studies. Early studies in tumor tissue demonstrated that

FRIM measurements correlated well with pH as determined by microelectrodes302. The
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use of FRIM allows relatively high-resolution measurements of pH compared to other

techniques and correlation with the tumor vasculature. These studies have shown that

the pH is spatially modulated with respect to the vasculature. pH correlates strongly

both with distance from the vessel wall and vascular density24,231,253. However, no

correlation of pH with blood flow or local oxygenation was demonstrated in tumors24

While FRIM is the most common application of these dyes, their fluorescent lifetime is

also sensitive to pH303 and has been utilized to measure pH304. These optical techniques

may provide descent spatial resolution, however axial resolution and depth penetration

(~50ptm) is limited.

II.8 Antiangiogenic Therapy and "Normalization" of the Tumor

Microenvironment

II.8a ANTIANGIOGENIC AGENTS AND THEIR TARGETS

Anti-angiogenic therapy, a vascular targeted agent that blocks the formation and

maintenance of new vessels, was originally conceived as a way to starve a tumor of its

blood supply 30 ,306 . Angiostatin, a 38kDa plasminogen fragment produced naturally

including by some tumors, was discovered by Judah Folkman and shown to reduced

metastases307 and induce tumor dormancy30 . The same group also identified another

endogenous inhibitor of angiogenesis produced from a fragment of Collagen XVIII

termed endostatin309 . While these peptide fragments have demonstrated success in

animal models, clinical trials with endogenous antiangiogenic compounds have only

recently begun310 31

Instead major focus has been on targeting the vascular endothelial growth pathway.

Work in animal models has demonstrated that blockade of VEGF-Receptor 2 (VEGF-R2)

inhibits angiogenesis and delay tumor growth312 . A humanized antibody to soluble

VEGF, bevacizumab (Avastin), has been approved by the Federal Drug Administration for

treatment of colorectal cancer and advanced lung cancer 313 . Recent work has expanded

the field of antiangiogenic therapy to include broad spectrum and small molecule
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tyrosine kinase inhibitors that target multiple VEGF and other growth factor

receptors314,31s. However, in the last decade, results in both the laboratory and clinic

have suggested a more complex role for antiangiogenic agents in cancer therapy.

H.8b NORMALIZATION HYPOTHESIS

The concept of using antiangiogenic therapy to alter disease progression by starving the

tumor of its blood supply has been challenged by both laboratory and clinical results.

Phase I and 11 clinical trials using the contemporary anti-angiogenic agent bevacizumab

have reported varied results with either no evidence of improvement in progression of

disease or only a partial response in some patients"" 4 , 4 ,ne'n 7. Even in relatively well

controlled xenograft animal models, antiangiogenic therapy has produced mixed results.

Early studies administering a single antiangiogenic agent demonstrated initial tumor

growth arrest and vascular regression only to be followed by a second stage of

angiogenesis and tumor relapse49,312,318-320. These results combined with variable clinical

effects have led to the idea that antiangiogenic therapy needs to be rationally scheduled

and may work better in combination with other therapies11,,321. Particularly important

is the dynamic effects antiangiogenic agents have on the metabolic microenvironment

of solid tumors.

It is well known that oxygen sensitizes a tissue to radiation14; therefore one would

expect anti angiogenic agents and radiation to be antagonizing factors. Surprisingly, a

variety of antiangiogenic agents including angiostatin32 2 and blockage of the vascular

endothelial growth factor pathwayn3 324,325 have demonstrated increased therapeutic

efficacy when combined with radiation therapy in animal models. A recent study

employing a xenograft model of glioblastoma and using in vivo microscopy has

demonstrated a vascular "normalization window" during which radiation increased the

tumor growth delay compared to administration before or after 6.

Immunohistochemical analysis also showed decreased hypoxia during the window.

Further, measurements of tumor microenvironmental P02 during antiangiogenic
318,327,328therapy have revealed a period of increased mean oxygen tension '
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The acidic microenvironment is also susceptible to changes induced by antiangiogenic

therapy. Certain antiangiogenic agents have been shown to reduce the cancer cell

transmembrane gradient 329. This gradient, coupled with poor transport properties of

the tumor vasculature present significant barriers to chemotherapeutics330 . Reducing

the intracellular pH and thus the gradient with the acidic microenvironment enhances

the cytotoxic effects of many weak-acid drugs33 1. Animal studies have shown improved

efficacy of cytotoxic therapy when administered with antiangiogenic therapy 3

Clinical trials have provided even further support to a beneficial effect of antiangiogenic

therapy in combination with other treatments. Anti-VEGF treatments have

demonstrated synergistic results when combined with standard chemotherapeutics in

colorectal" 6 and potentially other clinical cancers'1 . A number of mechanisms have

been proposed for the improved response of radiation therapy and chemotherapeutics

in combination with antiangiogenics334 including augmented anti-vascular effects335 ,

increased tumor cell repopulation, and vascular "normalization".

As first presented by my thesis advisor Dr. Rakesh Jain, the "normalization" hypothesis

proposes that the immature and inefficient blood vessels of the tumor are selectively

pruned through antiangiogenic therapy by initiating apoptosis of excess endothelial

cells, decreasing vessel diameter, vascular density and permeability' 3 .These microscopic

changes leave the remaining vasculature with a "normal-like" appearance and may

enhance function. The "normalization" of tumor vasculature by antiangiogenic therapy

has profound implications on combined treatment. The less tortuous and lower

resistance vessels may be able to better transport therapeutic agents to the tumor and

remove metabolic waste increasing tumor pH. Additionally, higher tissue perfusion in

the tumor could mean increased P0 2, enhancing the effects of radiation therapy.

However, other therapeutic agents or radiation treatments must be applied when the

vasculature is optimally "normalized" to have the greatest effect. If therapy scheduling

or dosing is suboptimal, there could be antagonism between cytotoxic and

antiangiogenic therapies or decreased delivery of other therapeutic agents.
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I.8c TRASTUZUMAB AS AN ANTIANGIOGENIC AGENT

Other targeted anti-cancer therapies may also down-regulate angiogenic molecules

through indirect mechanisms. Recently, in an in vivo xenograft model of breast cancer,

trastuzumab (Herceptin) was shown to "normalize" and induce regression of tumor

vasculature and decrease a number of angiogenic factors336. Trastuzumab, a monoclonal

antibody against HER2/neu, is currently used for the treatment of advanced metastatic

breast cancer. As a whole, the clinical results of breast cancer treatment using

trastuzumab have been mixed. Only a subset of HER2/neu over-expressing breast

cancer patients have responded to treatment with others showing no effect with either

monotherapy or in combination with therapeutic agents337,338. Administration of

trastuzumab to HER2-positive breast cancer cell lines in vitro has been promising,

demonstrating decreased growth rate339 and increased radiosensitivity340 . In addition to

promoting vascular normalization, inhibiting HER2/neu may enhance combinatorial

therapies through other pathways.

HER2/neu is a proto-oncogene product that was shown to be amplified or over-

expressed in 10 to 34% of breast cancers and has been associated with poor prognosis

and resistance to chemotherapy in both primary and metastatic disease341 . The

amplification of the gene encoding HER2/neu, c-erbB-2, or activation of the receptor by

heregulin leads to increased HIF-1X 342 and VEGF 343 expression. At the cellular level, the

molecular pathways modulated by HIF-1a increase glycolosis, alter genetic expression,

enhance metastatic potential and induce radiation resistance2" 18. In the clinic, increased

angiogenesis and hypoxia have been demonstrated for HER2-positive primary tumors344

The increased hypoxia in HER2/neu over-expressing breast cancer suggests that its

presence may induce resistance to radiotherapy. It has recently been shown that

HER2/neu amplification protects breast cancer cells against radiotherapy by enhancing

the activity of NF-KB, a protein stress factor that blocks apoptosis in response to

oxidative stress induced by ionizing radiation340. Therefore, targeting the HER2/neu
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receptor with trastuzumab may enhance radiotherapy by potentially diminishing the

hypoxic cell population that may be resistant.

a. b.

Figure 11-3 Principles of multiphoton excitation. (a) Single photon and (b) two-photon excitation from the
ground state of a molecular fluorophore. (c) Hourglass shape of fluorescent emission during single photon
excitation of fluorescein. (d) Under two-photon excitation of the same sample using the same objective
lens, fluorescence is only observed to occur from the focal volume (red arrow).

1I.9 Intravital Multiphoton Microscopy

In the past 15 years, a novel form of optical microscopy utilizing ultrafast lasers and high

numerical aperture lasers has become a critical tool in the study of in vivo biological

properties. This technique, multiphoton microscopy, provides non-invasive optical

imaging with significant depth penetration at high three-dimensional resolution2 s34 s,346

The intrinsic properties of multiphoton excitation allow MPLSM to image fluorescently

labeled structures in tissue with a three-dimensional resolution of ~1 micron up to

depths of 450-600 microns, depending upon the tissue type.

II.9a PRINCIPLES OF MULTIPHOTON MICROSCOPY

The principle of multiphoton absorption in molecules, specifically two-photon was

originally devised by Maria Goeppert-Mayer in 1931347. Ordinarily, fluorescent

molecules are promoted to their excited molecular state with absorption of a single

photon of light of an approximate energy equivalent to the separation between the

ground and excited states (Figure 1l-3a). In two or multiphoton excitation, two or more
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photons of light are simultaneously absorbed by a molecule to reach the excited state

(Figure II-3b). Once excited, the process of fluorescent emission is independent of the

excitation mode 346 . The excitation probability of molecules by a non-linear process

through multiphoton absorption was found to be extremely small at ordinary light

intensities. It was not until the advent of high power light sources such as the maser and

laser that two-photon absorption and excitation of fluorescence could be

experimentally observed348. However, at the light intensities utilized to perform non-

linear excitation of fluorescence, damage to biological tissue would be significant. In the

early 1990s, the introduction of the ultrafast pulsed laser near-infrared laser sources

revolutionized the application of multiphoton excitation to fluorescence microscopy.

By adapting the technique of confocal microscopy, which employed a galvanometer

scanning mechanism to spatially image a sample, Denk et al were able to perform two-

photon imaging of biological samples using an ultrafast laser source345 . In confocal

microscopy, pinhole detection is required in order to reject fluorescent emission from

out of plane excitation for optical sectioning349. This constraint coupled with visible

excitation wavelengths limits both the signal to noise and depth penetration of confocal

microscopy in biological samples. In MPM, fluorescent emission exhibits a quadratic

dependence on incident intensity significantly reducing the probability of excitation

outside the focal volume (Figure 1l-3c,d).

i c P.5)

Therefore, fluorescence only occurs from the focal volume defined by the optics and the

emission can be detected in non-descanned fashion without a pinhole. Since excitation

occurs only in the focal volume, any potentially damaging processes like photobleaching

or thermal effects are limited spatially 350,35 1. This is unlike single photon excitation,

which occurs throughout the sample even though fluorescent emission may only be

collected from one depth focus. Further, the use of near-infrared excitation light (700-

1020nm) populates a region of the electromagnetic spectrum at which absorption in

biological materials by water, hemoglobin, adipose tissue and other chromophores is at
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a minimum 349 . This permits deeper imaging in biological samples than confocal

microscopy. However, it should be noted that optical resolution scales with wavelength.

Therefore radial resolution is slightly higher in confocal microscopy than MPM. In most

literature, including this Thesis, the term "multiphoton" microscopy or excitation nearly

always refers to two-photon excitation. Three-photon and higher orders of excitation

have been observed in certain biological molecules like serotonin 35 2 and DNA labels, like

DAP13 3, that absorb in the ultraviolet range. While these processes exist, they are often

not applied in vivo.

II.9b MULTIPHOTON MICROSCOPY IN CANCER BIOLOGY

Intravital imaging of tumors was first introduced by the Steele Laboratory in

collaboration with the So Lab at MIT 29. Application of MPM to transgenic mouse models

demonstrated quantitative imaging of endogenous molecular reporters, tumor

vasculature and blood flow 2s. Second harmonic generation, a nonlinear optical process

that occurs due to a different photophysical process than multiphoton excitation, can

also be performed in tumors using MPM instrumentation. Coupling MPM and second

harmonic imaging permits imaging of type I collagen in the context of the tumor

microenvironment 35 4. Dynamic changes in the extracellular matrix due to compounds

that induce degradation 355 ,356 or as a result of cellular interaction with the collagen

fibers3 7 can be observed in tumors. Modifications in the technique of MPM allow the

study of molecular transport in the tumor microenvironment through either

fluorescence correlation3 8 or fluorescence recovery after photobleaching3s9,36o

techniques.

The simple theory behind multiphoton microscopy allows for implementation in a

variety of experimental designs. The compounds that are used for imaging can be quite

versatile, permitting the use of some that respond to tissue physiology. This allows for

simultaneous imaging and physiological monitoring of tissue. In the study of neoplasia,

MPM provides many possibilities for studying pathophysiology.
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Figure 11-4 Fluorescent semiconductor nanocrystals: properties and in vivo imaging. (a) NC absorption
unaffected by pH at physioloigical extremes. (b) NCs possess broad two-photon excitation cross-sections.
Inset: Quadratic dependence of NC excitation with ultrafast NIR lasers. (c) In vivo angiography in a murine
tumor model with red NCs. Scale bar - 100prm (d) NC-immunoconstructs (or ang) labeling integrin- $1 in a
VEGF-GFP mouse. Stromal cells (green). SHG from collagen (blue). Scale bar - 150pm.

II.10 Luminescent Semiconductor Nanocrystals

Nanotechnology is rapidly emerging as an important source of biocompatible tools that

may shape the future of medical practice. Fluorescent semiconductor nanocrystals

(NC) 361, also known as quantum dots, can provide the basic scaffolding for constructing

such tools. The intrinsic properties of NCs including high quantum yield, photostability,

tunable narrow emission peak, and broad excitation, has made them increasingly

attractive for biological imaging ,363. The photophysical properties of NCs are relatively

insensitive to the local microenvironment (Figure 1l-4a). The ability to modify surface
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coatings of NCs without affecting the photophysical characteristics of the NC core

permits control of the way NCs interact with and respond to their environment. NCs are

increasingly used in biological research as fluorescent tracers in microscopy364,36s (Figure

1l-4c), imaging molecular targets366 , cell tracking363,367, and sensing36 . Further, NCs have

proven reliable fluorescent markers for in vivo multiphoton microscopy because of an

unparalleled two-photon excitation cross-section36 9,370 (Figure 11-4b). Recently, NCs have

been exploited to study drug delivery and tumor pathophysiology366 ,367,370(Figure 1l-4d).

Fluorescent nanocrystals consist of a spherical inorganic core (2-10 nm diameter)

typically made of CdSe obtained by colloidal synthesis. The core is the source of the

optical signal which is defined by its size. Excitons - excited electrons bound to the

positively charged holes remaining in the valence band of a semiconductor material -

undergo quantum confinement when the size of the NC core approaches the distance

between the electron and hole3713 72. As the dimensions of the NC core become

increasingly smaller than the exciton, the band gap of the material increases. Increasing

band gaps lead to higher energy photons, thus smaller NCs emit at shorter wavelengths

3. The existence of higher molecular-like states in quantum confinement confers the

broad absorption spectra observed with NCs374. An additional inorganic coating, usually

ZnS, creates a protective shell that reduces non-fluorescing relaxation pathways of the

exciton, thus increasing quantum yield. These core-shell NCs also are more robust to

chemical degradation and photobleaching37 ,376. Other core materials (InP and InAs) not

utilizing heavy metals, which are biologically toxic, are under investigation .

However, in vivo toxicity has not been observed in murine studies even with repeated

exposure over extended periods 364,379-382.

For biological applications, inorganic NCs need to be solubolized and passivated to

minimize interactions with biological molecules. Chapter 5 will address this issue in

detail for the development of an ideal NC biosensor that penetrates tumor tissue

without binding. Surface coatings that contain polyethylene glycol (PEG) chains

generally have improved retention times in circulation after intravenous injection362,383-
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387. However, the terminal charge of the PEGs is critical in refining interactions and

transport in tissue, particularly the tumor microenvironment3s-391 . The biocompatible

surface coating is the major contributor to the hydrodynamic radius of the NC an

important consideration when considering delivery and transport in the tumor

microenvironment68 ,392-394. The biocompatible surface coating also serves as a scaffold

for conjugating molecules for targeting and, as will be discussed, sensing.

II.11 Fluorescence Resonance Energy Transfer and Sensing

Conventional ratiometric sensors for pH exhibit either different emissive or absorptive

properties subject to the hydrogen ion concentration. Therefore, two states exist in

these pH indicators, which if resolvable make them internally calibrated sensors. Both

BCECF and SNARF are examples of two-state ratiometric sensors299,300 . While these

probes are reliable in single photon excitation epifuorescence microscopy, the ability to

resolve the two states is impossible in multiphoton microscopy. The innovation of a

ratiometric sensor based on fluorescence resonance energy transfer (FRET) between an

NC coupled with a pH sensitive dye resolves these issues (Error! Reference source not

found.). The construct should assume the excitation properties of the NC, which exhibits

a large two-photon absorption cross-section with a broad excitation range 319,370. This

scheme permits the selection of almost any analyte sensitive dye molecule as excitation

will occur through the NC.

I1.11 a PRINCIPLES OF FRET

The process of FRET involves the non-radiative transfer of energy from a fluorescent

donor molecule to an acceptor. The process was first described in 1948 by Theodor

F6rster 395, hence FRET is sometimes referred to as F6rster resonance energy transfer.

Energy transfer typically occurs from a lower wavelength emitting donor over a short

distance (20-60A) and is due to a dipole-dipole interaction of the donor and acceptor

molecules208. The rate of energy transfer (kT) is inversely proportional to the sixth
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power of the donor-acceptor separation distance (r') and directly related to the

spectral overlap of the donor emission and acceptor absorption U).

K2 9000(In 10)
kr~r) = kD? 17G28 nsNn4

Here kD is the radiative emission rate of the donor in free solution defined by the

emission lifetime (-D) and quantum yield (<Dp).

kD = (PD1.2
TD

K 2 describes the orientation of the dipoles, which in the case of randomly oriented

dipoles is considered to be 2349. This has proved successful in other FRET-based NC-
3

protein sensors396. N is Avogadro's number and n is the index of refraction of the

aqueous medium (1.4). The overlap integral is defined by the normalized fluorescence

emission spectrum of the donor (FD(A)) in nm or cm and the excitation wavelength

dependent extinction coefficient of the acceptor(EA(A)) in units of M'cm-1.

= FD(A)eA(A) 4d (II.3)

The resonance energy transfer relationship is typically not defined as in Eq. (11.1), but

instead it is written in terms of the Forster distance (RO). This is the distance at which

the FRET rate is equivalent to the donor fluorescent emission rate: TD-1.

S(9000(ln 10)
Ro0 = K 2 8 7s5N n* 4-

The energy transfer efficiency (E) is fraction of photons absorbed by the donor that are

transferred to the acceptor. This can be defined by the rates of these two processes

assuming that loss occurs only through radiative and non-radiative decay by the donor.

E= kT Ro6

kT + TD- Ro0 + r6 (11.5)
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The FRET efficiency is typically determined by measuring the fluorescence lifetime of the

donor in the presence and absence of bound acceptor.

E 1 TDAE = 1 -- (11.6)
TD

If a number of acceptor molecules are present that can interact equally with the donor,

then the transfer efficiency increases with each additional acceptor. In the case of FRET

using NCs, more than one donor molecule is often attached to the NC due to its larger

size (6-12nm). In this case transfer efficiency is defined as follows396,

mR0 
6

E = mR0o + r6  (11.7)

where m is the number of bound acceptor molecules.

a. b. - D emission ,
- A absorbance

FRET E

k~nm

Ej 3

Figure 11-5 FRET-based sensing using semiconductor nanocrystals. (a). In the absence of analyte most

emission occurs from the NC. When analyte binds, the extinction coefficient of the sensitive dye shifts -

altering the FRET efficiency. (b). In the case of the pH biosensor, the efficiency increases with increasing
pH: decreasing NC fluorescence and increasing dye emission. In a two-photon absorption of the NC is

shown.

II.11lb EXAMPLES OF FR ET USING FLUORESCENT NANOCRYSTALS

Besides the configuration presented in Figure 11-5a, fluorescent nanocrystal sensors have

been proposed and demonstrated in a variety of schemes. The most common NCs

utilized in FRET arrangements are based on Cadmium-Selenide cores (CdSe). The work

presented in this thesis focuses entirely on this type of NC. CdSe NC energy transfer

relationships were first observed between NCs of different diameters in solids397. The

63
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broad absorption spectrum of NCs and relatively short fluorescent lifetime of many

organic fluorophores typically prevents the use of NCs as FRET acceptors in other

situations398 . A study using water soluble NCs bound to maltose binding proteins with

different organic fluorophores attached demonstrated through a series of experiments

many of the photophysical and FRET properties of NCs as energy transfer donors396

Figure II-6 FRET-based NC biosensor for pH in the physiological range found in tumors. (a) NC biosensor
without excitation of the NC at pH 6-9. (b) Under ultraviolet illumination the difference in fluorescent
emission is striking. Photos courtesy of Dr. R. Somers.

The use of NCs in FRET-based chemical and biological sensors has been thoroughly

reviewed elsewhere 398. Biological processes that modify the FRET distance between NCs

and a fluorophore have been used to detect DNA replication399, DNA cleavage400 and the

interaction between in vitro protein complexes401. Displacement of a quencher attached

to an NC by a molecule of interest has been used to sense both maltose 368 and TNT 2.

Determination of ion concentrations has been performed using NC to NC FRET through

analyte promoted NC aggregation398 The above NC sensing protocols can be very

accurate to low concentrations of analyte; however the probe is consumed during the

process making sensing irreversible. Coupling the NC directly to chromophores or

fluorophores with an absorption spectrum dependent on the concentration of an

analyte creates a reversible probe (Figure lI-5Errorl Reference source not found.b).

Conjugating a pH sensitive chromophore to an NC permitted reversible sensing of pH
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through the changes in NC emission due to modulation of the FRET efficiency. However,

calibration and in vivo sensing in this setting is difficult due to the single emission unless

fluorescence lifetime measurements are performed 403. A ratiometric pH probe based on

conjugation of an NC with a pH-sensitive fluorophore demonstrated internally

referenced pH sensing due to the presence of two detectable emissions and

maintenance of an isosbestic point4*4.

In summary, linking a NC to an environmentally sensitive fluorescent dye in which there

is a donor-acceptor FRET relationship allows for ratiometric spectral comparison (via

modulation of energy transfer or dye emission lifetime/intensity) dependent upon

analyte concentration. With judicious dye selection, so that there is limited direct

excitation, a reversible internally calibrated ratiometric biosensor is possible due to the

photostability and environmental insensitivity of the NC. The entire construct inherits

the broad excitation spectrum and large two-photon excitation cross-section of the NC -

highly desirable attributes for use in vivo with MPM. The pH sensor developed in this

Thesis (Figure 11-6) employs this design for a ratiometric pH probe for use with

multiphoton FRIM.

II.12 Optical Coherence Tomography

Image contrast in coherent microscopy like optical coherence tomography (OCT) is

derived from the dependence of optical scattering on endogenous tissue structure and

function rather than from fluorescent labels as in MPM. These differences in technique

allow OCT systems to circumvent some of the limitations of MPM. Because the beam

focus is not used to select specific depths, OCT alleviates the requirement for high

numerical aperture optics, thereby simplifying wide-field imaging. Furthermore, OCT can

image at longer wavelengths where penetration depth in tissue is improved to several

millimeters, and can image frequently over prolonged periods without concern for

accumulation of fluorescent tracer. However, methods for effectively characterizing

biological parameters of tumor microenvironment and structure through optical

scattering are lacking in OCT
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IL12a PRINCIPLES AND TECHNIQUES

Optical coherence tomography405 (OCT) is an alternative approach for in vivo

microscopy. OCT uses the delay of light reflected from tissue, i.e., the "time of flight", to

image across depth, analogous to ultrasonography. Classically, OCT is performed in the

time-domain using an interferometer which measures the cross-correlation of a sample

and reference beam from the same light source (Figure 11-7). The time delay of the light

along the reference path determines the imaging depth, while the amplitude of the

interference pattern represents the intensity of the reflected (backscattered) light not

randomly scattered in the sample. Low coherence light sources, which contain a number

of optical frequencies, are employed in OCT due to the small coherence length. The

coherence length, or distance over which interference can occur, defines the axial

(depth) resolution of the OCT system. Significant resolution down to 1pm is achievable

with ultrafast mode-locked laser sources due to the short coherence length, although

imaging depth is limited due to the NIR wavelengths (~800nm) of the sources*6 -4 8.

Most OCT systems use infrared light around 1300nm, which allow depth penetration up

to a few millimeters due to lower scattering in biological tissues0941. Radial resolution

is set by the beam focusing lens and spatial sampling density of beam scanning or

sample translation. Because OCT uses interferometric techniques to determine the

amplitude and time delays of the reflected signal very low light intensities can be

detected.

In time-domain OCT, depth scanning is performed through translation of the reference

arm to adjust the time delay of the system. This method limits the imaging speed of the

system due to mechanical translation for depth. An alternative approach is to perform

OCT in the frequency domain, whereby depth is encoded as a function of wavelength4 .

This approach eliminates the need to scan the reference beam, significantly speeding up

the imaging time. Frequency-domain OCT also improves the detection sensitivity by

several orders of magnitude because all depth information is obtain simultaneously

rather than only within the coherence length of the light source as in time-domain
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methods -4
1 . Frequency-domain can be performed by 1) using a spectrometer at the

detector to obtain the cross-correlation interference signal as a function of wavelength,

a technique known as "spectral radar" 4 5 and spectral-domain OCT; or 2) using a

wavelength-swept broadband laser source416 known as optical frequency domain

imaging (OFDI). In this Thesis, OFDI will be used for all coherent microscopy studies.

OCT instrumentation and methodology can be adapted to probe a number of

parameters in biological tissue. At a basic level, the image contrast in OCT is derived

from optical scattering in the tissue which is both a source of signal and noise - termed

speckle 417 . Tissue scattering in OCT allows differentiation of anatomical boundaries and

pathological features. Measurement of in vivo tissue birefringence using polarization

sensitive OCT has been shown to indentify collagen and other fibrillar proteins as well as

vascular smooth muscle418'419. Spectroscopic OCT, which measures the wavelength

dependence of the backscattered light, has demonstrated sensitivity to discriminate

scattering particles of various sizes420 ,421 . Finally, phase-resolved OCT or Doppler OCT

can be used to detect movement of scatters such as fluid flow in vessels422.

II.12b APPLICATION TO TUMOR BIOLOGY

OCT has been applied to cancer imaging mainly as a histological technique for assessing

tumor size and boundaries. A number of studies in animal models and clinically relevant

dermatological cancers have demonstrated tumors generally have a high scattering

signature in OCT relative to normal tissue42327. The scattering difference between

tumor and surrounding normal tissues is due to the increased nuclear to cytoplasm

ratio428. Given the increased reflectance observed between tissue boundaries, OCT has

also been used to study changes in the layers of the epithelium during tumorigenesis429.

Application of high-resolution OCT to ex vivo clinical samples has demonstrated good

correlation of microanatomical structures like calcifications, cysts, enlarged nuclei and

blood vessels with histology430 . Histological changes observed in tumor grading may also

be detectable with OCT431432. Heterogeneous scattering patterns have also been

observed in tumor tissue, although investigations into the underlying mechanisms are
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lacking424,432. In model tumor spheroids, high scattering regions in the core have been

attributed to necrotic tissue433 434 . It has additionally been suggested that OCT may be

qualitatively sensitive to edema as reflected in low scattering regions429.

Mirror
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Figure 11-7 Basic principles of optical coherence tomography. Light from a coherent source is split into a
sample and reference arm. After interacting with the scattering sample, the sample and reference arms
are recombined on a detector forming an interference pattern (inset).

Doppler OCT techniques have also been applied in both animal and human tumors to

assess vascular function. Some investigators have provided quantitative measures of

flow, but in most cases changes in perfusion are monitored. The effects of both vascular

disrupting agents and photodynamic therapy on vascular perfusion have been studied in

animal models 435 ,436. To date, three-dimensional morphological parameters of tumor

Source
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vascular have not been presented in the literature, although simple reconstructions of

superficial large vessels have been demonstrated437 . However, Doppler OCT has been

used to measure cross-sectional areas and diameters of perfused vessels according to

the phase modulation signal438. In these studies, the measurements are limited to

vessels around 100pm and severely influenced by "shadowing" 437 due to increased

backscatter from the blood. Doppler OCT techniques have also been adapted to

endoscopic instrumentation for applications in the human gastrointestinal tract with

preliminary results suggesting in vivo perfusion studies may be possible439

H.13 Specific Aims

Understanding the role of the tumor microenvironment in the progression of disease

and response to therapy will lead to better therapeutic regimens and clinical outcome.

Particularly important in the microenvironment are the physiological parameters of

oxygen tension (p02) and pH. These variables have been shown to directly or indirectly

impact response to radiation therapy (p02) and chemotherapy (p02 and pH)7'8. By

modifying the technique of multiphoton microscopy 25,345 to perform phosphorescence

quenching microscopy440, I will develop a non-invasive method to quantify PO2 in living

tissue at high-resolution. I will adapt novel fluorescence resonance energy transfer-

based nanocrystal (NC) biosensors404 for use with MPM to quantify pH in living tissue at

high-resolution. I will measure PO2 and pH in vivo during tumor growth and

antiangiogenic treatment with the VEGFR-2 blocking antibody DC101 in orthotopic and

ectopic tumor models. While MPM demonstrates utility and adaptability in the study of

cancer and response to therapy, new techniques are needed to non-invasively study

pre-clinical tumor models and assess cell viability. To this end, I will apply Optical

Frequency Domain Imaging 416 to study solid tumors over wide fields with microscopic

resolution.
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II.13a HYPOTHESIS 1. PHOSPHORESCENCE QUENCHING MPM CAN PROVIDE

QUANTITATIVE P02 SENSING IN TUMORS.

Anti-angiogenic therapy has been shown to alter the tumor vasculature morphology and

function, paradoxically improving the efficacy of chemotherapy and radiation

treatment. Recently, trastuzumab was demonstrated to modify the tumor vasculature

in a manner analogous to many vascular targeted anti-angiogenic agents336. The

structural morphology and functional characteristics of vessels in tumors dictates

oxygen and nutrient delivery to the cells. This directly impacts efficacy of both

radiotherapy and chemotherapy. Therefore, I expect that an understanding of the

dynamic changes in P02 during therapy with trastuzumab or DC101 will help schedule

more efficacious combined therapeutic regimens for the treatment of solid tumors315.

Aim la. Adapt phosphorescence quenching microscopy to the technique of MPM and

measure P02 in vitro and in vivo.

By modifying the technique of MPM, I will adapt the principles of phosphorescence

quenching microscopy (PQM) to the nonlinear optical regime. I will select, characterize

and optimize porphyrin-based oxygen sensors for use in vivo with MPM. Calibration will

be obtained in vitro in a closed system for the range of physiologically relevant dissolved

PO2 using MPM. In vivo measurements of oxygen tension will be assessed using MPM in

transparent window mouse models. Proof of principle for the technique will be

demonstrated by confirming the Krogh tissue cylinder model 74 in skeletal muscle fibers

in mice.

Aim 1b. Measure changes in PO2 during tumor growth.

Using solid tumors grown in dorsal skin-fold chamber, mammary fat pad, and cranial

window mouse models, PO2 will be quantified during tumor progression.

Measurements will be made both in the interstitial and intravascular spaces of the

tumor microenvironment.
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Aim 1c. Measure changes in P02 during anti-angiogenic therapy with DC101 in solid

tumors.

I will perform high-resolution multiphoton phosphorescence quenching microscopy in

both a human colorectal adenocarcinoma model (LS174T) and murine mammary

carcinoma (MCalV) implanted ectopically in the DSC during administration of DC101.

Further, I will assess tumor microenvironmental P02 in orthotopic murine mammary

carcinoma (E0771) in response to anti-angiogenic therapy by DC101. Morphology of the

tumor vasculature will also be assessed by MPM angiography and correlated with P02

measurements.

Aim 1d. Measure changes in PO2 in breast cancer tumors during monotherapy with

trastuzumab.

Fluctuations in the intravascular and interstitial P0 2 due to trastuzumab will be

measured with PQM using MPM in HER2-positive mammary tumors in the MFP

transparent window chamber mouse model. Morphology of the tumor vasculature will

also be assessed by MPM angiography and correlated with PO2 measurements. These

results will help identify potential treatment windows during which vascular function

may be altered by trastuzumab.

II.13b HYPOTHESIS 2. NC-CONSTRUCTS CAN PROVIDE QUANTITATIVE FRET-BASED

PH SENSING IN TUMORS.

Aim 2a. Measure pH in vitro and in vivo using a NC-biosensor for pH and MPM.

I will optimize the in vivo use of FRET-based NC-biosensors with MPM by determining

construct stability, minimal particle size, biological pKa, and maximally detectable

fluorescence emission and sensitivity. Calibration will be conducted in vitro and in ex

vivo tumor tissue for the range of physiologically relevant pH. In vivo measurements of

pH will be assessed using MPM in transparent window mouse models.

Aim 2b. Measure changes in pH during hyperglycemia.
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Using transparent window mouse models, I will measure dynamic changes in pH during

experimentally induced hyperglycemia. The pH sensitive FRET signal from the NC-

biosensor will be monitored by MPM in the interstitium and correlated with the tumor

vasculature.

II.13c HYPOTHESIS 3. OPTICAL FREQUENCY DOMAIN IMAGING CAN NON-INVASIVELY

PERFORM THREE-DIMENSIONAL MICROSCOPY OF VASCULAR NETWORKS, LYMPHATICS,

TISSUE VIABILITY AND MICROANATOMY IN SOLID TUMORS.

High resolution, intravital multiphoton microscopy has provided powerful mechanistic

insights into tumor biology. However, the requisite high numerical aperture and

exogenous contrast agents result in a limited capacity to investigate substantial tissue

volumes or to probe dynamic changes repeatedly over prolonged periods. By using

coherent optical principles distinct from multiphoton microscopy, optical frequency

domain imaging circumvents these limitations and may provide an unprecedented

ability to probe critically important aspects of tumor biology.

Aim 3a. Perform non-invasive, high-resolution, wide-field angiography of tumor vascular

networks without the administration of exogenous contrast using OFDI.

By applying Doppler principles, OFDI can detect vasculature through contrast derived

from the intrinsic fluid motion within the vessels. I will demonstrate the ability of OFDI

to monitor vascular morphology and geometry frequently and over prolonged

timescales in solid tumors. Further, I will characterize the performance of OFDI

angiography through direct comparison with multiphoton microscopy.

Aim 3b. Perform contrast-free functional lymphangiography using OFDI.

By taking advantage of the optical scattering differences between functional lymphatic

vessels and the surrounding tissue, OFDI can map lymphatic networks without the use

of exogenous dyes. I will show that OFDI lymphangiography supersedes standard

methods by providing an ability to map lymphatic networks over larger regions and

more frequent timepoints.
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Aim 3c. Characterize in vivo tissue viability using OFDI.

Based on differences in tissue reflectance, OFDI can differentiate necrotic/apoptotic

regions from viable tissue. I will show that OFDI can monitor tissue viability during

tumor progression and demonstrate that the spatial distribution of viable tissue can be

correlated with the distance to the vascular network.

Aim 3d. Assess multiparametric responses of both vascular-targeted and cellular-

targeted therapies using OFDI.

To demonstrate the utility of OFDI as a tool to monitor anti-cancer therapy, I will

perform multiparametric imaging of tumors during either antiangiogenic therapy by

DC101 or direct targeting of tumor cells through the use of diphtheria toxin.
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III.1 Introduction and Motivation:

Non-invasive methods for quantitatively probing the tissue microenvironment in vivo

from normal to disease states, including cancer, are needed. Particularly important is

the metabolic microenvironment, which influences normal processes such as

embryogenesis, inflammation, and maintenance of bone marrow cell lineages'-4.

However, it is often perturbed in pathophysiological disorders ranging from

atherosclerosis5 to cancer 6' . Alterations in these metabolic parameters can serve both

as an early indicator of disease in Alzheimer's8 and response to anticancer therapy 5''' 9 .

Oxygen plays a key role in the metabolic microenvironment; promoting stem cell

development', modifying tumor progression, modulating metastasis10-12 and

moderating response to therapy13. Interestingly, the effects of oxygen depend on the

concentration, which varies greatly in both normal and disease processes. Further, the

oxygen gradient in the tissue microenvironment does not always necessarily correlate

with supply from the vasculature, particularly in disorders such as cancer where vascular

architecture is abnormal. Therefore, an ideal tool for quantifying oxygen concentration

would enable high-resolution three-dimensional measurements at significant depths in

the context of the surrounding tissue microenvironment.

The quenching of phosphorescence by molecular oxygen provides an optical method for

measuring oxygen tension (P02). Since the biological application of this technique was

first introduced by Vanderkooi and co-workers'4 , phosphorescence quenching

microscopy (PQM) has been utilized to measure both vascular and interstitial p02

gradients in vivois- 7. Unfortunately, these techniques offer decent lateral spatial

resolution, but limited tissue penetration (~50 tm) and no depth resolution. In the past

decade, a novel form of optical microscopy has been developed utilizing ultrafast lasers.

This technique, multiphoton microscopy (MPM), provides non-invasive optical imaging

with significant depth penetration at high three-dimensional resolution'1 9. The intrinsic

properties of multiphoton excitation allow MPM to image fluorescently labeled

structures in tissue with a three-dimensional resolution of ~1 pm up to depths of 450-
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600 tm, depending upon the tissue type. The simple theory behind multiphoton

microscopy allows for implementation in a variety of experimental designs. The

compounds that are used for imaging can be quite versatile, permitting the use of some

that respond to tissue physiology. This allows for simultaneous imaging and

physiological monitoring of tissue.

This Chapter introduces the technique of multiphoton phosphorescence quenching

microscopy (MP-PQM) developed for routine in vivo use in a variety of biological

models. The methods of phosphorescence quenching microscopy will be described in

context of luminescent lifetime measurements. The principles of multiphoton

microscopy will be briefly discussed; highlighting considerations in the use of

phosphorescent luminophores. The development, design, characterization and

implementation of MP-PQM will then be presented. Finally, some brief physiological

studies utilizing MP-PQM will be illustrated. Measurement of oxygen in the tumor

microenvironment is reserved for Chapter 4.

111.2 Experimental Design of MP-PQM

Multiphoton microscopy provides the capability of imaging deep in biological tissues

with an intrinsically defined three-dimensional excitation focus of femtoliter volume

limiting out of plane photobleaching 921. Further, the use of near-infrared excitation

(700-1000nm) which is within the "optical window" of biological tissue22 allows deep

tissue penetration (up to 1mm depending on tissue type)23 . Details of the relative merits

and photophysical processes underlining multiphoton excitation have been described in

the Introduction. This section describes the decisions and development of MP-PQM for

use with phosphorescent metalloporphyrins.



CHAPTER 3
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Figure 1ll-1 Methods to measure luminescent lifetime. (a). In the time domain, lifetime is directly
measured from the exponential decay after an excitation pulse. (b). In the frequency domain, lifetime is
determined from both the phase delay, #, and modulation, m.

111.2a TIME DOMAIN VERSUS FREQUENCY DOMAIN

There are two techniques for measuring the luminescent lifetime of a molecule which

are related through the Fourier transform. The time domain, or impulse method, can be

technically difficult for short lifetimes or complex decays, but it directly outputs the

emission decay24. Simply, in the time-domain a pulse of excitation light much shorter

than the luminescence lifetime is used and the decay of emission is measured from the

end of the pulse. The decay is typically fit to a single or multiple exponential decay

depending if the sample is heterogeneous or not.

e(t) = Ice-% 1(t) = Ae-I/i 111.1

The second technique is the frequency domain or phase-modulation method whereby

luminescence is excited by intensity-modulated light 24. The excitation is modulated at a

frequency comparable to the inverse of the lifetime (to oc 2wr x r-1) with delayed

luminescence responding with the same frequency but phase-shifted (<p) and reduced in

modulation (m). The lifetime can then be determined from the following relationships.

................................................................
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1
tan <p = 11r M + 12 2 I1.2

There is debate over which method of lifetime measurement is better. What has been

demonstrated is that frequency-domain measurements are ideal in high signal

environments and posses a faster measurement duty cycle25. However, in low signal

environments, the time-domain methods, particularly single-photon counting, provide

much better signal to noise ratios (SNR) and have been shown to determine lifetimes

with greater accuracy 26 . The basic principles of the two measurement types are shown

in Figure 1ll-1.

The application of time-domain luminescence imaging has been performed in

multiphoton microscopy in a variety of ways. The three most common are: 1) pulse-

picking with time-gating" [Eq. 111.3], 2) time-correlated single photon-counting28

triggered by each selected pulse or 2) the streak-camera method which measures

spatial temporal intensities along a single line scan (x, t) and creates a lifetime image

(x, y, -) by fitting exponential decays [Eq. 111.1] to each temporal component 29.

AT

nl(IA/IB)

Here in Eq. 111.3, the calculation of lifetime is given for time-gating with two gates (A, B)

with an interval of AT separating them.

Frequency-domain lifetime measurements have been effectively performed to measure

luminescent lifetimes in vitro30, but to date no studies have been successfully

demonstrated in animals larger than C. elegans25. Further, in larger animal models, such

as mice, the amount of luminescent probe will likely be very low, except in the

vasculature, limiting SNR for frequency domain techniques. As will be shown, this is

particularly the case for Pd-porphyrins which have a low two-photon absorption cross-
31section . In addition, this limits the ability to provide appropriate modulation to the

excitation signal to excite the porphyrins probe at all times.
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III.2b EXPERIMENTAL SETUP

To perform MP-PQM, I chose to use the single photon counting technique triggered by

the selection of pulses from the excitation source. While the time to collect

measurements is increased in the time domain, it permits the integration of signal to

improve SNR, a critical factor for in vivo measurements. Additionally, the analysis of the

lifetime decay is straightforward and simple enough to include fitting to multiple

components. Additionally, online analysis of the lifetimes permitted real-time display of

the oxygen tension.

To adapt the technique of multiphoton microscopy to PQM, the rate of porphyrin sensor

excitation must be taken into account. The lifetime of the sensor, Ts, is much greater

than the ~100 femtosecond pulses from the excitation laser source, TL. However, the

repetition rate, f, of the laser is much faster than the decay of phosphorescence. For

multiphoton excitation, the commonly used Ti:Sapphire laser has a repetition rate of

~80Mhz. This limits the time between pulses to only 12.5ns, much shorter than the

lifetime of Pd-porphyrin in the presence of oxygen (10 - 700ps). To overcome this

obstacle and modulate the excitation of the porphyrin at a rate greater than its decay, I

chose to use an electo-optic modulator.

Electro-optic modulators (EOM) have been successfully applied to multiphoton

microscopy to perform fluorescence recovery after photobleaching (FRAP) 32. In the case

of lifetime measurements, no monitoring power is required, only a brief excitation pulse

is used. Another group has employed an acousto-optic modulator (AOM) for temporal

gating in lifetime measurements33. Acousto-optic modulators typically have better

extinction ratios than EOMs. However, because the emission is dependent on the

quadratic (or higher) excitation of light in multiphoton microscopy, the contribution of

extinction phase is minimal. Two characteristics of AOMs prompted my selection of an

EOM: 1) AOMs are slower at switching than electro-optic modulators; 2) group delay

dispersion (GDD) is also higher than EOMs, increasing the femtosecond pulse duration
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and reducing multiphoton excitation3. GDD can be corrected, but with additional often

complex optics3s

The MP-PQM system incorporates a KD*P Pockels cell (Model: 350-50; Conoptics, Inc.,

Danbury, CT) EOM and accompanying amplifier/driver as the temporal gate for pulse

selection. The duty cycle (excitation pulse width x repetition rate) of the Pockels Cell

was operated in the range of 0.1-0.6%. This equates to excitation pulse durations of

approximately 1.28 to 15.36ps for rates of ~680 to 360 Hz, respectively. These repetition

rates allowed even the longest decays to be recorded, while permitting biological

recovery of the sample between excitation pulses. Excitation pulses shorter than 1.28ps

in solution (1mg/ml) or ~5.12ts in vivo did not produce any observable

phosphorescence.

The voltage to the EOM was modulated by custom-built electronics; amplifying and

switching the triggering pulses from a digital delay generator (DG535, SRS, Sunnyvale,

CA). The experimental square wave trigger pulse originating from the DG535 defined

the repetition rate; while a second delayed square wave pulse defined the excitation

pulse. The voltage and hence laser power of the excitation pulse was adjusted by

custom pulse conditioning electronics. As mentioned, the excitation pulses ranged from

1.28 to 15.36 ps in duration indicating that sample excitation was performed by a train

of femtosecond Ti:Sapphire laser pulses ranging in number from ~100 to 1230. These

durations were still shorter than the experimental lifetimes of the phosphorescent

porphyrins oxygen sensor. Using an oscilloscope (Model: TDS-3052, Tektronix,

Beaverton, OR) and photodiode at the rejection site of the EOM, the applied voltage and

optical response were monitored.

To perform photon counting, I used a multichannel scaler (SR430, SRS, Sunnyvale, CA) to

histogram the counts with bin sizes ranging from 1.28 to 10.24ps depending on the

experimental protocol. Typically, the number of bins was maintained at 1K (1024).

However, for long decays the bin number was increased to 3K depending on the bin

size. The number of records accumulated by the multichannel scaler was adjusted for
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each bin size to keep the integration time equivalent across an experiment. The

integration time was usually maintained at 6.5s for in vivo and ~3s for in vitro

measurements.

Galvo-
Scanner

Beam Imaging PMTs &
Expander -- - Emission Filters

EOM Scan
Len

Pulse
Conditioning Excitation
Electronics Dichroic GaAs PMT

Power Tube 750 Sp Emission 69019
pw TexP Control Lens Filter Dichroics Filter

Multichannel

Digital 20X 0.95NA Scaler/Averager

Generator TI:Sapphire Laser Objective Lens
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Figure 111-2 Mufliphoton Phosphorescence Quenching Microscopy Setup. Modification to the MPM
instrumentation permitted time-domain measurements of phosphorescent lifetime for real-time oxygen
quantification. Tp,, - temporal duration of the excitation pulse width. T., - duration of the experimental
triggering time, i.e. one single pulse and photon counting record. Arrows indicate direction of
communication. Dashed grey lines to the computer control were 2-way.

Phosphorescent emission (~690nm) of the Pd-porphyrin was detected by a GaAs

photomultiplier tube (PMT; H7421-50, Hamamatsu, Inc., Bridgewater, NJ) for the

majority of experiments. This detector has a quantum efficiency (QE) of ~10% around

700nm. To enhance detection, I employed a silicon avalanche photodiode detector

(APD; SPCM-AQR-12-FC, PerkinElmer, Fremont, CA) with a QE of 70% at 700nm. In non-

turbid media, the collection efficiency (CE) of the setup with the APD was ~8x better

than the GaAs PMT. However, in vivo measurements in highly scattering thick tissues

revealed a lower CE for the APD.

The components for MP-PQM were incorporated into a custom-modified multiphoton

microscope based on the Fluoview 300 laser scanner (Olympus FV300, Optical Analysis,

103

...............



CHAPTER 3

Center Valley, PA). A broadband (710-1020nm) Ti:Sapphire femotosecond laser (MaiTai

HP, Spectraphysics, Mountain View, CA) was used as the excitation source. The output

of the laser was adjusted using a zero-order half-wave plate (10RP52-2, Newport Corp.,

Irvine, CA) and Glan-Laser polarizer (10GLO8AR.16, Newport Corp., Irvine, CA). During

phosphorescence quenching microscopy, the maximum laser power was permitted to

pass and intensity modulation was performed by the electro-optic modulator. Due to

magnification of the beam diameter in the EOM and the limited reflective area of the

galvanometer scan mirrors, no beam expansion was needed. I did determine that the

output of the EOM did not experience beam divergence over 5m. Silver coated mirrors

(PF10-03-PO1, Thorlabs, Newton, NJ) were used for all beam steering.

The scanned output of the galvanometers was collimated through a scan lens into the

back of a microscope (Olympus BX61WI Optical Analysis, Center Valley, PA). The near-

infrared excitation light and visible emission were separated using a short-pass dichroic

mirror (720DCXPR, Chroma Technology Corp., Rockingham, VT). Focusing and collection

of light was performed with a 20x, 0.95 NA water immersion objective lens (Olympus

XLUMPIanFI, Optical Analysis, Center Valley, PA). Given the short spectral separation

between the long emission of the phosphorescent sensors (~690nm) and the excitation

laser wavelengths, a short-pass (<750nm) AR-coated filter was used in the detector path

(750SP-2P, Chroma Technology Corp., Rockingham, VT) to limit background counts from

the laser. A 690/90 bandpass filter (690/90M, Chroma Technology Corp., Rockingham,

VT) and focusing lens were used in front of the GaAs PMT to collect phosphorescent

emission. The complete experimental setup is illustrated in Figure 111-2.

Lifetime measurements were performed by a stationary beam and not in scanning

mode. Typically, the excitation beam was parked in the center of the field of view (FOV)

and the intensity was modulated by the EOM. Different points in the sample were

measured by scanning the sample with an automated mechanical XY stage (H101; Prior

Scientific, Rockland, MA). Axial depth was adjusted using the automated focusing

apparatus built into the microscope and the accompanying Fluoview software (Olympus,
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Optical Analysis, Center Valley, PA). For point measurements in a single FOV

(intravascular), the stationary beam was manually positioned using the software.

Figure 111-3 Custom
environment.

III.2c MP-PQM

user interface for MP-PQM experiments. Programming performed in LabView

EXPERIMENT PROTOCOLS

The MP-PQM instrumentation was automated and controlled by a custom-built user

interface (Figure 111-3) created in the LabView programming language (National

Instruments, Austin, TX). This interface automated five different experiment protocols

for collecting oxygenation data.

1. Single Point Measurement - ideal for quantifying oxygen within the vasculature.

Allows the user to select points and collect data from each point. Beam

positioning is performed manually.

2. Vessel profiles - performs a series of linear measurements with spacing defined

by the user. Allows the user to measure oxygen profiles from single vessels by

defining the imaging angle in the focal plane that perpendicularly bisects the

vessel (Figure ll-4a). Beam positioning is automated.
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Figure 111-4 MP-PQM experimental protocols for in vivo measurements. (a). Vessel profile measurement
from a single tumor (HT1080) vessel. (b) Oxygen tension map of an entire tumor (Mu89) at a single depth.
Image is a depth projection. (c) Krogh cylinder measurements in the capillary network of skeletal muscle
tissue. Image is a depth projection.

3. Oxygen Tension Maps - performs measurements in a rectangular grid pattern in

a region of interest (ROI) and grid size defined by the user (Figure 1ll-4b). The

user manually selects an ROI in the sample using the motorized stage. To

automatically determine the measurement points within the grid, the user

specifies the number of grid points in the X and Y direction. For a 12 x 12 grid,

the measurement time is approximately 16 minutes (144 points). The oxygen

tension map is collected in a raster pattern. To measure at different depths, the

user manually focuses to the specified depth and inputs it into the interface.

Defining an ROI also permits the user to image the sample with the multiphoton

microscope in a raster pattern with mosaic tiling determined by the FOV size.

4. Muscle (Krogh Cylinder Measurements) - Quantifies oxygen in regularly spaced

capillary networks typically found in skeletal muscle. This mode is typically used

for performing three-dimensional measurements of the Krogh tissue cylinder.

Analogous to the vessel profile measurements, the user defines the imaging

angle in the focal plane that lies perpendicular to the capillary network with

respect to the vertical axis. A series of grid measurements at different depths are

performed with spacing defined by the user (Figure Ill-4c).
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5. FOV Oxygen Tension Map - Similar to the oxygen tension map, except a user-

defined ROI is not required. A raster grid pattern of measurements is made

within the confines of the objective field of view.

In all experimental protocols, the oxygen tension is calculated in real-time using Stern-

Volmer (see Chapter 1) calibration values for the sensor. Single and two-component

exponential fitting [Eq. 111.4] to the phosphorescent decay is performed within the

LabView environment by code written in MatLab (MathWorks, Natick, MA). Two

different fitting algorithms are utilized. One performs an unconstrained nonlinear

optimization to find the decay constants and amplitudes that minimize the residuals.

The second performs a constrained nonlinear least squares fit (Levenberg-Marquardt

algorithm) to the raw data to find the same parameters. The difference in fit values is

less than 5% between the two methods. However, the unconstrained minimization

procedure fits data with low SNR much better than the Levenberg-Marquardt algorithm.

The importance of the single and two-component fitting of the lifetime data will be

discussed in the Calibration section.

I=Ae-+C I =Ae/T +Be-t 2 +C II14

111.3 Multiphoton Excitation of Pd-Porphyrin p02 Sensor

The initial challenge in developing multiphoton phosphorescence quenching microscopy

was characterizing the multiphoton excitation properties of the oxygen sensor. The

porphyrin molecule used for all studies was a Pd-meso-tetra-(4-

carboxyphenyl)porphyrin dendrimer (OxyphorR2, Oxygen Enterprises, Ltd., Philadelphia,

PA). For experiments, both the ideal excitation wavelength and evidence of multiphoton

excitation (MPE), or two-photon excitation in this case, at that wavelength needed to be

determined. Further, the phosphorescence lifetime is always much greater than the

timing between femtosecond laser pulses, so the effects of excitation saturation needed

to be explored. Employing equations describing phosphorescence saturation under

pulsed illumination, I show that saturation was not obtained during typical experiments.
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Figure 111-5 Two-photon excitation of Pd-porphyrin phosphorescent oxygen sensor. The nonlinear
behavior of the phosphorescence with excitation power is observed for both 900 and 1020nm excitation
in these logarithmic plots.

III.3a Two-PHOTON ExcITATION OF PD-PORPHYRIN

It has been previously demonstrated that the two-photon absorption cross-section of

the tetraphenylporphyrin free base is very low compared to typical fluorophores31 .

Literature values of only 1-6 Goppart-Meyer (GM, 10~50 cm4 s~1 photons-' molecule')

were reported. For in vivo measurements, particularly in the interstitial space, low

concentration of sensor further diminishes the phosphorescent yield. The low yield

requires the accumulation of a series of pulses in the time-domain to improve SNR

(111.2).

In two-photon excitation of luminescence, the emitted intensity should be proportional

to the square of the excitation intensity: I, oc I, 19. To determine if the excitation of the

phosphorescent sensor occurred by a two-photon process, I measured the

phosphorescent emission with different excitation laser powers. Measurements were

performed in anoxic (0% p02) phosphate buffered solutions (PBS) at pH 7.4 and 37 *C.

The phosphorescent lifetime was fit from the point immediately after the excitation

pulse to determine the average background counts within each photon counting bin, C

in Eq. 111.4. The background count was then subtracted from the signal within each bin.

To obtain total emission counts, the signal was then summed from immediately after

the excitation pulse to the end of the measurement period. Alternatively, an estimate of

108

... ........



CHAPTER 3

total photon counts can be obtained by integrating the single exponential decay [Eq.

111.1] to infinity: IOr. The excitation of phosphorescence was found to be a two-photon

process for excitation at both 900 and 1020nm (Figure 111-5). In vivo two-photon

excitation (n ~ 1.84) was also confirmed for intravascular measurements at 900nm

(Figure 111-6). Further, the in vivo measurements were performed in the presence of the

MPM angiographic marker fluorescein isothiocyanate (FITC) - dextran 2M MW. Because

the photon counts were determined from lifetime measurements, this experiment

illustrated that FITC-Dextran2M does not affect MPE or lifetime of the P02 sensor.
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Figure 111-6 In vivo two-photon excitation of Pd-porphyrin oxygen sensor. Nonlinear excitation of
OxyphorR2 sensor in the vasculature of a tumor (left). A series of time-domain lifetime measurements

were performed in the center (*) of a perfused tumor vessel (right). Green - fluorescein isothiocyanate -
dextran 2M MW used for MPM angiography.

To determine the two-photon excitation spectrum (action cross-section) for the Pd-

porphyrin oxygen sensor, I measured the photon counts after time-domain pulsed

excitation analogous to the nonlinear power spectrum. The excitation spectrum for

MPM was obtained from 780-1020nm keeping the total power at the sample constant.

Slight fluctuations in the true action cross-section would occur due to differences in

photon energy, i.e. the number of photons incident on the sample, for the longer

wavelengths. However, this contribution should be minimal to the shape of the

spectrum. For comparison, the single-photon excitation spectrum was obtained using a

spectrophotometer (Beckman Instruments Inc., Fullerton, CA) with continuous
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illumination from the visible to near infrared (400-1000nm). The single- and two-photon

excitation spectrums both share similar shapes (Figure 111-7), although the two-photon

spectrum is slightly broader and blue-shifted due to different parity-selection rules

between the two excitation processes21. The quantum yield of phosphorescence is
~10%36,37 and should be the same for two-photon excitation since luminescence

emission does not change with nonlinear excitation processes38

1.2 -Single-Photon -Two-Photon

~' 1 428nm
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C

0.8 512nm
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Z~ 0.6 9 msinFle
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Figure 111-7 Single- and Two-photon action cross-sections for Pd-porphyrin soluble oxygen sensor. The
notable features of single-photon excitation spectrum are visible in the two-photon action cross-section.
The single photon excitation spectrum also shows no absorption/emission in the wavelength range used
for two-photon imaging (780-1000nm). The lone peak at 690nm is due to excitation light at the same
wavelength as the emission band-pass filter in the spectrophotometer.

As can be seen in Figure 111-7, there are two possible choices for excitation of the oxygen

sensor: ~800 or ~1020nm. I selected to use 1020nm for the following reasons:

1. Although absorption of water is around 5x less at 1020nm than 800nm 34, more

biological molecules, such as NADH, have much higher two-photon absorption at
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800 than 1000nm 39. Further, studies have shown increased cellular damage at

wavelengths ~800nm than those above 980nm 34.

2. The excitation light at 1020nm is less scattered than 800nm light due to the

inverse dependence of scattering on the fourth-power of the wavelength.

According to the principles of Rayleigh scattering, 800nm is 2.6x more scattering

than 1020nm. This should improve excitation deeper in tissue at powers lower

than would be needed for 800nm.

3. Excitation light at 800nm is very close to the phosphorescence emission, which

extends to 780nm. Therefore it is difficult to separate the laser light from the

emitted photons, particularly when using highly sensitive detectors to the near-

infrared light range.

III.3b PHOSPHORESCENCE SATURATION

The luminescence of a molecule is a function of its excitation intensity. However, this

relationship is not linear at all excitation intensities. As incident illumination is increased,

the ground state of the luminescent molecule is depleted and the excited state(s)

populated. The photophysical properties of a molecule, defined by its electronic excited

states (Figure 11-2) and their lifetimes (rate constants), and its initial concentration limit

the maximum emission intensity. This can be summarized in a simple equation:

N
oc kilex 111.5

NTO

where Ng is the number of molecules in the ground state, NTot is the total number of

molecules, kg represents all rate constants defining the molecular states, and I,x is the

excitation intensity. Precise equations of state for common fluorescent molecules like

fluorescein under continuous wave illumination have been worked out in detail by

others40 . These derivations take into account all possible pathways for excited molecules

including triplet states and photobleaching (irreversible loss of fluorescence). The

saturation of luminescence can be used to determine many photophysical constants

including the absorption cross-section, molecular state lifetimes, quantum yields and
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luminescent lifetimes. Interestingly, fluorescence saturation experiments have been

proposed as a possible use to characterize complex organic compounds"1 .

For fluorescent compounds, ignoring any triplet state contribution, the steady state

fluorescence emission under single photon illumination is (adapted from 34):

Qf kfN, = aQfkf 111.6Q~S1=a + kf I.

Here, Qf is the quantum efficiency of fluorescence, kf is the fluorescence decay rate, a

is the excitation rate (uI), and N1 is the number of molecules in the excited singlet state.

Eq 111.6 illustrates that after an initial linear increase in the fluorescence with excitation

intensity, the fluorescence emission slowly plateaus.

Phosphorescence saturation has been investigated since the 1940s, starting with G.N.

Lewis42 . The saturation properties of phosphorescence, due to its long-lived nature,

have allowed the investigation of many interesting photophysical properties such as

paramagnetism42. Under continuous illumination by a light source (laser), a
phosphorescent molecule would reach steady-state saturation in a time defined by:

(kzo + Qisc akl - 111.7
a + k1i

where k2o and kjo are the decay rates of the triplet and singlet states, respectively. The

quantum efficiency of intersystem crossing is given by Qisc.

I estimated kjo for the OxyphorR2 Pd-porphyrin used in this study to be 4.00 x 108 s1

based on literature values for other porphyrins43. The quantum efficiency of

phosphorescence for Oxyphor R2 is reported to be 10%36. To estimate the time constant

for continuous wave illumination at 1020nm, but with two-photon absorption, a is given

by a 2 2. The two-photon absorption cross-section for Pd-porphyrins has been reported

to be in the range of 1-2GM. Assuming a constant illumination of 1mW (5.1 x 1015

photons s') and a maximum phosphorescence lifetime (k2 j 1 ) of 650ps, a time

constant of 650ps is obtained. However, true MPE utilizes a pulsed laser source, which
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greatly enhances the excitation power by packing photons into small pulses. The

squared power dependence is actually given by the average squared intensity rather

than the squared average intensity of continuous wave excitation21 :

(I(t)2 ) gp(I(t)) 2  111.8
fT-

where gp is a factor that describes the beam shape (0.66 for Gaussian beam), f is the

laser repetition rate (~80MHz), and T is the pulse width (~150fs). Employing Eq 111.8 to

determine a obtains a steady-state time constant of 25ns.

Three issues must be addressed here regarding saturation determined in this manner.

First, the phosphorescence saturation will be dependent on the concentration in the

sample. Second, for every one emitted photon, two were introduced for two-photon

excitation. Finally, Eq. 111.7 does not take into account the temporal characteristic of the

laser source during which excitation only occurs within the femtosecond pulse.

Applying the derivation of Xu and Webb 38, a rate equation for the population of the

ground state for each ensuing pulse can be written:

No (n + 1) = NTOT - [aQjscNo (n) + NTOT - No(n)]e /T2f 111.9

Here, n denotes the number of pulses, TC2 is the phosphorescence lifetime, a is

excitation probability per pulse and NTOT is the total population or No prior to any

pulses (n = 0). It is assumed that the intersystem crossing rate is much faster than the

repetition rate (Tsc « f ). Because the excited singlet to ground state transition rate,

kjo ~2.5ns, is less than the pulse separation (~12.5ns), the population of the singlet

state can be ignored (NTOT = NO(n) + N2 (n)). Therefore an equation for the triplet

state population can be obtained:

aQisc [1 - (1 - aQsc)ne '1T2f

e/T2f + aQisc - 1
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Assuming that there is a 1% probability (a = 0.01) that molecules in the focal volume

are excited by a single pulse, which is a generous assessment for the MPE of this

porphyrin given the small two-photon cross-section, and the number of laser pulses in

the range of excitation pulse durations for MP-PQM (205 - 1230), a triplet state fraction

N2(n)) from 0.2 to 0.7 is obtained for a phosphorescence lifetime of 650ps. These values
NTOT

are below saturation for nearly the longest detectable lifetime of the phosphor. In

section Ill.5a the experimental effect of excitation pulse duration will be fit to this model

to define the effect on phosphorescence saturation.

III.4 Calibration of MP-PQM p02 Measurements

To quantify oxygen tension using phosphorescence quenching microscopy, the

parameters of the Stern-Volmer relationship must be determined. Assuming a linear

Stern-Volmer relationship, a minimum of two measurements at known oxygen tension

is required. For some phosphorescent porphyrin sensors, it has been reported that the

dynamic quenching response was nonlinear44. In this case at least 3 calibration

measurements are needed and fit to a second order Taylor expansion of the Stern-

Volmer relationship.

1 1
- = - + kq [P 0 2]+ kg [p02] 2  111.11
T TO

III.4a CALIBRATION CONSIDERATIONS

Because the absolute concentration of oxygen in tissue depends on Henry's law 45 [Eq.

111.12], for which the coefficient is often unknown and variable in vivo, calibrations are

performed for the oxygen tension or partial pressure of oxygen (P02). Additionally,

temperature affects the solubility of oxygen and therefore Henry's constant (derived

from van't Hoff Equation, Eq. 111.13), so all calibrations should be performed at the

temperatures found in vivo (32-370C). Calibrations are performed in PBS, so if actual

oxygen concentrations are desired Eqs. 111.12 and 111.13 can be used.
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P 0 2 = kH [02] 111.12

AH' 1 11
kH,T = kH,298K exp R T T' III.13

Here, Henry's constant is kH, AH' is the enthalpy change of the solvent (PBS) at

standard temperature and pressure, R is the gas constant, and T is the temperature of

the sample.

The Pd-meso-tetra(4-carboxyphenyl) porphyrins dendrimer used for oxygen sensing

(Oxyphor R2) is susceptible to other parameters in its local environment that should be

addressed. Most importantly is the binding of the sensor to albumin or other binding

proteins in vivo. In general, the lifetime increases and quenching constant decreases

with increasing concentrations of albumin3637 46. Studies have suggested that the effects

on Stern-Volmer sensing parameters are saturated at physiological concentrations of

albumin 6,37,46 . However, as will be shown, MP-PQM discerns differences at even higher

concentrations of albumin. This prompted me to explore the development of a two-

phase or two-component calibration mechanism as presented in the next section.

Additional parameters that may affect kq and roare the temperature, pH, and tonicity

(ionic strength). The effect of temperature on Tois significant, however it is also follows

a linear relationship. As temperature increases, the lifetime of the phosphor decreases

due to increased molecular collisions and therefore increased quenching. For Oxyphor

R2, it has been shown that the quenching constant, kq, increased by 3% per *C and the

lifetime in the absence of oxygen, -ro, decreased by 0.7% per degree with increasing

temperature36. The pH has been shown to have minimal effect on the calibration

constants in the range of extracellular pH (pHe) found in vivo in both normal and tumor

tissues (6.4 - 7.4)36,37. Similarly, the tonicity showed no effect in the same study.

Therefore in considering calibration of the phosphor for in vivo measurements, I chose

to perform all calibration procedures at 32 or 37 0C and a pH of 7.4 in PBS. If the

temperature of the sample under investigation is kept constant within this range of
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temperatures, kq may change by up to 15% and To by 3.5%. The error in calculated P02

is determined by these two parameters can be estimated47:

AP02 = P02Akq 0 111.14
kq kqro TO

For P02 values measured in tissue (0 to 60mmHg) this gives an error of around 0.15 to

9mmHg. In general, due to homeostasis and proper maintenance of the sample

temperature, the error in kq and To should be much smaller, typically around 1-2%.

Further, the measurement error will also depend on the sample P02 since the technique

is most sensitive to low P02.

Peristaltic

T nn

Tu git
Variable

Fiber Optic s-10mt/min
Oxygen Probe

Calibration
Solution Fiber

In Water Bath Oxygenator
Flow Cell

Heating Pad

Figure 111-8 Recirculating sealed calibration system employing a fiber oxygenator. Diagram of the
calibration setup indicating direction of fluid and gas flow and placement of flow cell for MP-PQM. An
independent PO2 measurement is made with an optical fiber ruthenium-based probe.

III.4b CALIBRATION PROCEDURES

The simplest procedure for calibrating the phosphor oxygen sensor is to bubble known

mixtures of oxygen and an inert (no dynamic quenching) gas like nitrogen into an

aqueous solution of phosphor. Typically, the solutions are allowed to mix for 20-30

minutes which allows the partial pressure of oxygen in the gas mixture to equilibrate

with the solution. The calibration samples are then placed in a sealed capillary tube or

other optically transparent material that is impermeable to oxygen. This procedure has

been successfully employed in a number of studies-' 17 '47'48, often coupled with an
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independent measure of P02. The solutions are either saline (PBS) or plasma from the

blood of the experimental animal.

Other methods for calibrating the oxygen sensor take advantage of enzymatic and

chemical reactions that consume oxygen. The two most common enzymes and

substrates used in the literature are: 1) ascorbate oxidase and ascorbate37 or 2) glucose

oxidase (with catalase) and glucose'6 . Chemical consumption with sodium dithionite has

been successfully used to titrate the amount of soluble oxygen for phosphorescence

measurements49. In the appropriate environment, all of these oxygen consuming

reactions are capable of producing anaerobic solutions.

To perform PO2 calibration measurements, I developed a sealed recirculating system

employing a fiber oxygenator to equilibrate the circulating fluid with gas mixtures of

known oxygen concentration balanced with nitrogen (Figure 111-8). The inclusion of a

fiber oxygenator reduced surfactant effects observed with solutions containing albumin.

The oxygen tension in the calibration solution was independently measured using a fiber

optic ruthenium-based sensor (FOXY, Ocean Optics, Inc., Dunedin, FL). All tubing in the

system was impermeable to oxygen (Tygon PVC, McMaster-Carr Supply Co.,

Robbinsville, NJ). Flow was maintained at 5-10ml min' by using a peristaltic pump

(Ismatec 7331-10, Cole-Parmer Instrument Co, Vernon Hills, Illinois). A solution of 1mg

ml' (3.6 x 10~4 M) OxyphorR2 in PBS at pH 7.4 was equilibrated with known nitrogen gas

mixtures of 0, 1, 2, 5, 10% oxygen (0-80mmHg) using a fiber oxygenator (Hemophan*

Membrane Fiber Oxygenator, Harvard Apparatus, Holliston, MA). The oxygenator had

an 18ml priming volume, so ~50 ml of OxyphorR2 solution was prepared for each

calibration. After equilibration with the applied gas mixture, the solution was passed

through an oxygen impermeable spectrophotometer flow cell with 500gm thick walls

(45-Q-2, Starna Cells, Inc., Atascadero, CA). MP-PQM calibration measurements were

performed within the flow cell. Both the calibration solution reservoir and flow cell were

maintained at 37'C.
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Figure 111-9 MP-PQM calibration of Oxyphor R2: in the absence (a) and presence (b) of varying BSA
concentrations. Solid lines are linear regression fits to the data to determine the Stern-Volmer constant.

The Stern-Volmer constants (kq) for Oxyphor R2 solutions containing 0, 1, 2, 3, and 4%

by weight bovine serum albumin (BSA, Sigma-Aldrich, Co., St. Louis, MO) were

determined using this system (Figure 111-9). All measurements were made at 370C and, if

necessary, the pH was adjusted to 7.4. The bin size on the multichannel scaler was set to

2.56 pts/bin and the pulse duration was 5.12 pts for all measurements. MP-PQM

calibration measurements commenced once the measured lifetimes stabilized. This

usually took 15-20 minutes after initiating the system. As can be seen from the linear

fits, the quenching constant decreases with increasing BSA concentration (Table ll-1).

At low BSA concentrations (1-2%), the data does not fit as well (increased standard

error). However, these concentrations are below physiological levels of albumin and

other binding proteins found in vivo.

Table Ill-1: Stern-Volmer Quenching Constants determined by linear regression for single exponential
decay.

BSA (% b/w) kg (mmHg' s-) SE -95% Cl +95% Cl

0% 3205 78 2957 3453

1% 480 46 332 627

2% 385 17 310 460

3% 357 8 333 382

4% 322 1 317 327
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Figure 111-10 Schlenk line freeze-pump-thaw method. Samples are shown during the pump process to
create deoxygenated solutions

The values of kq determined by MP-PQM and the recirculating calibration system fit

those in the literature very well. The Wilson group, who developed the Oxyphor R2

sensor, reports a quenching constant of 430±10 mmHg 1s 1 for 1.5% albumin at 380C and

a pH of 7.4.36 In a separate paper, they report a kq of 410 mmHg-'s 1 at 2% BSA46.

The fiber oxygenator calibration system served well for obtaining quenching constants,

but not the anoxic lifetime of the OxyphorR2. Pure deoxygenated solutions are very

difficult to obtain, even in closed systems. The method of freeze-pump-thawing yields

solutions that are almost entirely anoxic. This method employs flash-freezing of the

solution with liquid nitrogen followed by opening the sample to a high vacuum (Figure

111-10). Once the pressure reaches the baseline value of the vacuum, the sample is

closed and the gas is released as the solution is thawed with warm water. The process is

repeated until upon reopening of the sample to the vacuum, no change in pressure is

observed. Schlenk flasks modified with a quartz 10 mm pathlength cuvette (Starna Cells,

Inc., Atascadero, CA) created by James Glass, Inc (Hanover, MA) are used in the process.

Over repeated cycles the vapor pressure above the frozen solution is reduced to the
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order of 10-6 Torr. These low vapor pressures are obtained by an Edwards (West Sussex,

England) B34431976 diffusion pump.

Using the vacuum line freeze-pump-thaw method, solutions of Oxyphor R2 containing

different amounts of BSA at pH 7.4 were deoxygenated. The anoxic lifetimes were

determined using MP-PQM. Using a single exponential fit, it can be seen that to

continues to increase, even at 10% BSA (Table Ill-1). Unlike single-photon

measurements which excite a large volume of phosphor throughout the samples, MP-

PQM appears sensitive to unbound (free) phosphor.

Table 111-2: Oxyphor R2 calibrated lifetime in anoxic conditions (TO).

BSA % (b/w) To Se ro Bound* SE
0% 273.7 0.4
1% 407.8 1.5 746.2 13.1
3% 483.2 1.4 726.9 7.0
5% 524.7 0.6 723.0 3.7
7% 534.1 1.1 712.3 5.1

10% 584.6 1.5 722.3 7.0
+ - Standard error of at least 10 measurements
* - To of bound component determined by fitting to two-component decay with free o constrained

III.4c Two-PHASE CALIBRATION

When the calibration solutions were absent of any albumin, single exponential decays

[Eq. 111.4] fit the data extremely well with evenly distributed residuals. However, in the

presence of albumin, the single exponential fits were poor demonstrating residuals that

skew at the early timepoints (Figure Ill-11a). These effects for single-component fitting

were also seen in most in vivo measurements. This suggested that there may be two or

more species contributing to the phosphorescence decay. In the case of the calibration

solutions, there were assumed to be only two states for the phosphor molecules:

albumin bound and free.

[phosphor] + [BSA]++ [phosphor - BSA] 111.15
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Each of these states contributes to the phosphorescence decay proportional to their

concentration. It appears that the high-resolution of the MP-PQM is sensitive to the

contributions of the two components.

a.b. Two-Component
6o Single Exponential Decay Exponential Decay

1400

9 1200

0
L 1000
e
2800
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0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
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Figure Ill-11 MP-PQM disecerns two species of phosphor In the presence of albumin. At 10% BSA (b/w),
fitting to a single exponential (a) results in skewed residuals, particularly at early timepoints (*). By
constraining the known lifetime of the soluble free species in a two-component exponential decay, the
lifetime of the bound species can be determined. The fit demonstrates evenly distributed residuals (b).

Using the anoxic lifetime determined in the absence of albumin, I fit each of the

deoxygenated solutions to a two-component exponential decay model [Eq. 111.4] to

determine 1o of the albumin bound species (Table 111-2). The bound lifetime determined

for each solution was independent of albumin concentration above 1% (P-value: 0.21).

The mean anoxic lifetime was determined to be 726.1 ± 6.2ps. The constrained two-

component exponential decay fitting produced evenly distributed residuals at all

timepoints (Figure Ill-11b). Additionally, the fraction of bound and free species could be

calculated by determining the emission due to each species using the product of the

exponential amplitude and the lifetime for each species.

In order to properly measure PO2 in vivo, the effect of both species on phosphorescence

should be taken into account. Therefore, assuming both species follow a linear Stern-
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Volmer relationship, I derived an equation to relate the lifetimes of the two species at

any P02. At a given oxygen tension the following relation should hold:

- -l( - -- = - - - - -- 111.16
k'q,1 0 ro,= kq,2 T2 7o,2)

where the numbered subscripts denote each of the two species. Solving for the lifetime

of the second species gives the same form as the original Stern-Volmer relationship.

1 1 1 1
k + -- 111.17

T2 kg, 1 (ri r1 ,2 T,

This relationship can now be replaced in Eq. 111.4 to fit for a single lifetime.

I = Ae t/T + Be-t(T(T) T2 +C 111.18

To apply this equation to phosphorescence decays obtained from samples with

unknown P02, the quenching constants and anoxic lifetimes of both species need to be

known. To obtain these values, calibration samples containing 0% or 5% BSA at pH 7.4

were prepared using the freeze-pump-thaw method. After obtaining an atmospheric

pressure of 2x10-6 mmHg within the modified Schlenk flasks, each sample was placed

under oxygen pressures ranging from 10-80 mmHg. Phosphorescence lifetimes for the

0% BSA samples were obtained using MP-PQM and fitting to a single exponential decay.

MP-PQM measurements were then performed on the 5% BSA samples. The raw data

was fit to both the single and two-component exponential decays, constraining one

component in the two-component model to the 0% BSA lifetime at that oxygen tension.

Linear Stern-Volmer relationships were fit to both the free and bound species to obtain

kq (Figure 111-12). The quenching constant obtained for the bound species (285 mmHg~
1s1) was lower than that of that obtained from samples containing any concentration of

BSA (Figure 111-9). Using the lifetimes and peak amplitudes to determine the total

photons attributed to each species, the bound fraction was determined to be 94.6 t

0.3% across all oxygen tensions.
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Figure 111-12 Calibration of the free (left) and albumin bound (right) phosphor species using MP-PQM.
The calibration curve of the single component fit to the 5% BSA solutions is also given for comparison. The
Stern-Volmer constant, kq, is give for each fit.

I1.5 Characterization of MP-PQM

The experimental parameters defining time-domain multiphoton phosphorescence

quenching microscopy may alter measured P02 or the apparent resolution of

multiphoton microscopy. The instrument response to parameters such as gating and

excitation pulse duration can directly affect the measured phosphorescence lifetime.

The excitation wavelength utilized to perform two-photon excitation of the phosphor

may also alter lifetime. Phosphorescence saturation or diffusion of phosphor during the

measurement may decrease the resolution of oxygen measurements. Further, the

repeatability of in vivo measurements should be measured to define measurement

error. To fully characterize the technique, I quantified the effects of these parameters in

vitro and in some cases in vivo under different oxygen tensions.

III.5a PHOTON COUNTING BIN SIZE

The multichannel scaler counted photons as a function of time by partitioning counts

into different histogram bins of a given duration and time from the trigger pulse. In a

typical MP-PQM experiment, the bin size should be less than the lifetime in order to

acquire an accurate decay. To determine if the size of the photon counting bins

correlated with the measured lifetime, I altered the bin size for phosphor solutions
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under oxygen tensions ranging from 0 to 75 mmHg and with either 0% or 5% bovine

serum albumin. The effect of photon counting statistics (Poisson statistics) was

controlled over the experiment by increasing the number of records collected with each

smaller bin size to keep total photon counts constant. At all oxygen tensions the

measured lifetime was found to be independent by a one-way ANOVA (P-value > 0.05)

of all bin sizes less than 50% of the phosphor lifetime for the free species ( Figure 111-13).

Further, no statistical difference was found between any pair-wise comparison of bin

size (N = 10). For the bound component, bin sizes of 0.64 lts at the longer and 10.24p s at

the shorter lifetimes were found to be statistically different from the rest of the group.

For all in vivo experiments, bin size was maintained at 2.56ps which showed no effect on

lifetime ( Figure ll-13b) and was always much less than the lifetime (bin size « ).

1000 a. 1000 b.

m U U m
-100 100 AA A A *

0) X X X( X XEx xux x

10 *Otorr 10
ALj A A A 018 torr

A37torr
075 torr Z0torr +10torr *18torr A30torr X77torr

Bin Size (ps) Bin Size (ps)
Figure 111-13 Effectof photon counting bin size on measured lifetime. (a). At different oxygen tensions
and 0% BSA the lifetime of OxyphorR2 was found to be independent of bin size. (b) However, for the
bound component, bin sizes on the end of the range demonstrated significant differences from the rest. *
- P-value < 0.05

IIL.5b EXCITATION PULSE DURATION

The technique of multiphoton microscopy is ideally suited for fluorophores with short (<

4ns) lifetimes. The repetition rate of the pulsed femtosecond excitation source is

typically around 80Mhz. The period of the laser cycle (12ns) allows the decay of

fluorescence to occur between pulses without saturating the sample38 . However,

phosphorescent molecules have much longer lifetimes, so as discussed in the

development of the MP-PQM methodology, the duty cycle of the EOM needs to be 0.1-

0.6% select only a relatively small portion of pulses.
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Figure 111-14 Effect of excitation pulse duration on measured phosphorescence lifetime for both 0% (a)
and 5% (b) BSA. * indicates duration at which all later points are statistically different from the earlier
excitation pulse durations.

I determined the effect of the duty cycle by gradually increasing the excitation pulse

durations of the electro-optic modulator. The effect of pulse duration on the lifetime

was observed for 0% and 5% albumin solutions of Oxyphor R2 at all oxygenation levels

used in the calibration (Figure lil-12a). Interestingly, the measured lifetime tends to

increase with pulse durations that are typically longer than the lifetime of the phosphor

(Figure 111-14). With each increase of the excitation pulse duration, more laser pulses are

incident on the sample. For the 80MHz Ti:Sapphire laser source, the number of pulses

incident on the sample increased from ~410 to nearly 160,000. If heating of the sample

was occurring, the lifetime would decrease from increased collisional quenching due to

the higher average kinetic energy. Even taking into account the exponential decays of

numerous subpopulations excited at different times [Eq 111.10], the lifetime should still

be the same if the local environment is unchanged. However, for nearly every sample

studied, the lifetime increased, even at 0 mmHg. One possible explanation for increased

lifetime is secondary excitation of the triplet state of the porphyrin to even higher triplet

states, thus lengthening the lifetime. This effect has been observed in many luminescent
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molecules and particularly affects optical microscopies employing pulsed laser sources,

such as stimulated emission depletion microscopy (STED) 50.

The likely explanation for this finding is that the oxygen within the focal volume of the

multiphoton microscope is being consumed by extended periods of quenching with the

phosphor. The consumption of oxygen (and potential creation of free radicals) is well

known for porphyrins". In this case, it is likely that oxygen within the local environment

is decreasing due to consumption; therefore, the apparent phosphorescence lifetime is

increased. The effect of changing lifetime is also observed in the exponential decay fits

which appear to be multicomponent.

Due to the Stern-Volmer relationship, changes in lifetime have a larger magnitude at

higher oxygen tensions. However, the actual percentage change in measured oxygen is

less. For example in Figure lIl-14a, at 37mmHg and 18mmHg, the percentage changes

are ~27% versus 50% at the same excitation pulse duration. Any errors due to

consumption of oxygen would be increased in areas of lower oxygen tension. The effect

of oxygen consumption was less apparent in the more oxygenated samples (75mmHg).

Here, more extended pulse durations would be needed to consume enough oxygen to

significantly alter the phosphorescence lifetime. For these experiments, which were in a

sealed cuvette, measurements immediately following the longer excitation duration

measured the appropriate PO2. This suggests that the effect of oxygen consumption is

only transient, corrected by the diffusion of oxygen from outside the focal volume. In

vivo this effect may not be observed, especially in hypoxic tissue regions. For this

reason, all in vivo pulse durations were limited to ~15[ts or less, well below the region

where the lifetime was found to be statistically different.

III.5c PHOSPHORESCENCE SATURATION - PRACTICAL EFFECTS

As discussed in section 111.3b, the photophysical properties of the phosphor determine

the rates of single ground state depletion and triplet state population. Using a pulsed

laser source, such as in MP-PQM, the population fraction of the triplet state is

dependent on the number of excitation pulses incident on the sample (n), the fraction
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of molecules excited with each laser pulse (a), the repetition rate of the laser source (f)

and the lifetime of the triplet state (Ty). By fitting the phosphorescence emission during

excitation pulses of extended duration (Section 1ll.5b) to Eq 111.10 in aqueous solutions of

OxyphorR2 with known PO2 (oC -ry), the excitation fraction per laser pulse can be found.

12 0 mmHg 2.0 37 mmHg 0.45 75 mmHg -

410 A1NO0 I 1.6 - ~ ~ -- -0.35

3 I 1.4 /.^ 0.3
1.2 r o.2s
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Figure Ill-15 Phosphorescence saturation during the excitation pulse of MP-PQM at different oxygen
tension. Dashed red lines indicate the fit [Eq. 111.10]. Dashed green lines indicate the number of incident
laser pulses where stead-state saturation is reached for the fits.

I measured phosphorescence saturation of OxyphorR2 under excitation pulses of

increased duration at 9,18, 37, and 75 mmHg. Fitting to the model, I found an excitation

fraction per laser pulse (a) of 0.001 - 0.006 depending on the oxygen tension. It is likely

that there are a lot of factors affecting a. In fitting Eq. 111.10 to real data, the true

excitation probability of the phosphor was not taken into account. In reality, a is a

combination of the system detection properties (<p), two-photon absorption cross-

section (a2), phosphor concentration (C), beam-shape or second order temporal

coherence of the excitation laser (g2) and excitation power (Io):

1
a oc 1pCo-2 g2(IO (t)) 2  1.19

Concentration and excitation power were controlled across samples, while the intrinsic

properties of the detection system and laser would not change. Therefore it is likely that

the range of a is due to changes in the lifetime or quantum yield of the phosphor.

At samples under 0, 37 and 75mmHg of oxygen, it can be seen that the

phosphorescence saturation relation does not fit as well at lower oxygen concentrations

(Figure il1-15). This is due to the consumption of oxygen changing the lifetime of the
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phosphor. No more is this apparent than in the tails of the raw data, which do not level

off indicating a steady-state, but continue to increase (37mmHg). Only at 75mmHg does

steady-state saturation appear to occur. This is likely due to the buffering of oxygen

consumption due to the higher concentration, faster rate to saturation because of the

shorter lifetime and smaller changes in lifetime due to oxygen consumption.

Interestingly, the range of a follows the oxygen tension, suggesting that at the higher

tensions, the value is more accurate (6.2 ± 3.5 x10_3 at 75 mmHg). Steady-state

saturation does appear to be reached at OmmHg, however, fits at shorter number of

pulses demonstrate oxygen consumption. This observation is likely due to the fact that

the solution is nearly devoid of molecular oxygen, thus the consumption of the small

amount remaining in the focal volume occurs relatively rapidly and stead-state is

reached.

Another property can be observed in the fits to the saturation data (Figure 111-15). The

number of pulses required to reach steady-state saturation decreases with increasing

oxygen tension due to the decreased quantum yield (dashed green line). For the

samples shown (0, 37, and 75 mmHg) the corresponding number of pulses to reach

saturation was 65000, 8000, and 1300. Given 12.5 nanoseconds between pulses, the

time to saturation (800, 100, and 16 ps) is about 3x the phosphorescent lifetimes for

each sample (273, 7.3 and 4.3 pLs). This is greater than that estimated by steady-state

continuous excitation [Eq. 111.7].

III.5d INSTRUMENT RESPONSE

A difficulty in many time-domain lifetime experiments is the shape of the excitation

pulse. Many optical excitation sources have characteristic decay times, often interfering

with the measured lifetime. This requires either deconvolution of the excitation pulse

from the decay24 or calculating lifetimes with much data removed to reduce the effect

of the excitation light33. The former is often technically difficult, while the latter may

give incorrect lifetimes due to the reduced counts and limited data.
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Figure 111-16 Excitation laser MP-PQM pulse incident on the sample. (a) Typical in vivo experimental pulse
at 2.56ps bin photon counting. (b) Same pulse as in a, except the collection bins are smaller allowing
assessment of the fall-time. (c) A shorter excitation pulse duration.

To characterize MP-PQM, I observed the excitation laser pulse at 15.36pts or 5.12ps in

duration with typical or high resolution photon counting bins (Figure 111-16). Ordinarily,

the 1020nm excitation laser pulse is not observed during the experiment due to the

placement of a shortpass filter (<750nm) in the emission path. On all excitation pulses, a

rise-time of 1ps is observed, which is within the parameters of the electro-optic

modulator. The fall-time after the applied voltage is dropped across the EOM is around

2[ts, much less than any experimentally measured decay time in vivo (bound species).

With shorter excitation pulses (5.12ps; Figure 111-16c), a slight decay is observed after

the excitation pulse height has dropped ~10% of the peak. The intensity of this decay is

much less than that required to excite the phosphor. Thus, there is likely little

interference of the excitation pulse in the measured lifetime.

III.5e Two-PHOTON EXCITATION WAVELENGTH

Previously, I determined that 1020nm would be the ideal wavelength for in vivo

excitation of the phosphor. However, no literature exists on the effect of excitation

wavelength for TPE on the lifetime of the phosphor. To determine if any change in

wavelength occurs, I measured the lifetime at wavelengths ranging from 800 to 1020nm

in an anoxic solution of OxyphorR2 (Figure 111-17). Average excitation power was kept

constant, although this means that there still would be more incident photons at

129



CHAPTER 3

1020nm than 800nm (- per mW or 1.275 in this case). Repeated measurements were
Al

collected at each wavelength (n = 5).

350

300*

*250

'U-200

780 820 860 900 940 980 1020

Waveingth (nm)
Figure 111-17 Change in phosphorescence lifetime due to two-photon excitation wavelength. Errors are
given as standard deviation. (*) indicate wavelengths with lifetimes significantly different from 1020nm.

As the excitation wavelength decreases from 1020nm, the lifetime decreases by ~2[ts

every 10nm. This change with wavelength is significant over the tuning range of the

Ti:Sapphire laser. The variance in the measurement also increases with decreasing

wavelength. This could be due to increased detectable background from the laser,

temperature fluctuations, or alterations in the photophysics of the phosphor.

In photon counting, statistical noise typically follows a Poisson distribution34. This means

that 63% of the measurements will be between n ± hi. For the measurements here,

the statistical noise in the background level increases almost 10-fold from 1020 to

800nm. This is likely a large source of the variance in the exponential fits to the data.

Increased heat due to two-photon absorption of the chromophore has been shown to

be negligible for even the highest absorption cross-sections34. However, single photon

absorption of near-infrared laser light may increase heating. Of course, the absorption

of water is higher at 1020 than 800nm, suggesting that any temperature effects would

be reserved for the longer wavelengths. To approximate the temperature increase for a

Gaussian laser beam parked for a time t, the following relation can be used for single

photon absorption at the focal spot3 4:
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cXwTD / 2 Rq (t
T(t) = 2ag In +1 111.20

Pwc 7T(4 2 ) TD

Here, aw, pw, and cw describe the absorption coefficient (0.4 cm' at 1020nm), mass

density (1 g mi1) and specific heat (4.2 J g_'C') of water. Pav and w are the average

excitation power and width of the focal volume, respectively. The characteristic

diffusion time of water, 'r, is given by:

D = k 111.21

where kw is the thermal diffusivity of water (1.4 x 10-3 cm2s'). The beam waist for

1020nm light and a 0.95 NA objective lens was estimated to be 0.25pm. The pulse

duration for the experiment in Figure 111-17 was 5.12 pts. Substituting all factors into Eq.

111.20, a temperature rise of 0.6 0C is estimated for 1020 nm, while at 800nm it is around

0.02 C. These temperature changes would cause fluctuations of much less than 1% in

the lifetime 36 and does not explain why 800nm lifetimes are shorter than 1020.

A probable explanation may be stimulated emission of the phosphor from the triplet

state. Stimulated emission is a quantum mechanical process whereby a photon induces

an electron in an excited state to lose energy through emission of a photon. This

contrasts with phosphorescence (or fluorescence), which is a spontaneous, typically

thermally regulated, process. The emission from the Oxyphor R2 compound is very

broad: peaking around 700nm with a long tail up to 800nm. In theory, if population

inversion occurs and the triplet state contains a significant portion of the excited state

molecules, which is possible given the discussion in Section 111.3b, stimulated emission

may occur. Further, the two-photon absorption cross-section of OxyphorR2 is larger

around 800nm than at 1020nm suggesting an increased excitation rate populating the

triplet state. Stimulated emission of phosphorescence from organic molecules has been

demonstrated in the early 1960s51. Work since then has been in limiting the population

of the triplet state to enhance stimulated emission from the singlet state in optical

devices such as lasers52or in STED microscopy to limit photobleaching50.
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III.5f MEASUREMENT RESOLUTION - EFFECTS OF PHOSPHOR DIFFUSION AND FLOw

The oxygen sensor has a relatively long lifetime compared to other fluorophores

commonly used in MPM. During phosphorescence emission, the excited molecules can

diffuse into and out of the focal volume. An estimate of diffusion distance for a single

molecule can be made assuming a three-dimensional random walk.

(r 2 ) = 6Dt 111.22

Here the mean square displacement, (r 2 ), is related to the diffusion coefficient, D, and

time. Using this relation, the probability distribution for a particle starting at r = 0 can

be obtained for given lifetimes of the phosphor ().s3

p(r, T) = 1 3 e 4DT 111.23
8(rDT)/2

The diffusion coefficient for the solvated form of OxpyhorR2 was estimated from the

Stokes-Einstein relation:

Do = kBT 67r RH 111.24

where, Boltzmann's constant, kB, is 1.3807 x 10-23 J K1, T is the temperature (310K in

vivo), and r7 is the viscosity of water (6.92 x 10-4 kg m1 s-1 at 310K). The hydrodynamic

radius, RH, was estimated from the molecular structure (including dendrimers assuming

a solvation shell) to be 55 x 10-10m. This gives an estimated diffusion coefficient of 5.96

x 10-7 cm2 s-1, which is close to both albumin (~ 6.1 x 10-7) and hemoglobin (~6.9x 10-7)53.

Using the Stern-Volmer relation and the calibration constants determined for the bound

species, I calculated the probability distributions for a molecule at r = 0 for the

lifetimes at 0, 45 and 90 mmHg (Figure ll-18a). Only at very low oxygen tensions do the

phosphor molecules near the edge of the focal volume radii for the 0.95NA objective

lens used in MP-PQM. In practice, lifetime measurements are performed by collecting

the entire decay in the time-domain. This means that the signal will have decayed more
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than 1 or 36.7%. Typically, the signal decays below 1% of the peak intensity. Defining the
e

time constant [t, = -T ln(O.01)] for such a signal decay and replacing in Eq. 111.23 for T,

new probability distributions are obtained (Figure lil-18b). For measurements in anoxic

environments, around 2% of the molecules from the center of the focal volume are

outside the radial 1 distances at a time constant equivalent to the phosphor lifetime.

This value is even higher (28%) when considering decay to 1% of peak intensity.
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Figure ill-18 Diffusion of oxygen center from center of focal volume for different oxygen tensions. Radial
diffusion distances for the decay time (a.) and to 1% of peak intensity (b.) are given. The radial (xy) and
axial (z) 4 distances for the MPM focal volume are noted with dashed lines.

e2

To determine the three-dimensional resolution of the oxygen measurements, the three-

dimensional shape of the excited state focal volume and its change over time need to be

taken into account. Temporal changes in the focal volume are applied to measure

diffusion in multiphoton fluorescence recovery after photobleaching (MP-FRAP).

Following the derivation of Brown et a32, the relation for the fraction of emitting

phosphor molecules was obtained for two-photon excitation:

[ 4nz 2  1 4nr2  1
c(r, z; t) _ ~"e ~ COzz 1 + (16nDt/Wz 2 ) r 2 1 + (16nDt/Or2 )] 111.25

Co _ n! (1 + 16nDt/Oz2)'/2(1 + 16nDt/(or2 )
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The axial (oz) and radial (r) 1 widths for the three-dimensional focal spot are readily

apparent, as well as the diffusion coefficient (D). The parameter f# defines the initial

rate of excitation [Eq. 111.19] over the excitation pulse of the MP-PQM.

1
U2 g2(IO(OO))AT 111.26

2

Here the detection efficiency (<), two-photon absorption cross-section (U2) and second-

order temporal anisotropy (g2) are defined as in Equation 111.19. The squared intensity

of the stationary beam over the excitation pulse (Ar) determines the total amount of

photons incident on the sample.

Assuming an intensity of 50mW at the sample surface and a 15.36 pts excitation pulse

duration along with the other relevant constants for the phosphor (used previously) and

the focal volume dimensions of a 0.95NA objective, I determined the concentration

profiles of previously excited phosphor at 10% of peak phosphorescence (Figure 111-19).

As can be seen the shape of the concentration probability profile of excited molecules in

the three-dimensional excitation volume changes over time. The most dramatic effects

are the decrease of concentration in the center of the focal volume, C(r,z) = C(0,O),

as the phosphor diffuses out of the original excitation volume (Figure 111-19). The volume

resolution is higher the more oxygen that is present because quenching occurs over a

faster period (c is shorter). However, even at 100 mmHg the volume containing

phosphor at 10% of the decay is nearly two times the original volume (Figure 111-20a). In

anoxic conditions, the effect is even more dramatic, with the volume resolution being

nearly 15 times that of the original volume. The actual volumes are on the order of 0.3

to 3 femtoliters for 90 and OmmHg, respectively. The greatest change due to diffusion

occurs in the radial plane visible in the base of the concentration probability profile

(Figure ll-20b). Even at 0 mmHg, the full width half maximum (FWHM) of the

probability distributions along either axis (1.04pm radial and 1.53pm axial) are smaller

than those of other techniques54, especially in the z (axial)-direction.
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a. Immediately After Excitation Pulse
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Figure 111-19 Three-dimensional concentration probability profiles determine the volume resolution of

MP-PQM. (a). The profile immediately after the excitation pulse. (b). At OmmHg the concentration

probability has spread out in all directions, enlarging the actual measurement volume. (c and d). At higher

oxygen tensions, the lifetime of the phosphor is shorter and less diffusion out of the focal volume occurs.
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The above probability distributions are useful for estimating the resolution of MP-PQM

for diffusion in water. Of course in vivo the diffusion constant would potentially be

lower than that in water. Further, much of the phosphor is bound to proteins, thus

increasing the hydrodynamic radius and slowing the diffusion rate. In the case of

intravascular measurements, the blood flow rate will decrease the resolution of the

measurement in the direction of flow. In addition to the changes in the volume

resolution caused by molecular diffusion during the lifetime of the phosphor (Figure

111-19), convection will further displace these volumes.
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Figure 111-20 Measurement volume for MP-PQM. (a). The actual volume of distribution for the phosphor
at 10% of the peak intensity immediately after the excitation pulse. (b). Contour plots of the base of the
three-dimensional concentration probability profiles illustrating the diffusive spreading for a range of
oxygen tensions.
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Figure 111-21 Volume resolution displacement during intravascular MP-PQM measurements in
unidirectional flows. Color gradients indicate increasing displacement with decreasing oxygen tension
and increasing blood flow rate.

In normal brain capillaries the blood flow ranges up 1mm/s 55, while in tumors it can be

non-existent, although an average of 100 -300 tm/s is often observed 56. Assuming

unidirectional flow, I determined the approximate displacement of the resolution

volumes in Figure 111-19 for flows ranging from 0.05 to 1500 mm/s (Figure 111-21). At high

flow rates, local environments with low oxygenation experience substantial

displacement, up to 7Rm. However, at rates found in tumors (~350Rm/s), the

displacement is only around 1pm.
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Figure 111-22 MP-PQM measurement error. (a). Series of repeated measurements in vitro demonstrating
no deviation over time. (b). In vivo measurements show increasing standard error with higher oxygen
tensions. Dashed line - Pearson's correlation of 0.41.

III. 5g MEASUREMENT REPEATABILITY IN VITRO AND IN VIVO

In addition to characteristic errors in excitation of the phosphor and effective resolution,

intrinsic P0 2 measurements all suffer from a measurement error. To assess the standard

error in quantified P02 obtained with MP-PQM, I performed either 100 repeated

measurements in vitro at different oxygen tensions or a series oxygen tension maps in

vivo taking three measurements at each location. At either high (77mmHg) or low

(100mmHg) oxygen tensions, the deviation in the measurement over time is negligible:

42.3 ± 1.0 and 257.3±3.7 mmHg, respectively (Figure III-22a). The standard error at the

lower oxygen tension is larger than at higher values; however the actual fluctuation in

measured P02 is small due to the Stern-Volmer relationship. This is apparent during

measurements in vivo where the standard error is positively correlated (Pearson's

Correlation Coefficient: 0.41) with quantified P02 (Figure Ill-22b). Interestingly, at

normoxic oxygen tension, the bound fraction is around 80-90% with little correlation

with P0 2 (0.18), while in hypoxic environments it ranges from 40-90% over a very short

range (2-10mmHg).

III.6 In vivo Demonstration and Application
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I further characterized MP-PQM by demonstrating both significant oxygen tension

alterations under hyperoxia in normal tissue and mapping oxygen profiles in skeletal

muscle of the mouse. Application of the phosphorescence quenching method using Pd-

porphyrin sensors in normal tissue has been previously demonstrated in lower

resolution epifluorescence microscopy 47' 57'58 or frequency domain measurements by a

number of investigators59. Many of these measurements have focused on the

intravascular space rather than interstitial.

III.6a PERTURBATION OF TISSUE OXYGENATION

Altering the amount of inspired oxygen increases the oxygen saturation of the blood in

healthy animals. Interestingly, hyperoxia has been studied as a means of improving the

interstitial oxygen tension in a tumor to improve the efficacy of radiotherapy with

limited effect60'61. In clinical applications, hyperoxia is usually performed under

hyperbaric conditions. In murine skin, increased vascular oxygen under normobaric

conditions should improve tissue oxygenation, which would be detectable by MP-PQM.

In male SCID mice bearing dorsal skinfold chambers (DSC) exposing the underlying

muscular layers of the dermis, I mapped the oxygen tension under both 21 and 100%

inspired oxygen (Figure 111-23). Measurements at altered fractions of inspired oxygen

(FiO 2) were performed over the same location at three different depths in the same

animals. The increase in tissue oxygenation was dramatic with tissue around the large

arteries and arterioles demonstrating the largest increase in p02 (Figure lI-23b,c). Some

regions in the capillary networks do not demonstrate increased oxygen tension in the

interstitial space.
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Figure 111-23 Hyperoxia in normal murine skin quantified by MP-PQM. (a). Colorized depth projection of
normal vasculature. (b). Oxygen tension map at 80pm deep and 21% inspired oxygen. (c). Oxygen tension
map at 80pm deep and 100% inspired oxygen. (d). Oxygen tension probability distributions for normal
and hyperoxic skin in b and c. Inset - mean tissue PO2 is statistically different between 21 and 100% FiO 2-

The oxygen tension probability distribution under normobaric hyperoxia reveals a

shifted mean peak (~32 versus ~52mmHg) and increased variance (Figure Ill-23d). Also

visible is a sharp peak at 122mmHg. This is the MP-PQM systems oxygen resolution limit

using 2.56 ts photon counting bins. Assuming a lifetime on the order of the bin size for

the free species, the calculated oxygen tension from the Stern-Volmer relationship and

calibration constants is ~122mmHg. Using a smaller counting bin size, maximal detected

P0 2 would extend to ~250mmHg for 1.28 ts bins. The actual increased oxygen tension in

the arteries is probably much higher than 122mmHg. Other investigators have
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measured P02 levels above 470mmHg under similar conditions in an analogous hamster

model62. The increased width of the probability distribution under hyperoxic conditions

is reflected in the heterogeneity of the oxygen tension map (Figure ll-23c). Still the

average tissue oxygen tension was significantly higher (P-value << 0.05) under hyperoxic

conditions (Figure 1ll-23d Inset).

0

5

E 10

020

25

30

C.
45- --- pm

40, -10pm
-15 pm

35, -20pm

-30 -30 pm

20
C.

15

10

5

0 20 40 60 80 100 120 140 160 180
Distance (pm)

200

Figure 111-24 Murine skeletal muscle oxygenation. (a). Maximum intensity projection of the skin
musculature (blue) and associated capillaries (green). The series of planar measurements made at

different depths are shown (red). The profiles shown in c are taken from the middle series ( ). (b)

Each individual depth slice where the measurements depicted in a were taken. (c) Oxygen tension profiles

along the highlighted line in a ( ). (d) The profile with the lowest oxygen is outlined on the enface

slice showing measurements were taken within the muscle cells. Scale bar - 50pm.
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III.6b OXYGENATION OF SKELETAL MUSCLE - KROGH TISSUE CYLINDER MODEL

In 1919 physiologist August Krogh developed a cylindrical mathematical model for the

diffusion of oxygen from capillaries in muscle tissue based on observations of capillary

distribution in skeletal muscle6 3,6 4. To date, the Krogh tissue cylinder model for oxygen

diffusion in three-dimensions has not been experimentally demonstrated by measuring

P02. This is partially due to inherent complexities in the biological systems studied5,

but mostly to lack of an appropriate tool for quantifying oxygen tension at significant

depths with three-dimensional resolution. Using MP-PQM to measure P02 in living

tissue addresses these latter difficulties.

I made measurements in the skeletal muscle of the murine skin within the DSC of SCID

mice (Figure ll-24a). Measurements of P02 profiles (200pm) were made with 10pm

spacing. The skeletal muscle fibers are around 5-10pm, typically surround by capillaries

of 4-6pm in diameter, as seen in each depth slice (Figure 111-24b). Muscle fibers were

imaged by second harmonic generation of the myosin thick filaments70 in the

scaromeres using MPM. Oxygen tension profiles at each depth (Figure ll-24c) reveal

dramatic differences in oxygenation (4.0 ± 1.0 versus 28.9 ± 5.3mmHg) between

measurements within muscle fibers and those outside (Figure ll-24d). By applying semi-

automatic tracing to the MPM vascular images71,72, I was able to measure diameters and

distances to each capillary in three dimensions. Using this information with the oxygen

measurements, I estimated the values obtained by the Krogh tissue cylinder models 3:

Q02 R( 2 r2 - Ry2  r
P 0 2,tissue = p0 2,vessei + 4DS2 R - 21n 111.27

Point measurements of P02 were taken in each nearby capillary vessel to determine

source levels (P0 2, vessel). The average radial distance between capillaries (RO) within the

networks was determined to be ~50pm from the angiographic images. The capillary

diameters (2Rv) and radial distance to the vessels (r) from the tissue P02

measurements were determined from the vascular tracing. The diffusion rate (D02) and

solubility (S0 2 ) of oxygen in tissue was estimated from literature values to be 2.0 x 10-s
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cm2/s and 2.05 x 10-5 m10 2 cm- 3mmHg-1, respectively. The oxygen consumption

vertebrate skeletal muscle ranges from 8.0 x 10-5 to 2.5 x 10-3 mlO 2/cm3 s and depends

on the blood flow of the associated capillaries73. This is assuming a constant muscle

density of 1.06 g/m1 74. Distances beyond Ro for a given capillary and tissue measurement

pairing were ignored. This follows the assumption of the Krogh cylinder model that no flux

occurs beyond Ro.

Various values of oxygen consumption within the range for skeletal muscle were used to

fit to the Krogh Cylinder model. The sum of the calculated P02 values were compared to

the MP-PQM measured values at each point. By minimizing the sum of the calculated

P02 through adjustment of the tissue oxygen consumption (Q02), I found a value of 1.65

x 10-4 m10 2 cm 3mmHg ', well within the range of that reported in the literature7.

However, the standard deviation of the sum was very large due to measurements in

regions of different oxygen consumption (muscle fibers versus interstitial space).

Additionally, P02 measurements inside of the muscle fibers exhibited lower oxygen

tension. Interestingly, the measurements inside the muscle fibers also showed less

protein bound species than those outside (0.52 ± 0.09 versus 0.86 ± 0.04). This suggests

the muscle fibers must be more permeable to the free species. Further, the value of Ro

appears to be anisotropic in three dimensions. Along the XY plane, the separation is

around 50pm, while is much less in the axial dimension in many cases. This likely

invalidates the Krogh tissue cylinder model due to overlapping oxygen sources.

111.7 Further Considerations and Future Outlook for MP-PQM

The application of phosphorescence quenching for quantification of P02 to multiphoton

microscopy provides the ability to probe tissue oxygenation in three-dimensions with

high-resolution. I have defined the characteristics and methodology of MP-PQM

including techniques for measuring in vivo P0 2. With additional equipment and proper

software automation standard MPM in biological laboratories will be easily adaptable to

perform oxygen tension measurements using phosphorescent porphyrins.

143



CHAPTER 3

Through standard techniques, I demonstrated that common porphyrin-based oxygen

sensors can be used with nonlinear excitation. However, commercially available

porphyrins have small two-photon action cross-sections limiting their efficiency with

two-photon excitation. The potential for overcoming the low absorption cross-sections

of porphyrins have been recently investigated using F6rster resonance energy transfer

(FRET) 7 -77 . Through the use of a two-photon absorbing antennae, the phosphorescent

yield can be increased. However, none of these probes have been characterized in the

context of an in vivo environment Further work in this area should lead to more efficient

optical oxygen sensors for MP-PQM.

Given the reduced two-photon action cross-section, I attempted to improve the

sensitivity of MPM to porphyrin phosphorescence using detectors with higher quantum

efficiencies. Using an avalanche photodiode detector, improved sensitivity was observed

for solutions, but not turbid samples or in vivo tissue. This was likely due to the fact that

the active area of the APD was ~180ptm, while that of standard PMTs are 8mm. In

whole area detection (WAD) 34 of thick samples, the emitted photons are no longer

ballistic, but scattered in an array of angles collected by the objective lens. The ability to

focus these scattered photons onto the smaller active area of the APD was greatly

diminished in thick tissues. It is possible that descanned detection 34 with a pinhole

above the confocal limits would permit use of an APD. However, in highly scattering

tissues the lower collection efficiency observed with pinhole detection than WAD may

offset any possible gain.

A concern regarding luminescent probes with long lifetimes under pulsed excitation is

saturation of the excited state. In the case of a phosphorescent molecule, the triplet

state may be saturated. Using a commercially available porphyrin sensor, I showed that

using the MP-PQM techniques and time-domain methodology proposed in this work,

excitation saturation of the triplet state does not occur under standard settings. I did

demonstrate at longer impulses in the time-domain, however the time to saturation was

longer than theoretically predicted. The longer time to saturation is likely due to the low
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fraction of Pd-porphyrin molecules excited per laser pulse (0.006). Therefore, phosphors

with improved two-photon absorption cross-sections would reach saturation faster. Any

new phosphorescent molecules used with MP-PQM must be assessed for this property

to determine the appropriate excitation pulse widths to employ. It should be noted that

saturation does not abrogate MPE, but instead alters the shape of the focal volume38

decreasing the three-dimensional resolution of the system. In certain experiments, such

as multiphoton fluorescence correlation spectroscopy, the shape of the focal volume

can significantly alter the measurement outcome78 . In the case of MP-PQM, saturation

will only probe larger tissue volumes and potentially affect the issues of oxygen

measurement resolution reported here.

It was also important to determine the expected in vivo P02 measurement resolution

based on diffusion characteristics of both the sensor and oxygen as well any convective

forces that may be present. Generally, I found the resolution scaled nonlinearly with

oxygen tension increasing up to volumes of 3 femtoliters in anoxic environments for a

0.95 NA objective lens. At higher P02, the resolution is much higher due to the shorter

phosphorescent lifetimes limiting the diffusion time. In cases of convection, such as

measurements in a perfused and flowing blood vessel, the excited sensors to move with

the flow. The distance traveled is dependent on both the fluid velocity and P02, with the

largest error in measurement spatial resolution occurring in high flows (> 750 pm/s) and

low oxygen tensions. Most blood vessel velocities in both normal and neoplastic tissue

are below this range. Physiologically, low oxygen tensions will never be found in areas of

high flow in normal tissues, abrogating the dramatic effect of convection on the volume

resolution. Further, most vessels in tumors that have low flow are also less

oxygenated5 4 .

I demonstrated the feasibility of MP-PQM in measuring in vivo oxygenation of normal

tissue in mice including with perturbed FiO 2 and in the skeletal musculature of murine

skin. Under normobaric hyperoxia, the oxygen tension was found to increase as

expected. However, when correlated with vasculature in three-dimensions, the
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response appeared heterogeneous. Further, the probability distribution of oxygen

values was also found to have a larger variance than that of tissue under normoxia. It

has been previously shown in the skin muscle of mammals that hyperoxia induces

vasoconstriction in vessels on the order of capillaries79. Studies in the musculature of

anesthetized surgical patients have also revealed decreased vascular flow (presumably

due to vasoconstriction), although the effect was heterogeneous and led to lower

oxygen tensions over time o. Therefore, the heterogeneity in the oxygen distribution is

likely not due to changes in consumption, but instead a reduction in function capillary

density6 2.

In the second in vivo experiment, I attempted to apply the Krogh tissue cylinder model

to skeletal muscle in murine skin. Overall, I found that the model did not apply well or

predict the measured P02 values. The capillary networks of the skeletal muscle in the

skin possessed regular spacing in two-dimensions (XY plane), but not in three-

dimensions. This asymmetry negates a major assumption of the Krogh tissue cylinder

model. More interesting was that the oxygen consumption appeared to be

heterogeneous throughout the musculature. Even though musculature in the skin is

probably not as metabolically active as muscle elsewhere, low oxygen values were

measured in some muscle fibers. The low values of P02 measured within the muscle

fibers can be explained by increased contraction in those particular fiber groups. It has

been shown that the oxygen tension within muscle fibers depends on their level of

activity l. Such studies reported oxygen tension values ranging from 25 to 5mmHg in

lower metabolically active muscle, in agreement with my results. Other investigators

have shown higher values in muscle using other optical techniques8 2,83. However, these

single photon phosphorescence quenching measurements would only measure the

average p02 in a much larger volume at shallower depths (~ 25-50 pim). Therefore, they

may not be able to discern the effects of individual vessels and cells on the oxygen

diffusion profile unlike MP-PQM.
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111.8 Summary

In this Chapter I have demonstrated the development of quantitative oxygen tension

measurements by applying the principles of phosphorescence quenching to multiphoton

microscopy. To perform in vivo measurements, I created an automated software

interface that allows a user to apply different data collection algorithms with real-time

oxygen quantification. I developed multiple methods of calibration and showed for the

first time that both protein bound and free oxygen sensor species can be differentiated

using MP-PQM. This was previously believed to prevent the use of many porphyrin

oxygen sensors in the extravascular space8 3. I fully characterized the technique of MP-

PQM including the two-photon excitation of the Pd-porphyrin dendrimer oxygen sensor,

effects of phosphorescence saturation, practical application issues in time-domain

lifetime imaging, and resolution of the oxygen measurements. In vivo application of MP-

PQM was demonstrated during conditions of normobaric hyperoxia. Further, I applied

the Krogh tissue cylinder model to the capillary networks and muscle fibers in the

murine skin. I showed that in three-dimensions, this model may not be applicable for

capillary networks in the skin musculature due to the anisotropic arrangement of the

muscle fibers. In the next Chapter, I will apply MP-PQM to the study of solid tumor

oxygenation during tumor progression and response to targeted therapy.

111.9 Additional Materials and Methods

III.9a ANIMAL MODELS

For oxygen perturbation measurements, dorsal skinfold chambers (DSC) were prepared

on male SCID mice using previously described methodss6. Briefly, the back of the mouse

is shaved and depilated. One-half of a pair of symmetrical titanium frames (weight 3.2 g;

Workshop, Department of Radiation Oncology, MGH), is implanted on the backside of

the extended double layer of skin. The exposed layer of skin is removed in a circular area

approximately 15 mm in diameter matching the opening in the chamber faceplate. The

remaining skin layer, consisting of epidermis, subcutaneous tissue, and striated muscle,
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is covered with the second half of the titanium chamber which contains a glass coverslip

(Figure 111-25). Following implantation of the chamber, animals are allowed to recover

from microsurgery and anesthesia for 48 hours before in vivo microscopy studies.

Figure 111-25 Dorsal skinfold chamber implanted on a SCID mouse.

To explore the Krogh tissue cylinder model, I developed a transparent window mouse

model to non-invasively image skeletal muscle and quantify P0 2 using MP-PQM. A

dorsal skinfold chamber is prepared as described above, however, rather than removing

all of the skin, a layer of striated skeletal muscle is surgically exposed and cleaned

followed by placement of the transparent coverglass. The skeletal muscle fibers and

supporting vasculature are imaged by second harmonic generation 39,84 (SHG) and

multiphoton excitation of intravenously injected fluorescein isothiocyanate (FITC)

dextran 2M MW (Sigma-Aldrich Co., St. Louis, Mo.), respectively, using MPM. All animal

work was approved by the by the MGH Institutional Animal Care and Use Committee.

III.9b PREPARATION OF OXYGEN SENSOR

Palladium meso-tetra(4-carboxyphenyl) porphyrin dendrimer (Oxyphor R2) was

obtained from Oxygen Enterprises, Ltd., Philadelphia, PA. For in vitro studies Oxyphor R2

was prepared as 1mg/mI (0.36mM) solutions in phosphate buffered saline. Prior to any

measurement , the pH was adjusted to 7.4 using either 1M sodium hydroxide or 1M

potassium phosphate where appropriate. For in vivo measurements, 10mg/ml (3.6mM)

solutions of Oxyphor R2 were prepared with mixed 8mg/mi (4pM) FITC-Dextran 2M in

PBS. The pH was adjusted to 7.4 and the sample filtered (20pm) prior to administration.
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Samples were administered intravenously (200pl) either by tail vein or retro-orbital

injection. The dosage of Oxyphor R2 was 100mg/kg.
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IV.1 Introduction and Motivation

In solid tumors, the amount of oxygen in the microenvironment plays an important role

in progression and response to therapy. Tumors are typically characterized by low

oxygen tension, i.e. hypoxia1,2: P02 values less than 10-15mmHg in tissue. In the clinic,

increased hypoxic fraction has been linked to poor prognosis3-6. Additional studies have

shown a high degree of correlation with hypoxia and metastatic potential7 10 . In fact, it

has been demonstrated that hypoxia promotes the selection of tumor cells with

reduced apoptotic potential". Hypoxia has been shown to independently regulate gene

expression including the hypoxia inducible factor (HIF-1 and -2) pathways12 j 4 and the

family of angiogenic promoters, vascular endothelial growth factors (VEGF)s,16. Even

microscopic tumors once considered too small to be hypoxic, have been shown to have

significant hypoxia in some disease states17'1 . The degree of hypoxia also directly

impacts the formation of the abnormal and irregular tumor vascular networks 9. Recent

work indentifying tumor stem cells has also suggested hypoxia may play an important
20role in maintenance of these cell populations and their gene expression

While levels of oxygen in tumors may impact many aspects of tumor progression, one of

the most clinically important is response to therapy. It is well known that oxygen

sensitizes a tissue to radiation21 . Therefore, hypoxia in tumors is protective against

radiotherapy, particularly if cancer stem cells are immune to such treatments19.

Furthermore, many chemotherapeutics demonstrate reduced cytotoxicity in low oxygen

environments . Initially, it was believed that targeting the tumor vasculature through

antiangiogenic therapy would starve the tumor of its blood supply. However, in the last

decade, antiangiogenic therapy as a single agent has produced limited success in both

animal models and patients ,24. Since oxygen sensitizes a tissue to radiation, one would

expect antiangiogenic agents and radiotherapy to be antagonistic. Interestingly, it has

been demonstrated that certain antiangiogenic therapies coupled with radiation

treatment can produce synergistic results25-28. Additionally, antiangiogenic therapy

coupled with certain chemotherapeutics has demonstrated increased efficacy in
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colorectal and lung cancer patients over either individual treatment29,30. Antiangiogenic

therapy may prune the immature and inefficient tumor blood vessels improving

perfusion and potentially "normalizing" the metabolic microenvironment including

p0231 34 . A "normalized" tumor microenvironment with increased P02 may sensitize the

tumor to radiation and maximize cytotoxicity of certain chemotherapeutics.

To realize the full potential of this concept, it is important to gain a deeper

understanding of the spatial and temporal changes in tumor P0 2 during disease

progression and treatment. Previous techniques for measuring PO2 in vivo were

constrained by the significant spatio-temporal heterogeneities found in tumors35 ,36.

These techniques also demonstrated limitations in their tissue penetration, depth

resolution, spatial resolution and all lacked true three-dimensional resolution3- In

addition, some methods are invasive and lack the ability to perform measurements in

real-time40. Multiphoton phosphorescence quenching microscopy (Chapter 3) eliminates

many of these constraints, providing a new opportunity to probe the P0 2 of the tumor

microenvironment. Therefore, in this Chapter, I will demonstrate the application of MP-

PQM to multiple tumor models during progression and treatment.

IV.2 Oxygen Profiles in Solid Tumors

The application of MP-PQM to the measurement of P02 in the microenvironment of

tumors implanted in window chamber models allows characterization of three-

dimensional interstitial oxygen profiles. Up to 400pm deep, P02 profiles from single

vessels in a human melanoma (MU89) xenotransplant in SCID mice were obtained.

These were compared to similarly sized vessels (10-20gm in diameter) in the skin of

mock-transplanted chamber mice (Figure IV-1). A distinct separation between the p02

level in normal tissue vascular oxygen profiles and those in tumors was readily apparent.

The mean intravascular P02 (distance = Ogm) between normal (49.1 ± 5.5mmHg) and

tumor (19.2 ± 3.4mmHg) vessels was statistically different (P-value << 0.05). However,

the mean oxygen gradients over the lengths of the profiles were not found to be
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different. This suggests that in vivo oxygen consumption of the melanoma tumor cells

was very similar to that found in normal tissue.
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Figure IV-1 Vascular oxygen profiles from similarly sized vessels in tumors and normal tissue. P0 2
profiles from normal murine skin are depicted in blue. Profiles from single vessels in a human melanoma
xenograft (MU89) are shown in red. The dashed grey line indicates the separation in oxygen level
between normal and neoplastic tissue. The dashed blue profiles in normal tissue were carried out beyond
~80pm through the use of nanovascular surgery to cauterize nearby vessels.

In melanomas, oxygen profiles longer than 70tm were readily measureable due to

increased intervascular spacing. However, in normal tissues, vessels are spaced

relatively close together, often negating any gradient due to oxygen consumption. To

obtain such profiles, I performed nanovascular surgery41 43 using the multiphoton

excitation laser on vessels nearby the target vessel. Exposure to 1 or 2 high average

power (80-100mW) line scans across the diameter of the vessel induced clotting and

ceased perfusion beyond the point of claudication (Figure IV-2). Using this technique,

P0 2 profiles out to ~200 tm were measurable (Figure IV-1 - dashed blue). Nonetheless,

oxygen diffusion from vessels located nearby in three-dimensional space still

contributed to a higher oxygen tension than that found in the tumor vascular profiles.

This suggests that the vascular architecture in such normal tissues provides better

metabolic (p02) support for the tissue.
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Figure IV-2 Nanovascular surgery using multiphoton microscopy. (a). In order to obtain extended
interstitial oxygen profiles in normal murine skin, nearby perfused vessels were cauterized using the
multiphoton excitation laser (red). The principles of multiphoton excitation limited the tissue damage to
only a small three-dimensional space around the blood vessels. (b) After nanosurgery was performed
some extravasated angiographic marker was visible. However, beyond this point perfusion and therefore
oxygen delivery was limited permitting longer oxygen profiles to be measured (

While the measurement of oxygen profiles from single vessels is possible in three-

dimensions using MP-PQM, in tumors heterogenous temporal variations in flow limit

repeatable measurements. Often times during the collection of a single vascular oxygen

profile (5-10minutes), the vessel would undergo transient blockage due to changes in

red blood cell flux. This temporarily lowered measured P0 2 in the interstitial space due

to cellular consumption and reduced supply of oxygen. Once the blockage was freed,

the interstitial space was reoxygenated and P02 levels increased. Many other

investigators have observed this effect in tumors on both a single vessel and
44-46macroscopic scale -*. Vascular supply fluctuations precluded the use of local vascular

oxygen profiles to assess the dynamics of P02 in the microenvironment during tumor

progression and treatment.
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Figure IV-3 Three-dimensional mapping of tumor oxygenation using MP-PQM. (a). Axial cross-sections
through the tumor are shown along vertical and horizontal planes. A depth projection of multiphoton
angiography of the tumor vascular network is illustrated relative to the cross-section. Color denotes depth
(green-red-white). (b). Oxygen tension maps at four different depths within the tumor. The angiographic
depth slice at 50pm is shown for comparison with the oxygen map. Black outlines on the maps indicate
the morphometry of the tumor vessels. Scale Bar - 500tm.

IV.3 Three-dimensional Mapping of Tumor Oxygenation

The technique of MP-PQM allows measurement of P0 2 at single points confined to the

three-dimensional excitation volume of the multiphoton microscope. To quantify the

oxygenation in the tumor microenvironment in preclinical models and assess the spatial

heterogeneity in PO2, I chose to collect in vivo measurements along a grid at multiple

depths (Figure IV-3). This process reduced the effects of temporal fluctuations in P02

observed with single vessel oxygen profiles. Further, it allowed oxygen measurements to

be performed with multiphoton angiography. Correlation of the tumor vasculature and

P02 in three-dimensions throughout the tumor were then possible.
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Table IV-1: Correlation of PO with vessel diameter (d) or interstitial distance (r) across multiple tumors.
Bold Pearson's correlation coefficients denote significant difference (P-value < 0.05) from no correlation
(0). N - Number of animals in each group.

E0771 MDA-MB-361HK LS174T MCaIV-DSC MCaIV-MFP
Day d r d d r d r d r

0 -0.003 -0.27 0.069 -0.33 0.014 -0.25 0.18 -0.47 0.066 -0.39
3 -0.046 -0.29 0.029 -0.47 -0.034 -0.42 0.31 -0.39 0.014 -0.34
6 0.045 -0.26 0.047 -0.37 0.022 -0.39 0.22 -0.41 0.036 -0.39
9 -0.14 -0.33- -0.023 -0.31 0.048 -0.61 0.074 -0.39

N=4 N =8-10 N=6-10 N= 5-6 N=2

IV.3a CORRELATION OF P02 AND VASCULAR METRICS

Tumor oxygenation has been shown to depend on the vascular network parameters

including geometry and function'. In vivo interstitial measurements have

demonstrated that pO2 generally decreases with increasing distance from the vessel

wallas4 _ One of these studies also showed that there is no correlation between tumor

vessel diameter and intravascular pO2. However, all of these measurements have been

based on single vascular profiles or limited to intravascular measurements. Any studies

that have assessed the global oxygenation of a solid tumor have either relied on

mathematical modeling or state that their measurements are intravascular36. No study

to date has compared real-time microscopic measurements of P02 directly with the

tumor vascular network over macroscopic regions.

Using MP-PQM, I was able to obtain oxygen tension maps and high-resolution

angiography during the same measurement period. Data was collected over large

regions (~16mm 2) and up to 350pm in depth across multiple tumor types. pO2

measurements were collected at single points over a grid spaced at 100-200pm.

Vascular metrics, including diameter and length, from the three-dimensional

multiphoton angiography were determined using a semi-automatic tracing algorithm 0 .

The Euclidean three-dimensional distance (r2 = AX2 + Ay2 + Az2) from each

measurement point to the closest vessel was determined over the entire oxygen map.
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Table IV-2 Correlation of p02 with vessel diameter (d) and interstitial distance (r) in normal tissues.
Bold Pearson's correlation coefficients denote significant difference (P-value < 0.05) from no correlation
(0). N - Number of animals in each group.

d r N

Skin 0.37 -0.096 4

MFP 0.13 0.067 2
Brain Cortex 0.15 0.014 3

Across all tumor types, a significant negative correlation was found between distance to

closest vessel and P02 (Table IV-1). The Pearson's correlation coefficients remained

relatively constant over 9 days of tumor growth for all tumor types except LS174T. The

human colorectal adenocarcinoma (LS174T) implanted in the DSC increased to a

maximum correlation of 0.61 by day 9. These correlation were much higher than those

found in normal skin, mammary fat pad (MFP) and cortical brain, where the P02 was less

correlated with distance from nearest vessel (Table IV-2). As will be seen, in normal skin,

cortex and mammary fat pad an oxygen gradient from the vessel wall is nearly non-

existent in three-dimensions. The difference in vascular network structure is notable

between normal MFP tissue and an orthotopic murine mammary carcinoma (E0771;

Figure IV-1a and b). Oxygen tension measured at random locations in the E0771 tumor

demonstrated a decrease with distance to nearest vessel, while in normal MFP it

remained constant (Figure IV-4c).

At first glance, these results may seem counter to previous interstitial in vivo P0 2

studies. However, many of those were performed in the stretched rodent abdominal

mesenterys1 ,52, which is essentially a two-dimensional tissue. Interstitial oxygen

gradients and correlation between oxygen tension and distance have been reported in

skeletal muscle53 and cortical brain54, which are representative of three-dimensional

vascular networks (> 200 ptm thick tissues). In muscle, oxygen gradients and therefore a

correlation with distance from blood vessel exist due to consumption by the muscle

fibers55. I demonstrated that such gradients can exist in murine skin skeletal muscle due

to increased oxygen consumption in Section 1116b. In cortical brain, the authors of the
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previous study note that it was very difficult to find locations where gradients existed,

suggesting they are limited under normal conditions.
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Figure IV-4 Correlation of P02 with vascular metrics. (a) Angiographic depth projection of the vasculature
in the normal mammary fat pad of a female SCID mouse. (b) Vascular network of an orthotopic murine
mammary carcinoma (E0771). (c) Spatial correlation of tumor PO2. Normal tissue in the MFP shows no
correlation with distance to the closest vessel (dashed line). Tumor vascular networks demonstrate a
negative correlation with P0 2 and distance to nearest vessel (solid line). (d) Conversely, in normal tissues
P0 2 demonstrates a positive correlation with vessel diameter, while measurements in tumors do not
display any correlation. c and d: e - normal * - tumor. Scale Bars - 500pm.

It is well known that vascular oxygen tension is highly correlated with vessel diameter in

both the arterial and venular branches56. Phosphorescence quenching microscopy

experiments in rodent skin have demonstrated longitudinal P02 gradients following the

branches of the arterial network - the smaller the vessel diameter, the lower the

oxygen5 7. The proposed source of the longitudinal gradients is two-fold. First is that the

vascular wall endothelial cells consume oxygen and larger vessels with thicker walls
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52,53
consume more oxygen . Second, the capillaries are not the sole source of oxygen

diffusion to tissue. Instead larger arterioles also supply oxygen to the tissue which have

also been shown to play a significant role in the modulation of blood transport to

56tissue

Three-dimensional measurements in both the intravascular and interstitial space in

murine skin, mammary fat pad and cortex revealed significant correlation of P02 with

vascular diameter (Table IV-2). All normal tissue demonstrated Pearson's coefficients

greater than 0.1, however murine skin displayed the largest correlation (0.37). In the

neoplastic tissues studied in Table IV-1, only MCaIV, a murine mammary carcinoma,

demonstrated significant correlation of oxygen tension with vessel diameter. All other

murine tumor models had non-significant Pearson's correlation coefficients: typically

less than 0.05. Supporting these results, previous studies performed in a human

colorectal adenocarcinoma xenograft (LS174T) demonstrated no correlation with tumor

vessel diameter3 ' 49 . In most cases, the heterogeneous structure and morphometry of

tumor vascular networks abrogate the normal transport of oxygen to the tissue58-60. The

irregular geometry and heterogeneous flow patterns in tumor vasculature uncouple the

normal dependence of tissue P02 on vascular diameter. The murine mammary

carcinoma E0771 demonstrates these effects quite well in comparison to normal

murine MFP (Figure IV-4d).

The unusual result from the MCaIV mammary carcinoma may be explained by the

ectopic microenvironment (dorsal skin) providing better oxygen supply or inducing the

formation of a more efficient network. Fractal analysis of the tumor vascular network of

MCaIV in the DSC demonstrated a significant difference from normal skin and increased

tortuousity (decreased transport efficiency)61. This suggests that increased efficiency is

not likely the reason for increased correlation. Interestingly, the same tumor type

implanted in the mammary fat pad exhibited no correlation with tumor vessel diameter

throughout tumor growth (Table IV-2: MCaIV-MFP). This is further confounded by the

fact that both locations exhibit tumors with similar mean diameter vessels (~54ptm for

163



CHAPTER 4

DSC and ~68ptm for MFP) for tumors of equal volume. Therefore differences in the

tissue microenvironment and vascular supply must account for the increased correlation

in the DSC.
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Figure IV-5 Tumor oxygen profiles and consumption. (a). Histogram of the number of measurements for
a given oxygen tension at a given distance to the nearest vessel. The mean P0 2 profile is overlaid (white)
illustrating the gradient in oxygen with distance. The effect of oxygen diffusion from vessels outside the
mosaic image volume (~4x4xO.3mm) is noticeable at farther distances (*). (b). Zero-order diffusion-
reaction fit (green) to the PO2 data in a to determine the oxygen consumption.

IV.3b TUMOR OXYGEN CONSUMPTION

The increased correlation in solid tumors between P02 and distance to nearest vessel is

due both to vascular architecture and increased tissue oxygen consumption. The large

avascular spaces found in most tumors coupled with the high metabolic activity of the

tumors cells reduce the oxygen concentration. In reality, energy metabolism in tumors is

a complex process dependent on the metabolites (oxygen and glucose) available' 62 ,63

However, to a first approximation the decreasing level of oxygen in tumor tissue with

increasing distance from the vasculature (Figure IV-5a) can be assumed to result from

oxidative respiration.

Oxygen metabolism follows Michaelis-Menten kinetics in biological tissues. However,

above very low oxygen concentrations, the reaction can be approximated as zero-order
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kinetics"4. In this situation, the oxygen consumption was assumed to be constant at all

points from the blood vessels. While the actual measurements are three-dimensional in

nature, I estimated average tissue oxygen consumption for the entire tumor volume

measured using a one-dimensional first-order diffusion-reaction model.

d2p0 2
D02S dr 2  

2 = (lV.1)

Here D02 is the diffusion of oxygen (2 x 10-5 cm2s-1)6", S is the solubility of oxygen in tumor

tissue (2.05 x 10~5 m102 cm-3)", r is the three-dimensional Euclidean distance to the closest

tumor vessel and Q02 is the oxygen consumption rate in m102 cm-3s~1. The following boundary

conditions were used to solve Equation (IV.1): PO2 at r = 0 is equal to the oxygen tension within

the vessel (P0 2,esset) and the solution reaches a minimum (402 = 0 PO2 at some

critical distance (p02min) from the blood vessel. The solution is of the form of a second order

polynomial.

Q02 _Q 2 (P:C2vesse1 - P02min)
P02(r) = r2 _ 2s r + P 0 2vesseL (IV.2)

The values of P0 2,essel and P0 2mm were independently determined for each tumor and

timepoint from the scatter plot of oxygen tension versus distance from nearest vessel (Figure

IV-5b).

Table IV-3: Mean oxygen consumption across turnor types. Bold values indicate a significant difference
from all other tumors for a given tumor at a specific timepoint.

E0771 MDA-MB-361HK LS174T MCalV-DSC MCaIV-MFP

Day Qm (M 2 cm3s-a x 10~s)
0 6.55± 2.04 1.25±0.22 2.94±0.68 7.03±1.99 1.15±0.98
3 4.85±4.32 2.15±0.03 2.05±0.54 8.19±2.81 3.82±0.38
6 2.71±1.27 2.20±0.62 4.37±1.10 5.53±1.91 5.89±4.21
9 1.21±0A7 0.96±0.49 3.80±0.66 5.86±1.74

ANOVA 0.251 0.44 0.049 0.526
N=4 N = 8-10 N = 6-10 N = 5-6 N=2
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I determined the mean tumor oxygen consumption during progression across multiple tumor

types and sites (Table IV-3). Previous in vivo measurements have all reported local oxygen

consumption rates determined from radial vessel profiles24,67. To the best of my knowledge, this
is the first time that oxygen consumption has been calculated from P0 2 measurements

throughout large regions of the tumor. At day 0 all tumors were approximately 4mm in diameter

by enface measurement. Only the oxygen consumption of the MDA-MB-361HK tumor was

significantly lower than all the other tumor types. The two murine mammary carcinomas (E0771
and MCaIV) were more metabolically (aerobically) active than the other tumor types, although

the difference was not significant. During tumor growth, the orthotopic E0771 murine

mammary carcinoma trended toward lower oxygen consumption. The Q0 2 for the LS174T

tumors significantly increased over time. The oxygen consumption of the other tumor types

remained relatively constant during tumor progression with MCaIV in the dorsal skinfold

chamber demonstrating consistently higher 002. The range of values determined in this study

were similar to those found previously for a different tumor type using profiles from single

vessels 24.

Assessment of tumor oxygen consumption using this method is an approximation. At

low, very hypoxic levels (P0 2 < 5mmHg), the reaction rate is first order, thus dependent

on the concentration of oxygen available48' 64. Hypoxic regions are often found in the

microenvironment of tumors including adjacent to vessels (typically with low

intravascular p02). Additionally, the diffusion-reaction model is semi one-dimensional.

Using a two-dimensional model (x and z), Dewhirst et ai calculated oxygen consumption

rates about 50% smaller than with the one-dimensional model67 . Since the radial

distance from the nearest blood vessel was used in this experiment a cylindrical model

could be applied47' 68. However, this would not be ideal in the irregular and

heterogeneous vascular network found in tumors. Secondly, endothelial cells in normal

vessels have been shown to consume oxygen across the vessel wall leading to sharp

transverse gradients69 . Given the abnormal structure of tumor vessels on the cellular

level70' 71, it is unclear if such gradients exist which would lead to loss of oxygen

longitudinally. Finally, although MP-PQM is a three-dimensional imaging technique it is

constrained by collection time from larger wide-field imaging. Further, due to signal to
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noise, measurements are typically performed no deeper than 400pm. Therefore, vessels

outside the imaging volume can contribute to the oxygen level (Figure IV-5a). The fitting

procedure attempts to ignore these few outliers when fitting the diffusion-reaction

model.

IV.4 Tumor Oxygenation during Growth and Across Models

Oxygen tension in the tumor microenvironment changes in response to numerous

factors during disease progression. Typically, as tumor volume and cellular burden

increase, the mean P02 decreases72'73. In clinical patients, most tumors have large

regions of hypoxic and necrotic tissue that are heterogeneously distributed74 . During

tumor growth, the formation of new blood vessels, or angiogenesis, is promoted by the

oxygen concentration usually through the VEGF pathway15' 75' 76 . Finally, in preclinical

models, I have shown in the previous section that different tumor types display different

rates of oxygen consumption. Therefore, the mean oxygen tension in the tumor

microenvironment is likely different across tumor types.

Table IV-4: Comparison of mean tumor oxygenation (mmHg). Statistical comparisons across time and

tumor types were determined using a single-factor ANOVA. Errors are given as standard error of the
mean. Bold measurements are statistically different (P-value < 0.05) than all others on that day.

Day E0771 MDA-MB-361HK LS174T MCaIV MCaIV-MFP ANOVA

0 32.7 ±4.8 23.7 ± 1.4 30.2 ± 2.7 33.4 ± 2.1 41.1 ± 2.8 4.2E-02

3 26.7 ±3.3 24.3± 2.9 25.4± 2.5 29.6 ± 2.0 28.4± 7.5 0.61

6 17.5 t 2.3 24.5 ±3.7 16.6 ±5.7 30.8 t 3.5

9 13.4 ± 3.0 18.1± 3.0 32.1 ±4.2 21.9±3.6

ANOVA 6.8E-03 0.49 0.38 7.7E-02

27.6 ± 5.5 5.4E-02
1.8E-02

N = 5 { N =5-10 N = 4-10 N =5-6 N=2

IV.4a TUMOR GROWTH: ANGIOGENESIS AND OXYGEN

As a solid tumor grows, it must trigger the formation of new blood vessels to support

continued growth. This process, termed the angiogenic switch, occurs in most tumors

after they reach a size (~400pm in diameter) limited by the diffusion of oxygen .

Angiogenesis has proved a predictive indicator of disease progression and response to

therapy in many tumor types79-81. Further, metastatic disease and angiogenesis of the
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primary tumor have been shown to be linked82. The level of oxygen has been shown to

be an important regulator of tumor angiogenesis1 ,83. It has even been suggested that

microvessel density (MVD) and molecular markers of angiogenesis (VEGF, etc.) are
84measures of tumor oxygenation

Figure IV-6 Angiogenesis during tumor growth. The vasculature of an LS174T colorectal adenocarcinoma
xenograft is shown over 9 days. Increased angiogenesis is notable throughout tumor growth. Tumor
vasculature is presented as a colorized depth projection (superficial to deep: green-red-white). Scale Bars
- 500pm.
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Table IV-5: Comparison of mean vascular radius (pm). Statistical comparisons across tumor types were
determined using a single-factor ANOVA. Errors are given as standard error of the mean. Bold
measurements are statistically different (P-value < 0.05) than all other measurements on that day.

Day E0771 MDA-MB-361HK LS174T MCalV MCaIV-MFP ANOVA

0 11.7 ± 0.3 12.1 ± 0.7 13.3 ± 0.5 18.9 ± 1.1 18.5 ± 2.0 1.7E-06

3 12.9 ± 0.7 11.6 ± 0.5 15.3 ± 0.7 27.8 ± 3.9 22.6 ± 4.5 1.1E-06

6 15.5 ±1.4 12.9 ±1.0 27.5 ±2.2 22.7 ±1.8

9 17.9± 2.9 12.7± 1.8 33.2± 3.2 27.6 ±2.0

ANOVA 4.4E-02 0.7 5.2E-04 5.2E-02

25.9 ±8.4 31E-07
1.3E-04

J N=5 N =5-10 1_N = 4-10__ N =5-6 N=2

Utilizing the window chamber models in mice allows tumor vascularization to be

followed over time providing critical insights into pathophysiology (Figure IV-6). Using

multiphoton microscopy to perform high-resolution angiography and automated

vascular tracing algorithms 50' 85, vascular metrics such as vessel diameter and vascular

volume fraction can be obtained. Correlating these morphological parameters with

tumor oxygenation provided by MP-PQM provides unique access to study the tumor

microenvironment during progression and across models.

Table IV-6: Comparison of vascular volume fraction. Statistical comparisons across time and tumor
types were determined using a single-factor ANOVA. Errors are given as standard error of the mean.
Bold measurements are statistically different (P-value < 0.05) than all other measurements on that day.

Day E0771 MDA-MB-361HK LS174T MCalV MCaIV-MFP ANOVA

0 5.5 ± 0.7% 3.7 ± 0.9% 5.1± 0.4% 6.2 ± 0.5% 9.3 ±1.7% 1.1E-01

3 5.6 ± 0.8% 2.9 ± 0.4% 6.0 ± 0.4% 11.6 ± 1.4% 5.6 ± 0.6% 5.9E-08

6 5.6 ± 0.4% 4.1 ±0.9% 5.9 ±0.7% 7.2 ± 1.1%

9 4.1 ±0.5% 3.8 ±1.1% 9.4 ± 2.0% 7.6 ± 1.1%

ANOVA 3.8E-01 0.76 1.2E-02 1.OE-02

3.2 ± 0.9% 7.2E-02

- 2.2E-02

N=5 N =5-10 N = 4-10 N =5-6 N=2

I measured the mean tumor oxygenation for multiple tumor types over 9 days using MP-

PQM (Table IV-4). The trend across tumors was decreasing P0 2 with tumor growth.

However, only orthotopic E0771, a murine mammary carcinoma, displayed a significant

change in mean P02 over time (P-value: 0.007). For the first week, the human and

murine mammary carcinoma tumors MDA-MB-361HK and MCalV, respectively,

demonstrated little change in tumor microenvironment P02 over time. Across tumors,

only at Day 0, when all tumors were ~4mm in diameter by enface measurement, and
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Day 9 was there a statistical difference in tumor P02. During the course of the

experiment all tumors increased in enface diameter and potentially depth, although

axial measurements are difficult in the chamber models. MDA-MB-361HK,

xenotransplanted in the MFP chamber of female SCID mice, had a significantly lower

P02 than all other tumors at Day 0. E0771, which demonstrated a significant decrease in

tumor oxygenation during growth, exhibited a significantly lower mean P0 2 than all

other tumors at Day 9.

E71DA MR M1HKL

Figure IV-7 Comparison of tumor vascular networks at Day 0 (top) and 9 (bottom). The higher degree of
angiogenesis is evident in LS174T and MCaiV tumors. Avascular regions (*) are apparent in both E0771
and MDA-MB-361HK tumors. Images are presented as a colorized depth projections (superficial to deep:
green-red-white). Scale Bars - 500pm.

Vascular parameters consisting of vascular radius, length and volume fraction were

determined from multiphoton angiography for all tumors. For all tumor types except

MDA-MB-361HK, the vascular radius significantly increased during tumor growth (Table

IV-5). In general, the tumors grown in the dorsal skinfold chamber (LS174T and MCalV)

exhibited significantly larger vascular diameters than those growing in the mammary fat

pad (E0771 and MDA-MB-361HK). The trends in vascular radius nearly matched those

found with vascular volume fraction (VVf, Table IV-6). However, even though vascular
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radius significantly increased in E0771, the volume fraction of the vascular network did

not. The human mammary adenocarcinoma, MDA-MB-361HK, also did not display any

increase in Wf. This suggests that although the E0771 and MDA-MB-361HK tumors

increase in size, their vascular networks maintain more avascular regions and are less

angiogenic than the other tumors (Figure IV-7).

Table IV-7: Hypoxic fraction during tumor growth. Statistical comparisons across time and tumor types
were determined using a single-factor ANOVA. Errors are given as standard error of the mean. Bold
measurements are statistically different (P-value < 0.05) than all other measurements on that day.

Day E0771 MDA-MB-361HK LS174T MCalV MCaIV-MFP ANOVA

0 13.5±6.9% 18.9±4.6% 9.3±3.3% 8.7±3.7% 2.8±0.5% 0.27

3 18.5±7.1% 21.9±6.8% 16.0±6.9% 13.6±5.0% 21.3±16.9% 0.18

6 37.1±10.8% 24.2±6.1% 12.2±4.3% 13.0±5.1%
9 59.8±10.1% 31.4±11.0% 9.7±3.8% 38.3±8.7%

ANOVA 1.1E-02 0.76 0.19 9.2E-03

36.8±10.1% 2.7E-03

N=5 I N =5-10 N =4-10 N =5-6 | N=2

The presence of avascular spaces in some of the tumors coupled with decrease tumor

oxygenation over time could lead to regions of hypoxia. I determined the hypoxic

fraction within each tumor and timepoint by calculating the number of measurements

less than 10mmHg (Table IV-7). At Day 0 both E0771 and MDA-MB-361HK had higher

hypoxic fractions than the tumors with higher VVf. The type of tumor does have a

statistically significant impact on the level of hypoxia over time. The hypoxic fraction

remained relatively high in MDA-MB-361HK tumors (~23%) and low in LS174T tumors

(~12%) without significantly changing. Both murine mammary carcinomas (E0771 and

MCalV) exhibited significantly increasing hypoxic fractions over time. However, MCaIV

also displayed increasing VVf, suggesting the spatial heterogeneity in relation to the

vasculature of hypoxic regions may be different between tumors.

To assess spatial heterogeneity in hypoxic regions, I spatially correlated each individual

MP-PQM oxygen measurement with distance to the closest vessel. The mean distance

from a hypoxic measurement was then determined from the correlated oxygen and

angiography measurement (Table IV-8). Overall, both MDA-MB-361HK and MCaIV

tumors displayed longer distances from hypoxic regions to the nearest vessel, while
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both E0771 and LS174T had hypoxic regions closer. Only in LS174T did the distance

show a significant change with tumor growth. At Day 9, the mean distance to nearest

vessel was farther.

Table IV-8: Distance (pm) from hypoxic regions to closest vessel. Statistical comparisons across time and
tumor types were determined using a single-factor ANOVA. Errors are given as standard error of the
mean. Bold measurements are statistically different (P-value < 0.05) than all others on that day.

Day E0771 MDA-MB-361HK LS174T MCaIV MCaIV-MFP ANOVA
0 73.1±24.7 173.5±40.1 76.6±14.3 149.9±43.3 162.1±100.1 0.27

3 53.3±14.8 175.3±31.8 85.3±5.6 87.9±16.6 87.9±23.1 2.8E-03

6 52.7±6.2 147.8±25.4 81.6±15.0 116.4±33.3

9 94.3±25.0 90.3±26.2 117.7±6.6 77.3±7.5
ANOVA 0.83 0.41 9.6E-03 0.39

134.6±9.5 9.0E-02

N=5 N =5-10 1_N=4-10_1 N =5-6 N=2

To gain a clearer understanding of the relationships between tumor angiogenesis and

vasculature, I correlated the vascular metrics with oxygen throughout tumor

growth(Table IV-9). Unsurprisingly, the vascular radius demonstrated no dependence on

mean tumor P02. This is in agreement with the results from individual tumors (Figure

IV-4) and previous studies35 49. However, in both MDA-MB-361HK and MCaIV, mean

vascular radius was significantly correlated with the hypoxic fraction of the tumor.

Specifically, over tumor progression as the mean vascular diameter increased, the

hypoxic fraction also increased. Interestingly, vascular volume fraction was uncorrelated

with hypoxic fraction and mean P02 in these tumors. Only the E0771 murine mammary

carcinoma exhibited a significant correlation of VVf with both PO2 and hypoxic fraction.

In this specific tumor, these relationships indicated that increased VVf is associated with

increased P02 and lower hypoxic fraction. For all tumors, a significant negative

correlation of hypoxic fraction with mean tumor P02 was observed. These correlations

served as a control since the hypoxic fraction was derived directly from the PO2

measurements. Finally, most tumors demonstrated no significant correlation for the

distance to nearest vessel from hypoxic regions with either the mean PO2 or hypoxic

fraction. Only LS174T exhibited a significant positive and negative correlation with p02

and hypoxic fraction, respectively. Therefore, in this tumor type higher tumor
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oxygenation and lower hypoxic fraction is found when hypoxic regions are far away

from the vessels. This makes intuitive sense when the diffusion and consumption of

oxygen is taken into account.

Table IV-9: Correlation of vascular metrics with tumor oxygenation and hypoxic fraction over time. All
correlation coefficients are Pearson product-moment correlations to determine if there is a linear
dependence between two factors. All significant correlations (P-value < 0.05) are given in bold.

Vascular E0771 MDA-MB-361H LS174T MCalV

Metric P02 P02 P02 P02

Radu -0.416 .0315 -. 041 -. 38

VVf '0.626 00.050 0.207 0.262

HypoxicF' -0.913 -0.765 -0.845 -0.875

HypoxicD) -0.3570.7073-.15
VVf -Vascular Volume Fraction; HypoxicF - Hypoxic Fraction; HypoxicD - Distance to nearest vessel from hypoxic region

Correlating measurements of tumor oxygenation and hypoxia with vascular metrics

provides unique insight into the tumor microenvironment during tumor growth. It is

readily apparent that different tumor types have different vascular phenotypes and

even different rates of angiogenesis. Further during tumor growth, the differential

between tumor oxygenation between tumor types becomes more apparent.

Unsurprisingly given the differences in tumor oxygenation during growth, the hypoxic

fraction also varies amongst tumor types. Hypoxia regions either remain constant over

time or increase with tumor size. Additionally, the location of these hypoxic regions with

respect to the vasculature is heterogeneous between tumor types. The lack of

correlation over time between the vascular volume and hypoxic fractions are not

unsurprising. Clinical studies using both histological and imaging modalities have shown

limited correlation between such metrics and hypoxia 4'86. However, previous studies

have demonstrated that tumor oxygenation (specifically hypoxia) can upregulate VEGF

expression, a potent angiogenic molecules'8 3 87. It is possible that other angiogenic

pathways independent of the HIF-1/VEGF axis are responsible for vascularization during

tumor progression in some of the tumor lines88.

The findings for E0771 that show a significant correlation between VVf and P02 or

hypoxic fraction indicate that with tumor growth as hypoxic fraction increases both
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tumor P0 2 and VVf decrease. A similar strong correlation using MVD as the metric of

tumor vascularization has been observed for certain endocrine tumors in patients89.

With disease progression, poor prognosis was associated with hypoxic tumors with low

MVD. Conversely, the human breast adenocarcinoma, MDA-MB-361HK, which over-

expresses the epithelial growth factor receptor Her2/neu, demonstrates no correlation

between VVf and P0 2 or hypoxic fraction. Histological studies of primary human breast

tumors expressing Her2/neu in patients showed a high degree of angiogenesis and low

levels of hypoxia90. Two explanations may account for this discrepancy. First, the

measures of angiogenesis and hypoxia were the histological markers of MVD and CA IX,

respectively. MVD provides only a snapshot of the tumor vasculature and may in some

cases serve as a poor marker of angiogenesis91. Endogenous markers of hypoxia have
92proved inconsistent at best and unreliable when only one molecular marker is utilized92

Second, the MDA-MB-361HK cell line originates from a metastatic breast tumor in the

brain, so while it is implanted in the orthotopic environment of the primary tumor

differences in cancer cell Pathophysiology may exist.

Finally, in most tumors, the mean distance from hypoxic regions to the nearest blood

vessel was found to be uncorrelated with either PO2 or hypoxic fraction. Across all

models, the tumor vascular network is both tortuous and heterogeneous interspersed

with random avascular regions (Figure IV-7). Non-invasive imaging studies in animal

models have shown no spatial correlation between hypoxic regions and vascular labels

(RGD peptides)93 . Further, vascular flow and delivery of oxygen is irregular and

heterogeneous in tumors. In vivo perfused vessels have demonstrated low oxygen

tensions suggesting regions of hypoxia may remain close to some detectable vessels 35.

Hypoxic regions in most tumors are likely heterogeneously distributed with little

correlation with the vasculature. This was observed with all tumors except the human

colorectal adenocarcinoma xenotransplant, LS174T. For this tumor, hypoxic regions are

located on average about 85pm from the closest vessel. On average, during tumor

growth, regions of hypoxia move closer to the vessels. Instead of decreased spatial

heterogeneity in hypoxic regions, this effect is possibly due to the significantly
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increasing in vivo oxygen consumption rate demonstrated by the L5174T tumor (Table

IV-3).

I I i-4-

60 120 180 240
Depth (Jtm)

0 3 6 9
Day

P0 2 (mmHg)

0 5 10 15 20 25 30 35 40 45

Dav 0

0 1000 2000
Position (ptm)

60 (tm) Day 9 Day 0

0 1000 2UUU iOIJ

Position (ptm)

240 (um) Dav 9

0 1000 2000- -

Position (prm) Position (pm)

Figure IV-8 Depth gradients in pO2 during tumor growth. (a). Median oxygen tension of an LS174T tumor
in the DSC at day 0 (blue) and 9 (black) at different depths in the tumor. The edges of the boxes indicate
the upper and lower quartiles with the median pO2 value represented in the center. Whiskers extend to
1.5 times the interquartile range. Asterisks indicate outliers. (b) Mean tumor P0 2 during tumor growth
remained steady. Errors are standard deviations. (c) Oxygen tension maps at 60 and 240ptm in the tumor
for days 0 and 9. Vascular casts overlay the maps from the angiographic imaging. At Day 0, most deep MP-
PQM measurements exhibited small signal to noise ratios and were not included (dark blue).

IV.4b TUMOR GROWTH: DEPTH GRADIENTS IN OXYGENATION

The application of MP-PQM to studying tumors allows non-invasive assessment of

spatial changes in tumor oxygenation up to 400tm deep in the tumor. Differences

between the superficial and deep portions of the tumor were determined during tumor
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growth. The effect of increased tumor volume and angiogenesis were observed in an

LS174T tumor in the DSC (Figure IV-8). In earlier stages of tumor growth, the deep

portions of the tumor were still supplied by oxygen diffusion from the supporting host

vasculature. In this tumor model, as the tumor grew in size, the mean oxygen tension

deeper in the tumor dropped (Figure IV-8a), while the overall average tumor P0 2

remained relatively constant (Figure IV-8b). In this case, the steady overall P0 2 is due to

increased vascularization near the tumor surface (~ 60pm). Further the heterogeneity in

tumor oxygenation at near the tumor surface decreased, while it increased deeper (120-

180p.m).

Longitudinal gradients in tumor P0 2 appear to increase from the fascial to tumor surface

in this model. This contradicts with previous studies in chamber models demonstrating

decreasing longitudinal gradients from the fascial to tumor surface94-96. The existence of

these gradients was proposed to occur from similar gradients in other metabolites

assuming that all vascular supply results from the underlying fascial vessels. In some

models this may be the case, however, in my experience, as a tumor grows in the

chamber models angiogenesis typically occurs across nearly the entire tumor surface by

2-3 weeks. Wide-field angiographic imaging from growing tumors in the chamber

models reveals vascular branches from vessels both underneath and around the

tumor . For all measurements presented in this chapter, I initiated studies only on

tumors with surface vascularization to eliminate any artifacts in P02 from transient

longitudinal gradients.

IV.5 Spatial Distribution of Tumor Vascular Networks Influence

Tissue Oxygenation

The combination of three-dimensional oxygen measurements with MP-PQM and high-

resolution angiography by MPM present unique opportunities to study the relation of

the tumor vasculature to the metabolic microenvironment. Previously in this Chapter, I

determined oxygen consumption using a semi-one dimensional diffusion-reaction
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equation that relied on distance to the nearest vessel. Here, I will show that the tissue

volume probability distribution with respect to the vasculature qualitatively predicts the

tissue oxygen profile (Figure IV-5) and oxygen tension probability histogram.

IV.5a CYLINDRICAL MODELS OF OXYGEN DIFFUSION IN TUMORS

Many theoretical approaches have been demonstrated for determining metabolite

concentrations, particularly oxygen, outside of the vasculature in a variety of tissues. In

regularly spaced capillary networks found in many normal tissues, a cylindrically

symmetric model was developed by Krogh97. Based on observations of the regular

spaced packing of capillaries and muscle fibers in skeletal muscle, an analytical solution

for steady state concentration was obtained. This model is now well known as the Krogh

tissue cylinder model. Analytical solutions for the diffusion of oxygen in other regularly

spaced planar and cylindrical geometries have been readily demonstrated".

O
r r+dr

Figure IV-9 Cylindrical geometry for describing diffusive processes. Diffusion of oxygen from a vessel
(red) to a cylindrical surface volume of tissue (brown) of width dr at a given radius, r.

The mass balance equation for the gradient of a diffusing species in a cylindrical

coordinate system (Figure IV-9) across a differential element of tissue with a

sink/reaction term, Mo, is given by Eq. (IV.3).

-D-l 2wrL+D- 2(r + dr)L - Mo dV = 0 (lV.3
r ,T r+dr

Here the area and differential volume are given by 27rrL and 2wrL dr, respectively. By

Taylor expanding the differential change in concentration over radius [Eq. (IV.4)] and

177

...................... -- -



CHAPTER 4

eliminating second order terms [Eq. (IV.5)] the final cylindrical solution can be found

[Eq. (IV.6)].

aCi ac I 2CI

COcl 82C c

Or r+dr -- r + r- + (IVA4)

-D (2wrL) + D +drrz r] (2(r +dr)L) -M 0 21rL dr = {|V.5)

82C D aC
D +-- - Mo = 0 (IV.6)

Adaptations of cylindrical geometries have been applied to theoretically model the

diffusion of oxygen in tumors and prepare theoretical maps of oxygen tension8 '65'68.

Others have utilized more complex descriptions of the tumor vasculature adapted to the

cylindrical model including vascular spacing in the networks and with distance

weighting99 or an inherent heterogeneity in the spacing100.

IV.5b IN VIVO OXYGEN DIFFUSION FROM NORMAL AND TUMOR VASCULAR GEOMETRIES

While cylindrical models adequately portray vascular networks with relatively

homogenous descriptive parameters; they fail to account for higher-order branching

hierarchies found in many tissues and the truly abnormal vascular geometries in tumors.

Fractal geometries' 0' have been used to characterize vascular architecture in both

normal and neoplastic tissuesio2,103. The scale invariant behavior of fractal vascular

networks can be applied to models of metabolite and drug delivery to tumors64.

However, it appears that fractal characterization may be a less than ideal choice for

describing tumor vasculature given the heterogeneous networks found across tumors".

Distributions in the vascular spacing within tumors from two-dimensional histological

tissue cross-sections have been used to simulate tumor oxygenation10 4. However, this

theoretical work is limited to two-dimensional geometries and is subject to the limits of
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using microvessel density to describe tumor vasculature91 . It has been recently

demonstrated that a simple metric describing vascular network geometry in three-

dimensions provides powerful insight into diffusive processes in tumors. This metric, the

number of tissue voxels at a given distance from the closest vessel, n(S), can be used to

model the transport of drugs and metabolites in tissue, including tumors105. In fact,

theoretical simulations demonstrate that the need for scale-invariant geometry is not a

constraint with n(S) as it is with fractal descriptors.
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-----Normal MFP

''-Murine Brain

0.6- E0771

- LS174T

-- Mcalv

-- MDA-MB-361HK

0 so 1o0 io 200 250 300 3o 40
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b. 0.2 C- 0.2
0.18 0.18
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0.14 0.14

0.12 0.12

0.1 0.1
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Figure IV-10 Normal and tumor tissue vascular networks described by number of tissue voxels at a given
distance from a vessel. (a) Cumulative distribution frequency of tissue voxels at a given distance for each
tissue type studied. (b) Probability distributions of n(8) for normal tissues. (c) Probability distributions of
n(8) various tumors at a size of 4mm in diameter. Normal skin: N = 4; Normal MFP: N = 5; Normal Brain:
N = 3; E0771: N = 9; LS174T: N = 13; MCalV: N = 9; MDA-MB-361HK: N = 20.

By spatially correlating the distance of each oxygen measurement to the nearest tumor

vessel, I determined n(S) across tumor types (Figure IV-10). The cumulative frequency
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distributions (CFD) were determined from all tumors of a given type at the same size

(4mm). A rightward shift in the CFD from normal to tumor vascular networks was readily

apparent (Figure IV-10a). The difference between normal and tumor vascular networks

was reflected in the broadening of n(8) and decrease in a peak maximum probability

distance for tumor vasculature in comparison to normal tissue (Figure IV-10a and b).

The E0771 tumor appeared to have most similarity with the distribution found in

normal MFP vasculature. An additional difference between tumors and normal tissues

was found in the maximum distance (6 max) of tissue volumes from vessels, which

increased in tumors. Normal skin, mammary fat pad and murine cortex displayed a 5max

of ~75, 140 and 90pm, respectively. In tumors the distance was notably longer, ranging

from 245 to 365pm for E0771 and MDA-MB-361HK tumors, respectively.

Differential
Volume of

Vessel Tissue
Wall

6 6+d8
Figure IV-11 Modeling the diffusion of a small molecule in an arbitrarily defined geometry using n(8).

Each probability distribution for the distance of tissue voxels in a vascular network

reflects the tissue oxygenation or diffusion of other metabolites or drugs105. If we

assume that diffusion near the vessels can be approximated one-dimensionally and
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scales with distance, the concentration profile of a diffusing species in an arbitrary

heterogeneous vascular geometry can be determined. Given the generalized

arrangement in Figure IV-11 we can describe the mass balance relationship at steady

state as in Eq. (IV.7).

aci acl
-D n(') + D n(8 + dS) - Mon(d)do = 0 (IV.7)

Similar to the derivation for the cylindrical model, we expand the loss out of the right

side of the differential volume tissue element in a Taylor series.

aC aC a2C
~6 =+& T1+d6 +--- (IV.8)

an
n(6 + dS) = n(6) + -- (IV.9)

Substituting the second-order expansions into the mass balance relationship [Eq. (IV.7)],

the final generalized form can be obtained.

aC1 6  aC1  azCI r n 1
-D n() + D - + da 2  n + d5 - Mn(S)dS = 0 (IV.10)

acl aC a C an a2Ca-D as6  D' S' Dd-DTnSn(S) +D n(S) +D I dsI + aDd8s (

+ Ddz 2- 88 a -Mon()dS = 0 (IV.11)

a2C D anaC
D + - Mo= 0 (IV.12)

The generalized form demonstrates an inverse dependence on the fraction of voxels

(area) at incremental distances from the vessel walls and directly proportional to the

growth/change in the number of voxels.
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Figure IV-12 Finite volume method to numerically calculate concentration profiles for the generalized
soultion to the diffusion from an arbitrary vascular network. A8 is the differential tissue element
separating two tissue surface areas defined by n. The differential volume is the product of the two.

The finite volume method10 6 can be used to numerically solve for the generalized

diffusion equation [Eq. (IV.12)] to find the concentration at given distances from the

vessel wall. Fluxes through a finite volume element are depicted in Figure IV-12, where

fluxes into the volume are defined as positive.

DA~ t_ D__+1,
' (ci_ - CO) + (ci+1 - ci) - MOA iAS = 0 (IV.13)

The tissue surface area is directly proportional to the number of tissue voxels.

(n_1 + ni

= ( ni+ + n i )

A =ni

(IV.14)

(IV.15)

(IV.16)

Substituting the tissue areas across which the conductance occurs into Eq. (IV.13) the

final finite volume formulation can be obtained.

D ni-_+ nh (Ci1 - Ci) + D nj+1 2+ ni (c1~ - cL) - Mn 1A6 = 0

AS 2 A(8_-c)+ 2 )c+-i-ogS 0 (IV.17)
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The diffusive conductance across either side of the differential tissue volume element

can now be found using the previously defined areas for the two tissue surfaces.

G _ D ( 2 + ) (IV.18)

D (f1+ngfl
Gi+1,i = n 2 (IV.19)

Using the definition of the differential tissue volume element across which consumption

occurs (V = njAS), the final finite volume formulation can be described.

Gj_1,i(cij - ct) + Gi+1,i(ci+1,i - ci) - M0 Vg = 0 (IV.20)

Using Matlab, the finite volume formula was numerically integrated over time to find a

steady state solution for the concentration of oxygen in tissue given n(S). The

concentration at the vessel wall (CO) was defined in terms of oxygen saturation (0 - 1).

The diffusion coefficient of oxygen in tissue was assumed to be constant at 1.5 x 10-9

m2/s107. The consumption of oxygen in tissue was assumed to follow Michaelis-Menten

kinetics68.

M(Coz) = MO- C02M (IV-6)C02 + MI1  (V

In Michaelis-Menten kinetics, the consumption of oxygen is dependent on the

concentration present. Typically, oxygen consumption follows zero-order kinetics at most

oxygen tensions. Only for low oxygen concentrations, defined as M1, does the consumption

deviate from M0 and follow first order kinetics. I assumed that in hypoxic environments, the

oxygen consumption would become dependent on oxygen, so a saturation value of 0.05 was

selected for M1 .
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Figure IV-13 Numerical simulations using the finite volume method to determine steady state oxygen
concentration profiles for generalized functions of n(6). (a) Volume fraction probability distributions for
given distances from the vasculature. (b) Oxygen concentration profiles in the tissue based on the
diffusion-reaction model for arbitrary three-dimensional geometries. (c) Oxygen probability distributions
determined from a and b. Normal - blue; Tumor - red.

To assess if the finite volume method was successful in determining oxygen profiles

from n(6), I tested some functions that gave representative distributions similar to

those found in normal and tumor tissue. The functions f(x) = xex and f(x) = -mx +

C adequately describe n(6) for normal and tumor tissue (Figure IV-10), respectively.

The steady-state oxygen concentration profiles were found for each of these functions

(Figure IV-13). The zero-order oxygen consumption (MO) was assumed to be twice as

high in tumors as normal tissue (0.1 versus 0.05). Given that many tumors exhibited

average tissue oxygenation values that were close to that of normal tissue (~30mmHg), I

applied the same source term (Co = 0.45) to both representative n(6) functions. In the

true tissue metabolic micronenvironment there would be a distribution of source

concentrations supplying the tissue.
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Figure IV-14 In vivo PO2 profiles for normal and neoplastic tissue determined from MP-PQM
measurements. (a) The normal tissues remain relatively flat up to Smax. Everything after this point is
artifact due to single measurement points potentially outside of the tissue. The tumors uniformly display
decreasing P0 2 profiles out to significant distances. Due to a limited number of points, this region is
noisier. (b) A truncated view of a.

The qualitative oxygen profiles and probability distributions shown in Figure IV-13

demonstrate many of the distinguishing features of those found in normal and

neoplastic tissue. The test function for normal tissue matches remarkably well to that

found in normal skin (Figure IV-10b). Similarly, the general linear function for the tumor

matches quite while to that found in MCaIV and MDA-MB-361HK (Figure IV-10c). It also

exhibits similar parabolically decreasing P02 profiles to those found in vivo (Figure

IV-14). Given greater probability of tissue voxels closer to the vessels in normal tissue,

the P02 profile is fairly flat as the tissue is well oxygenated matching the in vivo results.

For the simulation, oxygen probability distributions were determined from the functions

for n(S) and the p02 profile (Figure IV-13c). The oxygen probability distribution found

for normal tissue is too narrow in comparison to in vivo measurements (Figure IV-15b).

This is due to the fact that intravascular longitudinal P0 2 gradients are found in the

normal tissue vascular networks broadening the oxygen distribution38. For the

representative tumor, the oxygen probability distributions reveal a similar broadness,

but lack the normoxic and hypoxic peaks found with in vivo measurements (Figure

IV-15c). This is reflective of the fact that a distribution, possibly heterogeneous, of

source terms due to convective dispersion was not taken into account'05.
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Figure IV-15 In vivo oxygen tension probability distributions. (a) Cumulative frequency distributions
demonstrate a rightward shift to higher P0 2 in normal tissues. Multiple inflection points (normoxic and
hypoxic regions) in the tumor distributions are observable. (b) P0 2 probability distributions in normal
tissues. (c) PO2 probability distributions in tumors reveal a bimodal nature.

I applied the numerical method to find steady-state oxygen profiles for the tissue

volume fraction spatial distributions determined from in vivo MP-PQM. The zero-order

oxygen consumption (MO) for the tumors was assumed to be twice that of murine skin.

Given the measurements of oxygen consumption (Table IV-3) and gradients in the single

vessel profiles (Figure IV-1), this appears to be a good approximation. The source

oxygen saturation value was selected for each tissue type from the peak of the oxygen

probability distributions measured by MP-PQM. Given the in vivo n(S), the simulated

spatial oxygen profiles and probability distributions for LS174T, MCalV and skin

demonstrate striking similarities with the measured profiles and distributions (Figure

111-16). The results using LS174T illustrate a transition between normal vascular
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networks and the grossly abnormal vasculature found in MCalV. This is reflected also in

the shape of n(S), which has features found in the distributions for both normal and

MCalV vascular networks. Since a distribution of source terms was not applied to the

numerical procedure, the oxygen distributions lack the broadness found in the MP-PQM

measurements. This is particularly the case for the normal tissue, which is nearly a Dirac

delta function.

a. MCalV - LS174T
0.2

n(8) 0.1

0
0 50 100 150 200 250 300

Distance from the nearest vessel (I
C 0.4

01I

02

0 50 100 150 200 250 300
Distance from the nearest vessel

0.4

0

01

0 0.2 0.4 0.6
Oxygen Saturation

b'. Normal Murine Skin

0.4

0.1

40 0 50 100 150 200 250 300 350 40
Distance from the nearest vessel (pm)

400 0 50 100 150 200 250 300 350

Distance from the nearest vessel (pm).A5
0.8 1 0 0.2 0.4 0.6

Oxygen Saturation

400

0.8 1

Figure IV-16 Numerical calculation of oxygen profiles and associated oxygen probability distributions
from in vivo measurements of n(8). (a) MCalV and LS174T tumor tissue voxel distribution predict
decreasing p0 2 profiles and broadened oxygen distributions. (b) Conversely, tissue voxel distributions for
normal murine skin predict a very flat truncated oxygen profile and narrow oxygen distribution.

The oxygen probability distributions for the tumors obtained from the steady-state

solutions found using Eq. (IV.20) lack the bimodal distributions observed in vivo (Figure

IV-15). The limitations due to not accounting for a distribution in oxygen concentrations

from the vessels are likely not the only factors affecting these bimodal features. Large

heterogeneously distributed hypoxic regions have been demonstrated in tumors by

both imaging and histological methods84'108-11. Additionally, the vascular architecture of

many of the tumors studied in this chapter display random avascular regions that are

hypoxic as measured by MP-PQM (Figure IV-7). This coupled with the findings by myself

and others that highly-vascularized regions of the tumor microenvironment are well

oxygenated suggests two tissue populations exist*9.
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Figure IV-17 Invasion percolation networks reveal large avascular regions and define n(6). (a) Regularly
spaced capillary network. (b) Normal tissue vascular network with some heterogeneity due to the
hierchical vascular structure. (c) Representative tumor vascular network at the percolation threshold.
Large avascular regions outside the diffusion range of oxygen exist. (d) 2D vascular network below the
percolation threshold. e. Distance to nearest vessel histograms for a - d.

As mentioned, fractal analysis has been used to describe tumor vasculature. However,

large avascular regions found in tumors promote deviation of the vascular network from

the self-similarity required of fractal analysis. This has been well described using

invasion percolation networks to model the growth and transport of vascular

networks64. This previous study also modeled the transport and diffusion of oxygen in

two-dimensions from these networks revealing the presence of significant hypoxic

regions. With the invasion percolation model, the introduction of large avascular regions

amongst highly vascular regions is observed as the occupancy of the network is reduced

(Figure IV-17a-d). These large avascular regions are chronically hypoxic and diffusion of

oxygen into them does not occur. However, the highly vascularized regions are likely

well oxygenated as observed in vivo. This model helps explain the existence of the
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bimodal peaks in the oxygen distributions. In fact, even in two-dimensions, defining the

structure of the vascular network at various occupancies using invasion percolation

demonstrates tissue volume fraction probability distributions, n(6), with similar

features to those found in vivo (Figure IV-17e).

IV.6 Tumor Oxygenation during Targeted Therapy

As previously discussed, fluctuations in the tumor metabolic microenvironment during

therapy can have profound implications for optimizing combined treatment regimens. In

particular, the application of agents that either directly or indirectly target the tumor

vasculature can alter tumor oxygenation. Antiangiogenic therapy, which directly affects

endothelial cells, has been shown to promote morphological, architectural, cellular and

functional changes in the tumor vasculature7 28 3 . In 2001, my thesis advisor, Dr. Jain

proposed that judicious application of antiangiogenic therapy can improve vascular

function and thereby drug delivery by "normalizing" the vasculature of the

tumorn1 3234 m. What remains unanswered is how these changes affect the metabolic

microenvironment of the tumor, i.e. does the metabolic microenvironment undergo

"normalization". The application of MP-PQM to multiple tumor models to assess

response to targeted therapy reveals insight into alterations in the tumor

microenvironment and the potential impact on combined therapies.
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Figure IV-18 Breast tumor response to Herceptin. (a) The CFD of the tissue voxel fraction within a given
distance from the nearest vessel during treatment with either trastuzumab or rat IgG. Inset - Colorized
depth projection of the tumor vasculature in control and treated MDA-MB-361HK tumors. (b) Probability
histograms of PO2 for day -1, 5 and 8 with respect to treatment initiation. (c) Changes in metrics of both
the tumor vasculature and oxygenation during treatment. N = 6-10, both groups. Scale Bars - 500ptm.
Errors are standard error.

IV.6a MEASUREMENT OF P02 IN A BREAST TUMOR MODEL DURING THERAPY WITH

TRASTUZUMA B

Trastuzumab (Herceptin) inihibits the HER2/neu cell surface receptor, which is over-

expressed in a particularly aggressive form of breast cancer'13. Recently, trastuzumab

was shown to down-regulate a spectrum of vascular growth factors and in a xenograft

metastatic breast cancer model modify the tumor vasculature in a manner analogous to

many vascular targeted antiangiogenic agents" 4. Similar to other single-agent cancer
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therapies with antiangiogenic or cytotoxic agents, trastuzumab is likely to modify the

tumor metabolic microenvironment.

Using MP-PQM, I monitored the tumor vasculature and PO2 in mice bearing mammary

fat pad window chambers implanted with MDA-MB-361HK treated with either

trastuzumab or non-specific rat-IgG. Mice were treated every third day for 3 treatments

with MP-PQM occurring a day prior to each treatment timepoint. The overall response

to therapy by either angiographic or oxygen measurements was inconclusive (Figure

IV-18). The vascular structure appeared to exhibit increased avascular regions at the

conclusion of the treatment as indicated by the rightward shift in the CFD of the tissue

volume fraction at a given distance from the vessels (Figure IV-18a). Review of MP

angiography revealed no distinct vascular anatomical features between the two

treatment groups (Figure IV-18c). No statistical difference in mean tumor oxygenation,

hypoxic fraction or PO2 probability distributions was found with therapy (Figure IV-18b

and c). In both groups, the hypoxic fraction increased over time as exemplified in the

redistribution of oxygenation to lower values. No trend over time was found to be

significant within or between groups.

a. 361HK 474 361 sKBR3 b* .5 -+-BT474 -.- SkBr3 C. 160
2.5 361HK -+-361 -140-

EGFR 2 120-

101 151001

Her2 60--

Her3 20--
0 0,- i

Actin 0 50 100 200 400 800 BT474 SkBr3 361 361HK
Herceptin (pg/mt) 100 pg/mLTrastusumab

Figure IV-19 In vitro Her2 assay of MDA-MB-361HK in comparison to other cell lines. (a) Western blot of
Her2 expression. (b) WST-1 assay of cell proliferation at different media concentrations of trastuzumab.
Fold growth is with respect to the cells growing in the absence of antibody. (c) Cell viability of the 100pg
dosage from b. 361HK: MDA-MB-361HK; 474: BT474; 361: MDA-MB-361.

The lack of response to trastuzumab was surprising given the same cell line was used by

Izumi and co-workers 14. Further, another group has recently demonstrated transient

increases in P02 with trastuzumab treatment in a human cancer cell line induced to

over-express HER2/neurls. Either the antibody used was defective and not delivered to
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the tumor cells, or the cells are no longer responsive. To differentiate between the two

possibilities, MDA-MB-361HK cells were subjected to in vitro growth assays in the

presence or absence of trastuzumab. The results of these experiments indicate that the

growth of the cell line, which still maintains very high levels of HER2 expression, is

uncoupled from the HER2 pathway (Figure IV-19). Others have shown in vitro inhibition

of the MDA-MB-361HK cell line with trastzumab at doses as low as 100pg/ml'1 6,

suggesting that the current cell line must have been altered during passaging.
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Figure IV-20 Murine mammary carcinoma (MCalV) response to VEGF-R2 blockade. (a). The CFD of the
tissue voxel fraction within a given distance from the nearest vessel during treatment with either DC101
or rat IgG. Inset - Colorized depth projection of the tumor vasculature in control and treated tumors at
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IV.6b MEASUREMENT OF P02 DURING VEGF-R2 BLOCKADE

Angiogenesis is a fundamental process in the progression of solid tumors. A central

regulatory pathway in the process of angiogenesis is that of the vascular endothelial

growth factors (VEGF) 17'118. Many antiangiogenic therapies have been designed to

target either the soluble ligands (bevacizumab)1"9 or receptors in the VEGF pathway.

Blockade of this pathway in animal models has demonstrated decreases in angiogenesis
120-122and tumor growth- . In preclinical tumor models, an antibody against VEGF-

Receptor 2 (VEGF-R2) known as DC101123 has proved successful in combination

therapies25,2,23,u4 and potentially "normalizing" the tumor vasculature27. However, little

is known about the spatio-temporal effects of VEGF-R2 blockade on the metabolic

microenvironment.

The study of Tong et al demonstrated vascular "normalization" in both MCaIV and

LS174T tumors in SCID mice. "Normalization" in this case was defined by a reduction in

vascular diameter, vessel length density, permeability and interstitial fluid pressure, all

of which are typically increased in tumors. I performed survey studies on the effect of

treatment by DC101 in these two tumor types. In a treatment schedule analogous to the

trastuzumab study, I administered DC101 every three days for 3 timepoints. Similarly,

imaging with MP-PQM was performed a day prior to each treatment.

In the case of the murine mammary carcinoma (MCaIV) implanted in the DSC, the

vascular architecture appeared to change by visual inspection for most tumors.

However this was not reflected in the quantitative parameters (Figure IV-20a and b). By

Day 5, the mean tumor oxygenation decreased in the treated tumors. A shift to lower

P02 is reflected in the redistribution of the oxygen probabilities to more hypoxic values

(Figure IV-20b). Further, a statistical difference is observed in hypoxic fraction between

the two groups.
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Figure IV-21 Human colorectal adenocarcinoma xenograft (LS174T) response to VEGF-R2 blockade. (a)
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The response of the human colorectal adenocarcinoma xenograft, LS174T, followed the

same trends as MCaIV with decreasing oxygenation and increasing hypoxic fraction

(Figure V-21). Visually, the vasculature was strikingly different at day 8 between the

DC101 treated and control tumors. This was reflected in analysis of the vascular

morphology which revealed a significant difference in diameter by Day 8 and a trend

toward separation in the vascular volume fractions (Figure IV-21c). In the control group,

the growth in both vascular diameter and volume fraction were significant over time (P-
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value < 0.05). Again MP-PQM revealed an increasing hypoxic fraction and redistribution

of the overall tumor oxygenation to lower values in the DC101 treated group. However,

these trends were not significant over the course of the experiment.
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Figure IV-22 Orthotopic murine mammary adenocarcinoma (E0771) response to VEGF-R2 blockade. (a)
The CFD of the tissue voxel fraction within a given distance from the nearest vessel during treatment with

either DC101 or rat IgG. Inset - Colorized depth projection of the tumor vasculature in control and treated
tumors at Day 8. (b) Probability histograms of p02 for day -1, 5 and 8 with respect to treatment initiation.
(c) Changes in metrics of both the tumor vasculature and oxygenation during treatment. N = 4-5 Control N

= 4-5 treated. Scale Bars - 500Lm. * - P-value < 0.05. Errors are standard error.

The previous tumor models treated with DC101 were implanted in an ectopic location

(skin) and in the case of LS174T a human tumor xenograft. The effect of the host tissue

microenvironment has been shown to play a role in angiogenesis and the progression of

disease for many tumor types, including breast cancer1 12 s,126. The metabolic
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microenvironment is different depending upon the surrounding stromal cells and tissue

structure. Therefore, the response to therapy likely depends upon the tissue in which

the tumor is growing.

To eliminate the issues associated with the potential effects of the host tissue

microenvironment, I repeated the DC101 experiment with a syngeneic murine

mammary adenocarcinoma (E0771) implanted in the mammary fat pad of female SCID

mice. The experimental course was identical to that previously applied to the other

tumors treated with DC101. In this tumor model, the response of the vasculature to

DC101 was dramatic. The vascular network was almost entirely pruned in most tumors

treated with DC101 (Figure IV-22a). This effect is readily apparent in the rightward shift

in the CFD of the tissue volume fraction at a given distance from the vessels across the

treatment duration. This indicates increasing avascular regions as seen in MPM

angiography. While vascular volume fraction is significantly different by Day 8, the mean

vessel diameters between groups did not changed (Figure IV-22c). In fact the average

vessel diameter in E0771 tumors was only slightly larger than those found in the normal

mammary fat pad (~10tm). Because a significant portion of vessels are pruned away,

the tumor oxygenation drops over time. However, the two treatment groups did not

show a significant difference at any time point or over the entire course of the

experiment. There was a significant difference in the hypoxic fraction at Day 8, which

again can be seen in a redistribution of the P02 to lower levels (Figure IV-22b).

Interestingly the tumors continued to grow in the DC101 treated group although at a

slower rate than the controls based on observations of the enface tumor diameter.

Overall, the administration of DC101 to each tumor type at the dose used in previous

studies decreased tumor oxygenation. However, it is apparent, particularly in the E0771

experiment, that DC101 significantly inhibited angiogenesis and promoted regression of

the vascular network (Figure IV-23). This effect is not observed in human patients

treated with antiangiogenic agents like bevacizumab (Avastin) due to toxicity levels at

the doses required29 30 ,127. These results suggest that for "normalization" of the tumor
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microenvironment to occur, the antiangiogenic agent needs to be titrated to prevent

complete abolition of the tumor vasculature. At lower doses it is possible that the tumor

oxygenation may increase if the vascular supply is made more efficient.

Day -1

Figure IV-23 Pruning of the vascular network in an E0771 tumor by VEGF-R2 blockade with DC101.
Multiphoton angiography images are presented as colorized depth projections (green-red-white). Scale
Bars - 500pm.

IV.7 Summary

In this Chapter, I have applied the technique of multiphoton phosphorescence

quenching microscopy developed in Chapter III to study the metabolic

microenvironment during tumor progression and response to targeted therapy. Oxygen

tension profiles from single vessels in normal and neoplastic tissue were acquired. The
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profiles in a melanoma tumor uniformly demonstrated lower P0 2 values from the vessel

wall into the interstitial space than those found in normal tissue. In fact, PO2 gradients in

normal tissue were difficult to obtain unless adjacent vessels were occluded using

nanovascular surgery techniques with the multiphoton microscope.

Because tumors display spatially heterogeneous fluctuations in blood flow over

relatively short time periods, relying on a limited number of P0 2 gradients from single

vessels reveals only a small part of the tumor metabolic microenvironment. The high

three-dimensional resolution and deep penetration (~400pm) of MP-PQM permitted

oxygen tension mapping in three-dimensional space over large regions (4 x 4mm) of the

tumor. Coupling the PO2 maps with angiography performed by MPM allowed

correlation of the P0 2 measurements with morphometric analysis of the tumor

vasculature. Correlation of P0 2 with vascular metrics demonstrated a lack of correlation

with vascular diameter and a strong negative correlation with distance from the blood

vessel. Fitting a one-dimensional diffusion-reaction model for oxygen to the spatial

distribution of P02 from the blood vessels allowed quantification of average tumor

oxygen consumption. A range of oxygen consumption rates was observed for different

tumor types that in many cases increased with tumor progression.

The vascular networks and oxygen tension mapping was compared across tumors. In

almost all cases, angiogenesis occurred as defined by an increase in both vascular

diameter and volume fraction during tumor growth. However, different tumor types

displayed various degrees of correlation with the tumor vasculature during the process

of angiogenesis. In some tumors, the vascular diameter correlated significantly with

hypoxic fraction, while in others the VVf displayed a negative correlation. Interestingly,

the human colorectal adenocarcinoma displayed a significant correlation of P02 with the

mean distance from hypoxic regions to the nearest vessel. Applying the depth sectioning

ability of MPM to the oxygen measurements allowed changes in mean P02 at given

depths in the tumor to be observed during growth. This revealed that often the tumor

surface remained well-oxygenated, while the deep core decreased in oxygen content.
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Quantitative assessment of the vascular architecture through the use of a simple metric

describing the tissue volume fraction at a given distance from the closest blood vessel

was shown to predict the tumor oxygenation measured by MP-PQM. Using a

generalized formula for oxygen diffusion based on the spatial probability distribution of

tissue volume with respect to the vessels simulations of both the tumor oxygen gradient

and probability distribution were performed. The results exhibited good agreement with

in vivo measurements in most cases except for an increasing redistribution to hypoxic

oxygenation in the tumor oxygen probability distributions. The bimodal nature of these

oxygen distributions is most probably due to the existence of two tissue populations

(normixic and hypoxic) in the tumor microenvironment. Describing tumor vascular

networks using an invasion percolation model reveals large avascular regions exist in

tumors that have spatial probability distributions of tissue volume with features

identical to those found in living tumors.

Finally, the metabolic microenvironment was probed with MP-PQM during targeted

therapy. Treating a human breast cancer xenograft model with trastuzumab revealed

minimal changes in both vascular metrics and tumor oxygenation. Further experiments

demonstrated that the cell line previously used in other studies no longer responded to

trastuzumab even though the drug target (HER2) was still over-expressed.

Antiangiogenic therapy in the form of VEGF-R2 blockade (DC101) was then administered

to 3 other tumor models including an orthotopic murine mammary adenocarcinoma.

The results of these studies demonstrated that antiangiogenic therapy with DC101

reduced both vascular volume fraction and tumor oxygenation. These outcomes suggest

that antiangiogenic therapies should be titrated for a limited dose response for

potential "normalization" of the tumor metabolic microenvironment.
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IV.8 Materials and Methods

IV.8a ANIMAL MODELS

Dorsal skinfold chambers (DSC) were prepared on male SCID mice using previously

described methods128. Mammary fat pad windows were prepared in SCID mice as

previously described129 . Briefly, prior to chamber implantation, the entire lateral flank of

the animal is shaved and depilated and the third nipple from the top is identified. A fold

is formed which contains the skin and nipple, mammary gland, adipose tissue and

cutaneous muscle layers on one side and the dorsal skin, adipose tissue and cutaneous

muscle layers on the other side. Two symmetrical titanium frames (weight 2.5 g;

Workshop, Department of Radiation Oncology, MGH), which are mirror images of each

other, are implanted centered over the third nipple so as to sandwich the extended

double layer of skin. A layer of skin on the dorsal surface is dissected in a circular area

approximately 15 mm in diameter to the reveal the fascial plane of the internal

mammary vein. The remaining layer of tissue, consisting of epidermis with nipple,

subcutaneous tissue, and mammary fat pad is covered with a glass coverslip

incorporated into one of the frames. Following implantation of the transparent access

chamber, animals are allowed to recover from microsurgery and anesthesia for 48 hours

before tumor implantation or intravital microscopy.

For both models, the appropriate tumor type was then implanted in the center of the

chamber 2-3 days after the initial surgery. The murine mammary adenocarcinomas

(MCaIV and E0771), and human colorectal adenocarcinoma (LS174T) were transplanted

from subcutaneous tumors grown in isogenic mice. The human mammary

adenocarcinoma (MDA-MB-361HK) was implanted as a single cell suspension of ~3x106

cells in 30 pil of Hank's Buffered Salt Solution (HBSS).

Cranial windows were prepared in nude mice as previously described3 0. In SCID mice,

the surface of the skin atop the skull is dilapidated and sanitized with antimicrobial

solution. After stereotaxically fixing the mouse skull, a longitudinal incision of the skin is
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made between the occiput and forehead. Then the skin is cut in a circular manner on

top of the skull, and the periosteum underneath is scraped off to the temporal crests. A

6-mm circle of the skull over the frontal and parietal lobes is removed using a high

speed air-turbine drill (CH4201S; Champion Dental Products, Placentia, CA) with a burr-

tip 0.5 mm in diameter. After careful removal of the bone flap from the dura mater, the

dura and arachnoid membranes are cut completely from the surface of both

hemispheres, avoiding any damage to the sagittal sinus. The window is sealed with a 6-

mm cover glass which is glued to the bone with histocompatible cyanoacrylate glue.

Animals were anesthetized with Ketamine/Xylene(10/1 mg/ml) for surgeries and

Isoflurane (1% in medical grade air) for all experiments. All animal work was approved

by the MGH institutional review board on animal care.

IV.8b MP-PQM

The principles and application of multiphoton phosphorescence quenching microscopy

was described in detail in the previous Chapter. MP-PQM was performed with a custom-

modified confocal laser scanning microscope (Olympus 300; Optical Analysis Corp.,

Center Valley, PA) using a broadband femtosecond source (High Performance MaiTai,

SpectraPhysics, Mountain View, CA) using a 25x, 0.95 NA water emersion lens (Olympus

XLUMPlanFI, Optical Analysis, Center Valley, PA) for imaging. Excitation pulses for time-

domain measurement of phosphorescence lifetime were selected using a Pockel's Cell

(ConOptics, Model: 350-50; Conoptics, Inc., Danbury, CT) driven by custom electronics

and a digital pulse delay generator (DG535, SRS, Sunnyvale, CA). Phosphorescence

emission was detected through a 690/90 emission filter (690/90M, Chroma Technology

Corp., Rockingham, VT) using a GaAs photon counting PMT (H7421P-50, Hamamatsu,

Inc., Bridgewater, NJ). Counts were binned and accumulated for 2500 repetitions using a

multichannel scaler (SR430, SRS, Sunnyvale, CA). All experimental protocols were

automated using custom instrumentation control created in LabView (National

Instruments, Austin, TX). Lifetimes were fit in real-time using built-in MatLab

(MathWorks, Natick, MA) code in order to display the tissue oxygenation.
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To prepare animals for MP-PQM measurements, a mixture (200pl) of 10mg/ml Oxyphor

R2 (Oxygen Enterprises Ltd, Philadelphia, PA) was injected retro-orbitally using a 28.5G

needle. This allows the sensor to diffuse into the tumor, where it binds to proteins in the

interstitium. Fifteen minutes prior to MP-PQM measurements, the animal was

anesthetized by Isoflurane (3% for 4 minutes) administered as an inhalant, Immediately

following a mixture (200jI) of 10mg/ml Oxyphor R2 with 8mg/ml 2M MW FITC-dextran

was injected retro-orbitally. This allows both highlighting the vasculature and real-time

measurements of PO2.

For oxygen profiles from single vessels, the laser beam was parked at given distances (5-

10pm steps) from the vascular wall. Five to ten repeated measurements were then

collected at each point. For oxygen tension maps, a rectangular region of interest was

manually selected using a motorized stage and input into the control software. An

automated series of mosaic multiphoton microscopy images was then collected

covering the ROI. Each image contained an axial series up to 400pm deep in the tissue at

a 5pm step size. Following collection of the angiography, phosphorescence lifetime

measurements were performed in a series of 144 points based on a 12x12 covering the

ROI at four equally spaced depth planes. Total data collection time ranged from two to

three hours depending upon the size of the ROL.

IV.8c OXYGEN TENSION MAPPING DATA ANALYSIS

Prior to processing the oxygen measurements, the angiography images were prepared

and analyzed. A depth projection was created of each individual mosaic MPM image and

semi-manually assembled in ImageJ (NIH, Bethesda, MD) using the MosaicJ plugin.

Custom code written in Matlab employs the log file from the MosaicJ output to

assemble the entire three-dimensional mosaic image stack. Overlap between adjacent

images was blended using an intensity weighting procedure based from the center of

the panel outward. Often times, angiographic contrast agent extravasates from the

permeable tumor vessels obscuring vessels below. To eliminate this artifact in

preparation of vascular tracing, a binary mask of the mosaic image was semi-manually
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created in ImageJ. A final mosaic image was created from the original MPM image

mosaic stack and the binary mask. Colorized depth projections were created from this

processed image using custom code in Matlab. Each depth layer was assigned to a

colormap level, opacity factor (for superficial depths) and corrected for optical

scattering loss by an exponential factor. Semi-automated vascular tracing was

performed on the mosaic image stack using an algorithm that models vascular segments

as superellipsoids to obtain three-dimensional trajectories and morphologyso,85

The output of the tracing algorithm was then correlated with each individual oxygen

measurement to quantify distance to nearest vessel and diameter of that vessel.

Phosphorescence lifetimes were determined by fitting to a two-component exponential

decay model to find the fraction of free and bound Oxyphor R2. Oxygen tension values

were then calculated using the Stern-Volmer relationship and the quenching constant

and anoxic lifetime determined from in vitro calibrations (Chapter 111). Oxygen tension

maps were then created in Matlab using custom code to overlay the mesh grid of P02

values with the outlines of the vascular tracing. Mean oxygen tension was determined

over all the measurements and at each depth plane at which they were acquired.

Oxygen consumption was calculated by fitting the one-dimensional diffusion-reaction

equation [Eq. (IV.2)] to the scatter plot of all p02 measurements versus distance to

closest vessel. A nonlinear Levenburg-Marquedt algorithm was employed in Matlab to

determine Q02. The probability distribution of the number of tissue voxels at a given

distance from the closest vessel was calculated from distance maps obtained from the

traced vasculature. The tumor oxygen profile was determined using a sliding averaging

procedure with a 10mmHg window and 2.5mmHg stepsize in Matlab. For each tumor

type, the distributions are a collection of all tumors imaged at that time-point or within

a specific treatment group.
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IV.8d NUMERICAL SIMULATIONS OF OXYGEN PROFILES AND DISTRIBUTIONS FROM IN

VIvo MEASUREMENTS

Using Matlab, the finite volume method was employed to numerically solve for the

generalized oxygen diffusion equation based on the tissue volume fraction spatial

distribution. The derivations of the appropriate formulas were described in detail in

Section IV.5b. For test functions, the integration time step could be selected at fairly

long times. The time-integration procedure was allowed to iterate until steady state was

reached. This was defined as no change in the oxygen concentration profile if the

maximum integration time was increased. For in vivo data, the time-step needed to be

reduced due to irregular features requiring more precise integration steps. The

minimum time-step was determined by comparing steady-state results at the same time

for multiple time steps. Once the steady-state oxygen concentration profile was reached

with no change between time steps, the minimum step was selected. Oxygen

probability distributions were determined using the numerically determined oxygen

gradient and the spatial probability distribution of tissue volume.

IV.8e INVASION PERCOLATION MODEL

The invasion percolation model accounts for the connectivity of a vascular network

according to occupied points on a two- or three-dimensional lattice64 . Essentially, the

invasion percolation network grows along paths of least resistance according to

randomly assigned "strength" values to each lattice point. The process is repeated until

a given fraction of lattice points are occupied. A vascular network is then described by

connecting each adjacent lattice point by a vessel segment. Flow through the network is

then simulated through one arbitrarily designated point on the lattice and segments

with zero flow are pruned. All simulations were performed using MatLab.

IV.8f TARGETED THERAPIES

Trastuzumab (Herceptin) was obtained by patient donations through the MGH oncology

pharmacy. Female SCID mice bearing MFP chambers implanted with MDA-MB-361HK
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tumors were treated with trastuzumab or nonspecific rat IgG administered

intraperitoneally at 30mg/kg as previously prescribed in this tumor type" 4 . In the other

tumor models, antiangiogenic VEGF-R2 blockade treatments with DC101 (ImClone

Systems Inc., New York, NY) or nonspecific rat IgG were administered intraperitoneally

at 40mg/kg as prescribed in previous studies27. Mice were imaged the day immediately

prior to each treatment. Therapeutic initiation was determined through monitoring of

tumor growth by visual inspection of the enface tumor diameter and angiogenesis of

the tumor. Animals were selected based on the criteria that 1) the tumor diameter was

approximately 4mm in diameter 2) the entire core of the tumor was functionally

vascularized and 3) the animal was in good health. Three treatments at three-day

intervals were given (defined as day 0, 3, 6), and imaging was performed through day 8.

IV.8g IN VITRO TRASTUZUMAB INHIBITION ASSAY

MDA-MB-361HK cells were seeded in a 96-well plate (10,000 cells/well) in 10%

Dulbecco's modified eagle medium (DMEM). The following day, the cells were treated

with trastuzumab (0-800 ig/ml) in 5% DMEM. After six days, the number of viable cells

was determined by a WST-1 proliferation assay (Cat. No 11 644 807 001), Roche

Diagnostics Corp., Indianapolis, IN). The concentration of the free formazan dye cleaved

by viable cells from WST-1 was quantified at 480/600nm in a (Benchmark plus, Bio-Rad

Life Science Research, Hercules, CA) plate reader.

IV.8h STATISTICAL ANALYSIS

Data are presented as mean ± standard error of the mean (SEM). Significant differences

between groups were assessed by a multivariate repeated measures ANOVA accounting

for response to treatment over time (Systat, Systat Software, Inc., Chicago, IL).

Individual timepoints were compared using a two sample Student's t-Test. P < 0.05 was

considered statistically significant for all comparisons. All correlations were determined

using the Pearson product-moment correlation.
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CHAPTER 5

V.1 Introduction and Motivation:

This Chapter describes the development and application of an in vivo pH biosensor

based on resonance energy transfer between a fluorescent semiconductor nanocrystal

(NC) 1,2 and pH sensitive dye. The work shown here is the result of an active

collaboration between the Bawendi and Nocera labs at MIT and the Steele Lab for

Tumor Biology at MGH. The motivation for this work was the development of a

reversible internally ratiometric pH sensor capable for use with multiphoton microscopy

to quantify pH in the tumor microenvironment. The ideal pH sensor design for this

application should be characterized by the following parameters:

Physiologically relevant pKa (~7.0-7.4)

Biocompatibility (minimal charge and size)

Biostability and Photostability (robust construct and no

photobleaching)

Appreciable two-photon excitation (-2,NC a2,dye)

Broad two-photon excitation cross-section
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R

2 =0.99
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Figure V-1 Two-photon excitation of BCECF. (a). The fluorescent emission of BCECF at pH 7.0 obeys
quadratic dependence on the excitation power for both 810 and 940nm incident laser wavelength. (b).
The two different acid an base forms of BCECF are visible in both a solution of 0.2M NaOH and PBS at pH 7
in the normalized action cross-section. It is readily apparent that the two species have different two-
photon absorption cross-sections.
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While methods for measuring in vivo pH exist, none is characterized by both high three-

dimensional spatial resolution and significant depth penetration in tissue (Chapter II).

Further, most are unable to probe the tumor metabolic microenvironment in the

context of the vascular network. Multiphoton microscopy permits simultaneous

fluorescence ratiometric imaging and non-invasive angiography. The common pH

sensitive dyes cannot be applied individually to FRIM in the two-photon regime due to

different two-photon cross-sections of the acid and base forms3 (Figure V-1). The pH-

sensitive lifetime of BCECF has been used to quantify pH in murine skin using MPM, but

depth penetration in two-photon fluorescence lifetime imaging was limited to only

20p m4. Another study has demonstrated in vitro an emission ratiometric pH-sensitive

fluorescent dye (dicyanohydroquinone) that is not subject to differences in two-photon

absorption of the acid and base forms5 . However, the dye is potentially toxic in vivo as a

byproduct is hydrogen cyanide. Therefore, the need for an in vivo pH sensor compatible

with multiphoton microscopy still exists.

Numerous obstacles needed to be surmounted for the development of a ratiometric pH-

sensitive NC-construct. Foremost among these were biocompatibility, stability and in

vivo delivery of the construct. The steps from the synthetic chemistry of these

constructs to application in living tumors was constantly evolving to design and

implement the ideal in vivo pH probe. This Chapter will focus on the development and

application components of the design. Synthetic methods of all constructs discussed in

this chapter are described in detail elsewhere 8.

V.2 Multiphoton Multispectral and FRIM System

To study the NC pH biosensors under multiphoton excitation, a system that combined

both ratiometric imaging and multispectral fluorescence emission detection were

required (Figure V-2). Ratiometric imaging with multiphoton microscopy requires only

the selection of appropriate dichroic and bandpass filters to split and select the emission

signals of interest. Two-photon ratiometric imaging has been used to successfully detect

both zinc9 and calcium10 levels in cells using fluorescent emission ratiometric constructs.
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Figure V-2 Setup for ratlometric pH measurements using multiphoton microscopy. The addition of a
fiber coupled spectrometer to the emission path of the system permits spectral characterization of the
two-photon excited emission.

Multiphoton spectroscopy requires modification to the emission path of a typical MPM

for multispectral detection. Multicolor multiphoton imaging has been performed using

an optical grating and multichannel PMVT with good signal to nos" However, with

typically only 16 channels, the spectral resolution is lower than needed for

photophysical studies. To achieve a high degree of spectral analysis, emission light from

multiphoton excitation can be coupled into a spectro photometer 1-1 . In proper

configurations both high-resolution spectral analysis and ratiometric imaging can be

performed nearly simultaneously. An additional design employs the use of a liquid

crystal tunable filter (LCTF) to reject all light outside a narrow bandwidth ("20-3Onm)

with sequential imaging to obtain a multispectral imaging'5. Preliminary work with a

LCTF in the setting of in vivo multiphoton microscopy demonstrated very low collection

efficiency. It should be noted that anytime fluorescence emission is split, the signal

intensity incident upon each detector decreases requiring increased integration time.
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Figure V-3 Ratiometric imaging of NC-biosensor constructs with multiphoton microscopy. (a).
Nanocrystal channel (540/40 filter). (b) Coupled dye channel (635/40 filter). (c) Image ratio map obtained
from dividing b by a. A colormap indicates the ratio values obtained from the 12-bit images (0-4095).
Scale bars - 100ptm.

All ratiometric imaging and spectral measurements in this Thesis were taken on custom-

built multiphoton laser scanning microscopes with selection of an emission output fiber-

coupled to a spectrometer. Multiphoton excitation was performed by a diode pumped

Ti:Sapphire laser (MaiTai; Spectra-Physics, Mountain View, California) using 800 - 1020

nm light at sample powers ranging from 10-60mW. The output of the laser was adjusted

using a zero-order half-wave plate (10RP52-2, Newport Corp., Irvine, CA) and Glan-Laser

polarizer (10GL08AR.16, Newport Corp., Irvine, CA). The multiphoton microscope

system contained a scan-head (MRC600, Bio-Rad, Hemel Hempstead, England or

Fluoview 300, Olympus America Inc., Center Valley, PA) coupled to an upright

microscope (Axioskop20, Zeiss, Jena, Germany or BX50W, Olympus America Inc., Center

Valley, PA). All measurements were collect using either a 20x/0.5NA (Zeiss Achroplan,

Jena, Germany) or 20x/0.95 (Olympus XLUMPIanFL, Olympus America Inc., Center

Valley, PA) water immersion objective. Fluorescence emission was split by a 50/50

beamsplitter (HQSP720M Chroma Technology, Rockingham, Vermont) directed to both

an imaging and spectral analysis path.

For ratiometric imaging, non-descanned fluorescence emission was detected by

different photomultiplier tubes depending if the emission was less than 620nm (HC125-

02, Hamamatsu Photonics, Bridgewater, New Jersey) or longer, requiring a GaAs PMT

(H7421-50, Hamamatsu, Inc., Bridgewater, NJ). Nanocrystal and dye fluorescence was
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directed to separate PMTs using either a 565nm or 585nm shortpass dichroic

(564DCXPR or 585DCXPR Chroma Technology Corp., Rockingham, VT) depending on the

construct design. The nanocrystal and dye channels were further selected according to

appropriate antireflective-coated broadband emission filters (Chroma Technology Corp.,

Rockingham, VT). For three-dimensional ratiometric imaging, image stacks (512x512

pixels and 5-micron z-step) were collected simultaneously for both the NC and dye

channels. The two detection channels (nanocrystal and dye) were corrected for non-

uniform illumination and ratiometric images (Figure V-3) were created using Matlab

(Mathworks, Natick, MA). To assess for any potential artifacts due to the detectors, the

ratiometric response of the PMTs was determined. The fluorescence emission of a

sample of free NCs was split using a 50/50 beamsplitter (21000, Chroma Technology

Corp., Rockingham, VT) and directed at both detectors used for all experiments. Image

stacks were collected with the MPM every 5min for 90 total minutes. The average ratio

was calculated for each image stack and timepoint. No drift was observed in the

response of either PMT (Figure V-4).
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Figure V-4 PMT response over time for ratiometric imaging with NCs. (a). The mean channel intensities
over time for both PMTs. (b) The mean ratio of the two channels over time. Errors are given as standard
deviations of all image pixels (512x512x100).
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For spectral analysis, the excitation laser was parked in the field of view and emission

light was coupled into a 100 m core fiber bundle after passing through a 720 nm short-

pass filter (HQSP720m Chroma Technology, Rockingham, Vermont). Spectra of the fiber-

coupled emission were collected on a spectrograph (Shamrock 303, Andor Technology,

Belfast, Northern Ireland) with CCD detector system (Newton DU-420, Andor

Technology, Belfast, Northern Ireland) using a 1004m slit opening and 20ms to is

detector integration depending on the signal. All post-processing of the spectra was

performed using custom code in the Matlab programming environment.

V.3 Multiphoton excitation of NC-constructs

Fluorescent semiconductor nanocrystals possess broad two-photon excitation spectra

(700-1000nm) and significant cross-sections up to nearly 50k GM16'17. They have been

successfully applied to MPM in both cellular and in vivo environments18-21. Initial design

considerations in the development of a NC-biosensor for use with MPM are the

photophysical properties of FRET-based NC constructs under two-photon excitation.

Recently, much emphasis has focused on the application of semiconductor nanocrystals

as two-photon antennas for other fluorescent dyes with minimal nonlinear excitation

cross-sections22
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Figure V-5 Two photon excitation of NC-CXR construct: demonstration of a two-photon antenna. (a).
Nonlinear excitation of each component (NC and CXR dye) and the construct at 800nm. (b) Two-photon
action cross-sections for each component and the construct.
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V.3a SEMICONDUCTOR NANOCRYSTALS AS TWO-PHOTON ANTENNAS

We chose to perform such an experiment with a dye molecule (carboxy-X-rhodamine,

CXR) that exhibits a significant two-photon absorption cross-section in its own right. We

hypothesized that the larger two-photon absorption cross-section of the NC would

determine the photophysical characteristics of a bound construct incorporating CXR.

Both components and the construct demonstrated nonlinear responses to excitation by

the femtosecond laser source (Figure V-5a). The nanocrystal exhibited near quadratic

dependence on the excitation power (1.74), which has been observed by others16. NCs

can easily reach excitation saturation under normal two-photon protocols, which

decreases the quadratic dependence and increases the focal volume. The rhodamine

dye, CXR, demonstrated no excitation saturation and excellent quadratic dependence of

fluorescence (2.01) at the same powers as the NC. The NC-CXR construct displayed the

same near quadratic dependence as the free NC (1.82).

Two-photon absorption cross-sections (u2) were determined at wavelengths ranging

from 730-990nm for the NC, CXR and construct (Figure V-5b). The absorption cross-

section was calculated from the fluorescence emission spectra of each molecule during

two-photon excitation using the fiber-coupled spectrometer. If both the time averaged

fluorescence (F(t)) and incident laser power (P(t)) on the sample are known, then U2

can be calculated.

7TA(F(t))

4<p7C 9 (P(t))2  (V.1)

Here, A is the excitation wavelength, < is the emission collection efficiency, and r7 is the

fluorescence quantum efficiency. The characteristics of the excitation laser are defined

by the second order temporal coherence (g(2)) and the laser repetition rate (f,). In this

study the laser source was 80MHz and assumed to consist of Gaussian shaped pulses

giving a value of 73500 for 92. Free acid fluorescein was used as a reference sample to

determine the collection efficiency of the multiphoton microscope detection path. The
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collection efficiency was found to be 0.40 ± 0.04% based on measured values of the

two-photon action cross-section at multiple wavelengths and those reported in the

literature . Excitation power was measured directly at the focal point of the objective

for each wavelength.

The two-photon absorption cross-section (q2) for the NC was found to be much higher

(1400-100GM) than that of CXR (350-50GM) at all wavelengths from 730 - 990nm. The

NC-CXR construct exhibited similar values (1600-160GM) across its excitation spectrum

to that of the free NC. By comparison, the sum of the two-photon absorption cross-

sections for the two independent species is slightly higher than the free NC or construct

at most wavelengths (1700-150). Only at longer excitation wavelengths (>950nm) does

the construct excitation spectrum begin to mirror the sum of the two components. It is

likely that at longer wavelengths, when -2 for the NC nears a minimum, there is direct

excitation of CXR. It is also possible that there is an exchange between the construct and

solution whereby CXR is separating from the construct at a given rate. In this case, low

concentrations of free CXR could be interfering with the measurement.

V.3b MULTIPHOTON EXCiTATION OF NC PH BIOSENSOR

Initial construct designs for a pH biosensor were based on coupling a squaraine dye25

26
with the NC. The squaraine dye itself does undergo significant two-photon excitation26

but as shown above the NC antenna defines the photophysics at most excitation

wavelengths. The problem with this construct was a basic pKa, which precluded its use

in biological environments. Instead a new construct was designed incorporating the red-

shifted pH-sensitive dye, SNARF-5F . The pKa of this dye is around 7.2 making it ideal

for in vivo applications27. The other common pH dye, BCECF 28, could not be used

because the absorption was too high in energy for efficient resonance energy transfer

from a luminescent NC. We determined the normalized two-photon excitation cross-

sections for free SNARF, free NC and the NC-SNARF construct at a pH of 7.0 (Figure V-6).

The concentrations of the unbound species were equal to those in the construct from

the total emission spectra. The NC-SNARF construct exhibits similar features to that of
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the free NC from 760-990nm. In particular, the construct does not demonstrate the

significant SNARF action cross-section maximum at 860nm. Therefore at wavelengths

900nm and below, two-photon excitation the NC-SNARF construct should occur through

the NC and all fluorescence from the bound SNARF dye should result from resonance

energy transfer processes.
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Figure V-6 Normalized two-photon action cross-sections for an NC-SNARF pH biosensor compared to Its
free components. NC - nanocrystal.

VA Biocompatibiity of NC-Biosensors

The greatest challenge in developing the NC-biosensor for pH is creating a stable

construct that does not interact with in vivo biomolecules. In their native state,

fluorescent nanocrystals are hydrophobic inorganic compounds2. The surface of the

nanocrystal must be passivated to be made soluble in an aqueous environment.

Typically NCs are capped with thiols through disulfide linkages onto the inorganic

surface of the NC. These thiols are typically attached to polymers with hydrophilic
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endgroups, such as carboxyl (-COOH) or hydroxyl (-OH) groups, or polyethylene glycol

(PEG) 29,30.

Complicating the design of an NC-biosensor is coupling the analyte sensitive dye to the

nanocrystal coating. Initial designs consisted of ester linkages6, due to the ease of

coupling the dye molecules onto a carboxylated PEG backbone31. However, such

coupling would be susceptible to esterases in the in vivo environment, particularly if the

construct was delivered intravenously. Amide linkages provide robust stability to

enzymatic degradation in biological tissues and were selected for second generation NC-

biosensor designs. Using amine surface functionalized nanocystals allowed amide bond

formation between dyes modified with N-hydroxysulfosuccinimide (NHS) 7.

A B

Figure V-7 NC-construct in vivo biocompatibility after intravenous injection. (a) The construct based on
a dendrimer coating around the nanocrystal exhibited significant non-specific binding and aggregation
within normal vasculature upon imaging by MPLSM. Second harmonic generation from adipocytes is
notable around the vasculature. (b) Amine (NH2) - capped DHLA-PEG constructs demonstrated good
distribution within tumor vasculature. Here cascade-blue dextran-500k was also injected intravenously as
a vascular tracer. Scale bars - 100 pm.

Once the stable linker was determined different surface capping strategies were

explored for their in vivo biocompatibility. Dendrimer-capped NCs using poly(amido

amine) dendrimer ligands provided ample amines for conjugation with the dye

molecules32. The dendrimer ligands were able to couple numerous dyes to a single NC,
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thereby increasing the FRET efficiency. However, upon intravenous introduction into a

mouse bearing a dorsal skinfold chamber (DSC) without a tumor, non-specific binding

was observed intravascularly for dendrimer constructs (Figure V-7a). The dendrimer

ligands possess a high positive charge, while both albumin33 and the angiogenic

vasculature in tumors and sites of inflammation possess significant anionic charges34.

Therefore, non-specific aggregation and binding with dendrimer-NCs preclude their use

as sensing moieties in the tumor microenvironment. Similar aggregation results were

also found with quantomer (octylamine-modified poly(acrylic acid)) functionalized NCs.

Using cysteine as a zwitterionic organic coating for NC construct enables small

hydrodynamic diameters (~5.5nm) and renal clearance upon intravenous injection3s

However, the stability of dye conjugates to the cysteine moieties was found to be

questionable.
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Figure V-8 In vivo extravasation of DHLA-PEG nanocrystal constructs from the tumor vasculature. (a)
Multiphoton spectral emission measurements were collected on and between two tumor vessels in a DSC.
(b) Emission spectra collected at the different points shown in a. When a tumor vessel is imaged, emission
spectra show both cascade blue - 500k MW dextran (~450nm) and NCs (~555nm). Only the NC emission is
present in the interstitial space of the tumor (black, blue and green). Measurements were collected
150gm below the tumor surface.

Recently, nanocrystals solubilized with dihydrolipoic acid conjugated to PEG (DHLA-PEG)

were shown to extravasate from blood vessels in an inflammatory model36 . Utilizing this

design, our collaborators in the Bawendi and Nocera groups developed new biosensor
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constructs employing DHLA-PEG functionalized with amine groups for coupling.

Intravenous injection of this construct exhibited no aggregation or binding

intravascularly within the tumor microvasculature of a mouse model(Figure V-7b).

Further investigation demonstrated that intravenously injected amino-DHLA-PEG NC-

constructs extravasate from the tumor vasculature less than 30 minutes post-injection.

When a tumor vessel is imaged, emission spectra showed both the fluorescence of the

vascular tracer (cascade blue - 500k MW dextran) and NCs. However, within the

interstitium, only the NC emission is detectable while the larger cascade blue molecule

remains in the vascular space (Figure V-8).

*, |-i~~ioN 0~' -20o -OH
SNN SN SN SN SN

Figure V-9 In vivo distribution of NC-CXR constructs functionalized with various blocompatible ligands.
(a) DHLA-PEG400-OH (b) DHLA-PEG1000-OH (c) DHLA-PEG550-OCH 3.The ligand structure is given for each
construct above the representative in vivo image. All constructs were microinjected into the same tumor
type. The green color is the colocalization of both the NC and CXR emissions. Scale bars - 100pm.

Once the amino-DHLA-PEG nanocrystal construct was settled upon, the charge and size

needed to be adjusted for in vivo application. It is well known that size and charge play a

significant role in the delivery and transport of nanoparticles to and through the tumor

microenvironment37. While maintaining a concentration of 20% amino-DHLA-PEGs on

the NC surface for coupling to NHS prepared dye molecules, the remaining DHLA-PEGs

were adjusted for size and charge by modifying the PEG length and terminal

functionality. Three characteristic DHLA-PEG scaffolds (Figure V-9) were prepared and

incorporated into NC-constructs utilizing a dye molecule (CXR) insensitive to the in vivo

microenvironment. This construct design (a two-photon antenna) underwent FRET as
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shown in Section V.3. Therefore, the ratio of this dye should be equivalent at all

locations when imaged by multiphoton microscopy. The different NC-CXR constructs

were directly microinjected into a colorectal adenocarcinoma xenograft (LS174T)

implanted in the DSC of male SCID mice. Over a period of 90 minutes, the injection site

and nearby interstitium were monitored with MPM at 800nm. Each construct displayed

different interactions with the tumor microenvironment characterized by the diffusion

distance from the injection site (Figure V-9). The methoxy-terminated DHLA-PEG ligand

was found to distribute to the greatest extent in the tumor interstitial space (Figure

V-9c). The shorter hydroxy-terminated DHLA-PEG exhibited the greatest non-specific

binding, barely diffusing from the injection site (Figure V-9a).

Table V-1: Summary of NC construct results in vitro and in vivo. Constructs are identified by the type of
nanocrystal biocompatible coating utilized. DHLA - dihydrolipoic acid. PEG - polyethelyne glycol (chain
length). NH2 - amine caps on PEGs (cationic with degree depending on %). OH - hydroxyl caps on pegs
(neutral charge). OCH3 - methoxy caps on PEGs (neutral).

Nanocrystal Construct In vitro and in vivo results
Dendrimer Sticks to endothelial, stromal cells and tumor cells. Self-

aggregation and quenching.

Cysteine Permeable to tumor vessels, but questionable stability
Quantomer Non-specific binding and reduced FRET efficiency. Larger size.

Good intravascular stability.
DHLA-PEG, 0% NH2  Non-specific binding. Poor tissue penetration. Significantly

reduced FRET efficiency. Good intravascular stability.
DHLA-PEG, 10% NH2  Non-specific binding. Poor tissue penetration. Significantly

reduced FRET efficiency. Good intravascular stability.
DHLA-PEG, 20% NH2  Non-specific binding. Poor tissue penetration. pH biosensor ratio

similar to tumor slurry calibration, but significantly different from
PBS calibration. Good intravascular stability.

DHLA-PEG, 25% NH2  Non-specific binding. Poor tissue penetration. Good intravascular
stability.

DHLA-PEG(400)-OH + Non-specific binding. Poor tissue penetration. pH biosensor ratio
DHLA-PEG, 20% NH2  different from PBS calibration. Good intravascular stability.
DHLA-PEG(1000)-OH + Non-specific binding significant. Sensor ratio different from PBS
DHLA-PEG, 20% NH2  calibration. Good intravascular stability.
DHLA-PEG(550)-OCH 3 + Improved tissue penetration. Reduced non-specific interaction.
DHLA-PEG, 20% NH2  pH biosensor ratio different from PBS calibration. Good

intravascular stability.

The modulation of functionalized ligands on the NC-biosensor constructs does not alter

the ratiometric behavior in aqueous buffers containing no biomolecules. However, it
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does affect the ratio in ex vivo calibrations as the next section will demonstrate. All in

vitro and in vivo biocompatibility results with different NC-constructs are summarized in

Table V-1.
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Figure V-10 Multiphoton ratiometric spectral calibration of an NC-SNARF pH biosensor in PBS. (a)
Emission spectra at different pH buffers. (b) Calibration ratio of integrated emission areas for SNARF to
NC. (c) NC emission area at different pH. (d) SNARF emission area at different pH.

V.5 pH Calibration

Each new NC pH biosensor must be calibrated for response to solutions of known pH.

During synthesis of the NC-biosensor a variable number of SNARF molecules are

conjugated to the construct (typically between 1 and 6). This alters the FRET efficiency

and therefore the ratio. Additionally, the measured ratio values will depend on the

quantum efficiencies of the detectors and optical filters employed in the emission path.

Therefore, an appropriate calibration has to be performed with the same instrument on

which in vivo measurements are collected. We performed different calibration protocols

on each NC pH biosensor to determine any potential effects on the calibration ratio.
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Figure V-11 Calibration of NC-SNARF pH biosensor in phosphate buffered saline with 4% bovine serum
albumin. (a) and (b) Single photon excitation - normalized emission spectra and ratio of emission areas at
given pH. (c) and (d) Two photon excitation - normalized emission spectra and ratio of emission areas at
given pH. (e) and (f) Calibration example of a probe with bound SNARF:NC ratio ~6-7. Arrows indicate shift
in peak height with increasing pH (NC - green; SNARF - red). * - isosbestic point.

The simplest calibration we performed involved determining the spectral ratios for the

SNARF to NC emissions in solutions of different pH phosphate buffered saline. The

emission areas for both components are easily obtained from the collected emission

spectra under two-photon excitation allowing calculation of a calibration curve (Figure

V-10). A slightly modified calibration of the NC pH biosensor was also performed in

phosphate buffers containing 4% bovine serum albumin (BSA) from pH 6 to 8 at 370C

(Figure V-11). The introduction of BSA explores the effect of scattering media and

potential binding on the ratiometric emission of the pH biosensor. Data collected by a

spectrometer revealed both emission peaks of the NC and SNARF. Additionally, the

isosbestic point exhibited by SNARF was still observable in the NC-biosensor (Figure

V-11a, c, e). The calibration ratios were defined by the ratio of the spectral areas of

SNARF to the NC. Excitation either by single or two-photon processes exhibit different

ratio values. However, this is due to completely different detection schemes and not

different photophysical processes. Energy transfer processes and fluorescent emission

are independent of the excitation for one- and two-photon processes38,39. Constructs
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with different molecular ratios of dye to dot exhibit different FRET efficiencies;

highlighting the requirement of calibrating each new NC-biosensor (Figure V-11Errorl
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Figure V-12 Calibration using multiphoton FRIM. (a) Examples of emission channels for both SNARF (red)
and NC (green) at different pH in PBS. Colormaps on the ratiometric images reveal the different ratios for
each environmental pH. (b) Effect of multiphoton excitation wavelength on calibration for the samples in
a. (c) Effect of multiphoton excitation power on calibration.

Calibration for MP-FRIM was obtained using a dichroic filter at the isosbestic point (~585

- 600nm) of the NC-biosensor and imaging with two PMTs employing appropriate

bandpass filters to separately integrate the emission from the NC and dye molecules.

Mean depth projections for each emission channel obtained from axial image stacks

with the MPM were divided to determine the average ratio at each pH (Figure V-12).

The calibration values for PBS solutions are different using this method from those
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obtained by the spectrometer due to the altered detection mechanism and emission

path. We also investigated the effect of both two-photon excitation wavelength and
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Figure V-13 Ex vivo MP-FRIM calibration of NC-biosensor. (a) LS174T tumor slices in different PBS pH
buffers. Each image is a maximum intensity projection of 400pm of tissue. The emisison color changes
(green to red) as pH increases. Binding and resonance energy stabilization of the NCs are notable on the
damaged (due to removal of tumor) edge of the tumor slices by the increased green fluorescence. These
areas were ignored for calibration. (b) The ratiometric image calibrations for all image slices in a.
Calculated ratio values are the mean of 512x512x41 pixels. The standard deviations are large due to the
heterogeneous nature of the tumor tissue. (c) MP-FRIM calibration in PBS. Scale bar - 100m.

power on the calibration using MP-FRIM. Excitation between 800 and 900nm

demonstrated no significant difference in calibration values (Figure V-12b). However,

the signal to noise ratio was too low at 1000nm excitation to accurately calibrate the
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NC-biosensor. Further, as was demonstrated in Section V.3, at longer excitation

wavelengths, the SNARF dye may undergo direct excitation rather than resonance

energy transfer. Altering the excitation power had no effect on the calibration at 800nm

(Figure V-12c). This is expected as the NC-biosensor is internally referenced and should

not exhibit a change in either emission peak due to different excitation powers since

only the NC is excited in principle.
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Figure V-14 Comparison of pH calibrations with the NC pH biosensor using MP-FRIM In both solution
and ex vivo tumor tissue. Black line indicates a linear fit to the PBS calibration data.

With many of our early constructs, we found that the solution calibrations did not

reliably match the in vivo ratiometric values measured in tumor models. Previous work

has suggested that calibration of fluorescent pH sensors like BCECF is best served in an

environment that mimics that encountered in vivo40. Interactions with biological

molecules in the local tissue environment may alter the FRET efficiency of the NC-

biosensor. To examine the effects of tumor tissue on pH calibrations with the NC-

biosensor, I developed two ex vivo systems. The first method involved performing

calibrations in ex vivo tumor slices obtained from subcutaneously grown tumors (Figure
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V-13). Preferably, the tumor type should be identical to those planned for in vivo

measurements to account for differences in interstitial components and cell types. MP-

FRIM of NC pH biosensors allowed to passively diffuse into tumor slices equilibrated in

phosphate buffers of known pH demonstrated a distinct change in fluorescent emission

(Figure V-13a). The pH calibrations from ex vivo tumor slices were slightly different from

those obtained in phosphate buffers (Figure V-13b and c).

An alternate method for calibrating the NC-biosensor employed single cell suspensions

obtained from the tumor type to be investigated. Similar to the ex vivo tumor slice

methods, the cell suspension, which contains both cancer and stromal cells, were

equilibrated in phosphate buffers prior to addition of the NC-biosensor. To compare

between calibration methods, the fractional SNARF emission ratio was used. The

fractional ratio was calculated from the individual PMT intensity ratios measured by MP-

FRIM:

Fractional Ratio = ISNARF
ISNARF + INC (V.2)

The fractional ratio constrains the values to between 0 and 1 making comparisons

between calibrations and with in vivo data easier. Calibrating an NC pH biosensor with

both ex vivo methods and phosphate buffer solutions showed that the tumor tissue may

have a buffering capacity at low and high pH (Figure V-14). It appears that the ex vivo

tissue samples do not fully equilibrate with the phosphate buffers, thereby altering the

expected pH. From these results, it seems that solution calibrations with the NC-

biosensor may be all that is required for in vivo measurements.

V.6 In Vivo Demonstration of NC-Biosensor

The ultimate goal in the development of ratiometric NC-biosensors for MP-FRIM is

studying the tumor metabolic microenvironment during progression and response to

therapy. However, prior to characterizing pH changes with targeted cancer therapies

such as antiangiogenic agents, we chose to confirm the ability of the NC pH biosensor to

232



CHAPTER 5

monitor experimentally imposed dynamic changes of in vivo pH in the tumor

microenvironment. An ideal agent to perturb the tumor acidity is the introduction of

intravenous or intraperitoneal glucose. Investigators have shown that the

administration of glucose leads to transient acidosis in the tumor microenvironment*' 41.

The decreased pH from hyperglycemia is due to a number of mechanisms including

increased blood viscosity in the tortuous tumor vasculature42 ,43 and acidic byproducts of

glycolysis due to increased metabolic supply".
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Figure V-15 Metabolic acidosis due to intramuscular anesthetics. (a) Experimental protocol for
hyperglycemia experiments with MP-FRIM. (b) Administering glucose intravenously appeared to lower the
pH in the tumor. However, (c) control animals injected with saline exhibited similar dynamics over the
measurement period. (d) In a mouse that expired 20 minutes into the experiment, no change in pH was
observed.

V.6a NC PH BIOSENSORS MEASURE QUALITATIVE CHANGES IN PH DUE TO GLUCOSE

ADMINISTRATION.
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We performed hyperglycemia experiments using the NC pH biosensor and MP-FRIM in

xenograft colorectal adenocarcinoma tumors (LS174T). In the first study, SCID mice

bearing DSC with implanted LS174T were anesthetized with ketamine/xylazine (10:1)

and glucose or saline was administered intravenously. Prior to initiating the study, NC-

biosensor was superfused onto the tumor surface and allowed to diffuse into the tissue.

Multiple locations were imaged every 10 minutes for 90 to 120 minutes (Figure V-15a).

The glucose treated tumors exhibited decreasing pH as indicated by a reduction in the

NC-biosensor emission ratio (Figure V-15b). However, the saline treated tumors also

showed a similar trend to lower pH (Figure V-15c). These results contrasted with a

mouse that expired after introduction of glucose. In this case, the ratio did not change

throughout the experiment (Figure V-15d). According to the pH calibrations in PBS for

this sensor, the pH drop over 90 minutes in treated tumors was 0.2units, consistent with

previous studies in the same tumor model using FRIM with BCECF'.

The acidosis also occurred in the control animals suggesting other mechanisms were

altering the pH. One possibility is in vivo stability of the NC-SNARF construct over time. If

the bound SNARF undergoes photobleaching or the linking PEGs dissociate from the NC,

then FRET will be abolished thereby decreasing the apparent ratio. However, the animal

that was deceased during the experiment did not exhibit a change in emission ratios,

suggesting neither mechanism was at work. Literature on various anesthetics revealed

that metabolic acidosis may occur with their use In particular, ketamine has been

shown to induce metabolic acidosis in a variety of animal models*' 49. Conversely,

inhaled anesthetics like isoflurane have not demonstrated metabolic acidosis50'51. From

this experiment, it was apparent that the NC-biosensor could measure changes in pH,

but also that all such studies should be carried out with inhaled anesthetics to reduce

other potential sources of acidosis.

We repeated the previous hyperglycemia study using the same animal models, but with

anesthesia induced by inhaled isoflurane. In addition, we monitored trends in pH

modulation due to intraperitoneal glucose administration. Both intravenous and
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intraperitoneal routes of glucose administration have demonstrated acidosis in the

tumor microenvironments2. In this case, the NC pH biosensor was coated with DHLA-

PEG, 25% -NH2/75% -OH exhibiting an average hydrodynamic radius of 7-8nm. Our

results, show a statistically significant decrease in pH (lower ratio) over time (P-value:

0.002) after glucose administration in comparison to mice injected with PBS (Figure

V-16). Furthermore, the rate of change in pH is significantly different between both

groups (P-value: 0.016). Differences in starting ratios between the two groups are likely

due to the heterogeneity in pH found in the tumor microenvironment 3. Quantitative

assessment was not possible because the ratios measured in vivo differing from those in

a PBS calibration.

a. 1 b. 0
1A -0.001

-0.002

-0.003

028

0 -0.007

0 20 40 60 80 100

Time (min) p-atue:0-016
0 Saline 0 Glucose

Figure V-16 Acidosis of the tumor microenvironment due to hyperglycemia. (a) In tumors treated with
glucose administered intraperitoneally, the pH was qualitatively reduced in comparison to control animals
treated with saline. Each line represents the mean of 5-6 different tumor regions in one animal. (b). The
change over time of the NC-biosensor (slope) was significant between the two groups (P-value: 0.016. N =
3 for both groups.

The same experiment was repeated a second time with NC-biosensors that could be

directly microinjected into the tumor interstitium. Nanocrystals passivated with 20%

amino-PEG/80% methoxy-PEG were utilized in the synthesis of a new NC-SNARF

construct. As shown in Section V.4, the methoxy-PEGylated NCs demonstrated excellent

in vivo tissue penetration. When injected directly into tumors, these NC-biosensors

distributed throughout the tumor tissue within 15 minutes (Figure V-17a). Again treated

tumors exhibited acidosis in the microenvironment as demonstrated by a decreasing

NC-biosensor emission ratio (Figure V-17b). By correcting the emission from different
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depths for scattering using an exponential factor, the average ratio was shown not to

change with depth in the tumor. The glucose and saline treated groups were found to

be statistically different over the course of the experiment (P - value: 0.001). The in vivo

ratio values were found to be lower than those determined by a PBS calibration (Figure

V-14). However, if only the change in ratio is taken into account, a linear fit to the

calibration data can be used to qualitatively estimate the pH drop. For the ~0.02 drop in

SNARF emission fractional ratio for this study, a pH drop of ~0.6 units is estimated. This

is within the range found in previous studies40,4 2,43,5 4.
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Figure V-17 In vivo pH sensing during hyperglycemia using methoxy-PEG NC-biosensors. (a) Maximum
intensity projection of tumor vessels (blue) highlighted by Cascade blue 500K dextran and NC-biosensor
(green/red). (b) Acidosis in tumors treated by glucose (green) versus those injected with PBS (blue).
SNARF fraction ratio means at two different depth regions (50-100 and 100-150ptm) are shown to nearly
overlap during the course of the experiment. N = 4 for each group. (c) and (d) Spatial correlation of the

236



CHAPTER 5

NC-biosensor ratios with the nearest tumor vessel. Glucose treated animals (red) exhibit a drop in pH of
the distance, while those treated with saline (blue) do not. Scale bar - 100ptm.

MP-FRIM coupled with angiography permitted spatial correlation of the measured ratio

with distance from the nearest tumor vessel (Figure V-17c and d). In both groups, a

substantial pH gradient from the vessel wall was not found. This contrasts with previous

studies which demonstrated pH drops up to 0.4 units away from the vessel wall 53.

However, in those experiments profiles were collected from only single vessels and the

method did not allow true three-dimensional measurements unlike MP-FRIM.

Interestingly, the glucose treated animals did show a drop in pH at every distance from

the vessel wall over the course of the study, although a gradient was never observed.

Using the combination of MPM angiography and MP-FRIM with the NC-biosensor, these

changes in ratio over time can be observed in the context of the vasculature in three

dimensions (Errorl Reference source not found.). Using colormaps to represent the

ratio, the heterogeneous response over time of a glucose treated tumor is observable

even in a single slice from the three-dimensional image stack. Generally, the control

animals maintained similar ratio distributions throughout the experiment as expected

from the stable mean ratio values.
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Figure V-18 MP-FRIM ratiometric images with the tumor vasculature imaged by MPM. The vasculature
(red) was semi-automatically traced in three-dimensions and the resulting cast was overlaid with the
ratiometric images. Here a representative slice from a single region of a glucose and saline treated tumor
are shown over the course of the study. Higher ratios are represented by warmer colors. Scale bar -
500im.
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Figure V-19 NC-CXR control construct demonstrates no ratiometric change with pH alteration by
glucose administration. (a) Representative example of an LS174T tumor containing diffused NC-
Rhodamine construct imaged by multiphoton microscopy. The tumor blood vessels are highlighted by
cascade-blue dextran-500k, while the NC construct is green. Scale Bar - 100 ptm. (b) The photon counts in
both the red (CXR) and green (NC) channels are shown for the image in a. The normalized ratio
(red:red+green channels) is also shown on the right-hand axis. No change in ratio is observed after
glucose is administered at time 0.

V.6b NC-BIOSENSORS ARE UNAFFECTED IN VIVO BY TISSUE OPTICAL PROPERTIES

To address the effects of in vivo tissue optical properties on our ratiometric sensing

measurements, we synthesized control NC-constructs that were insensitive to pH and

repeated the glucose modulation experiment. The control NC-biosensors consisted of a

pH-insensitive carboxy-rhodamine dye attached to the nanocrystal. This is a similar

construct to that used to demonstrate the two-photon antenna (Figure V-5). We applied

the constructs in vivo to both LS174T and murine mammary carcinoma (MCaIV) tumors

during hyperglycemia. In all of our animals, we found little deviation in control construct

ratio over the 90 minutes (Fig. 5). These important studies illustrate the robustness of

the NC-biosensor construct within the in vivo tumor microenvironment. Further, the

constant ratio observed indicates that the measured ratio is not affected by differential

scattering or absorption of the two fluorescent components. The emission spectra of

the NC-CXR control construct are very similar in wavelength to that of the NC-SNARF pH

biosensor. Therefore, ratios determined from the NC pH sensor should also be just as

robust as the control construct.
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V.7 Summary

In this Chapter, I have presented the results of a collaborative effort to develop a FRET-

based semiconductor nanocrystal biosensor for in vivo measurements of pH in tumors.

The particular focus has been on implementing these novel NC-biosensors under two-

photon excitation with multiphoton fluorescence ratiometric imaging. This technique

allows for three-dimensional imaging up to depths of 400-500p.m in murine tumor

models. The application of FRET with NCs under two-photon excitation was confirmed

for both pH sensitive and control constructs. The ability to employ a NC as a two-photon

antenna was demonstrated; confirming that excitation in the nonlinear regime occurs

through the NC due to its large two-photon absorption cross-section. Through a

collaborative process, the design of the NC constructs evolved to materials with

improved in vivo biocompatibility and negligible non-specific binding. Multiple protocols

for calibrating a NC-SNARF pH biosensor were presented and compared. Later

generations of the NC-SNARF construct design limited interactions with the local

environment reducing differences between the in vitro and ex vivo calibrations.

Application of the NC-SNARF pH biosensor to the tumor microenvironment

demonstrated qualitative measurement of acidosis due to hyperglycemia in a number of

experiments. The ability of MP-FRIM coupled with the NC-biosensor was shown to

permit correlation of the ratiometric pH measurements with the local tumor

vasculature. The basic design of the latest generation NC-biosensor was demonstrated

to be robust in vivo and ratiometric measurements were shown to be independent of

tissue optical properties. Future work will focus on vascular delivery of the NC-biosensor

and more stable calibrations.

V.8 Additional Materials and Methods

V.8a ANIMAL MODELS

Dorsal skinfold chambers (DSC) were prepared on 8-10 week old male SCID mice using

previously described methods55. After recovery, a small piece of tumor (~1 mm
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diameter) either from a human colorectal adenocarcinoma tumor (LS174T) or murine

mammary adenocarcinoma (MCaIV) obtained from a serially passaged subcutaneous in

vivo source from the same murine background was implanted in the center of the

chamber. At 1 - 2 weeks time the tumor in the chamber is of appropriate size for

experiments (~ 4 mm diameter). Animals were anesthetized with either

Ketamine/Xylene(10/1 mg/ml) or Isoflurane (1% in medical grade air) for all

experiments. All animal work was approved by the MGH institutional review board on

animal care.

V.8b IN VIVo BIOCOMPATIBILITY STUDIES

For NC construct extravasation studies with PEGylated nanocrystals, cascade blue ~500

kDa dextran (10 mg/mL) was tail-vein injected. After 20 minutes, 0.2 mL of 10%

aminoPEG/90% hydroxyPEG 555 nm emitting NCs were intravenously administered. Five

data points in the tumor were taken starting 30 minutes post-injection of the NCs.

Emission spectra were integrated for 2.5 seconds on the multispectral MPM (Error!

Reference source not found.).

The intravascular biocompatibility experiments with dendrimer and PEGylated NC

constructs were performed in male SCID mice bearing DSC implanted with an HT1080

human fibrosarcoma tumor. Studies were initiated on tumors at least 4mm in diameter

by enface measurement. NC constructs were co-injected into the tail-vein with cascade

blue 500kDa dextran (10mg/ml). Randomly selected regions of the tumor and normal

tissue were imaged using multiphoton microscopy. Nanocrystal construct emission

ranged from 530-580nm, so a 540/100 bandpass emission filter was used for

fluorescence collection.

Comparison of NC constructs with different terminated PEGs was performed in SCID

mice bearing DSC implanted with either LS174T or MCalV tumors. Experiments were

initiated after the tumors reached ~4mm in diameter by enface measurement. NC

constructs were delivered to the tumor through either superfusion onto the tumor
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surface or direct microinjection into the tumor at depths of 200im. Randomly selected

regions of the tumor were imaged using multiphoton microscopy.

For all samples administered to in vivo tumors, solutions of NC constructs were diluted

to at least 2x106 M in PBS and filtered with a 0.2ptm syringe filter (Acrodisc 13mm

0.2ptm HT Tuffryn Membrane, Pall Corp., East Hills, NY).

V.8c IN VITRO CALIBRATION MEASUREMENTS

NC-biosensors were diluted in appropriate standard pH phosphate buffers for pH 5.8-8.

Potassium phosphate buffered solutions with 4% by weight BSA were prepared with

continued adjustments in pH due to the buffering capacity of the albumin. pH was

confirmed using an electrode pH meter (Acumet AB15, Fisher Scientific, Pittsburgh, PA).

Single photon steady-state fluorescence measurements were obtained in a 1 cm

pathlength cuvette from a custom-built fluorometer (Photon Technology Instruments,

Inc. West Suffix, UK) installed with a photomultiplier tube (Hamamatsu R928) and a 150

W Xe excitation lamp. Size measurements were obtained using a dynamic light scatterer

(DynaPro Titan, ProteinSolutions). Samples were filtered through a 0.2pim syringe filter

and microcentrifuged to remove large particulates before measurements were taken at

25 *C. For multispectral MPM and MP-FRIM calibrations, aqueous samples were diluted

to at least 0.5x10 6M in PBS and placed in deep well microscope slides (1527-006, VWR

International, LLC, West Chester, PA). All calibration measurements were performed at

37 0C. Spectral analysis and image processing were performed with custom-code

prepared in Matlab (Mathworks, Inc., Natick, MA).

V.8d Ex Vivo TUMOR TISSUE CALIBRATION

A subcutaneously grown LS174T tumor from a single SCID mouse is removed and thin

slices (~1mm) are obtained from it using surgical blades. These slices are equilibrated for

1 hour in PBS buffers across the physiologic range (pH 5.8 to 8.0). After equilibration,

the NC-biosensor is added to the slices at a concentration of 50-100 pM. Following the

addition of NC-biosensor, the slices are placed in individual deep well microscope slides
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for each pH calibration point. The samples are set aside for 15 minutes at 25-37 *C to

permit diffusion into the tumor slices. To obtain a calibration curve, four random fields

of view are taken in each tumor slice at depths from 0 to 400 pm with 5pm steps using

MP-FRIM. Fluorescent emission from the NC and dye are collected by employing a

585nm longpass dichroic filter to split the signal into two PMTs with a 535/40nm and

635/40nm broadband filter, respectively. A ratiometric signal for each pH was obtained

by post-process filtering of the images with a 3X3 pixel Gaussian filter and taking the

ratio of the dye channel (635/40) to the NC channel (535/40) at each depth.

V.8e Ex Vivo CALIBRATION IN TUMOR CELL SLURRY

Subcutaneously grown LS174T tumors in SCID mice are removed at a size of 5-6mm in

diameter and homogenized. 1% trypsin is added to the homogenate in Hanks' balanced

salt solution (HBSS) and mixed for 5 minutes. Then the mixture is centrifuged at 1200

rpm for 5 minutes. After removal of the supernatant, the pellet is resuspended in HBSS.

For pH calibration, the cell free suspension is centrifuged again followed by removal of

the HBSS and addition of PBS buffers (pH 5.6 - 8.0) containing the NC-biosensor. The

mixture is then added to separate deep well microscope slides and MP-FRIM performed

as described above.

Channel Intensity with Depth

1 - SNARF Time -10
-**- NCllme-10

SNARF Time 40
NC Tme 40
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50 10 1S 2W 2

Depth (pm)

Figure V-20 Differences In tissue scattering with depth for the NC and SNARF emission channels over
the course of a hyperglycemia experiment.
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V.8f IN Vivo HYPERGLYCEMIA EXPERIMENTS

The NC-biosensor was applied either by superfusion onto the tumor or direct

intratumoral injection at 200 pm depths. To highlight the tumor vasculature, cascade-

blue dextran-500k was intravenously injected into each animal. For each tumor, 5-6

locations were randomly selected and imaged by MP-FRIM immediately prior to

intraperitoneal or intravenous injection of a 300pl bolus of 6mg/kg glucose in PBS. Over

90 minutes, each location was imaged every ten minutes. Ratios of the pH-sensitive dye

(SNARF) emission (red channel) to the 540nm emission of the nanocrystal (green

channel) were determined for each location using custom algorithms prepared in

Matlab (Mathworks, Natick, MA). Briefly, the field of view was normalized for uneven

excitation using standardized solutions. Secondly, the difference in tissue scattering

(Figure V-20) for the red and green fluorescent emissions was corrected by fitting to a

single exponential function. A threshold was then applied to each 12-bit image to

remove low (<200) and high (4095) values that could be artifacts or were too low in

signal to noise ratio. A semi-automated vascular tracing algorithm56 ,5 7 was then applied

to create a three-dimensional mask of the tumor vasculature. These areas and also

regions of extravasated angiographic contrast were then masked out of the images.

Finally, the ratio of the dye to NC channel was taken to create the final ratiometric

images. Correlation with the tumor vasculature was performed by created distance

maps with respect to the traced vasculature. Using the distance map, each pixel from

the ratiometric image within an averaging window (10pm) centered at a given distance

was determined to obtain the distance profile.

V.8g STATISTICAL ANALYSIS

Data are presented as mean ± standard error of the mean (SEM). Significant differences

between groups were assessed by a multivariate repeated measures ANOVA accounting

for response to treatment over time (Systat, Systat Software, Inc., Chicago, IL).

Individual timepoints were compared using a two sample Student's t-Test. P < 0.05 was

considered statistically significant for all comparisons.
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CHAPTER 6

VI.1 Introduction and Motivation:

This Chapter introduces novel techniques using optical frequency domain imaging

(OFDI), a coherent microscopy, to non-invasively probe the tumor microenvironment.

The work presented here is the result of collaboration between Professors Ben Vakoc

and Brett Bouma of the Wellman Laboratories for Photomedicine and the Steele Lab for

Tumor Biology. The instrumentation and data collection algorithms were pioneered by

the Wellman labs, while the animal models and biological questions were developed

and proposed by the Steele Lab. Integrating the two biomedical areas of expertise

fostered the joint development and implementation of unique methods using intravital

OFDI to image both microanatomy and function in solid tumors.

The application of multiphoton microscopy' 2 (MPM) to the study of solid tumor biology

in vivo has elucidated pathways and mechanisms of cancer progression and has led to

new therapeutic strategies3. Current high-resolution intravital imaging techniques,

however, can be used to visualize tumor microstructure and vascular morphology only

superficially (300-400 pm depth) and only over volumetric regions that are a fraction of

the total tumor volume in small animal models. Additionally, longitudinal imaging is

often limited in frequency due to the accumulation of exogenous contrast agents.

Consequently, nearly a decade after the introduction of MPM to tumor biology,

significant gaps remain in our understanding of critical aspects of tumor biology

including the vascularization of tumors, the multifaceted interactions between tissues

and vessels within the heterogeneous tumor mass, and the response of blood vessels,

lymphatic vessels and cancer cells to therapy. Filling these gaps will require

complementing existing MPM techniques with new methods for probing the

microenvironment over wider-fields and broader timescales.

Through the adoption of time-of-flight techniques to perform depth sectioning, optical

coherence tomography4 (OCT) alleviates the requirement for high numerical aperture

optics, thereby simplifying wide-field imaging. Through the integration of Doppler

detection principles, OCT can also circumvent the need for exogenous labels to identify
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vasculature. However, attempts to apply OCT to high-resolution three-dimensional

vascular imaging have been hampered by poor sensitivity in the Doppler-based

approaches techniques employed to achieve vascular contrasts9 . Additionally, methods

for characterizing biological parameters of tumor microenvironment and structure have

not been developed for OCT and existing angiographic OCT systems have not achieved

both high sensitivity and the rapid imaging speeds required for large-volume vascular

morphometry.

Here, we overcome these limitations through the development of new methods and

instrumentation building on a second generation OCT technology termed optical

frequency domain imaging 0. We apply these newly advanced techniques to a range of

tumor models in vivo and demonstrate the ability of OFDI to perform 1) high-resolution,

wide-field, and deep imaging of tumor vasculature, 2) morphological and fractal

characterization of vascular networks, 3) frequent and prolonged monitoring of vascular

network dynamics, 4) contrast-free functional lymphangiography, and 5)

characterization of tissue viability. Further, we demonstrate the application of these

capabilities to reveal the responses of murine tumor models in vivo to vascular-targeted

and cellular-targeted therapies.

VI.2 Novel OFDI Instrumentation and Methods

We used a newly developed OFDI instrument to characterize the tumor

microenvironment across multiple tumor models and at multiple sites in mice. The OFDI

instrument scanned a focused laser beam onto the sample to acquire the reflected light

signal as a function of wavelength and time at each transverse location. From this

recorded signal, the static and dynamic scattering properties of the tissue in three-

dimensions were derived (Figure VI-1). Imaging was performed over fields ranging from

20-100 mm2, and to a depth of approximately 1.5 mm for vascular signals and up to 2.5

mm for structural signals. The optical signals reflected from the sample were recorded

and processed offline to extract images and quantitative data describing several

biological parameters (see Methods and Materials).
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Figure VI-1 Principles of in vivo multiparametric imaging with optical frequency domain imaging (OFDI).
(a) An optical beam is focused into the tissue. The light reflected across all depths is interfered with a
reference beam and that interference signal is recorded as a function of light wavelength from 1,220 nm
to 1,360 nm. The amplitude and phase of the reflected light as a function of wavelength is used to localize
the reflected signal as a function of depth. At a given depth, the amplitude and phase of the reflected
signal as a function of time is used to derive the optical scattering properties and thereby the tissue
structure and function. (b) The depth-projected vasculature within the first 2 mm of mouse brain bearing
a xenotransplanted U87 human glioblastoma multiforme tumor imaged with OFDI. Depth is denoted by
color: yellow (superficial) to red (deep). Scale bar - 500 rm.

VI.3 Wide-field three-dimensional angiography

The microvasculature of solid tumors plays a critical role in both progression and

response to therapy". Multiphoton microscopy is currently the preferred method for

obtaining three-dimensional vascular data in vivo'. With MPM, however, it is nearly

impossible to study central regions of relatively large tumor volumes, and impractical to

image across wide fields in multiple animals and at multiple time points. To detect

vessels in OCT, contrast is derived from the Doppler shift 12-17 induced by the circulating

red blood cells. Using novel implementations of Doppler principles and OFDI1 , we

enabled wide-field angiography with sufficient sensitivity to map smaller vessels,

specificity to discriminate vascular motion from physiological motion, and speed to

perform imaging over wide-fields. Three-dimensional angiographic datasets were
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derived from the acquired OFDl signals, and were reduced to en face vascular

projections using color to encode depth (Figure VI-1b).

Figure VI-2 OFDI angiography across tumor types and sites. (a) A human breast cancer cell line (MDA-
MB-361HK) growing in the mammary fat pad window chamber model of a female SCID mouse. Large
avascular regions are notable in the vascular image (top) and reflected in the topographically diffuse
tumor microstructure (bottom).(b) Tumor vasculature of a human colorectal adenocarcinoma (LS174T)
implanted in the dorsal skinfold chamber of a SCID mouse (top). Non-viable tissue is evident within the
tumor nodules on cross-section (lighter regions) in the tissue scattering intensity image (bottom).. (c)
Angiography of a subcutaneous orthotopic human breast tumor xenograft (MDA-MD-231BR) imaged by
the skin flap preparation. (d) Limited vasculature of the human soft-tissue sarcoma (HSTS-26T) growing
orthotopically in the dorsal skinfold chamber. (e) Simultaneous vascular and lymphatic imaging of a tumor
and nearby normal tissue in the ear of a nude mouse, a commonly utilized model in the study of tumor-
associated lymphatics. Scale bars - 500 im.

VI.3a NEOPLASTIC AND NORMAL MICRO VASCULA TURE A CROSS TYPES AND SITES

Vascular projections were obtained across multiple tumor types at various sites.

Different tumor types display strikingly different vascular network architecture and

vessel densities. The utility of the OFDI technique allowed imaging in a variety of tumor

models including window chambers (Figure VI-2a,bd) and subcutaneous tumors (Figure

VI-2c and e). Penetration through the higher scattering skin around the subcutaneous

tumors required a lower numerical aperture lens to improve depth penetration, but also
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reduced radial resolution. Light scattering intensity from the tumor tissue also provided

the ability to perceive the tumor vasculature in context of the microanatomy.

Additionally, in vivo vascular networks in normal tissues including the mammary fat pad

and marrow space within the calvarium were imaged with OFDI. The capillary networks

in normal murine skin are readily identifiable (Figure VI-3a). In the murine mammary fat

pad, the significant vascular supply to the areolar region is observable penetrating from

the subcutaneous tissue (Figure VI-3b). OFDI is capable of penetrating through bone,

which minimally scatters incident photons. This permitted the vasculature within the

bone marrow space between the skull surface and meninges to be imaged without the

use of contrast or a window chamber model (Figure VI-3c).

Figure VI-3 OFDI angiography of normal tissues. (a) Vascular and lymphatic networks in normal skin
within the dorsal skinfold chamber window model implanted on a SCID mouse. (b) Normal vasculature of
the mammary fat pad window model implanted around the third mammary gland. The collection of large
vessels near the center of the field are supplying the areola on the underside of the chamber. (c) and (d)
OFDI microscopy of marrow within the murine calvarium revealing vasculature within the marrow space
(c) and corresponding microanatomy depicted in the cross-sectional structural image (d) showing marrow
regions (>) and the central sinus (DC>).
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Breast Orthotopic Brain-Leptomeninges Metastatic Dorsal Skin Ectopic

Figure VI-4 Imaging across tissue microenvironments reveals strikingly different vascular networks.
The murine mammary carcinoma is shown in three different anatomical locations representative of both
primary and metastatic disease. Scale bars - 500 tm.

It has been proposed that the tumor vasculature forms during angiogenesis in response

to both the microstructure and growth factor gradients found in the tumor

microenvironment"-. We used OFDI to image a murine mammary carcinoma (MCaIV)

implanted in orthotopic (mammary fat pad), metastatic (brain), and ectopic (skin) sites.

The tumor exhibits visually different vascular architecture depending on the host tissue

microenvironment (Figure VI-4). The degree of vascularization is strikingly different

between tumors of approximately the same size (~4mm). Interestingly, in this tumor

type, the morphometry of the individual vessels as typified by vascular diameter was

found to be similar. It has been demonstrated that the level of angiogenesis in a variety

of breast cancer models depends on the tumor location in the host 22 . These differences

are possibly due to varying concentrations of vascular growth factors, which have been

shown to modulate the extent of angiogenesis during tumor growth.

VI.3b MONITORING ANGIOGENESIS

The ability to non-invasively image tumor vasculature over wide-fields at significant

depths using OFDI allowed monitoring of angiogenesis over the course of tumor growth

(Figure VI-5). Initially, the tumor implant induces dilation of the capillary network below

followed by sprouting of vascular branches from these dilated vessels upwards into the

tumor mass. This is followed by sprouting from the lateral arteries and arterioles at a
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farther distance from the tumor mass. The differential response of the regions

surrounding the tumor mass over time is due to diffusion gradients of angiogenic factors

produced by both cancer and stromal cells. Seminal studies by Ausprunk et al

demonstrated that the tumor vasculature is entirely reliant on the surrounding host

vasculature and gradients of vascular growth factors24. Further, cancer cells have been

shown to induce the stromal cells within the tumor microenvironment to produce VEGF

and other vascular growth factors2so . As the tumor continues to grow, the interior

vessel within the tumor mass appear to either spread apart or are compressed due to

cancer cell proliferation31 maintaining a relatively small diameter to those at the

margins. The laterally induced vessels cover the margins of the tumor and remain large

and dilated during tumor progression in this model.

Day 0 ' Day 4 ' Day 6

Dav 0 Dav 4 Day 6 Day 8 Day 10

(A)j

(B)

Day 10

Figure VI-5 Angiogenesis in a murine mammary carcinoma model. The incorporation of the capillary bed
and larger arterioles into the tumor vascular network is observable during tumor growth. Inset:
Differences in the morphologies of the vessels in the center of the tumor versus the margins.
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Figure VI-6 Comparison of multiphoton and OFDI angiography. (a) and (d) Wide-field tumor imaging
using MPM required 2 hours (d), while imaging using OFDI required only 10 minutes (a) for an MCalV
tumor implanted in the dorsal skinfold chamber. (b) and (e), Highlighted regions in a and d demonstrate
the enhanced ability of OFDI to visualize deeper vessels and distinguish morphology in regions of vascular
leakage. (c) and (f), Differences in resolution of the techniques showing the greater detail of finer vascular
structures obtainable by MPM. (g-h), The application of automated vascular tracing to registered datasets
of normal brain vasculature acquired with MPM (g) and OFDI (h) allows quantification of the resolution of
0FDI angiography and validation of the morphological measurements obtained from OFDI (i). Scale Bars -
250 pm

VI.3c OFDI COMPLEMENTS MPM IN IMAGING TUMOR VASCULATURE

To compare Doppler OFDI and MPM angiography, tumors were imaged sequentially

with each modality. MPM required the acquisition and subsequent alignment of 30-40

separate three-dimensional image stacks to sample a field of view equivalent to that of

the OFDI instrument. Imaging durations ranged from 2-4 hours for MPM, and 10-20

minutes for Doppler OFDI, depending upon the imaged field. To provide the greatest

depth of penetration for MPM, we utilized a high numerical aperture (20X, 0.95 NA)

objective lens. Faster imaging times could be obtained using lower magnification lenses

at the expense of penetration depth and resolution. Vascular projections derived from

each modality were compared to provide gross perspective of the relative merits and

complementary nature of the two methods (Figure VI-6ad). Whereas MPM excelled at

visualizing the smallest superficial capillaries (Figure VI-6c,f), OFDI was superior in
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discerning vessels deeper within the central regions of the tumor and in regions where

fluorescent tracers extravasated (Figure VI-6b,e). Vessels beyond 1.0 mm in depth were

routinely observed with OFDI while with MPM the maximum penetration depth in the

surveyed tumor models ranged from 250-400 pm. The difference in depth of

penetration for the two methods was most dramatic in regions where superficial diffuse

contrast agent masked underlying vessels in MPM, or where highly scattering necrotic

regions differentially attenuated the shorter wavelength (800 nm) multiphoton

excitation light relative to the longer wavelength (1300 nm) OFDI light. The unique

Doppler acquisition techniques incorporated into the OFDI instrument allowed rapid

visualization of the tumor vasculature inclusive of its connectivity with host vessels,

complementing the higher resolution but relatively superficial MPM angiography.

VOlum Alography Data (Red)
Vascua Nework Cas~t (Green)

Figure VI-7 Vascular tracing and structural correlation. (a) Cross-sectional OFDI angiographic data
showing vessels and shadow artifacts extending below the vessels. (b) Dataset showing bitmap data (red)
after shadow removal and vascular tracing contours (green). (c) Merged enface image of the vascular
dataset (red) and a cast of the traced vessels (green) illustrating the inclusion of all but a few vessels ( )
within the cast. Scale Bar: 250 tm. (d) Microanatomical display showing tumor boundary definition in a
three-dimensional tissue volume. (e) Skeletonized traced vessels differentiated between intratumoral and
extratumoral for the tumor depicted in d. Transverse extent in de: 5 mm (x), 4.4 mm (y).
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VI.4 Morphological and Fractal Characterization of Vascular

Networks

Morphological characterization of blood vessels in tumors provides insight into
32,33resistance to transport, angiogenic mechanisms, and response to therapy . Previous

characterization methods, based on intravital microscopy and MPM angiography,

however, have been limited to small fields-of-view and superficial depths. To extract

quantitative vascular measurements from the OFDI angiograms, we developed a fully

automated three-dimensional vascular tracing and analysis algorithm, optimized

specifically to operate on the OFDI datasets.

VI.4a VASCULAR MORPHOLOGY FROM OFDI ANGIOGRAMS

Briefly, the vascular networks were then manually masked to remove Doppler artifacts

due to Brownian motion in extracellular fluid or noise from airspaces between the

tumor surface and initial image plane. Then the three-dimensional OFDI angiograms

were processed to reduce the effects of shadowing34 due to high backscatter from large

vessels. The shadowing effect can be enhanced in tumors due to increased vascular

hematocrit 35. This can prevent access to deeper vessels, but is mitigated to some extent

through image processing using an exponential filter referenced to the higher signal

vessels (Figure VI-7a and b). Finally, a semi-automated vascular tracing algorithm

reduced three-dimensional OFDI angiograms to networks of interconnected vessel

segments modeled as superellipsoids36'37 (Figure VI-7c). From the centerlines and shape

parameters of these superellipsoids, the trajectories and morphology of vessel

segments were extracted.

To spatially correlate the vascular parameters with the tumor boundaries, the three-

dimensional tumor volume was determined from the OFDI scattering amplitude. The

tumor cells are higher scattering than the surrounding tissue due to the increased

nuclear to cytoplasm ratio38-41. Briefly, the approximate en face center of the tumor was

determined and axial sections across the tumor at regular intervals of 22.50 were
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created (Figure VI-8). The tumor boundary on each section was then manually drawn.

These boundaries were then used by automated algorithms to interpolate a three-

dimensional tumor volume. The vascular casts output from the semi-automated

vascular tracing were then correlated with distance from the tumor boundary. Using

these methods, the intratumoral vasculature could be separately characterized for

morphological parameters (Figure VI-7d and e).

a..5

Figure VI-8 Determination of tumor boundaries and volume in three-dimensional space. (a) Semi-
automated algorithms enabled definition of the tumor boundaries from the differences in scattering
amplitude between the tumor and host tissue. (b) Manual tracing of the tumor boundary on axial slices.
(c) Three-dimensional volume illustrating the differences in tumor scattering.

To evaluate OFDI morphometry, we obtained MPM (Figure VI-6g) and OFDI (Figure

VI-6h) angiograms of the same region of a normal mouse brain in vivo. Previously

established tracing and morphometry techniques" were applied to the MPM data. We

compared vessel diameter measurements of 402 precisely co-registered segments (each

approximately 100 ptm in length) and found a high correlation (r = 0.87) for vessels

larger than 12 pm in diameter (Figure VI-6i). OFDI methods often located and traced

smaller vessels but overestimated the diameter of these capillaries and thus the

correlation of diameter measurements for vessels with diameters under 12 pm as

measured by MPM was low (r = 0.36).
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Figure VI-9 Fractal characterization of tumor vascular networks imaged by OFDI angiography. (a)
Representative example of the sandbox method for determining the fractal dimension of the vasculature
of both normal murine cortex and a human tumor glioblatoma multiforme (U87) tumor implanted in the
murine brain. A natural log of the mean number of occupied voxels within cubes of dimension (L) covering
the three-dimensional network is plotted versus the natural log of the cube dimension. The slope of the
linear portion of the plot determines the fractal dimension. (b) The local slope of the curves in a for each
cube dimension. The fractal dimension is observed from the plateau regions corresponding to the linear
portions in a (2.74 for the U87 tumor and 3.02 for normal brain). (c) Depiction of the minimum path
length for a given three-dimensional vascular network. Here, each path traversed from one face to the
other is projected though the axial dimension with the minimum path length highlighted in red. The
projection of the Pythagorean distance is shown as a dashed blue line. Tortuosity is determined from the
ratio of these two distances. (d) and (e) The three-dimensional skeletonized vascular networks
geometrically characterized in a and b. Each gridline is 250 pim.
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VI.4b THREE-DIMENSIONAL FRACTAL ANALYSIS OF TUMOR VASCULATURE

The ability of OFDI to extract vascular parameters over larger volumes presents new

opportunities for fractal analysis of the network. Fractal analysis has been invoked to

quantify the ability of a vascular network to provide an efficient transport of blood-

borne nutrients, oxygen, or drugs within the tumor32 . The fractal dimension is a

statistical measure of a network indicating how completely that network fills space. In

three-dimensional geometries, an optimal space-filling network has a fractal dimension

of 3; lower fractal dimensions indicate a lesser degree of space filling. A complementary

metric is the tortuosity defined by the ratio of the minimum vascular path between two

points and the geometric distance between those points. As the tortuosity parameter

increases from its minimum value of 1.0, the transport efficiency of the vascular

network decreases.

Using the topology and branching patterns derived from the OFDI datasets, we have

analyzed, for the first time, the three-dimensional fractal dimension of tumor

vasculature in vivo. The fractal dimension was calculated from skeletonized vascular

networks (obtained by the vascular tracing algorithm) using the sandbox method 42

(Figure VI-9a and b). Tortuosity was determined from the ratio of the minimum path

length across the vascular network to the Pythagorean distance measured between the

first and last point of the path (Figure VI-9c). An analysis of the vascular network

depicted in Figure VI-1b yielded a fractal dimension of 2.74 in the tumor region in

agreement with results expected from prior 2D analyses, and 3.02 in a normal region of

the right hemisphere consistent with a fully developed capillary network filling three-

dimensional space42 43 (Figure VI-9d and e).

VI.5 Imaging Vascular Dynamics during Tumor Growth and

Treatment

Vascular responses to anti-angiogenic and anti-vascular therapies occur continuously

over time-scales of hours to days44. With MPM, however, it is impractical to measure
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the dynamic changes over broad fields due to contrast agent accumulation and the time

required for imaging. Using OFDI, we imaged murine mammary carcinoma tumors

(MCalV) implanted in the dorsal skinfold chamber every 4 hours for 48 hours. We

administered either an anti-angiogenic agent (DC101, a blocking monoclonal anti-

vascular endothelial growth factor receptor (VEGFR)-2 antibody) or non-specific rat-IgG

immediately after the initial imaging session. Promptly following administration of

DC101, the mean vessel diameter began to decrease while the tumor volume continued

to expand. These trends continued throughout the 48-hour time course of the study

(Figure VI-10). Timelapse images of vascular responses acquired every 2 hours for 48

hours highlight the unprecedented ability of OFDI angiography to monitor vascular

dynamics over wide fields.
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Figure VI-10 Vascular dynamics of fields and time intervals not accessible with traditional approaches.
(a) Angiography at a 4 hour interval over 48 hours reveals the rapid response in vascular parameters to
VEGFR-2 blockade. Vascular tracing registered to 3D tumor boundaries allows quantification of the
vascular changes within the tumor mass, showing nearly immediate changes to vascular diameter
(bottom). The tumor growth rate of the treated group trends slower than control tumors, but is not
significant over 48 hours. (top). Control: n=4, DC101 n=3. (b) and (c) Vascular network of a treated tumor
at 0 and 48 hours with respect to DC101 administration.
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Figure VI-11 Contrast-free lymphanglography using OFDI. (a) The scattering signal along a single depth
scan within an OFDI image of a murine ear shows the reduced scattering between the upper (2) and lower
(3) boundaries of an patent lymphatic vessel. Scattering within the vessel is similar to background levels
above the upper surface of the ear (1) or below the lower surface (4). (b) and (c), In addition to lymphatic
vessels revealed by traditional cutaneous injection of Evan's blue dye (c), OFDI is able to detect numerous
additional vessels in the normal dorsal skin (b) and resolve the lymphatic valves found between individual
lymphangions (C>). (d) HSTS26T tumor-associated lymphatics are found to be dilated in comparison to
those in normal tissue. (e), Cross-sectional presentations of a lymphatic vessel showing cellular masses

L>) located near the tumor in d. Scale bars - 500 pm.

VI.6 Contrast-Free Lymphangiography

Lymphatic vessels and their associated lymph nodes have been imaged to reveal their

importance in fluid balance (edema), as avenues for cancer cell dissemination and as

prognostic indicators of disease progression45,46. Lymphangiography is typically

performed by directly injecting a visible or fluorescent dye into the tissue, which
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obscures structures near the site of injection and highlights only those lymphatic vessels

draining the region of the injection. Further, the accumulation of dye is a severe

constraint for longitudinal studies.

Lymphatic networks in vivo appear as structures with negligible scattering intensity in

OFDI. The reduced scattering of the lymph relative to surrounding tissue is likely

associated with its hypocellularity (Figure VI-11a). Using these scattering characteristics,

lymphatic vessels were identified, mapped, and segmented in the OFDI datasets. OFDI

images of lymphatic networks in normal mouse skin showed functional lymphatic

vessels highlighted with conventional Evan's blue lymphangiography, as well as

additional functional lymphatic vessels draining other regions of the skin where Evan's

blue injections were not made (Figure VI-llb,c). Lymphatics surrounding tumors were

observed for murine breast cancer (MCaIV) and human sarcoma (HSTS) models (Figure

VI-11d) growing in the dorsal skinfold of mice. OFDI cross-sectional images were helpful

in identifying cellular masses within the lymphatics (Figure VI-11e). Quantitative

measurements of lymphatic vessel diameters with OFDI showed peritumor lymphatic

vessel hyperplasia consistent with previous measurements using fluorescence

microscopy 4 ,47. For the tumor in Figure VI-11c, a significant difference (P-value < 0.05)

was found between the mean diameters of lymphatic vessels in the normal tissue (40 ±

3 jim; >2mm from tumor) and those in the peritumoral region (81 ± 4 pm; <2mm from

tumor). By eliminating the need for exogenous contrast agents, OFDI allowed the

monitoring of functional lymphatic vessels throughout tumor progression (Figure VI-12).

Importantly, OFDI lymphangiography can be performed simultaneously with OFDI

angiography; the two techniques differ only in the methods for post-processing of the

OFDI data. This is demonstrated in a subcutaneous model in the murine ear48 used to

study lymphatic metastasis (Figure VI-2e)
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Day 0 Day 2 Day 4

Figure VI-12 Longitudinal tracking of lymphatics using OFDI. Changes in lymphatic vessel diameters are
evident over 4 days during tumor (MCalV) progression.

VI.7 Imaging Tissue Viability

Currently available intravital microscopy techniques do not allow measurements of

tissue viability in tumors. As a result, cell-targeted therapies are traditionally studied

through assessment of tumor growth delay and histological examinations. These

techniques, however, have their inherent limitations. Through the dependence of tissue

scattering on cellular structures49, it is possible to differentiate necrotic/apoptotic

regions within a tumor from viable regions in three-dimensions using OFDI. Higher

scattering regions within tumors correlate with necrotic/apoptotic regions defined by

corresponding hematoxylin and eosin staining (Figure VI-13a). Longitudinal imaging of

tumor progression in MCalV tumors revealed the growth of necrotic/apoptotic regions

(Figure VI-13b). During tumor progression, viable areas were limited to ~65 pLm from the

vessel wall. The fraction of necrotic/apoptotic tissue increased (from ~24% to ~46%)

while the vascular volume fraction remained relatively constant (Figure VI-13c). The

unique capability of OFDI to longitudinally image tissue viability and to spatially co-

register this information with tumor vasculature opens new possibilities for the

evaluation of existing therapeutic approaches and the rational design of therapeutic

regimens.
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Figure VI-13 Imaging tissue viability. (a) Comparison of standard hematoxylin and eosin staining (top)
with OFDI (middle) reveals association of tissue necrosis with highly scattering regions. Viable and necrotic
regions within the same tumor highlighted by color gradients indicating scattering intensity (lower). (b)
Scattering properties correlated with the microvasculature during tumor progression illustrate increasing
regions of unviable tissue with viable areas constrained to regions within ~65 prm of the vessels. (c)
Quantitative analysis of tissue viability and vascular regions in vivo revealed an increasing fraction of
necrotic/apoptotic tissue. Scale bars a: 500 ptm; b: 1.0 mm.
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VI.8 Multiparametric Monitoring of Therapeutic Response

To demonstrate the application of OFDI to the study of tumor response to therapy, we

monitored changes induced by vascular or cellular targeted therapy. OFDI allows

multiple parameters in the tumor microenvironment to be probed simultaneously

during treatment. Assessment of changes in the microenvironment with OFDI may

provide a means to screen for new anti-cancer agents or design more efficacious

therapeutic regimens for translation to the clinic.

Day -1 Day 1 Day 3 Day 5 Day 7 Day 9

Figure VI-14 Antianglogenic response to VEGF-R2 blockade imaged by OFDI. Both digital camera images
and OFDI angiograms are shown for a DC101 treated and control animal bearing MCaIV tumors. The top
panel is a representative example of the treated group. Loss of dilated vasculature in the host tissue bed
is notable at Day 1 after treatment. By Day 9 there is very limited intratumoral vasculature and what
exists is small in diameter and density. This is apparent even in the digital camera images by lack of
redness due to lower blood volume. The lower panel is an example of the control group treated with Rat
IgG. In this untreated tumor, the host vascular bed remains dilated and large tortuous blood vessels form
within the tumor mass. The increased blood volume is apparent in the digital camera images. Each image
is approximately 3 X 3 mm. The Doppler OFDI images are maximum intensity projections over a depth of

~500 ptm.
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VI.8a ANTIANGIOGENIC THERAPY: VEGF-R2 BLOCKADE

In the first set of experiments, mice with murine mammary carcinoma tumors were

imaged every other day up to 9 days during treatment with VEGFR-2 blocking

monoclonal antibody DC101. Control animals had the same tumor preparation but

received non-specific rat IgG. Our preliminary imaging studies using OFDI with this

model found high inter-animal variability in the tumor angiogenesis following

implantation and prior to therapy. We therefore used OFDI to normalize the starting

point of longitudinal studies for each mouse; we imaged every two days post-

implantation and defined starting points for each animal based on the status of the

vascular network and the tumor volume (Figure VI-14). OFDI measurements of pre-

treatment and control mean vessel diameters in 11 total tumors were consistent with

previously published results using MPM44 (55.8 ± 3.4 pm versus 49.8 ± 5.1 pim

respectively). OFDI angiograms, acquired at day 5, consistently demonstrated a more

dense and chaotic vascular network in the control group relative to the treated group

(Figure VI-15a). We found a reduction in both mean intratumor vessel length (P-value:

0.001) and diameter (P-value: 0.029) with DC101 treatment, which is consistent with

those obtained in the previous study44 (Figure VI-15b). To assess intratumoral spatial

differences in response to anti-angiogenic therapy, we correlated morphological

parameters of all traced vessel segments with distance from the tumor boundary. The

mean vascular volume in the control group within 200 pm of the boundary was found to

dramatically increase with tumor growth, while DC101 treatment restrained vascular

volume in this region (Figure VI-16). At day 7, the mean tumor volume within the

treated group was 25% of that of the control group (Figure VI-15b) The VEGFR-2

blockade induced a less defined response on fractal parameters compared with

morphological parameters of the vasculature over this timecourse (Figure VI-15b). The

fractal dimensions of both treatment and control groups reached plateaus (2.54 ± 0.04

and 2.60 ± 0.01, respectively) at day 3, and the mean tortuosity in the treated group was

slightly lower than that of the control group at the end of the study.
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Figure VI-15 Therapeutic response to VEGFR-2 blockade characterized by OFDI. (a) Representative
control and treated tumors 5 days after initiation of therapy showing strikingly different vascular
morphologies. The lymphatic vascular networks are also identifiable (blue) for both tumors. (b)
Quantification of tumor volume and vascular geometry and morphology in response to treatment. DC101
treated tumors exhibited a growth delay over the course of this study (P-value: 0.060). Both total vascular
length (P-value: 0.001) and mean intratumoral vessel diameter (P-value: 0.029) significantly decreased
over time for treated tumors. Geometrical properties of the tumor vasculature, i.e., the fractal dimension
and tortuosity, showed a less distinct response between groups. Control N=5, Treated N=6. Scale bars 500

pm. Statistically significant differences (P-value <0.05) at given time points are denoted by asterisks.
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Figure VI-16 DC101 treatment restrains intratumoral vascular growth near tumor margin. The mean
vascular volume spatially correlated with the tumor boundaries across all animals reveals a region of
specific increase within 200 pm of the tumor margin in control animals that is restricted in animals
treated by anti-angiogenic therapy. (Control N=5, Treated N=6).

VI.8b CYTOTOXIC THERAPY: DIPHTHERIA TOXIN

In the second set of experiments, we applied OFDI to investigate direct targeting of

tumor cells. Diphtheria toxin accumulates in human cells, halting protein synthesis and

eventually inducing apoptosis, but does not affect murine cells31,50. Therefore, in mouse

xenograft models, diphtheria toxin can be used to model a cytotoxic treatment that is

not confounded by direct damage to vascular endothelial cells that can result from

chemo- and radiotherapy. When we administered diphtheria toxin into mice bearing a

human colorectal adenocarcinoma xenograft (LS174T) grown in the dorsal skin chamber,

apoptosis was evident within two days through associated changes in tumor scattering

properties (Figure VI-17a). During the first 24 hours, the tumor volume remained

approximately constant (Figure VI-17b). After 24 hours, widespread necrotic/apoptotic

regions within the volume of the treated tumors were observed and the mean tumor

volume began to decrease rapidly in response. After 48 hours, the intratumor vessel

length rapidly decreased, presumably due to the down-regulation or depletion of tumor

cell-derived angiogenic growth factors (Figure VI-17b).
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Figure VI-17 Directed cytotoxic therapy and multiparametric analysis by OFDI. (a) Images of tissue
scattering immediately prior to and two days following administration of diphtheria toxin or saline to mice
bearing human tumor xenografts (LS174T) in dorsal skinfold chambers. Apoptosis induced by diphtheria
toxin is manifest as increased tissue scattering relative to control animals. (b) Quantification of the

response to diphtheria toxin administration. Top: A reduction in tumor volume was apparent 48 hours
after administration, reaching 10% of the original volume after 8 days. Middle: The tissue scattering within
the tumor relative to day 0 showed a statistically significant increase in treated animals 48 hours after
administration and a maximum after 5 days. Bottom: The vascular length within the treated tumors
dropped continuously after administration of the toxin likely due to down regulation of tumor-cell derived

growth and survival factors. Scale bars 500 ptm. Statistically significant differences (P-value < 0.05) at given
time points are denoted by asterisks.

In a separate experiment with only a single tumor, the administration of diphtheria

toxin was followed by tumor regrowth after an initial response (Figure VI-18). During

the first 24 hours, the tumor volume remained constant while the tumor vascular

volume fraction (WF) decreased, presumably due to the down-regulation or depletion

of tumor cell-derived growth factors. After 24 hours, necrotic/apoptotic regions within

the volume of the tumor were observed and the tumor volume began to decrease. In

the same time period, the VVF reversed its previous trend and rapidly increased.

Previous studies have suggested that the increasing VVF following targeted tumor cell

killing by diphtheria toxin in xenograft tumors is due to a reduction of solid stress caused
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by cellular compression31. At +120 hours, the tumor volume and VVF reached measured

extremes and necrotic/apoptotic regions were observed nearly throughout the tumor

with only small regions possessing viable tumor cells (Figure VI-18c,d). After the VVF

peak, the tumor mass began to recover. Due to physicochemical barriers to

macromolecular diffusion in the tumor microenvironment51, the toxin was likely unable

to reach a subsection of the tumor leaving viable tumor cells that, coupled with the

improved perfusion, led to relapse.
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Figure VI-18 Quantification of the response of an LS174T tumor implanted in the dorsal skinfold
chamber to a single diphtheria toxin administration. (a). The initial 24-hours (left) show a marked
decrease in vascular volume fraction (VVF) and increase in tumor tissue scattering due to cellular
apoptosis, while tumor volume remains constant. The following 72 hours find these trends reversing as
tumor volume decreases, while VVF and tissue scattering reach maximal values. At the lowest tumor
volume, compression of the vasculature by tumor cells is at a minimum allowing maximal VVF (-+). It is
after this time that increasing viable tissue is observed through decreasing tissue scattering leading to
regrowth of the tumor mass. (b-e) Images of tissue scattering at timepoints given in a (-+). Color
gradients illustrate the tissue viability ranging from blue (viable, low scattering) to yellow/red
(unviable/apoptotic, high scattering). White arrows indicate regions of potentially viable cells located at
the tumor base. Scale bars 500 ptm.
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VI.9 Discussion

The application of automated vessel tracing algorithms to OFDI angiography permitted

in vivo quantitative morphological and geometrical characterization of three-

dimensional vascular networks over relatively large volumes, and, in some models, over

entire tumors. Although the spatial resolution of OFDI is inferior to that of MPM, our

results indicate that OFDI can provide accurate quantitative data for vessels as small as

12 pm in diameter. OFDI bridges a gap between subcellular resolution optical

microscopies such as MPM and techniques such as Doppler ultrasonography, magnetic

resonance imaging, and micro-computed tomography (CT), which can penetrate deeper

into tissue but are limited to resolutions above ~50 pm. Further, our results illustrate

the utility of the technique for studying anti-angiogenic agents by demonstrating that

VEGFR-2 blockade decreased intratumoral diameter and vascular length, consistent with

previous studies44. Through fractal analysis, the effect of anti-angiogenic therapy on

vascular density and transport efficiency, which have profound implications in the

design of therapeutic regimens, can be studied. We note that since OFDI angiography

requires flow for contrast, it can only detect perfused vessels.

Repeated angiographic imaging over brief intervals is limited with current technologies

by both the need to administer intravenous contrast and interference of contrast

leakage by permeable blood vessels. Many important vascular dynamics ranging from

alterations in cerebral blood flow in cognition, to sprouting or intussusception during

angiogenesis, to the effects of vascular disruptive agents or anti-angiogenic agents occur

on time scales of short duration11,2. Our results show frequent angiographic imaging

over extended periods in the context of therapeutic intervention is possible using OFDI.

This method may therefore have utility in the screening of vascular-targeted agents in

the development of cancer therapies.

The ability to perform tracer-free lymphangiography of functional lymphatic networks

with OFDI is a critical advance in the field. In addition to quantitatively measuring

functional peritumoral lymphatics, the ability of OFDI to image lymphatic networks may
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have clinical application, e.g., in monitoring the functionality of lymphatic networks in

lymphedema, particularly in breast cancer patients after axillary dissection and

radiation. In such applications, the development of methods to quantify lymph flow with

this technology would further its diagnostic capability.

Combining the vascular and structural signatures of OFDI, we performed

multiparametric imaging during cytotoxic treatment of a solid tumor. OFDI revealed

both the direct and indirect effects of tumor cell death through the assessment of

viability and tumor vasculature, respectively. The higher optical scattering of non-viable

tissue is presumably due to an increased number of scatterers from dispersed cellular

components. Because both apoptosis and necrosis increase cellular particles in the

interstitial space, OFDI is unable to differentiate the two mechanisms of cell death. The

structural OFDI signal also allowed delineation of the tumor boundaries providing a

means to non-invasively measure tumor growth delay during treatment and spatially

correlate the vasculature into intratumoral and peritumoral regions.

The deep penetration and wide-field, high-resolution imaging of three-dimensional

tissue volumes enabled by OFDI presents a powerful new tool for the study of solid

tumors and other diseases that complements MPM and is likely to become as widely

used.

VI.1O Summary

Through the development of novel techniques, instrumentation and algorithms, we

have demonstrated the unique capabilities of OFDI to image in vivo the

microenvironment of model tumors rapidly and persistently over time without requiring

exogenous contrast agents. These capabilities provide a new tool to probe the dynamics

of tumor growth and response to therapy. The wide field of view, deep imaging

penetration, and high speed of OFDI relative to MPM provide experimental advantages

as well as a biologically important capability to probe substantially more of the tumor

volume.
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Figure VI-19 OFDI instrumentation. The optical frequency domain imaging system uses a swept-
wavelength laser source comprising a semiconductor optical amplifier (SOA) as the gain element Inside a
fiber ring cavity. The swept filter is based on a polygon mirror (Uncoln Laser). The laser output is split by a
10%/90% coupler to the reference arm/sample arm. The sample arm light is directed to the microscope
with an optical circulator (), while the reference arm light is directed to a fixed reflector. An acousto-optic
frequency shifter (FS) at 25 MHz offsets to coherence range from DC. A free-space polarization-diverse
and balanced optical demodulation circuit comprising broadband beam splitters (BBS) and polarization
beam splitters (PBS) generates four optical signals coupled to multimode fiber (MMF). These fibers relay
the optical signals to two balanced receivers (Rx, New Focus), outputting two electrical signals. A two-
channel 100 MS/s digitizer (Signatec) is used to acquire these signals and transfers this data directly to a
RAID storage array. Approximately 10% of this data is processed in real-time on the CPU to provide image
feedback. A single master clock is used to lock the polygon driver, frequency shifter, and data acquisition
board to achieve high phase sensitivity.

VI11 Materials and Methods

VI.11a OFDJ SYSTEM

OFDI provides high resolution imaging of the elastic light scattering properties of a

sample in three dimensions1. Beam focusing provides transverse (xy) discrimination of

signals. Interferometric measurements of optical delay gate signals across the axial (z)

dimension. The measurements first sample in parallel the interference signal between

light scattered at all detectable depths and an external reference beam as a function of

wavelength. Subsequent Fourier analysis of this interference signal across wavelength

separates the combined signals across all depths into a depth-resolved scattering
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profile. To measure interference signals across wavelength, a wavelength-swept laser

source with an instantaneous narrow linewidth (<0.17 nm) is used (Figure VI-19). This

laser source used a semiconductor optical amplifier (Covega Corp., Jessup, MD) as a

broadband gain medium in combination with a polygon scanner as a scanned

wavelength filter (Lincoln Laser Corp., Phoenix, AZ). Wavelengths sampled continuously

a 140 nm window centered at 1300 nm, resulting in a depth resolution of 6 mm in

tissue. Depth scans (A-lines) were acquired at a rate of 50 kHz. Through inclusion of an

acousto-optic frequency shifter (Brimrose Corp., Sparks, MD), a 5.8 mm scan range was

achieved2. A polarization diverse optical demodulator generated an optical interference

signal for each of two orthogonal polarization states, preventing artifacts due to

polarization signal fading. The interference signals were digitized using a two-channel

100 MHz acquisition board (Signatec, Inc., Newport Beach, CA), and were continuously

archived to a high-speed hard-drive storage array. Real-time display of structural and

vascular images at approximately 10% of the acquisition rate allowed monitoring of the

imaging sessions and interactive definition of the imaging field. Transverse sampling

patterns were developed to achieve rapid scanning across large volumes while

simultaneously matching the Doppler detection range to the empirically determined

optimal motion sensitivity. Data was acquired along the x-dimension at either a 5.0 pm

pitch across a transverse field of 5.0 mm or a 7.62 pLm pitch across a 7.8 mm transverse

field, both at 16.3 frames per second. Each frame comprised 3072 A-lines that were

combined in post-processing to provide 1024 structural and Doppler image lines. Data

was collected in the y-dimension at a 0.56 pm pitch naively, and integrated in post-

processing to yield a reduced dataset with isotropic sampling in the x-y dimensions of

5.0 pm/7.62 pm. Scanning along the y-dimension utilized physical translation of the

animal at 9 pm/sec. The scanned field along this dimension was limited only by the

chamber window aperture. Data along the depth dimension was acquired natively at a

4.1 pm pitch (in tissue) and signal was acquired over the first 1.5 mm to 2.5 mm in

tissue, depending on scattering levels.
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Figure VI-20 Signal processing algorithms and quantitative analysis. Using the raw spatiotemporal
reflectance data from OFDI, all of the angiographic, lymphanglographic and microanatomical images, as
well as the biological metrics, are obtained through a series of processes represented here.

VI.11b OFDI SIGNAL AND IMAGE PROCESSING AND QUANTIFICATION.

Processed images and quantitative data describing microanatomy, blood and lymphatic

vascular networks, and tissue viability in tumors were derived from a single raw data

format using a series of core processing routines followed by parameter specific

algorithms. These methods and algorithms are described here and summarized in a

flowchart format (Figure VI-20).

Core Processing Routines. The OFDI system recorded the interference signal across

wavelength (A) between a reference beam and an optical probe beam directed at a

particular transverse locations of the sample (x,y) and at a particular timepoints (t).

From this raw data, the optical scattering (complex parameter including amplitude and

phase) as a function of (x,y,z,t) was generated as described above. This data was spaced

at either a 5 pm or 7.62 pm pitch in the x dimension and at a 0.56 pm pitch in the y
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dimension. The same locations were resampled at 9 ms time intervals. This dataset

described the scattering properties of a specific spatial location at multiple timepoints.

From the complex scattering dataset, a set of three further datasets were derived that

highlight specific properties of the scattering signal and formed the basis for subsequent

processing (custom code written in programming language C). These datasets are

described as follows:

(i) Microarchitecture: The magnitude of the scattering signals were averaged across

time and the y-dimension to produce a time-independent three-dimensional magnitude

scattering dataset with isotropic pitch in the (x,y) dimensions. This dataset was saved in

log-scale to an 8-bit file (microarch.tif). This dataset was used to reveal the

microanatomical features of the tissue.

(ii) Phase Variation: The scattering signals at the sample transverse locations were

compared across time to produce phase differences from (-n,n) at the native spatial

pitch (5.0/7.62 ptm x 0.56 ptm x 4.1 pim). Each phase difference was weighted by the

magnitude of the average signal from that point. The circular variances (from 0 to 1) of

these amplitude-weighted phase-difference datasets over 50 ptm depth windows were

calculated at each point in three-dimensional space. A three-dimensional angiographic

dataset was then obtained by combining (median) appropriate sample counts in the y-

dimension to yield isotropic pitch in the transverse dimensions. The data was saved to

an 8-bit dataset (phasevar.tif). The use of the amplitude-weighted circular variance over

this limited depth window both minimized phase decorrelation and optical noise

artifacts by amplitude weighting the phase-differences and reduced artifacts due to

background motion resulting from respiration, muscular contractions, and

environmental instabilities. This dataset was used to reveal the vascular regions in the

tissue.

(iii) Phase Variation Weight: The magnitude of the scattered signals that were used

to derive the phase variation signal was calculated at the native spatial pitch, and then

combined in the y-dimension (mean) to yield isotropic pitch in the transverse
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dimensions. The data was saved to an 8-bit dataset (phaseweight.tif). This dataset was

used to weight the phase variation signal and discriminate between vascular regions and

low-signal regions.

These datasets formed the basis for further analysis yielding images and quantitative

data for specific biological parameters as is described in the following sections. Unless

otherwise noted, the parameter specific processing was performed in Matlab (The

Mathworks, Natick, MA).

VI. 11 c THREE-DIMENSIONAL TUMOR VOLUME AND BOUNDARY CALCULATION.

For tumor volume calculations, an en face projected image was calculated by averaging

the signals from 160 pm to 240 pm in depth from the microarchitectural dataset

(microarch.tif). The location of the tumor center in (x,y) was recorded manually from

this image. Using this location and the microarchitectural dataset (microarch.tif), a

series of 8 cross-sectional images was generated through the tumor center at equally

spaced angular increments, i.e., along the meridian planes through the tumor center

defined by 0/180*, 22.5/202.5*, 45/225*, 67.5/247*, 90/2700, 112.5/292.5*, 135/3150,

and 157.5/337.50. To improve contrast in these images, the scattering signal was

integrated over 80 pm in the transverse dimension perpendicular to the plane of each

cross-sectional image. The tumor boundaries were manually segmented in these images

using lmageJ (ImageJ 1.39, open source NIH software,

http://rsb.info.nih.gov/ii/index.html). From the tumor boundaries in the 8 meridian

planes, the tumor boundaries in three-dimensional Cartesian space were calculated by

interpolation yielding a tumor mask defining the intratumoral volume and extratumoral

volume within the three datasets (microarch.tif, phasevar.tif, phaseweight.tif). The

tumor volume was calculated from this mask and the known pitch of these datasets.

VI. 11 d NORMALIZED SCA TTERING/VIABILITY.

The mean scattering intensity within tumors grown in window models was derived from

the set of 8 cross-sectional images after normalizing for scattering intensity across
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depth. In these eight cross-sectional images, the location of the backside Dermis was

identified using ImageJ. The scattering signal intensity of this layer was used to derive

the average scattering attenuation with depth for every depth scan within each cross-

sectional image. Normalized cross-sectional images were generated by applying a

uniform signal gain across depth that compensated the derived attenuation. From these

normalized cross-sectional images and the tumor mask, the average scattering within

the tumor volume was calculated.
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Figure VI-21 Method for determining viable/necrotic fractions with FD. (a) The mean scattering
amplitude is determined for each distance from the nearest vessel wall for each timepoint. A threshold
value is selected from the inflection point (red arrow) on each curve to determine tissue fractions. (b). The
cutoff scattering amplitude is also used to determine the mean distance from the vessels for both necrotic
(green) and viable (blue) tissue.

VI.lle QUANTIFICATION OF VIABLE FRACTION.

To assess the viable fraction, depth-matched 20-40 Iim en face projections of both the

phase variation (phaseva r.tif) and microarchitectura I (microarch-tif) dlatasets were

manually selected. The tumor margins were manually identified from the scattering

differences in the microarchitectural dataset and a mask was created to restrict further

analysis to the tumor region. Using the phase variation dataset, the vascular signal was

identified by thresholding the image to create a binary mask highlighting the vascular

network (Figure VI-21). A vascular distance map (distance of each pixel in the

intravascular space to the nearest vessel) was then determined using a 2-dimensional
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Euclidean distance transform in Matlab. The mean scattering index for distances from 0-

1000 pm were determined using the distance map and the pixel values in the

microarchitectural datasets. Plots of mean scattering index versus distance from nearest

vessel revealed sigmoid shaped curves. For each timepoint, the scattering index at the

inflection point was selected as the threshold value to differentiate viable from non-

viable tissue in the microarchitectural dataset and determine the area in pixels of each

region in the intravascular space. For each timepoint, the tissue fractions of vascular,

viable, and necrotic/apoptotic regions were then determined from the area in pixels of

each over the total pixel area of the tumor. Additionally, the mean distance of each pixel

region (viable or necrotic/apoptotic) to the nearest vessel was determined using the

distance map and thresholded pixels from the microarchitectural dataset. To visually

illustrate the different regions of viable tissue in the tumor, a colormap was selected

and adjusted so that the threshold scattering index for each timepoint was indexed to

the green region of the colormap (blue/light blue indicating viable and yellow/red

indicating non-viable).

VI.11f ANIMAL MODELS.

Dorsal skinfold chambers and mammary fat pad windows were prepared in SCID mice as

previously described5 3-55. The appropriate tumor type was then implanted in the center

of the chamber 2-3 days after the initial surgery. The murine mammary adenocarcinoma

(MCaIV), human colorectal adenocarcinoma (LS174T), and human soft tissue sarcoma

(HSTS26T) were transplanted from subcutaneous tumors grown in isogenic mice. The

human mammary adenocarcinoma (MDA-MB-361HK) was implanted as a single cell

suspension of ~3x10 6 cells in 30 pl of Hank's Buffered Salt Solution (HBSS). Cranial

windows were prepared in nude mice as previously described 55 and either human

glioblastoma multiforme (U87) tumor tissue was implanted 400 pm deep in the

posterior cortex or MCalV tissue was implanted in the leptomeninges of the left

hemisphere. Tumors were generally allowed to grow for 2 weeks to a size of 4 mm in

diameter by en face measurement depending on experimental protocol. Animals were
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anesthetized using either Ketamine/Xylene(10/1 mg/ml) or Isoflurane (1% in 100%

oxygen), as indicated for each specific experiment. All animal work was approved by the

by the MGH Institutional Animal Care and Use Committee.

VI.11g ANTI-ANGIOGENIC THERAPY: VEGF-R2 BLOCKADE.

DC101 (ImClone Systems Inc., New York, NY) or nonspecific rat IgG were administered

intraperitoneally at 40mg/kg as prescribed in previous studies". Mice were imaged

every 2 days beginning 5 or 6 days after tumor implantation. Therapeutic initiation was

determined through monitoring of tumor growth by both visual inspection and OFDI

angiography. Animals were selected for the study based on the criteria that 1) the

tumor diameter was approximately 4 mm in diameter by en face measurement 2) the

entire margin of the tumor was functionally vascularized and 3) the animal was in good

health. Treatment group assignment was made randomly and masked during the

duration of therapy to remove bias. Three treatments at three-day intervals were given

(defined as day 0, 3, 6), and imaging was performed through day 9. Tumor growth delay

was calculated from measurements of tumor volume by OFDI microanatomy

measurements.

VI.11h CYTOTOXIC THERAPY.

Diphtheria toxin (Sigma-Aldrich Co., St. Louis, MO) was administered intraperitoneally at

30 pig/kg as previously described31 . For control animals, a similar volume of saline was

injected intraperitoneally. Male SCID mice bearing human colorectal adenocarcinoma

tumors in the DSC were treated once and monitored over 10 days. During the initial 24

hours, OFDI multiparametric measurements were made every 12 hours followed by

measurements every other day as described in the Supplementary Methods.

VI. 11i PROLONGED TIME-LAPSE IMAGING.

Imaging was performed under gas anesthesia (1% Isoflurane in oxygen) every 4 hours

for 48 total hours in mice bearing MCaIV murine mammary carcinoma tumors in the

DSC. Each imaging session was 5-10 minutes in duration, between which the
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experimental animal was returned to its cage. DC101 or non-specific Rat IgG (40 mg/kg

i.p.) was administered once after the first imaging session. To generate the shorter

interval time-lapse video, a separate SCID mouse bearing MCaIV in the DSC was imaged

every 2 hours for 48 total hours. DC101 was administered (40 mg/kg i.p.) once 8 hours

after the first imaging session. The resulting angiographic images for each timepoint

were manually cropped and aligned using Adobe Photoshop (Adobe Systems Inc., San

Jose, CA) and imageJ to generate the time-lapse video.

VL11j QUANTITATIVE ANGIOGRAPHY.

Vascular quantification was performed through automated vessel tracing. To condition

the vascular dataset for tracing, the following steps were performed:

(i) If necessary, a mask file was generated manually (ImageJ) that delineates the

vascular signatures in the phase variation dataset (phasevar.tif) from artifacts associated

with low-signal intensities in the air or Brownian motion in the fluid above the non-

planar tissue surface.

(ii) Doppler techniques suffer from artifacts due to forward scattering of red blood

cells that result in signal shadows extending below the deepest extent of a vessel. For

large vessels with high local hematocrit, shadowing can extend to nearly all of the lower

depths. These artifacts frustrate the automated three-dimensional analysis of vascular

networks. To reduce this shadowing, we further processed the angiographic datasets by

applying a step down exponential filter. Working from the surface of the tissue

downward, the magnitudes of the vascular signal (phasevar.tif) of all points below the

current point were attenuated according to the magnitude of the current point. A

deshadowed dataset (phasevarnoshadow.tif) was generated as the output. A result of

this technique is that small vessels underneath very large vessels were obscured and not

traced.

After shadow removal, an automated three-dimensional vessel tracing algorithm was

applied to the deshadowed datasets (phasevarnoshadow.tif) (Figure VI-7). The tracing
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algorithm was developed and adapted for the OFDI images from a model previously

applied to angiographic images from multiphoton microscopy 36,37. Briefly, the model

traverses the vascular network with cylindroidal superellipsoids fit to the vessel

boundaries by minimizing region-based statistics using a likelihood ratio test to

differentiate between noise and other artifacts. In addition to providing the three-

dimensional geometry of vessels segmented by the superellipsoids, the model defines

vessel centerlines, intersections, and branches. Novel seeding algorithms were

developed for the OFDI datasets to provide robust initial guesses for vascular regions

without the requirement of segmentation procedures.

Prior to commencement of the vascular tracing algorithm, homomorphic filtering was

applied to each deshadowed phase variation dataset. Homomorphic filtering consisted

of first convolving a low-pass Gaussian filter across each transverse (XY) slice of the

deshadowed datasets to lower the background signal. The intensity in the resultant

image was then homogenized at both the low and high ends of the intensity spectrum

to increase contrast. To remove any remaining specular noise resulting from the filtering

process, a median filter was applied to each transverse slice of the three-dimensional

OFDI dataset.

For each superellipsoid describing a "vascular segment", the parameters output from

the tracing algorithm provided a centroid, major, minor and longitudinal axes and

quaternary rotation parameters defining the rotation of the axes from image space to

fitting space. Vessels were defined by the fitting algorithm as a series of vascular

segments between intersections, branching points or dead ends. The model fit to each

vascular segment was performed in unitary space rotated from the actual image space

so that all superellipsoid axes rested on the axes defining Cartesian coordinates of this

space. To obtain quantitative measures in image space, the superellipsoid axes were

rotated back into image space and the magnitudes in microns of each axis were

determined by the pixel dimensions in three-dimensional space.
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Due to the shadow removal processing, vessel morphology in the xz or yz planes were

altered in some cases. Therefore, morphological measurements were always made as

projections onto the xy plane. The two shortest superellipsoid axes were used for the

projection onto the xy plane. To determine the length of each vascular segment, the

distances between adjacent centroids (as defined by the tracing algorithm) were

determined. Vascular diameter for a given set of segments (i.e. intratumoral) was

determined by weighting the xy-projected diameter for each segment by its length.

Vascular length of a given volume of tissue was simply the sum of the length of all

vascular segments in that region. Vascular volume was determined by calculating the

area containing the segment centroid and then multiplying by the segment length and

summing over all segments of interest.

Three-dimensional image casts or skeletons of the vascular networks were obtained

from the parameters output by the vascular tracing algorithm using Matlab.

Visualization was obtained using either Volocity (Improvision, Inc, Waltham, MA) or

OsiriX (The OsiriX Foundation, Open-Source Software).

VI.11k FRACTAL ANALYSIS

The fractal dimension was calculated using the sandbox method42 adjusted for the voxel

size anisotropy in three-dimensions. Skeletonized vascular networks were obtained

using the vessel parameters defined by the vascular tracing algorithm. A three-

dimensional rectangular region of the image volume was selected for geometrical

analysis. For analysis of tumor vascular networks, the rectangular region of largest size

was selected that was within the tumor boundary. A point near the center of the

structure was randomly selected and surrounded by cubes of increasing dimension

through multiple iterations. The mean number of occupied voxels within each cube of a

particular length scale was determined by averaging over all selected voxels. The linear

slope of the log-log plot of mean occupied voxels versus cube dimension defined the

fractal dimension (Figure VI-9). The minimum path length was found by determining the

minimum length between occupied voxels on each pair of opposite faces in the
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skeletonized vascular network defined above. Tortuosity was calculated by taking the

ratio of the minimum path length to the Pythagorean distance measured between the

first and last point of the path.

VI.111 VISUA LIZA TION.

The generation of combined blood and lymphatic vascular projections required

segmentation of the lymphatic networks from the surrounding tissue. The lymphatic

networks were semi-automatically segmented by the manual selection of points within

lymphangions followed by the expansion of these points using a three-dimensional

region growing algorithm. The resulting segmented lymphatic network described the

interluminal volume of the identified lymphatic vessels in three-dimensional space

registered to the vascular datset (phasevar.tif).

Reduction of the three-dimensional vascular (blood and/or lymph) datasets to a single

en face image utilized a customized volume up rendering technique. The vascular

dataset (phasevar.tif) was three-dimensional median filtered with a kernel size of

(3x3x3). The blood vessel signals in this filtered dataset were then colorized according

to their depth. Within the segmented lymphatic network image, lymph vessels were

colored blue. These datasets were then merged if rendering both blood and lymph

vessels. Finally, the vascular (blood) or merged (blood and lymph) dataset were reduced

to an en face presentation using volume up rendering techniques56 wherein each pixel is

assigned an opacity and more superficial features are layered over deeper structures.

The opacity of each pixel was calculated as a product of the vascular signal magnitude

(phasevar.tif) and the signal weight of that vascular signal (phasevarweight.tif).

VI. 11 m QUANTITATIVE LYMPHANGIOGRAPHY.

Lymphatic vessels are identified through the diminished scattering signal within the

microarchitectural dataset (microarch.tif) from the intraluminal lymph, likely attributed

to hypocellularity and lower protein concentration. The distinct network topology and

vessel characteristics coupled with the correspondence of these ascattering structures
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with Evan's blue lymphangiography (Figure VI-11) confirm their identification as

lymphatic vessels. Presentations of the lymphatic networks were generated by manual

selection of the lymphatic bed depth within the microarchitectural dataset

(microarch.tif) at a series of transverse locations. A curved but continuous depth plane

through the lymphatic bed was defined by first interpolating the location of the

lymphatic bed across all transverse points using three-dimensional cubic interpolation

through Delaunay triangulation, and then smoothing this curve through application of a

two-dimensional Gaussian filter of kernel size of 250 pm. Minimum intensity projections

across depth over regions within +/-50 pm of the lymphatic bed were then generated to

reveal the network in a two-dimensional image (Figure VI-11). The maximum diameter

of lymphangions (lymphatic vessel segments) were measured in the XY plane with

imageJ software.

Evan's Blue lymphangiography was performed by injecting 10 pl of 4% Evan's Blue into

the tissue and observing nearby lymphatic vessels with a dissecting scope.

VI.11n MULTIPHOTON MICROSCOPY AND REGISTRATION.

Multiphoton imaging was performed with a custom-modified confocal laser scanning

microscope (Olympus 300; Optical Analysis Corp., Center Valley, PA) using a broadband

femtosecond source (High Performance MaiTai, SpectraPhysics, Mountain View, CA).

Angiographic contrast was achieved through intravenous administration of 200 d of 8

mg/ml fluorescein isothiocyanate dextran 2M molecular weight (FITC-Dex 2M, Sigma-

Aldrich, St. Louis, MO) in phosphate buffered saline. Image stacks were taken at 800nm

excitation (~60 mW at sample surface) with depths ranging to 500 pm depending on

animal model and tumor type. To image tumors or organs (brain) over wide-fields,

collections of mosaic images were taken in raster pattern using a motorized stage

(H101, Prior Scientific, Inc., Rockland, MA) and customized automation software

(LabView, National Instruments, Austin, TX). Mosaic stacks were assembled using

ImageJ (NIH, Bethesda, MD) and Matlab (MathWorks, Natick, MA). Registration

between MPM and OFDI of the same sample was conducted by denoting imaging
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regions on the window coverglass by histological markers and manually comparing the

locations of large vessels. All multiphoton imaging studies were performed with a 20X

magnification, 0.95NA water immersion objective (Olympus XLUMPlanFI, 1-UB965,

Optical Anaylsis, Center Valley, PA) with estimated 1/e2 radii of 0.27plm radially and

1.14 im axially.

VL110 STATISTICAL ANALYSIS.

Data are presented as mean ± standard error of the mean (SEM). Significant differences

between groups were determined by a multivariate repeated measures ANOVA

accounting for response to treatment over time (Systat, Systat Software, Inc., Chicago,

IL). For quantitative metrics calculated by the vascular tracing algorithm, such as

vascular diameters, significant differences at each time-point were determined by a

two-sample Student's t-test. For tumor growth, statistical differences at each time-point

were determined by the non-parametric Mann-Whitney test. Statistical differences at

given time-points are denoted on the plots by asterisks. p-value 0.05 was considered

statistically significant for all comparisons. The multiphoton and OFDI measurements of

vessel diameters (Figure VI-6i) were compared using the Pearson product-moment

correlation.
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VII.1 Introduction:

Understanding the effects of disease progression and therapy on the tumor

microenvironment is critical for elucidating the pathophysiologic mechanisms that

underlie clinical prognosis and designing more efficacious combinatorial therapeutic

regimens. While clinical imaging modalities and mechanical sensors exist to probe the

anatomical, functional and metabolic aspects of the tumor microenvironment, they all

lack high-resolution capabilities (< 50pm) and many are indirect measures of these

parameters. The focus of this thesis has been to develop and apply new minimally

invasive microscopic tools to study the tumor microenvironment in preclinical tumor

models.

Principle characteristics of the tumor microenvironment are the metabolic parameters

of oxygen tension (P02) and pH. Solid tumors are often found to be hypoxic and acidic;

both determinants of metastatic progression, clinical prognosis, gene expression,

angiogenesis, and therapeutic response. In Chapters 3 and 4, I developed and applied a

new microscopic method for quantifying P02 by combining the techniques of

phosphorescence quenching and multiphoton microscopy. This method, multiphoton

phosphorescence quenching microscopy (MP-PQM), was fully characterized (Chapter 3)

and used to successfully study P02 during tumor progression and in response to

targeted therapy with either antiangiogenic agents or trastuzumab (Chapter 4). The

significant outcomes from these experiments were 1) characterizing preclinical tumor

models with respect to progression, 2) methods for correlating tumor microvascular

parameters with oxygenation including metabolic consumption, 3) a new model for

tissue oxygenation based on a simple parameter describing vascular structure and 4) an

understanding that antiangiogenic therapy should be titrated to potentially "normalize"

the metabolic microenvironment for improved therapeutic response.

In collaboration with investigators in the MIT Chemistry department, a novel biosensor

for pH was developed and implemented under multiphoton excitation to perform high-

resolution mapping of pH (Chapter 5). This sensor combined the attractive
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photophysical and stability properties of luminescent semiconductor nanocrystals (NCs,

quantum dots) with fluorescent dye molecules sensitive to pH. Using the principles of

F6rster resonance energy transfer (FRET), this construct enabled reversible internally

referenced ratiometric measurements of pH using multiphoton multispectral and

fluorescence ratiometric imaging (MP-FRIM). Critical advancements presented in this

work were 1) the application of nanocrystals as two-photon antennas even for dyes with

substantial two-photon action cross-sections, 2) biocompatible coatings for nanoscale

materials that exhibit minimal physical interactions with the tissue (and tumor)

microenvironment components, 3) techniques for calibrating pH sensors in

environments mimicking the tumor microenvironment and 4) methodology for

qualitatively measuring pH changes in the tumor microenvironment and correlating with

the vasculature using MP-FRIM and NC biosensors for pH.

In addition to the metabolic parameters defining the tumor microenvironment, the

structural and cellular components including the tumor vasculature, peritumoral

lymphatics, and microanatomic features all influence tumor progression and response

to therapy. Furthermore, the ability to probe these aspects dynamically and over wide

fields on short (minutes) and long (days-weeks) timescales with microscopic resolution

has profound implications in the study of tumor biology and drug development. The

coherent microscopy optical frequency domain imaging (OFDI) enabled the

simultaneous investigation of the tumor microenvironment with these characteristics

(Chapter 6). Through a collaboration with scientists in the Wellman Laboratories for

Photomedicine, we developed and implemented new techniques and methods for OFDI

to non-invasively probe the tumor vasculature, lymphatics and cellular

microenvironment. Importantly, we demonstrated 1) the capability to perform non-

invasive three-dimensional imaging and morphometric and geometric characterization

of tumor microvasculature without the need for angiographic contrast agents, 2)

identification of tumor-associated lymphatics based entirely on their optical scattering

signal, 3) in vivo histological assessment of tumor necrosis and apoptosis and 4)
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multiparametric monitoring of vascular and cellular targeted therapies in preclinical

tumor models.

VII.2 Optimizing and Advancing MP-PQM

While the technique of MP-PQM was proven successful (Chapter 3) and effective in

quantifying in vivo P02 in the tumor microenvironment, many aspects could be

improved to increase signal to noise and therefore measurement time. The methods

proposed in this Thesis employ time-domain lifetime measurements using an electro-

optic modulator (EOM) for impulse selection. The use of any optics in the path of a

pulsed mode-locked laser induces group delay dispersion which increases the temporal

duration of the pulse'. In the case of EOMs or especially acousto-optic modulators, the

laser pulse duration is increased due to significant group delay dispersion. In

multiphoton excitation, the fluorescent emission is inversely proportional to the laser

pulse duration2. Longer pulses decrease the peak power in the focal volume reducing

the excitation rate of MPM. Through a process termed "pulse shaping", the excitation

laser pulsed can be pre-chirped to counteract the effects of optics in the laser path3

Numerous methods exist to perform pulse compression in this fashion including prism

pairs4, diffraction grating pairs5, and adaptive optics6 .

Secondary to pulse shaping is the repetition rate of the pulse laser. Typically 80MHz

Ti:Sapphire lasers are used in MPM because the temporal separation between pulses is

longer than the luminescent lifetime of most fluorophores. However, luminophores with

longer lifetimes may be more efficient at lower repetition rates. In fact, many studies

using phosphorescence with nonlinear excitation employed lasers in the kilohertz

range . However, these lasers typically also have longer (nanosecond versus

femtosecond) pulse durations. Therefore, little or no improvement may be observed

with this pulsed laser source given very similar duty cycles (pulse duration x repetition

rate).
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The original concept behind the development of MP-PQM was its adaptability to

existing MPM setups. However, pulse shaping may dramatically increase

phosphorescence of the PO2 sensor, a phosphorescent porphyrin, which has a reduced

two-photon action cross-section compared to commonly used fluorophores. Another

possibility, which will be explored in the next section, is the development of oxygen

sensors with improved two-photon action cross-section. Other investigators have

developed phosphorescent porphyrins with two-photon antennas for improved

quantum yield under two-photon excitation7'9 . However, these probes have not been

fully characterized for in vivo application. If adaptations to MP-PQM or improved two-

photon oxygen sensors are developed, the measurement time may be significantly

reduced. MP-PQM may therefore someday be applied in a beam scanning fashion

analogous to normal MPM function instead of stationary beam photon counting. This

would permit imaging of P0 2 over wider fields and increased sampling rate.

VII.3 New NC-Biosensor Constructs and Designs

The novel nanocrystal biosensor design introduced in Chapter 5 is adaptable to other

sensing strategies. Two additional sensing schemes not introduced in Chapter 5 are 1)

protease sensing through cleavage of a peptide linking abrogating FRET 2) binding of an

analyte altered the F6rster distance (R0) and therefore the FRET efficiency. The designs

reported in Chapter 5 can also be applied to a number of analytes dependent only on

the dye selected. Fluorescent dyes exist that are sensitive to biologically important ions

including calcium, magnesium, and sodium 0 . These chemosensors change their

fluorescence emission intensity dependent on the concentration of a specific ion in

solution. As there is no change in absorption spectrum, the nanocrystal emission acts as

a two-photon antenna and internal reference as demonstrated in Chapter 5. As such,

the photophysical properties of the construct are determine entirely by the nanocrystal

abrogating any differences observed between single or two-photon direct excitation of

the dye molecule.
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The NC biosensor construct employed in the fashion of a two-photon antenna would

also improve the excitation rate of the oxygen sensors utilized in Chapters 3 and 4. In

collaboration with the Bawendi and Nocera groups at MIT, initial experiments have

been performed providing evidence to support this hypothesis. A Pd-porphyrin (Pd-

meso-tetra(4-carboxyphenyl) porphyrin; Oxyphor RO, Oxygen Enterprises, Ltd.,

Philadelphia, PA) coupled to a nanocrystal emitting at an absorption maxima for the

porphyrin does demonstrate response to oxygen (Figure VII-1). Similar to pH, the NC

emission is again unresponsive to the local environment, particularly oxygen, regardless

of the solvent used. This probe could be applied in a ratiometric fashion or lifetime

measurements could be performed to quantify oxygen. In fact, given the broad

excitation spectrum of the NC and high quantum yield, a sensor designed with

maximum FRET efficiency could be employed for frequency domain lifetime

measurements. Here, the duty cycle of the experiment would be vastly improved

compared to the time-domain, speeding up the in vivo measurement time. However, as

seen in Chapter 5, again the issue is delivering the probes to the tumor

microenvironment.
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Figure VII-1 Nanocrystal biosensor for oxygen. A NC construct containing a bound Pd-porphyrin
demonstrated response to changes in oxygen in both dimethylformamide (a) and aqueous solution (b).
The NC emission was unaffected by pO2 in either situation.
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The issue of transporting NC biosensors directly to the tumor microenvironment may be

resolved by direct targeting. Coupling NCs to antibodies or peptides against molecular

markers found in the tumor microenvironment may improve both delivery and

retention for long-term studies. It has been demonstrated that conjugation of

antibodies or peptides to fluorescent nanocrystals is possible for

immunohistochemistry", cellular labeling' 2' 4 and in vivo cancer cell 15 and vascular

targeting16 . The majority of these studies have been performed ex vivo or the in vivo

results were not microscopic (whole-body imaging) or hindered by aggregation in the

vasculature. Our collaborators have recently demonstrated targeted NC constructs with

limited non-specific binding to cells17 . These constructs had an attached dye molecule

(CXR) and still exhibited FRET during cell labeling.

Figure VII-2 In vivo imaging of NC-immunoconstructs, fibroblast-like stromal cells, and collagen matrix
in a sarcoma tumor model. (a) GFP-positive stromal cells interacting with the collagen matrix in integrin
P1 labeled areas (yellow arrows). GFP negative cells positive for P1 interacting with the collagen matrix
(light blue arrows). (b) Integrin P1 is also expressed near the tumor vasculature; (yellow arrows) -
colocalization of integrin P1 immunostaining and GFP-negative endothelial cells. Red - NC-
immunoconstructs; Green - VEGF-GFP host cells. Blue- signal from Collagen 1. Scale Bars - 50pLm.

I have investigated in vivo targeting in the murine tumor models using NCs bound to

antibodies against integrin p1. These were prepared with the "Quantum Dot Antibody

Conjugation Kit" available from Molecular Probes. Briefly, reduced antibodies with free

sulfhydryls exposed are attached to PEGylated NCs with terminal maleimide groups. In
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the DSC chamber of a VEGF-GFP mouse18 bearing a human soft tissue sarcoma

xenograft, this construct demonstrated labeling of stromal cells colocalized with second

harmonic signal generated from collagen (Figure VIl-2). Further optimization of the NC

construct design for size and charge introduces the ability to perform targeted sensing.

Further, the narrow emission spectra and broad two-photon excitation spectra would

allow for multiplexed phenotyping of cells in the tumor microenvironment 9. It is

apparent that luminescent semiconductor nanocrystals possess many possibilities for

studying in vivo cancer biology as both sensing and imaging agents.

VII.4 Future Directions of OFDI in Cancer Biology

The interaction of light with tissue contains much information about structure and

dynamic processes. In Chapter 6, the coherent microscopy technique of optical

frequency domain imaging was shown to provide quantitative three-dimensional images

of in vivo tumor vasculature, lymphatic vessels, tissue viability and microanatomy over

wide fields of view. There is much still to be advanced using this technology both in

methodology and assessment of additional anatomical and functional parameters of the

tumor microenvironment. These include measuring blood flow, vascular permeability,

tumor transport properties, edema, and cell metabolism. The application of

multiparametric OFDI to a number of in vivo tissues was demonstrated in Chapter 6.

However, additional aspects of the tumor microenvironment may still be uncovered

including in vivo staging of tumorigenesis and lymphatic metastasis.

Given the ability to non-invasively determine the morphometry and three-dimensional

geometry of tumor vascular networks, the next logical step is to develop methods that

probe the function of the vascular network. Others have demonstrated an ability to

qualitatively measure blood flow perfusion using Doppler methodologies and OCT2O-n.

Quantitative velocity measurements with OCT require either standard vessel geometries

(straight tube)23 or specially designed probes to measure multiple components of the

velocity vector24. At minimum, the angle of the sample beam with the vessel of interest

needs to be known to determine the velocity. If the beam is directly perpendicular to
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the flow vector, no measurement is possible. With our collaborators at the Wellman

Laboratories, we have proposed three methods for in vivo quantitation of flow

velocities.

1.) Calibrate the temporal modulation of the reflectance signature with known flow

velocities and apply to in vivo measurements.

2.) Either incorporate a second sample beam at a different angle of incidence for

simultaneous measurements or rotate the subject to obtain measurements from

another angle. Additional angles of incidence with the velocity vector will permit

direct calculation of velocity magnitude.

3.) Use the geometrical information obtained from semi-automated vascular tracing

of the three-dimensional tumor microvasculature to determine the incidence

angle of the sample beam along a discriminated length of vessel. An average

velocity along the vessel length could then be calculated. This is computationally

more intensive, but attemptable with the current OFDI systems.

Beyond flow, quantitative assessment of other parameters of vascular function may be

accessible by OFDI. Spectroscopic OFDI has been shown to differentiate between

scatterers of different sizes based on Mie theory25. Mie theory predicts that particles

scatter light with a wavelength around the spherical dimension of the particle. Using

angle-resolved OFDI, which removes the speckle (coherent noise)26 27 by averaging over

different reflectance angles of the backscattered photons, the microarchitecture of

tissue in the murine models is better defined28 (Figure VII-3). Further, measurements of

tissue scattering are found to be more accurate; enabling the discrimination of particles

of different size. We hypothesize that angular-resolved OFDI will be able to quantify

vascular permeability and interstitial transport in the tumor microenvironment. We

theorize that intravascular administration of optical scatterers (gold nanoparticles,

carbon nanotubes, etc) on the order of the wavelengths of light used to probe the tissue

(1230-1370nm) or possibly smaller will extravasate from the vasculature and be

detectable by OFDI.
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Figure VII-3 Angle-resolved OFDI of normal murine skin In the DSC. (a) Ordinary OFDI with speckle noise
apparent. (b) Same tissue with angular averaging reduces speckle and reveals additional microstructure.

Time-resolved measurements of dynamic changes in tissue scattering coupled with

Doppler OFDI imaging of the tumor vasculature may provide measurements of single

vessel permeabilities as well as diffusion from the intravascular space through the

interstitium. A possible secondary effect of intravenous injection of optical scatterers

would be enhances sensitivity of vessels with lower perfusion. However, the

"shadowing" noise observed with larger vessels and high hematocrit may be enhanced

by this technique. Although the effect of rotating the sample frame discussed above (#1

and 2) may reduce the shadowing effect.
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Figure VII-4 Higher Doppler background signal observed in a human glioblastoma xenograft. (a) Enface
projection demonstrates a demarcation between the intratumoral Doppler signal and the rest of the
cortical tissue. Signal amplitudes are inverted in this image. (b) Axial section of the tumor vasculature
from angiographic OFDI. (c) Minimum projection of the Doppler dataset potentially indicating edema.
Scale Bar - 1mm.

Doppler OFDI is capable of detecting the movement of scattering interfaces anywhere in

the tissue. While the highest sensitivity and signal is obtained from fluid flow in the

blood vessels, any other processes that change over time may be observable. When we

viewed the minimum intensity projection of the Doppler OFDI datasets, we observed

that the tumor tissue exhibited a higher Doppler background than the surrounding

tissue (Figure ViI-4). Others have observed that tumor spheroids29 and individual cells30

modulate the reflectance of light based on metabolic activity in living cells. It is possible

that Doppler OFDI is differentiating the tumor based on the higher metabolic activity of

the cancer cells. However, preliminary results of Doppler OFDI in formalin-fixed samples

from tumors implanted in the DSC reveal similar properties of the tumor to those seen

in Figure VII-4.
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Figure VIl-5 In vivo microarchitecture and perfusion of murine mammary ducts imaged by OFDI. Top:
Reflectance signature from the mammary fat pad of a female mouse reveals the normal globular ductal
structure. Bottom: Doppler OFDI signal showing fluid motion in the globules and within the mammary
ducts. Scale Bar - 500pm.
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It is possible that OFDI is detecting the Brownian motion of particulate matter in the

extracellular fluid. In the case of a tumor, the extracellular fluid, particularly at the

margins, may be increased due to the high interstitial pressure and absence of

lymphatics. In this case, OFDI may be detecting edema in the tumor microenvironment

an important pathophysiology found in tumors. Edema can have profound clinical

implications particularly for brain tumors where additional pressure on the adjacent

normal tissue can induce damage or neurological sequelae. Interestingly, edema is a

common finding in the mouse model shown in Figure VII-4, further supporting the

possibility that it is edema.

In Chapter 6, we demonstrated the application of OFDI to numerous animal models

including neoplastic and normal tissues. These results are only a cursory summary of

what is possible with OFDI. We showed that, in some cases, cellular structures are

observable in the peritumoral lymphatics. This suggests that OFDI may be used to study

lymphatic metastasis in preclinical models. We also demonstrated the ability of OFDI to

perform multiparametric assessment of treatment response, but this would also be

applicable to studying any facet of tumor biology. One important aspect of cancer

biology that has not been well studied in an in vivo environment in the same animal is

progression of disease from the earliest signs of dysplasia to end-stage metastatic

disease. Using spontaneous murine mammary tumor models, such as the MMTV-PyMT

mice32,33, it may be possible to non-invasively study tumor progression using all the

methods demonstrated in Chapter 6. In a preliminary study, I found that the normal

mammary fat pad architecture including mammary ducts is detectable by OFDI (Figure

VI-5). With OFDI and these models, we may be able to illuminate the disease process of

cancer through progression and treatment.

VII.5 Concluding Statements

My dissertation has focused on the development of new minimally invasive techniques

to study the in vivo tumor microenvironment during progression and response to

treatment. These tools have demonstrated advancements in multiphoton microscopy,
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semiconductor nanocrystal technology and coherent microscopy. Utmost has been the

development of new methods using these technologies to perform multiparametric

analysis of solid tumors. As this final Chapter illustrated many directions in further

developing and applying these technologies are possible. Each -new step in advancing

our understanding of the tumor microenvironment may help develop new methods and

drugs for treating cancer.
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