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Abstract

We present a systematic framework to learn motion patterns based on vehicle tracking
data captured by multiple non-overlapping uncalibrated cameras. We assume that
the tracks from individual cameras are available. We define the key problems related
to the multi-camera surveillance system and present solutions to these problems:
learning the topology of the network, constructing tracking correspondences between
different views, learning the activity clusters over global views and finally detecting
abnormal events.

First, we present a weighted cross correlation model to learn the topology of the
network without solving correspondence in the first place. We use estimates of nor-
malized color and apparent size to measure similarity of object appearance between
different views. This information is used to temporally correlated observations, allow-
ing us to infer possible links between disjoint views, and to estimate the associated
transition time. Based on the learned cross correlation coefficient, the network topol-
ogy can be fully recovered.

Then, we present a MAP framework to match two objects along their tracks from
non overlapping camera views and discuss how the learned topology can reduce the
correspondence search space dramatically. We propose to learn the color transfor-
mation in la3 space to compensate for the varying illumination conditions across
different views, and learn the inter-camera time transition and the shape/size trans-
formation between different views. After we model the correspondence probability for
observations captured by different source/sinks, we adopt a probabilistic framework
to use this correspondence probability in a principled manner. Tracks are assigned
by estimating the correspondences which maximize the posterior probabilities (MAP)
using the Hungarian algorithm. After establishing the correspondence, we have a set
of stitched trajectories, in which elements from each camera can be combined with
observations in multiple subsequent cameras generated by the same object.

Finally, we show how to learn the activity clusters and detect abnormal activities
using the mixture of unigram model with the stitched trajectories as input. We
adopt a bag - of - words presentation, and present a Bayesian probabilistic approach



in which trajectories are represented by a mixture model. This model can classify
trajectories into different activity clusters, and gives representations of both new
trajectories and abnormal trajectories.
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Title: Bernard Gordon Professor of Medical Engineering
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Chapter 1

Introduction

1.1 Video Surveillance

In recent years, governments, corporations, and public service organizations have

spent increasing amounts of money on video surveillance systems to protect borders,

critical infrastructure, public transportation, malls, office buildings, and parking lots.

According to SearchSecurityAsia.coin, research shows that the video surveillance mar-

ket maintained a 10 percent growth despite the recession [1]. This rising interest also

leads computer vision researchers to focus on visual surveillance applications, which

has been one of the most active research topics in computer vision [2] [3] [4] in recent

years.

Traditional, most visual surveillance depends on a human operator to sift through

videos. It is a tiring, expensive, and tedious job, monitoring for unusual events

that rarely occur. Experiments run at Sandia National Laboratories for the US

Department of Energy study found that: "... such a task, even when assigned to

a person who is dedicated and well-intentioned, will not support an effective security

system. After only 20min, human attention to video monitors degenerates to an

unacceptable level" [4] , see Fig. 1-1. The sheer volume of these data impedes easy

human analysis, necessitating computer vision solutions to help automate the process

and assist operators.

The goal of an automatic visual surveillance system is to detect all people and



Figure 1-1: The spread of surveillance cameras leads to video information overload [4].
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meaningful objects in the monitored area, track them over time, and infer all the

relationships between them. It should be able to associate observations of an individ-

ual from videos taken days, months, or even years apart. It should be able to easily

detect individual activities like running, excessive loitering, or entering unauthorized

regions. It should also be able to detect activities involving multiple actors and/or

objects such as theft, violence, surreptitious coordination, or chasing. Further, it

should be able to characterize and detect larger scale events like crowd formation, a

panic, or shifting traffic patterns. Based on where the interesting areas are, how many

cameras are needed, and how far the cameras should be deployed from the monitored

sites, the visual surveillance systems can be categorized as:

" indoor versus outdoor: Based on the system's purpose, cameras can be de-

ployed indoor (such as stores, train stations, labs, shopping malls, etc.) or

outdoor (such as parking lots, highways, airports, etc.). An indoor surveillance

system is more focused on detecting, and recognizing people. For example, in

some security sensitive locations such as a governmental unit, an indoor camera

will be installed at the entrance. When somebody is entering, the surveillance

system will obtain the visitor's features, such as height, facial appearance and

walking gait from the video, and then decide whether the visitor can be cleared

for entry. An outdoor surveillance system is more focused on detecting, and

tracking moving objects (e.g. people and vehicles), and learning the long time

activity types. For example, a highway surveillance system can monitor the

traffic flow and the status of road congestion, which are of great importance for

traffic management.

" single camera versus multiple cameras. Based on the system's purpose, ei-

ther a single camera or multiple cameras will be used for surveillance. For

the indoor surveillance example mentioned above, one camera could fulfill the

task. However, the field of view (FOV) of a single fixed camera, or the field

of a single moving Pan-Title-Zoom camera are limited in large environments.

The straightforward goal of distributed systems with no overlapped cameras or



video sensor networks is to allow an extended view of the scene. With the grow-

ing availability of cheap sensors and processors, cooperative surveillance using

multiple cameras could be used to ensure the security of an entire community.

Considering a surveillance system located at a busy harbor, where are usually

about 1,000 ships in the port at any one time, we not only want to monitor the

dock areas, we also want to monitor the loading areas, and the ship activities

on the sea. One single camera in this case couldn't fulfill the task. And in

order to use minimum number of cameras with maximum coverage, multiple

non overlapping cameras should be deployed.

near field versus far field: Far-field tracking is primarily interested in ex-

tracting the position of many objects in situations where the objects are far

from the sensor and usually do not visually interact. Here the most significant

problems are determining the number of objects and learning correspondence

between multiple observations of the same objects. Near-field tracking is pri-

marily interested in modeling the configuration of the object over time. It is

often assumed that there is at most one object and the object is always com-

pletely visible. For example, consider a site on campus monitoring system versus

a face recognition system located at the entrance of a security building. For the

first case, cameras are usually deployed up high to monitor the site, and the

size of the moving objects is very small compared with their distances to the

camera, which will be considered as a far field system. However, for the second

case, in order to extract specific features such as facial expressions, a camera is

usually placed very near the people to get a high resolution of the face, and will

be treated as a near field system.

Sometimes, a visual surveillance system can belong to one or more of these categories.

For example, an indoor surveillance system, might be an indoor, single camera, near

field system. While for the highway surveillance system, it would be an outdoor,

multiple cameras, far field system. Our thesis work is concerned with surveillance

in an outdoor urban setting. In such cases, it is not possible for a single camera to



observe the complete area of interest because sensor resolution is finite and structures

in the scene limit the visible areas. Thus multiple cameras are required to observe

large environments. Even then it is usually not pcssible to completely cover large

areas with cameras. The number of cameras required increases exponentially with

the decrease in distance between the cameras. Therefore, there is a requirement for

handling non-overlapping fields of view (FOV) of the cameras. In this thesis, we

discuss and propose techniques for development of an automated non-overlapping

multi-camera surveillance system for outdoor environments.

1.2 Non-overlapping Multi-camera Surveillance Tasks,

Associated Challenges and Proposed Methods

A significant amount of research has been done on detecting, tracking and recog-

nize moving objects of interest [5][6] [7] [8] [10] [11] [18] [12] [13], and understanding and

describing the behaviors of objects [14] [76] [82] [77] [78] [87] [83] for single camera surveil-

lance systems. Besides these problems associated with single camera networks, there

are some distinguished tasks that need to be solved for non-overlapping multi-camera

networks.

1.2.1 Learning the Topology of the Network

Because of the development of technology, multi-camera visual surveillance applica-

tions are rapidly increasing in interest. Those applications include tracking moving

objects throughout a set of views, classifying those moving objects into different cat-

egories (i.e. cars, people, animals), learning the network topology, getting statistics

about the moving objects, and finally detecting and interpreting uncommon activi-

ties of the moving objects. In this thesis we are assuming tracking and classifying

moving objects in a single scene have been solved. In such kinds of camera networks,

to discover the relationship between the cameras is one of the most important issues

in developing the intelligent surveillance system.



Consider the problem of wide-area surveillance, such as traffic monitoring and

activity classification around critical assets (e.g. an embassy, a troop base, critical

infrastructure facilities like oil depots, port facilities, airfield tarmacs). We want to

monitor the flow of movement in such a setting from a large number of cameras, typ-

ically without overlapping fields of view (FOV). To coordinate observations in these

distributed cameras, first we need to know the connectivity of movement between

fields of view (i.e. when an object leaves one camera, it is likely to appear in a small

number of other cameras with some probability). In some instances, one can care-

fully site and calibrate the cameras so that the observations are easily coordinated.

In many cases, however, cameras must be rapidly deployed and may not last for long

periods of time. It is preferable that the system does not require camera calibration.

Also, maintaining calibration between a large network of sensors is a daunting task,

since a slight change in the position of a sensor will require the calibration process to

be repeated. Hence we seek a passive way of determining the topology of the camera

network. That is, we want to determine the graph structure relating cameras, and the

typical transitions between cameras, based on noisy observations of moving objects

in the cameras.

If we can in fact determine the "blind" links (i.e. links that connect the disjoint

views which cannot be observed directly) between camera sites, we can gather statis-

tics about patterns of usage in this distributed camera setting. We can then record site

usage statistics, and detect unusual movements. To determine the network topology

and to answer these questions, we must first solve the tracking problem, i.e. we must

maintain a moving object's identity from frame to frame, through the same camera

view, through overlapping camera views, and through non-overlapping camera views,

as shown in Figure 1-2. The bounding box shows the moving object. Within the field

of view (FOV), vehicles tend to appear and disappear at certain locations. These

locations may correspond to garage entrances, or the edge of a camera view, and

have been called sources and sinks, respectively [151. Based on the visible tracking

trajectories, one can easily learn the links between each source and sink[16].

As we discussed above, tracking through the same view and through overlapping



Figure 1-2: Tracking examples. The bounding box shows the moving object. The first row
shows tracking through the same view, the middle row shows tracking through overlapping
camera views, and the bottom row shows tracking through non-overlapping camera views.
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views has been widely studied [5] [6] [7] [8] [10][17] [18] [19] [20]. However, little attention

has been paid to the non-overlapping tracking correspondence problem. Good under-

standing of an activity requires knowledge of the trajectories of moving objects. For

the field out of view, however, the tracking correspondences are unavailable, even the

tracking trajectories are unavailable, which makes this problem harder. On the other

hand, the information on how the cameras are connected (i.e. the prior probabilities

of objects moving between cameras) will aid in solving the tracking correspondence

through different views, which make the problem interesting and challenging.

After observing the input vehicle tracking data, we have found the following facts:

first, physical characteristics (i.e. appearance) of moving objects do not change. Sec-

ond, vehicles running on the same route roughly share the same speed and other

trajectory characteristics. Finally, the trajectories of moving objects are highly cor-

related across non-overlapping views (i.e. vehicles are not randomly moving between

different views. If people want to drive from one location to another location, they

will usually chose the shortest and easiest path). With these observations in mind, we

proposed a weighted cross correlation technique. First, an coarse appearance model

is constructed by the combination of the normalized color and overall size model to

measure the moving objects appearance similarity across the non-overlapping views.

Then based on the similarity in appearance, votes are weighted to exploit the tempo-

rally correlating information between different views. The use of the moving objects'

appearance similarity will help to narrow down the voting space for the correlation.

From the learned correlation function, the possible links between disjoint views can

be detected and the associated transition time can be estimated. Finally, based on

the learned cross correlation coefficient, the network topology can be fully recovered.

1.2.2 Tracking through Different Cameras

The efficient tracking of multiple objects is a challenging and an important task

in computer vision. It has many applications in surveillance, video communication

and human computer interaction. The success of high lever system description (e.g.

event detection, and trajectory interpretation) relies on accurate tracking of moving



objects throughout the camera networks. A typical vehicle surveillance system of far

field wide areas requires the ability to track moving vehicles while observing them

through multiple cameras with non-overlapping field of views, known as the vehicle

re-identification problem. However, to re-establish a match of the same vehicle over

different camera views located at different physical sites is a challenging problem

because of the following reasons.

" First, the observations of an object are often widely separated in time and

space, when viewed from non-overlapping non calibrated cameras. Thus, unlike

conventional single camera tracking approaches, proximity in space and time

cannot be used to constrain possible correspondences.

" Second, the appearance of an object in one camera view might be very dif-

ferent from its appearance in another camera view due to the differences in

illumination, pose and camera properties.

" Third, in far-field settings, objects are small in size and the captured videos are

of low resolution and poor quality. It is difficult to compute more complicated

features, such as poses, gestures, and appearance of objects to facilitate the

correspondence problem.

In order to deal with these problems, we assume that the tracks of individual

cameras are available, and find the correspondences between these tracks in different

cameras such that the corresponded tracks belong to same object in the real world. We

propose a Maximum A Posteriori (MAP) estimation framework to combine multiple

cues (e.g. space-time, color, and shape/size) to model transitions between different

views for moving vehicles. The correspondence probability, i.e., the probability that

two observations originate from the same object, depends on the following informa-

tion:

* Color is a commonly used cue for tracking moving objects. As we will discuss in

Chapter 2, the color distribution of an object is a function of scene illumination,

object geometry, object surface material properties (e.g. surface albedo) and



camera parameters. Among all these, only the object surface material proper-

ties remain constant as the object moves across cameras. Thus, the observed

color distribution of an object can be fairly different when viewed from two dif-

ferent cameras. We use comprehensive color normalization to compensate color

change in different views to help solve the topology of the network. However,

if we aim to construct exact correspondence between observations, this method

doesn't suffice. We need to model the color transformation from one camera

to another camera more precisely. Unfortunately, for a given pair of cameras,

this transformation is not unique and also depends upon the scene illumina-

tion and camera parameters. In this chapter, we show that despite these large

number of parameters, for a given pair of cameras, all such transformations can

be modeled as a linear transformation in la#3 space (la#3 space is a color space

in which each of the channels is decorrelated with others, see more details in

Chapter 3). Then, we can fit an multivariate Gaussian model on parameters of

the linear transformation for 1, a, and # respectively. Hence, we can estimate

the probability of the color transformation between cameras.

Another commonly used cue for tracking is local features (i.e. edges, corners or

SIFT features [21]). As we will discuss in Chapter 2, for far-field surveillance,

however, even after successful detection, there are often very few image pixels

per object, which makes it difficult to model the local feature change throughout

cameras (see examples shown in Figure 1-3). However, we know for sure that a

sedan in one scene cannot be a truck in another scene, which means overall size

information still plays an important role in correspondence. Give the objects are

fairly small in far field settings, it is unlikely that we will be able to recover the

shape detail, so all we rely on is overall size measures. Here, we fit a best ellipse

to the shape using minimum volume enclosing ellipsoid method [73] [75] [74], to

model the shape/size change between different views. Alternatively, we could

match the templates of the models, but in general, given the small image size

of objects, the best ellipse suffices.



Figure 1-3: Tracking examples from different cameras. The tracking results are shown in

their bounding boxes. The resolution is so low that it is difficult to model the local features

throughout different cameras.

The topology of the camera network we have learned (see Chapter 2) will aid

in learning the correspondence problem. We already know that there exists an

average transition time from one sink/source in one camera view to another

sink/source in another camera view. This average transition time can be used

to constrain correspondences. We refer to this cue as a space-time or an in-

ter camera time cue. We propose to use a log normal distribution to model

the transition time between different views which we will discuss in details in

Chapter 3.

After we know how to model the correspondence probability for observations cap-

tured by different source/sinks, we adopt a probabilistic framework to use this cor-

respondence probability in a principled manner. Once again, the information about

the network topology will help us here. We only model the correspondence probabil-

ity of observations that are from the connected source/sinks (i.e. from the learned

topology, a pair of connected source/sinks means there exists a link between this pair

of source/sinks), which will dramatically reduce the search space and resolve ambi-

guities arisen from similar observations presented by different objects. Tracks are

assigned by estimating the correspondences which maximize the posterior probabili-

ties (MAP). This is achieved by using Hungarian algorithm to solve the association

matrix. After establishing the correspondence, we have a set of stitched trajectories,



in which elements from each camera can be combined with observations in multiple

subsequent cameras generated by the same object.

1.2.3 Activity Analysis and Abnormal Event Detection

The final step is to automatically determine when an observed scene contains unusual

or unexpected activity (for example, vehicle makes an illegal turn, people steal suit-

cases, etc.) which is the key and ultimate goal of any visual surveillance system. In

the past, this task was mostly performed by a human expert: someone familiar with

the scene who was able to recognize when something out of the ordinary occurred

(e.g. human operators). In recent years, there has been a growing trend in both

federal agencies and private firms to employ multiple video cameras for monitoring

and surveillance purposes. The system's effectiveness and response is largely deter-

mined, not by the technological capabilities or placement of the cameras but by the

vigilance of the person monitoring the camera system. The number of cameras and

the area under surveillance is limited by the number of personnel available. Also even

well trained people can't maintain their attention span for extended periods of time.

Thus, machine vision systems are needed to mine the collected data for any poten-

tially interesting activity. This has fostered a new area of machine vision research,

often broadly referred as surveillance, aiming at the statistical modeling of scenes and

activities.

Many methods have been introduced in the literature for event detection in surveil-

lance videos from single camera views[76] [82][77] [78] [87] [83]. Multi-camera event de-

tection still remains an emerging problem in real-life applications. Correlated activ-

ities across multiple camera views should be modeled collectively. This is because

by utilizing visual evidence collected from different views, global activity modeling

is more robust to noise and visual ambiguities than modeling activities separately

within individual camera views. Hence not only motion patterns (such as the com-

mon path for moving objects) in single cameras interest us, but how are the objects

moving between cameras (e.g. global motion patterns) interests us more. Especially,

when our research concerns detecting unusual activities, we need to focus on how to
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Figure 1-4: If a vehicle wants to move from Road A to Road B, it cannot make a left
turn at A and B's intersection which is prohibited, and must move through Road C to
Road B instead. Thus, an activity which a vehicle makes a direct left turn at A and B's
intersection would be an abnormal activity and should be flagged. If we only study the
activities captured by Camera 1 and 2 separately, this illegal activity will not get attention,
because the segments of this activity in Camera 1 and 2 are perfect normal in each view.
This example shows the necessity of studying the global motion patterns.
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monitor activities of objects in multiple scenes without overlap of views. Sometimes,

a combination of normal activities in their own view, does not necessarily lead to a

normal activity. Figure 1-4 shows an example. If a vehicle wants to move from Road

A to Road B, it cannot make a left turn at A and B's intersection which is prohibited,

and must move through Road C to Road B instead. Thus, an activity which a vehicle

makes a direct left turn at A and B's intersection would be an abnormal activity

and should be flagged. If we only study the activities captured by Camera 1 and 2

separately, this illegal activity will not get attention, because the segments of this

activity in Camera 1 and 2 are perfect normal in each view. This example shows the

necessity of studying the global motion patterns.

As we discussed above, we assume we have already solved the correspondence

problem, and stitched together the trajectories generated by every moving vehicle.

Given these trajectories, the last part is to incorporate all the sensor information into

the system (data fusion), learn the motion patterns, and be able to detect unusual

events. More specifically, given the long time observation data, we want to model

the overall scene (including the regions which cannot be covered by the sensors)

which includes, learning the common trajectories for the different types of moving

objects, building classifiers based on the trajectories and detecting anomalies. In

our wide-scale network setting, the whole tracks have been segmented into different

pieces of observed and un-observed tracks. Figure 1-5 gives one example. Rectangles

show three different observed views, view A, B and C respectively. Track A has been

divided into two observed segments, in View A and View B. Track B has been divided

into two observed segments as well, in View A and View C. Given this situation, how

can we compare these two tracks? It is not straightforward to extend from single

camera to multiple cameras. If we have world coordinates which can be given by

calibrated cameras, we can put these two tracks into the world coordinate system, and

use the traditional distance measurements such as Euclidean distance [76], Hausdorff

distance and its variations [77] [78], and hidden Markov model [79], to group the

trajectories into different activity categories by some standard clustering techniques

such as spectral clustering [82], and graph-cuts [83]. However, if such information is



view C

Figure 1-5: Examples of the whole tracks been segmented into different pieces of observed
and unobserved tracks. Rectangles show three different observed views, view A, B and C
respectively. Track A has been divided into two observed segments, in View A and View
B. Track B has been divided into two observed segments as well, in View A and View C.

unavailable, distance measurements can not be applied directly.

In order to solve this problem, we adopt a bag - of - words approach, and present

a Bayesian probabilistic method in which trajectories are represented by a mixture

model. This model can classify trajectories into different activity clusters, and gives a

representation of both new trajectories and abnormal trajectories. First, our method

defines a global codebook of observations that are representative of the entire set of

observations captured by different cameras. Using this codebook to represent our

continuous observations through different views, we can represent the likelihood of a

trajectory by a mixture of unigram model. By using the EM algorithm, we can learn

the model parameters, and label trajectories into different activity clusters. Finally,

we can detect abnormal activities if they do not fit any learned activity model well.
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Figure 1-6: Proposed multiple non-overlapping camera network surveillance framework.

1.3 Contributions and Thesis Organization

In our thesis, we present a systematic framework to learn motion patterns based

on vehicle tracking data captured by multiple non-overlapping uncalibrated cameras.

Figure 1-6 gives an illustration about our proposed multiple non-overlapping camera

network surveillance framework. We assume that the tracks of individual cameras

are available. We define the key problems related to the multi-camera surveillance

system and present solutions to these problems: learning the topology of the network,

constructing tracking correspondence between different views, learning the activity

clusters over global views, and finally detecting abnormal events.

In Chapter 2, we present a weighted cross correlation model to learn the topology

of the network without solving correspondence in the first place. First, an coarse

appearance model is constructed by the combination of the normalized color and

overall size model to measure the moving object's appearance similarity across the

non-overlapping views. Then based on the similarity in appearance, the votes for

cross correlation are weighted to exploit the temporally correlating information be-

tween different views. The use of the moving objects' appearance similarity will help

...................... ....... ............. .......



to narrow down the voting space for the correlation. From the learned correlation

function the possible links between disjoint views can be detected and the associ-

ated transition time can be estimated. Finally, based on the learned cross correlation

coefficient, the network topology can be fully recovered.

In Chapter 3, we present a MAP framework to match two objects along their

tracks from non overlapping camera views and discuss how the learned topology can

reduce the correspondence search space dramatically. We propose to learn the color

transformation in la3 space to compensate for the varying illumination conditions

across different views, and learn the inter-camera time transition and the shape/size

transformation between different views.

In Chapter 4, we show how to learn the activity clusters and detect abnormal

activities using the mixture of unigram model with the stitched trajectories as input.

We adopt a bag - of - words representation, and present a Bayesian probabilistic

approach in which trajectories are represented by a mixture model. This model

can classify trajectories into different activity clusters, and gives a representation of

both new trajectories and abnormal trajectories. First, our method defines a global

codebook of observations that are representative of the entire set of observations

captured by different cameras. Using this codebook to represent our continuous

observations through different views, we can represent the likelihood of a trajectory

by a mixture of unigram model. By using the EM algorithm, we can learn the model

parameters, and label trajectories into different activity cluster. Finally, we can detect

abnormal activities if they does not fit any learned activity model well.

We will discuss the limitations, future work and give concluding remarks in Chap-

ter 5.
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Chapter 2

Topology Learning

Because of the development of technology, multi-camera visual surveillance applica-

tions are rapidly increasing in interest. Among these applications, discovering the

relationship between the cameras is one of the most important issues. This Chapter

will discuss how to learn the network's topology using a weighted cross correlation

method.

2.1 Background Research

Most intelligent video surveillance systems deploy a network of cameras to monitor

a wide-area scene, e.g. underground station, airport, or shopping complex. In order

to use a minimum number of cameras, these cameras are usually deployed without

overlapping views. For global activity monitoring and situation awareness, it is cru-

cial to detect and model correlations among object activities observed across camera

views. Specifically, discovering multi-camera activity correlations will lead to under-

standing of both the spatial topology (i.e. between-camera spatial relationships) and

more importantly the temporal topology of a camera network, that is, we wish to

discover if an activity takes place in one camera view, what other activities it may

cause in different camera views and after what time delay. Discovering and modeling

such activity correlations among multiple camera views directly from data can facili-

tate moving object re-identification across disjoint camera views and global activity



analysis.

One possible approach to learn the connectivity or spatial adjacency of the camera

network is to use calibrated camera networks [22] [23]. Jain et al. [22] used calibrated

cameras and an environmental model to obtain the 3D location of a person. Collins

et al. [23] developed a system consisting of multiple calibrated cameras and a site

model, and then used region correlation and location on the 3D site model for tracking.

This kind of method usually requires detecting the same landmarks with known 3D

coordinates from different cameras and using a complex site model.

Another possible approach is to solve the tracking correspondence problem di-

rectly. Ali et al.[24] uses MAP estimation over trajectories and camera pose param-

eters to calibrate and track with a network of non-overlapping cameras. Huang and

Russell [25] present a Bayesian foundation for computing the probability of identity,

which is expressed in terms of appearance probabilities. Their appearance model is

treated as the product of several independent models, such as: lane of traffic, size,

color and arrival time. They have used a simple Gaussian model to measure the

transition probability between two disjoint views.

Javed et al. [26] adopted Huang and Russell's method[25] and used Parzen win-

dows to estimate the inter-camera space-time (i.e., transition time between two views)

probabilities and then solved the correspondence problem by maximizing the posterior

probability of the space-time and appearance.

Kang et al. [27] used a combination of appearance model and motion model to

track the moving objects continuously using both stationary and moving cameras,

then learned the homography between the stationary cameras, the moving cameras,

and finally estimated the affine transformation.

The above methods require that we establish the correspondence for individual

tracks between non-overlapping views. The correspondence assignment problem can

be found in time 0(ns) by formulating the problem as a weighed bipartite graph

matching problem (i.e. finding maximum weight pathes in the graph), which is diffi-

cult and time consuming. However, appearance information between different views

is still quite useful and should not be discarded.



Other approaches to estimate the spatio-temporal information use statistical models [28]

[29] [30] [31]. Petty et al. [29] proposed to estimate transition time from aggregate traf-

fic parameters in a freeway scenario. Westerman et al. [30] used cumulative arrivals

at successive detector sites to estimate vehicle arrivals. Ellis[31] proposed a two stage

algorithm to learn the topology: first detecting entry and exit zones in each view,

then temporally correlating the disappearance and reappearance of tracked objects

between those views to detect possible links. For these statistical methods, the per-

formance is only based on information of appearing and leaving times of the detected

moving objects at each soure/sink. It will not perform well under heavy traffic con-

ditions.

In this thesis, we first focus on how to learn the non-overlapping network topol-

ogy, which means to detect the possible "blind" links between disjoint views, and

how to determine the transition time (i.e., the time between disappearing at one lo-

cation and reappearing at the other location). Our learning is based on the following

observations:

1. Physical characteristics of moving objects should not change. For example, a

red sedan in one view is still a red sedan in another disjoint view, it cannot

become a white SUV.

2. Vehicles running on the same route roughly share the same speed and other

trajectory characteristics. Based on real road traffic, most vehicles on roads are

just following traffic. They will slow down and stop with a red light and will

speed up when the green light turns on. This will make the assumption that the

transition time from one location to another location is Gaussian distributed

reasonable.

3. The trajectories of moving objects are highly correlated across non-overlapping

views (i.e. vehicles are not randomly moving between different views). To be

more illustrative, suppose a vehicle wants to go from location A to location C

through location B. It will go directly from A to B and then to C, instead of



doing loops between A and B (i.e. from A to B, then to A, then to B) and

finally goes to C.

2.2 Cross Correlation

In statistics, the term cross correlation is sometimes used to refer to the covariance

cov(X, Y) between two random vectors X and Y, in order to distinguish that concept

from the "covariance" of a random vector X, which is understood to be the matrix

of covariances between the scalar components of X.

In signal processing, the cross correlation (or sometimes "cross-covariance") is a

standard method of estimating the degree to which two series are correlated, com-

monly used to find features in an unknown signal by comparing it to a known one[32].

Consider two discrete series x(i) and y(i) where i = 0, 1, 2...N - 1. The cross corre-

lation R at delay d is defined as:

i=N-1

R(d) = Xi * Yi+d (2.1)
i=O

If the above is computed for all delays d=0,1,2,...N-1 then it results in a cross

correlation series of twice the length as the original series.

There is the issue of what to do when the index into the series is less than 0 or

greater than or equal to the number of points (i + d < 0 or i + d > N). The must

common approaches are to either ignore these points or assuming the series x and y

are zero for i < 0 and i > N. In many signal processing applications, the series is

assumed to be circular in which case the out of range indexes are "wrapped" back

within range, ie: x(-1) = x(N - 1), x(N + 5) = x(5) etc. The range of delays d and

thus the length of the cross correlation series can be less than N, for example the aim

may be to test correlation at short delays only.



2.2.1 Cross Correlation Model

As mentioned in the Introduction, there are two observations: transition time from

one location to another location is Gaussian distributed; and the trajectories of mov-

ing objects are highly correlated across non-overlapping views. Under these two ob-

servations, we can see that the sequences of appearing vehicles under the connected

cameras (i.e. there exist routes directly connecting those cameras) are highly cor-

related. Since the cross correlation function can capture the degree of correlation

between two signals, we present a simple cross-correlation model to estimate the ex-

istence of possible blind links and the associated transition time between different

cameras.

For each traffic source/sink (i.e. locations where objects tend to appear in a scene

and locations where objects tend to disappear from a scene), traffic can be represented

as a discrete flow signal Vi(t), which is defined as the list of observations (see Figure

2-2) appearing in a time interval around time t at source/sink i. For each observation,

there are time, location and appearance information associated with it.

The cross-correlation function between signals Vi(t) and V(t) can indicate the

possibility of a link, and be used to estimate the transition time if there exists such

a link:

t=oo

Ri,(T) =E ||Vi (t)|* |V(t + T)| (2.2)
t=-oo

If there is a possible link between source/sink i and j, there should exist a clear

peak in Rij(T) at time T = t, where t denotes the typical transition time from

location i to location j. In this sense, a possible "blind" link from location i to

location j has been learned.

However, there are some limitations to this method. For example, it would not

perform well under heavy traffic conditions. To illustrate this problem, we present an

extreme situation as shown in Figure 2-1. Suppose at source/sink A, an yellow school

bus leaves every 5 minutes starting at 8am, while at source/sink B, a blue police car

appears every 5 minutes starting 8:01am, and there is no possible link between A and



Tronsition time: 60s
* Source A 0 * Sink B

appears every 5minutes since 8:01am

Figure 2-1: Example of the case which cross correlation doesn't work

B. However, if we use the cross correlation method directly, a possible link will be

learned and the learned transition time would be 60 seconds.

Intuitively, at different source/sinks, only those observations which look similar in

appearance should be counted to derive the spatio-temporal relation. In order to fix

this problem, we propose a weighted cross correlation technique (i.e. a technique that

counts appearance similarity information in it to narrow down the voting space), and

will discuss the details next.

2.3 Coarse appearance model

In order to measure appearance similarity between different views, first we need to se-

lect what appearance features to use, and then to construct an appearance model. The

far field vehicle tracking system we have been using is provided by Chris Stauffer[18].

The input to the tracking system is the video sequence, and the output of the tracking

system is a set of tracking sequences, where each track is a sequence of observations

of the same object (supposely) in the field of view. These tracks are provided as input

to our topology learning system. Some sample observations are shown in Figure 2-2.

In different views, the same object can appear dramatically different, not only

the size, but the color as well. In order to relate the appearance of an object from

view to view, the appearance model (i.e. color model, and size model) should be



Figure 2-2: Examples of observations captured at different views.

learned first. Learning the appearance model is carried out by assuming that there

exists some known correspondences between disjoint views. One way to achieve the

correspondence is by driving the same car around the environment. Another possible

way is to manually detect interesting vehicles (i.e. yellow cab, Fedex truck, blue bus)

across the disjoint views. Since we only need to model color and overall size, unlike

the traditional appearance-based correspondence method, which requires a significant

amount of known correspondence, only some small number of the best matches are

needed in the training phase.

2.4 Normalized Color Model

Various methods have been proposed to model the color change of moving objects

from one camera to another. For far-field vehicle surveillance, since a vehicle is the

only moving object and usually contains one color, a single color model per vehicle

would be sufficient. However, under different views, the same color may appear

dramatically different due to the lighting geometry and illuminant color. Based on this

consideration, we adopt a normalized color model. First, we use the comprehensive

color normalization(CCN) algorithm proposed by Finlayson et al. [33] to reprocess

the input color images.

2.4.1 Comprehensive Color Normalization Algorithm

This section gives details about comprehensive normalization algorithm and how this

algorithm works in our vehicle tracking data. The normalization algorithm is directly



replicated from the work of Finlayson [33]. To motivate this method, and to indicate

why it is well suited to our problem, we begin with a description of the method, which

we paraphrase from Finlayson et al. [33].

The light reflected from a surface depends on the spectral properties of the surface

reflectance and of the illumination incident on the surface. In the case of Lambertian

surfaces, the light is simply the product of the spectral power distribution of the

light source with the percent spectral reflectance of the surface. Assuming a single

point source light, combining together with illumination, surface reflection and sensor

function, forms a sensor response:

px gx(A)E(A)F(A)dA (2.3)

where A is wavelength, p is a 3-vector of sensor responses (rgb pixel value), F is the

3-vector of response functions (red, green and blue sensitivity), E is the illumination

striking surface reflectance Sx at location x. Integration is over the visible spectrum

w. Bar denotes vector quantities. The light reflected at x is proportional to E(A)Sx(A)

and is projected onto z on the sensor array. The precise power of the reflected light is

governed by the dot-product term ex -rx. Here, nx is the unit vector corresponding to

the surface normal at x and Ex is in the direction of the light source. The length of Ex

models the power of the incident light at x. Note that this implies that the function

E(A) is actually constant across the scene. Substituting qx,E for fSx(A)E(A)F(A)
allows us to simplify the above formula into:

It is now understood that qx,E is that part of a scene that does not vary with

lighting geometry (but does change with illuminant color). Equation 2.4, which deals

only with point-source lights is easily generalized to more complex lighting geometries.

Suppose the light incident at x is a combination of m point source lights with lighting

direction vectors equal to sxd (i = 1, 2,... , m). In this case, the camera response is

equal to:



p i,E __ x,E EX . 'x (2.5)
i=1

Of course, all the lighting vectors can be combined into a single effective direction

vector:

m

EX = E '' -> P,E _ x,Egx . x(2.6)

i=1

This equation conveys the intuitive idea that the camera response to m light

sources equals the sum of the responses to each individual light. Since we now un-

derstand the dependency between camera response and lighting geometry is a scalar

relationship dependent on e -nx, it is straightforward to normalize it:

_______ qx,E~x . x x,E(27

when pxE = (r, g b) then the normalization returns: (r±±+' r+g+b' r+gb>

Hence, we can define function RO:

I-.-
R(I) -= 3 ' (2.8)

Ek= I i,k

where I is an N x 3 image matrix with N image pixels, whose columns contain the

intensity of 3 RGB color channels.

Let us now consider the effect of illuminant color. If we hold lighting geometry,

the vectors ex, fixed and assume the camera sensors are delta functions: F(A)

6(A - Aj), i = (1, 2,3). Under E(A) the camera response is equal to:

pfE x Sx(A)E(A)(A - Ai)dA = ex - nxS(Ai)E(Aj) (2.9)

and under a different E1 (A):

pE e j SX(A)E 1(A)S(A - Aj)dA =s nESx(A)E1(Aj) (2.10)

Combining the above two equations together we can get:



£El lii)-Z, (2.11)

This equation informs us that, as the color of light changes, the values recorded

in each color channel scale by a factor (one factor per channel). It is straightforward

to remove the image dependence on illuminate color by function C(:

N/3I-,j (2.12)

Ek=1 'k,j

where I is an N x 3 image matrix with N image pixels, whose columns contain the

intensity of 3 RGB color channels. The N/3 here is to ensure that the total sum of

all pixels after the column normalization is N which is the same as that after the row

normalization. The comprehensive normalization procedure is defined as a loop:

1. I = I

2. do 1'+i = C(R(Is)) until 'I+1 = 1i

where function R(I) is defined in Equ.2.8, and function C(I) is defined in Equ.2.12

Note that after the iteration, we get a lighting geometry and illuminant color inde-

pendent image [33].

We applied this comprehensive color normalization algorithm to our vehicle track-

ing data. Two examples are shown in figure 2-3. Because HSV color model is more

similar to the way humans tend to perceive color, examples are shown in the HSV

color model. (a) is the two observations the same vehicle from two different views.

(b) is the color histograms before comprehensive color normalization. (c) is the color

histograms after the color normalization. Because of the huge illuminate difference

between the two views, we can see that the two histograms for Hue and Saturation

are quite different. After the normalization, however, the histograms for Hue and

Saturation match well.
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Figure 2-3: (a) are the two examples of two observations of the same vehicle from two
different views. (b) are the color histograms before comprehensive color normalization.
(c) are the color histograms after the color normalization. Because of the huge illuminate
difference between the two views, we can see that the two histograms for Hue and Saturation
are quite different. After the normalization, however, the histograms for Hue and Saturation
match well.

2.4.2 Color Model

After the color normalization procedure, we can define the color changePeojo through-

out any two different scenes in terms of the quadratic distance between the normalized

histograms of the observations [40]:

Dist(histl,hist2) = |histli - hist24| x sim(ij) x Ihistlj - hist2| I (2.13)

where i and j are indexes into the two histograms (hist1 and hist2). sim(i, j) denotes

the similarity between the quantized colors, represented by the histogram indexes

(a)



i and j. The color histogram quadratic distance is summed for all of the possible

combinations of i and j (depending on the histogram size), in order to obtain an

overall measure of histogram difference. Although this computation is somewhat

expensive, it allows for the testing of color closeness, as opposed to merely considering

exact color matches.

Then we can fit a multivariate Gaussian distribution on the quadratic distance

for H and S channels, to model the color change Pcolor:

Pcolor P(hcl, sci, hC2, SC2IQCi = OC2) (2.14)

=N (hc1 - hc2, 8ci - sC2)

where ci, ci are the camera 1 and 2. 0C1, OC2 are the detected observation under

camera 1 and camera 2 respectively. h, s are H and S information included in the

observation. Ph,, and Eh,, are the mean and variance respectively. And Oc1 = OC2

means those two observations are actually generated by the same object. For each

pair of different views, there is a multivariate Gaussian distribution associated with

it.

2.5 Size Model

For far-field surveillance, even after successful detection, there are often very few

image pixels per object, which makes it difficult to model the shape change between

cameras. However, we know for sure that a sedan in one scene cannot be a truck in

another scene, which means overall size information still plays an important role in

correspondence. Here we use width and length of the bounding box to measure the

overall size. This estimate of size is somewhat simplistic. However, given that objects

are fairly small in far field settings, it is unlikely that we will be able to recover the

shape detail, so all we rely on is overall size measures. Ideally, we should fit a best

ellipse to the shape, to account for orientation relative to the camera, but in general

given the small image size of objects, we find width and length to suffice.

We also adopt a multivariate Gaussian distribution to model the size change Psize.



Psize = P(wC1, JC 1 , WC2, C2 IOCi = OC2) (2.15)

Np~1, ,(wC1 - WC2, /C1 - /c2)

where wc1 ,lc1 are the detected vehicle's width and length under camera 1. , and Ew,,

are the mean and variance respectively. The imaging transformation of a perspective

camera leads to distortion of a number of geometric scene properties. As a result,

objects appear to grow larger as they approach the camera center and become smaller

when they are far away from the camera[34]. So in the sense of simple normalization,

the average size over the whole trajectory has been adopted, when we do the size

model.

2.6 Joint Probability Model

Given two observations oa and oi, where o' is the observation a from camera i and

oL is the observation b from camera j, the similarity in appearance between those

two observations can be calculated as the probability that these two observations

are actually generated by the same object, which is called "appearance probability",

denoted by P(Oa,i, obJIa = b). It is important to note that the appearance probability

is not the probability a = b.

Assuming that color and size information of each observation is independent, the

similarity in appearance between two observations can be described as the product

of the color and size similarity:

Psimiliarity (Oa,i, ObJ)

= P(oa,i, obJ la = b) (2.16)

= P(colora,i, colorb, la - b)P(sizea,i, sizebJ a = b)

= PcolorPsize

Now we know how to model the appearance change of objects from view to view,

and how to measure the similarity in appearance for two observations. This result will

be used to help explore the statistical spatio-temporal information (see next section).



2.7 Weighted cross correlation

After we know how to measure the appearance similarity of objects from different

views, we can count this information into the cross correlation function, and we name

it a weighted cross correlation function.

The weighted cross correlation technique is defined as

t=oo
Ri, (T) = E E E Psimiiarity (0a,i, ObJ) (2.17)

t=-oo o C (t) Obj Vj(t+T)

Specifically, for a pair of disappearing vehicles at source/sink i at time t and

appearing vehicles at source/sink j at time t+T, calculate the similarity in appearance

between those two observations and update Ri, (T). Then peak values can be detected

using the threshold estimated as:

threshold = mean(Rij(T)) + w * std(Ri,j(T)) (2.18)

where w is a user-defined constant.

In this work, we assume there is only one popular transition time if there is a link

between i and j. People in real life tend to choose the shortest path between the

start location and the destination, which makes the single transition time reasonable

with the assumption of constant velocity. Although we assume there is only one

popular transition time between two disjoint views, this weighted cross correlation

model can be applied to the cases with multiple transition times which will result in

multiple peaks in R(T). For our implementation, transition time is assigned with the

time associated with the highest detected peak. Figure 2-4 gives an example when

weighted cross correlation can detect a valid link, while general cross correlation fails.

After applying the general and weighted cross correlation function on the data from

two cameras located at an intersection, the results are shown in Figure 2-4 (a) and

(b), respectively. (b) has a clear peak which suggests a possible link with transition

time 11 seconds between those cameras, which (a) does not.

In this part, we learned how to use the weighted cross correlation model to estimate
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Figure 2-4: After applying the general and weighted cross correlation function on the data
from two cameras located at an intersection, the results are shown in Figure (a) and (b),
respectively. (b) has a clear peak which suggests a possible link with transition time 11
seconds between those cameras, which (a) doesn't.

the possible blind links and the associated transition time between disjoint views. We

will present experimental results in the next section using both real tracking data and

synthetic tracking data.

2.8 Experiments and Problems

In order to evaluate the proposed weighted cross correlation method, we have tested

it both on real data and synthetic data.

2.8.1 Real Data

For the real data experiment, we used three non-overlapping cameras distributed

around several buildings. The layout of the environment and the cameras' location

are shown in Figure 2-5. For each camera, we have 1 hour of vehicle tracking data

obtained from a tracker based on [18] every day for six days. There are total of

213 observations in camera(a), 1056 observations in camera (b), 1554 observations in
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Figure 2-5: (a),(b),(c) are the three non-overlapping cameras we have used. The cameras'

relative location is shown in (d) using the shaded quadrangle.

camera (c).

In our cameras, all the streets are two way streets, i.e. each source is also a sink.

For simplicity, we merge sources and sinks into groups of source/sinks. The detected

source/sinks in each camera are learned by clustering the spatial distribution of each

observation's trajectory's beginning and ending points (i.e. the appearing coordinate

and disappearing coordinate) using EM algorithm [15]. The detected source/sinks are

shown in Figure 2-6. For each source/sink, there is an associated Gaussian distribu-

tion with mean and variance. From the cameras' spatial relationship, we know that

there exists direct links between source/sink 3 and source/sink 4, source/sink 6 and

source/sink 7, and there is no other direct link among those sources/sinks. Visible

links can be easily learned using trajectory information. Our goal is to learn such

"blind" links.

Because we only focus on learning the "blind" link between disjoint views, we know

that the transition time must be non-negative which is determined by the nature of

traffic flow, i.e, the same vehicle must first disappear at one specific location, then

... .. ........

*1



Figure 2-6: Detected sources/sinks. Black arrows indicate direct links between source/sink
3 and source/sink 4, source/sink 6 and source/sink 7

can reappear at the other different location. However, if overlapping views have been

considered, the transition time may be negative.

For any pair of source/sinks, we can use the disappearing vehicles at one sink and

the appearing vehicles at the other source to calculate the weighted cross correlation

function. A possible link has been detected if there exists a significant peak in the

cross-correlation function (See equation 2.18, in our experiments, w is set to 2). Only

two possible links have been detected as shown in Figure 2-7. The left one gives

the cross correlation between camera b, source/sink 3 and camera c, source/sink 4,

with transition time 3 seconds. The right one shows correlation between camera c,

source/sink 6 and camera a, source/sink 7, with transition time 4 seconds. Figure

2-8 gives examples that do not indicate possible links. Notice that the detected

"blind" links don't include the links like the one between source/sink 10 to source/sink

6 through source/sink 7. The reason is that we have used the visible trajectory's

information. If we want to check the possible "blind" link between source/sink 10 and

source/sink 6, we would use the observations that leave the scene through source/sink
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Figure 2-7: Cross correlation functions between different views. Left one gives the cross
correlation between camera b,source/sink 3 and camera c, source/sink 4, with transition
time 3 seconds; Right one shows correlation between camera c, source/sink 6 and camera
a, source/sink 7, with transition time 4 seconds.

10 and the ones that enter the scene through source/sink 6, which wouldn't give the

link through source/sink 7. So the cameras' topology can be fully recovered.

2.8.2 Simulated Data

We also tested our algorithm on a simulated network. This simulator synthetically

generates the traffic flow in a real city street set (we couldn't disclose the city map

because of security issue), allowing for stop signs, traffic lights, and differences in

traffic volume (i.e. morning rush hours and afternoon rush hours have a higher

volume, as well as lunch traffic). The network includes 101 cameras which are located

at roads' intersections (including cross and T intersections). For each camera, there

are two observers that look in the opposite directions of the traffic flow (i.e. Observer1

and 2 belong to camera 1 , Observer 3 and 4 belong to camera 2, etc). Every observer

can be treated as a source/sink. Tracking data has been simulated 24 hours every

day for 7 week days, including 2597 vehicles (Fig. 2-9).

Transition time may change with the road condition. For example, it will be larger

during rush hour than during non-rush hour. So in our experiment, we only pick one

particular hour of data (10am to 11am) each day for 5 days. For each camera, the

only information we have is that vehicles appear then disappear from this location



Correlation between 2 and 8 CorreAtion between 3 and 9

41 ' , I I , 1
0 10 20 30 40 50

Tbne(seconds) TtmO(SeOnds)

Figure 2-8: Cross correlation functions that indicate no possible links.
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Figure 2-9: Statistics of the simulated data
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Figure 2-10: Cross correlation for each pair of the observers from 17,18,...,to 26. The
column index from left to right is: observer 17, observer 18 .... , observer 26; The row index
from up to bottom is: observer 17, observer 18 .... , observer 26.



Figure 2-11: The recovered topology based on the weighted cross correlation,the red cross
indicates the false link based on the group truth.

roughly at the same time (i.e. the duration is very short), so we can treat it like a

delta function.

For each pair of the observers, we first calculate the cross correlation function that

has been learned for each pair of the observers. A possible link has been detected if

there exists a significant peak in the cross-correlation function (See equation 2.18, in

our experiments, w is set to 2). Figure 2-10 shows the cross correlation results for

each pair of the observers from 17, 18,..., to 26, each row is the parent observer,

each column is the child observer, detected possible links are highlighted in black

background figures. From the detected links, however, the topology wasn't correctly

recovered(see Figure 2-11). For example, there are detected links from observer 25

to 22, from observer 22 to 23 and from observer 25 to 23. We don't know if the link

from observer 25 to 23 is actually through observer 22, or if there exists another link

between them.

2.8.3 Problems

Unlike the real data, this camera view has only one source/sink and we have no

information of any visible links, so we don't know where the vehicles are coming from



and where they are going. Hence all the vehicles have been used to calculate the

cross correlation function. Hence, some "fake" links which are actuary connections

between direct links have been detected. In order to get rid of those "fake" links and

recover the true topology, we further explore the cross correlation functions.

2.8.4 Data Processing Inequality and Cross Correlation Co-

efficient

Mutual information is also a measure of the dependence between two variables [39].

If the two variables are independent, the mutual information between them is zero. If

the two are strongly dependent, the mutual information between them is large. In the

information theory, for a Markov chain type topology between three random variables

X -+ Y -+ Z, we have I(X; Y) > I(X; Z), where I(X; Y) and I(X; Z) mean mutual

information between X and Y, and X and Z. This is called data processing inequality.

Considering our camera network problem, the mutual information of neighboring

cameras should be greater than non-neighboring cameras. It has been shown that

data processing inequality also holds true for the cross correlation coefficient [40],

which means the cross correlation coefficient of neighboring cameras should be greater

than that of non-neighboring cameras. We can use this property to refine the network

topology.

We already know how to estimate the weighted cross correlation Rj,(T). So if

there exists a clear peak in Rj (T) at time T = Tpeak, the correlation coefficient can

be estimated as:

2 Ri,j(Teak) - median(Rj(T)) 2.19
pi~j U y 9

Because the cross correlation function is under the assumption that the signals are

transient, which is not accurate for our case, we have used median of Rj,(T) instead

of mean of Rjj(T).



2.8.5 Overall Review of The Algorithm

From the data processing inequality, we know that the cross correlation coefficient of

neighboring cameras should be greater than that of non-neighboring cameras. Thus

we can cluster the cross correlation coefficients of all the detected links into two

categories based on the magnitude of the coefficients using k-means [?]. To implement

the proposed algorithm, four steps must proceed sequentially:

1. For each possible pair of source/sinks, learn the cross correlation function;

2. Detect the possible links using the peak detection algorithm;

3. For the detected links, estimate the cross correlation coefficients, otherwise, set

the cross correlation coefficient to 0;

4. Cluster the detected links into two categories: true links with higher coefficients

and false links with lower coefficients.

2.9 More Experiment on Simulated Network

We will recover the simulated network topology based on the weighted cross correla-

tion coefficients.

As we discussed before, for the simulated network (there is only one source/sink

per camera view), only using the weighted cross correlation function to detect a peak,

the topology cannot be correctly recovered.

So after the cross correlation function has been learned, cross correlation coeffi-

cients can be estimated as shown in Figure 2-12(a) with intensities corresponding to

the magnitude of the coefficient information between their pair of observations. The

brighter the figure, the higher the coefficient. From the data processing inequality, we

know that cross correlation coefficient for the neighboring cameras is higher than that

of the non-neighboring cameras. We then cluster the cross correlation coefficients of

all the detected links into two categories based on the magnitude of the coefficients
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Figure 2-12: (a) The adjacency matrix of the cross correlation coefficient information. (b)
The recovered corresponding topology.

using k-means. The cluster with higher coefficient would be used to recover the net-

work topology. Figure 2-12(b) is the recovered topology for observer 17 to observer

26. We can see that the link from observer 25 to 23 is actually through 22 which is

consistent with the ground truth. Table 6-1 shows the learned associated transition

time for each link. Finally, the fully recovered topology of the simulated network is

shown in Figure 2-13. Number means the index of the observers.

For the real data, since there are multiple source/sinks per camera view, which

means we can get information of visible trajectories, we can successfully recovery the

topology without calculating the cross correlation coefficient. If there is only one

source/sink per camera view (i.e. zooming in), or every camera view is treated as one

large source/sink, however, the cross correlation coefficient will be needed to learn

the network topology.

2.10 Summary

In this chapter, we have studied how to recover the network's topology given ve-

hicles' tracking data for non overlapping cameras. In order to solve this problem,

we proposed a weighted cross correlation technique. First, an appearance model is
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Parent observer Child observer Tran. time(Seconds)
18 19 21

18 22 23
18 26 11
20 17 20

20 22 10
20 26 17
21 17 24

21 19 14

21 26 20

22 23 21

24 21 20

25 17 10
25 19 19
25 22 18

Table 2.1: The learned associated transition time

constructed by the combination of the normalized color and overall size model to

measure the moving objects appearance similarity across the non-overlapping views.

Then based on the similarity in appearance, the votes are weighted to exploit the

temporally correlating information. From the learned correlation function the possi-

ble links between disjoint views can be detected and the associated transition time

can be estimated. Based on the learned cross correlation coefficient, the network

topology can be recovered.

This method combines the appearance information and statistics information of

the observed trajectories, which can overcome the disadvantages of the approaches

which only use one of them. This method also avoid doing the camera calibration,

and will help to solve the tracking correspondence between disjoint views, which we

will discuss in next Chapter.



Chapter 3

Correspondence between disjoint

views

This Chapter will discuss how to use a probabilistic framework to establish obser-

vation correspondence between disjoint views (i.e. tracking objects through disjoint

views).

3.1 Background Research

A large amount of work on multi-camera surveillance assumes overlapping views. The

earlier efforts to solve the correspondence in overlapping views is to use calibrated

cameras directly [43] [44] [47] [45]. Researchers later focused on how to use tracking data

to calibrate the multiple camera views [46] [48] [49]. Lee et al. [46] proposed to recover

the camera calibration information by matching motion trajectories obtained from

different views and to compute plane homographies from the most frequent matches.

Their method assumed that the the topological arrangement of camera views was

known[48]. Stauffer et al.[49] proposed to use an linear model to calibrate the cameras

automatically. All these methods assumed that camera views had significant overlap

and that objects moved on the same ground plane. This requirement is usually

prohibitive in terms of cost and computational resources for surveillance of wide

areas.



Huang and Russell [25] present a Bayesian foundation for computing the prob-

ability of identity, which is expressed in terms of appearance probabilities. Their

appearance model is treated as the product of several independent models, such as:

lane of travel, size, color and arrival time. They have used a simple Gaussian model

to measure the transition probability between two disjoint views. Our work is differ-

ent from this approach in that, Huang and Russel presented an application specific

solution i.e. vehicles traveling in one direction, vehicles being in one of three lanes

and solution formulation for only two calibrated cameras. We present a general solu-

tion, which allows movement in all directions for arbitrary numbers of un-calibrated

cameras. Moreover, appearance is modeled by just the mean color value of the whole

object, which is not robust enough to count for the illumination change between dif-

ferent views. Ali et al. [24] used a joint MAP estimation over trajectories and camera

pose parameters to calibrate and track with a network of non-overlapping cameras.

They modeled the dynamics of the moving object as a Markovian process. Given

the location and velocity of the object from the multiple cameras, they estimated the

most compatible trajectory with the object dynamics using a non-linear minimiza-

tion scheme. The authors assumed that the objects move on a ground plane and that

all trajectory data of the object is available, which is not suitable for online imple-

mentation. Their scheme also assumes that the correspondence of the trajectories in

different cameras is already known.

Javed et al. [26][50] adopted Huang and Russell's method[25] and used Parzen

windows to estimate the inter-camera space-time (i.e., transition time between two

views) probabilities and then solved the correspondence problem by maximizing the

posterior probability of the space-time and appearance. They proposed a subspace

based color brightness transfer function (BTF) which is also called histogram equal-

ization, then use probabilistic PCA to calculate the subspace of BTF's for a set of

training data to determine the correspondence. Cheng et al. [53] proposed to learn

a cumulative color histogram transformation of the disjoint views. Then they use an

incremental major color spectrum histogram representation (IMCSHR). Prosser et al.

[52] also use a BTF-based approach but accumulate training data before computing



the BTF. This cumulative BTF enables sparse color transformation to be preserved

through the BTF calculation process. All these methods are based on learning BTFs

between different views. BTFs are initially introduced in grey scale space. However,

with extension into color images, all these methods apply BTF independently to the

different bands of the color image, R, G, and B channel respectively, which do not

consider the correlation between these different bands [55][56][57][69].

Another important branch of object recognition methods is local feature based

methods [58][59][60][61][62]. Shan et al. [59] solved the vehicle correspondence prob-

lem by using multiple edge-based measures (distance, angular and magnitude differ-

ence) to compute the discriminative match scores between different vehicle images.

Shan et al. [62] continue to propose a method to match vehicles through an embedding

system without directly computing similarity between the two vehicle images. The

key idea of their work is to use non-metric distance embeddings of vehicle observa-

tions within a camera and their corresponding embeddings in another camera as a

means of characterizing similarities and differences between vehicles across cameras.

Guo et al. [58] extended this idea and claimed that their method doesn't require a

mapping function to align the matching scores. Guo et al. [60] utilized a compact set

of 3D models to provide geometry constraints and transfer appearance features for

object matching. Ferencz et al. [61] proposed a patch-based representation, where

they model the distribution of comparison metrics defined on the patches, then used

an online algorithm to select the most salient patches based on a mutual information

criterion to label the given image pairs as matching or not. Arth et al. [63] presented

a system to reacquire and track vehicles. They use PCA-SIFT to extract features

from a large set of samples, build the feature vocabulary tree, and match the samples

based on the tree. All these methods need to compute images' local features (i.e.

image edges, corners or SIFT feature), and wouldn't be robust and are not feasible

in our far field vehicle correspondence scenario because of the low resolution.

We propose a Maximum A Posteriori (MAP) estimation framework to combine

multiple cues (i.e. space-time, color, and shape/size) to model the transition between

different views for moving vehicles. Especially, we propose to model the color transfor-



mation in la3 apace. After we know how to model the correspondence probability for

observations captured by different source/sinks, we adopt a probabilistic framework

to use this correspondence probability in a principled manner. The information about

the network topology will help us here. We only model the correspondence probabil-

ity of observations that are from the connected source/sinks, which will dramatically

reduce the search space and resolve ambiguities arising from similar observations pre-

sented by different objects. Tracks are assigned by estimating the correspondences

which maximize the posterior probabilities (MAP). This is achieved by using the

Hungarian algorithm to solve the association matrix. After establishing the corre-

spondence, we have a set of stitched trajectories, in which elements from each camera

can be combined with observations in multiple subsequent cameras generated by the

same object.

3.2 Probabilistic Formulation of Correspondence

Problem

Suppose we have a system composed of a set C = {c1 , c2, .. . C m} of m cameras, which

cameras are not overlapped with each other. Unlike the approaches in [26] [25] [51]

which consider whole camera views, we only consider the connected source/sink views

which we already computed with the methods from Chapter 2.

Our goal is to construct a correspondence between these views. Specifically, for

each of the camera views we define its set of n source/sink regions as Es, . . . , E .

We then simplify this by describing the global set of g source/sink regions as E1, E2,.. . , Eg

as shown in Figure 3-1. Assume that the task of single camera tracking is already

solved, and let O = {O, Oj,2 , .. , 0,k} be the set of k object observations that were

observed in source/sink region Ej. For each observation, there is a location, time of

observation and set of appearance features such as color, shape and size associated

with it. It is reasonable to assume that appearance and time of observation features

are independent of each other, i.e., the appearance of an object does not depend on
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Figure 3-1: Source/Sink illustration. (a) shows source/sink regions in Camera 1
(El,...,E4) and Camera 2 (E2,..., E3), respectively. (b) shows the global set of
source/sink regions in Camera 1 and Camera 2 from E1 to E7.

the time when is observed and vice versa. The problem of multi-camera correspon-

dence is to find which of the observations in the system of cameras belong to the same

object.

For a formal definition of the above problem, we let a correspondence hi,b be

an ordered pair (0,a, Oj,b), which defines the hypothesis that the observations Oi,a

and O,b are consecutive observations of the same object in the environment, with

the observation 0 i,a preceding the observation Oj,b. The problem of multi camera

correspondence is to find a set of correspondences H = {hi'} such that hi, E H if

and only if 0 i,a and O,b correspond to consecutive observations of the same object

in the environment.

Let E be the solution space of the multi camera correspondence problem as de-

scribed above. Assuming that an object in Ei is seen no more than once in E, we

aim to find the subset of E, H, where each hi,b E H, if and only if Oi,a and Ojb

correspond to consecutive observations of the same object. We define the solution of

the multi camera correspondence problem to be a hypothesis H' in the solution space

E that maximizes the posteriori probability, and is given by:

H' = arg max P(HIO) (3.1)
HEE

Assuming that each correspondence, i.e., a matching between two observations, is

conditionally independent of other observations and correspondences, we have:

Camera 1I Camera 2



P(H IO) = P(H 10, 02,... , Ok) =1 P(h '10i,a, Oj,b) (3.2)

where P(h Oi,a, Oj,b) is the conditional probability of the correspondence h given

the observation Oi,a and Oj,b for two source/sinks E and Ej in the system. From

Bayes Rule, we get,

P(Ili~ b P(Oi,a, OOj,b Ihb )P(hi,')(
P(Oi,a, OQ,b)

where prior P(hi; ) is the transition probability P(Ej, Ej) from source/sink Ej to Ej,

which we already got from Chapter 2. With this equation, we have,

P(HIO) = 1 (P(Oi,,Oh) (3.4)
hbEHP(Oi,a, Oi,b) iaPEE) 
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hiEH

Moreover, we assume that the observation pairs are uniformly distributed and

hence, P(Oi,a, O,b) is a constant scale factor. Thus, the problem is reduced to the

solution of following term:

H' = arg max 1J (P(Oi,a, Ojblh)P(Ei,Ej)) (3.5)
HEE hj'bEH

As we mentioned before, for each observation, there are a location, time of ob-

servation O(time) and appearance features such as color O(color), shape and/or size

O(s) associated with it, and these features are independent. We can factorize these

terms into the above form, and we have,

H' argmax 11 (P(Oi,a(color),Oj,b(color)h :)
H EE hj' E Hi'a

P (Oi,a (S), Oims h e o(i,a(tinge), O (time)| the P (Ei, E placed

This is equivalent to minimizing the following term (where the product is replaced



by summation by taking the log of the above term):

H' = arg min log(P(Oi,a(color),Oj,b(color)h 2)
HEE hjb EH

ija

P(Oi,a(s), Oi,b(s) Jhi,)P(Oi,a(time), Oj,b(time) lhi )P(Ei, Ej)) (3.7)

By taking the negated logarithm, the maximization of the product turns into the

minimization of a sum. This makes it possible to express the maximization of the

posterior as a linear program. More specifically, it becomes a weighted assignment

problem for which very efficient algorithms exist, for example, the Hungarian algo-

rithm that we currently use to compute a solution [54]. The input to the Hungarian

algorithm is a matrix called the association matrix, M, for source/sink Ei to Ej,

where each entry is given by

Aa,b = -log(P(Oi,a(color), O,b(color) Ihij')P(Oi,a(S), Oj,b(S)h a)

P(Oi,a(time), Oi,b(time) h* i)P (Ei, Ej)) (3.8)

In order to construct the association matrix Al, we need to find the appearance

(i.e. color and shape/size) and the space-time probability density functions. This

issue is discussed in the next sections.

3.3 Color correspondence

A commonly used cue for tracking moving objects in different views is the color of

the objects. However, unconsistent color between different views is a serious prob-

lem in multi-camera systems. Such a system may contain identical cameras that are

operating under various lighting conditions, e.g. indoor cameras under fluorescent

lamps or outdoor cameras in daylight, etc. and different cameras that have dissim-

ilar radionietric responses. Even between identical cameras all working outdoors, it

is possible to have color deviations due to different scene illumination and optical



materials. Images of the same objects acquired under these variants usually show

dissimilar color characteristics, and this makes the correspondence problem or other

related computer vision tasks more challenging.

In Chapter 2, we have discussed how to compensate for color differences using a

comprehensive color normalization algorithm. However, in order to construct a fine

appearance model to solve the correspondence problem, we find this method no longer

suffices[64]. Instead, we seek to find a global histogram transformation that maps the

color of an object in one camera image to its color in another camera image.

3.3.1 Histogram Transformation for Grey Level Images

The most common approach to match the histograms of two images is histogram

specification[66]. Histogram specification is a technique that transforms the histogram

of one image into the histogram of another image through histogram equalization

[66]1.

Let variable r and z represent the gray levels of the input and output images, re-

spectively. And let p,(r) and pz(z) denote their corresponding continuous probability

density functions. We can estimate pr(r) from the given input image, while pz(z) is

the specified probability density function that we wish the output image to have.

Let s be a random variable with the property

s = T(r) = p,(w)dw (3.9)

where w is a dummy variable of integration. The right side of this equation is rec-

ognized as the cumulative distribution function(CDF) of random variable r. This

equation is known as the continuous version of histogram equalization. Suppose next

we define a random variable z with the property

G(z) = j pz(t)dt=s (3.10)

'Much of the material in this section is based on the presentation in [66], and provides background
for understanding our variation of this approach to the specific problem addressed in this thesis



where t is a dummy variable of integration. It then follows from these two equations

that G(z) = T(r) and, therefore, that z must satisfy the condition

z = G-'(s) = G-'[T(r)] (3.11)

The transformation T(r) can be obtained once pr(r) has been estimated from the

input images. Similarly, the transformation function G(z) can be obtained because

pz(z) is given.

The above equations (Eq.3.9 - Eq.3.11) show that an image with a specified prob-

ability density function can be obtained from an input image by using the following

procedure:

1. Obtain the transformation function T(r) using Eq.3.9.

2. Obtain the transformation function G(z) using Eq.3.10

3. Obtain the inverse transformation function G-'.

4. Obtain the output image by apply Eq.3.11 to all the pixels in the input image.

The result of this procedure will be an image whose gray levels, z, have the

specified probability density function pz(Z).

Although the procedure just described is straightforward in principle, it is seldom

possible in practice to obtain analytical expressions for T(r) and for G-'. Fortunately,

this problem is simplified considerably in the discrete case. The discrete formulation

of Eq.3.9 is

(3.12)Sk=T(rk)Zpr(r) k=0,1,...,L-
j=O

where pr(r) is the input image's grey level histogram and L is the number of discrete

gray levels. Similarly, the discrete formulation of Eq.3.10 is obtained from the target

histogram pz(z), and has the form

(3.13)r = G(zk) = E Pz (zi) = s k = 0, 1, L - 1
i=0
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Figure 3-2: Histogram matching illustration

Finally, the discrete version of Eq.3.11 is given by

Zk = G- 1(sk) = G1 [T(rk)I k = O, 1,. .. , L - 1

Given Eq.3.12, Eq.3.13 and Eq.3.14, we know histogram matching or histogram

specification in grey scale images can be implemented in the following steps (as illus-

trated in Fig.3-2):

1. Calculate the histogram of the given image.

2. Calculate the cumulative sum of the histogram of the given image Sk using

Eq.3.12.

3. Calculate the cumulative sum of the target histogram rk using Eq.3.13

4. Map pixels from one bin to another according to the rules of histogram equal-

Source Incremental
Histogram

t

Source Histogram

(3.14)



ization. More specifically, for each pixel in the original image, if the value of

that pixel is rk, map this value to its corresponding level sk; then map level sk

into the final level zk based on the precomputed values from step 2 and 3 (more

detail can be found in [66].

Although histogram matching in grey scale images has been proven to be the most

simple and effective method, the extension from gray-scale images to color images is

not trivial and straightforward. The common method of histogram matching of a

color image is to treat each of the red, green, and blue channels as a grey level image

matching each of these independently. However, since this method doesn't consider

the statistical dependence between these color axes, it will produce unwanted color

artifacts. Removing the correlation between the color axes prior to independently

modifying the histogram of each color axis has proven useful in texture synthesis[67]

and remote sensing[68]. Next, we will discuss how to do the histogram matching by

selecting a color space which exhibits minimal statistical dependence.

3.3.2 RGB to lac Space

Color image decorrelation is useful for applying color image processing operations

independently on each image channel[69]. Recently, Ruderman et al.[71] developed

a color space, called la3, which minimizes correlation between channels for many

natural scenes. This space is based on data-driven human perception research that

assumes the human visual system is ideally suited for processing natural scenes 2

a/3 space is a transform of LMS cone space, which is represented by the response

of the three types of cones of the human eye, named after their responsivity (sensitiv-

ity) at long, medium and short wavelengths. It is common to use the LMS color space

when performing chromatic adaptation (estimating the appearance of a sample under

a different illuminant). In [71] Ruderman shows that in LMS space, there are three

expected facts. First, signals between all pairs of cone types are strongly correlated.

This occurs because overall fluctuations in light intensity will tend to increase all cone

2Much of the materia in this section is based on [69][71]



responses simultaneously. Second, the correlation between the L and M photorecep-

tors is much larger than that between the L and S photoreceptors. This is primarily

due to the large overlap of the L and M cone spectral sensitivities. Finally, recep-

tor response distributions show a great deal of skew and are highly asymmetrical.

Ruderman proposed to eliminate the skewness by converting the data to logarithmic

space. Then they proceed to decorrelate these axes in the new logarithmic space

using principal components analysis (PCA). Next, we will show how to decorrelate

the color space step by step[69].

Since la3 space is based on LMS, we first convert the image to LMS space in two

steps. The first is a conversion from RGB to XYZ tristimulus values (this conversion

is derived from the International Teleconmunications Union standard matrix, and

more details can be found in [69]):

X 0.5141 0.3239 0.1604 R
Y 0.2651 0.6702 0.0641 G
Z 0.0241 0.1228 0.8444 B

then we can convert the image to LMS space using the following

Hunt-Pointer-Estevez (HPE) transformation [72]:

L 0.3897

M = -0.2298
S 0.0000

Combining these two matrices gives

and LMS cone space:

Li

Al

SJ

0.3811
- 0.1967

0.0241

(3.15)

conversion called

0.6890 -0.0787 X
1.1834 0.0464 Y (3.16)

0.0000 1.0000 z

the following transformation between RGB

0.3783

0.7244

0.1288

0.0402 R

0.0782 G

0.8444 B

(3.17)

The data in this color space shows a great deal of skew, which we can largely

eliminate by converting the data to logarithmic space:



L = log(L)

M = log(M) (3.18)

S = log(s)

The next step is to decorrelate the three axes by principal components analy-

sis [70], which effectively rotates them and makes them orthogonal. The analysis is

straightforward, and the three resulting orthogonal principal axes have simple forms

and are close to having integer coefficients. Moving to those nearby integer coeffi-

cients, the following transform has been adopted [71]:[ 10 0 1 1 1 L
a 0 0 1 1 -2 M (3.19)
13 0 0 1 -1 0 S

If we think of the L channel as red, the M channel as green, and the L channel

as blue, we can see that this is a variant of many opponent-color models[72]:

I oc Achromatic oc r+g+ b

a oc Yellow - Blue oc r + g - b (3.20)

1 oc Red - Green oc r - g

Thus the 1 axis represents an achromatic channel, while the a and 3 channels are

chromatic yellow-blue and red-green opponent channels. In this color space, however,

data are symmetrical and compact, and the channels are independent, which will

simplify the histogram transformation method. The conversion from la#3 to RGB

space is very straightforward. First, we convert from la3 to LMS using this matrix

multiplication:

L 1 1 1 - 0 0 1

M &]-[-1 0 -0 a (3.21)
S 1 -2 0 0 0 go bn

Then, after raising the pixel values to the power ten to go back to linear space,



we can convert the data from LMS to RGB using:

R 4.4679 -3.5873 0.1193 L

G -1.2186 2.3809 -0.1624 M (3.22)

B 0.0497 -0.2439 1.2045 S

3.3.3 Color Transform in la3 space

Reinhard [69] showed that the mean and standard deviation along each of the three

axes in la3 space suffice if we intend to transfer the given image's color into the target

image's color. First, we subtract the mean from the data points:

-s is - is

a* = - TFS (3.23)

#3s* =# -#

where the subscript s represents the source image. 1e, -~,' and 3, are the means of the

data in respective channels.

Then, we scale the data points with the ratio of the respective standard deviations

of the source and target images, and add the means of the target image respectively:

l' = l* + -

a' = + -a (3.24)

where ot, of, of are the standard deviations of the target image in respective channels,

and ol, -T, oa are the standard deviations of the source image in respective channels.

After this transformation, the resulting data has the same means and standard

deviations to the target image in la/3 space. Finally, we transform the result data

back into RGB space using Eq.3.21 and Eq.3.22, so that the resulting image has a

similar color appearance with the target image.

Figure 3-3 gives examples of color transformation both in RGB and la#3 spaces.

Transformation in la3 space yields better results than that in RGB space. Color of



the transformed images in la/3 spaces is more smooth and real.

3.3.4 Color model

Now we know how to model the color transformation for a given pairs of images

in la,3 space. Our goal is to learn a global color transformation for any pair of

views. We study the distributions of slopes and intercepts for pairs of images taken

at two different views. Figure 3-4 gives an illustration of slope's and intercept's

in Eq.3.24 distributions for a pair of given views. From this distribution, we can

fit a multivariate Gaussian on the slope and intercept for 1, a and 1 channels to

model the color P(Oi,(color), O3,b(color)|hIb) throughout any two learned connected

source/sinks of different views.

3.4 Shape/Size correspondence

Local features (i.e. edges, corners or SIFT features) have shown to be very helpful in

solving the multi-camera correspondence problem [58] [59] [60] [61] [62]. As we discussed

in Chapter 2, however, for far-field surveillance, even after successful detection, there

are often very few image pixels per object, which makes it difficult to model the local

feature change throughout cameras (see detected moving vehicle examples in Fig.

3-5). However, as we argued in Chapter 2, we know for sure that a sedan in one scene

cannot be a truck in another scene, which means overall size information still plays

an important role in correspondence.

Give the objects are fairly small in far field settings, it is unlikely that we will be

able to recover the shape detail, so all we rely on is overall size measures. Given this

setting, where the sizes of the observed objects are much smaller than the distance to

the camera, the bounding ellipse area is a good representation of the object size, as

most objects appear merely as rigid blobs and the ellipse will account for orientation

relative to the camera. However, in a near-field setting, where the articulation and

detailed shape of objects can be observed, more descriptive attributes such as the

shape or area of the silhouette might be useful. Hence, we fit a best ellipse to the



Figure 3-3: Color transformation in RGB and la3 spaces. The first column is the original
image, the second column is the target image, the third column is the color transformation
in RGB space and the fourth column is the transformation in la3 space. We can see that
the results in la# are more smooth and real space.
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Figure 3-4: slope and interception distributions for a pair of given views in la3 space
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Figure 3-5: Tracked vehicle samples from different views.
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shape using the minimum volume enclosing ellipsoid method [73] [75] [74], to model

the shape/size change between different views.

We also adopt a multivariate Gaussian distribution to model the size change

P(Oi, a(S), Oi,b(s)|h M.).

P(Oi,a(s), OJ,b (s)1ht) = P(Wi,a, 1i,a, WJb, lj,bhi)

= N twjj i (wi/wy, li/i) (3.25)

where Wi,a,l a are the detected vehicle's ellipse's semimajor axis and semiminor axis

under entry/exit i. p,,,,I/j and Zw,/wj, 1 /lj are the mean and variance of the semi-

major axis ratio and semiminor axis ratio for source/sink Ei and source/sink Ej,

respectively. The imaging transformation of a perspective camera leads to distortion

of a number of geometric scene properties. As a result, objects appear to grow larger

as they approach the camera center and become smaller when they are far away from

the camera [34]. So in the sense of simple normalization, the average size over the

whole trajectory has been adopted, when we do the size model. The parameters of

this Gaussian distribution can be estimated using the same procedure as described

in Chapter 2.5.2.

3.5 Inter Camera Time Correspondence

The observations of an object exiting from one camera and entering into another

camera will be separated by a certain time interval. We refer to this interval as

inter-camera travel time. As we discussed in Chapter 2, we already know that there

exits an average transition time from one source/sink in one camera view to another

source/sink in another camera view. This average transition time can be used to

constrain correspondences.

Figure 3-6 gives an example of a transition time distribution for a pair of source/sinks.

This data shows a great deal of skewness because of the nature of the traffic. For a
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Figure 3-6: A log normal fitting of transition times for a pair of connected source/sinks.

given pair of source/sinks, although there is an average transition time between them,

it is more common for a car moving from one sounce/sink to the other source/sink

using more time than using less time. For example, as shown by Fig. 3-6, with the

average transition time around 4 seconds, it is not possible for a vehicle to use 0 sec-

onds to make the transition between the source/sinks unless there is a timing error.

However, it is quite normal for a vehicle to use 8 seconds (e.g. waiting for a pedes-

trian to pass by). Thus, the distribution is asymmetrical. In order to compensate for

this skewness, we propose to use a log normal distribution to model the inter camera

transition.

3.6 Experiment Results and Discussion

In this section, we demonstrate how our proposed algorithm works in two different

multi-camera scenes: a street scene and a parking lot scene respectively. The street

scene has 2 camera views as shown in Fig. 3-7 and the parking lot scene has 3 cam-

era views as shown in Fig. 3-8, which are all non overlapping. The topologies have

already been learned in Chapter 2. In these settings, scene illumination conditions

are quite different, the size of vehicles is very small (especially in our parking lot
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Figure 3-7: Street Scene

scene), and a vehicle's pose changes dramatically, which all make the data sets very

challenging. For each setting, every experiment consists of a training phase and a

testing phase. In the training phase, the correspondences are assumed to be known

and this information is used to compute the color, shape/size and time transformation

for every pair of connected source/sinks. In the testing phase, these correspondences

are computed using the proposed algorithm. The performance of the algorithm is an-

alyzed by comparing the resulting tracks to the ground truth. We also compare our

algorithm to other color transformation/calibration approaches: basic RGB transfor-

mation, the comprehensive color normalization algorithm proposed in Chapter 2 and

the brightness transformation function (BTF) subspace [50] algorithm.

3.6.1 Data Sets of the Experiment

The first experiment was conducted with Street Scene, with two cameras 1 and 2.

The camera topology is shown in Figure 3-7. It can be seen from the figure that there

is a significant illumination difference between the two camera views, and matching

the color is considerably difficult without accurate modeling of the changes in color

across the cameras. We hand labeled 30 minutes of tracking data, with 5 minutes

of data as the training set, and 25 minutes of data as the testing set. Testing data

contains a total of 749 individual tracks from each camera, of which there are 293

vehicles appearing at both views, and 163 vehicles only appearing at one view.

The second experiment was conducted with Parking Lot Scene, with three cameras

............

Camera 2
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Figure 3-8: Parking Lot Scene

1 and 2 and 3. The camera topology is shown in Figure 3-8. From these three different

views, we can see that the illumination difference isn't as significant as that of Street

Scene, however, the pose and size of the vehicles change dramatically between different

views. We also hand labeled 30 minutes of tracking data, with 5 minutes of data as

the training set, and 25 minutes of data as the testing set. Testing data contains

a total of 182 individual tracks from each camera, of which there are 73 vehicles

appearing at the views of 1 and 2, 5 vehicles appearing at the views of 1 and 2 and

3, and 5 vehicles appearing at the views of 2 and 3.

3.6.2 Experiment results

First, we study how each of our correspondence feature models (i.e. color, inter-

camera time and shape/size models) contributes to solve the tracking problem, and

how the combination of these models improves the tracking result. For each scene, we

examine four different cases separately, 1) only color model (i.e. la3 transformation),

2) only inter-camera time model, 3) la# transformation and inter-camera time models,

and 4) all three models. The results of each of these cases are analyzed by using

correspondence accuracy (i.e. the ratio of the number of objects tracked through

different views correctly to the total number of objects that passed through the scene)

as the evaluation measure. These results are summarized in Figure 3-9 and are

explained below.

Camera 1
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Figure 3-9: Performance comparison of using different feature models in street and parking
lot scenes.

It is clear from Figure 3-9 that both the appearance and space-time models are

important sources of information as the tracking results improve significantly when

both the models are used jointly in both scenes. Because the parking lot scene isn't as

busy as the street scene, the space-time model alone performs better in the parking lot

scene than in the street scene. With additional shape/size information, the tracking

accuracy is improved by 3.7% in the street scene. In the parking lot scene, however,

the added shape/size model impairs the tracking accuracy. The reason is that, in

the parking lot scene, there are a lot of pedestrians moving around, which causes the

tracker to group together the moving vehicle with moving pedestrians. Hence, the

detected moving vehicle's bounding box changes through every view dramatically.

Figure 3-10 gives an example. When a vehicle entered the view of camera 2, it was

tracked perfectly. Then it passed the crosswalk, where several people passed by,

and they were grouped together. After that, the vehicle separated from them and

was tracked back to normal. Then it captured another person, which was tracked



Figure 3-10: An example of a tracked moving vehicle's bounding box changing throughout
the view of Camera 2 in the parking lot scene. When there was people passing by, the
vehicle was grouped with the people by the tracker.

together and separated. This kind of activity happens frequently in the parking lot

scene, which makes the shape/size of every vehicle unstable throughout the view

and this information doesn't help to construct the correspondence between different

views. This problem will be solved, however, if we can improve the tracking accuracy

for each individual view. For instance, we can separate the moving vehicle from the

moving people by carefully choosing the connected component parameters [49] in

the tracking model. Since it is not the focus of our research, we won't discuss here.

Although the shape/size information didn't help in the parking lot scene, it did help

in the street scene. Therefore, in the real multi camera tracking system, we need to

carefully decide which feature to use: color, inter-camera time, shape/size, or any

combination of them. Ideally, all these three should be beneficial for the tracking

through different views.

In order to demonstrate how our la#3 color transformation helps to improve the

tracking results compared with other color histogram-based techniques, for each scene,

we examine four different approaches, 1) naive RGB histogram matching with our

inter-camera time model, 2) color model used in Chapter 2-Comprehensive Color

Normalization (CCN) with our inter-camera time model, 3) brightness transfer func-

tion (BTF) subspace with our inter-camera time model, and 4)1a3 color transforma-

tion with inter-camera time model. The results of each of these cases are analyzed by

using correspondence accuracy defined previously as the evaluation measure. These

results are summarized in Figure 3-11 and are explained below.

It can been that in the street scene, since the illumination condition differs signif-

icantly between the two camera, views, any color correlation method would dramati-

cally improve the tracking accuracy. Among our choices, the BTF subspace and our

......... ........................................



RGB & inter-camera time
CCN & inter-Camera time

=BTF subspace
& inter-camera time
Mclp & inter-camera time

........... .. ._. .
........... Par ng....L..t...Scene...

-. . ...- ... - ....- ..- .

Street Scene

Figure 3-11: Tracking comparison with other color transformation models

la3 space models perform the best. This also holds true for the parking lot scene

although the improvement from the RGB histogram matching model isn't as big as

that of the street scene. The performance of the BTF subspace model and our la#

space in both scenes are quite similar. However, the complexity of our color model

is less than that of the BTF subspace model. As we recall, in our la#3 model, we

only need to model the slopes and intercepts for the 1, a and # channel respectively,

hence, the dimensionality is only 6. However, in the BTF subspace model, in order

to achieve the same performance, we choose 6 of the principle components of R, G

and B channel, respectively. These 6 principle components account for more than

95% of the variance in the BTF's. This gives us a total of 18 dimensions, which is

significantly larger than the dimensionality of our la# model. With the lower dimen-

sionality, our model shows the same performance as the BTF subspace model, which

suggests our model is better than the BTF subspace model with fewer parameters,

and less computational cost.
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3.7 Summary

In this chapter, we have proposed a MAP framework to match two objects along

their tracks from non overlapping camera views. We showed how to learn the color

transformation in la3 space, inter-camera time transition and shape/size transfor-

mation between different views. The main contribution is the proposal to learn the

color transformation in la3 space to compensate for the varying illumination con-

ditions across different views. The experiment results show the combination of the

color and inter-camera time models improves the tracking accuracy significantly. And

shape/size information can help or jeopardize the tracking results depends on the ac-

curacy of the individual camera tracker. Hence, in the real multi camera network, we

need to carefully choose which feature to use, color, inter-camera time, shape/size, or

any combination of them. And finally we show that our la3 space model can give the

same performance as of the BTF subspace model, however, with fewer parameters,

and less computational cost.
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Chapter 4

Activity learning

In the last Chapter, we discussed how to solve the correspondence problem, and stitch

the trajectories together for every moving vehicle. In this Chapter, we will show how

to learn the common trajectories throughout the overall scene and be able to detect

unusual activities, given these learned trajectories.

4.1 Background Research

Many of the existing activity analysis approaches cluster moving objects' trajectories

and detect abnormal trajectories by defining the pairwise similarities/distances be-

tween trajectories. The proposed trajectory similarities/distances include Euclidean

distance [76], Hausdorff distance and its variations [77] [78], hidden Markov model [791,

and Dynamic Time Warping (DTW) [80]. A comparison of these different similar-

ity/distance measures can be found in [81]. Based on the computed similarity matrix,

some standard clustering algorithms such as spectral clustering [82], graph-cuts [83],

agglomerative and divisive hierarchical clustering [84][106], and fuzzy c-means [86] [87]

were used to group trajectories into different activity categories. Finally, abnormal

trajectories can be detected as those with a larger distance to other trajectories.

These similarity/distance-based approaches have several drawbacks. First, there is

no global probabilistic framework to model activities happening in the scene. They

have an ad hoc nature especially on the definitions of distance measures. Abnormal



trajectories are usually detected as those with a larger distance to other trajecto-

ries. Their abnormality detection lacks a probabilistic explanation. Moreover, these

methods all focused on one particular scene captured by one camera. For large area

surveillance, we are faced with hundreds of non-overlapping sensors. The informa-

tion of how objects are moving between cameras interests us more. As we discussed

before, in our wide-scale network setting, the whole tracks have been segmented into

different pieces of observed and unobserved tracks. Without the world coordinate

system, there is no easy way to measure the distance between trajectories observed

under different views. This kind of methods will fail in this situation.

In recent years, there have been some interesting work developed for detecting

events or activities across multi-cameras [88] [89] [90][91] [92]. Ahmedali and Clark [88]

introduced a framework for a distributed network of collaborating and intelligent

surveillance cameras. They proposed an unsupervised calibration technique which

allows each camera module to represent its spatial relationship with other cameras

in the network. For each camera, a person detector was trained using the Winnow

algorithm with automatically extracted training samples. To improve detection per-

formance, multiple cameras with overlapping FOVs collaborate to confirm results.

Kim and Davis [90] proposed a multi-view multi-hypothesis approach for segment-

ing and tracking multiple people on a ground plane. To precisely locate the ground

location of a person, all center vertical axes of the person across different views are

mapped to the top view plane and their intersection point on the ground is estimated.

Iterative segmentation-searching was incorporated into the tracking framework to deal

with the explosive state space due to multiple targets and views. Remagnino et al.

[91] proposed a multi-agent architecture for the understanding of scene dynamics

merging the information streamed by multiple cameras. However, their multi-agent

architecture can only deal with overlapping views.

Generative topic models[93] in language processing have drawn much attention

with computer vision researchers recently, and have been applied to many vision

applications, such as object recognition[97] [96] [95] [94], scene categorization[98] [99],

and human action recognition[100][101]. The generative niodel also can be called a



bag - of - words model because the model does not make any assumption about the

order of words as they appear in documents. In the generative framework, each pixel

on the trajectories can be treated as an independent motion feature vector (those fea-

tures usually include location, speed, direction) to do the activity analysis, where the

location feature is the relative image location. Stauffer et al. [27] proposed to gener-

ate a codebook of prototype representations using on-line Vector Quantization(VQ).

Then for each sequence, it can be represented by the codebook labels. Their system

leveraged this information by accumulating joint co-occurrences of the representa-

tions within a sequence. These joint co-occurrence statistics were then used to create

a hierarchical binary-tree classification of the representations. This method is useful

for classifying sequences as well as individual instances of activities in a site. Al-

though Stauffer et al. only addressed this method in a single scene setting, we can

see its potential to be extended to multiple non overlapping settings. Wang et al. [102]

proposed to use the locations and moving directions of observations as features, and

quantize them to visual words according to predefined codebook of its camera view.

Then, they adopted an unsupervised hierarchical Bayesian model derived from LDA

[104], which can cluster trajectories in different camera views into activities and mod-

els paths across camera views. The Dual-HDP model they proposed adds an extra

layer of clustering to the original HDP clustering. Since we already know the cor-

respondence from the last Chapter, we choose to use a mixture of unigram model

instead, because it has fewer parameters., is easier to analyze and can be learned

more efficiently.

4.2 Mixture of Unigram Activity Model

The bag - of - words is an effective representation of documents, and the Naive

Bayes(NB) classifier based on this model works very well on many text classification

and other clustering tasks [105] [106]. Hence, we present a probabilistic framework (i.e.

mixture of unigram model) which defines a generative process to model trajectories,

and this framework has four elements:



Figure 4-1: Examples of concatenated trajectories between two different views. Trajectories
generated by the same objects use the same color.

1. the data are produced by a mixture model.

2. there is a one to one correspondence between mixture components and clusters.

3. observations on any trajectory are independent (i.e. observations are generated

independently).

4. the length of trajectories is independent of clusters.

Our probabilistic model will categorize concatenated trajectories in different cam-

era views into activity clusters and model paths across camera views. We define an

activity cluster as a collection of observations that commonly co-occur within a tra-

jectory. Each activity cluster has a distribution over locations and moving directions

in different camera views, and corresponds to a path.

4.2.1 Representation of Observations

After solving the correspondence problem as discussed in Chapter 3, we have concate-

nated trajectories over disjoint views as system input. Examples are shown in Figure

4-1 The locations and moving directions of observations of the moving vehicles are

computed as features. For each camera view, we define a codebook as follows. The

space of the view is uniformly quantized into small cells. Similarly, the velocity of the

moving vehicles is quantized into several directions as well. Then, a global codebook

concatenates the codebooks of all the camera views. Thus, for each concatenated



trajectory i, there are J observations described as:

O = [oi,1.. . , oi,j, . . . , oi'J] (4.1)

where

oij = (xi,, yij, vi,, ci,) (4.2)

(Xi,j, y,j) and dij are the quantized moving vehicle's image position(i.e. coordinates)

and its corresponding moving direction. cij is the camera view index in which the

moving vehicle is observed. In this representation frame, each observation j on tra-

jectory i has a word index of the global codebook associated with it.

4.2.2 The Generative Model of New Activity

In the mixture of unigram setting, every trajectory is represented by a probability dis-

tribution over the global codebook, defined by a set of parameters 0. The probability

distribution consists of a mixture of components (i.e. clusters) cj c C = {c1,. . . , cici}.

where |CI denotes the number of clusters. So each activity cluster is parameterized by

a disjoint subset of 0 and modeled as a distribution over space and moving directions

in all the camera views.

To generate a new trajectory ti, we first sample an activity cluster index, c, ac-

cording to the cluster prior probabilities P(cj). Then having this selected cluster

fixed, we generate the trajectory according to its own parameters with distribution

P(tiIcj, 0). To achieve this, we independently sample Itil observations. For each single

observation, we sample it from the corresponding activity cluster with distribution

P(oi,klc, 0). From this process, we can characterize the likelihood of trajectory ti

with a sum of total probability over all activity clusters:

ICi
P(ti\6) Z P(cj )P(tj Ic,0)

j=1

IC! Itil
Z P(c3 ) fJ P(ot,,k Ic, 0) (4.3)

1 k=1



Since we assume that for all clusters, the length of the trajectories is identically

distributed, we do not need to parameterize for clustering. The only model parameters

are the cluster prior probabilities P(cj), the multinomial distribution over the global

codebook P(oti,k Ic, 0), and the number of clusters. Next, we will talk about how to

learn the model parameters and set the number of clusters.

4.2.3 Learning Model Parameters

The model parameters can be estimated by a Maximum Likelihood method. As

discussed in the previous section, by introducing latent variables, activity clusters,

we can write the log-likelihood of the joint likelihood of the joint distribution of

trajectories and model parameters as:

I (T; 0) Alog(P(T|6))

- log(n P(ti|6))
ti c-T

ICI Iti|

- log(> P(ci) 17 P(ot1,k c, 0)) (4.4)
tiET j=1 k=i

where T represents the collection of all the trajectories.

The Expectation-Maximization (EM)[107][108] algorithm is generally applied to

maximize log likelihood. By using Jensen's inequality (i.e. E[log(x)] > log(E[X]) ).

The parameters could be estimated by a hill climbing procedure defined by E-step

and M-step:

* In the E-step, we compute the posterior probability P(cg ti, 0) by using the

current estimate of the parameters:

P(CjtiOt+I P(cj)tP(tiIci,6)t
P(ti|6)t

P (cj )* t f P (oti,kIcj, 0)'
EICI k=(4.5)r= P(c)t 7J P(ot,kIcj, 6)t

where the upper script t indicates the t-th iteration.



* In the M-step, by maximizing the complete likelihood equation, we update the

model parameters using the current estimate of P(cyjti, 0):

P(oiJcjo)t+1 1 + E1 P(c lti, 0 )t+1 * tf (o, ti) (4.6)
N + EITI P(cjIti, 0)t+1 * EN1 tf (o, ti)

i(j~~ E'T P(cy lti, 0)t+1

PJcy = T (4.7)C|+|TI

where N is the vocabulary size of the global codebook, and tf(ol, ti) is the count

of the number of times ol occurs in trajectory ti. Since the co-occurrence matrix

is very sparse, we apply Laplace smoothing [105] to prevent zero probabilities

for infrequently occuring observations.

The EM algorithm will increase the log likelihood consistently, while it will stop at a

local maximum.

4.2.4 Estimating the Number of Clusters

Our clustering model requires choosing one additional parameter: the number of

activity clustersn k. Though no measure is definitive, intuitively a good clustering

is one in which the clusters are tight and well separated. In another word, we want

the variance of inter-cluster to be large and the variance of intra-cluster to be small.

In our probabilistic model, there is no straight way to define the variance of clusters.

Intuitively, however, just like how to choose the number of eigen values in PCA, we

can choose the number of clusters which could explain majority of the activities.

As illustrated in Figure 4-2, only a limited number of clusters are salient ones, so

we could start with relative large number of clusters, run the EM algorithm, and learn

the activity clusters. Then we choose the number of clusters whose prior distribution

could account for a certain mount of the activities (in our experiment, we choose

90%). With this fixed number k, we run the algorithm one more time learn the

activity cluster models.
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Figure 4-2: Prior distribution of the learned 30 activity clusters.

4.2.5 Using the Classifier to Label Trajectories into Activity

Clusters

Given estimates of those model parameters (e.g. prior probability and multinomial

distribution over the global codebook for every cluster), we can turn the generative

model backwards and calculate the posterior probability that a particular activity

cluster generated a given trajectory based on Eq.4.5.

We will use the Maximum Posterior principle (MAP) to label trajectories (includ-

ing an unseen new trajectory). A trajectory will be assigned into an activity cluster

with the highest posterior probability:

yi = argmax(P(c,-|ti, 6)) (4.8)
j

where yi is the label of the trajectory ti.

..............



4.2.6 Detecting Unusual Trajectories

In visual surveillance, detecting abnormal activities in the videos is of great interest.

Under the Bayesian models, abnormality detection has a nice probabilistic explana-

tion by the data likelihood of every trajectorie rather than by comparing similarity

between samples. A trajectory is detected as an abnormality if it does not fit any

activity model well. Given the estimation of model parameters, we can calculate the

likelihood of a trajectory under the learned activity models using Eq.4.5. If the likeli-

hood is smaller that a preset threshold, the trajectory will be flagged as an abnormal

activity.

4.3 Experiment Results

We evaluate our algorithm on two data sets: the street scene and the parking lot

scene again, respectively. The street scenes have 2 camera views and the parking lot

scenes have 3 camera views, which are all non overlapping. The size of the views is

320 by 240. To build the codebook, each camera view is quantized into 64 x 48 cells.

Each cell is of size 5 by 5. The moving directions of moving pixels are quantized into

four directions (i.e. north east, north west, south east and south west). For each of

the data sets, we first show the learned activity clusters, then plot the trajectories

clustered into its corresponding cluster, and finally show the top 5 abnormal activities

ranking from low to high based on the data likelihood. Also, we compare our results

to the activity cluster results learned from LDA model [104] to demonstrate that our

model gives a better performance.

4.3.1 Parking Lot Scene

The parking lot data was collected for 9 hours during the day time over 3 days (e.g.

3 hours per day for 3 days). It is a one way parking lot. The topology of these three

camera views (see Figure 3-7) was learned using the technique presented in Chapter

2 and the tracking through different views was solved using the technique presented
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Figure 4-3: Prior distribution of the learned 5 activity clusters for the parking lot scene.

in Chapter 3. The views of these three cameras are not overlapped. The views of

Camera 1 and 2 have a small gap. Hence, most vehicles appearing in Camera 1 will

enter Camera 2, and vice versa. However, Camera 2 and 3 have a relative large gap.

Camera 3 only captures a small area of the parking lot. Therefore, most vehicles

appearing in Camera 2 will not reappear in Camera 3. Five different activity clusters

are learnt from this data set (see Fig. 4-4 to 4-8). The prior distribution of these

clusters is shown in Fig. 4-3. For each activity, we plot its distribution over space and

moving directions in the three camera views and show the trajectories clustered into

this activity. When visualizing activity clusters, moving directions are represented

by different colors (red, yellow, blue and green), and the density of distributions

over space and moving directions is proportional to the brightness of colors (high

brightness means high density). When plotting trajectories, random colors are used

to distinguish individual trajectories.

In Figure 4-4, the first row shows the learned activity cluster 1 and the second

row shows the trajectories clustered into this activity. This cluster represents vehicles

entering the parking lot. These vehicles appear in Camera 1 and 2, and may reappear

in Camera 2 again later. However, they are not captured by Camera 3 because of the

large gap between the views of Camera 2 and 3.

In Figure 4-5, the first row shows the learned activity cluster 2 and the second
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Figure 4-4: Learned cluster 1: the first row shows the learned activity cluster 1 and the

second row shows the trajectories clustered into this activity. When visualizing activity

clusters, moving directions are represented by different colors (red, yellow, blue and green),
and the density of distributions over space and moving directions is proportional to the

brightness of colors (high brightness means high density). When plotting trajectories, ran-

dom colors are used to distinguish individual trajectories. This cluster represents vehicles

entering the parking lot. These vehicles appear in Camera 1 and 2 , and may reappear in

Camera 2 again later. However, they are not captured by Camera 3 because of the large

gap between the views of Camera 2 and 3.

Figure 4-5: Learned cluster 2:the first row shows the learned activity cluster 2 and the

second row shows the trajectories clustered into this activity. This cluster represents vehicles

leaving the parking lot. Again, these vehicles appear in Camera 2 and 1, and are not

captured by Camera 3.
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Figure 4-6: Learned cluster 3: the first row shows the learned activity cluster 3 and the

second row shows the trajectories clustered into this activity. This cluster captures vehicles
entering the parking lot and parking immediately without appearing at Camera 2.

row shows the trajectories clustered into this activity. This cluster represents vehicles

leaving the parking lot. Again, these vehicles appear in Camera 2 and 1, and are not

captured by Camera 3.

In Figure 4-6, the first row shows the learned activity cluster 3 and the second

row shows the trajectories clustered into this activity. This cluster captures vehicles

entering the parking lot and parking immediately without appearing at Camera 2.

In Figure 4-7, the first row shows the learned activity cluster 4 and the second

row shows the trajectories clustered into this activity. This cluster represents vehicles

appearing in Camera 3 from the parking lot. Although most vehicles in Camera 2

will reappear in Camera 2 later, either parking or leaving the parking lot, there are

small portion of them will enter camera 3 and go to the tech shuttle parking space.

Cluster 4 just captures this kind of activity.

In Figure 4-8, the first row shows the learned activity cluster 5 and the second

row shows the trajectories clustered into this activity. This cluster captures vehicles

moving in the opposite direction compared with cluster 4.

Figure 4-9 to 4-13 show the top 5 abnormal activities. As we discussed above, the
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Figure 4-7: Learned cluster 4:the first row shows the learned activity cluster 4 and the

second row shows the trajectories clustered into this activity. This cluster represents vehicles

appearing in Camera 3 from the parking lot. Although most vehicles in Camera 2 will

reappear in Camera 2 later, either parking or leaving the parking lot, there are small

portion of them will enter camera 3 and go to the tech shuttle parking space.

Figure 4-8: Learned cluster 5
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abnormality can be modeled by the low magnitude of data likelihood. The lower the

data likelihood, the more abnormal the activity. Since in the parking lot, the moving

path and moving direction for vehicles are well defined, most abnormal activities are

the activities where vehicles move in the wrong directions (The car lane in the parking

lot is one way) or use a path that isn't allowed. So we rank the detected abnormal

activities from low data likelihood to high data likelihood, plot the trajectories in

blue, and mark the starting and ending points of a trajectory by green plus and dot

to indicate the moving directions. The top 5 are:

1. Figure 4-9 shows the most abnormal activity. A vehicle left Camera 3, entered

Camera 2 with the wrong moving direction and then stopped. In this case, the

moving direction in Camera 2 is unusual.

2. Figure 4-10 shows the activity with the second lowest data likelihood. A vehicle

started in the view of Camera 2, drove through the parking lot in the wrong

direction, entered the view of Camera 3, and headed to the tech shuttle parking

area. Again, the moving direction of this activity is unusual.

3. Figure 4-11 shows a vehicle taking the path that it shouldn't take. In this case,

it is the moving space which is unusual.

4. Figure 4-12 shows a vehicle driving through the parking lot, then making a

right turn towards the building by the parking lot. In this case, it is the moving

space which is unusual.

5. Figure 4-13 shows a vehicle backed in the parking lot. Again, it is the moving

direction which is unusual.

Then we use the LDA model to learn the activity clusters, in order to compare

the results with our mixture of unigram model directly, we set the number of clusters

for LDA model to also be 5. The learned acitivity clusters are shown at Figure 4-14.

The LDA model learns the same activity clusters as our mixture of unigram model.

However, with the same performance, our model uses fewer parameters and can be

learned more efficiently.
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Figure 4-9: Abnormal activity 1: A vehicle left Camera 3, entered Camera 2 with the
wrong moving direction and then stopped. In this case, the moving direction in the Camera
2 is unusual. The trajectories is ploted in blue, and the starting and ending points of the
trajectory are marked by green plus and dot.

Figure 4-10: Abnormal activity 2: A vehicle started in the view of Camera 2, drove through
the parking lot in the wrong direction, entered the view of Camera 3, and headed to the
tech shuttle parking area. Again, the moving direction of this activity is unusual.

Figure 4-11: Abnormal activity 3: a vehicle took an unusual path.
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Figure 4-12: Abnormal activity 4: a vehicle drove through the parking lot, then make a
right turn towards the building by the parking lot. In this case, it is the moving space which
is unusual.

Figure 4-13: Abnormal activity 5: a vehicle backed in the parking lot. Again, it is the
moving direction which is unusual.
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Figure 4-14: Learned 5 activity clusters using LDA model for the parking lot scene. Each
row represents an activity cluster. The LDA model learns roughly same meaning activity
clusters as our mixture of unigram model.
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Figure 4-15: Prior distribution of the learned 5 activity clusters for the street scene.

4.3.2 Street Scenes

The street scenes data was collected for 1 hour in the morning over 5 days (i.e.9

AM from Monday to Friday). This scene has two camera views and the topology

was learned using the technique presented in Chapter 2, as shown in Figure 3-6

and the tracking through different views was solved using the technique presented

in Chapter 3. The views of these two cameras are not overlapped. There is a gap

between the views of Camera 1 and Camera 2. Most vehicles appearing in Camera

1 will enter Camera 2, and vice versa. Five different activity clusters are learnt from

this data set (see Fig. 4-16 to 4-20). The prior distribution of these clusters is

shown in Fig. 4-15. Again, for each activity, we plot its distribution over space and

moving directions in the two camera views and show the trajectories clustered into

this activity. When visualizing activity clusters, moving directions are represented

by different colors (red, yellow, blue and green), and the density of distributions

over space and moving directions is proportional to the brightness of colors (high

brightness means high density). When plotting trajectories, random colors are used

to distinguish individual trajectories.

In Figure 4-16, the first row shows the learned activity cluster 1 and the second

row shows the trajectories clustered into this activity. This cluster represents vehicles
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Figure 4-16: Learned activity cluster 1: the first row shows the learned activity cluster 1
and the second row shows the trajectories clustered into this activity. This cluster represents
vehicle entering the view of Camera 1 from the upper left corner, driving through the view
of Camera 1, then reappearing at the lower left corner of Camera 2' view, and finally leaving
the scene.

entering the view of Camera 1 from the upper left corner, driving through the view of

Camera 1, then reappearing at the lower left corner of Camera 2's view, and finally

leaving the scene. This is the most common activity for this street scene.

In Figure 4-17, the first row shows the learned activity cluster 2 and the second

row shows the trajectories clustered into this activity. This cluster represents vehicles

entering the view of Camera 1 from the upper left corner, making a U turn at the

island, and then leaving the scene without reentering the view of Camera 2.

In Figure 4-18, the first row shows the learned activity cluster 3 and the second

row shows the trajectories clustered into this activity. This cluster represents vehicles

entering the view of Camera 1 from the upper left corner, either driving into the

garage with higher probability, or driving through the view of Camera 2 with lower

probability, and then reappearing at the view of Camera 2 with very low probability.

Comparing with the learned activity cluster 1, this cluster most describes the activities

happening only at the view of Camera 1. Since the probability of reentering the view

of Camera 2 is pretty low, it shows that there may exist a hidden sink for Camera 1,

which means vehicles will leave the view of Camera 1 and go to another place without
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Figure 4-17: Learned activity cluster 2: the first row shows the learned activity cluster 2
and the second row shows the trajectories clustered into this activity. This cluster represents
vehicles entering the view of Camera 1 from the upper left corner, making a u turn at the
island, and then leaving the scene without reentering the view of Caipera 2.

Figure 4-18: Learned activity cluster 3: the first row shows the learned activity cluster 3
and the second row shows the trajectories clustered into this activity. This cluster represents
vehicles entering the view of Camera 1 from the upper left corner, either driving into the
garage with high probability, or driving through the view of Camera 2 with lower probability,
and then reappearing at the view of Camera 2 with very low probability.
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Figure 4-19: Learned activity cluster 4: this cluster represents activities similar to cluster 3
only in the opposite moving direction. Vehicles pull out from the garage, drive through the
view, and finally leave the scene. Again, this cluster most captures the activities happening
only at the view of Camera 1.

reentering the view of Camera 2.

Figure 4-19 shows the learned activity cluster 4 and the trajectories clustered

into this activity. This cluster represents activities similar to cluster 3 only in the

opposite moving direction. Vehicles pull out from the garage, drive through the view,

and finally leave the scene. Again, this cluster most captures the activities happening

only at the view of Camera 1.

Figure 4-20 shows the learned activity cluster 5 and the trajectories clustered into

this activity. This cluster represents activities similar to cluster 1 only in the opposite

moving direction. Vehicles enter the view of Camera 2 from the upper right corner,

driving through the view of Camera 2, then reappearing at the lower right corner of

Camera 1' view, and finally leaving the scene.

Figure 4-21 to 4-25 show the top 5 abnormal activities happening in the street

scene. Also in this scene, the moving path and moving direction for vehicles are

well defined, most abnormal activities are the activities that vehicles move in the

wrong directions (e.g. in the wrong lane) or take a path not allowed. We rank the

detected abnormal activities from low data likelihood to high data likelihood, plot
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Figure 4-20: Learned activity cluster 5: this cluster represents activities similar to cluster
1 only in the opposite moving direction. Vehicles enter the view of Camera 2 from the
upper right corner, driving through the view of Camera 2, then reappearing at the lower
right corner of Camera 1' view, and finally leaving the scene.

the trajectories in blue, and mark the starting and ending points of a trajectory by

green plus and dot to indicate the moving directions. The top 5 are:

1. Figure 4-21 shows the most abnormal activity. A vehicle left the view of Camera

2, entered Camera 1, then made an interesting U turn at the dropping area, and

finally left the scene. The learned moving direction around the dropping area

is north west, however, this vehicle moved in the opposite direction around the

area, which makes it unusual.

2. Figure 4-22 shows the activity with the second lowest data likelihood. This

abnormality is caused by the tracker. When a vehicle stopped and dropped off

a person, the tracker didn't separate the person's trajectory from the vehicle's

trajectory. Hence, it looked like a vehicle made an illegal right turn. In this

case, it is the moving space which is unusual.

3. In Figure 4-23, when a vehicle entered the view of Camera 2, it didn't stay at

the right lane, and shifted to the opposite lane which is very danger. It is the

moving direction which is unusual.
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Figure 4-21: Abnormal activity 1: a vehicle left the view of Camera 2, entered Camera 1,
then made an interesting U turn at the dropping area, and finally left the scene. The learned
moving direction around the dropping area is north west, however, this vehicle moved in
the opposite direction around the area, which makes it unusual. The trajectory is plot in
blue, and the starting and ending points of the trajectory are marked by green plus and
dot.

Figure 4-22: Abnormal activity 2: when a vehicle stopped and dropped off a person,
the tracker didn't separate the person's trajectory from the vehicle's trajectory. Hence, it
looked like a vehicle made an illegal right turn. In this case, it is the moving space which is
unusual. The trajectory is plot in blue, and the starting and ending points of the trajectory
are marked by green plus and dot.

4. Figure 4-24 shows a vehicle driving through the view of Camera 1, making an

U turn in the view of Camera 2, and finally leaving the scene. It is the moving

direction causing the abnormality.

5. Figure 4-25 shows another example of vehicles shifting to the opposite lane.

We should notice that in our model, an abnormal activity is defined as an activity

that couldn't fit to the learned activity clusters. Sometimes, a seldom occuring activ-

ity doesn't necessarily mean an abnormal activity. For example, in our street scene

case, although detected abnormal activity 1 and 3 are flagged as abnormal activities

by our model, they are not illegal operations and quite normal. In this circumstance,

human intervention is needed to supervise.
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Figure 4-23: Abnormal activity 3: when a vehicle entered the view of Camera 2, it didn't
stay at the right lane, and shifted to the opposite lane which is very danger. It is the
moving direction which is unusual. The trajectory is plot in blue, and the starting and
ending points of the trajectory are marked by green plus and dot.

Figure 4-24: Abnormal activity 4: a vehicle drove through the view of Camera 1, made an
U turn in the view of Camera 2, and finally left the scene. It is the moving direction causing
the abnormality. The trajectories is plot in blue, and the starting and ending points of the
trajectory are marked by green plus and dot.

Figure 4-25:
lane.

Abnormal activity 5: another example of vehicles shifting to the opposite
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Then we use the LDA model to learn the activity clusters, in order to compare

the results with our mixture of unigram model directly, we also set the number of

clusters for LDA model to be 5. The learned acitivity clusters are shown at Figure

4-26. Compared with the mixture of unigram model, LDA model doesn't capture the

activities that vehicles make U turns at the view of camera 1. The other four activity

clusters are both successfully learned by our mixture of unigram model and LDA

model. With fewer parameters and less computational cost, our model outperforms

the LDA model.

4.4 Summary

In this Chapter, we showed how to learn the activity clusters and detect abnormal

activities using the mixture of unigram model with the stitched trajectories as input.

We adopt a bag - of - words presentation, and present a Bayesian probabilistic

approach in which trajectories are represented by a mixture model. This model can

classify trajectories into different activity clusters, and gives representation of both

new trajectories and abnormal trajectories.

First, our method define a global codebook of observations that are representative

of the entire set of observations captured by different cameras. Using this codebook

to represent our continuous observations through different views, we can represent the

likelihood of a trajectory by a mixture of unigram model. By using EM algorithm, we

can learn the model parameters, and label trajectories into different activity cluster.

Finally, we can detect abnormal activities if they does not fit any learned activity

model well.
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Figure 4-26: Learned 5 activity clusters using LDA model. Each row represents an activity
cluster. Compared with the mixture of unigram model, LDA model doesn't capture the
activities that vehicles make U turns at the view of camera 1. The other 4 activity clusters
are both successfully learned by our mixture of unigram model and LDA model.
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Chapter 5

Conclusions

The motion pattern learning framework introduced in this thesis shows promise in

bootstrapping perceptual intelligence for multi camera surveillance systems. Given a

primitive system that detects and tracks the presence of moving objects in any single

sensor, this system can learn the topology of the network, build models of appearance

change in different views, track objects in multiple sensors, build models of activities,

and determine events that are uncharacteristic of the environment.

5.1 Contributions

The primary contribution of this thesis was to motivate this problem and to advocate

our data driven framework. Our framework exploits different aspects of the real

world learning problem in a particular order to boost the tracking accuracy between

different views and help to learn the activity clusters.

Secondary contributions include each individual component of the motion pattern

learning framework. First, we present a weighted cross correlation model to learn

the topology of the network without solving correspondence in the first place. A

coarse appearance model is constructed by the combination of the normalized color

and overall size model to measure the moving objects appearance similarity across

the non-overlapping views. Our general correspondence framework incorporated both

appearance and inter camera time correspondence and shows promise for long-term
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correspondence. The most essential element is the 1a0 space color transformation

model. This general modeling technique is quantitatively shown be to be very stable

and can improve the tracking accuracy result dramatically with fewer parameters and

less computational cost. Finally, we adopt a bag-of -words presentation, and present

a Bayesian probabilistic approach in which trajectories are represented by a mixture

model. This model not only can classify trajectories into different activity clusters,

but also gives representation of both new trajectories and abnormal trajectories.

5.2 Applications

The most intriguing aspect of the motion pattern learning framework is the potential

applications to the real world:

1. Data summary and retrieval. Imagine you are given hundreds of videos, possibly

thousands of hours in duration for each one, depicting every day scenes like

shopping malls, train stations, or security sensitive buildings. You are asked to

give the summary of the data (i.e. what are the common activities) and be able

to do data retrieval. Having built a statistical model of activities in the scene,

we can use the model to find other activities that are similar, i.e. activities that

fit the same cluster. For instance, given a particular example of activity, we

can retrieve other examples that have been classified as belonging to the same

cluster. Additionally, we could also flag any future activity that is similar to a

particular example or that comes from a specific cluster in our model.

2. For many applications the unusual activities detection are of most interest. For

example, a vehicle leaves the scene at an unusual place (e.g. in the middle

of the road), or a vehicle speeds up towards a government building. As we

discussed before, most visual surveillance depends on a human operator to sift

through videos. However, it is a tiring, expensive, and tedious job, monitoring

for interesting events that rarely occur. The methods from this thesis could be

applied to filter out activities that are common based on long-term observation
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of the scene and flag any possible abnormal activity. As a result, a single

operator would be able to oversee a much larger network of sensors that has

previously been impossible.

5.3 Limitations and Future Work

In our topology learning step, one limitation is that it can only learn the topology with

one popular transition time between disjoint views. If the transition time is multi-

modal, one possible way to solve it is to estimate the mutual information directly,

which means to estimate the joint distribution and marginal distribution of variables,

which we will explore in future work.

In Chapter 3, we showed that although the shape/size information is helpful

to determine the correspondence, it will jeopardize the tracking accuracy when the

shape/size information isn't stable. Especially, in a crowded scene, when there are

substantial amount of people and vehicle moving around, how to accurately tracking

individual moving objects without grouping them together becomes very essential and

the performance of the tracker will impact our motion learning framework directly.

Although, how to track moving objects in a single view isn't the focus of our system,

we would like to explore it in the future and to build a more reliable tracker.

Another limitation of our work is that we can only model the motion patterns

of individual moving objects, and cannot handle the interactions between them. For

instance, if there is a vehicle want to make a left turn, it should yield in the middle

of the intersection until the road is clear and no more vehicles comes toward it. Our

future work will be focus on how to incorporate interaction modeling into our system.

Olive et. al. [109] proposed to use Coupled HMM to learn human interactions, and

Wang et. al. [103] used a Dual-DHP model to model the interactions of multi agents.

which we will further investigate.
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