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Abstract

Ink jet printing is a demanding application that requires carefully formulated inks in
order to quickly and reliably produce high-quality printed images. Although ink jet
inks are currently produced via an aqueous process, supercritical fluids (SCF) and
gas-expanded liquids (GXL) present alternative processing media for particle coat-
ing operations that may offer significant benefits with respect to the production of
polymer-encapsulated pigment particles for these inks. The main thesis objective is
the demonstration and analysis of a particle size reduction and encapsulation pro-
cess which takes place in CO2-expanded acetone and produces colloidal carbon black
particles. These particles should be uniformly coated with functionalized hydropho-
bic resins such that they are easily redispersed in water or solvent to form stable
nanoparticle dispersions suitable for use in ink jet inks.

A prototype size reduction and encapsulation system has been constructed based
on a high-pressure stirred reaction vessel designed to operate at pressures up to 200
bar (3000 psi). The prototype vessel has a fluid volume of 1 liter with a multi-
disc agitator capable of rotating at more than 3400 RPM. Pigment particles are
initially milled in a solution of non-aqueous solvent and dissolved dispersing resin.
Size reduction is achieved within the apparatus via the grinding action of 1.2 mm
spherical ceramic media contacting the micron-size pigment particles. As milling
progresses, high-pressure CO 2 is slowly introduced to the vessel; the CO 2 acts as
an anti-solvent, lowering polymer solubility and driving adsorption of the dispersing
resin onto the pigment particles as new surface area is exposed. After encapsulation is
complete, the system is flushed with CO 2 and the product particles are retained as a
dry powder in a high-pressure filter. The solvent-free particles are then recovered by
venting the system to atmospheric pressure, and subsequently re-dispersed in water
for analysis in inks.

The apparatus under investigation provides a new process approach to particle size
reduction and coating that affords greater freedom in ink formulation, while offering a
path to improved ink quality and possible cost savings in a highly competitive market.
Specifically, the use of C0 2-expanded liquids enables the deposition of hydrophobic



polymers on the surface of particles for use in aqueous inks, thus significantly increas-
ing the variety of polymers that are available for use in these systems. A represen-
tative model system of carbon black pigment and benzyl methacrylate/methacrylic
acid (BzMA/MAA) copolymer dispersing resins of varying monomer compositions
(BzMA/MAA mass ratio = 85/15, 80/20, and 75/25) has been studied in order to
assess the feasibility of the high-pressure milling and encapsulation process for ink
jet applications. These components have been successfully employed in high-pressure
coating operations to produce encapsulated carbon black particles which were recov-
ered as a dry, flowable powder. Dry product particles were redispersed in water to
obtain stable aqueous dispersions with a number average particle size of 135-190 nm.

In order to guide the selection of appropriate process conditions for the encap-
sulation system, the high-pressure solid-liquid-vapor phase equilibrium of ternary
CO 2-solvent-polymer systems has been probed experimentally and modeled with the
PC-SAFT equation of state. Precipitation of BzMA/MAA copolymers generally re-
quired a larger overall CO 2 mole fraction - and thus a higher system pressure - for
more dilute polymer solutions; however, a minimum in the precipitation pressure was
observed for all polymer compositions and temperatures near a CO2-free polymer
mass fraction of 0.03. The ternary systems were characterized by a rapid reduction
in polymer solubility over a relatively narrow range of pressure (between 200 psig and
400 psig, depending on the polymer and system temperature); the precipitation pres-
sure increased with increasing temperature and BzMA mass fraction (per polymer
mass unit). The PC-SAFT EOS was successfully employed to correlate the phase be-
havior data by adjusting only two binary interaction parameters; the average relative
error associated with the predictions of precipitation pressure for each polymer was
3.7%.

Characterization of the encapsulation process also requires knowledge of the ther-
modynamics and kinetics of polymer adsorption onto particle surfaces from CO 2-
expanded solvents. To this end, interactions with the particle surface have been in-
vestigated through the collection and correlation of experimental adsorption isotherm
data. Adsorption of 85/15 and 75/25 BzMA/MAA polymers onto carbon black from
CO 2-expanded acetone was measured at 35'C and pressures between 0 psig and 300
psig over a range of mixture compositions relevant to particle coating operations.
Pressurization with CO 2 to pressures up to 200 psig caused a decrease in the amount
of polymer adsorbed on particle surfaces, but further increases in pressure resulted
in higher polymer loadings. In the case of 75/25 BzMA/MAA polymer, the polymer
loading increased significantly between 200 psig and 300 psig as the solubility limit
was approached or exceeded.

Our results are valuable not only in providing quantitative data to facilitate pro-
cess optimization, but also in offering a more fundamental understanding of interac-
tions among the pigment particles, the dispersant resin, and the gas-expanded liquid
media. Such information is important to both process and product design.

Thesis Supervisor: Jefferson W. Tester
Title: H. P. Meissner Professor of Chemical Engineering
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Chapter 1

Introduction and background

1.1 Ink jet technology

1.1.1 Industry overview

Ink jet printing is a non-impact process in which droplets of ink (typically 18-50.m

in diameter) are ejected through a nozzle and directed to a medium at a specified

location to form an image. The technology was developed in the 1950s and 1960s,

with the first commercial devices appearing in the late 1960s [Le, 1998]. The early

generation ink jet printers were based on a process known as continuous ink jet, in

which a steady stream of ink is broken up into uniform droplets. An electric charge

is selectively applied to the ink droplets as they are ejected from the nozzle, and

charged droplets are deflected to a gutter for recirculation while uncharged droplets

are applied to the media.

In the 1970s development efforts focused on drop-on-demand technology for ink jet

printing; as the name implies, these systems eject ink only when it is required for the

image. The introduction of drop-on-demand technology offered a route to reduced

complexity, improved reliability, and lower cost, and these systems soon came to

compete with the dot-matrix printers that dominated the low-end printer market in

the 1970s and early 1980s.

At present, nearly all commercial ink jet printers are based on one of two con-
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Figure 1-1: A) TEM image of ink jet nozzle (adapted from Le, 1998). B) Thermal ink jet
configuration.

figurations, known as thermal and piezoelectric ink jet. In thermal ink jet systems

- found in printers manufactured by Canon, HP, and Lexmark - ink is ejected from

the print head upon the formation of a water vapor bubble on a small heater near

the nozzle [Endo et al., 1979]. A schematic of a thermal ink jet printhead, as well

as a TEM image of a printhead nozzle are pictured in Figure 1-1. Thermal ink jet

manufacturers have benefited from advances in the semiconductor industry, allowing

the low-cost production of disposable printheads with high nozzle density. Piezoelec-

tric ink jet, pursued commercially most notably by Epson, utilizes a pressure wave

generated by piezoelectric ceramics to force ink out of the printhead nozzles. In both

of these configurations, ink is forced out of the nozzles by an acoustic pulse, and as

the bubble collapses (or the piezo-ceramic returns to its original shape), a droplet

breaks off and travels toward the media. Capillary action then draws the ink from

the reservoir to refill the orifice. These phenomena occur at a frequency of 5-12kHz,

and the refill time is on the order of 100-200ps.

Ink jet technology rapidly gained popularity among home and small business users

beginning with the introduction of Hewlett-Packard's ThinkJet printer in 1984, and

the total annual revenue in the ink jet ink industry has steadily climbed to its current

:~ ;-;;;;;;;;;-----



value of over $60 billion, with more than half of this total derived from sales of ink

[Darlin, 2006]. With continually improving image quality and a recent focus on large-

format printers for textiles, industrial printing (packaging, posters, etc.), and printed

electronics, ink jet is poised to expand from the low-end printer market to other

sectors currently dominated by competing printing systems.

The interested reader is referred to the review by Le [1998] for a more detailed

history and technology map of ink jet systems.

1.1.2 Ink jet inks

The nature of ink jet printing technology places a variety of demands on the inks used

in ink jet devices. The ink must possess physical properties that are compatible with

the droplet ejection process, the most important of these being viscosity and static

and dynamic surface tension. Once the ink droplet strikes the printing media, it must

penetrate into the bulk to avoid bleeding and smearing and to shorten drying time, but

not so deeply as to be seen from the other side. Of course, the optical characteristics

of the dried ink is extremely important; not only should the ink possess the desired

light absorption spectra, but properties such as gloss, lightfastness, waterfastness,

and rub resistance are also crucial. The liquid ink must also have a reasonably long

shelf life, requiring ink stability with respect to time, temperature, and pH. As a final

important requirement, health and safety issues such as toxicity and flammability

must be addressed. The constraints described above require a surprisingly complex

ink formulation that includes a variety of additives to modify the properties and

improve the stability of the final product. A list of typical components of an ink jet

ink is given in Table 1.1.

Pigmented inks versus dye-based inks

The color of an ink is provided either by a colloidal pigment or a dye. The main

distinction between dyes and pigments is solubility: dyes are water-soluble molecules,

while pigments are larger, insoluble particles (on the order of 70 to 100nm in diam-



Table 1.1: Typical ink jet ink components

Colorant (pigment or dye)
Carrier (water and/or solvent)
Polymer dispersant
Surfactant/wetting agent
Base
Biocide
Buffer
Anti-foaming agents
Binder
Humectant

eter for ink jet formulations). Although the first inks used in ink jet printers were

dye solutions, pigment-based inks now dominate due to their superior lightfastness

and color quality. However, the larger size of the pigment particles also presents

a challenge, since dispersion instability can lead to clogging of the ink jet nozzles.

Improved ink chemistry has allowed pigment-based inks to overcome early problems

related to nozzle clogging; however, inks with smaller pigment particle sizes (20 to

50nm) and superior dispersion characteristics may be needed as the drive towards

improved image resolution and increased printing speed continues, requiring smaller

and more numerous printer nozzles.

1.1.3 Pigmented ink production

Pigmented ink jet ink dispersions are currently produced via the comminution of

micron-size pigment particles or aggregates, typically in aqueous media. Large ag-

glomerates are first broken up and dispersed in an aqueous solution containing poly-

meric dispersant molecules during a premix step. High-speed dispersers (HSD) are

commonly used for this first step, employing shear stress and some attrition as the

source of dispersion. Typical equipment used for further size reduction include me-

dia mills, microfluidizers, ball mills, and attritors. While undergoing size reduction

(typically 75-90% of initial particle size) in the final grind, the pigment particles

are simultaneously encapsulated with the dispersant resin dissolved in the aqueous



medium. In the final processing step, the pigment dispersion is filtered to remove any

dust, undispersed pigment, or insoluble raw materials that may clog the printhead

nozzles.

For a more detailed discussion of the various aspects of ink jet formulation and

production, the reader is referred to the review by Wnek et al. in the Handbook of

Imaging Materails [2002].

1.2 Processing in high-pressure CO2-based media

1.2.1 Carbon dioxide as an industrial solvent replacement

Over the past several decades, carbon dioxide (CO 2 ) has received considerable atten-

tion as an alternative solvent for industrial applications. The search for alternative

industrial solvents largely stems from concerns about the environmental, health, and

safety implications of the use of traditional solvents, and CO 2 has been viewed as

an excellent candidate due to the fact that it is a non-toxic, non-flammable, and

non-corrosive material [Beckman, 2004].

Much of the recent attention directed towards carbon dioxide has focused on its

use in the supercritical or near-critical state, for a variety of reasons. The supercritical

state is indicated by the region in the upper right of the general pressure-temperature

diagram shown in Figure 1-2; supercritical fluids (SCFs) have long been known to

exhibit interesting and potentially useful properties [Hanney and Hogarth, 1879], most

notably high compressibility, liquid-like density, and gas-like viscosity and diffusivity.

The rapid change in fluid density near the critical point affords control over various

physicochemical properties - such as solvation power, viscosity, and diffusivity - via

changes in the system temperature and pressure. The lack of coexisting vapor and/or

liquid phases also means that there are no phase interfaces or surface tension in the

supercritical region, eliminating problems related to wetting. Because many SCFs are

gases at ambient conditions, depressurization of a solution of less volatile solutes in a

supercritical solvent results in the formation of multiple phases, and simple recovery
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Figure 1-2: Pressure-temperature diagram for a pure component, including the supercrit-
ical state.

of the solvent in the gas phase.

In addition to these general properties of SCFs, CO 2 exhibits several desirable at-

tributes that have led to increased interest in its application as an industrial solvent

replacement. Its critical temperature and pressure of 31.3 0C and 73.8 bar, respec-

tively, make the supercritical region more accessible than that of other materials. In

addition to the health and safety attributes mentioned above, CO 2 is also relatively

inexpensive and readily available in commercial markets. Because of these charac-

teristics, CO 2 has already found use in several important industrial processes. The

pharmaceutical and food industries have shown particular interest in using super-

critical carbon dioxide (scCO 2) as a substitute solvent due to its non-toxic nature.

For example, this led to its wide-scale use as a replacement for methylene chloride

in the extraction caffeine from coffee [McHugh and Krukonis, 1994]. In the chemical

industry, CO 2 already serves as a solvent for the polymerization of several important

fluoro-carbon polymers [Du et al., 2009], and has been used as a solvent in Union Car-

bide's UniCarb coating process. The use of CO 2 in traditional chemical industries

has the potential to grow rapidly in the coming years as environmental and health

concerns mount with regard to traditional organic solvents used as processing and/or

~.............



reaction media [Beckman, 2004, Du et al., 2009].

Polymer solubility in high-pressure CO 2

One important limitation on the use of carbon dioxide in industrial processes is

its relatively low solvation power. In fact, CO 2 is generally a poor solvent for po-

lar, inorganic, or high molecular weight compounds - including polymers. Well-

known exceptions include certain fluorinated polymers [Rindfleisch et al., 1996], poly

(dimethylsiloxane) [Xiong and Kiran, 1995], and poly(ether-carbonate) copolymers

[Sarbu et al., 2000]; however, in general polymer solubility is low and decreases with

increasing molecular weight, increasing temperature (below 800C), and decreasing

pressure [McHugh and Krukonis, 1994].

The solubility of a polymer in CO 2 is governed by the relative magnitudes of the

interactions between solvent-solvent, polymer-solvent, and polymer-polymer pairs, as

well as the density of the polymer-CO 2 solution and the volume change upon mixing

[Kirby and McHugh, 1999]. Combinatorial entropy effects resulting from the struc-

ture of the polymer are also important. The polarizability of CO 2 is relatively low,

suggesting that dispersion interactions will be weak. On the other hand, while CO 2

has no dipole moment, it has a substantial quadrupole moment; although electrostatic

forces arising from charge separation act over short distances, quadrupolar interac-

tions dominate at low temperatures due to the fairly high density of supercritical CO 2

[Kirby and McHugh, 1999]. For this reason, CO 2 is a poor solvent for both nonpolar

and very polar polymers. O'Neill and coworkers [1998] have suggested that polymer-

polymer interactions govern solubility, and therefore polymer surface tension or cohe-

sive energy density is the best indicator of solubility in CO 2. Kazarian and coworkers

[1996] have observed specific interactions between CO 2 and electron-donating groups

such as carbonyls; however, these interactions are only slightly stronger than disper-

sion interactions. As discussed above, certain polymers incorporating fluorinated side

chains also exhibit enhanced solubility, although fluorination alone does not guar-

antee solubility. Some researchers have suggested that fluorinated side chains shield

the polymer backbone from CO 2 interactions due to clustering or through the for-



mation of weak complexes [Kazarian et al., 1996]. Sarbu and co-workers [2000] have

incorporated the observations described above into a set of guidelines to be used to

design "CO2-philic" copolymers. They recommend that one of the monomers pro-

vides high flexibility, high free volume, and low cohesive energy density, and that the

other monomer contains groups which exhibit specific interactions with CO 2.

1.2.2 Gas-expanded solvents

The low solvating power of supercritical CO 2 may be overcome in many cases by

adding an appropriate co-solvent. Liquid co-solvents such as acetone or methanol

effectively increase the density of the SCF, thereby enhancing solubility. In addition,

co-solvents which provide polar interactions, complex formation, or hydrogen bonding

with the polymer can significantly improve solubility beyond simple density effects

[Ekart et al., 1993]. Commonly used co-solvents for supercritical CO 2 systems include

methanol, acetone, dimethylsulfoxide (DMSO), and toluene.

Conversely, compressible gases may be added to organic solvents to obtain gas-

expanded liquids (GXL). Not surprisingly, these mixtures exhibit tunable properties

between those of the pure liquid and the pure SCF, often retaining the high solvent

strength of organic solvents as well as gas-like viscosity and low surface tension.

Carbon dioxide-expanded liquids (CXLs) have been applied to separations processes,

crystallization, particle formation, and chemical reactions; Jessop and Subramaniam

discuss the advantages of GXLs and many of their applications in their recent review

[2007].

1.2.3 Particle formation and encapsulation in C0 2-based me-

dia

Much of the recent research activity involving C0 2-based media has focused on meth-

ods of forming nanoparticles of one or more materials, taking advantage of the gas-like

transport properties and tunable solvent character of supercritical fluids. Because of

the desire to eliminate the use of harmful solvents, considerable effort has been di-



rected toward using scCO 2 and liquid CO 2 for pharmaceutical and drug delivery

applications; researchers have also attempted to apply supercritical processing tech-

niques to produce catalysts [Reverchon et al., 2003], cosmetics [Viswanathan and

Gupta, 2003], pigments [Hong et al., 2000], and latexes [Liu and Yates, 2002], as well

as novel micro- and nano-structured materials such as fibers [Mawson et al., 1995]

and foams for a variety of applications [Tomasko et al., 2003].

The same processes that have been developed for particle formation have also been

applied to particle encapsulation. The following sections review the main techniques

being investigated for particle formation and encapsulation in supercritical CO2, with

a focus on encapsulation of nanoparticles with polymeric material. The reader is

referred to the reviews by Reverchon [1999], Thiering and coworkers [2001], Jung

and Perrut [2001], and Tomasko and coworkers [2003] for further discussion regarding

particle design using CO 2 and CO2-based mixtures.

Rapid expansion of a supercritical solution

The simplest technique for particle design using supercritical fluids is referred to as

rapid expansion of a supercritical solution (RESS). Due to its simple, continuous,

solvent-free operation, RESS is the preferred technique for coating materials which

are soluble in scCO 2 at concentrations above 10- 4 mole fraction [Shekunov et al.,

2004]. For particle encapsulation applications, the coating material is first dissolved

in scCO 2 , the particles to be coated are added to the solution, and the resulting

slurry is then expanded across a heated nozzle to a lower pressure. The solubility

of the coating material decreases dramatically with pressure, leading to precipitation

and encapsulation of the particles. Important process variables include temperature,

pressure drop, nozzle geometry, and the structure of the coating material [Jung and

Perrut, 2001, Thies et al., 2003]. The primary limitation of the RESS process is the

poor solvent power of scCO 2 for many coating materials. Matsuyama and coworkers

have developed a modified process - referred to as rapid expansion of a supercritical

solution with an non-solvent (RESS-N) - in which ethanol is used as a co-solvent to

enhance the solubility of the coating material [Matsuyama et al., 2003, 2001, Mishima



et al., 2000]. Although the addition of ethanol increases the solvent power of scCO 2 ,

pure ethanol is not a solvent for any of the polymeric coating materials employed; if

this were not the case, agglomeration of the product particles would be a concern,

as it is in the antisolvent techniques discussed below [Shekunov et al., 2004]. The

RESS-N process has been used to form microcapsules as small as 6 pm [Matsuyama

et al., 2003]. In another modification of RESS, Shim expanded surfactant-stabilized

suspensions of poly(2-ethylhexyl acrylate) in scCO 2 over a nozzle to produce uniform

polymer films [Shim et al., 1999].

Processes employing CO 2 as an anti-solvent

Another class of processes utilizes SCFs as antisolvents, avoiding the difficulties en-

countered in the RESS process related to the poor solvent power of CO 2. The coating

material is first dissolved in an appropriate solvent containing suspended particles,

and one of two basic techniques is then employed to bring this suspension into contact

with the supercritical antisolvent: the CO 2 can be injected into a tank containing the

suspension, or the suspension can be fed into a vessel containing scCO 2 . The naming

of these antisolvent techniques is inconsistent in the literature, but in general gas an-

tisolvent (GAS) systems refer to the former technique, while the terms precipitation

with a compressed antisolvent (PCA), supercritical antisolvent (SAS) precipitation,

aerosol solvent extraction system (ASES), and solution-enhanced dispersion by su-

percritical fluids (SEDS) describe variations of the latter. The acronyms GAS and

PCA will be used below to refer to the two main classes of antisolvent processes.

Although both the GAS and PCA techniques utilize CO 2 as an antisolvent, it has

been suggested that they operate in different hydrodynamic regimes [Tomasko et al.,

2003, Thiering et al., 2001]. In GAS systems, the solution containing suspended par-

ticles and dissolved coating material is expanded by the injection of compressed CO 2 ,

causing supersaturation of the solution and precipitation of the coating material onto

the particles. The process is operated in batch configuration, and expansion of the

solution is followed by a washing step in which scCO 2 is pumped through the vessel to

remove the remaining solvent. With regard to the GAS process, the rate of pressure



increase in the precipitation vessel is generally recognized as the most important pro-

cess parameter [Reverchon, 1999]. However, Thiering and coworkers have examined

the influence of operating temperature, solvent choice, rate of antisolvent addition,

and solute concentration on the formation of protein particles, and found that the

choice of solvent had the greatest impact [Thiering et al., 2000a,b]. Bertucco and col-

leagues [1998] have developed a thermodynamic model of the GAS particle-formation

process, and Muhrer and coworkers [2002] have extended this model to include nu-

cleation and growth kinetics; the results of the latter model suggest that the con-

flicting conclusions of previous experimental studies can be explained by differences

in the relative rates of primary and secondary nucleation. A model incorporating

mass transfer effects has not yet been developed, although Elvassore and coworkers

have modeled mass transport between a droplet of polymer-containing solvent and a

miscible antisolvent [2004].

As discussed above, the PCA technique is essentially the reverse of the GAS tech-

nique: the suspension of particles and coating material is introduced into a vessel

containing supercritical CO 2 . A key difference in the PCA process is the fact that

compressed CO 2 is often introduced along with the particle solution, allowing con-

tinuous or semi-continuous operation and providing desirable mass transfer effects in

certain cases.

The mechanisms of mixing, supersaturation and precipitation during the spray-

ing operation of the PCA process are not well understood, although several authors

have attempted to model these phenomena to gain a better understanding of the

fundamental processes involved [Lengsfeld et al., 2000, Jarmer et al., 2004, Wer-

ling and Debenedetti, 2000, Lora et al., 2000, Bristow et al., 2001]. Lengsfeld and

colleagues [2000] determined that the length scale for the disappearance of surface

tension (-1pm) is less than that for jet breakup (-imm) during injection of methy-

lene chloride into scCO 2 , which implies that gas phase nucleation and growth rather

than nucleation within discrete liquid drops is the relevant mechanism when the in-

jected liquid is miscible with scCO 2 . However, experimental data is still lacking,

and the complex interplay between thermodynamics, mass transfer, nucleation and



growth kinetics, and jet hydrodynamics make this a challenging problem. Recently,

Martin and Cocero [2004] have presented a model incorporating all of these aspects,

and although it is not predictive, it may be useful for interpreting and correlating

experimental results.

Although the precise mechanisms of the PCA process are not known with certainty,

numerous empirical variations have been developed in order to improve the mass

transfer upon introduction of the particle suspension and CO 2 into the pressurized

vessel. For example, nozzles [Reverchon et al., 2003, Gao et al., 1998, Young et al.,

1999, Wang et al., 2004], small internal diameter capillaries [Boutin et al., 2004],

and vibrating orifices [Randolph et al., 1993] have been employed to inject the liquid

solution, and coaxial nozzles for simultaneously injecting the liquid solution and CO 2

have been used to facilitate mixing [Mawson et al., 1997]. Power ultrasound has also

been employed by several researchers. Randolph et al [1993] used a special nozzle

to generate high-frequency sonic waves in the precipitation of poly(L-lactic acid)

particles, Subramaniam and coworkers [Subramaniam et al., 1997] have patented a

similar PCA technique using a specialized nozzle, and Chattopadhyay and Gupta

[2002] have produced magnetically responsive composite particles of polymer and

magnetite by impinging the liquid solution on an ultrasonic horn.

Because the PCA process mechanism remains largely uncharacterized, it is not

surprising that there is some controversy as to the effects of process variables on

product morphology. In fact, little agreement can be found in the literature, even with

regard to the effects of pressure, temperature, and solute concentration [Reverchon,

1999]. More theoretical and experimental work is necessary to gain insight into the

fundamental mechanics of PCA.

In addition to the RESS and antisolvent techniques described above, Seivers and

coworkers have developed a C0 2-assisted nebulization process which can be used

for water-soluble coating materials [2003], and Yue and coworkers [2004] have re-

cently encapsulated particles of Dechlorane via in situ polymerization of poly(methyl

methacrylate).
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Chapter 2

Objectives and approach

2.1 Motivation

As discussed in Chapter 1, ink jet is a very demanding application that requires care-

fully formulated inks in order to quickly and reliably produce high-quality printed

images. Although ink jet inks are currently produced via an aqueous process, SCFs

and gas-expanded solvents present alternative processing media for particle coat-

ing operations that may offer significant benefits with respect to the production of

polymer-encapsulated pigment particles for these inks.

Media milling technology using SCFs to produce particles with desirable prop-

erties has been developed by DuPont for pharmaceutical applications [Ford et al.,

2002]; when combined with the gas antisolvent (GAS) particle encapsulation pro-

cesses discussed in the previous chapter, this technology possesses several potentially

important advantages over conventional water-based processes for the production of

ink jet inks. For example, the low viscosity of the resulting slurry could lead to better

dispersion and energy transfer, possibly improving particle size reduction and control

from micro- to nano-particles. After the milling and encapsulation is complete, sepa-

ration and elimination of CO 2 and any co-solvents is easily achievable in a single step,

and the process would yield a dry flowable end-product. Perhaps most importantly,

it would possible to encapsulate pigment particles with hydrophobic resins which are

not soluble in water and thus unavailable for use in the current process. A C0 2-



based process incorporating these hydrophobic resins would allow more efficient use

of a wider range of dispersants with minimal losses - much lower than is possible with

the current water-based process. An effort to develop such a process would provide

new process approaches to particle size reduction and coating that would result in

improved ink quality, greater freedom in ink formulation, and possible cost savings

in a highly competitive market.

2.2 Thesis objectives

The main thesis objective is the demonstration and analysis of a particle size re-

duction and encapsulation process which takes place in C0 2-expanded acetone and

produces colloidal carbon black particles which are uniformly coated with function-

alized hydrophobic resins. The powder produced by the milling process should result

in stable nanoparticle dispersions when mixed into either solvent or water, yielding

pigment particle dispersions suitable for use in ink jet inks. The specific objectives

and approach are as follows:

Selection of model system for study

A wide variety of pigments and dispersing resins are currently used in the produc-

tion of commercial inks. In addition, the incorporation of high-pressure processing

in gas-expanded solvents allows the use of a range of organic solvents during the en-

capsulation process. Thus, the first task was the selection of an appropriate model

system for study. The desired system would be relevant to commercially viable inks,

but would also be amenable to analysis that would lead to a deeper understanding of

interactions among the pigment particles, the dispersant resin, and the gas-expanded

liquid media. The considerations that led to the selection of the final model system

are discussed in Chapter 3.



Phase behavior of C0 2-acetone-polymer systems

The selection of process conditions for encapsulation is guided by knowledge of the

phase behavior of the polymer-solvent-CO 2 ternary systems which comprise the fluid

phase. Solid-liquid-vapor equilibrium curves for these ternary systems were measured

using an apparatus incorporating the detection of scattered laser light to determine

the onset of polymer precipitation. Measurements were made at various values of the

polymer weight fraction at three fixed temperatures; the equilibrium data gathered

were then correlated using the PC-SAFT equation of state. The results of this study

are presented in Chapter 4.

Adsorption of polymer onto carbon black particles from CO2-expanded

acetone

The conventional process to produce inks is governed by the adsorption equilibrium of

the dispersing resin on the surface of the pigment particles. The high-pressure process

under investigation can also be analyzed in terms of the adsorption equilibrium condi-

tions; however, pressure is introduced as an additional parameter. An apparatus was

designed and constructed for the experimental investigation of CO 2-solvent-polymer-

particle interactions via high-pressure adsorption isotherms, and isotherm data was

gathered for two polymers and correlated with the Langmuir equation. This investi-

gation is summarized in Chapter 5.

Carbon black size reduction and polymer encapsulation in C0 2-expanded

acetone

To meet the final thesis objective, a prototype high-pressure process was designed,

constructed, and demonstrated for both size reduction and polymer encapsulation of

pigment particles in gas-expanded solvent media. The process is based on the GAS

process described in Chapter 1, and incorporates high-pressure milling techniques

developed at DuPont. The results of the supporting tasks described above informed

the selection of process operating conditions; the resulting product powders were



characterized via TEM analysis, and were also submitted to DuPont for evaluation

in actual inks. The details of the development and validation of the high-pressure

encapsulation process are included in Chapter 6.
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Chapter 3

Model system

Ink jet inks are complex mixtures whose properties depend on the specific compo-

nents chosen to formulate the ink, the relative amounts of these components, and the

processing methods used to produce the final formulation. For the purposes of the

thesis, we are concerned with the production of (dry) polymer-encapsulated pigment

particles for use in aqueous inks. Thus, the focus will be on the pigment particles

and the dispersant polymer that will be applied to the pigment particle surface; the

various additives that are typically added to ink formulations to adjust their final

properties and enhance stability (e.g. humectant, buffer, biocide, etc.) are outside

the scope of the thesis and will not be discussed further. However, the solvent that

serves as the processing medium for encapsulation (in combination with CO2) will

also strongly affect the process and product performance, and represents an additional

component of the model system.

The model system chosen for study consists of carbon black (pigment), styrene/acrylic

and benzyl methacrylate/methacrylic acid copolymers (dispersant resins), and ace-

tone (solvent). The following sections describe the factors that led to the choice of

this model system.



3.1 Pigment

The color of ink jet inks is imparted by either dyes or pigments; as discussed in

Chapter 1, pigments have gradually come to replace dyes in many inks due to their

superior lightfastness and tendency to remain at the surface of the medium after

printing. However, the use of pigments requires that the individual particles are

small and well-stabilized such that clogging of the printhead nozzles does not oc-

cur. A variety of pigments have been developed for cyan, magenta, and yellow inks

[Herbst and Hunger, 1997, Abel, 1999, Patterson, 1967], but the most widely used

and well-characterized pigment for ink jet is carbon black. Carbon black also pos-

sesses a tertiary structure in which primary particles on the order of 10-50nm form

tightly bound aggregates that in turn form more loosely bound agglomerates; a TEM

micrograph of a well-dispersed carbon black aggregate is shown in Figure 3-1. This

structure is more amenable to size reduction than many of the organic pigments used

for other colors, since aggregates on the order of 100 nm can be obtained by breaking

apart the larger agglomerates. Carbon black was therefore an obvious choice as the

model pigment for the current study.

Figure 3-1: TEM image of a dispersed carbon black aggregate (source: Michael Wolfe,
DuPont).

3.2 Polymeric dispersant

The dispersion of powders in liquids is a complex phenomena that is influenced by

the properties of and interactions between the dispersed solid, the stabilizing agent

(dispersant), and the fluid medium. In the absence of a stabilizing agent, colloidal

L



pigment particles in an aqueous dispersion will tend to coagulate due to interparticle

Van der Waals forces [Israelachvili, 1992]. Thus, the polymeric dispersant applied to

the particle surfaces plays a vital role in promoting the stability of the dispersion and

preventing the formation of pigment aggregates which would increase the likelihood

of sedimentation and nozzle clogging. This polymer coating also contributes to the

adhesion of the pigment particles to paper during printing, and influences the quality

of the final color of the ink. The dispersant resins must therefore be chosen carefully

to produce high-quality, stable inks.

In a typical pigmented ink, dispersant molecules are fixed to particle surfaces by

either adsorption or grafting, and these agents promote the dispersion of pigment by

imparting electrostatic [Verwey, 1940] or steric [Napper, 1983] repulsive forces - or

some combination of these - between the individual particles in the fluid medium. A

detailed discussion of the mechanisms of colloidal dispersion is outside the scope of

the thesis, but the reader is referred to the monographs by Parfitt [1981] and Stein

[1996] for a comprehensive treatment of this subject.

In the specific case of aqueous carbon black pigment dispersions for inks, low

molecular weight (<10,000g/mol) polymers containing aromatic rings or amines as

well as carboxylic acid functionality are often utilized [Spinelli, 1998]. The aromatic

rings and amine groups promote adsorption via specific acid-base interactions with

oxygen-containing groups on the surface of the carbon black [Parfitt, 1981]; the car-

boxylic acid-containing moieties are neutralized in order to impart a charge on the par-

ticle, resulting in strong interparticle coulombic repulsion forces [Chang et al., 2003].

Branched and/or block copolymer structures can also be employed, in which certain

segments of the polymer are hydrophobic and others are hydrophilic; the hydrophilic

segments "dissolve" into the aqueous phase, extending away from the particle surface

and providing steric stabilization to the dispersion. If these hydrophilic segments also

contain acid groups, the dispersion will exhibit both stabilization mechanisms (ionic

and steric) [Spinelli, 1998].



3.2.1 Initial model polymer: Joncryl® resins

Commercially available styrene-acrylic copolymer dispersing resins sold under the

trade name Joncryl@ (Joncryl@ 678, Joncryl@ 586, and Joncryl@ 611) were chosen

for investigation in preliminary studies. These resins have a branched structure and

varying degrees of carboxylic acid functionality. Joncryl@ 678 and Joncryl@ 586

are water soluble, and suitable for use in the current water-based process to produce

inks, while Joncryl@ 611 is a hydrophobic dispersant typically used for solvent-based

formulations. These resins were chosen based on the fact that they are representative

of the dispersants currently used in commercial inks. Schematic representations the

copolymer moieties found in the Joncryl@ resins are shown in Figure 3-2.
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Figure 3-2: Styrene (A) and acrylic (B, C) moieties present in Joncryl® polymers.

3.2.2 Benzyl methacrylate/methacrylic acid copolymers

Upon completion of the initial process validation phase of the project, the Joncryl®

dispersant resins were replaced with copolymers of benzyl methacrylate (BzMA) and

methacrylic acid (MAA) synthesized at DuPont. See Figure 3-3 for schematic rep-

resentations of these moieties. The BzMA/MAA polymers feature a well-defined

random linear structure and uniform molecular weight (-5500g/mol) that is more

appropriate for fundamental studies of the interactions between these polymers, the

fluid phase, and the pigment particle surfaces. Three resins with varying ratios of

BzMA and MAA moieties (BzMA/MAA = 85/15, 80/20, 75/25) were used in all

subsequent investigations. These ratios were selected such that the acid functional

groups would be numerous enough to aid in the dispersion of encapsulted particles,



but not so numerous as to significantly increase the solubility of the polymers in

water. Important properties of the polymers are given in Table 3.1.
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Figure 3-3: Benzyl methacrylate (A) and methacrylic acid (B) moieties present in model
polymers used for the current work.

Table 3.1: Selected properties of benzyl methacrylate/methacrylic acid random copoly-
mers used in the current work.

BzMA/MAA Acid value
mass ratio (meq/g) M, MW/Mn

85/15 1.76 5451 1.13
80/20 2.35 5895 1.14
75/25 2.89 5686 1.13

3.3 Solvent

Although the solvent used in the particle encapsulation process under investigation

will not be present in the final inks, it represents an integral component of the model

system. Because the GAS process applied to particle encapsulation is governed by

the phase behavior of the fluid phase and adsorption of polymer from the fluid phase

onto the particle surfaces, the choice of solvent to a large extent dictates the process

operating conditions and encapsulation efficiency. The polymer dispersant must be

soluble in the solvent, but not so soluble that a large degree of CO2-driven volume

expansion - and high operating pressure - is required to reduce the polymer solubility

sufficiently to achieve encapsulation. The extent of volume expansion with CO 2 ad-

dition will also affect the operating pressure, and should be taken into consideration.



A plot of volume expansion with CO 2 versus pressure for several solvents is shown in

Figure 3-4, where volume expansion is calculated from the original CO2-free liquid

volume, V, and the final C0 2-expanded liquid volume, V, as:

AV= Vf(T, P, co 2)- V(T,) (3.1)
V(T, PO)
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Figure 3-4: Volume expansion with addition of CO 2 as a function of system pressure for
selected solvents: o, acetone, 323K, V, dichloromethane, 313K, ., 2-Propanol,
313K, D, tetrahydrofuran, 313K, +, toluene, 323K, U, acetonitrile, 313K.
Data taken from Lazzaroni et al. [2005].

In addition to favorable polymer-solvent and CO 2-solvent binary phase behavior,

the liquid must exhibit no strong interactions with the surface of the pigment particles

that would interfere with the adsorption of the dispersant. Practical considerations

such as cost, health and safety issues, and vapor pressure also influence the selection

of a solvent. Acetone was chosen as the solvent for the model system based on these

factors. Acetone-CO 2 phase behavior has been well-studied in the literature [Chiu

et al., 2008, Jin and Subramaniam, 2004, Liu and Kiran, 2007, Day et al., 1996],

and it is known to expand readily upon pressurization with CO 2. It is an adequate

solvent for the polymers of interest for this study, is relatively inexpensive, and has

no chronic health effects. Table 3.2 enumerates several key properties of acetone.



Table 3.2: Selected properties of acetone.

Molecular Formula C3H60
Molecular Weight 58.08 g/mol

Density (200C) 0.79 g/cm3

Dipole moment 2.88
Boiling point 56.53 0C
Critical point 234.95 0C, 4.70 MPa

Viscosity (20 0C) 0.32 cP
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Chapter 4

Measurement and correlation of

the phase behavior of

CO 2-acetone-polymer systems

The selection of suitable process conditions for particle encapsulation in CO2-expanded

solvents requires knowledge of the phase behavior of the polymer-solvent-CO 2 ternary

systems which comprise the fluid phase. The goal of the encapsulation process is to

reduce the size of the carbon black particles while simultaneously depositing a dis-

persant polymer on the surface of these same particles. Ideally, polymer molecules

should be available in the fluid medium for deposition onto the particles as new sur-

faces become available during the comminution process, requiring a certain degree of

polymer solubility in the liquid phase. Conversely, if the polymer solubility in the

liquid is too high, the polymer molecules will tend to remain in solution rather than

encapsulate the particles. Although the use of a CXL enables tuning of the solvation

power with changes in pressure such that it is possible to efficiently coat the particles

with polymer, the actual implementation of such a process depends upon the avail-

ability of information regarding the solubility limits of the polymers of interest in the

CXL over a range of pressures.

In order to fully realize the benefits of using C0 2-expanded acetone for particle

coating operations, the solid-liquid-vapor equilibrium of the model dispersant poly-



mers in these media was investigated experimentally and subsequently correlated with

the PC-SAFT equation of state. The following chapter is concerned with details of

this investigation.

4.1 Background

4.1.1 Previous studies of solid-fluid and solid-liquid-vapor

equilibrium in C0 2-based media

A review of the literature related to the collection of phase behavior data for C0 2-

based systems reveals that much of the early work focused on the use of pure scCO 2

as a solvent for extractions and organic synthesis [Dohrn and Brunner, 1995]. As

the limited solvation strength of CO 2 became apparent, more researchers began to

investigate the benefits of adding cosolvents to scCO 2 in order to explore new appli-

cations. In the case of both pure sCO 2 and cosolvent-modified sCO 2, the preferred

approach for determining the solubility of a solute is the cloud point method [McHugh

and Krukonis, 1994]. A typical experiment is carried out in a variable-volume vessel

equipped with windows for visual access; the solute (and any cosolvent) are first added

to the vessel, and the system is pressurized with CO 2 at a constant temperature until

a single phase is obtained. The volume of the vessel is then increased isothermally,

and the point at which the solute first precipitates from solution - referred to as

the cloud point - is determined visually. Christov and Dohrn [2002] have published a

comprehensive review of SCF phase equilibrium data which includes many such cloud

point measurements.

The addition of a second phase introduces an additional degree of freedom to GXL

systems, and thus the cloud point measurements as described above cannot be used

to completely determine the state of a binary or ternary system. Rather, analyti-

cal techniques must be employed to measure the composition of one or more phases

within the system. Experimental investigations of high-pressure solid-liquid-vapor

equilibrium in binary or ternary mixtures are much less common in the literature



than studies of SCF-solid equilibrium [Shariati and Peters, 2002]. The data that do

exist are often motivated by interest in the GAS process for micronization or frac-

tionation of compounds for such applications as pharmaceuticals [Gallagher et al.,

1994] and explosives [Gallagher et al., 1992]. In one of the earliest studies, Chang

and Randolph [1990] measured the solubility of /-carotene in CO2-expanded toluene

and acetaminophen in C0 2-expanded butanol by precipitating and filtering particles

from a saturated solution. Dixon and Johnston [1991] have investigated systems con-

sisting of napthalene and/or phenanthrene in CO 2-exanded toluene as a model for

fractional crystallization with a gas antisolvent, employing an apparatus that allows

sampling of a saturated liquid phase at a constant temperature and pressure. Shariati

and Peters [2002] devised a synthetic method to measure solid-liquid-vapor equilib-

rium curves for salicylic acid in CO2-expanded 1-propanol, in which the equilibrium

points were obtained from the intersections of vapor-liquid and solid-liquid isopleths.

Liu and coworkers have measured the solubility of ortho and para isomers of hydrox-

ybenzoic acid [2000a] and aminobenzoic acid [2000b] in ethyl acetate and ethanol,

respectively, for GAS fractionation applications; the apparatus and method used for

these experiments is similar to that proposed by Dixon and Johnston [1991].

To date, there have been very few experimental studies involving polymer sol-

ubility in CO2-expanded solvents. Clearly, there is a need for fundamental phase

behavior data in order to fully realizes the benefits of GXLs for polymer processing

applications.

4.1.2 Equation-of-state modeling of CO2-solvent-polymer ternary

phase behavior

Cubic equations of state such as the Peng-Robinson (PR) and Soave-Redlich-Kwong

(SRK) equations have been successfully employed to correlate equilibrium data from

CO 2-solvent binary systems [Jha and Madras, 2005] as well as SCF and GXL systems

containing small-molecule solutes [Bertakis et al., 2007, Crampon et al., 1999, Chang

and Randolph, 1990]. Good agreement with experimental phase composition data can



generally be achieved by varying a single binary interaction parameter for each pair

of components in a system. To overcome shortcomings with regard to the predictions

of molar volume, modifications to the general cubic equations of state in the form of

volume translation terms have also been proposed [Frey et al., 2007].

Although appropriate for use with systems containing small molecules, cubic equa-

tions of state have been shown to be ineffective for correlating phase behavior of SCF-

polymer (and GXL-polymer) systems due to molecular size differences between solute

and solvent species [Fermeglia et al., 1997, Muller and Gubbins, 2001]. Traditional

Flory-Huggins theory - normally applied to polymer solutions - does not account for

the high compressibility of these systems and is therefore also not appropriate.

The most commonly used equations of state for modeling the behavior of high-

pressure mixtures containing polymers are based on the Statistical Associating Fluid

Theory (SAFT) developed by Chapman et al. [1989]. Within the framework of SAFT,

molecules are represented as covalently bonded chains of spherical segments with the

ability to form associative complexes at specific sites on the molecular segments. Since

the introduction of the SAFT equation of state two decades ago, numerous variations

on the basic form have been introduced [Tan et al., 2008]; one of the most popular

implementations for systems containing polymers is the Perturbed-Chain (PC) SAFT

equation developed by Gross and Sadowski [2001].

PC-SAFT Equation of State

Like the original SAFT EOS, the PC-SAFT EOS is given as a perturbation expansion

of the residual Helmholtz free energy,

are (&hs - chain) + disp + aassoc (4.1)

with contributions from hard-sphere repulsion between molecular segments (dhs), con-

nectivity of chains of segments ( chain), attractive dispersion forces ( disP), and as-

sociative interactions between segments (aassoc). The difference between the SAFT

EOS and the PC-SAFT EOS essentially arises from the choice of reference fluid in



the perturbation expansion. The SAFT EOS specifies a hard-sphere fluid with dis-

persion interactions as the reference fluid, effectively grouping the dispersion term in

Equation 4.1 with the hard sphere term; in the case of PC-SAFT, the reference is

taken to be the hard chains of connected segments - the hard-sphere and chain terms

in Equation 4.1 - with no attractive interactions. The formulation of the EOS in

terms of the Helmholtz free energy allows the calculation of all other thermodynamic

properties via derivatives of this quantity [Tester and Modell, 1996].

The interactions between pairs of spherical segments are assumed to follow a

modified square-well potential

00 r < (a - si)

u(r) = 3E (a - s) < r < a(4.2)
-c u < r < Ac

0 r > Aoa

where u(r) is the pair potential, r is the radial distance between two segments, a is

the temperature-independent segment diameter, e is the depth of the potential well, A

is the reduced well width, and sl/a = 0.12. In the case of non-associating molecules,

only three pure-component parameters are necessary to implement the EOS: 0, 6,

and the number of segments per chain m. For use with mixtures, the PC-SAFT EOS

requires a binary interaction parameter kij for each component pair. This parameter

is used in the following mixing rules:

Tijy = (i + aj) (4.3)

ij = FiF(1 - kij) (4.4)

Additional perturbation terms for Equation 4.1 have been proposed to account

for dipolar and quadrupolar interactions [Karakatsani and Economou, 2006], and

researchers have applied the PC-SAFT EOS to systems containing homopolymers

[Tumakaka et al., 2002], copolymers [Gross et al., 2003], electolytes [Cameretti et al.,



2005], and aqueous amino acids and polypeptides [Fuchs et al., 2006]. The PC-SAFT

EOS has proven to be a useful tool for correlating the phase behavior of polymers

in compressible fluid media based on a small amount of data [Tumakaka et al., 2007,

Kleiner et al., 2006, Gornert and Sadowski, 2008], and is one of the few practical

options for modeling these systems.

The complete implementation of the PC-SAFT EOS is presented in Gross and

Sadowski [2001] and will not be reproduced here. Miller and Gubbins [2001] have

published a thorough review of the SAFT formalism, including a simplified heuristic

argument for its derivation.

4.2 Materials and methods

In the context of the current thesis work, it is desirable to investigate the phase be-

havior of the polymer-acetone-CO 2 systems that will comprise the fluid phase during

particle encapsulation operations. An experimental apparatus that allows the collec-

tion of solid-liquid-vapor equilibrium data was designed and constructed based on the

previous work outlined above. The experimental method described in the following

sections essentially allows for the precipitation of polymer particles from a saturated

solution under controlled conditions, much like a typical GAS process for particle for-

mation [Gallagher et al., 1989]. This apparatus yields information that significantly

enhances understanding of the particle coating process, and use of the PC-SAFT

EOS to correlate the results effectively reduces the amount of data necessary to make

informed decisions with regard to process operating conditions.

4.2.1 Experimental apparatus

The experimental apparatus that was used to gather phase behavior data is depicted

schematically in Figure 4-1; a photograph of the system is shown in Figure 4-2. The

main component of the system is a high-pressure view cell equipped with sapphire

windows for visual access. The view cell, supplied by Thar Technologies (P/N 05422-

3), has an internal volume of 50 ml, and a maximum working pressure of 6,000 psi
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Figure 4-1: Schematic of the phase behavior measurement system. System components:

carbon dioxide supply (CO2), syringe pump (SP), view cell (VC), magnetic
stirrer (MS), air bath (AB), fan (F), heated recirculator (HR), rupture disc
(RD) thermocouple (TC), pressure transducer (PT).

at 150'C. Teflon-encapsulated viton o-rings (McMaster Carr, P/N 93445K218) were

employed to make the seal between the view cell body and the sapphire windows.

The view cell is suspended above a magnetic stir plate such that agitation within the

view cell may be provided by a magnetic stir bar. Carbon dioxide is supplied to the

system using a high-pressure syringe pump (Teledyne-Isco, Model 500D) equipped

with air-actuated inlet and outlet valves (P/N 681247089).

System temperature is regulated via recirculation of water through copper tubing

by a recirculating heater (VWR, Model 1160S); the copper tubing is wrapped around

the view cell to provide direct contact and improved heat transfer. A polycarbonate

enclosure around the system serves as both an air bath as well as a physical barrier to

contain any projectiles resulting from catastrophic failure of process components; a fan

within the air bath provides circulation to improve temperature uniformity. System

temperature and pressure are monitored by thermocouples (type T, Omega Engi-

neering, P/N GTMQSS-062U-6, tolerance ±lK) and a pressure transducer (Omega

Engineering, P/N PX303-2KG5V, accuracy ±7.5psi), respectively; the output from

the thermocouples and pressure transducer are recorded on a personal computer using

LabVIEW data acquisition software. Temperature within the view cell is controlled



to within 0.20C by manually adjusting the temperature of the bath of the recirculating

heater.

Figure 4-2: Photograph of the phase behavior measurement system. System components:
view cell (VC), magnetic stirrer (MS), air bath (AB), heating loop (HL),
pressure transducer (PT), photodiode detector (PD).

Laser light scattering for detection of polymer precipitation

The precipitation of polymer particles from the CO2-expanded acetone is detected

using a low-angle laser light scattering apparatus, depicted schematically in Figure

4-3. In this configuration a 5 mW laser beam (A = 660 nm) is transmitted through

the liquid phase within view cell, and light scattered by polymer particles or aggre-

gates present in the solution strikes a photodiode detector (Newport, Model 818-SL)

positioned 8 cm from the view cell at an angle of approximately 15 degrees from

the laser beam. The photodiode detector is connected to a power meter (Newport,
Model 835) which outputs a voltage signal proportional to the intensity of the scat-

tered light to a personal computer; LabVIEW software is used to monitor and record

the light intensity data. According to Rayleigh-Gans-Debye (RGD) theory, the in-

tensity of scattered light is proportional to the particle volume and consequently the

sixth power of the particle diameter for particles whose radius is less than one-fourth

the wavelength of the scattered light [Kratochvill, 1987]. Thus, as solubility of poly-



mer molecules in the CXL decreases and polymer aggregates begin to form, significant

light scattering will occur before particles are detectable by simple visual observation.

PD
L ) VC

PC

Figure 4-3: Schematic of the laser light scattering system for detection of polymer precip-
itation. System components: laser (L), view cell (VC), photodiode detector
(PD), power meter (PM), data acquisition computer (PC).

4.2.2 Procedure

The BzMA/MAA polymers investigated in the current study were synthesized by

Harry Spinelli at DuPont and delivered as concentrated (-50wt%) solutions in tetrahy-

drofuran (THF). To prepare polymer solutions in acetone, the THF was first evapo-

rated from samples of each original solution in a vacuum oven. The solid THF-free

polymers were then redissolved in acetone (Malinkrodt, mass fraction >0.995) to

yield stock solutions for further dilution. The Joncryl@ polymers were received as

solids chips, and used as received to formulate solutions in acetone. Instrument-grade

liquified CO 2 was purchased from Airgas.

For the preparation of all polymer solutions, the polymer weight fraction was

determined by UV absorption using a Cary 50 spectrophotometer; UV absorption

analysis was carried out in spectroscopy-grade THF (EMD, mass fraction >0.9999)

after evaporation of acetone from each sample. A sample UV absorption spectrum

showing the multipeaked absorption band at 259 nm due to the benzyl chromophore

[Morcelletsauvage et al., 1982] in the BzMA moieties is shown in Figure 4-4, and the

calibration curve for 85/15 BzMA/MAA at a wavelength of 259 nm is given in Figure

~......---------- ~



4-5. For the solution compositions of interest to the current study, the polymer weight

fraction determined by UV spectroscopy was accurate to within 3% or better.
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Figure 4-4: Representative UV absorption spectrum for 85/15 BzMA/MAA copolymer.
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Figure 4-5: UV calibration curve for 85/15 BzMA/MAA in tetrahydrofuran.

In a typical phase behavior experiment, a polymer solution of known composition

was first loaded into the view cell and the total mass of the solution determined

gravimetrically to within 0.02 g (±0.1% of a typical sample). The view cell was

then placed inside the air bath and connected to the CO 2 delivery system. The

headspace above the liquid phase was flushed with low-pressure CO 2 to remove air

before selected trials, but conducting measurements without this step did not affect



the reproducibility of the results. The temperature within the air bath was raised to

25'C initially, and the addition of CO 2 began after the temperature had stabilized.

During this stage of the trial, the syringe pump was operated in pressure gradient

mode such that the pressure within the view cell increased at a constant rate (normally

1-2psi/min). As CO 2 was added to the system, the intensity of scattered light was

monitored in order to detect the point at which the reading increased above the

baseline value, signaling the onset of precipitation. The lights in the room were

turned off to increase the sensitivity of the scattered light measurements.

Upon further addition of CO 2 , the solution quickly became turbid due to the

presence of a large number of polymer particles. The syringe pump continued to run

for another 10-20 minutes after precipitation occurred, at which point the settings

were changed such that the pressure decreased at a rate equivalent to the previous

rate of increase (1-2 psi/min). Again the intensity of light was monitored in order to

detect the point at which the reading returned to its previous baseline value. After the

signal from the optical power meter had stabilized, the same procedure was repeated

at 35°C and 450 C.

4.2.3 Data analysis

Temperature, pressure, and scattered light intensity data from a typical phase behav-

ior experimental trial are plotted as a function of time in Figure 4-6, and the pressure

and light intensity data for a single precipitation event are plotted in Figure 4-7;

the shaded areas in Figure 4-6 represent regions of solid-liquid-vapor equilibrium, in

which the solutions are very turbid and little light reaches the photodiode detector.

The trend of scattered light intensity with changes in pressure near the S-L-V

region is seen more easily in Figure 4-7 (the noise in the data upon depressurization

is caused by the formation of bubbles as CO 2 leaves the liquid phase). The MATLAB

Wavelet Toolbox was used to determine the point at which the signal from the optical

power meter rose above the baseline value, but the results of this analysis agreed very

well with those obtained by simple visual inspection of the data. The pressure at

which polymer precipitation occurred was determined to within an uncertainty of
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Figure 4-6: Representative temperature, pressure,
behavior measurement trial.
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10 psi, which is only slightly greater than the uncertainty in the values of pressure

measured by pressure transducers in the system (±7.5psi). The rapid transition

from clear to turbid solution aided in the accurate determination of the precipitation

pressure, and can be attributed to the low polydispersity of the polymers under

investigation (Table 3.1); Kirby and McHugh [1999] have reported that accurate

cloud point measurements may be obtained as long as polydispersity is below -3.0.

400 405 410 415 420

Time, min

425 430 435 440

Representative pressure and optical power data from a single precipitation

event in the course of a phase behavior measurement trial.

As an illustration of the improvement in accuracy afforded by the light-scattering

detection system, precipitation data collected previously from systems containing
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Figure 4-8: Solid-liquid-vapor equilibrium curves for systems containing CO2, acetone,
and Joncryl® polymers at 35 0C. A, Joncryl® 586; D, Joncryl® 611.

Joncryl® 611 and Joncryl® 586 are plotted in Figure 4-8; the pressure at which

polymer precipitated from the CO2-expanded liquid phase based on visual observation

of the solution is plotted as a function of the initial polymer weight fraction in CO2-free

solution. Because the solutions are dilute in polymer, they do not immediately become

turbid as polymer molecules begin to aggregate and precipitate. Thus, the transition

is not easily observed, and uncertainties exceeding 10% of the system pressure are

common. The error bars in Figure 4-8 represent the uncertainty in this determination

of the precipitation pressure.

4.2.4 Correlation of polymer-CO 2-acetone solid-liquid-vapor

equilibrium data with PC-SAFT EOS

A thermodynamic model of the GAS process for precipitation of solute particles from

GXLs has been developed and implemented, following the general approach of Kikic

et al. [1997]; the model assumes isothermal operation and well-mixed vapor and liquid

phases, such that the system is considered to be at equilibrium at all times and an

LI-

T4T_



energy balance is not required. Lin et al [2003] have shown that this is a reasonable

assumption under the agitation conditions and CO 2 addition rate of a typical GAS

process. The vapor pressure of the solute (polymer) is also neglected, and the solid

phase is assumed to be pure.

Given the above assumptions, phase equilibrium in a system composed of polymer

(component 1), acetone (component 2), and CO 2 (component 3) is governed by the

following isofugacity constraints:

fi = xl1 P (4.5)

x 2 02P = y202P (4.6)

xa30P Y= y3 P (4.7)

where q5 is the fugacity coefficient of component i in phase j, P is the pressure,

and x and y are the liquid and vapor mole fractions, respectively. In the case of a

pure crystalline material, the solid fugacity ff can be related to the fugacity of a

hypothetical pure subcooled liquid phase f,'0 according to [Prausnitz et al., 1986]

f (T, P ) = (T, P) exp (4.8)

where T is the system temperature, Ah f is the heat of fusion, Tf is the melting

temperature, and R is the gas constant. Equation 4.8 is strictly valid at the triple

point of the solute; it may be applied at other temperatures if the difference between

the liquid and solid phase heat capacities is negligible. For applications at elevated

pressure, the addition of the Poynting correction is necessary:

ff(T, P) = f(T, Po) exp j dP (4.9)
Po RT

= f '° (T, P 0) exp [R 1 + RT

assuming the molar volume of the solid v' is constant with pressure. The treatment of



systems containing solid polymers introduces an additional parameter, the degree of

crystallinity c. For 100% crystalline polymers, c = 1, while for amorphous polymers

c = 0. Harismiadis and Tassios [1996] have noted that the following relationship is

valid:

In -- s = cu In fis = (4.10)

where u is the degree of polymerization, and the subscript c = 1 indicates that the

quantity in parentheses is evaluated at 100% crystallinity.

PC-SAFT parameters

The PC-SAFT EOS is used to calculate the fugacity coefficients of all species in

the liquid and vapor phases. The use of this EOS requires three pure-component

parameters for each species, as well as a binary interaction parameter kij for each

component pair. The copolymer parameters are calculated from the homopolymer

segment parameters as
Nseg

E = XACA (4.11)
A

Nseg

Up = XAUA (4.12)
A

Nseg

mp = M XArA (4.13)
A

where the subscripts P and A indicate the copolymer and homopolymer segment

parameters, respectively, Nseg is the number of distinct segment types present in the

copolymer, XA is the segment mass fraction of segment type A in the copolymer, M

is the number average molecular weight of the copolymer, and rA is the ratio mA/M

determined from homopolymer data.

The pure-component parameters for CO 2 , acetone, and methacrylic acid polymer

segments have been published previously, and are listed in Table 4.1. The pure

component parameters for poly(benzyl methacrylate) segments were calculated via

the group contributions method proposed by Tihic et al. [2008]; the results are also



listed in Table 4.1. The final values of the copolymer pure component parameters

obtained from Equations 4.11, 4.12, and 4.13 are listed in Table 4.2.

Table 4.1: Pure-component PC-SAFT parameters for C0 2, acetone, poly(MAA) and
poly(BzMA).

Component
CO 2

Acetone
poly(MAA)
poly(BzMA)

o

2.7852
3.2557
3.70
3.78

e/k
169.211
253.406

249.5
304.5

Table 4.2: Final values of the copolymer
EOS correlations.

m or m/M
2.0729

2.77409
0.024
0.02

Reference
Gross and Sadowski [2001]

Kouskoumvekaki et al. [2004]
Kleiner et al. [2006]
Tihic et al. [2008]

pure component parameters used in PC-SAFT

Polymer M (g/mol) a E/k mr
85/15 BzMA/MAA 5451 3.77 296.3 112.3
80/20 BzMA/MAA 5895 3.76 293.5 122.6
75/25 BzMA/MAA 5686 3.76 290.8 119.4

The binary interaction parameter for CO2-acetone was regressed from published

data [Adrian and Maurer, 1997, Chiu et al., 2008, Bamberger and Maurer, 2000] for

the binary system at temperatures relevant to the current study; the final value used

in correlations was kij = 0.01. The remaining interaction parameters were varied to

improve the fit of the correlations to experimental data, as described below in Section

4.3.2.

Algorithm for flash calculations

The isofugacity constraints described above were employed in conjunction with mate-

rial balance equations in order to calculate the equilibrium pressure at which precipita-

tion of polymer occurs for a given initial solution concentration. Iterative three-phase

isothermal flash calculations were performed using a modified Rachford-Rice proce-

dure outlined by Michelsen and Mollerup [2007]. For a system with F phases and C



species, this involves the formulation of the mass balance in terms of the overall mole

fraction of each species i, zi, and the mole fraction of each phase j, /j:

F

Gy = zi i = 1, 2, ..., C (4.14)
j=1

The method consists of three nested iterations, starting with guesses for the fu-

gacity coefficients, overall CO 2 mole fraction, and system pressure. The values of the

system temperature, volume, and polymer-to-acetone mole ratio are chosen to match

those of the experimental system and remain constant throughout the calculations.

In the first (innermost) iteration, Newton's method is used to find the phase frac-

tions y which minimize the following objective function (the modified Rachford-Rice

equation):
F F C F

Q() = , - z In E -+ E -E zinE - (4.15)
k=1 1 j=1(s) i=2 k=1

subject to the constraints pij 0. For each iteration of p the PC-SAFT EOS is

used to calculate new values of O . The procedure allows for "deletion" of the solid

phase if 3, drops below zero during the iterations, such that the convergence may be

reached with either two or three phases. The formation of the solid phase requires

that /3 = 0; the pressure is varied in the next set of iterations until this condition is

satisfied.

In the final (outermost) set of iterations, the total mole fraction of CO2, z3 is

varied such that the system volume calculated using the PC-SAFT EOS based on the

current guesses for pressure and phase mole fractions matches the actual value. This

entire procedure is then repeated at each new set of values for the system temperature

and polymer-to-acetone mole ratio to construct solid-liquid-vapor equilibrium curves.



4.3 Results and discussion

4.3.1 Experimental results

The GAS precipitation trials described in Section 4.2.2 were carried out at tempera-

tures of 25 0 C, 35 0 C, and 45oC for each of the three BzMA/MAA copolymers (85/15,

80/20, and 75/25 BzMA/MAA mass ratios) in CO2-expanded acetone. Each trial

yielded three values of pressure at which precipitation occurred (one precipitation

event at each temperature), corresponding to fixed masses of polymer and acetone

within the view cell. A range of initial polymer mass fraction spanning more than two

decades was explored: the mass fraction of the most dilute solution was 0.0007, and

that of the most concentrated solution was 0.14. As the weight fraction of polymer in

the acetone solution was increased beyond 20wt%, it was impossible to obtain solid-

liquid-vapor equilibrium data due to the fact that the stir bar was unable to provide

adequate mixing; similar limitations have been observed in the literature [Kirby and

McHugh, 1999].

The solid-liquid-vapor curves for systems containing BzMA/MAA polymers in

CO 2-expanded acetone at the three temperatures investigated are plotted in Figure

4-9; the data are plotted as the value of the pressure at which precipitation occurred

versus the original mass fraction of polymer in acetone on a CO2-free basis. In general,

the precipitation pressure increases as the original polymer mass fraction decreases,

although a minimum in precipitation pressure is observed at mass fractions near

0.03. The precipitation pressure is expected to decrease as the polymer mass fraction

is increased beyond 0.15, eventually reaching atmospheric pressure at the solubility

limit of polymer in pure acetone.

Inspection of Figure 4-9 reveals a clear trend of increasing precipitation pres-

sure at higher temperatures. Although the general shape of the curves traced by

the data is similar for each polymer and at each temperature, an increase in tem-

perature of 100 C causes the pressure at which precipitation occurs to rise between

25 and 75 psi (approximately 10-20%). Similar behavior was observed in previous

studies of GAS precipitation of smaller organic solutes from CO2-expanded solvents
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BzMA/MAA copolymers in CO2-expanded acetone.

[Shariati and Peters, 2002, Liu et al., 2000a]. The trends with temperature can be ex-

plained by considering the effects of temperature on polymer-acetone, acetone-C0 2,

and C0 2-polymer interactions. In general, polymer solubility in acetone increases

with temperature in the absence of CO 2. This trend is reinforced by the fact that

at constant pressure, the CO 2 mole fraction in the liquid phase decreases as tem-

perature increases, resulting in improved solvation of the polymer. As discussed in

Section 1.2.1, a slight increase in solubility of the polymer in CO 2 may be expected

with increasing temperature, but this effect is small compared to those related to the

polymer-solvent and solvent-CO 2 interactions.

Similar trends with respect to polymer composition can be seen by examining
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Figure 4-10: Phase behavior data for BzMA/MAA copolymers in C0 2 -expanded acetone
at (a) 25°C, (b) 350C, (c) 45-C.

Figure 4-10. At all temperatures, the precipitation pressure decreases with increasing

mass fraction of poly(methyl methacrylate) moieties. This is not surprising, since

acetone is known to be a poor solvent for poly(methacrylic acid) homopolymers due

to the polymer's strong tendency to form hydrogen-bonds [Ho et al., 1991].

All phase behavior data collected for systems containing BzMA/MAA copoly-

mers are shown on a semi-log plot in Figure 4-11, revealing the relative importance of

changes in temperature and polymer composition. The effect of increasing the tem-

perature 100C is approximately equal to that of decreasing the MAA mass fraction

by five percent.
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At this point it is prudent to revisit an important assumption that was made

during the collection and analysis of phase behavior data. Specifically, it was assumed

that a negligible amount of solvent was present in the vapor phase during all phase

behavior trials, allowing the use of a synthetic experimental method that did not

require the removal of high-pressure samples. The results of the modeling efforts

described above using the PC-SAFT EOS indicate that for a typical experiment

the vapor phase consists of approximately 1 mol% acetone, and the total vapor phase

mole fraction (3,) is approximately 0. 1. Thus, approximately 0.01 mol% of all acetone

within the view cell is expected to be in the vapor phase. The PC-SAFT is generally
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accurate to within several percent in the prediction of phase distributions of small

molecules, but even in the case of large errors in the estimation of y2 and 13, the

original assumption appears to be reasonable.

4.3.2 Modeling results

The PC-SAFT EOS was used to correlate the phase behavior data collected at each

temperature for all polymers, employing the procedure outlined in Section 4.2.4.

The CO2-polymer and acetone-polymer binary interaction parameters were adjusted

manually to obtain the best fit of the data; the final values of the temperature-

dependent C0 2-polymer and acetone-polymer parameters are listed in Table 4.3. The

contribution to the residual Helmholtz free energy in Equation 4.1 due to association

interaction (i s""SOc) was neglected in all calculations. With regard to the solid fugacity

relationship introduced in Equations 4.9 and 4.10, an analysis of the BzMA/MAA

polymers using dynamic scanning calorimetry (DSC) indicated that the they can be

considered amorphous. Thus, the crystallinity, c, in Equation 4.10 was set to zero

and the solid polymer fugacity was taken to be equal to the subcooled liquid fugacity.

Table 4.3: Final values of the CO2-polymer and acetone-polymer binary interaction pa-
rameters, kij, used in PC-SAFT EOS correlations.

BzMA/MAA BzMA/MAA BzMA/MAA
Binary interaction Temperature 85/15, kij 80/20, kij 75/25, kij

C0 2-copolymer 25 0C 0.0278 0.0281 0.0292
Acetone-copolymer 25 0C 0.0901 0.0929 0.0960

C0 2-copolymer 35 0C 0.0295 0.0302 0.0315
Acetone-copolymer 35 0C 0.0935 0.0967 0.0992

C0 2-copolymer 45 0C 0.0312 0.0318 0.0335
Acetone-copolymer 450C 0.0969 0.0995 0.1031

The modeling results are plotted along with the experimental data for each poly-

mer in Figure 4-12. The PC-SAFT EOS predicts the correct trends in precipitation

pressure with respect to temperature and polymer composition, and adjustments to

the polymer-acetone and polymer-CO 2 interaction parameters enables a qualitative



representation of the pressure minimum exhibited by the experimental data. The

pressure at which precipitation occurs was correlated to within an average relative

error of 3.7% for all polymers.
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Figure 4-12: Phase behavior data and PC-SAFT correlations for (a) 85/15 BzMA/MAA,
(b) 80/20 BzMA/MAA, (c) 75/25 BzMA/MAA copolymers in C0 2 -
expanded acetone. Lines represent correlations with the PC-SAFT EGS.

The precipitation pressure of 85/15 BzMA/MAA copolymer and the correspond-

ing liquid-phase CO2 mole fraction are plotted versus the C0 2 -free liquid-phase poly-

mer mass fraction in Figure 4-13; both the precipitation pressure and the CO2 mole

fraction values were calculated using the PC-SAFT EOS. Inspection of Figure 4-13

indicates that the minimum in precipitation pressure at each temperature coincides

with a minimum in the liquid-phase CO 2 mole fraction. Similar behavior was observed

for the 75/25 and 80/20 BzMA/MAA copolymers as well. At values of the C0 2-free
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Figure 4-13: Precipitation pressure of 85/15 BzMA/MAA copolymer and liquid phase
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values calculated using the PC-SAFT EOS.

liquid-phase polymer mass fraction greater than 0.20, both curves are expected to

reach a local maximum and begin to decrease to zero at the atmospheric-pressure

solubility limit of the polymer at each temperature. The presence of a local minimum

and a (hypothesized) local maximum in the curves indicates that CO 2 may provide

some degree of cosolvency over a certain composition range. The correlation of this

experimentally observed behavior was only possible with careful adjustment of the

values of the CO 2-copolymer and acetone-copolymer interaction parameters.

The similarity of trends in precipitation pressure and CO 2 mole fraction in Figure

4-13 can be explained by the fact that over much of the range of polymer concen-

trations studied in the current investigation (dilute in polymer), the polymer precip-

itation pressure traces the CO2-acetone binary saturation curve very closely. This

can be seen in the plot of the calculated precipitation pressure as a function of the

calculated liquid-phase CO 2 mole fraction shown in Figure 4-14. The CO2-acetone

saturation curve at 35 0 C is also plotted for reference. Because most of the systems

were very dilute in polymer, and because the polymer molecular weight was large

compared with acetone and CO2, the polymer mole fraction in the liquid phase was

......... ..................... ..................
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Figure 4-14: Precipitation pressure of BzMA/MAA copolymers versus the liquid phase

CO 2 mole fraction calculated using the PC-SAFT EOS.

negligible for most experiments and the CO 2 and acetone mole fractions were rela-

tively unaffected. Thus, as CO 2 was added during the course of an experimental trial,

the pressure increased along the CO2-acetone saturation curve until precipitation oc-

curred. Only at higher polymer mass fractions did the values of the CO 2 and acetone

liquid-phase mole fractions deviate significantly from those of a binary system at the

same pressure. It was in this composition range that the values of pressure at which

precipitation occurred began to rise again; as mentioned in the previous paragraph,

these curves are expected to reverse direction once again at even higher polymer con-

tent and eventually trend towards 0 psig at 0 CO 2 mole fraction, corresponding to

the solubility limit at atmospheric pressure.

A satisfactory fit of the experimental data was possible with relatively small values

of the two interaction parameters. The values of the polymer-acetone and polymer-

CO 2 interaction parameters are plotted versus temperature in Figure 4-15. Inspection

of this plot reveals a generally linear trend with temperature for each parameter at



a given polymer composition, with kij increasing as the temperature is raised. It is

important to remember that the interaction parameters simply represent deviations

from the assumed form of the mixing rules as given in Equation 4.4 (with kij set to

zero); in the case of the PC-SAFT EOS mixing rules, the energy parameter e for a

binary pair is taken to be the geometric average of the E values of the pure compo-

nents, and the interaction parameter enables adjustment of this (arbitrary) choice.

Accurate representation of the interactions between the copolymer and CO 2 require

a larger value of kij than for those between the copolymer and acetone; the value of

both interaction parameters also increases with the mass fraction of methacrylic acid

moieties within the polymer.
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Figure 4-15: Trends in (a) solvent-polymer and (b) CO2-polymer binary interaction pa-
rameters with temperature and polymer composition.

The binary interaction parameters are employed in modifications to the pure com-

ponent energy parameter, E/k, according to the relationships previously given in

Equations 4.4 and 4.11. Thus the sensitivity of the fit of the data to the values of

E/k is low. However, it is instructive to examine the relative effects of the remain-

ing pure component parameters on the quality of the correlation provided by the

PC-SAFT EOS. The interaction distance parameter, o, is the most sensitive of the

pure component parameters, although its value is reasonable well established in the



literature (a M 3.7 for most poly methacrylates). The segment size parameter, m,

has the strongest influence on the quality of the fit of the data. In particular, the

location of the minimum in precipitation pressure is strongly affected by the value of

this parameter, with larger values of m causing the minimum to move to lower poly-

mer mass fractions. Because the polymers under investigation are not monodisperse

(M,/M,, 1.13), adjustments to the parameter m also account for uncertainties in

the molecular weight of the precipitating polymer.

As discussed in Section 4.2.4, the pure component parameters for BzMA polymer

segments were calculated from a group contributions method; the fit of experimental

data is expected to improve if these parameters are instead regressed from experi-

mental phase behavior data. Beyond adjustments to the pure component and binary

interaction parameters, another possible route to improving the correlations is via the

introduction of additional perturbation terms to the PC-SAFT EOS. The implemen-

tation of the association term iassoc - neglected for the current study - would enable

more accurate modeling of the associations among and between acetone molecules and

MAA polymer segments, and the incorporation of a term proposed by Karakatsani

and Economou [2006] would take into account the quadrupolar interactions exhib-

ited by CO 2 molecules. Of course, the incorporation of these terms also introduces

additional adjustable parameters. An adjustable binary interaction parameter may

also be introduced to account for segment-segment interactions in the calculation of

copolymer segment parameters [Gross et al., 2003].

4.4 Conclusions

The phase behavior of ternary CO2-acetone-polymer systems has been probed exper-

imentally and modeled with the PC-SAFT equation of state in order to guide the

selection of appropriate operating conditions for a GAS-based particle encapsulation

process. Precipitation of BzMA/MAA copolymers generally required a larger over-

all CO 2 mole fraction - and thus a higher system pressure - for more dilute polymer

solutions; however, a minimum in the precipitation pressure was observed for all poly-



mer compositions and temperatures near a CO2-free polymer mass fraction of 0.03.

The precipitation pressure increased with increasing temperature and BzMA mass

fraction (per polymer mass unit). The ternary systems were characterized by a rapid

reduction in polymer solubility over a relatively narrow range of pressure (between

200 psig and 400 psig, depending on the polymer and system temperature)

The PC-SAFT EOS was successfully employed to correlate the phase behavior

data by adjusting only two binary interaction parameters. Both qualitative and quan-

titative agreement between the experimental and calculated values of the precipitation

pressure was achieved. The average relative error associated with the predictions of

precipitation pressure for each polymer was 3.7% over the range of temperature and

composition explored in the experimental study, demonstrating that accurate cor-

relations of phase behavior data over a wide range of conditions relevant to GAS

processing can be obtained with a relatively small amount of data.

The information obtained from the phase behavior study is directly applicable to

the optimization of a GAS-based particle encapsulation process, and offers a deeper

understanding of the fundamental interactions between the system components which

govern the solvation power of the fluid phase with respect to the polymers of interest.
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Chapter 5

Adsorption of polymer onto carbon

black particles from CO2-expanded

acetone

As in the conventional (low-pressure) process to produce inks, particle encapsulation

in CXLs is achieved via the adsorption of dissolved polymer molecules onto particle

surfaces. The polymer-acetone-CO 2 phase behavior study described in Chapter 4

represents an important step toward a fundamental understanding of the GAS-based

encapsulation of pigment nanoparticles with polymer, but knowledge of the fluid

phase behavior alone will not allow complete characterization of the encapsulation

process; interactions with the particle surface must be included in order to provide a

comprehensive framework for analysis. In particular, it is desirable to obtain infor-

mation regarding the degree and nature of polymer adsorption at equilibrium for a

variety of conditions that are relevant to the particle coating process.

With this in mind, an experimental investigation of the adsorption behavior of

systems containing carbon black and polymer in both pure solvent and CO2-expanded

solvent was carried out, and the resulting adsorption data was correlated using the

Langmuir isotherm equation. The details of this investigation are presented in the

following chapter.



5.1 Background

5.1.1 Polymer adsorption from solution

The adsorption of polymers from solution is a phenomenon that plays a crucial role

in the dispersion of pigment particles for commercial inks and paints. As discussed

in Chapter 1, adsorption of polymeric dispersants onto the surfaces of pigments is a

means of imparting electrostatic and/or steric interparticle repulsive interactions in

order to promote the stability of the final dispersions. Electrostatic forces are typically

generated by adsorption of ions or polyelectrolytes (surfactants or polymers) onto

particle surfaces [Doroszkowski, 1999]. Block or graft copolymers are preferred in the

case of steric stabilization [Wnek et al., 2002], such that hydrophobic segments adsorb

strongly to the particle surface while hydrophilic segments extend into the liquid phase

of aqueous inks and provide entropic repulsive forces. Structured polymers with acid

functional groups are able to employ both stabilization mechanisms [Spinelli, 1998].

Regardless of the specific mechanism by which interparticle repulsive interactions

are generated, the stability of the resulting dispersion is highly dependent on the

strength of polymer adhesion to the particle surface. The interactions between poly-

mer "anchor" groups and the particle surface must be strong enough to prevent

desorption or redistribution of the polymer molecules upon the approach of another

particle, as either of these events will result in particle flocculation [Napper, 1983].

Thus, it is desirable to select polymers containing functional groups that exhibit

favorable interactions with the particle surface.

The effect of solvent on adsorption

The extent and strength of adsorption is not only governed by interactions between

the adsorbate (polymer) and adsorbent (particle); the nature of the solvent can also

have a significant impact on the behavior of the system. Strong interactions between

the solvent and the particle surface can result in competitive adsorption of solvent

molecules, while strong solvent-polymer interactions enhance the solubility of the

polymer in the liquid phase and thus reduce the driving force for adsorption [Lipatov



and Sergeeva, 1974]. For these reasons, it is advantageous to employ a "neutral"

solvent that is able to adequately dissolve the dispersant polymer without interacting

strongly with either the polymer molecules or the particle surfaces. This discussion

also provides additional motivation for the use of an antisolvent such as CO 2 in

order to tune the adsorption of polymers via changes in solvent strength. The use

of antisolvents has been shown to increase adsorption for certain systems [Kolthoff

et al., 1951, Jean and Yeh, 2001, Lin et al., 2002]; however, it is important to note

that specific interactions between the antisolvent and the particle surface could result

in a decrease in adsorption, and should be avoided.

The effect of temperature on adsorption

Adsorption of polymers is typically endothermic, indicating that an increase in tem-

perature will result in increased adsorption. While this is generally true, there are

some cases in which an increase in temperature causes a decrease in adsorption

[Gilliland and Gutoff, 1960]. Such a situation could arise if an increase in temperature

results in a significant increase in solvent strength with respect to the polymer. If the

increase in polymer solubility is large enough to overcome the entropic driving force

for adsorption that would be expected for an endothermic process, a net desorption

would be observed. If adsorption isotherms (see below) are measured at more than

one temperature, the value of the enthalpy of adsorption can be estimated using the

Clausius-Clapeyron equation at very dilute conditions [Koral et al., 1958]:

AH Hs - HL _ dlnc

R R d(1/T)

where Hs and HL are the partial molar enthalpies of the adsorbed and dissolved

polymer, respectively, and C is the concentration of polymer in the fluid phase at a

given polymer loading.



Kinetics of adsorption

In most systems, the kinetics of polymer adsorption are dominated by the diffusion

of the polymer molecules to the particle surface [Lipatov and Sergeeva, 1974]. In the

case of adsorption onto smooth, flat surfaces, equilibrium may be reached in a matter

of seconds. However, adsorption onto porous substrates may take much longer to

reach equilibrium - on the order of hours or even days - as macromolecule diffusion

in pores is a relatively slow process. Although carbon black primary particle are not

in themselves porous, the tertiary structure of many carbon blacks may significantly

hinder the penetration of the polymer molecules to the innermost particle surfaces.

Adsorption isotherms

The general considerations outlined above are useful when formulating a dispersion,

but in practice experimental data is generally required to gain a deeper understanding

of the interactions between system components. A common experimental technique

for this purpose is the construction of adsorption isotherms, in which the extent of

adsorption (typically given as the mass of polymer adsorbed per mass of adsorbent)

is plotted as a function of equilibrium polymer concentration (or mass fraction) in

the liquid phase. The collection of adsorption isotherm data at ambient pressure is

straightforward: known amounts of adsorbent and polymer solution are placed in

glass jars along with glass grinding beads, and the mixtures are agitated for 24 hours

or more to ensure that equilibrium has been reached. Sedimentation of the particles is

then induced either gravimetrically or by centrifugation, and aliquots of the particle-

free supernatant are removed for analysis in order to determine the polymer content

of the continuous phase [Doroszkowski and Lambourne, 1978].

The Langmuir isotherm equation

Experimental adsorption data is often correlated using one of several semi-empirical

equations. Perhaps the most commonly used correlation is the Langmuir equation



[Langmuir, 1916]:
n_ C/K 

(5.2)
nm 1 + C/K

where C is the concentration of polymer in the fluid phase at equilibrium, n is the

mass of adsorbed polymer per mass of particles at equilibrium, and K and n, are

adjustable parameters. The Langmuir isotherm was originally developed to describe

the adsorption of gases onto solid substrates, based on a proposed kinetic mechanism

in which gas molecules A combine with adsorption sites S with forward and reverse

rate constants of k and k- 1, respectively:

A + S - AS (5.3)

At equilibrium, we have

K = (5.4)
(1- O)P

where K = k/k - 1 and 0 is the surface coverage of the adsorbed molecules. This

relationship may then be rearranged to obtain Equation 5.2, in which 0 is replaced

with n/nm and P is replaced with C for use with liquid solutions. The derivation of

the Langmuir equation is based on the following assumptions:

* All adsorption sites are equivalent.

* All adsorption occurs through the same mechanism.

* Adsorbed molecules do not interact with each other.

* A monolayer of adsorbed molecules is formed at the adsorption limit.

Although the first three assumptions listed above are rarely valid for systems involving

polymer adsorption, the Langmuir equation often provides an adequate empirical fit

of experimental data, and is therefore a useful correlating tool for the evaluation of

particle-solvent-polymer interactions. It can also be used to obtain an estimate of the

free energy of adsorption, AGads, from

- A Gads
K = exp (5.5)RT



The value of AGads obtained from polymer adsorption isotherms should be used with

caution, since polymers adsorb at multiple sites on the particle surface depending on

their conformation; however, the parameter K can be viewed as an approximate mea-

sure of adsorption strength. Thus, the parameters K and nm - which represents the

maximum extent of adsorption - offer valuable insight into the adsorption behavior

of polymer-stabilized particle dispersions.

For a more detailed discussion of the various aspects of polymer adsorption, the

reader is referred to the texts by Fleer et al. [1993] and Lipatov and Sergeeva [1974].

5.1.2 Carbon black surface chemistry and adsorption char-

acteristics

A substantial body of literature exists concerning the adsorption of molecules onto

carbonaceous materials. The extensive use of carbon black as a pigment has motivated

many studies related to the adsorption of polymers and surfactants from both organic

[Pugh and Fowkes, 1984, Nsib et al., 2006] and aqueous solutions [Parfitt and Picton,

1968, Ridaoui et al., 2006]. A common theme in these adsorption investigations is a

focus on the structure and surface properties of the carbon material. The adsorption

capacity of carbon black can largely be attributed to the high surface area of these

materials (between 200-500 m2/g); however, the extent to which this surface area can

be utilized for adsorption is governed by the surface chemistry of the particles.

Oxygen and hydrogen are the major surface constituents of carbon black, and their

abundance and state is determined by the production and post-treatment conditions

[Donnet and Voet, 1993]. Regardless of the production method, all carbon blacks

possess highly heterogeneous surfaces that contain some distribution of acidic and

basic functional groups. The nature of these functional groups have been probed

using titration, calorimetry, Fourier transform infrared spectroscopy (FTIR), X-ray

photoelectron spectroscopy (XPS), and electron spin resonance (ESR) [Boehm, 1994,

Pena et al., 2000]. Acidic surface oxides are thought to be of carboxylic, lactonic

or phenolic character, while basic oxides are likely carbonyls or chromenes. These



functional groups are bonded to the particle surfaces at the edges of ordered graphene

layers that comprise 90-99% of the carbon black primary particles. It has also been

suggested that electron-rich regions within graphene layers near the particle surfaces

can act as Lewis base sites [Lopez-Ramon et al., 1999].

An understanding of the distribution of surface functional groups is important

in interpreting the adsorption behavior of carbon black. This is particularly true

for systems containing organic solvents, in which the adsorption of polymers is often

governed by acid-base interactions between polymer segments and surface groups

[Napper, 1983]. Most carbon blacks used as pigments are dominated by acidic surface

oxides, which interact favorably with basic styrene or benzyl groups present in the

polymeric dispersants commonly employed in commercial inks.

5.1.3 Previous studies of high-pressure adsorption from CO 2

As interest in SCFs has grown over the past two decades, adsorption from scCO 2 and

near-critical CO 2 has been investigated in the context of supercritical chromatography

[Lubbert et al., 2007], regeneration of adsorbents [Tan and Liou, 1990], soil remedi-

ation [Macnaughton and Foster, 1995, Goto et al., 2005], and recovery of extraction

products [Shojibara et al., 1995, Lucas et al., 2004]. Most of these studies involve

adsorption of organic molecules onto activated carbon or chromatography media from

either pure scCO 2 or cosolvent-modified scCO 2 , and dynamic adsorption experiments

based on packed chromatography columns are typically employed to gather adsorp-

tion data. Brunner and Johannsen [2006] have recently provided an excellent review

of the state-of-the art in scCO 2 adsorption experiment and modeling.

One of the few investigations of polymer adsorption from scCO 2 was conducted

by Cho et al. [2005], who deposited poly(styrene-b-dimethylsiloxane) block copoly-

mers onto polystyrene substrates. Polymer adsorption was controlled by tuning the

solvent strength of CO 2 with changes in temperature and pressure, and monolayer

block copolymer films were obtained. Members of the same research group have also

investigated the adsorption of metallic precursors from scCO 2 onto on a variety of

substrates for the production of supported metallic nanoparticles [Zhang and Erkey,



2005, Zhang et al., 2005a,b, Zhang and Erkey, 2006]. In a subsequent study, a model

of the kinetics of adsorption from CO 2 onto a porous media was developed [Zhang

et al., 2008], illustrating the benefits of the gas-like transport properties of scCO 2 in

achieving rapid equilibrium.

5.2 Materials and methods

The goal of the adsorption study is to obtain and correlate data related to the effect

of CO 2 addition on adsorption of polymer molecules from acetone onto the surface of

carbon black particles. To this end, an experimental apparatus was designed and con-

structed that would provide high-pressure adsorption data via sampling of a particle-

free supernatant. Adsorption data was collected at 35°C for 85/15 BzMA/MAA and

75/25 BzMA/MAA copolymers at 100psig, 200psig, and 300psig; adsorption isotherm

data were also collected for systems consisting of carbon black, BzMA-MAA polymer,

and acetone at atmospheric pressure.

5.2.1 Experimental Apparatus

A schematic representation of the apparatus for collection of high-pressure adsorption

data is depicted in Figure 5-1; a photograph of the system is shown in Figure 5-2.

Mixtures of carbon black, polymer, acetone, and CO 2 are contained within a Jerguson

sight gauge (Model 11-T-20), allowing visual access at pressures up to 2000 psig at

38'C. Agitation within the sight gauge is provided by a 3/8" ultrasonic horn (Son-

ics & Materials, P/N A06963PRB) introduced to the bottom of the vessel through

a custom-designed adapter [Ciccolini, 2008] fabricated by the MIT Machine Shop

(Figure 5-3). The ultrasonic horn is powered by a Branson Sonifier@ S-450A analog

ultrasonic processor and converter. The liquid phase within the system is circulated

though an external loop by a gear pump (Micropump, Model GAHV21.J8.A) to im-

prove mixing and enable sampling of the liquid phase at high pressure. Liquid samples

are isolated for removal using a 6-port HPLC switching valve (Valco, Model 6UW)

and 2 ml sampling loop (Valco, P/N SL2KUW). A 40 pm T-type filter (Swagelok,



P/N SS-2TF-40) removes any large carbon black particles from the recirculated fluid

before they are able to reach the gear pump and HPLC valve.

The temperature is monitored at four locations within the system with type T

thermocouples (Omega Engineering, P/N GTMQSS-062U-6, tolerance +lK): at the

center of the sight gauge, within the ultrasonic horn adapter, and immediately follow-

ing the HPLC valve and the gear pump in the recirculation loop. System temperature

is maintained to within 0.2°C via the use of insulated heat tape (Omega Engineering,

Model FGH051-040) powered by variable autotransformers (VWR, P/N 62546-364).

Thermocouple output was recorded on a personal computer using LabVIEW data ac-

quisition software, and temperature was regulated by manually adjusting the voltage

output of the variable autotransformers. System pressure was measured using an ana-

log pressure gauge (Swagelok, P/N PGI-100C-PG2000-LAOX) with an uncertainty of

+10psi. A forward-pressure line regulator (Scott Specialty Gases, Model 51-2713B)

connected to a 300ml high-pressure CO 2 reservoir (Swagelok, P/N 304L-HDF4-300)

was employed to maintain the pressure within the sight gauge at a constant value.

5.2.2 Procedure

Polymer solutions used in the adsorption study were formulated as described in Sec-

tion 4.2.2. Carbon black particles were purchased from Evonik and used as received.

The carbon black - sold under the trade name NIPex® 180 IQ - has an average

primary particle size of 15 nm and a BET surface area of approximately 260 m2/g.

NiPex@ 180 is an acidic, highly structured carbon black specifically developed for

use in pigmented inks.

Atmospheric-pressure adsorption isotherms

To construct adsorption isotherms at atmospheric pressure, a series of dispersions

containing known amounts (determined gravimetrically to within ±0.01g) of carbon

black, polymer, and solvent were formulated at various polymer:particle mass ratios.

The dispersions were shaken vigorously by hand, then placed on a sample rotator



Figure 5-1: Schematic of the high-pressure adsorption isotherm system. System compo-

nents: carbon dioxide supply (CO 2), dispersion addition (DA), sight gauge

(SG), filter (F), switching valve (SV), sample loop (SL), solvent flush (SF),

solvent collection (SC), ultrasonic horn (UH), recirculation pump (RP), ther-

mocouple (TC), pressure gauge (PG).

Figure 5-2: Photographs of the high-pressure adsorption isotherm system (a) and sight

gauge (b). Major system components: sight gauge (SG), switching valve (SV),

recirculation pump (RP)
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to vessel

S1

Figure 5-3: Schematic of the custom-fabricated adapter used to provide ultrasonic agita-
tion at high-pressure (adapted from Ciccolini [2008]). System components:
(1) ultrasonic horn, (2) gland, (3) adapter body, (4) copper gasket, (5) teflon-
encapsulated o-ring (McMaster Carr, P/N 93445K218). Adapter gland (2)
was tightened to 50 ft-lb torque to maintain a seal up to 1000 psig.

(Glas-Col, P/N 099A-CR4012) for at least 24 hours; glass grinding beads (Quak-

enbush Ceramedia 700) were added to the samples to facilitate deagglomeration of

carbon black aggregates during agitation. After the agitation step the particles were

allowed to settle gravimetrically, and an aliquot of the clear supernatant was removed

from each sample and analyzed using UV spectroscopy to determine the concentration

of polymer in the liquid phase (for aqueous systems, it was necessary to centrifuge

and/or filter the dispersion to obtain a particle-free liquid sample). The amount of

polymer adsorbed on the particle surfaces was then calculated by subtraction from

the total polymer mass in the system.

High-pressure adsorption isotherms

High-pressure adsorption measurement trials were each conducted over a period of

several days. Before each trial, the apparatus was flushed with CO 2 several times to

remove residual air and acetone. A dispersion of pigment particles in a solution of

~ -- - - - - - - - - ... ........ ... ......... .... .. ...........



dissolved polymer and solvent was then added to the sight gauge through a funnel

such that the total mass was known to within an uncertainty of ±0.1g (--0.2%).

The temperature was raised to 35'C, and carbon dioxide was subsequently added

via the forward-pressure regulator until the system pressure reached 100 psig. The

system was then agitated using power ultrasound to ensure that large agglomerates

were broken up in order to maximize the amount of particle surface area available for

adsorption and facilitate the diffusion of polymer molecules to the particle surfaces.

The mixtures were typically sonicated for approximately five minutes at a duty cycle

of 30% and output control setting of 3 on the ultrasonic processor after each pressure

adjustment.

The system was maintained at 100 psig for at least 24 hours, with periodic ultra-

sonic agitation. After the particles had settled to the bottom of the sight gauge, the

liquid phase was circulated through the external loop until a constant temperature

was attained throughout the system. At this point, several samples were removed

via the HPLC switching valve. The sample loop was flushed with acetone after each

sample was removed, and the polymer content of the liquid phase was determined

using UV spectroscopy. The composition of the liquid phase was then calculated (see

Section 5.2.3) in order to determine the final point on the adsorption isotherm. This

procedure was repeated at 200 psig and 300 psig for all trials, and also at 0 psig for

selected trials. After samples had been collected at each pressure, the sight gauge was

emptied and cleaned before a new trial was conducted at a different particle:polymer

mass ratio.

5.2.3 Data Analysis

The experimental trials described above yielded measurements of the mass of polymer

collected in the sample loop at each set of experimental conditions (T, P, and overall

composition). In order to calculate the total amount of polymer in the fluid phase

- and thus by subtraction the total amount of polymer adsorbed on the carbon

black particles - an accurate estimate of the liquid molar volume, vL, and acetone

mole fraction, Z 2 , is required. If these two quantities are known, the C0 2-free mass



fraction of polymer in the liquid phase, w , can be calculated from:

mS L  MSLL 1 =1 (5.6)
1 - mL + mSL - mSL + (VSL 2 M2 )/vL

where mS L and mSL are the mass of polymer and acetone in the sample loop, re-

spectively, VSL is the volume of the sample loop, and M 2 is the molecular weight of

acetone. It was assumed that the polymer did not significantly affect the liquid phase

composition or density, since the equilibrium polymer mass fraction rarely exceeded

2% (on a CO2-free basis) during the adsorption trials. As was the case for the phase

behavior trials described in Chapter 4, the amount of acetone in the vapor phase was

also assumed to be negligible (see Section 4.3.2 for a discussion of the validity of this

assumption).

The saturated liquid properties of CO2-expanded acetone have been investigated

by several researchers [Lazzaroni et al., 2005, Stievano and Elvassore, 2005, Day et al.,

1999], and these studies provide a starting point for the estimation of vL and x 2 in

Equation 5.6. Most of the published data are not at 35'C; however, Besanehtak et

al. [2002] have shown that volume expansion of the liquid phase in GXL systems is

a function of CO 2 mole fraction within the saturated liquid phase, independent of

temperature. To illustrate this phenomena, a plot of previously published volume

expansion data versus the liquid phase CO 2 mole fraction for CO2-acetone binary

mixtures at several temperatures is shown in Figure 5-4.

Based upon the excellent agreement between data sets in Figure 5-4, the data

at 35 0 C from Day et al. [1999] were assumed to be sufficiently accurate for use in

comparisons to predictions with various equations of state. Figure 5-5 shows a plot

of the corresponding density data as a function of system pressure , along with a data

point at atmospheric pressure [Hafez and Hartland, 1976] and the density predictions

obtained from the Peng-Robsinson (PR) EOS, the Soave-Redlich-Kwong (SRK) EOS,

the SRK EOS with a density-modified translation (DMT) [Frey et al., 2009], the PC-

SAFT EOS, and the modified Rackett equation [Spencer and Danner, 1972] at 35'C

(binary interaction parameters, kij, were set to zero for all correlations). The modified
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Rackett equation was developed specifically for the prediction of liquid molar volume

data based on the critical constants and a single component-specific parameter, and

provided the best fit of the data in the range of pressures that was relevant to the

adsorption study. The average absolute deviation (AAD) of the predictions obtained

using the Rackett equation was 0.54% when compared to the data shown in Figure

5-5.

A plot of experimental and predicted vapor-liquid phase boundaries for the CO 2-

acetone binary system can be seen in Figure 5-6. In the case of phase composition,

the PC-SAFT EOS afforded the closest approximation to experimental data, with

AAD = 2.1% for liquid phase CO 2 mole fractions at pressures below 500 psig. Thus,

the Rackett equation was used to estimate vL, and the PC-SAFT EOS was used to

predict x2 in all further calculations.

The calculation of polymer mass fraction in the liquid phase also requires an ac-

curate measurement of the sample loop volume in Equation 5.6. The sample loop



volume was determined by loading a dilute polymer solution of known concentration

into the adsorption apparatus at room temperature, and then removing a liquid sam-

ple for analysis using the HPLC valve and sample loop. The mass of polymer in

the sample loop determined using UV spectroscopy was then used to calculate the

volume of the sample loop based on the previously measured solution concentration.

Several trials were conducted at various dilutions to avoid any effects associated with

adsorption of polymer onto surfaces within the apparatus. The resulting value of the

sample loop volume was VSL = 2.06 ± 0.2 ml.

5.3 Results and discussion

5.3.1 Atmospheric-pressure adsorption isotherms

Adsorption isotherms were constructed for systems containing Joncryl® and BzMA/

MAA polymers in a variety of solvents at atmospheric pressure and 22'C. Figure

5-7 displays two such isotherms characterizing the adsorption of Joncryl® 678 onto

carbon black from both water and methanol. Based on the data in Figure 5-7, at

pigment-to-dispersant mass ratios (P:D between 2 and 5) and pigment loadings ('20

wt%) representative of commercial inks, approximately 0.2 to 0.4 g of polymer per

gram of pigment is expected to adsorb onto the particle surface. In addition, the

liquid phase will contain between 0.4 wt% and 2.6 wt% polymer (representing 7% to

19% of the total polymer content); this excess polymer does not serve to stabilize the

pigment dispersion, and reduces formulation flexibility by increasing ink viscosity.

The removal of "free" dispersant polymer in the liquid phase of aqueous inks

is an important goal of the current work. However, it is clear from inspection of

Figure 5-7 that the use of methanol alone will not provide such a reduction. Similar

Joncryl@ 678 adsorption behavior was observed in other organic solvents (acetone,

n-butanol, 2-n-butoxyethanol) as well, with polymer adsorption reaching a plateau

below 0.25 g per gram of carbon black in all cases. This behavior is not unexpected,

since organic solvents such as the ones employed in this study are known to be good
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Figure 5-7: Adsorption of Joncryl9 678 polymer from water and methanol onto carbon
black particles: Adsorption isotherms at 1 atm and 220C.

solvents for acrylic polymers; adsorption from a poorer solvent - such as water - is

generally greater than from a good solvent [Jean and Yeh, 2001], characterized by an

increase in the parameter nm and/or a decrease in the parameter K from Equation

5.2. The strong polymer-solvent interactions in a good solvent tend to dominate the

polymer-particle interactions, and solvation is favored over adsorption.

Joncryl® 678 is a water-soluble (>15 wt%) polymer, and provides useful insight

into the adsorption behavior of commercially available aqueous inks. However, hy-

drophilic polymers such as this are not appropriate for use with CO2-based processing

methods, as they would tend to desorb from the particle surfaces after addition to

water in the final ink formulation. The model BzMA/MAA polymers are only spar-

ingly soluble in water (<0.5 wt%) even when the methacrylic acid functional groups

have been completely neutralized with base, serving as a model system that is more

relevant to the process under investigation. Hydrophobic polymers such as these will

remain at the particle surface when employed in water-based inks, and the GAS-based

particle encapsulation process provides a route for depositing these polymers on the

particle surface before they are added to the aqueous carrier.

Adsorption data for all three BzMA/MAA polymers in systems containing acetone
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Figure 5-8: Adsorption of BzMA/MAA polymer from acetone onto carbon black particles:
Adsorption isotherms at 1 atm and 22'C.

and carbon black are plotted in Figure 5-8. Inspection of Figure 5-8 indicates that

the Langmuir Isotherm equation provides a reasonable fit of the atmospheric-pressure

experimental data, suggesting that the polymers indeed adsorb from solution to form

a monolayer at high liquid-phase concentrations. The values of equilibrium polymer

mass fraction in the plot were directly determined to within an uncertainty of +4%,

and the values of the polymer loading were calculated from an overall mass balance

with an uncertainty of +7% due to propagation of error. Again, adsorption from

acetone is quite modest in comparison to the adsorption of Joncryl® 678 from water.

Also, the adsorption isotherms for the three BzMA/MAA polymers are essentially

indistinguishable given the uncertainty of the data. This behavior can be understood

by examining the polymer-solvent and polymer-particle interactions in these systems:

although the 85/15 BzMA/MAA polymer has the highest solubility in acetone (see

Chapter 4), it contains more benzyl groups that provide specific acid-base interactions

with the particle surface. Based on the data, the magnitudes of these two opposing



effects are similar.

The effects of agitation and equilibration time were also explored during the

atmospheric-pressure adsorption trials. Mixtures were typically agitated for 24 hours

on a lab rotator in a jar containing glass grinding media, as discussed in Section 5.2.2.

However, several samples were not agitated at all after the initial shaking by hand

(with no grinding media). Other samples were left - either agitated or unagitated

- for 48 hours or more before supernatant samples were removed. In all cases, the

resulting data were in agreement with the "standard" method described previously,

and it was assumed that this procedure was sufficient to ensure that the samples had

reached equilibrium before aliquots were removed.

5.3.2 High-pressure adsorption isotherms

Summaries of the high-pressure adsorption data collected for systems containing

85/15 BzMA/MAA polymer and 75/25 BzMA/MAA polymer are shown in Figures

5-9 and 5-10, respectively. The values of equilibrium polymer mass fraction in the

liquid (on a CO 2-free basis) were calculated to within an uncertainty of ±10% based

on measurements of the total polymer mass in the sample loop and estimates of the

acetone mole fraction and overall liquid phase density (see Section 5.2.3); the values of

the polymer loading were calculated from an overall mass balance with an uncertainty

of ±13% due to propagation of error.

In the case of 85/15 BzMA/MAA polymer, the addition of CO 2 to the system ap-

pears to have relatively little effect on the adsorption of polymer for the pressure range

investigated (0 to 300 psig). Conversely, a significant increase in 75/25 BzMA/MAA

polymer adsorption is observed between 200 psig and 300 psig. This difference can

be explained by the solubility characteristics of these polymers: as the pressure is

raised to 300 psig, the equilibrium 75/25 BzMA/MAA polymer mass fraction in the

liquid phase begins to approach - and in some cases exceed - the solubility limit in

CO 2-expanded acetone. As the solubility limit is approached, the sudden decrease in

solubility causes a rapid increase in polymer loading on the particle surfaces. On the

other hand, 85/15 BzMA/MAA polymer is soluble in C0 2-expanded acetone up to
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pressures exceeding 350 psig over the entire range of mass fractions relevant to the

adsorption study.

The data at each value of pressure in Figures 5-9 and 5-10 exhibit Langmuir-type

behavior, with the exception of the 75/25 BzMA/MAA data taken at 300 psig. The

addition of CO 2 does appear to shift the isotherms (in effect changing the param-

eters nm and K in Equation 5.2); however, the regression of meaningfully different

parameters for isotherms at each pressure is impossible due to the scatter of the data.

There are several potential causes for error in the values of the equilibrium polymer

mass fraction. One potential source of error was the presence of a small amount of

carbon black particles in a number of the liquid samples withdrawn from the sample

loop. This may have led to a small increase in the polymer mass determined by UV

spectroscopy, as any polymer adsorbed onto the particle surfaces would likely desorb

when the sample was diluted with THF for UV analysis. A 40 pm filter was in place

before the HPLC valve in the recirculation loop, but this filter was only intended to

prevent damage to the gear pump and clogging of the HPLC valve due to larger par-

ticle agglomerates. Test trials were carried out using smaller filter pore sizes (as small

as 0.5 pm), but this had a negative impact on the recirculation of liquid through the

sample loop. As recirculation is slowed by a filter or by a blockage of particles, the

temperature uniformity within the sample loop is affected, which is another potential

source of error (since temperature is an important parameter in the correlations used

to estimate liquid density and composition). The speed of the gear pump may be in-

creased to a certain degree to compensate for blockage, but as the speed is increased

above approximately half of the maximum value, the heat generated in the pump

head is enough to cause cavitation and drastically reduce the liquid flow rate. Thus,

the 40 pm filter was found to strike an adequate balance between filtration of carbon

black and liquid recirculation rate at reasonable pump speeds.

Although the absolute values of the data shown in Figures 5-9 and 5-10 are sub-

ject to some uncertainty, a clear and reproducible trend was observed with changes in

pressure among the data collected at each polymer:particle mass ratio. Specifically,

the addition of CO 2 was found to initially cause desorption of the polymer from the
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Figure 5-11: Trends in 85/15 BzMA/MAA polymer adsorption from Clo-expanded ace-
tone with changes in system pressure.

particle surface, with polymer loading at 100 psig consistently lower than that at

atmospheric pressure. As the pressure was increased to 200 psig, some polymer re-

adsorbed, but the total polymer loading was stiller lower than its initial value. Only

after the pressure was raised to 300 psig did polymer adsorption exceed atmospheric-

pressure levels. In the cas5-12e of 75/25 BzMA/MAA an increase in polymer loading

above 200 psig is expected due to the solubility considerations discussed above, but

even 85/15 BzMA/MAA polymer exhibited a significant increase in adsorption be-

tween 200 psig and 300 psig. The trends in 85/15 BzMA/MAA polymer adsorption

are plotted as a function of pressure in Figures 5-11 and 5-12; a plot of the percent

change in the polymer loading with respect to the previous value is displayed in Fig-

ure 5-11, and Figure 5-12 shows the polymer loading at each pressure normalized to

the initial value at atmospheric pressure.

The trend in polymer adsorption suggests that interaction between CO2 molecules

and surface groups on the carbon black particles are strong enough to replace some

fraction of the adsorbed polymer molecules at low CO 2 concentrations. As the amount

of CO 2 in the liquid phase increases, the concomitant reduction in polymer solubility is

enough to overcome these competing interactions and cause re-adsorption. However,
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it should be noted that based on the data it is difficult to discern whether significant

adsorption occurs before the solubility limit is reached, or if the encapsulation of

particles in the model system is essentially a precipitation operation.

5.4 Conclusions

The adsorption of polymers from pure solvents and CO2-expanded acetone onto car-

bon black particles was probed experimentally and analyzed using the Langmuir

isotherm equation. Adsorption from common organic solvents was low for both

Joncryl® polymers and BzMA/MAA copolymers, particularly when compared to

the adsorption of Joncryl® 678 from water. Atmospheric-pressure isotherms offered

insight into the relative strength of polymer-solvent, polymer-particle, and solvent-

particle interactions present in the systems currently under investigation; these data

indicate that polymer-particle interactions are not strong enough to promote ade-

quate polymer adsorption, highlighting the potential benefits of a GAS-based process

in tuning the liquid-phase solvation power.

Adsorption of 85/15 and 75/25 BzMA/MAA polymers onto carbon black from
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CO 2-expanded acetone was measured at 35 'C and pressures between 0 psig and 300

psig. Pressurization with CO 2 to pressures up to 200 psig caused a decrease in the

amount of polymer adsorbed on particle surfaces, but further increases in pressure

resulted in higher polymer loadings. In the case of 75/25 BzMA/MAA polymer, the

polymer loading increased significantly between 200 psig and 300 psig as the solubility

limit was approached or exceeded. This behavior indicates that there is some degree

of competitive adsorption of CO 2 onto the carbon black surfaces.

When analyzed in conjunction with the results of the phase behavior study out-

lined in Chapter 4, the adsorption data provide valuable insight into the interactions

governing the adsorption (or precipitation) of polymer in particle coating applica-

tions. Specifically, the data indicate that most of the polymer adsorbs over a rela-

tively narrow range of pressure, information that is directly applicable to the selection

of appropriate operating conditions for a GAS-based process. Coating will only be-

gin to occur at pressures above 200 psig for systems containing 75/25 BzMA/MAA

polymer, and pressures above 300 psig are required when using 85/15 BzMA/MAA.

Nearly all polymer will be present on the particle surfaces as the system pressure

exceeds 400-500 psig, placing on upper limit on the pressure requirements for an

industrial process.

The results of the adsorption study serve to underscore the importance of choos-

ing a "neutral" solvent that exhibits no strong interactions with either the polymer

molecules or the particle surfaces. Such interactions tend to inhibit adsorption of

the polymer by either enhancing the solubility of the polymer in the liquid phase

- in the case of polymer-solvent interactions - or by displacing polymer molecules

at the particle surface via competitive adsorption - in the case of particle-solvent

interactions.
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Chapter 6

Carbon black size reduction and

polymer encapsulation in

CO 2-expanded acetone

The previous two chapters addressed fundamental aspects of the equilibrium behavior

of systems comprised of polymers and particles in CXLs. The tunability of CO 2-

expanded acetone was explored with respect to changes in temperature, pressure,

and composition, in order to determine the conditions under which dissolved polymer

will exit the CXL phase either as a pure solid precipitate or as an adsorbate. The

knowledge gained in these investigations is directly applicable to the development of

a CXL-based process to produce ink jet ink precursors. The current chapter concerns

the implementation and analysis of a such a process, combining GAS precipitation of

polymer and traditional particle size reduction technology to produce dry, polymer-

encapsulated pigment particles.
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6.1 Background

6.1.1 Particle size reduction in liquid slurries

As discussed in Section 1.1.3, pigmented inks are currently produced in an aqueous

process involving simultaneous particle size reduction and encapusulation with disper-

sant polymers. This process is typically carried out in two steps: large agglomerates

are first broken apart in a high-speed disperser (HSD), and the dispersion is then fed

to a final grind - most commonly in a media mill - for further particle size reduction.

During each of these steps, polymer molecules adsorb onto newly exposed particle

surfaces to prevent reagglomeration.

High-speed dispersers

High-speed dispersers employ shear stress and some attrition as the source of particle

dispersion. The pigment mixture is placed in a tank and agitated by a disk impeller

with a saw-blade edge (Cowles blade). The impeller is mounted on a shaft that is

centered in the tank, and the shaft is rotated such that a laminar flow pattern is

generated between the disk and the tank bottom. The shear stress, 7, is a measure

of the shear forces experienced by particles within the dispersion, and is expressed

in terms of the viscosity, p, and shear rate, 1 , of the slurry as T = 'jp. Under

laminar flow conditions between the HSD impeller and tank bottom, the shear rate

can be approximated as , = v/h, where v is the velocity of the impeller, and h is the

distance between the impeller and the tank bottom. The viscosity of ink dispersions

is Newtonian at low pigment concentrations, and can be represented empirically by

[Wnek et al., 2002]

AD = PF(1 + f(Cs)) (6.1)

where AD is the viscosity of the dispersion, pF is the viscosity of the particle-free

fluid phase, and the function f takes the form of a power series. For low pigment

concentrations, a linear relationship for f provides an adequate representation of

viscosity data.
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Well-established heuristic guidelines generally dictate the operating conditions in

an HSD. Impeller tip speed is generally in the range of 4000-5200 fpm (20-26 m/s),

the impeller size is one-third the tank diameter, the liquid level at rest is 1.5 times

the impeller diameter, and the distance between the impeller and the tank bottom is

one-half the impeller diameter. A typical premix is conducted for 15-60 minutes.

Media milling

A media mill essentially consists of a tank with an agitator. The most common

agitator designs feature multiple discs or pins positioned along the axis. A schematic

of a commercially available media mill is shown in Figure 6-1. Particle size reduction

is achieved through the action of grinding media within the tank, typically small

ceramic, polymeric, or metallic beads. The kinetic energy imparted to the media by

the agitator is transferred to pigment particles that are stressed between two colliding

media beads, breaking up agglomerates or crushing primary particles. Media mills can

be operated in batch or continuous modes; mills operating continuously are equipped

with a screen or rotating gap in order to retain the media within the grinding vessel.

Particle
slurry out

Agitator Rotating gap ....-

Particle
slurry in

Discs
or pins

Figure 6-1: Schematic of a representative horizontal media mill for particle size reduction
(adapted from Stender [2004]). Laboratory-scale mill vessels are typically
between 200 ml and several liters in volume.

The mechanisms of media milling have been investigated extensively by the Schwedes
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group at the Technical University at Brunswick, Germany [Becker et al., 2001, Blecher

et al., 1996, Kwade, 2004, 1999b, Kwade et al., 1996, Kwade and Schwedes, 2002,

Mende et al., 2004]. These studies have shown that particle size reduction primarily

depends on the specific energy input, Em, which is the total energy supplied to the

mill divided by the mass of the product slurry. More precisely, the comminution pro-

cess is influenced by how often each feed particle is stressed - the stress number, SN

- and the intensity of each stress event - the stress intensity, SI [Kwade, 1999a]. For

a batch process in which the most important milling mechanism is deagglomeration

of primary particles, Kwade [1999a] has derived the following proportionality for the

stress number:
CGM(1 - E) nt

SN oc G(6.2)
(1 - OGM(1 - E))CV dGM

where n is the number of revolutions of the agitator per unit time, t is the milling

time, dGM is the diameter of the grinding media, cv is the volume solids concentration

of the particle slurry, e is the porosity of the bulk grinding media, and CGM is the

filling ratio of the grinding media. Expressions similar to Equation 6.2 are used as a

measure of the stress number, as the actual value cannot be determined. Similarly,

no expression for the actual stress intensity currently exists. However, under certain

conditions the stress intensity of the grinding media, SIGM, can be used as a measure

of the stress intensity in the mill:

SI oc SIGM = d3 PGM V2 (6.3)

where PGM is the density of the grinding media, and vt is the tip speed of the agitator

discs. Other factors such as mill geometry, solids concentration, and viscosity of

the suspension also influence the stress intensity, though they are not represented in

Equation 6.3. Also, it is important to note that in reality, the stress intensity can only

be represented by a distribution. Despite the shortcomings of Equations 6.2 and 6.3,

they provide measures of the stress number and stress intensity, respectively, which

are useful for analyzing the milling process. For example, the evolution of median

particle size is better represented as a function of stress number than as a function of
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time; a plot of median particle size versus stress number will be a straight line on a

log-log diagram. Also, experiments reveal a minimum in the specific energy required

to reach a certain median particle size as a function of stress intensity; once this

optimum stress intensity has been determined, the stirrer speed and media size may

be varied to achieve a higher stress number at constant stress intensity. Examination

of Equation 6.3 indicates that a high disc tip speed and small media size will be most

advantageous. Typical tip speeds in laboratory-scale media mills are between 5 and

20 m/s.

As mentioned above, the rheological properties of the particle suspension are

missing in expressions for the representative stress number and stress intensity, even

though they can have a significant influence on the actual values. High suspension vis-

cosity usually indicates a high solids concentration, and hence high grinding efficiency.

However, if the viscosity is too high, contact between media beads and pigment parti-

cles will be hindered, reducing the grinding efficiency. For this reason, the use of fine

media is only possible with low-viscosity suspensions [Way, 1997]. With this in mind,

it is important to note that due to relatively high solids loadings, rheological proper-

ties of ink dispersions are also influenced by the level of agglomeration of the product

particles, with significant particle agglomeration leading to an increase in suspension

viscosity [Mende et al., 2003]. With proper dispersion stabilization, suspensions of

particles with a median size less than 50 nm have been produced by media milling,

and no lower particle size limit has yet been reached [Mende et al., 2003].

6.1.2 Previous studies of CO2-based particle encapsulation

The particle formation methods described in Section 1.2.3 have been applied in various

configurations to the encapsulation of micro- and nano-particles. The majority of

recent investigations in this field have employed some variation of the RESS process

[Jung and Perrut, 2001, Matsuyama et al., 2001b, Mishima et al., 2001, Hertz et al.,

2006, Dos Santos et al., 2003], although the poor solubility of most coating materials in

pure scCO 2 has proven to be an important obstacle. To address this issue, Matsuyama

and coworkers devoloped a process utilizing mixtures of CO 2 and an organic solvent
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that acts as a cosolvent in high-pressure mixtures but as a non-solvent at ambient

conditions [Matsuyama et al., 2003b,a, 2001a].

The PCA technique has also been employed in particle coating operations, [Young

et al., 1999] but the most common use of this method for producing heterogeneous

particles involves co-precipitation of composite particles [Tu et al., 2002, Falk et al.,

1997, Boutin et al., 2004], most often for applications in pharmaceutical or biomedical

materials. In a study with particular relevance to the current thesis, Wang et al [2004]

successfully demonstrated a PCA encapsulation process to coat both hydrophobic and

hydrophilic silica nanoparticles with an acrylate polymer.

Co-precipitation to form composite particles via the GAS process has been investi-

gated for drug-delivery applications [Elvassore et al., 2001]; however, there have been

few reports of GAS-based encapsulation of insoluble particles. This is due in part

to the tendency of CO 2 to plasticize the coating materials and cause agglomeration

of the coated particles [Young et al., 1999]. The particle encapsulation process cur-

rently under investigation minimizes this potential complication by using relatively

small amounts of coating material in conjunction with vigorous agitation to break up

agglomerates.

In addition to precipitation-based approaches for particle encapsulation, several

researchers have applied the use of scCO 2 and CXLs to reaction-based coating meth-

ods. Pessey and coworkers [Pessey et al., 2000, 2001] implemented a technique involv-

ing the thermal decomposition of an organic precursor in scCO 2 to deposit copper

onto the surface of particles. Yue et al. [Yue et al., 2004] employed in situ polymeriza-

tion of poly(methyl methacrylate) and poly(1-vinyl-2-pyrrolidone) to encapsulate 12

um particles of Dechlorane flame retardant, and Hertz et al [2006] encapsulated yttria

stabilized zirconia nanoparticle via in situ polymerization of poly(methyl methacry-

late). While these techniques merit further study, they often involve more demanding

pressure and temperature conditions than processes based on precipitation.
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6.2 Materials and methods

An experimental apparatus was designed and constructed for the purpose of encap-

sulating carbon black nanoparticles for use in ink jet inks. The encapsulation system

combines the particle size reduction techniques described in Section 6.1.1 with the

GAS process for polymer solubility reduction. The apparatus allows for particle size

reduction via either HSD-type agitation or media milling. Particle encapsulation tri-

als were carried out at pigment:dispersant (P:D) ratios of 1.25, 2.5, and 5.0 for the

85/15 BzMA/MAA and 75/25 BzMA/MAA copolymers, and at P:D ratios of 2.5 and

5.0 for the 80/20 BzMA/MAA copolymer.

6.2.1 Experimental apparatus

Figure 6-2: Schematic of the high-pressure particle encapsulation system. System compo-
nents: carbon dioxide supply (CO2), syringe pump (SP), back-pressure reg-
ulator (BPR), encapsulation vessel (EV), solvent recovery vessel (SR), filters
(F), solvent trap (ST), rupture disk (RD), solvent collection (SC), thermo-
couples (TC), pressure transducer (PT).
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Figure 6-3: Photograph of the high-pressure particle encapsulation system. Major system
components: syringe pump (SP), back-pressure regulator (BPR), encapsula-
tion vessel (EV), solvent recovery vessel (SR), filter (F).

A schematic representation of the size reduction and encapsulation system is

shown in Figure 6-2, and a photograph of the system is displayed in Figure 6-3.

The encapsulation process is carried out in a stainless steel reaction vessel (Autoclave

Engineers, P/N 3010-4796 [vessel] and P/N 201A-3622 [cover]) designed to operate

at high pressure (1000 to 3000 psi / 70 to 200 bar) and at temperatures from 00 C to

4500 C. The encapsulation vessel has a fluid volume of 1 L, with an inside diameter

of 3 inches and an inside depth of 9 inches. A cooling jacket allows temperature con-

trol during the encapsulation process. The vessel cover is mounted on a steel frame

within a polycarbonate enclosure, and the vessel body is raised and lowered using a

laboratory jack.

Agitation within the vessel is provided by a high-pressure mixer (PDC Machines,

Model P70) capable of rotating a magnetically coupled shaft at over 3400 RPM. The

magnetic mixer is driven by a 5 HP motor (Reliance Electric, "Sabre" 184T) that is

controlled by a variable frequency drive (Yaskawa, Model J7). A custom-fabricated

adapter enabled the use of the magnetic mixer with the existing encapsulation ves-
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sel, and the mixer shaft was supplied with a 3/8"-16 UNC threaded connection that

extended 1" into the vessel. To allow for rotation at speeds above 3400 RPM, car-

bon bearings (PDC Machines, P/N A0026801) were employed in the mixer, and the

bottom-most bearing was modified with grooves to accomodate two viton o-rings

around the outer diameter. The o-rings prevented the bearing from spinning and

reduced shaft vibration. Mixer rotational speed was monitored using a tachometer;

the frequency signal from the tachometer was converted to a voltage signal by a

frequency to analog converter (Red Lion, Model IFMA) before being recorded by a

personal computer using LabVIEW data acquisition software. A schematic of the

mixer, adapter, and shaft is shown in Figure 6-4.

1-11/16 Adapter Magnetic mixer
1-11/16

HEX

Figure 6-4: Schematic of the magnetic mixer and adapter for coupling to the encapulation

vessel cover.

The encapsulation vessel is capable of operating as an HSD or as a media mill,

depending on the agitator that is coupled to the mixer shaft. A schematic of the HSD

shaft is pictured in Figure 6-5; the shaft was fabricated from stainless steel by the MIT

Machine Shop, and accomodates a 1" Cowles sawtooth impeller. The use of a reaction

vessel as a high pressure media mill (HPMM) was first proposed by the DuPont

Particle Science and Technology group for milling pharmaceutical components in

supercritical fluid media [Ford et al., 2002]. The current apparatus is similar in design

to that developed by DuPont. Agitation is provided by a custom-designed multi-disc
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cylindrical agitator fabricated from nylon 6/6 plastic by the MIT Machine Shop.

Nylon was chosen due to its light weight and resistance to swelling in high-pressure

CO 2 . The design of the agitator was based on commercially available agitators for

laboratory-scale media mills, which generally provide a minimum gap between moving

parts equal to ~5 times the diameter of the grinding media. A schematic of the

HPMM agitator and stainless steel coupling adapter is shown in Figure 6-6, and

pictures of both the HPMM and HSD agitators are shown in Figure 6-7. The agitator

was dynamically balanced by Linskog Balancing to minimize vibrations at 3400 RPM.

The hollow section at the bottom of the agitator was designed to accomodate a

filter assembly which was later removed from the inside of the encapsulation vessel;

however, this feature also served to reduce the weight of the unit, thereby reducing

the stress experienced by the mixer bearings.

The grinding media are retained within the encapsulation vessel by a 440 pm

T-type filter (Swagelok, P/N SS-4TF-440) at the vessel outlet. To prevent the me-

dia from entering the magnetic mixer through the gap between the mixer shaft and

the vessel cover, a bronze thrust bearing (McMaster Carr, P/N 7814K21) with a

close tolerance to the shaft diameter is held in place against the vessel cover using a

shaft collar (McMaster Carr, P/N 6436K136) and wave spring (McMaster Carr, P/N

9714K36).

Stainless
I Fwar edge tr imp3e e-16 UNC THREADO

. . steel x o0 8f DEEP

7_ __L I

7SO

Figure 6-5: Schematic of the high-speed disperser shaft for use in high-pressure encapsu-
lation trials.

Both the encapsulation vessel and magnetic mixer require cooling during opera-
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Figure 6-6: Schematic of the media milling impeller and coupling adapter for use in high-

pressure encapsulation trials.

tion; chilled water is provided by a recirculating chiller (VWR, Model 1179-P) and

circulated through a cooling loop, depicted schematically in Figure 6-8. The magnetic

mixer requires 0.5-1.0 GPM of cooling water, monitored by a rotameter and regulated

by manipulation of a needle valve. The temperature within the encapsulation vessel

and at the cooling water inlet and outlet is determined using type T thermocouples

(Omega Engineering, P/N GTMQSS-062U-6, tolerance +1K) and monitored on a

personal computer using LabVIEW data acquisition software. The magnetic mixer

also requires 10 SCFM air cooling, provided by a house air connection and monitored

via a rotameter.

Carbon dioxide is supplied to the system using two high-pressure syringe pumps

(Teledyne-Isco, Models 500D and 100DM) equipped with air-actuated inlet and outlet

valves (P/N 681247089) and jackets for cooling. Chilled water at 4C - provided by

a refrigerated circulator (VWR, Model 1160S) - is sent to the cooling jackets in order
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Figure 6-7: Photographs of the (a) media milling and (b) HSD agitators.

to maximize the amount of liquid CO 2 in the syringe pump cylinders during each

cycle. The pumps are operated in constant flow rate mode, and the pressure within

the cylinders is maintained at a constant level by a back pressure regulator (Tescom,

Model 26-1763-24) modified for CO 2 service. In this manner, a constant mass flow

rate of CO 2 is fed to the encapsulation vessel.

Encapsulated particles are retained in 0.1 yim bonded microfiber filter elements

(Headline Filters, P/N 25-178-50K) installed in a high-pressure filter housing (Head-

line Filters, Model 142HP) at the outlet of the encapsulation vessel. Solvent that

has passed through the filter is collected in a Jerguson sight gauge (Model 29-T-32,

Max 3000 psi at 1000F), equipped with quartz windows for visual access to the fil-

trate. This sight gauge will be referred to henceforth as the solvent recovery vessel.

A dip tube is passed through the top of the solvent recovery vessel such that the

liquid CXL mixture is collected for recovery while the vapor phase is able to exit

through a seperate fitting at the top. Pressure is maintained within the encapsula-

tion vessel and solvent recovery vessel by a second back-pressure regulator (Tescom,

Model 26-1763-24) at the system outlet. Pressures within the encapsulation vessel

and solvent recovery vessel are monitored using a pressure transducer (Omega Engi-

neering, P/N PX303-3KG5V, accuracy ±7.5psi) and analog gauge (Swagelok, P/N
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Figure 6-8: Schematic of cooling loops for the high-pressure particle encapsulation system.
System components: encapsulation vessel (EV), chiller (C), flow meters (FM),
thermocouples (TC), pressure transducer (PT).

PGI-63C-PG5000-LAO), respectively. The encapsulation vessel pressure was recorded

by LabVIEW software on a personal computer.

6.2.2 Procedure

The process to produce encapsulated carbon black particles was operated in a semi-

batch configuration, and consisted of three distinct stages: pre-mix, size reduction

and encapsulation, and particle separation and recovery. In the pre-mix step, known

amounts of carbon black and polymer-acetone solution were combined in a plastic

jar and shaken to adequately wet the particles. The composition of the polymer

solution was determined to within an uncertainty of 3% via UV spectroscopy, and the

masses of carbon black and polymer solution were measured gravimetrically with an

uncertainty of 0.01 g (0.2-0.02%). The resulting mixture was agitated for 30 minutes

using a laboratory HSD (D.H. Melton Co., Model CM-100) with a 2" Cowles style
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open sawtooth impeller. The speed of the mixer was regulated using a continuously

variable controller such that a vortex formed within the jar with little splashing.

The jar was suspended in an ice bath during the pre-mix in order to reduce acetone

evaporation and avoid a reduction in viscosity.

Before each trial, the encapsulation vessel was cleaned thoroughly and pressure

tested at 700 psig. Immediately before addition of the pigent dispersion, the system

was purged with CO 2 to remove air and residual acetone. In trials in which media

milling was the mode of size reduction, the encapsulation vessel was loaded with 390

g of glass grinding beads (Quackenbush Co., "Q-Bead"). The beads as received con-

tained a distribution of sizes; seives were employed to separate beads with diameters

between 1.2 mm and 1.4 mm for use in milling trials. The density of the individual

glass beads was 2.5 g/ml, and the bulk density was 1.5 g/ml.

Upon completion of the pre-mix, the dispersion was added directly to the en-

capsulation vessel through a funnel, and agitation was begun with either the HSD

impeller or media mill agitator. Soon after the mixer reached its maximum speed, the

syringe pumps were enabled at a constant flow rate of 15 ml/min until the pressure

within the pumps reached -1600 psig. At this point, the flow rate was reduced to

7 ml/min. As the pressure within the pumps reached the back pressure regulator

setting of 1700 psig, CO 2 began to flow to the encapsulation vessel. The CO 2 equa-

tion of state developed by Span and Wagner [Span and Wagner, 1996] was used to

calculate the mass flow rate of CO 2 based on the temperature and pressure within

the syringe pumps. The valve at the vessel outlet was closed during this stage of

the process, and CO 2 was added to the encapsulation and solvent recovery vessels

simultaneously such that a uniform pressure was maintained thoughout the system.

Temperature within the encapsulation vessel was maintained at 25±+2C by manually

adjusting the temperature of the recirculating chiller. As CO 2 was added to the en-

capsulation vessel the pressure steadily rose and the CO 2 mass fraction in the liquid

phase increased, causing a reduction in polymer solubility and encapsulation of the

carbon black particles. An illustration of the encapsulation process in media milling

configuration is pictured in Figure 6-9.
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grinding media

Figure 6-9: Illustration of the high-pressure media milling and encapsulation process.

The pressure within the encapsulation vessel reached 500 psig after approximately

50 minutes of CO 2 addition, and at this point the syringe pump flow rate was increased

to 20 ml/min. When the system pressure reached approximately 700 psig the valve

at the encapsulation vessel outlet was opened and the valve connecting the solvent

recovery vessel to the CO 2 supply was closed, such that the mixture in the encap-

sulation vessel flowed through the high-pressure filter between the two vessels. The

coated particles were retained in the filter, while the CO2-expanded acetone entered

the solvent recovery vessel. As the liquid level reached the top of the solvent recovery

vessel (typically at -850 psig), the syringe pumps and magnetic mixer were both

stopped. This completed the encapsulation stage of the process.

The next step was the separation and recovery of acetone from the system. Imme-

diately after the syringe pumps were stopped, the valve after the particle recovery filter

was closed and the solvent recovery vessel was slowly let down to atmospheric pres-

sure by opening a valve in parallel with the second back pressure regulator. Thus, the
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encapsulation vessel was maintained at high pressure while the acetone was removed

from the bottom of the solvent recovery vessel. After the acetone was recovered, the

solvent recovery vessel was repressurized to a value above 700 psig, the valve after

the particle recovery filter was reopened, and CO 2 was pumped through the system

at the maximum syringe pump flowrate (100 ml/min). Carbon dioxide was fed to the

system until the liquid again reached the top of the solvent recovery vessel. Because

the solvent recovery vessel ('350 ml) was not large enough to accomodate all of the

liquid in the encapsulation vessel, the previous steps were repeated at least eight

times to ensure complete removal of acetone. After the solvent had been flushed from

the system, the pressure was released and the product particles were recovered from

the filter as a dry powder.

Particle encapsulation trials utilizing the HSD impeller were carried out at pig-

ment:dispersant (P:D) ratios of 1.25, 2.5, and 5.0 for the 85/15 BzMA/MAA and

75/25 BzMA/MAA copolymers. Trials operated in media milling mode were con-

ducted using the 80/20 BzMA/MAA copolymer at P:D=2.5 and 5.0. In addition, a

trial employing the HSD was conducted in which 80/20 BzMA/MAA polymer was

neutralized with dimethylaminoethanol (DMAE) before the premix stage.

6.2.3 Product characterization

The product powder obtained from the encapsulation process was redispersed in wa-

ter and characterized with respect to the properties that influence ink jet perfor-

mance. The particles were first added to deionized water and 60-90% of the acid

functional groups neutralized with either potassium hydroxide (KOH) or sodium hy-

droxide (NaOH) to form mixtures containing 7.5 wt% pigment (9-14 wt% total solids).

The mixtures were shaken vigorously by hand in a closed container, and then mixed

overnight via a stirrer or roller to fully incorporate the particles. The resulting disper-

sions were sonicated at 50% amplitude for 5 minutes (2 seconds on, 2 seconds off for

10 minutes) to break up particle agglomerates. Select samples were also redispersed

using the high-pressure media mill operated at ambient pressure (see Section 6.3.1).

The pigment dispersions were evaluated in ink jet inks at DuPont. Additives such
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as pH buffer, de-foaming agent, and viscosity modifiers were added to the initial slurry,

and the resulting inks were jetted in an actual ink jet printhead. The performance

of the inks was evaluated based on "jettability", optical density of the printed ink on

the media, stability with respect to pH, and particle size. The hydrodynamic particle

diameter distribution was determined via dynamic light scattering using a Nanotrac

particle size analyzer.

The particles were also analysed using transmission electron microscopy (TEM).

After dispersing the particles in water as described above, one or two drops of the

aqueous dispersion were contacted with a lacey carbon copper TEM grid (Ted Pella,

Inc., P/N 01881-F) and the water was allowed to evaporate at ambient conditions.

The particles were then characterized using a 200kV Jeol 200CX TEM instrument.

6.3 Results and discussion

Carbon black particles were successfully encapsulated with both hydrophilic and hy-

drophobic polymers, and recovered as a dry, freely flowing powder from the high

pressure filter at the encapsulation vessel outlet. The solids content of the encapsu-

lation vessel (carbon black and polymer) was recovered at yields between 89% and

98%. The residual solids remained in the encapsulation vessel and the tubing con-

necting the vessel to the high-pressure filter; the filter was filled to capacity after

each trial, slightly lowering the recovery of particles for larger solids loadings in the

encapsulation vessel. A summary of the encapsulation trials involving BzMA/MAA

copolymers is listed in Table 6.1.

The acetone initially loaded to the encapsulation vessel was collected from the

solvent recovery vessel at yields between 82% and 89%; the balance of the acetone

exited the process to the building ventilation system as a component of the CO2-rich

vapor phase that was used to flush the system. The filter at the encapsulation vessel

outlet effectively retained the coated particles, and the recovered liquid was essentially

free of solids. The acetone was analyzed for polymer content after each trial via UV

spectroscopy; the total mass of polymer collected in the solvent recovery vessel was
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Table 6.1: Summary of high-pressure encapsulation trials conducted using BzMA/MAA
random copolymers.

BzMA/MAA Size reduction Sample Neutralized
Sample mass ratio method P:D mass % yield before premix?

1 75/25 media milling 5.0 8.5 g - no
2 75/25 HSD 5.0 28.5 g 98% no
3 75/25 HSD 2.5 33.0 g 98% no
4 75/25 HSD 1.25 37.0 g 89% no
5 85/15 HSD 5.0 29.5 g 98% no
6 85/15 HSD 2.5 30.5 g 92% no
7 85/15 HSD 1.25 38.5 g 90% no
8 80/20 HSD 2.5 34.5 g 98% yes
9 80/20 media milling 2.5 30.0 g 92% no
10 80/20 media milling 5.0 25.0 g 90% no

between 0.04 g and 0.2 g (0.9-2% of the total mass of polymer added to the initial

mixtures). In addition, the mass of product powder exceeded the mass of carbon

black added to the encapsulation vessel in all trials. These two facts present strong

evidence that nearly all of the polymer is retained in the filter (and encapsulation

vessel) as a component of the product powder. The next logical question is whether

the polymer is present as a coating on the carbon black particles or as homogeneous

polymer particles. A brief discussion regarding common methods for characterizing

encapsulated particles is presented in the following paragraphs.

Many researchers have utilized electron microscopy techniques to characterize

coatings on micro- or nanoparticles [Hertz et al., 2006, Marre et al., 2008, Wang

et al., 2004]. Standard TEM or scanning electron microscopy (SEM) have been suc-

cessfully employed to confirm the presence of coatings when the layer is significantly

thick to alter the size or appearance of the core particles - for example, by softening

sharp edges or encapsulating entire agglomerates of spherical particles. Elemental

mapping microscopy/spectroscopy techniques such as TEM with electron energy loss

spectroscopy (TEM-EELS) [Wang et al., 2004] and field emission SEM with energy

dispersive X-ray spectroscopy (FESEM-EDX) [Reverchon and Antonacci, 2007] have

been used to characterize thin coatings on nanoparticles; however, these methods are
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ineffective for cases in which the particle surface and the coating material possess

similar atomic compositions, and cannot be used to distinguish between polymers

and carbon black surfaces composed of carbon, oxygen, and hydrogen.

The presence of thin polymer layers has also been confirmed using fluorescence

labeling and analysis with confocal microscopy [Lau and Gleason, 2006], but this tech-

nique is limited to particles that are larger than the wavelength of light. Spectroscopic

techniques such as X-ray photoelectron spectroscopy have been utilized to character-

ize powder coatings [Marre et al., 2008], but the poor spatial resolution precludes its

use for analysis of individual nanoparticles. Methods of characterizing bulk powders

such as Fourier transform infrared (FTIR) spectroscopy and thermogravimetric anal-

ysis (TGA) [Wang et al., 2004] are useful for confirming the presence and quantity of

a coating material, but are not generally able to distinguish between material which

is on particle surfaces and that which is in the form of homogeneous particles in the

absence of chemical bonding.

Based on the foregoing considerations, it was determined that the presence of a

polymer layer on the carbon black particles could best be confirmed by evaluating

their performance in ink jet inks. Inks based on uncoated carbon black exhibits poor

performance in nearly all respects: dispersion stability, printing performance, and

quality of the final image. Any improvement in these areas can be attributed to the

presence of a polymer coating. The particles were also characterized by standard

TEM techniques to qualitatively assess the product particle morphology.

6.3.1 Performance of encapsulated particles in ink jet inks

In one of the first successful demonstrations of the high-pressure encapsulation pro-

cess, carbon black particles were coated with Joncryl@ 611 polymer at P:D=2.9 in

the media milling configuration. The product was redispersed in aqueous solution

according to the method outlined in Section 6.2.3, and then subjected to further dis-

persion in the high-pressure media mill operated at ambient pressure. The pH of the

resulting aqueous dispersion was adjusted to 8.5 before and after the media milling

step. The dispersion was sent to DuPont for testing, and despite a low pigment con-

129



centration (1.7% by mass), the ink exhibited good optical density upon jetting. This

demonstration represented a major milestone for the project for two reasons: it sug-

gested that the polymer was deposited on the particle surfaces instead of precipitating

to form homogeneous polymer particles, and it also validated the feasibility of the

process as a means for employing hydrophobic polymers in aqueous ink formulations.

Although the early trials employing Joncryl® polymers served to confirm the

feasibility of the process, the prospect of milling the product particles twice to obtain

an acceptable particle size is not optimal from an economic standpoint. A major

goal of the thesis work is the production of encapsulated particles that are easily

redispersed in water with minimal agitation. In the case of pigment dispersions,

"minimal agitation" applies to the redispersion procedure outlined in Section 6.2.3.

The product particles listed in Table 6.1 were redispersed in this manner at DuPont

in an attempt to evaluate the ease of redispersion for use in inks. The resulting

dispersions were analyzed using a Nanotrac particle size analyzer to determine the

hydrodynamic particle diameter distribution; a summary of the median diameter

(D50) and the 95th percentile - on a particle number basis - of the particle size

distribution (D95) for each sample is presented in Table 6.2. The results indicate a

trend of decreasing median particle size with increasing P:D ratio, although there is

no clear trend in the D95 particle size values.

In general the measured particle size distributions for all samples were shifted to

slightly higher values than would be desirable for use in commercial ink jet inks, for

which D50 and D95 are approximately 100 nm and 200 nm, respectively. Nonethe-

less, the fact that aqueous dispersions could be obtained with particle sizes in the

nanometer range at particle loadings above 7wt% is strong evidence that the process

successfully encapsulated the carbon black particles, since uncoated carbon black

particles processed in the same manner would quickly flocculate and settle out of

suspension due to interparticle van der Waals forces.

In fact, several of the product sample dispersions were of high enough quality that

they could be tested in actual ink jet inks: samples 1, 2, 6, and 8 from Table 6.2 were

filtered (with a 1.2 pm filter), formulated in an ink at 3wt% pigment, and "jetted"

130



Table 6.2: Summary of particle size measurement results for aqueous dispersions of
BzMA/MAA-encapsulated carbon black product particles. D50 = median par-
ticle size; D95 = 95th percentile (particle number basis) of the particle size
distribution.

BzMA/MAA Size reduction D50 D95
Sample mass ratio method P:D % neutralization (nm) (nm)

1 75/25 media milling 5.0 60 168.9 398.0
2 75/25 HSD 5.0 60 156.8 239.6
3 75/25 HSD 2.5 60 162.2 354.0
4 75/25 HSD 1.25 60 174.8 326.0
5 85/15 HSD 5.0 90 137.6 299.7
6 85/15 HSD 2.5 90 156.4 273.2
7 85/15 HSD 1.25 90 172.8 298.1
8 80/20 HSD 2.5 60 162.4 282.5
9 80/20 media milling 2.5 60 188.3 447.0
10 80/20 media milling 5.0 60 166.9 378.0

in an ink jet print head. All four samples jetted as well as the control dispersion (the

control used for comparison was a standard commercial ink formulation at DuPont

known to jet consistently with average performance). Sample 8 exhibited poor optical

density when printed, but the other three samples performed significantly better than

the control, despite the fact that some of the pigment was lost during the filtration

step due to the relatively large average particle size of the samples. It is important to

note that the samples which exhibited the best performance in inks were produced at

P:D=5.0, since conventional inks produced at this P:D ratio generally exhibit poor

dispersion stability and ink performance. This too is strong evidence to support the

presence of a polymer layer on the processed carbon black particles, and suggests

a high efficiency in depositing the polymer evenly on the particle surfaces. The

results also indicate that using more polymer does not improve the stability of the

final dispersion. It is possible that at lower P:D ratios, some particle aggregates and

agglomerates are held together in a matrix of precipitated polymer.
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6.3.2 TEM analysis

The original goal of TEM analysis was to obtain bright field/dark field image pairs

in order to confirm the presence of a polymer layer on the carbon black particles.

However, this requires a crystalline carbon black in order to distinguish it from the

amorphous polymer coating. The NIPex@ 180 IQ carbon black employed in the

current study is microcrystalline in nature, making this type of analysis difficult.

The method is further complicated by the fact that the polymer layer on the carbon

black particles is expected to be extremely thin (<5 nm).

Thus, the samples produced in the trials listed in Table 6.1 were characterized us-

ing standard bright-field TEM methods in order to qualitatively assess the structure

and morphology of the particles. TEM images of each sample were obtained after

depositing particles on a TEM grid as described in Section 6.2.3. Samples containing

an excess of polymer were also prepared by conducting an encapsulation trial under

mild agitation at P:D 0.2; these samples, along with uncoated carbon black parti-

cles, served as references to which the product particles could be compared. Select

micrographs of the two reference systems are pictured in Figure 6-10, and those of

the products of the encapsulation trials are shown in Figure 6-11.

Particle size estimates determined from the TEM images are not accurate due to

the small sample size, and also due to the possibility of particle agglomeration as

the water droplets evaporate on TEM grid during sample preparation. In general, a

range of particle sizes were observed in each sample, from aggregates on the order of

100 nm across to large agglomerates several microns in diameter. The encapsulated

and uncoated carbon black samples were indistinguishable with regard to particle size

and morphology.

Although polymer-carbon black composites were observed at very low P:D ratios

(-0.2), the presence of a polymer coating could not be unequivocally confirmed at the

P:D ratios of interest to ink jet ink formulations due to the relatively small amounts

of polymer present in these samples; however, it is important to note that neither was

there any indication of homogeneous polymer particles at these higher P:D ratios.
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(a) (b)

(d) (e) (f)

Figure 6-10: Selected TEM images of (a)-(c) uncoated carbon black and (d)-(f) carbon-
polymer composites at a P:D ratio of -0.2.

6.3.3 Process considerations

Encapsulation and the evolution of system pressure

Based on the results of the product characterization in inks as well as the TEM

study, it is reasonable to conclude that the CXL-based process is able to produce

carbon black particles that are coated with polymer. At this point, it is instructive

to analyze the encapsulation process in terms of the phase behavior and adsorption

results described in Chapters 4 and 5. The evolution of temperature and pressure

within the encapsulation vessel over the course of a representative experiment is

plotted in Figure 6-12. The shaded region on the plot indicates the "encapsulation

zone", in which a majority of the polymer is deposited on the particle surfaces. This

particular trial employed 75/25 BzMA/MAA copolymer, which is virtually insoluble
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(a) 85/15 BzMA/MAA, (b) 85/15 BzMA/MAA, (c) 80/20 BzMA/MAA,
P:D=1.25 P:D=1.25 P:D=2.5

It-

100 nm 100 nm 500 nm

(d) 75/25 BzMA/MAA, (e) 80/20 BzMA/MAA, (f) 75/25 BzMA/MAA,
P:D=2.5 P:D=5.0 P:D=5.0

Figure 6-11: Selected TEM images of polymer-encapsulated carbon black.

in CO2-expanded acetone at pressures above 300 psig at 25'C. The results of the

high-pressure adsorption trials also indicate that the polymer loading on the carbon

black particles remains largely unchanged from its value at atmospheric pressure until

the pressure approaches the polymer solubility limit at the given temperature.

Thus, encapsulation is expected to occur in the relatively narrow window of pres-

sures represented in Figure 6-12. However, the adsorption study revealed that there

will be some degree of polymer adsorption even at atmospheric pressure. With the

vigorous mixing conditions and break-up of agglomerates during the pre-mix stage,

it can be assumed that the atmospheric-pressure dispersion has at least closely ap-

proached equilibrium with respect to polymer adsorption. If the assumption of ad-

sorption equilibrium is valid, between 18-66% of the total polymer content would have

been adsorbed on the particle surfaces before the encapsulation process was begun
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for the trials listed in Table 6.1. Despite the fact that some polymer exists on the

particle surface before size reduction operations commence, it is clear from inspection

of Figure 6-12 that modifying the CO 2 addition profile during encapsulation trials

may be beneficial; in particular, pressure should be increased rapidly to -150 psig,

then gradually raised to 300 psig in order to widen the window for encapsulation with

75/25 BzMA/MAA polymers.

30 1000

. 20

-Temperature

000

0 20 40 60 80 100

high-pressure encapsulation trial.

Size reduction efficiency

The design and operation of the agitation system for the high-pressure encapsulation

vessel was guided by the considerations outlined in Sections 6.1.1 and 6.1.1. Nev-

ertheless, the system was subject to some limitations with regard to size reduction

efficiency. Based on Equations 6.2 and 6.3, size reduction via media milling will be

most effective when the tip speed of the agitator is maximized, and typical laboratory-

scale units are operated at tip speeds of 4-20 pres/s. Despite the fact that the magnetic

mixer was chosen to allow the maximum rotational speed, the limiting value of 3400

RPM in conjunction with the fixed inner diameter (3") of the encapsulation vessel

capped the tip speed of the high-pressure media mill at 11 m/s. The tip speed of the
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HSD impeller was similarly limited to 4.5 m/s.

In addition, the vertical orientation of the mill placed constraints on the selection

of grinding media for the media milling operations. Mende et al [2003] have shown the

size reduction to the nanometer range is enhanced via the use of high-density, small-

diameter grinding media. Thus, yttria-stabilized zirconia grinding media (Quacken-

bush, YTZ®) with a density of 6.0 g/ml and bead diameter of 300 pm to 500 pm were

initially chosen for use in media milling trials. After initial testing, it was apparent

that the grinding media were poorly fluidized, largely remaining near the bottom of

the encapsulation vessel during the milling process. In addition, the small media size

resulted in high retention of product particles in the voids between beads, reducing

product recovery yields. The beads were also small enough to pass through the gap

between the mixer shaft and vessel cover, and at one point caused serious damage

to the shaft and mixer. Upon the advice of Tom Weiss at Quackenbush Company,

the YTZ@ media were subsequently replaced with glass grinding beads in order to

increase media fluidization within the encapsulation vessel. A larger bead diameter

(1.2 mm) was chosen in order to improve product recovery, aid in cleaning the vessel,

and prevent damage to the mixer.

Dispersion stabilization in CXLs

The particles produced in the current process are not expected to be stable in scCO 2

or CXL dispersions due to the poor solubility of these polymers in CO 2 (see Chapter

4) and the unsuitability of random copolymers for steric stabilization. Although

researchers have developed surfactants and polymers for steric stabilization of colloids

in scCO 2 [Sirard et al., 2004, Cooper et al., 1997], the polymers employed in the

current study have been chosen based on their expected performance in the final

aqueous inks. This may influence the efficiency of the milling process, since Stenger

et al [2003] have demonstrated that effective stabilization of milled particles results

in a lower energy requirement to reach the desired particle size.

Despite limitations with respect to the efficiency of size reduction, the encapsula-

tion process was successfully implemented to produce carbon black particles coated
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with both hydrophilic and hydrophobic polymers. Further optimization of size re-

duction conditions can be expected to yield product particles with smaller average

diameters for use in high-performance inks.

6.4 Conclusions

A particle encapsulation process combining traditional particle size reduction methods

with a high-pressure CO2-based polymer processing technique has been successfully

demonstrated. Polymer-encapsulated carbon black nanoparticles were produced in

CO 2-expanded acetone and recovered as a dry, freely-flowing powder at yields be-

tween 89% and 98%. Particles were coated with commercially available Joncryl@

polymers as well as BzMA/MAA random copolymers at pigment:dispersant (P:D)

ratios between 1.25 and 5.0. Encapsulation was achieved using both hydrophilic and

hydrophobic polymers, and the resulting powders were redispersed in aqueous so-

lution and employed in ink jet inks. Average hydrodynamic particle diameters of

coated particles redispersed in water via ultrasonication were between 135 nm and

190 nm. Samples produced at P:D=5.0 exhibited the best performance in inks, with

optical densities significantly better than that of a control ink jetted under the same

conditions.

The high-pressure encapsulation process represents a means of depositing a wide

variety of polymers on the surface of pigment particles in the nanometer size range.

This greatly increases the selection of polymeric dispersants that are available for use

in aqueous inks, as the current process requires resins which exhibit a certain degree

of solubility in water. In addition, the ability to deposit hydrophobic polymers with

negligible solubility in water onto the surface of pigment particles for use in aqueous

inks enables the elimination of "free" polymer dissolved in the final ink dispersion,

increasing flexibility with regard to the final ink formulation.

The process under investigation is not limited to the encapsulation of pigment

particles, and is broadly applicable to coating operations in a variety of fields. In

general, the technique can be applied to any system in which the core particles are
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insoluble in both scC0 2 and the given solvent, and in which the coating material is

soluble in the solvent but not in scCO 2. Of course, the solvent choice offers additional

flexibility, and can be selected to optimize the performance of a given system.
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Chapter 7

Conclusions and Recommendations

The main thesis objective - as stated in Chapter 2 - is the demonstration and

analysis of a particle size reduction and encapsulation process which takes place in

CO 2-expanded acetone and produces colloidal carbon black particles. These particles

should be uniformly coated with functionalized hydrophobic resins, such that they are

easily redispersed in water or solvent to form stable nanoparticle dispersions suitable

for use in ink jet inks.

The proposed high-pressure process has been developed and tested, and a two-

part investigation of the interactions between system components has been conducted

in order gain a deeper understanding of the fundamental processes that govern the

process behavior. In the first component of this analysis, the phase behavior of the

polymer-solvent-CO 2 ternary system was probed experimentally and modeled with

the PC-SAFT equation of state; in the second component, the adsorption of poly-

mers from pure solvents and C0 2-expanded acetone onto carbon black particles was

measured and subsequently analyzed using the Langmuir isotherm equation. The

conclusions drawn from these investigations - as well as from the particle encapsula-

tion study - are presented below, and recommendations for future investigations are

given.
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7.1 Phase behavior study

Conclusions

The selection of process conditions for encapsulation is guided by knowledge of the

phase behavior of the polymer-solvent-CO 2 ternary systems which comprise the fluid

phase. Solid-liquid-vapor equilibrium curves for these ternary systems were measured

using an apparatus incorporating the detection of scattered laser light to determine

the onset of polymer precipitation. Measurements were made at various values of the

polymer weight fraction at three fixed temperatures; the equilibrium data gathered

were then correlated using the PC-SAFT equation of state.

Precipitation of BzMA/MAA copolymers generally required a larger overall CO 2

mole fraction - and thus a higher system pressure - for more dilute polymer solu-

tions; however, a minimum in the precipitation pressure was observed for all polymer

compositions and temperatures near a CO2-free polymer mass fraction of 0.03. The

ternary systems were characterized by a rapid reduction in polymer solubility over

a relatively narrow range of pressure (between 200 psig and 400 psig, depending

on the polymer and system temperature); the precipitation pressure increased with

increasing temperature and BzMA mass fraction (per polymer mass unit).

The PC-SAFT EOS was successfully employed to correlate the phase behavior

data by adjusting only two binary interaction parameters. Both qualitative and quan-

titative agreement between the experimental and calculated values of the precipitation

pressure was achieved. The average relative error associated with the predictions of

precipitation pressure for each polymer was 3.7% over the range of temperature and

composition explored in the experimental study, demonstrating that accurate cor-

relations of phase behavior data over a wide range of conditions relevant to GAS

processing can be obtained with a relatively small amount of data.

The information obtained from the phase behavior study is directly applicable to

the optimization of the GAS-based particle encapsulation process. The experimentally-

determined solubility limits effectively define the upper boundaries of the operating

pressures required in the coating procedure to completely remove the polymer from
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solution and deposit it onto the particle surfaces.

Recommendations

The experimental apparatus developed for the current phase behavior investigation

was well-suited for the collection of phase behavior data relevant to the GAS-based

particle encapsulation process under investigation. Nevertheless, several modifica-

tions could be made in order to improve the speed and accuracy of data collection.

The rate of data collection could be increased most dramatically by enabling ac-

curate addition of polymer solutions and/or pure solvent during the course of a phase

behavior experiment. This would allow a series of isothermal experiments to be con-

ducted rapidly without depressurization of the system: after polymer precipitation

occurs, additional solvent could be added to the system until the solid phase disap-

pears. A solvent delivery system was implemented for this purpose, with an HPLC

pump providing solvent to the system and an electronic balance in place to measure

the mass of solvent added. However, the relatively small size of the view cell made

it difficult to add an appropriate amount of solvent between precipitation events,

and limited the number of times that solvent could be added before the liquid level

reached the top of the vessel. If such a system is to be implemented in future studies,

a larger view cell and/or a mass flow meter for accurate addition of solvent should be

employed to maintain the accuracy of the measurements.

The addition of a coriolis-type mass flow meter in the CO 2 delivery system would

allow a more accurate determination of the amount of CO 2 added to the view cell.

This value is currently calculated based on the initial and final conditions within

the syringe pump using an accurate equation of state for CO 2; however, the syringe

pump specifications note that a slow leak at the pump seals is unavoidable. During

a representative phase behavior trial, the leak rate was found to be 0.1-0.3 ml/min

(0.005-0.02 g/min).

The limits of the laser light scattering device for the detection of precipitated

polymer in dilute systems were not reached during the phase behavior trials; however,

if the system was to be used for extremely dilute solutions, the sensitivity of the
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detection system could be improved by lengthening the path of the laser light through

the liquid phase (e.g., by using a longer view cell) or by using a more powerful

laser. Fractionation of the BzMA/MAA polymers to reduce the polydispersity of

the samples would allow more accurate determination of precipitation pressure, and

would also potentially facilitate correlation of the data with the PC-SAFT EOS.

At the opposite end of the composition range, more concentrated systems could be

investigated by employing stronger agitation within the precipitation vessel. A CSTR-

type vessel equipped with a magnetically coupled mixer and windows for visual access

would be appropriate for this purpose.

With regard to the correlation of experimental data using the PC-SAFT EOS, an

investigation of the phase behavior of pure poly(BzMA) polymer in CO2-expanded

acetone would enable regression of more accurate pure-component parameters (pa-

rameters were calculated using a group contributions method in the current study).

Beyond adjustments to the pure component and binary interaction parameters, an-

other possible route to improving the correlations is via the introduction of additional

perturbation terms to the PC-SAFT EOS. The implementation of the association

term &iassoc - neglected for the current study - would enable more accurate modeling of

the associations among and between acetone molecules and MAA polymer segments,

and the incorporation of a term proposed by Karakatsani and Economou [2006] would

take into account the quadrupolar interactions exhibited by CO 2 molecules. The in-

corporation of these terms also introduces additional adjustable binary interaction

parameters.

7.2 Investigation of polymer adsorption onto car-

bon black from CXLs

Conclusions

The conventional process to produce inks is governed by the adsorption equilibrium of

the dispersing resin on the surface of the pigment particles. The high-pressure process
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under investigation can also be analyzed in terms of the adsorption equilibrium condi-

tions; however, pressure is introduced as an additional parameter. An apparatus was

designed and constructed for the experimental investigation of CO 2-solvent-polymer-

particle interactions via high-pressure adsorption isotherms, and isotherm data was

gathered for 75/25 BzMA/MAA and 85/15 BzMA/MAA polymers. The atmospheric-

pressure adsorption behavior of the BzMA/MAA and Joncryl® polymers was also

investigated, and all data were correlated with the Langmuir equation.

Adsorption from several common organic solvents was low for both the Joncryl@

polymers and BzMA/MAA copolymers, particularly when compared to the adsorp-

tion of Joncryl® 678 from water. Atmospheric-pressure isotherms offer insight into

the relative strength of polymer-solvent, polymer-particle, and solvent-particle inter-

actions present in the systems currently under investigation; these data indicate that

polymer-particle interactions are not strong enough to promote adequate polymer

adsorption, highlighting the potential benefits of a GAS-based process in tuning the

liquid-phase solvation power.

Adsorption of 85/15 and 75/25 BzMA/MAA polymers onto carbon black from

CO 2-expanded acetone was measured at 35°C and pressures between 0 psig and 300

psig. Pressurization with CO 2 to pressures up to 200 psig caused a decrease in the

amount of polymer adsorbed on particle surfaces, but further increases in pressure

resulted in higher polymer loadings. In the case of 75/25 BzMA/MAA polymer, the

polymer loading increased significantly between 200 psig and 300 psig as the solubility

limit was approached or exceeded. This behavior indicates that there is some degree

of competitive adsorption of CO 2 onto the carbon black surfaces.

Whereas the phase behavior study yielded upper limits for system pressures during

particle encapsulation, the adsorption data offer insight into the minimum pressures

required to cause the polymers of interest to be deposited on carbon black particle

surfaces. Specifically, the data indicate that most of the polymer adsorbs over a

relatively narrow range of pressure: coating will only begin to occur at pressures above

200 psig for systems containing 75/25 BzMA/MAA polymer at 35 0C, and pressures

above 300 psig are required when using 85/15 BzMA/MAA. Nearly all polymer will
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be present on the particle surfaces as the system pressure exceeds 400-500 psig.

The results of the adsorption study serve to underscore the importance of choos-

ing a "neutral" solvent that exhibits no strong interactions with either the polymer

molecules or the particle surfaces. Such interactions tend to inhibit adsorption of

the polymer by either enhancing the solubility of the polymer in the liquid phase

- in the case of polymer-solvent interactions - or by displacing polymer molecules

at the particle surface via competitive adsorption - in the case of particle-solvent

interactions.

Recommendations

The separation and removal of particle-free supernatant samples from the adsorption

apparatus at elevated pressures presented a challenging experimental task. Although

useful information was obtained using the existing apparatus, several strategies to

improve the accuracy and precision of the measurements should be implemented if

further investigations are to be undertaken.

Sufficient recirculation of the particle-free supernatant is critical in order to achieve

reproducible results. Improvements to the adsorption apparatus should be focused

on ensuring temperature uniformity within the system and improving recirculation

through the sample loop. Temperature control of the adsorption apparatus could

be improved by placing the entire system in an air bath or oven. If temperature

uniformity can be ensured, a larger vessel with strong agitation would be preferable

to the sight gauge used in the current study; a possible alternative would be a CSTR-

type vessel equipped with a magnetically coupled mixer and sapphire windows for

visual access. A larger vessel of this type would minimize the effect of removing a 2

ml sample from the system, and allow the use of a larger filter (in terms of surface

area) before the HPLC switching valve. The 40 pm filter used in the adsorption trials

was chosen to maximize the recirculation rate of the supernatant while protecting

the gear pump and HPLC from large carbon black agglomerates, but allowed smaller

carbon black aggregates to enter the sample loop. By employing a larger filter with

a smaller pore size, the recirculation rate could be maintained while excluding most
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of the carbon black from the sample loop.

If the accuracy of the adsorption measurements were to be improved, the appa-

ratus could be used to collect more data in the vicinity of the polymer solubility

limit in order to determine whether encapsulation is more accurately described in

terms of adsorption or precipitation. In either case, the pressure dependence of the

empirical constants K and nm in the Langmuir Equation can be determined via the

collection of adsorption isotherm data over a range of mixture compositions; the

pressure-dependent Langmuir isotherm could then be combined with the PC-SAFT

EOS correlations based on fluid phase behavior data to model the equilibrium state

of high-pressure systems.

The collection of atmospheric pressure adsorption data at 35'C would provide

useful insight regarding the effect of temperature on the adsorption of BzMA/MAA

polymers onto carbon black. An estimate of the enthalpy of adsorption of the polymer

segments could then be calculated from Equation 5.1. A more meaningful estimate

of the enthalpy of adsorption could be obtained by collecting adsorption data at 25'C

and 35°C for small-molecule probes representing the BzMA and MAA functional

groups. Acetic acid benzyl ester and propionic acid could be used as probes for

BzMA and MAA segments, respectively. Micro-flow calorimetry studies have been

previously employed in the literature to investigate the strength of adsorbate-particle

interactions [Fowkes et al., 1989]; however, the use of carbon black in such studies

would be difficult due to its small particle size and tendency to form tightly-packed

structures with a small void fraction.

By extending the study to other solvents, the model system could be optimized

to enhance the adsorption of polymer at atmospheric pressure. The desired solvent

would exhibit relatively weak solvating power with respect to the polymer, and would

not possess any strong interactions with the polymer anchor groups or with the parti-

cle surfaces adsorption sites. The introduction of a second organic solvent would allow

further tunability in the system, and possibly enable the encapsulation of particles at

a significantly reduced pressure upon the addition of CO 2.
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7.3 Particle size reduction and encapsulation in

CXLs

Conclusions

A prototype high-pressure process was designed, constructed, and demonstrated for

both size reduction and polymer encapsulation of pigment particles in gas-expanded

solvent media. The process is based on the Gas-Antisolvent (GAS) process for sol-

vent power reduction, and incorporates high-pressure milling techniques developed at

DuPont. The results of the supporting tasks described above informed the selection

of process operating conditions; the resulting product powders were characterized via

TEM, and were also submitted to DuPont for evaluation in actual inks.

The GAS-based process was successfully employed to produce polymer-enapsulated

carbon black nanoparticles which were recovered as a dry, freely-frowing powder at

yields between 89% and 98%. Particles were coated with commercially available

Joncryl@ polymers as well as BzMA/MAA random copolymers at pigment:dispersant

(P:D) ratios between 1.25 and 5.0. Encapsulation was achieved using both hydrophilic

and hydrophobic polymers, and the resulting powders were redispersed in aqueous

solution and employed in ink jet inks. Average hydrodynamic particle diameters of

coated particles redispersed in water via ultrasonication were between 135 nm and

190 nm.

The high-pressure encapsulation process represents a means of depositing a wide

variety of polymers on the surface of pigment particles in the nanometer size range.

This greatly increases the selection of polymeric dispersants that are available for use

in aqueous inks, as the current process requires resins which exhibit a certain degree

of solubility in water. In addition, the ability to deposit hydrophobic polymers with

negligible solubility in water onto the surface of pigment particles for use in aqueous

inks enables the elimination of "free" polymer dissolved in the final ink dispersion,

increasing flexibility with regard to the final ink formulation.
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Recommendations: Particle size reduction apparatus

The prototype apparatus was able to produce encapsulated carbon black particles

which were easily redispersed in water as aggregates in the nanometer size range.

While this represents an important demonstration of the feasibility of the high-

pressure process for simultaneous size reduction and particle encapsulation, the final

hydrodynamic particle size in water was slightly higher than that of most commercial

ink jet inks. Research efforts in the current thesis were largely focused on the phenom-

ena that affect the encapsulation of carbon black particles; any further investigations

should include attempts to optimize the size reduction process.

Optimization of the carbon black size reduction operations should begin with a

redesign of the apparatus for high-pressure media milling. A shorter, wider vessel

would allow a higher tip speed at the maximum RPM of the magnetic mixer, and

also require a shorter agitator that would be more amenable to dynamic balancing.

The agitator used in the current study was difficult to balance due to its length, and

also due to the fact that the threaded connection at the end of mixer shaft did not

provide a completely reproducible coupling. A mixer shaft that extends farther into

the vessel would facilitate balancing of agitator attachments and extend bearing life;

in this configuration, the shaft could be passed through the length of the impeller to

achieved a firm, reproducible connection. Mounting the milling vessel cover and motor

on a fixed frame securely bolted to the floor would also reduce system vibrations and

extend bearing life.

If possible, the milling vessel should be mounted in a horizontal configuration

to allow the use of smaller, high-density grinding media such as yttrium-stabilized

zirconia (these beads were poorly fluidized within the existing vertical milling vessel).

Based on the conclusions of Mende et al [2003], this would enhance the size reduction

of carbon black particles to the nanometer range. If finer media are to be used, the

opening in the vessel cover should be machined such that the gap between the cover

and the rotating shaft is less than approximately half the diameter of the smallest

media.
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The incorporation of an external recirculation loop would greatly enhance mixing

within the milling vessel, and promote a more uniform distribution of stress events

among the pigment particles. A recirculation loop would also allow for larger batch

sizes with the existing apparatus. A high-pressure gear pump would be appropri-

ate for this application, provided that the dimensions within the pump are large

in comparison to the carbon black agglomerates present in the system. The gear

pump employed in the adsorption study was tested in a recirculation loop for the cur-

rent encapsulation system; however, the carbon black agglomerates quickly formed a

blockage within the gear pump head, even when filters were placed in the recirculation

loop immediately upstream from the pump.

If a recirculation loop can be successfully implemented in the milling apparatus,

it may be possible to monitor the milling progress in real time via ultrasonic spec-

troscopy [Dukhin and Goetz, 2001]. This is one of the few techniques by which the

particle size distribution of concentrated dispersions at high pressure could be directly

measured. A sample loop would allow the removal of high-pressure samples during

the course of an encapsulation trial, but the recovery of samples which are repre-

sentative of the state of the particles within the system would present a challenging

task.

Recommendations: Particle size reduction process considerations

The effectiveness of size reduction operations also depends on the rheological proper-

ties of the suspension as well as the stabilization of the particles against re-agglomeration.

The stabilization of BzMA/MAA polymer-coated particles in gas-expanded acetone

is relatively poor, due to the low dielectric constant of the medium and the lack of

steric repulsive forces. A solvent with a higher dielectric constant (e.g., methanol)

may provide some elecrostatic stabilization if the polymers were neutralized before

the encapsulation process. Another possibility for improving dispersion stability dur-

ing the size reduction process is the use of "ambidextrous" polymers that are capable

of dispersing particles in both CXLs and water, such as those developed by Yates et

al [1999]. However, the use of these polymers would significantly reduce flexibility
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in the selection of dispersant polymers, which represents an important benefit of the

high-pressure process.

The viscosity of the particle dispersions should be investigated more thoroughly

in order to optimize size reduction operations. In general, the viscosity of the disper-

sions should be high in the initial stages of the milling process; however, the viscosity

of particle suspensions increases rapidly after a certain solids volume fraction is ex-

ceeded, to the point that the mixture behaves as a solid under shear conditions. To

avoid this viscosity regime, pigment content of the dispersions in the pre-mix step

of the current study was held relatively constant at approximately 8wt%. A system-

atic exploration of the viscosity of these systems over a range of compositions would

enable the use of more concentrated dispersions in encapsulation trials. In addition

to facilitating the break-up of particle agglomerates during the pre-mix and initial

milling phase, more concentrated pigment dispersions would allow the production of

more product particles within the same encapsulation apparatus.

Another potential means of improving particle size reduction efficiency is via opti-

mization of the CO 2 addition profile during the encapsulation process. In the current

study, CO 2 was added to the encapsulation vessel at a constant mass flow rate; how-

ever, it is apparent from the results of the adsorption study that much of the polymer

adsorption occurs over a relatively narrow pressure range, indicating that a gradual

increase in pressure from atmospheric to some value near the vapor pressure of CO 2

may not be the most favorable for producing an even polymer coating. It may be ad-

vantageous to quickly increase the pressure to a value at which adsorption is thought

to increase - based on adsorption experiments - and then either hold the pressure

constant or increase it very slowly over the encapsulation "window" during milling

operations.

Recommendations: Product characterization

The product particles produced using the high-pressure encapsulation process were

mainly characterized based on their performance in aqueous dispersions. While this

method of evaluation is appropriate for the pigment particles targeted for use in ink
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dispersions, it may be desirable to conduct a direct characterization of the polymer

layer surrounding the particles. Although the polymer layer was not detected using

TEM at the P:D ratios employed during the current investigation, it may be infor-

mative to carry out encapsulation trials at a series of lower P:D ratios in order to

determine when the polymer is first observed in TEM micrographs. In a parallel

study, GAS precipitation trials could be carried out in particle-free acetone solutions

to form pure polymer particles - these could then be characterized using TEM and

compared to previous images in order to search for signs of polymer particles among

the carbon black aggregates.

In the event that the use of TEM was not able to provide satisfactory confirmation

of a polymer coating, other particles could be used as a model that may be more easily

analyzed. Several examples of possible model particles are titanium dioxide (TiO2),

polymer latexes, and silica. In particular, silica particles such as Evonik's Aerosil

are similar in size and structure to carbon black, and have more uniform surface

chemistry. As an example of the potential advantages of using such a model system,

Wang et al [2004] have coated silica nanoparticles with polymer and successfully

confirmed the presence of a polymer layer on the particle surfaces using TEM-EELS.

Energy-dispersive X-ray spectroscopy (EDXS) in conjunction with SEM analysis is

another possible technique to detect polymer layers on silica particles.

Recommendations: Overall process design and applications

By carrying out the investigations outlined in the previous sections, a reduction in

the final particle size of encapsulated carbon black particles in aqueous dispersions

should be possible. However, due to the poor stabilization of the encapsulated particle

dispersions in CXLs, it may not be possible to achieve the desired particle size without

significant energy input to the aqueous dispersions. If this is the case, the high-

pressure process could be investigated strictly as an encapsulation method that could

be used in place of the current pre-mix step. By choosing the solvent and operating

temperature carefully, modest pressures could be used to induce polymer adsorption

under HSD-type agitation, and the product could then be milled in a conventional
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media mill.

Regardless of the method of size reduction employed in the encapsulation process,

spray-drying techniques could be investigated for particle recovery instead of filtra-

tion. Such a configuration would be more amenable to continuous operation, and the

reduction of system pressure across an orifice could also aid in agglomerate break-up

by rapidly expanding CO 2 within the tertiary structure of carbon black.

If the recommendations described above were to be implemented, it is reasonable

to expect that the proposed high-pressure milling and encapsulation process could be

optimized to produce uniformly coated particles suitable for ink jet applications. The

current thesis work also serves as a foundation upon which further investigations of

other model systems may be based; a framework has been developed for analysis of the

interactions between the CO2, solvent, coating material, and particle surfaces which

is broadly applicable to high-pressure coating operations for a variety of applications.

By selecting an appropriate solvent - or solvent mixture - it is possible in principle

to encapsulate nearly any solid material with a wide range of organic or polymeric

molecules, as long as neither the particle nor the coating material exhibits significant

solubility in high-pressure CO 2.
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