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Abstract

To accurately replicate the highly congested traffic situation of a complex urban net-
work, significant challenges are posed to current simulation-based dynamic traffic as-
signment (DTA) models. This thesis discusses these challenges and corresponding so-
lutions with consideration of model accuracy and computational efficiency. DynaMIT-
P, an off-line mesoscopic DTA model is enhanced. Model success is achieved by
several critical enhancements aimed to better capture the traffic characteristics in
urban networks. A Path-Size Logit route choice model is implemented to address the
overlapping routes problem. The explicit representation of lane-groups accounts for
traffic delays and queues at intersections. A modified treatment of acceptance ca-
pacity is required to deal with the large number of short links in the urban network.
The network coding is revised to maintain enough loader access capacity in order to
avoid artificial bottlenecks. In addition, the impacts of bicycles and pedestrians on
automobile traffic is modeled by calibrating dynamic road segment capacities.

The enhanced model is calibrated and applied to a case study network extracted
from the city of Beijing, China. Data used in the calibration include sensor counts and
floating car travel time. The improvements of the model performance are indicated
by promising results from validation tests.

Thesis Supervisor: Moshe E. Ben-Akiva
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Demand for urban trips continues to grow as population increases, particularly in

metropolitan areas. According to the Traffic Congestion and Reliability Report

(FHWA, 2005), congestion has grown substantially throughout the U.S. over the past

20 years, regardless of city size. The 2009 Urban Mobility Report (Schrank and Lomax,

2009) estimates that, " In 2007, congestion caused urban Americans to travel 4.2 bil-

lion hours more, resulting an extra 2.8 billion gallons of fuel for a congestion cost of

$87.2 billion, an increase of more than 50% over the previous decade "

Hour
per
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s of Delay
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..... ....... ....- ---- - - - - --... -...

- -- --
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Figure 1-1: Congestion Growth Trend in the U.S. (Source: Schrank and Lomax, 2009)



Traffic congestion poses a number of environmental, social and economic chal-

lenges for major cities around the world. The construction of new roads to increase

capacity has not kept pace with the continual growth in vehicle ownership and travel

demand due to physical and economic constraints. Therefore, Advanced Traffic Man-

agement Systems (ATMS) and Intelligent Transportation Systems (ITS) are attract-

ing increasing attention. The design, operation and management of these traffic

systems in metropolitan areas call for traffic network model that can address large-

scale congested urban traffic networks. A large-scale congested urban traffic network

is generally marked by the following characteristics:

a) Large number of directional links, usually in the thousands or more;

b) Large number of relatively short links, at-grade intersections and separate-grade

interchanges;

c) Closely-spaced on- and off-ramps connecting elevated roadways and surface

roads;

d) Severe congestion with queues and spillbacks frequently occurring in the net-

work;

e) Complex mixed traffic interaction. Motorized vehicles receive significant inter-

ference from non-motorized traffic at intersections.

Each of these characteristics may pose extra challenges that only sophisticated

models, retaining certain corresponding feature can handle.

While rough estimates of traffic impacts from a conventional static traffic as-

signment model might be adequate for the analysis of major infrastructure changes,

models that can capture the dynamic nature of both the travel demand and traffic

flow are required to evaluate demand management and traffic control strategies, such

as high-occupancy-vehicle (HOV) or high-occupancy-toll (HOT) lanes and congestion

pricing. One of the critical components of such models is known as Dynamic Traffic

Assignment (DTA). Unfortunately, until recently, real-world DTA applications have



been limited in highway networks, which are relatively simple with relatively small

number of links and low congestion level. There have been some attempts to deal with

either congestion problems (Barcelo and Casas, 2003; Dittberner and Kerns, 2002;

Ido and Prashker, 2009; Kaysi et al., 2003; Tong and Wong, 2000; Varia and Dhingra,

2004; Xu, 2009a) or large-scale networks (Caliper Corporation, 2009; Mahut, 2009;

Wen, 2009). But few of them are tested and validated on networks that are both

large-scale and heavily congested (Ben-Akiva et al., 2010).

This has motivated the attempt to better understand and to solve the problems

that prevent current DTA models from replicating the urban traffic situation realis-

tically within reasonable running time. Several key elements and enhancements that

are critical to DTA applications in large-scale congested urban network were identified

and implemented in this thesis.

A case study on a traffic network in Beijing, China was used to demostrate the

modelling process and to validate the enhancements identified in this thesis. The Bei-

jing network is large and heavily congested. Without model enhancements, attempts

to calibrate the model in order to replicate the real-world traffic situation failed be-

cause of the emergence of non-existing gridlock in the simulation. After implementing

the discussed enhancements, the gridlocking problem was resolved and the enhanced

model was successfully calibrated using the observed data.

1.2 Thesis Contribution

The main contribution of this thesis is in the identification of an array of important

modeling features that are required for the application of DTA models in large-scale

congested urban networks, which include:

i) An enhanced route choice model which can account for overlapping routes to

address the identified route choice bias on freeways.

ii) Explicit representations of lane groups and lane based queuing models to prop-

erly model traffic queues and spillbacks;



iii) The ability to handle a large number of short links without the artificial modi-

fication of their geometric representation;

iv) Revised network coding to avoid artificial bottlenecks by maintaining enough

centroid (loader) access capacity;

v) The impacts of bicycles and pedestrians on auto traffic, modeled by calibrated

dynamic road segment capacities.

Although, DynaMIT-P was used (as described in Section 5.1 and Appendix A

of Balakrishna (2006)) and enhanced for the modeling of the case study, the fea-

tures aforementioned are generally applicable to most current simulation-based DTA

frameworks. The methodologies and conclusions in the discussion are by no means

specific to DynaMIT-P, and can be generalized to a wider range of DTA models.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents a detailed

review of simulation-based DTA and applications on real world networks. Then the

problems encountered during the simulation of a highly congested large-scale urban

network and the corresponding enhancement solutions are discussed in Chapter 31.

The model calibration methodology is presented in Chapter 4. Chapter 5 is a case

study in the city of Beijing, China, where DynaMIT-P, a state-of-the-art simulation-

based DTA system with a mesoscopic traffic (supply) simulator, is calibrated suc-

cessfully by applying the model enhancements discussed here. A traffic management

case analysis is presented after using the calibrated model. Finally conclusions and

direction for future research are discussed.

'Chapter 3,4,5 are based on the research in paper: Ben-Akiva, M., S. Gao, Z. Wei and Y. Wen.
"A Dynamic Traffic Assignment Model for a Highly Congested Network". In Preparation



Chapter 2

Literature Review

This chapter reviews current simulation-based DTA models and their applications,

with focus on congested large-scale networks. The general background of DTA sys-

tems will also be briefly reviewed.

2.1 General Background of DTA Approach

Enabled advancements in technology and computational power, DTA is a high-fidelity

model designed to replicate and predict complex traffic phenomena. Peeta and Ziliaskopoulos

(2001) offers a comprehensive review of the research on DTA models. Figure 2-1

presents a generic DTA model structure(Balakrishna, 2006), which consists of two

main components (see, e.g., Cascetta, 2001; Florian et al., 2001):

1) A demand model with the ability to determine the path-dependent flow rates

of paths in a network. This model estimates and predicts OD flows and drivers'

decision, and subsequently converts the aggregate OD flows into individual vehicles

(a.k.a. packets), which are used as input for the supply model.

2) A supply model capable of performing network loading. This model explicitly

simulates the interaction between demand and the network, reproducing measure-

ments such as time-dependent flow, travels times, and queue lengths.

DTA captures complex traffic dynamics and replicates traffic phenomena using

the interactions between the demand and supply models.



Model Input and Parameters

Demand Spl
Origin-Destination(OD) Network

flows interactions Traffic control
Route ChoiceInietadevt

Response to informciensindevn

Output
Traffic Conditions

Figure 2-1: Structure of Generic DTA (Source: Balakrishna, 2006)

All DTA approaches developed up to this point can be categorized into four classes

based on the nature of the modeling and solution frameworks:

(1) Mathematical programming;

(2) Optimal control;

(3) Variational inequality (VI);

(4) Simulation-based.

Models in groups one through three are considered analytical models, which gener-

ally contain mathematically proven prosperities that provide insights into their capa-

bilities. While analytical models are mathematically rigorous, they rely on simplified

assumptions to account for traffic dynamics, making them unsuitable for large-scale

real-world applications focused on traffic congestion and management. (see, e.g.,

Balakrishna, 2006; Peeta and Ziliaskopoulos, 2001; Wen, 2009; Ziliaskopoulos et al.,

2004)

Effective large-scale, real-world applications require models that capture the stochas-

tic characteristics of traffic dynamics in detail, by estimating and predicting OD flows,

travel times, queues and spill-backs. These capabilities are generally beyond that of



existing analytical models, and therefore, simulation is required. The rest of Chap-

ter 2 reviews state-of-art simulation-based dynamic traffic assignment models. Their

applications are also discussed.

2.2 Simulation-Based DTA

There are three types of simulation-based DTA models, which are distinguished, based

on the level of detail with which they represent the studied system. They range from

Macroscopic to Microscopic as follows:

o Macroscopic (Low Fidelity);

o Mesoscopic (Middle Fidelity);

o Microscopic (High Fidelity);

To begin with, macroscopic models treat traffic in an aggregate manner, such as a

uniform or homogeneous flow, without considering each consitituent part (individual

vehicle). They propagate approximate flows throughout the network using physical

concepts or analytical methods. Microscopic models depict individual entities, de-

cisions and interactions with a high degree of detail. Each vehicle maneuvers at a

specific simulation time step based on estimates derived from a list of driving be-

havior models, such as car following, lane changing, merging and yielding models.

Mesoscopic models combine elements from microscopic and macroscopic approaches.

While they represent individual vehicles with a high degree of detail, mesoscopic mod-

els depict the activities and interactions of each vehicle with less detail, in comparison

to a microscopic model.

2.2.1 Macroscopic Models

Early macroscopic DTA models, such as the LWR model (Lighthill and Whitham,

1955; Richards, 1956) applied physical methodologies such as fluids theory in depict-

ing traffic. The evolution of traffic over time and space is represented by a set of



differential equations. While analytical methods are usually used to solve these equa-

tions, they lack the ability to evaluate the interaction between vehicles and roads,

leading some macroscopic DTA models to include simulations.

The common way of macroscopic simulation-based DTA is to discretised road

section into cells. In Daganzo's Cell Transmission Model (Daganzo, 1994, 1995),

the volume of vehicles that can cross cell boundaries at each time step is calculated

using a density function on the upstream and downstream cell. The simulation tracks

vehicles in each cell, recording their behavior at each time step. Another macroscopic

simulation model, METACOR, which is an analytical continuum model, developed by

Payne (1971) employs a similar method to describe the propagation of vehicle flows

(Elloumi and et al., 1994; Papageorgiou and et al., 1989).

These macroscopic models have become increasingly popular, thanks to their ef-

ficient and easy implementation with other traffic measurement systems already in-

stalled in major urban areas and motorways.

2.2.2 Microscopic Models

Microscopic models depict traffic at a high degree of detail, explicitly modeling in-

dividual vehicles and their interactions with each other and the road infrastructure.

Thus the models' dynamic variables, such as the position and velocity of a single

vehicle, represent microscopic properties. Models that govern vehicle behavior in-

cluded, but are not limited to, a car-following model, a lane changing model, and

a route-choice model. In addition, traffic controls, including signal operation, loca-

tion and traffic detectors, are also modeled in detail. However, microscopic mod-

els often require a large amount of data and the detailed calibration of model pa-

rameters, which is very time consuming, and have high computational resource de-

mands. Examples of microscopic models include VISSIM (PTV, 2005), AIMSUN/2

(Barcelo and Casas, 2003), Paramics (Smith and S. Druitt, 1994),and MITSIMLab

(Ben-Akiva et al., 2002b), etc.



2.2.3 Mesoscopic Models

Mesoscopic models generally describe traffic entities at a high level of detail, but

describe the behavior and interactions of these entities at a lower level of detail.

These models can vary in form depending on how they simulate traffic. One way

is to group vehicles into packets, and then route those packets through the network

(CONTRAM, Leonard et al., 1989). The packet of vehicles acts as one entity, sharing

the speed derived from the speed density function defined for each link, and the

density on the link at the moment of entry.

Another popular mesoscopic paradigm is the queue-server approach used by some

state-of-the-art models, such as: DynaMIT (Ben-Akiva et al., 1997), DYNASMART

(Mahmassani et al., 2004), FASTLANE (Gawron., 1998), and DTASQ (Mahut, 2001).

In this approach, road segments are modeled with a queuing and a moving part. The

vehicles travel through the moving part with the speed calculated using a macroscopic

speed-density function. As the vehicle moves through the segment, a queue-server

transfers the vehicles downstream to another segment, or forms queues on the current

segment, representing congestion. This approach combines the advantages of dynamic

disaggregate traffic modeling (since the vehicles are modeled individually), with easy

calibration and the use of macroscopic speed-density relationships. Signal controlled

intersections can be modeled by adding gates at the end of segment that open and

close according to the phase of the signal control. Adaptive signals can also be

modeled (Tian, 2002). Another advantage of representing individual vehicles is the

ability to model disaggregate route-choice, which is important for modeling en-route

route choice and the use of traffic information and guidance in ITS systems to help

drivers make plans.

Boxill and Yu (2000) presents a discussion of various traffic simulators.

Simulation-based models were first developed for the evaluation of ITS as a plan-

ning tool to generate and test scenarios, optimize control, and forecast network behav-

ior at the operational level. As rapid technological advancements, simulation-based

DTA models have become increasingly popular as a tool for real-world transporta-



tion planning. An advantage to these models is the testing of new management

strategies without interrupting real-world traffic. Examples of real-world applica-

tions of simulation-based DTA models include: DynaMIT (Balakrishna et al., 2008;

Ben-Akiva and Ramming, 1998; Wen et al., 2006a), DYNASMART (Mahmassani and Hawas,

1997); (Mahmassani et al., 2004), VISTA(Ziliaskopoulos et al., 2004), DynusT (Chiu et al.,

2008), Dynameq (Florian et al., 2005, 2006), AIMSUN (Barcelo and Casas, 2002,

2006) TRANSCAD (Caliper Corporation, 2009), INTEGRATION (Aerde et al., 1996),

METROPOLIS (de Palma and Marchal, 2002).

2.3 Congested Large-Scale Network Simulation

Over the past decade, congestion mitigation has become an important urban devel-

opment concern, prompting research in simulation-based DTA to focus on the traffic

modelling of congested situation. The following presents a detailed list of studies.

Tong and Wong (2000), employed a simulation-based approach to develop a method

for bottleneck identification in congested capacity-constrained networks. They give a

numerical example of a simple network with 6 traffic zones and 44 nodes to test the

effectiveness of their approach.

Varia and Dhingra (2004) developed a supply and demand focused simulation-

based DTA model for congested urban road networks that was validated on a network

with 14 nodes and 38 links.

Barcelo and Casas (2003), presents AIMSUN, a microscopic simulation model, for

the Borough of Amara in the city of San Sebastian. The network studied is comprised

of 365 road sections with 100 junctions and intersections. 24 of the 100 junctions and

intersections are signalized. There are also 13 centroids de?ning 135 O-D pairs, and

15 traffic detectors tracking traffic flows. The evening peak period from 18:00-20:00

was used as the simulation horizon.

Dittberner and Kerns (2002) present a simulation project for the Pennsylvania

Avenue area in Washington D.C., USA, with a discussion on the key methods applied

in the simulation process.The study area includes 72 intersections and the model is



calibrated using speeds and counts.

Kaysi et al. (2003), applies DYNASMART to model the network of the greater

Beirut area (GBA), Lebanon, in order to evaluate the impacts of Hot Spot Manage-

ment (HSM).

Ido and Prashker (2009) developed a DTA model with the capability of evaluat-

ing the travel-time and travel-path impacts of moving bottlenecks on network perfor-

mance.

Xu (2009a), applied DynaMIT-P to analyze the dynamic congestion pricing model

in the Lower Westchester County, NY network, using morning and evening peak hours

as the simulation period.

These studies on congested situations all share a low-level network complexity.

The models are tested on networks with comparatively few links and nodes. While

there have been successfully deployed simulation-based DTA models on large urban

network, such as TransDNA on Columbus, IN (8811 links) (Caliper Corporation,

2009), Dynameq on Tel Aviv (3700 links, 200,000 car demand/3 hours) and Ljubljana

networks (8500 links,180000 car demand/3 hours) (Mahut, 2009), these cases do not

present high congestion levels. To the best of our knowledge, there have been no

successful DTA applications in highly congested, large-scale urban networks.

There are three major difficulties in applying DTA systems to analyze congested

large-scale networks : Computational Efficiency, Scalability, and Model Accuracy.

The main challenge is the trade-off between Computational Efficiency and Model

Accuracy. The processing time of a DTA system is highly sensitive to the scale of the

problem, which is affected by the amount of links, nodes and demand. Studies in this

field contain a wide range of approaches, from identifying computational bottlenecks

for the overall DTA approach (Wen, 2009; Ziliaskopoulos et al., 2004), designing more

effcient data structures and algorithms (Wen et al., 2006b; Ziliaskopoulos et al., 2004)

to using distributed computing resources (Wen, 2009). However, the application of

DTA systems in real-world urban networks, generally requires high-fidelity between

the network respresentation and the actual network, which is often characterized

by many short links and paths that necessitate frequent turning maneuvers, and a



simulator that can handle dense traffic volumes.

Furthermore, there is a dilemma between high- and low-fidelity network repre-

sentations. Low-fidelity models are more cost-efficient in terms of computational

demands, developmental effort and maintenance. However, their representation of

real-world traffic dynamics may also be less accurately, and even inadequte. High-

fidelity simulation models, on the other hand, are usually more accurate, but are very

computationally demanding. In addition, the potential level of accuracy is not always

be realized because of the complexity of the system, which results in the large amount

of parameters that require calibration.

As a common solution, researchers of DTA systems will make various levesl of

trade-offs between representational realism and computational effciency in the de-

mand and supply models. This allows researchers to have an adequately realistic rep-

resentation of traffic dynamics and the computational ability to analyze large-scale

networks.Several major DTA model studies (Ben-Akiva et al., 2001a; Mahmassani,

2001; Mahut, 2001; Taylor, 2003) have applied mesoscopic supply simulation models,

which represent single vehicle movements using aggregate traffic flow relationships,

instead of microscopic models.

A second major difficulty in applying DTA for large-scale congested urban net-

works is the realistic representation of traffic congestion. As mentioned before, many

characteristics of urban networks such as complicated intersections, short links, and

route choice are challenging to model. For example, non-motorized traffic, such as

bicycles and pedestrians, often create significant interferences at intersections, espe-

cially in developing countries. If a DTA model does not account for this phenomenon,

congestion levels at intersections are likely to be misrepresented and underestimated.

Vice versa, if short links and segments (the link length is comparable to that of a

car) are inadequately represented, false queues and spillbacks may result. In addition,

frequent on- and off-ramps in a network create a large amount of weaving sections.

Models that do not distinguish between lane-based movements are likely to forecast

non-existent traffic jams. Furthermore, when a slight overestimation of traffic flows

on a route could transition the simulated traffic from a stable to an unstable stage,



any error in route choice modeling can also lead to non-existent congestion in the

simulation. Therefore, in order to eliminate unrealistic gridlocks from occurring in

a DTA model, these complications need to be addressed (Ben-Akiva et al., 2001a;

Hughes, 2002; Ziliaskopoulos et al., 2004).

2.4 Calibration Algorithm

To accurately represent congestion, the model calibration requires real data. Usually,

model inputs such as Origin-Destination (O-D) flows and a priori parameters (e.g.,

socio-economic characteristics, speed-density relationships for the segments or links)

for different networks have different values, and are obtained from archived data. This

process is referred to as the calibration of DTA models. Peeta and Ziliaskopoulos

(2001) showed that the estimation and prediction of time-dependent O-D demand is

one of the most difficult tasks when trying to apply DTA as a planning tool.

This thesis applies a calibration algorithm in addressing a complex congested

traffic network that is highly non-linear, stochastic, and large-scaled. There are no

explicit analytical relationship between the objective function with the parameter to

be calibrated, making analytical derivatives with respect to the parameters difficult

to achieve.

Balakrishna (2006) summarized the optimization algorithms that are potentially

suitable for large-scale, non-linear problems with implicit expressions into three cat-

egories: path search methods, pattern search methods, and random search methods.

The main difference between these three is how to decide the search direction. The

path search method searches along a path. In each moving step, the decision vector

moves forward by a certain distance in a particular direction. Usually, the function

gradient can be derived as the direction of movement. If analytical derivatives are

not available, certain measurements can be used to estimate the derivatives before

the subsequent step. Path search methods include: SNOBFIT (Huyer and Neumaier,

2006), FDSA (Kiefer and Wolfowitz, 1952) and SPSA (Spall, 1992, 1999, 1998), etc.

In pattern search methods, the comparison of the function evaluation is used to



determine the direction of movement for each step. It is suitable for problems in

which the analytical derivative is hard to achieve because of the existence of implicit

relationships. The effectiveness of pattern search algorithms are very sensitive to

the efficiency of the objective function evaluation. Usually, the objective function

needs to be evaluated several times before achieving a new pattern, making the pro-

cess time consuming and inappropriate for large-scale problems. The Box-Complex

method(Box, 1965), Nelder-Mead method (Nelder and Mead, 1965) and Hooke and

Jeeves method (Hooke and Jeeves, 1961) are three typical pattern search methods.

In the random search methods,the search is performed using the entire feasible

space. The decision vector is updated using probabilistic mechanisms that try to

achieve optimality. Examples of random search methods include: Simulated an-

nealing (Corana et al., 1987; Metropolis et al., 1953) and Genetic algorithms (GA)

(Goldberg, 1989; Holland, 1975).

Xu (2009a) presents a detailed review and comparison of these optimization algo-

rithms. While traffic assignment model calibration itself has drawn more attention

(see, e.g., Balakrishna, 2006; Kunde, 2002; Mahut et al., 2004), few researchers have

focused on specific issues in large-scale congested urban networks.

Although using the appropriate calibration method is crucial for modeling success,

it is more critical to enhancement traffic models with the capability to handle specific

issue since a model without the necessary features to address the full complexity of

urban networks could potentially cause additional difficulties during the calibration.

2.5 DTA Model Enhancement

Boxill and Yu (2000) and Smart Project(1997) have identified limitations within the

ITS framework for traffic simulation. These include the inability to appropriately

simulate the congestion, environmental impact and safety, as well as computational

inefficiency, etc.

Over the past decade, traffic assignment models have been greatly enhanced to

meet practical requirements. A comprehensive example is INTRAS, a microscopic,



stochastic simulation model, which was reprogrammed and enhanced to include ge-

ometric and operational capabilities such as lane type, ramp metering, surveillance

system, driver habits and warning signs, etc. and employs car following and lane-

changing models. The new version is renamed as FRESIM and has the ability to

realistically simulate freeway traffic and operations features (FHWA, 2005).

DYNASMART (Dynamic Network Assignment simulation Model for Advanced

Road Telematics), a traffic assignment and optimization tool was enhanced and re-

named DYNASMART-X. In DYNASMART-X, advanced network algorithms were

combined with the modeling of the trip-maker's behavioral response to guidance

generated in a simulation(Mahmassani et al., 2004). The most recent updates in

DYNASMART-X improved the network editing interface, and its ability to capture

large scale networks. Finally, a GIS importer was also incorporated into the simulator.

MITSIMLab(Ben-Akiva et al., 2002b), a microscopic traffic simulator developed

by the MIT ITS program, has enhanced urban modeling capabilities for unsignalized

intersections and roundabouts, drivers path awareness, and signal control and public

transportation (Ben-Akiva et al., 2001b) . The enhancements were validated using a

case study conducted in Stockholm, Sweden.

Together with advancements in computational power, the simulation can run

faster than before on a single CPU. However, it still lagged far behind in terms of the

increase in network scale and traffic demand. As a result of the increased demand in

effective congestion mitigation tools, researches in efficient traffic assignment model

and model scalability have drawn increasing attention. Several traffic simulators, such

as DynaMIT, TRANSIMS, AIMSUN and PARAMICS have been enhanced through

parallel implementations. Wen (2009) provides a comprehensive review.

The traffic assignment model were developed with the main purpose of replicat-

ing real-world traffic situations for better traffic management, such as the accurate

prediction and simulation of congestion and queues formulation in order to identify

bottlenecks. Many of the enhancements that have been incorporated into current traf-

fic assignment models to deal exclusively with congestion involve route choice model,

queuing model, capacity model,etc. The challenges in modeling congestion include



how to handle queue spillbacks, and the interaction between queuing vehicles and

moving vehicles within a single road segment. Chiu et al. (2008) implemented a lane

group structure in AMS, a mesoscopic simulator, to account for the spillback from

the downstream segments, which artifficially impede traffic under highly congested

situations.

Gentile et al. (2007) proposed a new DTA model for road networks, that explicitly

addresses queue spillovers. The proposed model combines spillback congestion into

an existing DTA formulation.

Another way to enhance model capability is to incorporate congestion pricing

models into the existing traffic assignment model framework. Using a discrete choice

framework, Xu (2009a) developed a dynamic congestion pricing model, which was

implemented in DynaMIT-P and subsequently improved the behavioral choice models.

The model enhancement was validated on the Lower Westchester network in New

York.

In summary, while the demand for tools to address traffic congestion have in-

creased as a result of accelerated urban development, traffic assignment models that

can adequately meet the needs of a large-scale, high-density urban network are still

lacking. This thesis presents modeling processes, and a subsequent enhanced model

that can replicate the traffic dynamics in a highly congested complex urban network.



Chapter 3

Modeling Challenges and Solutions

In a recent study on dynamic traffic assignment models and traffic simulation using

DynaMIT-P for the city of Beijing (Ben-Akiva et al., 2010), researchers encountered

gridlocking problem when the traffic demand was increased to reflect reality. Non-

existent queues formed in lanes along the freeways and arterials. Few cars could get

to their destination, and most of the sensor counts reported in the simulator were

close to 0.

The study area in Beijing is a large urban network in an area of around 35 square

miles, consisting of freeways, ramps, and signalized arterial roads. These roads are

modeled as 3180 directed links. Some of them are unusually short - as short as 20

feet, which caused further complication in the simulation.

The traffic load for this network is also very heavy. On a typical weekday, the

model reproduces roughly 630,000 vehicles traveling within the study network between

6:00 AM to 10:00 AM. Severe congestion and spillbacks frequently occur throughout

the network. During peak hours, the traffic density in many areas approach jam

density, resulting in extremely low speeds. Modeling such conditions is difficult be-

cause the congestion is so severe that a small over-estimation in demand or a small

under-estimation in supply would result in a grid lock.

Moreover, the mixed traffic conditions in Beijing are unparalleled by previous

studies. Most urban residents commute via bicycle to and from work, accounting for

a large portion of the traffic. In 2007, the total volume of bicycles in Beijing was



approximately 50.94 million (Sun, 2009). The mix and interaction of different trans-

portation modes result in capacity reductions and intersection delays. This thesis is

motivated by the need for a model that can properly simulate such a network and

address the current model limitation for better traffic management. The remainder

of this chapter discussses the identified problems identified and the corresponding

enhancement solutions for these specific network modeling problems. Furthermore,

generalizations of these challenges and solutions applicable to all traffic network mod-

eling cases with similar large-scale, highly congested characteristics are presented.

3.1 Revised Route Choice Model

DynaMIT-P was used for the modelling of the Beijing case study. Model input in-

cludes the traffic network of the study area, dynamic OD flows, Speed-Density rela-

tionship parameters for each segment and the route choice parameter. From the initial

simulation results, which were obtained before any model enhancements, we observed

excessive congestion on the freeways (ring roads) but little flow on the parallel roads.

The links on freeway usually experienced jam density and low speed near to 0, while

most of the arterial roads had little traffic on them. A further analysis showed that

route choices were biased toward the ring roads, and the adjustments to the route

choice model parameters had little effect in mitigating the bias. An investigation on

the current route choice model had to be done before any enhancements.

3.1.1 Logit route choice model

A Logit route choice model was initially adopted to calculate path choice probabilities

in DynaMIT-P. This model is simple but has a critical limitation in terms of the

assumption that the error terms are identically and independently distributed (i.i.d.).

Under the route choice context, this assumption requires that all alternatives have to

be independent. A complex urban network like the Beijing network does not abide

by this assumption because there are a large number of overlapping paths that share

the same freeway links.



3.1.2 C-Logit model

In order to overcome such a problem, previous researchers proposed the addition of a

deterministic correction term to the utility function for overlapping paths. The first

attempt was made by Cascetta et al. (1996). A "commonality factor" (CF) term was

added to the deterministic part of the utility that captures the degree of similarity

between alternatives in the choice set. P,(i) - the probability of user n choosing path

i among his/her individual choice set C,(i) - is defined in Equation 3.1:

eVin-CFin
Pn(i) eVn-CFjn (3.1)

jECn

3.1.3 Path Size Logit Model (PSL)

Motivated by the C-Logit model, Ben-Akiva and Ramming (1998) proposed the Path

Size Logit Model (PSL) (see also Ben-Akiva and Bierlaire, 2003), which has a simi-

lar form but uses a "Path Size" (PS) attributero correct for the utility for overlap-

ping paths. The PS attribute was originally derived from the discrete choice theory

for aggregate alternatives (Ben-Akiva and Lerman, 1985). Ben-Akiva and Ramming

(1998) defined the correction term PSin as the "size" of path i (see Equation 3.2):

PSin = la 1 (3.2)
aEFi .Z 3 aj

'ECn

where li is the set of links on path i, la the travel time on link a, Li the total

travel time on path i, Cn is the choice set of paths for individual n, and 3 aj a binary

variable which equals 1 if link a is a part of path j and 0 otherwise. For a path

not overlapping with any other path, the path size is 1, and the systematic utility

is not adjusted. For a path partially overlapping with other paths, the path size is

less than 1, and the systematic utility is adjusted downwards. For a path completely

overlapping with J - 1 other paths (J being the size of the choice set Cn), the path

size is 1/J. Once the PS attribute is defined, the utility associated with path i for

individual n is adjusted as V, + In PSm, with the probability Pn(i) computed as in
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Equation 3.3:

eVin+ln PSin

Pn (i) = ' eVjn+lnPSin

jECn

(3.3)

Pn(i) ,C, and Vi, are similarly defined as in Equation 3.1.

The example shown in Figure 3-1 was used by Ramming (2002) to illustrate the

overlapping path problem and how the PSL choice compares against other model

types, especially with MNL model. There are three paths with the same total travel

time T. Path 1 and 2 overlap from the Origin Node to the Intermediate Node with an

overlapping travel time of T - d. The MNL model predicts equal shares for the three

paths, one third each. This is correct only when d = T, when there is no overlap.

The choice probabilities for the overlapping path (Path 1 or 2) are presented in

Figure 3-2. The horizontal axis is the fraction of T that d represents. When the

proportion approaches 0, that is d = T, Path 1 and 2 are the same physical path with

two separate "labels". In this case, we expect the combined choice probabilities for

Path 1 and 2 to be 50%, and Path 3, the other physical path, should have a choice

Link T T =- T-d Link T T =d Path 1

OriinLink T T =d Path 2

De0naton

Link TT =T Path 3

Figure 3-1: The Overlapping Path Problem
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Figure 3-2: Choice Probabilities for the Overlapping Path Network

probability of 50%. The PSL reflects our expectation, but the MNL model gives a

flat choice probability of 33% which means that it is not sensitive to the overlap.

Now apply the above example in complicated urban networks. Consider a traveler

is planning his/her route choice from home to work. The overlapping segment can

be viewed as the freeway, and there are N different paths to the work place after

getting off the freeway. In addition, he/she has the choice to use rterial roads the

whole way. In an extreme case, assume all paths have the same total travel time,

and the overlapping segment is long enough. We can expect 50% probability that

s/he will choose the freeway, which concurs with the prediction generated by the PSL

model. However, the MNL model will give a probability of N to the freeway, and a

probability of to the arterial. This bias will lead to a non-existent higher demand

for the freeway, and cause unrealistic congestion in simulation. N is potentially very

large in a dense urban network and the bias could be very serious.



3.1.4 Result

The bias mentioned in the previous section was verified in the simulation of the Beijing

network. Figure 3-3 shows the path set generated by DynaMIT-P for a typical OD

pair (1616-1584). There are 8 paths in the path set, 7 of which share the ring road (the

freeway from north to south), except the 8 th Path. Consequently, as discussed above,

it is very likely that the MNL route choice model over-predicted the probability of

choosing paths containing ring road links, which led to unrealistic congestion along

these roads. To prove the hypothesis, the path choice probabilities generated before

and after the PSL model was enhanced, were calculated and are shown in Table 3.1 (the

results may vary when the route choice parameter changes). Note that, before the

enhancement, the probability of choosing a path containing the ring road is 98.74%

(the sum of the probabilities of the first 7 paths). The probability of choosing the

8 th path is only 1.26%. However, since the difference in average travel time between

the 8 th path and other paths are not significant enough (781.4s vs. 735.1s) to cause

the traveller to refrain from choosing the 8th path, we should expect a much higher

probability for choosing the 8 th path than the MNL model predicts here.

Table 3.1: Path Choice Probabilities Before/After PSL Enhancement

Path No. Travel Time(s) I Path Size I Prob. Before I Prob. After
1 719.4 0.149 10.03% 2.61%
2 841.2 0.326 0.17% 0.22%
3 732.3 0.201 6.52% 3.10%
4 665.8 0.329 60.11% 76.49%
5 731.1 0.173 6.79% 2.39%
6 726.8 0.179 7.84% 2.95%
7 729 0.197 7.28% 3.32%
8 781.4 0.774 1.26% 8.93%

To correct for this bias, the route choice model was modified from MNL to PSL.

The path choice probabilities after this enhancement are also shown in Table 3.1. The

new results show a 8.93% probability of choosing a non-ring road path(the 8th path),

and among those who would use the ring road, more people would choose the path

with shortest travel time (path No.4).
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Figure 3-3: Path set for OD pair: 1616 - 1584



After this enhancement the gridlock situation in the Beijing case study was re-

solved. In addition, we observed more realistic route choice behavior in terms of

traffic flow and density distributions on the network.

3.2 Lane-Group-Based Queuing Feature

In the mesoscopic supply models used by some DTA systems (including DynaMIT-

P), links are divided into segments in order to capture changing section geometries.

Each segment may contain a moving part at the start of the segment and a dynamic

queuing part at the end of segment. The length of the moving part and the queuing

part may vary as the simulation proceeds. In the moving part, in-flow vehicles move

at a certain speed governed by the speed-density relationship, which is propagated

till the end of the queue. In the queuing part, (lane- or link-based) queues are formed

following a queuing model.

time 0
Moving part Queuing part

miIe I
in- Ct - 2

timte t
Ving part Queuing part
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Figure 3-4: Deterministic Queuing Model

A deterministic queuing model is illustrated in Figure 3-4. (Ben-Akiva et al.,

2001a) During a period of time t, there are pt vehicles leaving the queue, where p is

the output capacity of the segment. At time t, given that there is a vehicle reached



the end of queue, the position of the end of the queue is calculated as:

q(t) = go - l(pt - m) (3.4)

Where q0 is the position of the end of the queue at time t = 0, 1 is the average

length of vehicles(including headways), m is the number of moving vehicles between

the vehicle being considered and the end of the queue at time t = 0, under the

assumption that the position of the end of the upstream segment is 0. Note that

the model is relevant only when 0 < q(t) < L, where L is the link's length. If

q(t) < 0, then the queue has already dissipated by time t. The explicit spill-back

model guarantees that q(t) > L will never occur. When a vehicle is approaching the

end of the queues in a segment, it will try to merge into a feasible lane that has the

shortest queuing length. A set of feasible lanes for a given vehicle is defined as a set

of lanes that can reach the downstream segment according to the vehicle's path to

the destination.

In most conventional supply models, a dynamic queue is formed at the link level.

The lane connections are simplified based solely on link connectivity. In other words,

if two links are connected, all lanes on the upstream link are connected to those in the

downstream link. DynaMIT was initially designed with the capability for flexible net-

work representation (Ben-Akiva et al., 2001a), which allows lane-based queuing and

the orgnization of lanes going in the same direction into lane groups. However, due to

practical reasons, this feature was rarely utilized in previous DynaMIT applications.

Most applications employed the link-based queuing model.

Liu et al. (2008) discussed the drawbacks in the link-based queuing model and

proposed a set of lane-group-based macroscopic formulations to address them. One

of these drawbacks is the blocking effects between different movements. Specifically,

queues that spilled back from the downstream link can mistakenly be allowed to form

in all lanes in the upstream link. For instance, the left turn queue may block the

through and right turn traffic because the model will generate a single queue for

the link, regardless of the turning movement (Figure 3-5). Chiu et al. (2008) also



presented the lane group structure in AMS, a mesoscopic simulator. This structure

is designed to account for spillbacks from downstream links and ensure that vehicles

located in turning bays do not artificially impede through traffic, unlike the link-based

queuing moddel.

rn TrT T R
Figure 3-5: Left-turn lane block the through and right turn traffic

The blocking effects may not be significant in typical highway models, where such

intersections are rare. However, it can cause severe problems in the simulation of

urban networks such as the one in Beijing. In such urban networks, lane restrictions

at complicated intersections are commonly seen. Moreover, on- and off-ramps con-

necting the freeways and side roads are often highly congested. Consequently, lane

restrictions have significant impacts on the throughput of those intersections. If such

restrictions are not modeled properly, unrealistic congestion caused by exit queues

blocking through traffic could result in the simulation, as they did in our initial our

case study.

Figure 3-6 demonstrates a typical scene from the early stages of our study before

a lane-group-based queuing feature being implemented. The segments with red color

denote a jam density, while the green shows a segment with low traffic volumes. Due

to the downstream spillback, segment 343 is filled up with queuing vehicles, showing a

jam density with flow near to zero. The queue extended to segment 422 and segment

420. In this case, segment 420 is an off-ramp connected to freeway segment 419

with service road segment 422. Segment 419 consists of 3 lanes, while segment 420

only has one lane. The lack of lane groups classifications for segment 419 (only one

lane group on 419) resulted in the spillback from segment 420 mistakenly form in

all 3 lanes on segment 419. Therefore, the through traffic was blocked from getting



onto the downstream freeway segment 428. An unrealistic bottleneck formed in this

area. The queue and congestion accumulated along the freeway and throughout the

network. Finally, the traffic on most parts of the 2nd ring road became paralyzed in

the simulation.
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Figure 3-6: Off-ramp block the through traffic on the freeway

To address the aforementioned issue, our initial DTA model was enhanced to

capture the lane restrictions through "lane groups". A lane group is defined as a set

of lanes established at an intersection approach for separate capacity and level-of-

service analysis (Highway Capacity Manual, FHWA (2000)). In a lane group model,

lanes are grouped according to their specific turning movements. For example, Figure

3-7 shows an approach to an intersection with a queuing part that is comprised of

three lane groups: left only, through, and right only. No lane group is required for

the moving part of the link in our model. The advantages of this representation are

twofold: 1) the moving part is not over-complicated and capitalizes on the efficiency

of mesoscopic traffic simulation; and 2) the queuing part is based on lane groups and

thus spillbacks onto one lane group will not mistakenly impact movements on other
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Figure 3-7: Group of lanes according to turning movement

lane groups.

Most existing mesoscopic simulation studies employ link-level implementations of

queues, and lane groups or similar constructs are rarely seen. This is probably because

networks and lane restrictions for many previous studies were not complicated enough

to entail the additional efforts (usually non-trivial) required for the implementation

of explicit lane groups, such as determining the boundary of the moving and queuing

part, grouping the lanes according to lane restrictions and setting demand capacities

for each lane group.

To effectively apply the lane-group-based queuing feature, the construction of lane

groups should accounts for both geometry changes and lane restrictions at intersec-

tions. We generated the lane connections following the guideline given by the Highway

Capacity Manual (HCM 2000). Table 3.2 shows the typical lane groups for analysis.

For the Beijing study, with a queuing part based on lane groups, the mistakenly

formed queues resulting from the limited capacity of another lane group were resolved,

and a large number of unrealistic bottlenecks disappeared. This feature combined

with the Path Size Logit model contributed significantly in resolving the unrealistic

gridlocks generated in the simulations.



Table 3.2: Typical Lane Groups for Analysis(Source: HCM 2000)

3.3 Treatments for Short Links

As it is in the Beijing network, short links are not uncommon in the traffic simulation.

See Figure 3-8 for an example of a complicated interchange with short links in the

Beijing network. Short links are known as links with relatively short length, usually

that of a fer cars and sometimes even shorter than the length of one car. Short

links in traffic simulation can be generally divided into two categories: 1) the short

links exist in the real-world network; 2) the short links do not exist in the real-world

network. Examples of the first group are links at an at-grade intersection, connecting

two same-direction roadways separated only by a divider, or the links connecting

different direction roadways to capture turning movement(such as u-turns). In this

case, the short links usually occur on intersections and ramps.

Short links that do not exist in the real-world network are usually generated dur-

ing the network coding process to capture geographic feature, such as the curvature

of the roadway. While some state-of-the-art simulators like DynaMIT can represent

link curvature with an additional "Bulge" attribute for the link and it is unnecessary

Number of Movement by lanes Possible Lane Groups
Lanes

3



Figure 3-8: A complicated interchange with short links

to convert an arc link into several short links, most simulators and network provider

still use short links to represent the curved road/line. One concern is that using

polyline will be easier for the model network to be compatible with a GIS database

(Geographic Information System) which only employs polylines and nodes to rep-

resent networks. For traffic assignment models, these network representations are

designed to maintain high fidelity to the real-world road network. Therefore, the

short links, whether they e'xist in reality or not, will be kept in the model. This in

turn poses challenges for the model in replicating realistic traffic dynamics. During

the early stages of our simulation study in the Beijing network, we observed that

abnormal congestion originated from these short links. The congestion resulted from

two types of problems: 1) vehicles moving unrealistically slow on short links and 2)

vehicles queuing unnecessarily in the upstream of a short link. The causes for the

two problems are different, and are discussed separately in the rest of this section.

3.3.1 Increase the Minimum Speed

An abnormal phenomenon we observed was that vehicles moved at a normal/high

speeds on the ralatively long links, while they decelerated to an unnecessary slow



speed on the short links. Before investigating the cause of the problem, it is necessary

to review how the model calculates the speed of a vehicle moving on a road segment.

In mesoscopic traffic simulators of many DTA models, the speed of a vehicle

in the moving part of a segment (see section 3.1.2 for definition) is governed by

the macroscopic speed-density relationship, which takes a form similar to Equation

3.5(Used in DynaMIT-P):

(((max(k- -kmin, 0)'\/"
max Vmin, omax 1 - k 0) (3.5)

kjam

where v is the speed to be determined, k the density, vmin the minimum speed

on a segment,vmax the maximum speed on a segment, kmin the density below which

the speed is fixed at vmax and kjam the jam density. VminVmaxkmin,kjam are segment

parameters to be calibrated.

In traffic flow theory, the speed-density relationship is assume to be continuous.

The density(k) could take an infinite number of values between 0 and kjam so as

to capture the traffic dynamic for different segment states (from idle to congested).

However, in the simulation, the density of a segment usually takes disctrete values

derived using Equation 3.6:

N _N x1leek N ,h(3.6)
Nmax niane x L

Where the N is the number of vehicles in the moving part of the a segment, Nax

is the maximum number of vehicles that the moving part can hold, 1 ,h is the average

length of the vehicles. Density(k) is calculated using the total length of moving

vehicles divided by the total space of the moving part which is the number of lanes

niane times the length of the moving part L(from the beginning of the segment to the

end of the queuing part).

For short links, however, this means that the density will jump to be close or

even equal to the jam density (kjam) whenever a car enters the link. For example,



if the link contains one segment and its length equals to that of a typical car, then

the segment only has two states: idle or jammed. In addition, the density k can only

take two values {0, kjam}, which results in two possible calculated speeds:

o= vmax, ifk 0 (3.7)
vmin if k = kma

This implies that the speed on this segment will drop to vmin anytime the segment

is occupied, effectively making the average simulated speed equal to Vmin. Hence if

Vmin is lower than the average observed speed, this segment will almost always cause

unrealistic congestions.

Since the minimum speed Vmin is one of the variables to be calibrated, one possible

solution is to increase the starting value of the calibration variable (Minimum speed)

to the average observed speed for each of those short links, and to restrict this value

from deviating too far from the mean throughout the entire calibration. This method

was effective for the Beijing study.

3.3.2 Dynamic Acceptance Capacity

In some mesoscopic traffic simulators, queues are caused by either a limited output

capacity of a segment or a limited acceptance capacity of its downstream segment,

whichever is binding. In other words, the effective capacity of segment j at time t,

denoted as Ct, is computed as in Equation 3.8
eff

Cif = min (Cojut, Caj,) (3.8)

where Ct is the output capacity of the current segment at time t, and Cj the

acceptance capacity of segment j's downstream segment j' at time t. Please note that

if lane-groups are used, then all capacities should be defined at the lane-group level

and Equation 3.8 holds by lane group. For simplicity and without loss of generality,

we assume the capacity is defined at the segment level here. Note also that for

time-based simulation models, "time t" actually means "time-step t".



Cac is determined by the available space that the downstream segment j' has.

The more vehicles are on the downstream segment, the less acceptance capacity it

has. For time-based simulation models, the acceptance capacity of a segment at time

t is often computed from the segment's available space at time t - 1, as shown in

Equation 3.9:

Li' * mi'/L - nj'(t-1) + Ani't
CajCC -AT

where Lj' is the effective length of segment j', mj' the number of lanes in segment

j', L the average effective vehicle length, nj'(t-) the number of vehicles on segment

j' at time t - 1, Ani't the (expected) number of vehicles to move out of segment j'
between time t -1 and t, and AT the time-step size. Note that the number of vehicles

moving out of segment j' depends on the speed and capacity of the current segment

and its downstream segments. Therefore, at the beginning of the time-step t, An't is

generally unknown, unless the current and downstream segments have been processed

in the simulation. Typically, the simulator may need to "guess" the value of AnJ't

. For example, one could use the number from the previous time-step (An'-1 ) or

even simply assume zero.

When the assumed Anj't is smaller than the actual value, the acceptance capacity

is effectively underestimated. However, one may argue that the impact of Ani't is not

as significant as it appears. Roughly speaking, if the network is not too congested and

segment j' has sufficient space, then the binding constraint in Equation 3.8 is likely

to be C2,,! (as long as Ct, <CQc ). On the other hand, if the network is congested

and segment j' does not have much available space, then Ani ' is likely to be small, as

vehicles tend to move slowly and downstream segments of segment j' may be queued

to prevent a fast discharge from segment j'. Therefore, under most circumstances,

the underestimation caused by Anj't is insignificant.

While the above argument may hold when the segment is long enough, it is not

the case for short segments. Suppose the downstream segment j' can only hold one

vehicle: L' = L, and m' =1. If Anj't is ignored, then whenever there is a vehicle



on it (i.e., n-(t1) =1), its acceptance capacity computed from Equation 3.9 is zero

- as in the case "no more space is available on the segment". In reality, however, if

the vehicle is moving, as soon as it moves out of the segment, the segment can accept

another vehicle.

Failing to recognize this inaccuracy in calculating acceptance capacities may over-

predicate congestion. Because of computational efficiency, in models designed for

large-scale networks or real-time applications, for computational efficiency considera-

tions, typically the acceptance capacity is not updated every time a vehicle is moved,

but rather assumed constant for a short period of time (such as a minute). In such

cases, the acceptance capacity stays zero at each time-steps of the whole update

period, and practically blocks the upstream traffic unnecessarily. One solution is to

ignore the acceptance capacity constraint when there is no queuing in the downstream

segment, i.e., use Equation 3.10 instead of Equation 3.8

jt j ItI
Cef = min(Cout, 63 M + Ca) (3.10)

where 6 i't is a binary variable equal to 1 if there is no queue in segment j' at

time-step t and 0 otherwise, and M is a sufficiently large positive number (practically

positive infinity). Equation 3.10 is equivalent to Equation 3.8 when there is a queue

in segment j'; however, when there is no queue, ' ItM + C't is always greater than

Cut , thus the acceptance capacity is ignored.

3.3.3 Result

After accounting for vehicles' moving state, a revised capacity model that treats

specifically for short links was implemented in the DTA model, and the abnormal

queuing phenomenon was eliminated. Examples exhibiting the change of state for

a typical freeway short link, in terms of density, speed and flow, are given in the

following.

A typical short link on freeway (link #372) was picked out from the Beijing case

study for the demonstration shown in Figure 3-12 (the red line). This link contains



Figure 3-9: A Typical Freeway Short Link #372

one 3-lane segment that is 15.3 meters in length(roughly equals to 3 vehicles length).

in total, this link can hold 9 vehicles at a time. Figure 3-9,3-10,3-11,3-12 compare the

simulation results of this segment before/after the enhancement. Before the treatment

for short links was implemented, the segment density fluctuated dramatically between

0 and jam density(kjam). Most of the time, the speed can either be free flow speed

or minimum speed (13 mph in this case). Note that, in Figure 3-11, when the speed

is shown as "free-flow" speed, actually there are no vehicles on the segment. As a

result, the flow is constrained within a range with a mean of 1000 veh/hour.

The red dotted lines demonstrate the simulation results after the treatments for

short links were employed. The abnormal phenomena disappeared. The density of

this segment is much less than before. Vehicles traverse on this segment at a higher

speed, and the flow has increased to more than 3000 veh/hour, which is almost 3

times than before. These changes indicate that there are fewer vehicles congested on

this short segment after the enhancement, and the effective capacity of this segment

has increased significantly.
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Figure 3-10: Density Change on Short Link #372
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Figure 3-11: Speed Change on Short Link #372
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Figure 3-12: Flow Change on Short Link #372

3.4 Centroid (Loader) Access Capacity

Traffic simulators load vehicles onto the network or remove them from the network at

specific nodes called " Centroid" or " Loaders". A centroid or loader is usually assigned

to the node that serves as an OD point in the network, and is used as the network

representation for the Traffic Analysis Zone (TAZ). The placement of the centroid

is designed to replicate the center of activity within the TAZ. Both the loader and

centroid are where the trips are generated from and are traversing to. The rest of

this section uses these two terms interchangeably.

Every loader has two important attributes "loader input capacity" and "loader

output capacity". The rate at which vehicles can be loaded onto the network is

referred to as "loader input capacity" and the rate at which vehicles can be removed

from the network is known as "loader output capacity". Usually these two values

are specified as model parameters in the simulator, and can be determined and set

to appropriate values according to the type of loader. For example, higher rates

(closer to 2200 vehicles/lane/hour) correspond to freeway loaders, while lower values



correspond to arterial loaders.

3.4.1 Adding Centroid Connector

Another important concept that is easily overlooked in the modeling process is called

centroid (loader) access capacity. The centroid (loader) access capacity is defined here

as the total capacities for link access to a centroid (loader), or the total capacities for

link access from a centroid (loader). One problem that needs to be addressed during

the network coding process is how to reserve enough access capacity for a centroid.

During the network coding process, not all roadways are included in the network.

Local or neighborhood roads are typically excluded from the model. These roadways

are represented in general by links called centroid connectors. By definition, the access

capacity for a centroid is defined as the total capacity of centroid connectors.

The location and number of the centroid connectors can have a significant impact

on how traffic is assigned to the network (Ismart, 1990). Maintaining enough centroid

connectors is a way to provide sufficient centroid access capacity. Lacking sufficient

centroid connectors may results in artificial bottleneck in the network. An example

is given in Figure 3-13, 3-14, 3-15, which shows an area of the network in the Beijing

case study that exhibited severe bottlenecks because of the lack in centroid access

capacity.

Figure 3-13 shows a map of the real network for this study area (From Google

Map). There are many local roads (the white lines) in this area with access to the

freeway (light and dark yellow lines). Figure 3-14 is a simplified computer network

representation of this area. During the network simplification process, a centroid

(1741) was designated to represent the aggregate trip demand and the local roads are

excluded from the abstracted network. Two roads were left connecting the centroid to

the network. However, this process is problematic because it removed the capacities

of these local roads, which exist in reality. The total remaining capacity of the roads

connected to the centroid is now less than 2400 vehicles/hour, while the trip demand

attracted by this centroid is more than 4000 vehicles/hour. The consequence is shown

in Figure 3-15 . Red denotes the high density and queuing on the road. Queues
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Figure 3-13: Real world network of the area of interest

Figure 3-14: Computer representation of the area of interest



Figure 3-15: Simulation result of the artificial bottleneck

formed on the connector link and spilled back to the ramp and freeway. The network

simplification process artificially created a bottleneck in the network, resulting in

unrealistic congestion in the simulation,

While this problem is critical to the traffic modeling process, there has been little

research on how to retain enough access capacity in the centroid. To address this

problem, there are two common solutions:

The first is to preserve a high fidelity to the network and include as many local

roads as possible to ensure that we are not cutting capacity and causing artificial

bottlenecks. This method is not recommended because the scale of the modeling

problem increases along with the increase in number of links. The redundant links in

the network may pose an extra challenge to the simulation and calibration, especially

some have very low demand.

The second is a more systematic solution used by most cutting-edge traffic sim-

ulators. It is to employ centroid (loader) connectors. A centroid (loader) connecter

is the representation of the realistic access to and from the centroid within a TAZ.

These connectors are usually given a high capacity value to maintain enough ac-

cess capacity to the centroid. Placement of centroid connectors is dependent upon



(a) The network with only one connecter (b) The network with sufficient connecters

Figure 3-16: Compare of the network with-and-without connecter

the size and shape of the TAZs and how traffic should be loaded onto the net-

work. A summary of guidelines of how to code centroid connectors are discussed

in (Cambridge Systematics, Inc., 2007).

The second method was employed in the Beijing case study. Our first step is to

move the centroid to the center of this zone. Second, we added centroid connectors,

and gave them sufficient capacity. Because maintaining enough access capacity in the

centroids is the only concern in this case, the process of adding centroid connectors was

quite arbitrary in terms of how many and where to add them. If the accessibility of

the centroid or TAZ to the surrounding freeway roads, bus stops, or local business has

to be taken into consideration, then the addtion of centroid connectors should follow

the guideline (Cambridge Systematics, Inc., 2007). Figure 3-16 shows the comparison

between the original problematic network with the revised network.

3.4.2 Result

After the network was revised by adding enough access capacity to the centroid,

the congestion originating in this zone was relieved. The density change on the

jammed freeway link and off-ramp are illustrated in Figure 3-17 and Figure 3-18,



which shows the congestion caused by the artifical bottleneck relieved after the model

enhancement.

200-
E

150 -

100-

50 -

0 )

0 50 100 150 200
Time(min)

Figure 3-17: Density change on link 419 (ring road freeway)
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Figure 3-18: Density change on link 420 (off ramp)



3.5 Variable Output Capacity

In urban networks (as often seen in developing countries), the mixed traffic condition

is serious. The impact of non-motorized transport modes such as bicycles and pedes-

trians on motorized vehicle travelling in the network, especially at the intersections,

cannot be ignored (See Figure 3-19 a typical scene in urban cities in China). To

model this impact, we introduced the "variable output capacity" in the DTA model.

As briefly described in section 3.2, the output capacity is a parameter for each lane

group (or segment) in the supply model. It is typically calibrated and validated of-

fline in advance. In most existing studies, the output capacity is fixed during the

simulation period, i.e., Cjtt in Equation 3.8 or Equation 3.10 is constant across all

possible time-step t. We refer to it as "static capacity".

Figure 3-19: Severe interferences from non-motorized

Static capacity does not fully reflect traffic situations with significant interfer-

ences from bicycles and pedestrians, which may cause capacity reductions for mo-

torized traffic at intersections, especially during rush hours. Since most bicycles and

pedestrian trips are for commuting purposes, their flows are also time-dependent.

Therefore, the conflicts between bicycles/pedestrians and vehicles are different dur-

ing different times of the day. For example, during peak hours, there are many more



bicyclists and pedestrians. Thus, the capacities of the lanes at the intersections drop

significantly. To capture such time-dependent capacity reductions, we drop the static

assumption on Coij and make it a time-dependent variable. The initial idea and de-

velopment of a dynamic output capacity model was done in Xu (2009b). In a model

with dynamic output capacity, for each segment, the output capacity may assume

different values at different time-of-day. Those values are treated as parameters to

the supply model, and can be calibrated during the off-line calibration process.

The variable output capacity feature is important for urban traffic networks that

are distinguished by mixed transport mode and on which the motor vehicles are badly

influenced by the non-motorized travelers. This feature has been implemented in our

DTA model. However, the efficient calibration of these capacities is still a problem

to be solved. Thus the usefulness of this feature has not been validated and is a

direction for future research.



Chapter 4

Off-line Model Calibration

4.1 Need for DTA Calibration

In order to make effective traffic management decisions, traffic managers need to

continuously know the current state of the network and the predicted future states.

The better the knowledge, the higher the likelihood of effective decisions. However,

in spite of the vast improvements in traffic sensors, it is impossible to measure each

and every variable related to the state of the system at every point in time. While

sensor and historical data of a network can provide useful information, managers need

to be able to estimate and predict useful traffic performance indices which cannot be

measured directly.

DTA models provide a useful way to model the transportation system. The ef-

fectiveness of DTA models depends on the ability to replicate network conditions.

Various inputs and model parameters within the DTA system need to be set to ap-

propriate values so as to replicate the real world accurately. These parameters are

usually unknown and difficult to observe directly, and thus should be estimated. The

vector containing these parameters to be calibrated is usually called the "Decision

Vector" during the calibration.

Calibration is the process of estimating and assigning values to model parame-

ters so as to replicate the traffic measurements closely. Off-line calibration obtains

estimates of the parameters of interests using archived data that contain available
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Figure 4-1: Off-line calibration framework (Source: Balakrishna R. , 2006)

system measurements, provides state estimation and updates simulator parameters

and inputs for on-line application and prediction. This thesis focuses only on the

state estimation of DTA systems and only off-line calibration was employed.

The off-line calibration of a DTA model is summarized in Figure 4-1. A general

off-line calibration problem involves the estimation of OD flows as well as various

model parameters using a variety of data from sensor measurements and a priori

values of those to be estimated. We group the set of unknown DTA model pa-

rameters into demand- and supply-side variables. Demand variables are typically

common to all DTA models and include time-dependent OD flows as well as travel

behavior model parameters. For the supply side, mesoscopic models capture network

performance through aggregate traffic flow models involving parameters such as seg-

ment/lane group capacities and those for speed-density relationships in Equation 3.5.

The calibration is generally carried out in an iterative manner. At each iteration, the

traffic simulator will be called upon by the calibration process one or more times de-

pending on the different algorithms used. The optimization algorithm plays a central



role in this process as a way compare the simulation output with field observations

in order to evaluate the performance of the updated "decision vector" in the current

iteration and to find the search direction for the next iteration.

4.2 Calibration Methodology

The calibration problem can be described as an optimization problem with the ob-

jective of minimizing the goodness-of-fit measure between the observed and fitted

measurement values. In the following section, an overview of an aggregate calibration

methodology (Balakrishna, 2006; Balakrishna et al., 2006) is presented. Aggregate

calibration of simulation models has received significant attention in recent years be-

cause it possesses several advantages over other existing methods. The first advantage

of an aggregate calibration algorithm is that it is capable of handling different types

of model parameters at the same time and jointly adjust them simultaneously. This

feature is attractive especially when there is a large-scale calibration problem and the

decision vector contains parameters in different orders of magnitude. Compared with

conventional calibration methodologies, which need to iterate between various param-

eter subsets to calibrate them separately, the benefit of this feature is huge saving in

computational resources. Second, aggregate calibration also introduces the flexibility

to incorporate any general traffic measurement, such as sensor counts, speed, point-

to-point travel time, etc. More sophisticated data such as point-to-point counts and

travel times from automatic vehicle identification (AVI) systems and probe vehicles

may also be accommodated.

4.3 Problem Formulation and Characteristics

Let the time period of interest be divided into intervals h = 1, 2.. .H. Let Xh denote

the vector of OD flows departing from their respective origins during time interval h.

Let #h be the vector for simulation model parameters that will be calibrated together

with the OD flows. The decision vector is 0 =< x 1, . .. , XH, #1, ... , OH >.The calibra-



tion problem may then be formulated mathematically in the following optimization

framework:

H

Minimize z(O) = [z1 (Mh, Mh) + z 2 (Xh, Xh) + z3 ( 3 h 4.1)
h=1

Subject to the following constraints:

Mh = f (0, G1, ...,I Gh)

l' xh < U' V h E {1,2,..., H} (4.2)

h /h <U J
where Mh and Mh are the observed and fitted measurements (from both sensors

and floating cars) for interval h, respectively. xa and #3a are a priori values

corresponding to Xh and #h; z1 , z2 and z3 are functions measuring the distances

between observed and fitted values or calibrated and a priori values. f(), the

simulation model, describes the simulated measurements as a function of the OD

flows, the network Gh and model parameters #h up to interval h.

Equations 4.1 and 4.2 together represent a complex non-linear non-analytical op-

timization problem, owing to the use of a sophisticated simulator to obtain the fitted

measurements. The high degree of non-linearity introduces an objective function with

potentially many local optima. The local minimum closest to the starting solution

may thus be far from a global optimum. The non-analytical nature is attributed to the

lack of an explicit form for f() as a function of the calibration variables. Consequently,

classical algorithms that rely on the knowledge of exact analytical gradients are not

suitable for calibration. Methods that work directly with function values are more

appropriate. Since the simulator is often stochastic, the optimization problem must

also account for the inherent noises in model outputs. Sophisticated DTA systems

contain several sources of stochasticity, such as simulated drivers' behavioral charac-

teristics and the order for processing the vehicles and network elements. Furthermore,

the problem is large in scale. The number of OD pairs and time intervals increase

rapidly with the size of the network and the desired temporal modeling resolution.



Consequently, appropriate solution algorithms must be able to:

" Perform a global search by overcoming local minima and maxima;

" Work without analytical derivatives (which would generally be unavailable);

" Converge in a reasonable time frame that does not grow rapidly with problem

size.

4.4 Solution Algorithm

Previous studies (e.g. Balakrishna, 2006) indicate that the Simultaneous Perturbation

Stochastic Approximation (SPSA) algorithm developed by Spall (1999, 1998) may

provide a possible solution to the problem with the above mentioned characteristics.

4.4.1 Algorithm Feature

SPSA has several features that make it attractive for many practical applications:

1) SPSA uses model outputs to directly capture complex relationships between

data and model parameters. The approximation of the gradient directly relies

on the measurement of the objective function.

2) SPSA is designed for stochastic problems and allows for input corrupted by

noise.

3) The SPSA algorithm is appropriate for large-scale problems because of its ef-

ficient gradient approximation by perturbing all variables at once. Compared

with traditional gradient approaches, SPSA is more efficient in terms of com-

putational running time.

All optimization problems can be reduced to the basic problem of finding a root

6* to the gradient of the objective function: g(O) = dz(0)/dO = 0, where z(0) is a

differentiable objective function and 0 is the vector of the decision variables. In a



standard optimization algorithm for a multivariate problem of a non-differentiable,

noisy objective function, at iteration k + 1, the estimate for the decision vector 0 k+1

would be calculated as follows:

Ok+1 - Ok - akg (0k) (4.3)

where 0 k is the kth iteration for the decision vector 0, g(0k) the vector of gradient

estimates computed at 6 k, and ak is the gain sequence vector for the kth iteration in

the direction of a reducing gradient (satisfying some conditions for the stable

convergence of the algorithm). The SPSA algorithm requires only two computations

of the objective function at a given iteration to obtain the estimate of the gradient

vector, irrespective of the dimensional size of the decision vector. This approximate

estimate is obtained by simultaneous perturbations of all the parameters in the

decision vector. A random perturbation vector Ak = {Aki, Ak2, Ak3, - - - - - - , Akn} is

generated based on an appropriate random variable distribution(i.e. Bernoulli with

1 and -1 in this case study), and using an appropriate step size vector

Ck = {Ckl, Ck2, Ck3, - - - - - , Ckn} . The partial gradient estimate with respect to the ith

decision variable gi(0k) is then computed for iteration k as follows:

i(k) z(k + ck Ak) - z(Ok - ck ( Ak) (44)
2 CkiAki

where Ck 0 Ak is the component-by-component multiplication of vectors Ck and Ak.

The gradient vector estimate at iteration k is then

g(0k) = {g1(0k), g2(0k), 93(0k), ...... , gn (0k)}.

4.4.2 Choice of the Gain Sequences

For a given iteration k, the gain sequences are computed as follows:

a
ak = (A + k + 1) 

(4.5)
cki = (k + 1)



where the values of constants a, ci, A, a and -y are fixed based on standard

guidelines.

The choice of the gain sequences is critical to the performance of the SPSA al-

gorithm. There are some general guidelines available for the choice of values for

these parameters in Subsection IIIB of Spall (1998). See also Subsection 5.3.5 of

Balakrishna (2006). Practically effective and theoretically valid values from Spall

(1998) are 0.602 and 0.101 respectively. The value of the "stability constant" A = 50

was also found to work well (Subsections 3.7.2 of Balakrishna 2006).

For a noisy setting where the error in the objective function measurement is high,

it is recommended that one picks a larger c and a smaller a value, since the confidence

in the gradient estimates is low. On the contrary, when near perfect measurements

of the objective function are available, c can be chosen as a relatively smaller positive

number. All these values could be adjusted to suit the application at hand, e.g., the

value of the constant ci could depend on the scale of the starting value of the ith

decision variable.

4.4.3 Algorithm Process Description

The workflow of SPSA algorithm is illustrated in Figure 4-2. The optimization is

carried out as follows:

1) Initialize parameters a, A, c, a and #3;

2) Set initial decision vector 0 = Oo at step i = 0

3) Calculate the initial objective function value zo based on 0 by DynaMIT-P,

and set initial objective function value z = zo

4) Update step i = i + 1 ;

5) Evaluate z(Ok+ck& Ak) and z(Ok --ck O Ak) in Equation 4.4 by using DynaMIT-

P;

6) Calculate the current gradient vector by Equation 4.4.



7) Update decision vector 0 by Equation 4.3, constrained by the upper and lower

bound;

8) Update z by DynaMIT-P based on current decision vector 0;

9) If the termination criteria is satisfied, stop; otherwise, go back to step 4. The

termination requirements in this case are either convergence, meaning the ob-

jective function value is flat after several iterations, or has reached maximum

running iterations.

10) The decision vector 0 are set by the current vector when the termination criteria

are satisfied.



Figure 4-2: SPSA Algorithm Workflow
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Chapter 5

Case Study: City of Beijing

5.1 Introduction to DynaMIT-P

In this case study, we use DynaMIT-P (Dynamic network assignment for the Man-

agement of Information to Travelers) DTA system to model a large-scale urban net-

work in Beijing. DynaMIT-P is a simulation-based DTA system (Ben-Akiva et al.,

1997, 2001a, 2002a) for planning applications. It uses a built-in microscopic demand

simulator, a mesoscopic supply simulator and a learning model to capture complex

demand-supply interactions. It can predict the day-to-day evolution of travel demand

and network conditions, and within-day traffic patterns. It models travelers' short-

term and within-day decisions, such as choices related to trip frequency, destination,

departure time, mode, and route, assuming that long-term travel decisions (such as

residential locations and auto-ownership) are known.

Details about the features and framework of DynaMIT-P can be found in Ap-

pendix A of Balakrishna (2006). The travel decisions are modeled in the discrete

choice framework (Ben-Akiva and Lerman, 1985), where the aggregate origin-destination

(OD) flows are converted into individual vehicles through DynaMIT-P's demand sim-

ulator. The packets are then simulated in the mesoscopic supply simulator to obtain

the performance of the network by measuring time-dependent flows, travel times, and

queue lengths. By adopting the mesoscopic simulation approach in DynaMIT-P and

leveraging the efficient algorithmic design and implementation, we were able to sig-



nificantly shorten the running time for the simulation of the network in comparison

to typical microscopic traffic simulators.

In previous studies, DynaMIT-P and its corresponding real-time version have been

applied successfully in major cities in the United States. In Los Angeles, California,

a real-time version was calibrated and deployed as a route guidance system in the

South Park area for traffic state estimation and prediction (Wen et al., 2008). In

Lower Westchester County, New York, DynaMIT-P was combined with NYSDOT's

ITS infrastructure for traffic condition improvements (Rathi et al., 2008). In Boston,

Massachusetts, DynaMIT-P was used for the evaluation of emergency evacuation

plans (Balakrishna et al., 2008). However, these networks can hardly be labeled as

highly congested urban networks as illustrated in the introduction.

5.2 Network and Data

Beijing, China is one of the 10 most populated mega cities in the world. In recent

years, the vehicle volume has increased at an annual rate of 20 percent. In 2009, there

were reportedly 4 million registered motor vehicles, of which 2.3 million were private

passenger cars. Urban trips within the Sixth Ring Road, the outermost ring road,

reached 35 million trips per day (including 8.8 million walking trips) (Sun, 2009). The

significant pressure on the transportation system results in severe traffic congestion

and air pollution. Figure 5-1 shows the link volume-over-capacity (V/C) ratios dur-

ing morning peak hours on weekdays in 2007 from a static transportation planning

package, where red roughly indicates a level of service D (Highway Capacity Manual,

2000) or worse.

The skeleton of the Beijing urban transportation network comprises of a series of

ring roads connected by arterial roads. The study area is the West 2nd Ring Road

network and its northern and southern extensions (Figure 5-2). Several major ring

roads and arterial roads intersect the 2nd Ring Road within this area resulting in

several interchanges. The ring roads are elevated roadways supplemented by parallel

side roads with frequent on- and off-ramps. These ramps are generally spaced between



Figure 5-1: Network V/C ratios of morning peak on a weekday, 2007

200 to 600 feet to ensure access to and exit from the ring roads (Figure 5-3). The study

network passes through the center of the city. It is not uncommon for the northern

part of the West 2nd Ring Road to be in a complete jam condition extending several

miles. The situation is further complicated by the presence of unusually short links -

some as short as 20 feet, which could cause unexpected problems for the simulation

model. Modeling such conditions is difficult because the congestion is so severe that

a small over-estimation in demand or a small under-estimation in supply would result

in a gridlock.

The computer representation of this network consists of 1,698 nodes connected by

3,180 directed links (Figure 5-6) in an area of approximately 35 square miles. The

historical dataset includes static demand during the AM peak hours for 2,927 non-

zero origin-destination (OD) pairs, derived from the most recent household surveys

and calibrated against surveillance data. The static demand was processed to derive

an initial time-dependent demand for 15-minute intervals. The simulation ran from

6:00am to 10:00am. Approximately 630,000 vehicles were simulated.



Figure 5-2: Study area (within the black rectangle)

Figure 5-3: Frequent on- and off-ramps



5.2.1 Surveillance Data

Surveillance information used in the Beijing case study includes traffic counts and link

travel times from 6 weekdays during December 2007 between the hours of 6:00am and

10:00am.

The traffic counts was obtained from Remote Traffic Microwave Sensors (RTMS)

(triangles shown in Figure 5-6). The RTMS is a side-looking microwave radar which

emits low-power modulation microwaves within the detector area (usually coverings

all lanes in a road segment). The radar counts passing vehicles by receiving the

reflected microwave. Each RTMS detector reports accumulated traffic counts, speed

and occupancy every two minutes.

Within the study area, there are a total of 154 RTMS detectors deployed (Figure

5-4). 140 of them are functioning normally, providing 24-hours traffic flow information

continuously. Most of the detectors are located only along freeways. There are no

traffic counts on the arterial roads. The link travel times are extracted from Floating

Car Data (FCD). The FCD was obtained from GPS (Global Positioning System)

equipped taxi fleets. Figure 5-5 shows the FCD coverage in the whole city. Nearly

90% of all the major roads in Beijing are covered by the FCD, which can makes up

for the lack of count observations on arterials, and thus improves sufficient system

observability.

We have no access to the raw data. The observed counts used in our case study are

given by 15-minute interval aggregated by the data provider,Beijing Transportation

Research Center (BTRC). The link travel time data are aggregated to 5-minute,

available on freeways, ramps, arterials, secondary roads and local roads. There is

data quality limitation regarding the RTMS counts, which will be discussed in Section

5.2.2.

Since DynaMIT-P's data reporting interval is 1 minute, the output counts from

DynaMIT-P were aggregated to 15-minute counts in order to be comparable. The 5-

minute average travel time observations were repeated 5 times for the corresponding

5 1-minute intervals.
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5.2.2 Sensor Data Analysis

Data quality will affect calibration and model efficiency. According to the previous

experiences of BTRC, the RTMS detector will count some vehicles more than once

during periods of heavy congestion, which is also verified by Klein (1997). While we

can do little to address this because of the inherent hardware limitations of RTMS

detectors, the problem should be recognized when the RTMS data from congested

networks are employed.

We conducted some preliminary data cleaning to remove spatial and temporal

inconsistencies in the sensor data. For example, Figure 5-7 shows the locations of the

RTMS detectors in a specific area of the network. Note that, detector No.117 and

detector No.114 are distributed adjacently on a 4-lane freeway, distanced 480 meters

from each other. The direction of tra?c runs from detector No.117 to No.114. There is

an on-ramp merging onto the freeway after detector No.117, before detector No.114,

and no exit or o?-ramps between these two detectors.

Figure 5-7: Locations of inconsistent RTMS detectors (1)

It is reasonable to believe that the count reported by detector No.117 should be

no more than that of detector No.114 in a normal situation. The opposite could be

true only when there is an incident somewhere between these two sensors. In this

case, traffic flow enters but few vehicles exit. Due to the imbalance of in-and-out

flow, this period will last till the inflow fills up the road space from detector No.117

to the incident point. During this period, the counts reported by detector No.117 is

likely to be higher than the counts reported by detector No.114. The duration of this

period and the maximum total discrepancy of the counts reported by two sensors are



Figure 5-8: Locations of inconsistent RTMS detectors (2)

decided by the distance between these two sensors.

In our case, the distance between the two sensors is 480 meters, with space that can

contain a maximum of around 380 vehicles in 4-lanes, assuming the average length of

a vehicle is 5 meters. Therefore, even if the above case occured, the maximum counts

discrepancy between these two sensors during the whole incident period is 380.

However, the observed counts of these two detectors ( Table 5.1) show huge dis-

crepancies. For instance, during the interval from 8:00AM to 8:15AM, detector No.117

reported 1367 counts, but detector No.114 only reported 174 counts. During the in-

terval from 8:45AM to 9:00AM, detector No.117 reported 1236 while No.114 reported

175.

The difference is obviously unrealistic. This problem is typical in multiple lo-

cations within the study area. (See Figure 5-8 for another case). Therefore, data

cleaning and validation is required before a good calibration can be obtained.

After manually checking and screening the available sensor data to ensure spatial

and temporal consistency across the network, a subset of 133 sensors was chosen for

use in the remainder of this case study.



Table 5.1: Inconsistent Observed Counts from RTMS detectors

Sensor ID 117 114 116 115
6:00-6:15 247.7667 91.11041 170.7815 357.5216
6:15-6:30 289.1792 93.4703 236.28527 475.0912
6:30-6:45 433.4181 110.7799 303.4776 634.674
6:45-7:00 602.3742 115.4303 393.4808 798.6409
7:00-7:15 866.7772 113.1364 482.961 1004.683
7:15-7:30 1191.263 173.4423 666.7613 1321.522
7:30-7:45 1335.821 165.4067 683.8692 1452.826
7:45-8:00 1328.751 192.2045 777.8875 1528.467
8:00-8:15 1367.312 174.278 721.2708 1525.521
8:15-8:30 1217.863 171.3316 766.5458 1473.429
8:30-8:45 1303.629 196.1971 755.45 1520.602
8:45-9:00 1236.958 175.46 828.7547 1543.076
9:00-9:15 1296.626 216.899 777.2801 1513.777
9:15-9:30 1237.589 239.077 842.8722 1585.565
9:30-9:45 1369.111 262.9876 806.5917 1597.372

9:45-10:00 1250.729 238.7888 809.5639 1647.568

5.3 Calibration

5.3.1 Calibration Variables

Calibration variables include those from both the demand and supply modules of

DynaMIT-P. Specifically, these include 46,832 time-dependent OD trips from 2,927

OD pairs and 16 time periods; one coefficient of travel time 3 TT in the route choice

model Vi = 3TTTTi, where Vi is the systematic utility of path i and TT is the travel

time on path i; 19,080 segment speed-density parameters (6 parameters, vmax, kmin,

kjam,a, 3 and Vmin for each segment); and 3,180 segment output capacities on ring

roads and arterials. The total number of calibration variables is 69,093.

5.3.2 Methodology

All the demand and supply parameters of DynaMIT-P were calibrated simultaneously

using SPSA the methodology discussed in Chapter 4. For this specific problem,

different weights were given to the functions that measure the distances between

observed and fitted values or calibrated and a priori values. The minimization problem



in Equation 4.1 was rewritten here as Equation 5.1.

minimize I[w1||M - M + W2 M - + W3 ||zh - h0I2 + W4 Ih ~ Oh2
X1,---xH,1---, H h=1-

(5.1)

where Mc and Mhc are the observed and fitted counts for interval h respectively, and

Mt and Mk are the observed and fitted link travel times for interval h respectively.

The objective function is a weighted sum of distances between time-dependent

location specific simulated measurements and field measurements (both counts and

link travel times) and distances between calibrated variable values and their respective

a priori values.

The weights w 1,..., w4 depend on the relative confidence one can put on the

corresponding measurements and a priori values. For example, if sensors are not

reliable, a lower weight might be put on counts. The weights also depend on the order

of magnitude of the measurement in order to avoid a situation where a parameter

with a bigger magnitude or more observations dominates the others in the fitting

function.

Initially, we assigned a weight of 1 (wi) to the sensor count measurements, 0.05

(w2) to the floating car travel times due to the high volume of observations, and 1

(w3 ,w4 ) to the a priori values. These weights were changed during the calibration

in response to the performance of the SPSA iterations to accelerate the optimization

process. Because the a priori values are just a guess for which we do not have much

confidence, w3,w4 the weights for the a priori values were adjusted to 0.

The optimization problem is solved using the Simultaneous Perturbation Stochas-

tic Approximation (SPSA) algorithm.

5.3.3 Results

The quantification of error in model performance is important for the evaluation of

the calibration. After the model is calibrated, validation tests are carried out. The fit



to counts and travel times are computed across all reliable sensors and all available

floating car observations. The following two error statistics have been adopted to

measure the discrepancies between observed (y ) and simulated (Qi) quantities, where

S is the dimension of the unknown vector:

. Root mean square error (RMSE) (Pindyck and Rubinfeld, 1997)

RMSE = (5.2)

* Normalized root mean square error (RMSN) (Ashok and Ben-Akiva, 2002)Toledo

and Koutsopoulos, 2004)

(5.3)RMSN RMSE
(Ei_1yi)/S

The first 30 minutes of the study period (6:00am-10:00am) is used to warm up

and load the network. Thus the focus of the calibration and evaluation is limited to

6:30am to 10:00am.

A lower value of RMSE or RMSN indicates a lower discrepancy between the

simulation results and the observations. The calibration starting point in terms of

error statistics is given in Table 5.2:

Table 5.2: Starting values of model fit

No. of Obser- Observed Simulated RMSE RMSN
vations Average Average

Counts (Veh/15min) 1722 1236.07 424.38 968.23 0.8073
Link Travel Time (s) 52545 39.67 57.431 165.64 4.1567

The gain sequences and objective function weights were adjusted during the cal-

ibration to accelerate the process. The objective function value also usually changes

significantly right after an adjustment. Figure 5-9 shows the last 530 iterations of

SPSA, where the weights and gain sequences are kept constant. An improvement was

found, which indicates that the SPSA algorithm is appropriate and efficient for this

particular large scale problem.
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Figure 5-9: Trend of objective value for 530 iterations

Table 5.3 contains the error statistics on the fit to counts and fit to link travel

time across all time horizons.

Table 5.3: Overall calibration results

No. of Obser- Observed Simulated RMSE RMSN
vations Average Average

Counts (Veh/15min) 1722 1236.07 1153.20 427.00 0.345
Link Travel Time (s) 52545 39.67 37.42 18.40 0.464

The comparisons between simulated and observed counts by time horizon are given

in Table 5.4. An intuitive illustration is given in Figure 5-10 for the fit-to-counts

during the peak periods between 8:30 to 9:00AM. The x-axis shows the observed

sensor counts and the y-axis is the calibrated sensor counts. The 45-degree line

indicates a perfect match between the simulated counts and the observed counts. The

sensors with counts deviating more than 50% from the observed values were marked

with sensor numbers. Most of the observed and simulated sensor counts fall around

the 45 degree line, indicating that most of the deviations between the simulated and

observed counts are within an acceptable range. The complete calibration results for

all time periods are presented in the Appendix B.

Figure 5-11 shows the RMSN and RMSE of counts at different flow rates. The

first group gives the overall calibration result, and the remaining ones are by flow

rate levels: high (>1400veh/15min), medium (1000-1400 veh/15min),and low (0-
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Figure 5-10: Calibration results for the peak periods

1000 veh/15min). The best fit to count is in the flow rate between 1000-1400 vehi-

cles/15min, in which the RMSN is around 28%.

A similar analysis on floating car travel time was conducted and is shown in Figure

5-12. The travel times are grouped into 4 categories: 0-20s, 20-40s, 40-60s and longer

than 60s. The best fit for travel time is reached in the category with link travel times

between 40-60s, with a 33.8% RMSN.

An in-depth analysis was also performed on the path travel time in order to better

evaluate the model capabilities for replicating realistic traffic situations. The floating

car data are given in the form of link by link travel time, and not every link in an GD

path has floating car data available. In order to carry out path travel time analysis,

we have to check the data availability for any given set of paths for an GD pairs. In

our case, the path set for each GD pairs was generated by DynaMIT-P. Among them,

313 paths, with floating car data available were chosen for analysis. The comparison

between simulated and observed path travel time is given in Figure 5-13. Most of

the red asterisks are around the 45 degree line, indicating a good match between the

simulated path travel time and the observed data.

Sensor Counts from 08:45:00 to 09:00:00
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Figure 5-11: Fit to counts analysis
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Figure 5-12: Fit to link travel time analysis



Table 5.4: Fit-to-counts by time interval

Time Interval Observed Simulated RMSE RMSN
Average Average

6:30-6:45 889.94 756.85 413.67 46.48%
6:45-7:00 1064.16 965.29 398.24 37.42%
7:00-7:15 1165.74 1111.72 399.69 34.29%
7:15-7:30 1231.92 1186.87 423.23 34.36%
7:30-7:45 1274.23 1203.71 448.35 35.19%
7:45-8:00 1281.68 1199.35 456.27 35.60%
8:00-8:15 1263.04 1208.94 434.56 34.41%
8:15-8:3 1276.67 1203.15 444.77 34.84%
8:30-8:45 1273.45 1215.68 415.31 32.61%
8:45-9:00 1292.26 1216.91 430.70 33.33%
9:00-9:15 1304.49 1223.17 421.75 32.33%
9:15-9:30 1324.79 1215.67 428.63 32.35%
9:30-9:45 1331.69 1215.35 427.83 32.13%
9:45-10:00 1331.00 1211.09 430.72 32.36%

5.4 Application Analysis

After calibrating our model, we conducted an analysis to evaluate the Rotating No-

Driving Day restriction scenario in Beijing. This restriction is a strategy proposed by

the Beijing municipal government to reduce pollution and relieve traffic. Implemented

as part of a six-month trial that took effect after the 2008 Olympics, it prohibit private

cars from being on the roads one weekday per week according to a rotation schedule

based on license plate numbers. For example, cars with a license plate number ending

with 1 or 6 were not allowed to be on the road on Mondays. Those with plate numbers

ending in 2 or 7 were banned from the roads on Tuesdays, and so on. This restriction

reduced Beijing's 3.5 millions car network demand significantly.

To model this scenario, we decreased the demand by 20%, assuming that the last

digit of the license plate number is randomly and evenly distributed. We then com-

pared the simulation results of different scenarios with a base case with no restrictions.

The results are presented as follows.

We focused on the two most congested areas of interest for transportation man-

agement: the TianNingSi area (Figure 5-14) and XiZhiMen area (Figure 5-15). The
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Figure 5-13: Fit to path travel time analysis

pictures are screenshots of the simulation results during the same time period, for

different scenarios, in each location. The pictures on the left present the results of

the Rotating No-Driving Day restriction. The pictures on the right present the con-

trol case without any restriction. As shown in the legend, the color of the segment

denotes its density, with red indicating high density and thus severe congestion. It is

shown that the reduction of demand resulted in significant drops in traffic densities.

Quantitative analyses were also performed. To analyze the impacts of imposing

the Rotating No-Driving Day restriction in terms of alleciating traffic congestion,

two criteria are considered: the average travel time and the number of links with

long queuing times. The queuing time of a link is defined as the amount of time

during which the link has one or more lanes containing queues. In the scenario with

restrictions, the traffic demand was reduced by 20%. However, the number of vehicles

that reached their destination during the simulation time period (i.e., 550,588, as

shown in Table 5.5) was only 8.4% less than the control case. This implies that the



(a) Restricted Case (b) Base Case

Figure 5-14: Application analysis in TianNingSi Area, 7:00AM

Rotating No-driving Day restriction reduced network demand and increased network

efficiency. The average travel time was aggregated from the travel time of every

vehicle that reaches its destination within the simulation time period. The average

travel time under the restriction scenario is about 2 minutes less (17.9%) than the

control scenario. We also calculated the average travel times for some major OD

pairs. For example, the average travel time from the south end (Origin Point: 1662)

to the north end (Destination Point: 1624) was 2701.1 sec, which is a 20% reduction

compared to the base case. In addition, the number of links with queuing times longer

than 30 minutes was reduced by 50% under the restriction scenario. Overall, based

on the simulation results, imposing such a restriction could significantly increase road

efficiency and reduce congestion. This case study demonstrates the enhanced DTA

model's ability to evaluate traffic management strategies.



(a) Restricted Case (b) Base Case

Figure 5-15: Application analysis in XiZhiMen Area, 7:15AM

Table 5.5: Analysis of Rotating No-Driving Day Restriction

With Restriction No Restriction
Number of vehicles reaching des- 550,588 601,622
tinations (veh)
Average Travel Time for All OD 497.73 606.89
pairs (s)
Average Travel Time for OD pairs 2701.1 3393.5
from South end to North end
Number of links with queuing 58 112
time >30 min



88



Chapter 6

Conclusion

6.1 Summary

Despite the increasing demand for traffic management and planning tools as traffic

congestion increases in urban cities, there has been little to no research in dealing

with highly congested, large-scale urban traffic networks.

This thesis discusses the enhancements of DTA model, in order to have the ca-

pabilities of simulating such a network, contributing to its effective planning and

management. The enhancements were validated through a case study on a traffic

network in the downtown area of Beijing, China. At first, attempts to simulate the

studied network resulted in heavy gridlocks that did not exist in the real-world. We

were able to identify several model features contributing to the problem, which in-

clude 1) a route choice model which can account for overlapping routes, 2) explicit

representations of lane groups to properly model traffic queues and spillbacks, 3) the

ability to handle short links, 4) maintaining enough loader access capacity to avoid

artificial bottleneck and 5) the impacts of bicycles and pedestrians on auto traffic

modeled by calibrated dynamic road segment capacities.

Unrealistic congestion on the freeway was resolved. We identified the route choice

bias on overlapping segments generated by MNL model. Usually, a large-scale com-

plex network does not abide by the i.i.d assumption required by MNL model because

there are a large number of overlapping paths that share the same freeway links.



We revised the route choice model by incorporating PSL model to accounts for the

overlapping paths.

We also implemented a lane-group-based queuing feature that captures the specific

lane turning restrictions. This stopped spillbacks from one lane-group from affecting

traffic in another lane group, and decreased the congestion in the simulation.

Short links, some as short as one car length, caused a major problem in the

simulation, as they showed that vehicles moved abnormally slow and non-existent

queuing. We increased the minimum speed of vehicles traversing through short links

by enhancing the speed-density function to realistically represent the dynamics within

a short link. In addition, we treated the queuing problem using a revised capacity

model so that the output capacity and acceptance capacity would be able to reflect

real-world traffic behavior. The speed-density and capacity functions normally used

were not appropriate for short links because of the inherent different between long

segments (which are used for transport) and short links (which are connectors between

long road segments).

The high user demand problem was associated with the network simplification

process. In the simulation, it would be too time and computationally demanding

to reflect every single roadway in a network. Therefore, some minor or neighbor-

hood roadways are eliminated. However, this also eliminates network capacity, which

combined with the high user demand, caused non-existent traffic jams. By adding

centroid connectors, which signified capacity, while still allowing for network simpli-

fication, the congestion was eliminated.

A distinguishing factor about Beijing, is the large volume of non-motorized traffic

resulting for pedestrians and bicyclists. To simulate this phenomenon, we introduced

dynamic output capacity into the DTA model, which was able to capture the time-

of-day dependent dynamics of the mixed traffic conditions.

After addressing the main problems that we encountered, the enhanced DTA

model was applied to a real world network. The network we used to validate the

enhancements was the West 2nd Ring Road in Beijing, China, and its northern and

southern extensions. The BTRC provided surveillance data including traffic counts



and FCD from six weekdays in December, 2007, from 6:00-10:0OAM. Model was

calibrated offline using SPSA algorithm. The total number of calibration variables

for this specific case study is 69,093. The effectiveness of the SPSA algorithm was

proved to be acceptable for large-scale problem.

Finally, in order to test the newly enhanced model capability of evaluating manage-

ment strategies for transportation planning, the model was applied with a new traffic

reduction policy implemented in Beijing after the 2008 Olympics, which restricted

private vehicle usage based according to a weekly rotation plan based on license plate

numbers. The simulation results were reflective of the real-world traffic results, indi-

cating that the new DTA enhancements were effective and that DynaMIT-P is now

applicable for large-scale, highly congested urban networks.

6.2 Future Research Directions

The realism of the enhanced model and the efficiency of the calibration algorithm

have been demonstrated in this thesis. Further research directions are suggested:

" Develop and calibrate a new route choice model using individual trajectory

data. As a key component of a DTA model, the route choice model is critical

for an accurate prediction of traffic congestion and for the estimation of origin

destination flows. In this thesis, the route choice model parameter was cali-

brated using aggregate data such as sensor counts and floating car travel times.

The route choice model can also be estimated based on disaggregate data at

the individual level, which provides detailed behavioral information generally

unavailable at an aggregate level. The estimated route choice model parameters

can serve as a good starting point for the overall aggregate calibration and is

expected to improve the calibration quality.

" In DynaMIT-P, traffic congestion is caused by limited capacity, either the ex-

plicit exit capacity at the end of a segment or the implicit capacity determined

by the speed-density relationship. In the first case, queues will form on the



segment because of insufficient output capacity. In the second case, vehicles

traverse on the congested segment at a very low speed but still in the moving

part of the segment. The current calibration results show a possible underesti-

mation of the implicit capacity. Future calibration should start with different

sets of speed-density relationship parameters that imply higher capacities.

" Although SPSA proved to be suitable for large scale calibration problem in this

thesis, the effectiveness of the algorithm in converging the objective function

value with the global minima still needs to be improved. Some experiences

indicate that the SPSA can effectively converge the objective function value

with the local minima rather than the global minima(e.g. a much better solution

can be obtained by changing the initial free-flow travel time and kmin). It

is worthwhile to investigate improvements in SPSA, such as automatic gain

selection, "second-order" SPSA, as well as alternative calibration algorithms

for high-dimensional stochastic problems.

" Higher quality and additional input data. Input, including enhanced network

coding and more accurate surveillance data, are expected to improve model

accuracy. Currently, there are only 6 days of surveillance data available in this

study, including traffic counts and link travel times. It will be a benefit if more

data can be utilized in the model development and calibration process.

" Speeding up the simulation using scalable DTA solutions (Wen, 2009). The

running time is a major limitation on the calibration performance. Within a

certain time period, the more calibration iterations that could be done, the

faster the objective function value converges. Then it will be easier to test new

enhancements for the model.



Appendix A

MATLAB Code for SPSA

Algorithm

XMatlab code for SPSA calibration. Based on J.C. Spall, Jan. 2000

XZheng Wei, Dec.2009 Revise Ratio Version

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XThis code implements SPSA with constraints for theta to lie in

Xa specified hypercube (i.e., component-wise constraints). Allows for multiple cases

Xfor purposes of statistical evaluation based on knowledge of true (noise-free) loss value

X(set cases=1 if user only wants one run).

clearXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX5

clear all

global

global

global

global

global

global

global

global

global

noODs

no-intervals

no-segments

no-groups

no.other-params

demand-factor

paramsPerDay

day

counter-glob;

# OD pairs

# Time intervals

# Segments (spddsy)

# Segment groups

# other parameters

scaling factor for demand

# parameters to be calibrated per day of data

counterglob = 0;

day = 2;

% Set runnning parameter



RunType =2; XO:start from seed file

X1:Continue from last calibration iteration

%2:Continue from DynaMIT input file

n=30; %total no. of loss measurements

cases=1;

grad.reps =1; X no. of reps for averaging the gradient approximation

alpha =.602;

gamma =.101; Xchosen by standard guidelines

a=10^(-10)*(50+1)~0.602;

A=50;

E Pre-set parameters for calibration
noODs = 2927;

no-intervals 16;

no.segments = 3180;

no-groups = 3180;

demand-factor = 4;

no.other.params = 1;

paramsPerDay = noDs*no-intervals + no.segments + 6*no-groups + no-otherparams;

XLoad Weights (Optional)

weights-theta = ones(paramsPerDay,1);

XGenerate C

c = 0.01;

X Start at the SPSA directory

if (RunType == 0 || RunType == 1)

X load input information

load seed/od-seed.dat;

load seed/capseed.dat;

load seed/spddsy-seed.dat;

load seed/param-seed.dat;

rtchoice-param = 1000*(0-param-seed(1:1));

theta_0-dynamit = [od-seed; cap-seed; spddsyseed; rtchoiceparam];

if (RunType ==0)

theta_0_spsa = ones(paramsPerDay,1);

p = length(theta_0_spsa); X Set p, the dimension of the parameter vector

cd DynaMIT

od = [noODs;no-intervals;demandfactor;odseed];



cap = [no-segments;cap-seed];

system('rm ODvector.dat');

system('rm cap-vector.dat');

system('rm spddsy-vector.dat');

system('rm rt-choice.dat');

save OD-vector.dat od -ascii;

save cap-vector.dat cap -ascii;

save spddsy.vector.dat spddsy-seed -ascii;

save rt-choice.dat paramseed -ascii;

cd ..

Xjnitial Objective Value

initial-fn-value = FUNC(theta_0_dynamit);

tmp-x = theta_0_spsa';

tmp-fn = initial-fn-value;

save Results/fn-theta_0.dat tmp-fn -ascii;

XInitialize

x-values = [];

fn-values =

fn-path =[;

fn-path = [fn-path; initial-fnvalue];

grad-log = [];

deltas = [];

nstart = 0;

else

%load last time information

load Results/x-final.dat;

load Results/fn-path.dat;

theta_0_spsa = x-final; X

p = length(theta_0_spsa); X Set p, the dimension of the parameter vector

nstart = length(fn-path); X continue from iteration n

counter-glob = (nstart-1)*3+1; Xset the global counter

initial-fn-value = fnpath(nstart,1);

tmp-x = theta_0_spsa';

tmp-fn = initial-fn-value;

save ./Results/fn-thetaO.dat tmp.fn -ascii;

x-values = [];



fn-values = [];

grad-log [];

deltas

end

elseif(RunType == 2)

% load input information from DynaMIT directory

cd DynaMIT

load rt-choice.dat;

load spddsy-vector.dat;

load cap.vector.dat;

load OD-vector.dat;

od-seed = ODvector(4:length(OD.vector));

spddsy-seed = spddsy-vector;

cap-seed = cap-vector(2:length(capvector));

rtchoiceparam = rt.choice;

% Pre-set parameters for calibration

noODs = ODvector(l);

no-intervals = OD-vector(2);

no-segments = capvector(i);

no-groups = length(spddsy-seed)/6;

demand-factor = OD-vector(3);

no-other-params = length(rtchoice.param);

paramsPerDay = noODs*no-intervals + no-segments + 6*no-groups + no-otherparams;

XLoad Weights (Optional)

weights-theta = ones(paramsPerDay,1);

thetaOdynamit = [od.seed; cap-seed; spddsyseed; rtchoice-param];

theta_0_spsa = ones(paramsPerDay,1);

p = length(theta_0_spsa); X Set p, the dimension of the parameter vector

cd ..

XInitial Objective Value

initial-fn-value = FUNC(theta_0_dynamit);

tmp-x = theta_0_spsa';

tmp_fn = initial-fn-value;

save ./Results/fnthetaO.dat tmp_fn -ascii;



XInitialize

x-values = [;

fn-values =

fn-path =];

fn-path = [fn-path; initial_fn-value];

grad-log =

deltas = [];

nstart = 0;

end

magscale = 1; X we scale delta by this percent of parameter magnitude

lossfinalsq=O; Xvariable for cum.(over 'cases')squared loss values

lossfinal=0; %variable for cum. loss values

%Lower bound

lb = [];

lb = [lb; theta_0_spsa(1:noDs*no-intervals)*0.5]; XOD

lb = [lb; theta_0_spsa(no_0Ds*no-intervals+1:noODs*nointervals+no-segments)*0.5]; Xcapacity

lb = [lb; theta_0_spsa(noODs*no-intervals+no-segments+1:paramsPerDay-1)*0.1]; Xspddsy

lb = [lb; theta_0_spsa(paramsPerDay,1)*0.5]; Xbehavior

%Upper bound

ub = [];

ub = [ub; theta_0_spsa(1:noDs*no-intervals)*2]; XOD

ub = [ub; theta_0.spsa(noODs*nointervals+l:noODs*nointervals+nosegments)*2]; %capacity

ub = [ub; thetaOspsa(noODs*nointervals+no-segments+l:paramsPerDay-i)*10]; %spddsy

ub = [ub; thetaOspsa(paramsPerDay,1)*1.5]; Xbehavior

theta.lo.spsa = lb;

theta-hi-spsa = ub;

%Main Loop

for i=l:cases

theta = theta..Ospsa; % Start at seed parameter values

for k= nstart:nstart+n-1

ak = a/(k+1+A)^alpha;

ck = c/(k+l)~gamma;

ck = ck.*weights-theta;

ghat = zeros(paramsPerDay,1);

tmp-fn-grad-reps = []; X Store the fn values for averaging



for xx = 1:grad-reps,

delta = 2*round(rand(p,l))-1;

deltas = [deltas; (ck.*delta)'];

save ./Results/deltas.dat deltas -ascii;

thetaplus = theta + ck.*delta;

thetaminus = theta - ck.*delta;

% These four lines below invoke component-wise constraints

thetaplus=min(thetaplus,theta-hi-spsa);

thetaplus=max(thetaplus,theta_lo-spsa);

thetaminus=min(thetaminus,theta-hi-spsa);

thetaminus=max(thetaminus,theta_lo_spsa);

X Store the three x values

tmp-x = [thetaminus' tmp-x thetaplus'];

x-values = [x-values; tmp-x];

tmp-x = theta'; X reset to theta for next grad rep

yplus=FUNC(thetaplus.*theta_0_dynamit);

yminus=FUNC(thetaminus. *theta_0_dynamit);

X Store the two fn values

tmp_fn = [yminus yplus];

tmp-fn-grad-reps = [tmp-fn-grad-reps; tmp-fn];

thetadif = thetaplus - thetaminus;

ghat= ghat + ((yplus - yminus)./ thetadif);

end X end of reps for grad averaging

aa = mean(tmp-fn-grad-reps(:,1:1));

bb = mean(tmp-fn-grad-reps(:,2:2));

tmp_fn = [aa bb];

fnvalues = [fnvalues; tmpfn];

ghat = ghat/grad-reps;

grad-log = [grad-log; ak*ghat'];

save ./Results/grad-log.dat grad-log -ascii;



theta=theta-ak*ghat;

X Two lines below invoke component-wise constraints

theta=min(theta,theta_hi_spsa);

theta=max(theta,theta.lo-spsa);

path-y = FUNC(theta.*theta_0_dynamit);

fn-path = [fn-path; path-y];

Xcd(maindir);

save ./Results/fn-path.dat fn-path -ascii;

X Reset tmp.x and save xvalues, fn-values to disk

tmp-x = theta';

save ./Results/x-values.dat x-values -ascii;

save ./Results/fn-values.dat fn-values -ascii;

end % iterations (k = O:n-1)

X save current fn values (at theta)

save ./Results/x-final.dat theta -ascii;

lossvalue=path-y ;

lossfinalsq=lossfinalsq+lossvalue^2;

lossfinal=lossfinal+lossvalue;

end X replications (i = 1:cases)

X Display results: Mean loss value and standard deviation

disp('mean loss value over "cases" runs')

final-fn = lossfinal/cases

save ./Results/final-fn.dat finalfn -ascii;

save ./Results/final-c.dat c -ascii;

if cases > 1

disp('sample standard deviation of mean loss value')

sd=((cases/(cases-1))^.5)*(lossfinalsq/cases-(lossfinal/cases)^2)^.5;

sd=sd/(cases^.5)

else

end



XObjective Function Evaluation For BTRC Project

%By Zheng, Dec 19th, 2009

XWe don't use the first 2 intervals

function y = FUNC(X)

noODs

no-intervals

no-segments

no-groups

no-other-params

paramsPerDay

day

counter-glob;

main-dir

OD pairs

Time intervals

Segments

Segment groups

other parameters

parameters to be calibrated per day of data

counter-glob = counter-glob + 1

n-iterations = 1; % no. of runs over which averging is done

format long;

bigsum = 0;

z = 0;

XWeights

WeightFCD = 0.01;

WeightCounts = 1;

WeightSpeed = 1;

WeightPriori = 1;

day

CHANGEPARAMETERS(X);X Change Directory in it

for counter = 1:n-iterations,

str = ['./backupToDir'];

X tempdir' int2str(counterglob)];

system(str);

X Run DynaMIT-P

system('./DynaMITP dtaparam.dat');

X Compare the FCD data with eq-tt

100

global

global

global

global

global

global

global

global

global



XRead Equilibrium Travel time

eq-tt = dlmread('eq-tt.out', ' ', [4,0,no-segments + 3,272]);

load ../seed/FCD.dat;

XOrgnize data

EQTT=[];

for i=1:no-segments

EQTT(eq-tt(i,l),:) = eqtt(i,:);

end

diffFCD =0;

FCD-tt=[];

Simtt=[];

no-reliableFCD = 0;

[no_FCDdata,temp] = size(FCD);

for i=1:noFCD-data

link = FCD(i,1);

time = FCD(i,2) - 360+1;Xstarting from 6am 360

if (time>0 & FCD(i,3)>0 & EQTT(link,time+3:time+7)>0)

FCD-tt = [FCD-tt;FCD(i,3)];

Sim_tt=[Sim_tt;sum(EQTT(link,time+3:time+7))/5;

end

end

weightsFCD = ones(size(FCD-tt),1)*WeightFCD;

dev = FCD-tt - Sim-tt;

no-reliableFCD = length(dev);

diffFCD = dev'*(weightsFCD.*dev);

RMSEFCD = RMSE(FCD-tt,Sim-tt);

RMSNFCD = RMSN(FCD-tt,Sim-tt);

X Load and Compute Counts

X Load counts

load ../seed/countsseed.dat;

X Load Simulated Counts

for i = 1:nIntervals

str = ['load Sim' int2str(i) '.dat'];

eval(str)

end

sim-counts [];
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nSensors = length(sim1);

for i = 1:nIntervals

str = ['sim_counts = [simcounts; Sim' int2str(i) ']'];

eval(str);

end

counts-seed = counts-seed(2*nSensors+1:nIntervals*nSensors);

sim-counts = sim-counts(2*nSensors+1:nIntervals*nSensors);

dev = counts-seed - sim-counts;

reliable-data-index = find(countsseed > 0);

diff-counts = dev(reliable-data-index)'*dev(reliable-data-index);

no-reliable-data = length(reliable-data-index);

RMSE-counts = RMSE(counts-seed(reliable.data-index),sim-counts(reliable-data-index))

RMSN-counts = RMSN(counts-seed(reliable-data-index),sim-counts(reliable-data-index))

X Load and Compute speeds

% Load observed speed

load ../seed/speedsseed.dat;

X Load Simulated speeds

cd output/;

load sen-spdEst_060000-100000.out;

spd = sen-spdEst_060000_100000;

spd.sim = [;

cd .. ;

[n nSensors] = size(spd)

nSensors = nSensors - 1

nIntervals;

for i = 1:nIntervals

for j = 1:nSensors+1

mini = (i-1)*min-interval + 1

min2 = mini + min-interval - 1;

avg = 0;

for k = min1+1:min2+1

avg = avg + spd(k,j);

end

avg = avg / min-interval;

spd-sim = [spd-sim; avg];

end

end
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spd-sim(isnan(spd-sim)) = 0;

weightsSpeed = ones(size(speedsseed),i)*WeightSpeed;

%Do not calculate the first 2 intervals

speeds-seed = speedsseed(2*nSensors+l:nIntervals*nSensors);

spd-sim = spd-sim(2*nSensors+l:nIntervals*nSensors);

dev = speeds-seed - spd-sim;

diffSpeed = dev(reliable-data-index)'*dev(reliabledata-index);

reliable-data-index = find(speeds-seed > 0);

no-reliable-data = length(reliable-data-index)

RMSESpeed = RMSE(speeds-seed,spd-sim)

RMSN.Speed = RMSN(speeds.seed,spd-sim)

% Add to total

bigsum = bigsum + diffFCD + diff-counts;%+ RMSESpeed;

end

cd ../Results

if(counter-glob == 1)

fnFCD = [];

fnCounts

fnSpeed = [];

fnFCD = [I diffFCD];

fnCounts = [1 diff-counts];

fnSpeed [1 diffSpeed];

fnRMSE =

fnRMSN = [];

fnRMSE = [1 RMSEFCD RMSE-counts RMSESpeed];

fn_RMSN = [1 RMSNFCD RMSNcounts RMSNSpeed];

save fnFCD.dat fnFCD -ascii;

save fnCounts.dat fnCounts -ascii;

save fnSpeed.dat fn_Speed -ascii;

save fnRMSE.dat fnRMSE -ascii;

save fnRMSN.dat fnRMSN -ascii;

else if( mod(counter-glob, 3) == 1 && counter-glob =1 )

load fn_FCD.dat;

fnFCD = [fnFCD ;counter-glob diffFCD];

103



save fnFCD.dat fnFCD -ascii;

load fnCounts.dat;

fnCounts = [fnCounts ;counter-glob diff-counts];

save fnCounts.dat fnCounts -ascii;

load fnSpeed.dat;

fnSpeed = [fnSpeed;counter-glob diffSpeed];

save fnSpeed.dat fnSpeed -ascii;

load fnRMSE.dat;

fnRMSE = [fnRMSE ; counter-glob RMSEFCD RMSE-counts RMSESpeed];

save fnRMSE.dat fnRMSE -ascii;

load fnRMSN.dat;

fnRMSN = [fnRMSN ; counter-glob RMSNFCD RMSN-counts RMSNSpeed];

save fnRMSN.dat fnRMSN -ascii;

end

end

cd

bigsum = bigsum/n-iterations;

y = bigsum; % Return total objective function for day
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Appendix B

Fit-To-Counts for Every

Simulation Interval

Sensor Counts from 06:30:00 to 06:45:00

0
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Observed Data of Sensor Counts (veh/h)

(a) 6:30am-6:45am

Sensor Counts from 06:45:00 to 07:00:00

1000 2000 3000
Observed Data of Sensor Counts (veh/h)

(b) 6:45am-7:00am

Figure B-1: Fit-To-Counts for 6:30 to 7:00
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Figure B-2: Fit-To-Counts for 7:00 to 8:00
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Sensor Counts from 08:15:00 to 08:30:00
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Figure B-3: Fit-To-Counts for 8:00 to 9:00
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Figure B-4: Fit-To-Counts for 9:00 to 10:00
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