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ABSTRACT

The properties of spherical grids are reviewed and compared with

one another. A quasi-homogeneous spherical geodesic grid is introduced

to eliminate many of the undesirable features of other grids. The

spherical geodesic grid is first compared with the other grids for

integrating the nondivergent barotropic vorticity equation. Initial

conditions are used for which an analytic solution exists. The spher-

ical geodesic grid produces the best solution. The only observable

error in the contoured output is a small phase error.

Methods of developing difference approximations for the primitive

barotropic modcl over triangular grids are first considered in cartesian

geometry. Comparative integrations show that the six-point differences

assoctated with triangular grids produce better solutions than square

differences with similar resolution and the same order of triin-ation

error.

Conservative difference schemes are introduced for the primitive

barotropic model over the spherical geodesic grid. The small variation

in the grid interval means that conservative schemes which are second

order over regular grids are first order over the spherical geodesic

grid. This truncation error can be made insignif-icant by taking a fine

enough mesh. Comparative integrations indicate that the spherical geo-

desic grid produces results that are at least as good as those produced

by the schemes currently being used for numerical weather prediction.

Thesis Supervisor: Edward N. Lorenz

Title Profesbor of Meteorology
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CHAPTER I

INTRODUCTION

The advent of today's large fast computers has made it practical

to experiment with atmospheric models defined over the entire sphere.

A spherical domain eliminates the need for artificial side boundaries

which introduce spurious results into the regions near them and also

makes it possible for general circulation models to study the inter-

actions between the tropics and mid-latitudes as well as between

hemispheres.

There are two main methods used today to model the atmosphere

over a sphere: expansion into spherical harmonics and discrete approx-

imations over grid points. In the first method, or spectral method,

all the variables of the governing equations are represented by a

series of spherical harmonics. The pr'egnostic equations then become

prognostic equations for the amplitude of each spherical harmonic and

the evolution of these amplitudes is calculated in time. In the grid

point method the variables of the governing equations are replaced by

a discrete set of variables defined at a set of grid points over the

sphere. The continuous differential operators of the governing equa-

tions are replaced by discrete operators defined over the grid points.

The evolution of the discrete variables is then calculated in time.

The first spectral integration was carried out by Baer (1964)

for the vorticity equation. Ellsaesser (195G) p- rformed comparison
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integrations between the grid point and spectral methods for a slightly

more general model. He concluded that for these simple models the

spectral method produces better results than the grid point method.

However, for models based on the complete meteorological equations

the desirability of the spectral method becomes questionable. Robert

(1966) performed a successful integration of the complete equations;

however, not all the physical processes occurring in the atmosphere

were included.

Satisfactory methods of handling phenomena such as precipitation

have not been developed for spectral models. Robert (1968) is current-

ly studying them. This lack of such methods plus the large number of

interaction coefficients necessitated by the desirability of fine reso-

lution have led almost all experimenters modeling the general circula-

tion to use grid point methods. For this reason, the remainder of this

report will deal with grid point methods.

Fundamental problems which naturally arise with grid point methods

are the definition of the grid points themselves and the development of

discrete approximations to be applied at these grid points. Various

grid systems over a sphere and accompanying difference schemes have been

suggested in the last decade and tried with varying degrees of success.

As will be seen in the next chapter, these schemes all have some undesir-

able property. One property which few of these schemes possess yet which

seems desirable is homogeneity. A new quasi-homogeneous grid is also

introduced 4in the next chapter. In the following chapters difference

approximations are developed for atmospheric models and evaluation ex-

periments are compared with experiments using other schemes.
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CHAPTER II

SPHERICAL GRIDS

The nets of points suggeoted to date for use with discrete approx-

imations fall into three main categories: nets based on conformal map

coordinates, nets based on spherical coordinates, and quasi-homogeneous

nets independent of the coordinate systems. We consider each category

in turn.

2.1 Conformal coordinates

In order to use mappings for numerical studies, the do main of

interest, in our case the sphere, is projected onto a section of a

plane. A net of points is then defined on the projection. This net

can be considered as the projection of a net of points originally on

the sphere. Following Kurihara (1965b) we refer to these points on the

sphere as the original grid.

Conformal mappings are used in metacrology in order to preserve

the general form of the hydrodynamical equations when written in terms

of the map coordinates. The difficulties of using conformal mappings

for spherical studies arise from the impossibility of mapping the entire

sphere conformally onto a finite section of a plane.

The use of a uniform grid on a Mercator projection is clearly

unsatisfactory for spherical integrations. With such a grid, the

original grid interval becomes infinitely small at high latitudes and

the pole, at infinity, cannot be reached. Kuo and Nordo (1959) have
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used a grid, similar to the one proposed by Richardson (1922), with

square meshes of variable size on a Mercator map. Their grid increment

was doubled at 60 and again at two higher latitudes. The pole was

represented by an extra row of six points which were close but not at

the infinite pole. Kuo and Nordo integrated the quasi-nondivergent

model developed by Kuo (1956) over one hemisphere using Green's method.

Initial conditions were for mean zonal flow with a somewhat random dis-

turbance superimposed. The integration was carried out for six days

using a l} hour time step. It was not possible to continue the compu-

tations for a longer period because a computational instability

developed after the fifth day. This instability was apparently connected

with the change in grid size at 600. The instability plus the inability

to properly handle polar phenomena make this type of grid unsuitable

for spherical integrations.

Smagorinsky, Manabe, and Holloway (1965) have integrated the

primitive equations over one hemisphere using a uniform mesh on a

stereographic projection. Such a grid is not homogeneous over the

hemisphere. The original grid increment varies by a factor of two from

pole to equator. It seems possible to integrate over an entire sphere

using two such grids, one for each hemispherical projection. A square

mesh on one projection has some points which lie outside the equator

on that projection and which have a corresponding position inside the

equator of the other projection. Such points do not in general corre-

spond to grid points of the other projection and some sort of intevpo-

lation scheme is needed to provide values of the variables at these
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points. If energy conservative schemes are desired they are very

difficult to formulate using these interpolated values. Also, as will

be seen in the next paragraph, great care must be taken in the inter-

polation formulation to eliminate spurious small scale features from

appearing in the integrations.

In order to obtain a more homogeneous grid, Phillips (1957)

proposed using a stereographic map for high latitudes and a Mercator

map for low latitudes, connected at middle latitudes by overlapping

grids. With this system, the original grid interval changes by only

a factor of 1.4. Phillips (1959) performed a numerical test to check

the stability of his system since the scheme was too complicAted to

examine theoretically. He integrated the primitive equations for a

barotropic atmosphere for a period of two days using Eliassen type

finite-differencing. The initial conditions were defined to be a

Haurwitz wave of wave number four. Haurwitz (1940) has shown that in

a non-divergent barotropic atmosphere, such a wave will move from wiest

to east without change of shape with a known constant angular velocity

equal to 130 per day for the initial conditions chosen by Phillips.

Because of divergence due to the free surface in Phillips' model, the

rate of progression of his flow pattern should be less than that given

by Haurwitz.

The wave in the numerical experiment moved about 9 per day, ifi

rough agreemenL wiLh whaL was expecLed. The fields remained quite

smooth. The isolines agreed well with one another where the two maps

overlapped except for two small areas. Two small temporary "wiggles"
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appeared during the course of the integrat-ions. They appeared only near

the top boundary of the Mercator grid, the stereographic grid values

being quite smooth at all times. Phillips concluded that the "wiggles"

were some peculiar type of truncation error.

A further study by Phillips (1962) suggested that these trunca-

tion errors can be eliminated by changing the finite difference formula-

tion. After reformulating the differences he repeated the same baro-

tropic forecast as in the first test. The new system did avoid the

peculiar truncation errors near the boundaries. This forecast was

continued to three days. The tields were perfectly smooth and resembled

the initial data very closely. Phillips1 later carried out a 12 day

integration with no trouble.

Even though with careful formulation, difference schemes work

over this grid, the basic idea of interpolating between two grids at

mid-latitudes where much is happening does not appeal to most investi-

gators. Also, the problem of formulating energy conservative schemes

is very difficalt and has not been treated successfully to date.

Because of these difficulties caused by the impossibility of conformally

mapping the entire sphere onto a finite section of the plane, investi-

gators turned to grids based on the sphere itself and to polar spherical

coordinates.

1 Private communication
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2.2 Spherical coordinates

The immediately obvious grid of this class is one with grid

points at intersections of equally spaced latitude and longitude lines.

In this case, as the pole is approached, the meridians converge and

the linear distance between grid points in the longitudinal direction

approaches zero. This convergence places a severe restriction on the

maximum allowable time increment through linear stability conditions.

Such a grid is also far from homogeneous.

Most grids in this class have been designed to avoid the small

time step required by the convergence of grid points in the polar areas.

The atmospheric general circulation models that are presently being

integrated over the entire earth all use grids of this kind.

Gates and Riegel (1962) designed a grid, similar to that proposed

by Pfeffer (1960), to avoid the small time step. In their grid, the

latitudinal increment was fixed while the longitudinal increment increased

by multiples at higher latitudes. The increment was first ircreased at

45 0, then again at 700 75 , 80 , and 85 .

As a first test of their grid system, Gates and Riegel integrated

a non-divergent barotropic model for a period of several days. Initial

conditions were for a wave that should move with an angular velocity of

20 per day without change of shape. Since the analytic solution for

their model is known, numerical errors can be determined exactly. After

a ten day period of integration, their solation had a pronounced distor-

tion in the form of a backward tilt. This tilt first appeared near the

latitude where the longitudinal increment was first doubled. Thus the
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phase truncation error is a function of the longitudinal grid increment

and increases where the grid interval increases.

This artificial tilt in the wave structure being modeled produces

erroneous momentum transports which in turn produce a wrong distribution

of the easterlies and westerlies in the solution. Thus general circula-

tion models with this type of error produce statistics inconsistent with

the original continuous model. This would be a serious flaw in general

circulation model approximations.

In an effort to reduce this wave distortion in middle latitudes,

Gates and Riegel (1963a) changed the grid so that the longitudinal in-

crement first doubled at 750, The numerical test was repeated. The

distortion at mid latitudes was eliminated, but the effect of the incre-

ment increase at higher latitudes was not considered, there being little

happening there.

As additional tests, Gates and Riegel (1963b) integrated the

barotropic model, the two-level quasi-geostrophic model, and the two-

layer balanced model of variable static stability. The equations were

all formulated in terms of a streamfunction for the non-divergent part

of the wind and a potential function for the irrotational part. Initial

conditions were atmospheric data for OOGCT, 7 December 1957. No diffi-

culties due to the doubling of the grid increment were reported.

A disadvantage of this grid, in addition to the differential

phase truncation error, is that the time increment is still limited

by the convergence of the longitudinal grid increment up to 70 where

the linear grid interval is less than half its value at the equator.
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Kurihara (1965b) has defined a grid in which the longitudinal

grid increment changes more gradually with increasing latitude. In

fact the linear grid increment actually increases with increasing

latitude. Kurihara defines N+l equally spaced latitude circles from

the pole to the equator. He places 4N grid points around the equator.

At each successively higher latitude the number of grid points is

decreased by four, resulting in four points next to the pole and one

point at the pole.

Kurihara (1965b)carried out successful test computations using

a barotropic primitive equation model. However his scheme was quite

complicated, involving a number of interpolations. In a later paper

(Kurihara aid Holloway, 1967), he avoided these complications by using

difference equations formulated by means of the so-called box method.

Integrations with a nine-level model produced seemingly satisfactory

results. These results, however, are not useful for comparison with

other schemes because of the complexity of the continuous model.

Gary (1968) performed rather extensive comparisons between

difference schemes which have been used for general circulation models

over Kurihara's grid and over Gates and Riegel's grid. These integra-

tions will be considered in more detail in later sections for compari-

sons of our schemes with those currently being used for numerical

experiments. It suffices to state here that he found Kurihara's

"uniform" grid less satisfactory than the Gates and Riegel type.
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Grimmer and Shaw (1967) attempted to eliminate the differential

phase truncation error by using a variable time step. In their

scheme, the longitudinal grid increment remains constant and the time

step is decreased with increasing latitude to maintain linear stab-

ility. Because of the variable time step, at any point in the inte-

gration, the time-levels reached by the various rows are different.

Linear interpolation in time is used to provide values at the same

time level for the application of the difference operators. This

interpolation provides a certain amount of smoothing.

With test integrations using Phillips' (1959) initial conditions,

Grimmer and Shaw found that their schemes worked quite well. However,

they also conclude that their system is not ideal. The resolution near

the pole is excessive and synoptic developments there do not warrant

such detail. A large fraction of the computer time is used computing

in high latitudes. In one experiment more thai half the computer tiMe

was spent integrating the two northermost rows, which represent only

about two percent of the area of the sphere.

As is seen above, all the grids and accompanying difference

approximations that have been developed to date have some undesirable

property. In an attempt to eliminate these undesirable properties we

introduce a quasi-homogeneous grid and accompanying discrete approx-

imations for models of the type used for general circulation studies.
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2.3 Spherical geodesic grid

Many people have noted the similarity between a sphere and

Buckminster Fuller's Geodesid Domes, constructed from plane triangles

(see Mc Hale, 1962, for a collection of photographs of such domes).

This close similarity leads one to believe a spherical grid can be

defined in a similar fashion. A similar devision of the globe was

used for geomagnetic studies by Vestine et al. (1963). The name

spherical geodesic grid follows from defining the grid as a collection

of geodesics, or arcs of great circles.

This type of grid has several inherent advantages. Since the

grid is quasi-homogeneous the maximum allowable time step is not

limited by the closeness of grid points in one small region of the

domain of interest. The grid does not have points lined up on lat-

itude circles. This feature might be desirable for statistical studies

as points lined up on latitude circles might lead to spurious results

in zonally averaged quantities. The grid also has the advantage of not

being based on the coordinate system used. This means that parallel

integrations can be performed with several orientations of the grid

points. If the results agree with one another, it can be assumed the

grid did not cause a systematic error. In the following we give a

review of the grid as formulated in Williamson (1968).

The spherical geodesic grid consists of a number of almost, but

not quite, equal-area, equilateral spherical triangles covering the

entire sphere. There are many methods of defining such a grid. Basic
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to those considered here is an icosahedron, the geometric solid with

20 equilateral-triangular faces, constructed inside a sphere with its

twelve vertices on the sphere. We denote the 20 triangles of the

icosahedron as major triangles. The vertices of the major triangles

can be connected by great circles to form 20 congruent major spherical

triangles covering the sphere (Fig. 2.1). These major spherical tri-

angles are then subdivided into smaller grid triangles.

One possible grid is defined by dividing the major triangles

into smaller congruent triangles and projecting these onto the sphere.

Let each side of a major triangle be divided into n equal segments,

where n = 2m for some integer m gl,. Perpendicular lines are constructed

from the division points to the opposite sides, as in Fig. 2.2. Each

major triangle then contains 3n(n-2)/4 complete congruent equilateral

plane triangles, with n half triangles along each edge. The vertices

of these smaller triangles are projected onto the surface of the sphere

by a ray from its center and connected by great circles to form the

spherical grid triangles.

A second possible grid, the one used for the integrations pre-

sented here, is defined as follows. Examination of an icosahedron

shows that it can be separated into five sets of four triangles. For

convenience we place the end vertices of each set at the north and

south poleF as in Fig. 2.3. (This restriction is easily removed.)

With this orientation, the north and south poles are common to all

five sets of four triangles.
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The sides of the major spherical triangles are now divided into

n equal arcs (again n = 2m). In this case, three sets of great circles

do not always intersect at one point as straight lines do in the plane

case. Hence the two sets shown as solid lines in Fig. 2.3 are used to

define the grid points in ACD. These points are projected across AC

to define the points in ACE. The points in the other two triangles

of the set are defined in the same manner using the south pole for

reference instead of the north. The grid triangles are formed by

connecting the points with great circles (solid and broken lines in

Fig. 2.3). Note that again the sides of the major spherical triangles

do not coincide with sides of the grid triangles. The latitudes and

longitudes f the grid points can be found in a straightforward manner

by applying standard formulas of spherical trigonometry. The details

are given in Appendix 1 of Williamson (1968). Once the positions of

the grid points are found for this orientation of the grid, any point

can be made the pole by a simple rotation (Appendix 2 of Williamson,

1968). Figs. 2.4 and 2.5 show the two orientations of the grid used

in this study. In the figures, circles represent grid points located

on the side of a major triangle, and crosses indicate points interior

to major triangles. In Fig. 2.4 the poles are at vertices of major

triangles, and sides of major triangles run in the zonal ban.s 27 to

0 0,'i.25.tepls33 and -27 to -33*. In the second orientation (Fig, 2.5), the poles,

ace near the centers of major triangles and there is no narrow zonal

band containing sides of major triangles all around the earth.
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Each major triangle contains 3/4 n(n-2) complete grid triangles

and each edge bisects n triangles. Therefore the grid consists of

15 n 2 triangles. All but 12 grid points are vertices of six triangles,

the 12 points are vertices of five triangles. Hence, if N is the

number of grid points

6 (N -12 + % -12 = 3 -tis Sn"

and the number of grid points is given by

II5 2.N= -n + .
2

We define an average area A to be the area a spherical triangle would

have if the area of 15 n2 of them equalled the area of the earth,

i.e.,

Ar - 2

where r is the radius of the earth. Similarly, a mean grid interval

h can be defined to be the length of a side of an equilateral triangle

having area A.

h =4A/s

Table 1 provides the appropriate values for several values of n taking

0 -
r = 6370 km. We refer to n = 8 as a 10 grid and n = 16 as a 5 grid'.

The actual gid interval of the 100 grid varies from 0 4 I e

vertices of major triangles to 10.820 in the centers. The grid inter-

val of the 50 grid varies from 4.280 to 5.490. These grids are there-
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fore not homogeneous in the sense that all grid intervals are equal;

however, such triangular grids are impossible to define if the grid

0
interval is less than 63

Table 1

Number of

n Triangles

240

960

3840

15360

Number of

Grid Points

122

482

1922

7682

Degreeskm2

4
213 x 10

53 x 104

13 x 10 4

3.3 x 104

1911

1100

554

276

19.8

9.91

4.98

2.48
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Fig. 2.1 An icosahedron and an icosahedron expanded

onto a sphere.
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,k
401

Fig. 2.2 Division of major plane triangle into smaller

congruent triangles (n = 8).
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NORTH
-POLE

Fig. 2.3 Division of major spherical triangles into

grid triangles (n=8). See text for explanation,
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Fig. 2.4 Spherical geodesic grid with pole at a major

triangle vertex. Circles represent grid

points on sides of major triangles, crosses

represent grid points interior to major

triangles.
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Fig. 2.5 Spherical geodesic grid with pole near

the center of a major spherical triangle.

See Fig. 2.4 caption.
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CHAPTER III

NONDIVERGENT BAROTROPIC MODEL ON THE SPHERE

As a first test of the spherical geodesic grid, the barotropic

model for nondivergent, frictionless flow is used

Here is vorticity, W the streamfunction, the Coriolis

parameter, : the Jacobian operator, and 7 the Laplacian.

This model was chosen for the test so that analytic initial conditions

with a known solution (Neamtan, 1946) could be prescribed. In doing

so, all errors except those due to the numerical methods employed are

eliminated. A similar test over the grid of Vestine et al. (1963) was

performed by Sadourny, Arakawa, and Mintz (1968).

3.1 Finite difference approximations

A finite difference fori of the Jacobian or advection term has

been proposed by Lorenz1 for a grid of arbitrary triangles. Consider

the polygon, with area A, formed by K triangles surrounding the grid

point P , such as in Fig. 3.1 with K = 5. The vertices of the poly--

gon are P to P Since the fliw is -nndivergent, innvgration f
1 5 ~ * - ' I % L-. .L

Private communication. 1966.



-26-

the first equation over this region results in

' fgdA = - Ui

A

where un is the velocity normal to the boundary s . Two approxima-

tions are made in applying this equation to the grid. First, the area

integral of the vorticity is replaced by C . Second, the absolute

vorticity + is assumed to be uniform along each side of

the polygon and is given by the arithmetic mean of its values at the

end points of the side. Then since u = -BIy/ds, the difference

form becomes

I ~ E L~ -(3.1)

where j = i+1 (mod K).

It is immediately seen that if the total vorticity is defined

to be the sum of the vorticity at the grid points weighted by the

areas of the surrounding triangles, then total vorticity is conserved.

It is also easy to show that kinetic energy and the square of vorti-

city are conserved.

If this scheme is applied to a rectangular grid by avraging

the difference equations obtained from triangulation using either

right aiagonals or left diagonals, the result is seen to be Arakawa's

(1966) scheme. The scheme applied to an equilateral triangular grid

on a plane is second order.
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As is always the case for models formulated in terms of a

stream function, it is necessary to solve Poisson's equation. The

method used in this test is a sequential relaxation. Thus a differ-

ence scheme for the Laplacian is needed. Such schemes have been

formulated for triangular grids by MacNeal (1953) and Winslow (1966).

We introduce another method. These methods all reduce to the same

one for equilateral triangular grids on a plane.

Construct the polygon, with area , formed by the perpendic-

ular bisectors of the rays P P of the original polygon (Fig. 3.1).

Integration of V Y over Q gives

[ 5ds
S.

Where r is the circulation around the boundary s' of Q and

u is the counterclockwise tangential velocity. Two approximations
S

are used to apply this equation to the grid. First, replace the cir-

culation by . Second, assume that the tangential velocity

4 c) /3 r is constant on each segment of S' and equal to

(i .. 1) . The difference approximation is then

K

(3.2)

where "W /and are the lengths of the line

segments of S
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The solution of Poisson's equation is obtained by a sequential

relaxation. The direction of the sweep through the grid is complicated

by its being nonrectangular and is not given here. It may be indicated

by the usual equations:

(3.3)

th

j is either m or m+1 depending on whether or not the i sur-

rounding point has been affected by the m+1 pass, and el is

an overrelaxation coefficient to be determined experimentally.

The forecast can be made by either advancing using

a / t or by relaxing for BY/3t from g/6t and advancing .

The latter method is used here. The initial guess for the relaxation

in the first time step is a zero field. The second time step uses

the 4)/3t field from the first step for the initial guess and the

general time step uses an extrapolation from the fields at the two

previous times for the first baess. The relaxation is continued

until the residue R is less than some prescribed convergence

limit 6 at all points. See Thompson (1961) for information con-

cerning standard relaxation procedures used in meteorology, Any

suitable time stepping may be used. Centered time differences are
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used in the following integrations with a foreward time step initially.

3.2 Initial conditions

The nondivergent barotropic model is chosen for the first test

of the spherical geodesic grid since it has known solutions in the

form of waves travelling around the earth with constant angular velo-

city and without change of shape. By using such analytic initial

conditions we can determine exactly the total error, sum of roundoff

and truncation, of the numerical scheme. Since Gates and Riegel

(1962) integrated the same model over a sphere, we can use their

initial conditions to allow also a direct comparison between the two

difference schemes. Their initial and verification fields of 4) are

- 27. 68 sin (+ j36.(5 S ir(( - 7A) Sin ? coS 6C? (3.4)

in units of km sec . The pattern muves eastward with angular velo-

city 7/6 = 20 longitude per day. Fig. 3.2 shows the field given

by (3.4).

3.3 Errors in initial time step

As a first step in the error analysis, the model was run for

one time step starting at time zero and the errors were examined as

a function of grid orientation, overrelaxation coefficient and con-

vergence criterion.
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The speed of the relaxation process for the 50 grid is shown

2 -2
in Fig. 3.3. The convergence limit C = .125 m sec corresponds

to approximately 0.07 percent of the maximum I)/at. One correspond-

ing curve from Gates and Riegel (1962) is given for comparison. The

geodesic grid is seen to be more sensitive to variation of overrelax-

ation parameter than Gates and Riegel's grid. It is also seen to be

slower; however, Gates and Riegel's results are for only one hemis-

phere with fewer points. The second orientation of the grid is sys-

tematically faster than the first. This was also observed in similar

tests with a 100 grid. The fastest convergence is around 6% = 1.8

for all except one case. Winslow (1966) reports an optimum value

between 1.9 and 1.96 for linearized overrelaxation in a nonuniform

triangular mesh on a plane. One should remember that the results in

Fig. 3.3 apply only to the first time step with initial conditions (3.4).

The relaxation is considorably faster with the extrapolated first

guess. The scheme converges on the average in less than 20 iterations

:ith Ak = 1.8, 6 = .125, and the grid of Fig. 2.5.

The error in the computed solution of 24/2t is shown in

Fig. 3.4 for o = 1.7, E = .125 and grid of Fig. 2.5. The error

consists of cells of alternating sign around the hemisphere with

-egative error (computed minus analytic solution) west of the wave

trough and positive west of the ridge. The maximum error of each

cell is found between latitucs 20 and 25 0, the area of maximum

vorticity advection. This type of error field produces a systematic

underestimate of the true vorticity advection.
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Table 2 lists the largest positive and negative errors of

6fi/ t at time t = 0. These values are about 40 percent larger than

the corresponding values from Gates and Riegel's integrations. Also,

our results exhibit a larger and less systematic variation. The

actual error patterns are all like Fig. 3.4 for the other values of

ck and E tested.

The errors in Table 2 and Fig. 3.4 are the accumulation of the

errors of all the discrete approximations used. It is also of interest

to examine the errors of each phase in the computation. We consider

first the error in calculating the vorticity. Fig. 3.5 shows the

vorticity field determined analytically. The error pattern from

calculating the vorticity from (3.2) esembles Fig. 3.5 closely, negative

cells of error coinciding with positive cells of vorticity. This

implies that the values of calculated by the difference scheme

are too small, and the gradient is smaller than it should be. The

error is about 2.0 percent of the true values with grid orientaLion 1,

and 2.4 percent with grid orientation 2. There is a slight distortion

of the error pattern when a zero contour crosses a side of a major

triangle.

The pattern of exact values of 3g/ t is like that of Fig. 3.4,

but with uniform cells. The error in the Jacobian approximation using

e::act values of and also resembles Fig. 3.4 with positive

cells out of phase with those of ob /ot, indicating tarnt the values

of V/3t are too smaLl. The error in at/ t is about 5 percent.

When the values of obtained from (3.2)are used instead of the exact
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Table 2

.25 .125 .0625

.65.5 -65.5 66.7 -66.9 69.0 -69.1

1.6
69.4 -69.5 66.5 -66.5 - -

65.4 -65.2 67.5 -67.8 69.5 -69.7

1.7

67.9 -67.8 65.4 -65.5 64.3 -64.4

65.7 -66.4 68.9 -69.3 70.6 -70.8

1.8

63.4 -63.8 63.3 -63.5 63.5 -63.5

71.0 -71.7 71.4 -71.5 - -

1.9

64.1 -64.9 63.9 -64.3 64.1 -64.1

2 -2
Maximum positive and negative errors of by)/ t (m sec ) at t = 0.

The upper numbers are for grid Fig. 2.4 the lower ones for grid of

'Tig. 2,5'.
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values, the error is increased to 13 percent. The error field is also

more distorted at sides of major triangles in this case.

The values of ai/ t were found by relaxing the exact

field to compare with the values obtained in the previous section.

The convergence properties are the same as those with the approximate

bf/ t field. The error using exact af9/t values is 50 percent

of that using the approximate 2f/ t values.

3.4 Twelve day integrations

Initial conditions (3.4) were integrated for 12 days using

1 hour time steps, d, = 1.8, C = .125, and the grid shown on

Fig. 2.5. The wave moved eastward without change of shape at a speed

of 18.6 per day compared to 20 per day for the analytic solution.

No figure showing the final field is included as the only observable

difference between it and Fig. 3.2 would be the phase shift. The wave

did not exhibit any tendency for the trough to tilt, as reported by

Gates and Riegel (1965), even though the spherical geodesic grid is

coarser with respect to the wave at higher latitudes.

Since the analytic solution to these initial conditions is

simply a wave moving without change of shape, q).) integrated around

latitude bands is constant witn time. Other quantities, such as

kinetic energy and square vorticity, also have invariant zonal aver-

ages for these initial conditions and, of course, invar ant global

averages for arbitrary initial conditions. Examination of the

-integrals of the numerical solution furnishes a good check on the
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accumulation of truncation error in the amplitude of the wave as a

function of latitude. Fig. 3.6 shows a plot of 4) integrated over

the entire earth and also over two latitude bands. The middle curve

is the average over the entire earth; the upper, for 50 to 600N, is

typical for latitude bands above 40 ; and the lower, 20 to 30 N, is

typical for latitudes below 400 with little variation near the equator.

The averages are obtained by a simple summation of values at the points

in a latitude band without weighting the values by the areas repre-

sented by the points. The truncation error in this integration is not

significant for this wave pattern.

A small oscillation appears in all the averages with a period

0
of about 3.2 days. Since the computed wave moved with speed 18.6

per day, this oscillation can be attributed to truncation error

depending on trough position with respect to the grid. To check the

hypothesis, the same initial conditions were integrated for 12 days

using a 10 degree grid (every other point of Fig. 2.5) with both one

and two hour time steps. In both cases, the wave moved with a speed

of 15 per day. The small oscillations again appeared in the averages

with a period of 4 days, agreeing with the observed 15 speed.

If these small-scale oscillations are removed from Fig. 3.6,

the mean is seen to increase in lower latitudes, decrease in higher

latitudes, and remain steady over the whole globe for the 5 grid.

These changes may be a manifevstation of truncation error being a

function of latitude. Since the wave initial condition is a function

of longitude increment, and the grid interval is a function of linear
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increment, the grid is relatively coarser in high latitudes with

respect to the field under consideration.

0
The integrations using- the 10 grid showed the means of all

latitude bands increasing with time. The increase was very small for

lower latitudes and increased to about 2.5 percent in 12 days for the

0
higher latitudes above 50*. The global average increased by less

than 2 percent in the 12 days. The resolution of the 100 grid at high

latitudes is quite poor with respect to the wave, there being slightly

0
less than four grid triangles per wavelength at 55 and obviously

fewer at higher latitudes.

An initial condition of wave number four was also integrated

over the 5 degree grid of Fig. 2.5 using 1 hour time steps. The

initial condition is that given by Phillips (1962) as

= - 318.45 Sin W + 318.45 cos'cp Sir p cos 4 \ (3.5)

2 -1
in units of km sec . Such a wave moves eastward with a speed of

12.2 degrees per day. Again the actual final pattern after 12 days

did not differ significantly from the initial pactern except for the

phase shift.

In this case the trunc-:tion error in approximating the inte-

gration of 4)2 by an unweighted average over grid points is no

longer negligible. Continuous integratiorn of would result in

constant zonal averages. However, when the analytic values are

summed only at grid points, the result (solid curves in Fig. 3.7) is
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seen to vary with a period of about 7.4 days. Such a period cor-

responds to the pattern moving one wavelength with respect to the

grid. The averages of the numerical solution are given as the

dotted curves in Fig, 3.7. The slightly larger period of the nu-

merical solution is caused by the phase truncation error of the

scheme. If the truncation error associated with the integration

over latitude bands is subtracted, the same comments can be made

concerning the truncation error of the model as in the wave number

six case.
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Fig. 3.1 Grid triangles and points for difference

equations.
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Fig. 3.2 Initial wave number six field. Intersections of 50 latitude,

longitude lines are projected onto a rectangular grid for the figure.

The equator has zero 4) value,. Contour Interval is 3.5x107 m2 sec .
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Fig. 3.3 Convergence speed of relaxation. Dashed lines are

for the grid of Fig. 2.5, solid lines are for that

of Fig. 2.4. The desh-dot line is a corresponding

curve from Gates and Riegel converted to our coor-

dinates.
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Fig. 3.4 21/ t error at time t=0, 0 = 1.7, 6 = .125, and for grid of Fig. 2.5.

The dark line is the zero contour; contour interval is 10 m2 sec-2
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Fig. 3.5 Exact values at time t= 0. The dark line is the zero contour; contour interval

is 7x10-6 sec 1. The) figure was produced by the computer using linear interpolation

within grid triangles. This causes the small irregularities in this and previous

figures.
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Fig. 3.6 Variation in ) averaged over the entire earth

and within the latitude bands 20-300N and 50-60 0N

for wave number six.



-43-

Variation in averaged in latitude bands and over

entire earth. The ordinate is (xlO16 m4 sec -2).

The dotted lines are for numerical integration of wave

number four. Solid lines are for analytic values

indicating truncation error in the integration over

latitude bands as opposed to truncation error in the

model itself.

Fig. 3.7
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CHAPTER IV

PRIMITIVE BAROTROPIC MODEL ON A PLANE

We digress from the sphere for one chapter to consider differ-

ence approximations on a plane. Here we develop methods of approx-

imation over triangular grids which will be useful to compare trian-

gular approximations with the more usual square ones. Obviously, if

triangular approximations are significantly worse than the square

ones there would be no point in proceeding to the sphere. These

schemes on the plane also have a side benefit for use as nonhomogeneous

grids to deal with problems with spatially varying scales of motion.

The spatial scale of many geophysical fluid dynamics problems

varies greatly over the domain of interest. The ocean circulation is

such a problem. Western boundary currents such as the Gulf Stream or

Kuroshio have a smaller scale than the remaining ocean circulation.

Another example is the problem of fronts in the atmosphere, where

relatively strung gradients exist in a narrow band with weak gradients

elsewhere.

To study these problems numerically, a net of points must be

defined over the domain. The density of the net must be great enough

to resolve the smallest scales of interest. The size and speed of

present computers does not allow a uniformly fine grid over the entire

domain. Even if it were practical, such a grid would be inefficient

since a fine grid is needed only over a small part of the domain.
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For efficient use of the computer, it seems reasonable to use the

optimum grid density for the spatial scale of the expected solution

in each part of the domain. These various density grids must then

we connected to each other in some manner and, in some cases, special

difference equations must be designed for use at the interface.

If a coarse square grid is joined to a fine square grid,

various difficulties can arise at the interface. For example, if a

uniform wave is travelling parallel to the interface, the phase

truncation error is smaller in the fine grid than in the coarse one,

and a shearing soon develops in the wave structure. This numerical

phenomenon is exhibited in the case of a wave on a sphere by Gates

and Riegel (1962). If a wave is moving perpendicular to the inter-

face, partial reflections might occur which are due solely to the

numerical techniques and not to the physical problem.

To avoid these problems, a nonhomogeneous triangular grid

seems ideal. Such grids have been used successfully for solving

elliptic equations by the method of successive overrelaxation -

(Winslow, 1966). Thoy permit a continuous, gradual transition from

fine to coarse grid and permit construction of secondary polyhedral

grid areas whose sides are common to only two such areas.

Masuda (1968) has developed finite difference schemes using

the principle developed by A. Arakava for use over a homogeneous

triangular grid. He shows good results for integrations of the non-

divergent barotropic model on a plane. Lorenz (1967) has developed
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a finite difference approximation for a two level model on a beta

plane when the governing equations are written in terms of a stream

function. In the following, discrete approximations to the primitive

equations governing frictionless two-dimensional flow are developed

for use over arbitrary triangular grids. Cartesian geometry is

assumed for this chapter. The modifications necessary for spherical

geometry are discussed in Chapter V. Two approaches are considered.

The first deals with the invariants of the continuous equations.

A class of schemes is developed which conserves mass, momentum, and

energy. The second approach approximates each term of the governing

equations individually and examines the truncation error of all the

schemes when applied to a homogeneous grid over a plane.

Results of test integrations of these schemes are then pre-

sented. The schemes are applied to an equilateral triangular (homo-

geneous) grid on a beta plane. No integrations over nonhomogeneous

grids are performed. The results of the triangular schemes are

compared with results of similar schemes applied to a square net and

with results of integrations over a fine mesh.

The equations considered here are those for frictionless hori-

zontal two-dimensional motion. For the derivation of the difference

schemes, the Coriolis term will be neglected. Since all quantities

will be defined at the same grid points, the Coriolis term can be

differenced in a straightforward manner. The difference form of the

Coriolis terhi is given in section 4.7. Using vector notation, the
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governing equations can be written

+ v.;v +~?~ (4.1)

- V .ekV :(4.2)

where V is the vector velocity, h is the height of the free

surface, g is gravity, and 7 is the vector gradient operator.

Equation (4.2) expresses conservation of mass.

The momentum equation can be formed from (4.1) and (4.2),

and, using diadic notation, can be written as

) +(4.3)

Thus, neglecting boundary effects, the system conserves momentum

when integrated over the domain. The kinetic energy equatiion is

obtained by combining (4.1) multiplied by V with (4.2)

mult iplicd by \V.\

V V Z/.. V- =- (4.4)

This equation, together with gh times equation (4.2) yield:6 the

energy equation



-48-

The total energy -\/ ( + k') is seen to be conserved when

integrated over the domain with boundary effects neglected.

We now wish to develop difference approximations to these

partial differential equations and study their properties. Such

approximations are easiest to develop from area integrals of the

flux form of the equations. Consider integrals of equations (4.2)

and (4.3) over some elementary grid area A yet to be defined.

i JA -('JA -VKJA (46

A A A

-,*11)C -(4.7)

tSk JA O-x(I TJA
A A

The area integrals on the right hand side can be transformed to line

integrals along the boundary S of A.

--- k\V cA = - / \ ls- g --A cS (4,8)
2

A S 5

S (4.9)

A
A

Where Vn is the velocity component normal to the curve S and n

is the outward unit vector normal to S.
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4.1 Conservative difference schemes

The difference schemes developed here are all written for a

topologically regular grid in the sense that each grid point is

surrounded by six triangles. Difference equations expressing the

change of a variable at a grid point are written using local polar

indexing. The value of some variable ) at a central point is

denoted by 0 . The values at surrounding points are then

denoted by /'( ( . /.' is the row radius of the

point; i=1 for a grid point one triangle from the center, 2 for

a point two triangles out, etc. eg is the azimuthal angle,

0j = 1 for some reference line, 2 for a point 60 counterclockwise

on a topological map of the grid, 3 for a point 120 , etc. See

Fig. 4.1.

With this notation, a set of difference approximations to

equations (4.8) and (4.9) conserving mass and momentum is given by

.. (4.10)

jai41

A~ik 0 (4.11)

A is the area of the hexagon whose sides go through and are
0 CZ

perpendicular to the grid lines, is the length of the side

through (ji r, , is the outward unit vector normal to the side,
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and is the velocity component normal to the side.

(kL2)A ,and (V\ ) are to be related to grid point
9 2

values from energy considerations.

Let q) denote the finite difference equivalent of inte-

gration of a quantity Y over the domain, i.e.,

y= LA.9.

where the summation is taken over all grid points, and AT is the

total area.

In order for (4.10) and (4.11) to conserve energy, the follow-

ing relations must hold

2 \ V (4.12)
As$

ZA (4.13)

The first relation (4.12) insures that the space differences will

not produce nonlinear instability; the second (4.13) provides for

consistent ccnvcrsion bctwccn kinetic and potential energy.
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If we define

( , h)j . -=O , (4.14)

equation (4.12) holds because

6a (otk
*V~~jL Avj~=0

Differences with the form of (4.14) have been used by Lorenz (1960),

Arakawa (1966), and Bryan (1966).

One possible definition of

M 1(4.15)

The energy conversion relation (4.13) then holds provided that

( AD

(4.16)
=

Substitution of (4.14), (4.15), and (4.16) into (4.10) and (4.11)

results in one energy conservative difference scheme given as

(\./M o -91 !
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Scheme I

4 A

OZAD Li Y 7v
2A, I

I 0j 17 A
2A..

If applied to a square grid this scheme is seen to be the same as

scheme B of Grammeltvedt (1968).

A second possible definition of ( ,

** A
(4.18)

Relation (4.13) is now valid if

(a t
2

Substitution of (4.14), (4.18), and (4.19) into (4.10) and (4.11)

results in a second energy conservative scheme given by

4A*
(4.17)

(4.19)

eO O A

a

A
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Scheme II

A %

(4.20)

A..

We note that the mass flux of Scheme I is similar to Shuman's (1962)

semi-momentum scheme and that of Scheme II is similar to his filtered

factor form. These two schemes are also similar to those designed

by Kurihara and Holloway (1967) for use over a quasi-homogeneous

spherical grid.

4.2 Individual approximations

Difference approximations are now formulated for the individual

terms of the governing equations without regard to energy conserva-

tion. First, grid vectors which are useful in writing the approxima-

tions are defined.

Let S. be the vector from the center point 0 to the surround-

ing point (1,1) (sc Fig. 4.2a). The r-dil ubri is now dropped,

all points considered being in the first row around the center point.
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Two adjacent points along with the center point form a triangle

with values J and of some field ( at its

vertices. If Y varies linearly over this triangle it can be

written, following Winslow (1966), as

-- % (4.21)

where the gradient is a constant within the triangle and given by

S is the position vector with respect to the center point, and the

0
superscript T denotes a 90 clockwise rotation of a vector (Fig.

4.2a).

A proof of (4.22) is straightforward. Since I4 is assumed

to vary linearly in the triangle, it can be written in the following

torm

where f and g are vector functions of S. and Si+1 . Since

C kl -- -- b -..
Yit follows that S -f = 1 and S g = 0.

-- -3 - -- %
Similarly . ( + -( implies f 1 and Si+1

Thus f and g have the form f CS.r and g= C ST where
.i.+l 2 i

C h
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Define a secondary mesh for the grid to consist of the

medians of the grid triangles (Fig. 4.3a). The elementary grid

area associated with each grid point is then that of the secondary

dodecagon surrounding it.

Pressure Gradient Term

Consider the integral of the pressure term over the dode-

cagonal grid area of Fig. 4.3a

A

and assume h varies linearly within each of the six grid triangles.

The contribution to the integral from the area C formed by the

intersection of one grid triangle and the dodecagon is

where the position vector S is the only variable in the integral.

Hence

S is the vtion vector of
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In the grid triangle defined by S

is that of the two triangles defined by is

and S , the area
i+l

and I~l+)
9 (sil + i)1

and -(S + .)3 i+l i
and iS

1+ 1
(see Fig. 4.3b). In these two

triangles, is

and v *

Thus

12 ;I-l

:;;71~~.
z

-a:s
with the above values substituted.

Similarly, other approximations to the pressure term can be

defined. Consider the integral

3 z
A

and let h

then becomes

vary linearly over the grid triangles. The integral

A ;4-
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where the expression for the gradient is given by (4.22).

Another approximation can be formulated from

22

where h is assumed to vary linearly over grid triangles. In this

case the line integral becomes simply the trapezoidal rule with

values at the vertices of the dodecagon. The integral 14 can be

evaluated other ways, such as by assuming h varies linearly over

grid triangles. The line integral doos not reduce to the trapezoidal

rule in this case.

Mass Flux

Difference approximations for the mass flux term, right hand

side of (4.23), are now considered:

__ _ (4.23)

Let V vary linearly within grid triangles. The two outward

normals along the two sides of the dodecagon (see Fig. 4.3b) within

the grid triangle defined by S. and S. are given by
1 i+1

A A_____2_4
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and

A 2.

A A
Substituting these expressions for n and n , plus equations (4.21)

1 2' u

and (4.22) for V into equation (4.23) along with some manipula-

tion, leads to the difference equation

--- - ' - T (4.24)

A,

Another approximation can be derived by assuming both h and

V vary linearly over grid triangles and approximating the line

integral in (4.23) with the trapezoidal rule between vertices of the

dodecagon. This approximation becomes

-~ 72z A*[v b~ Ys.,-i
(4.25)

CT

Awl

Other approximations can be found by making assumptions similar.

to those made in approximating the pressure gradient term.
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Momentum Flux

Approximations for the momentum flux term on the right hand

side of the following equation

(4.26)

kt A

A (VJ V
A

can be obtained using the same methods as the mass advection. For

example, if V V is assumed to vary linearly within grid

triangles, the resulting expression for (4.26) becomes

6 (4.27)

1 -- I

By making approximations similar to those made for the mass flux,

other difference schemes can be obtained.

4.3 Homogeneous grid

We now consider the form these schemes take when applied to

an equilateral triangular (homogeneous) grid and determine the

cruncation error of such approximations. Consider Cartesian coor-

A
dinates (x, y) with unit vectors ' ., j ) . Let O be the constant

distance between grid points, and define the grid vectors S. by
.L
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S

£3

S4

VA

A.. 2 . 3

A. 2

See Fig. 4.4.

Consider first the pressure term on the right hand side of the

following equation

,V)
I' (,

A

or an equivalent form. We denote discrete approximations to the right

hand side as P

Since

-SAand

(D

A
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the pressure gradient term of Scheme I can be written as

1~~
;X1

A

Noting that

and

A.
-3- s. +s2,,)3 

-

the scheme corresponding to the integral 12 is

(

P VI 6

The pressure gradient term of Scheme II and the scheme corresponding

to 13 both become

jai

and that corresponding to 14 becomes

SA'C

which can be shown to be the same as P3 *

3s 4

ko --.
W Sz
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The mass flux scheme from the right hand side of (4.24),

when applied to the homogeneous grid, becomes

Q1
Ss L

- - ~ 1' 1 lI.

The mass flux term of Scheme I also reduces to this 
expres-

sion. The mass flux of Scheme II becomes

(2

and the right hand side of (4.25) reduces to

3 (JI~L~h~4h~..,)VA*hAV' A/*
D:I

The momentum flux on the right hand side of (4.27) when applied

to this grid becomes

[~1.

while the momentum flux of Scheme I reduces to

.6
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The momentum flux of Scheme II becomes

4.4 Truncation error

The truncation error of the approximations is determined by

substituting Taylor's series expansions about the center point into

the difference approximations and comparing the result with the

continuous term. Let

00

+. K' " IZA# i7
(4.28)

These expressions are substituted into schemes , , and

jV )~ and like powers of are combined. Some relations prove

usoful in simplifying these combinations; these are listed in Appendix

1. All are easily verified by expansion into Cartesian components.

Using these relations, the Taylor's series expansions of

schemes A. simplify to



8

- ~~4)

- 3 z P4

O

K?(V7- k7k) + II -7(k)'-7 7 V +0(X)

These schemes are all seen to be second order.

The Taylor's series expansions of the mass advection schemes

become

Q~ -~.($)-

Qz

+Vzkv;v + +7

21 -- Nb , +h K-/2( vTh"

2V-Lvv 4-

+Q t -- 2

+ 
-Z

'7V I-#Y7v ~4(f~vi408

All of these schemes are seen to be second order.

-C4-

= -5,; k- S

8
+0 (V)

-~W -v(C) ~

v (v- kruh)

.,,. 0 (rs+)

(ve "

+29 v. V + 2 v k -v 2, v + 4 V -



The expansions of the momentum advection terms are of the form

M 1-

The expressions V are rather long and complicated and

are not given here. These schemes are also seen to be second order.

4.5 Fourth order schemes

Straightforward extrapolation techniques can be applied to the

second order schemes derived above to obtain fourth order schemes.

Foi example, consider the pressure term from the conservative Scheme I

P. Sz

where we have resumed the use of the radial subscript. If this scheme

is applied to the triangles formed by the points with

the approximation is the same as P1 except is replaced by 2

and S by 2S . Hence we have a scheme

Zg ;z 0
AaI

with a Taylor's series expansion

11-7~7s/h C~
V2

-6E -
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These two schemes can then be combined in the form p+

where A and B are found by requiring the coefficient of in the

Taylor expansion of P1  be zero and the coefficient of - k V

be 1. The solution is A = 4/3, B = - 1/3 , and the fourth order approx-

imation is

~LJK( 1- 6K 2i )~

This same extrapolation can be applied to all the terms of

Scheme I. Such a fourth order scheme is also energy conservative since

each of its two parts are.

Another possibility is to use the points

than (ZL) These are closer to the center point than

( 2 , and are not lined up with the points (I k)

they might make a better approximation. In this case 5

truncation error is replaced by - CS and the combinatio

cients become A = 3/2 and B = - 1/2 The fourth order en

servative scheme corresponding to Scheme I is give. by

rather

the points

; and hence

in the

n coeffi-

ergy con-
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Scheme III

(00

*l -V~.A. .(v-.v, ,V1A- 4

+2.

2  (4.29)

r/Irk

4.6 Boundary conditions

We now consider the lateral boundary condition for an inviscid

fluid when the boundary is a straight line coinciding with the sie

of grid triangles. The boundary condition for the continuous equations

is that there should be no normal flow across the boundary.

Denote the tangential and normal components of the velocity

V by u and v respectively. Define a row of grid p..ints outside

the boundary to be the mirror image of the first row of points inside
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the boundary (see Fig. 4.5). Define a subscript (i, j) such that

j = B if the point is on the boundary, j = B + 1 (j = B -1) if the

point is in the first row inside (outside) the boundary, and i is

an index along the boundary from some reference point. These sub-

scripts, applied to the components u, v, and h should not be con-

fused with the radial, azimuthal subscripts applied to the vectors.

With this notation, the discrete boundary condition becomes

Q' r 0 . If we define

(4.30)

difference equations of the form (4.10), (4.11) applied to the bound-

ary points results in

if (Vt- , , and are evaluated

using only values at (0) and (1, i). Thus if /Vi. is initially

zero, it will remain zero. It is also seen that the area weighted

averages of mass and momentum over the domain are conserved when the

boundary values are weighted by that part of their grid area inside

the domain and that the energy conserving schemes (4.17) and (4.20)

continue to conserve energy using thesc boundary conditions.
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These boundary conditions hold only for pure gravity wave

motions associated with (4.1) and (4.2). When the Coriolis term is

included in the governing equations, the boundary conditions are no

longer exact. Since the initial conditions for the test cases

presented here are such that there is very little motion near the

boundary and since the integrations are carried out for a relatively

short time, little trouble is expected in using these boundary

conditions.

4.7 Numerical integrations

Ten-day integrations were performed using several of the

schemes developed here over an equilateral triangular grid on a

beta plane. The Coriolis term was differenced by simply using the

value of the velocity at the central point, thus the schemes remain

energy conservative; i.e., in Schemes I, II, and III the X-momentum

tendency equation has the additional term and the

Y-momentum tendeincy equation has the additional term -

When Scheme I is applied to the right triangles corresponding to a

square net of points, it is seen to be the same as Grammeltvedt's

(1968) scheme B. For this reason it was decided to use the same

initial conditions as he used. A direct comparison between four-

and six-point differences is then possible. His initial condition I

is given by
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where x is the eastward coordinate, y the northward, y0  the

center of the channel, L the length of the channel, and D the

width. The initial velocity fields are assumed to be geostrophic.

The following values are adopted for the constants:

H = 2000 m L = 6000 km
0

H = 220 m D = 3 x 2600 km

-4 -l
H = 133 m f = l0 sec
2

-2 I) -11 -1 -l
g = 10 m sec = 10 sec m

The length of the sides of the equilateral triangles forming the

grid was taken to be either 100, 200, 231. or 270 km. The north-

south boundary conditions are (4.30) with the additional requirement

that v on the boundary be held at zero. These are equivalent to

those used by Grammeltvedt (1968). The east-west boundary conditions

are cyclic. A ten minute time step is used when S equals 200 km

or more, and a five minute step when S equals 100 km. Fig. 4.6

shows the initial height field.

The height fields after five days for eight different cases

are shown in Fig. 4.7. The top left is obtained by Grammeltvedt's

square scheme F using a fine mesh with S equal to 100 km, and the

top right is due to Scheme I also using a fine mesh with equal

to 100 km. Since these two solutions are almost identical, we can

assume they represent the correct solution. The scheme used for the

left of the second row is Grammeltvedt's square scheme B with a

coarser resolution of S equal to 200 km, and the scheme used for
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the right is triangular Scheme I with the same value of S . The

triangular scheme is seen to be better than the square scheme.

Both the phase error and amplitude errors are less for the former.

From these results it is not clear whether or not the trian-

gular scheme is better because it has slightly better resolution in

the y direction. Since the base of a grid triangle is the same

length as a side of the square grid, the height of the triangles is

less than that of the squares, resulting in more grid points in the

y direction.in the triangular grid than in the square grid. To de-

termine the effect of this difference in resolution, the triangular

scheme was integrated over a grid with the height of the triangles

equal to 200 km, or approximately equal to 231 km. The results

are presented on the right side of the third row of Fig. 4.7. The

solution hardly differs from the S equals 200 km case and is again

better than the square scheme. Schem, I was integrated with an even

coarser resolution of S approximately 273 km. The result is on

the left of the third row of Fig. 4.7. This solution is seen to be

at least as good as that for the square scheme B. Thus we conclude

that the slightly better resolution in the y direction of the trian-

gular schemes is not the main reason for their better solutions.

The bottom right of Fig. 4.7 is obtained from triangular

Scheme II. The field is seen to be almost identical to that of

Scheme I. The lower left is due to fourth order triangular Scheme III.

The phase and amplitude have very little error when compared with the
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fine resolution results. If the fourth order Scheme III is compared

with Grammeltvedt's fourth order square scheme J (his Fig. 8), the

triangular scheme is again seen to be better.

Fig. 4.8 shows the height fields after ten days. Now the

solutions of the two fine resolution schemes are beginning to diverge.

The main feature is wave number two. The triangular schemes all

exhibit this wave number two much better than the square scheme B.

The phase error of the fourth order scheme is less than the second

order schemes and is also less than the phase error for Grammeltvedt's

fourth order square scheme J as seen in his Fig. 4.8. These schemes

can also be compared with Shuman's scheme (Grammeltvedt's Fig. 9)

which is seen to have a much greater phase truncation error.

The schemes compared here indicate that for numerical modelling

of atmospheric-like fluid flow, triangular difference approximations

provide better solutions than square approximations with similar re-

aolution and the same order of truncation error. One would expect

the same conclusion to hold on the sphere. With this in mind we turn

to triangular difference approximations on the sphere.



(2,1)

(2,11v2 ) (1,1) (1,6)

Fig. 4.1 Logical map of triangular grid.
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'i+1

S+1

Si

Si+'

ISi

Fig. 4.2 Grid vectors

Si- S.
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i+1

1/2 Sj

Fig. 4.3 Secondary dodecagonal grid area.
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Fig. 4.4 Homogeneous grid vectors.
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\0(- 3,B-1)

Fig. 4.5 Boundary grid points.
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Fig. 4.6 Initial height field. Heights are given in meters;

contour interval is 500 meters.
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Fig. 4.7 Height fields after five days. Heights are given

in meters; contour interval is 500 meters. See

section 4.7 for explanation.
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Fig. 4.8 Height fields after ten days. Heights are given

in meters; contour interval is 500 meters. See

section 4.7 for explanation.
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CHAPTER V

PRIMITIVE BAROThOPIC MODEL ON THE SPHERE

The derivation of discrete approximations in spherical geometry

will follow very closely the development in cartesian geometry of

A A A
Chapter IV. Let i, j, and k be unit vectors on the sphere in the

eastward, northward, and vertical directions respectively, and let 7

be the spherical horizontal gradient operator. Then the equations

governing frictionless, horizontal, two-dimensional motion on a sphere

can be written

(5.1)

Dt 
(5.2)

where h is the height of the free surface, '= A + is the

vector velocity, and !6tequals ( - n) , is the

radius of the sphere, f is the Coriolis parameter, e is the lat-

itude and g is gravity.

Again' as in the case of the plane, if F x kV is

evaluated using values at the central grid point, this term will drop

out when the discrete kinetic energy equation is formed. Thus it can

be dropped in the energy considerations to follow.
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5.1 Conservative difference approximations

The discrete approximations are based on area integrals over

the secondary grid areas. The integrals of the divergence can be

converted to line integrals using Gauss' theorem, resulting in

-f(\J\V->AofS - (5.3)~
A S A

a ((504)

A s

AA

where n is the outward unit normal to the curve S bounding the

area A.

A local polar indexing is used to write the difference equa-

tions. Let k denote the number of triangles surrounding the grid

point in question. For the spherical geodesic grid, k is either

five or six. Consider, first a general form of approximation to the

divergence of some vector quantity .

D= i- Ads
S

113 the th
If we assume the value of along the i segment S. of S is

constant and given by , the approximation to the dI:ergence
A

becomes

SiA (5

L~j SA,
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where S. denotes the great circle segments forming the grid area.
1

It is easy to show that most approximations used in calculating fluid

flow are of this general form.. By the line integral of the unit

normal vector we mean the line integral of the two components of the

unit normal written in spherical polar coordinates. For a grid of

the kind used by Washington and Kasahara (1968) the line integrals of

the components reduce to the~ very simple forms 4 C A.e , or

A A\^ In the case of the grid developed by Kurihara

they take the form (in Gary's 1968 notation) =6 or ' .

The line integrals of the components in the spherical geodesic grid

do not reduce to anything quite so simple. In fact the exprecsions

for the integrals along arbitrary great circle grid segments are

difficult to calculate analytically. In this study they are calcul-

ated numerically (see Appendix 2). It should be pointed out that

the coefficients can be calculated with a very high degree of preci-

sion since they need be calculated only once for each grid orientation

and resolution. We denote these line integrals by Cg , i.e.,

4

The components of C are tne integrals of the components of n

written in spherical polar coordinates.

Now we consider an approximation to the pressure g.adient term

A k JA.
A
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Written in terms of spherical coordinates, the integral becomes

Ck Cos e
A

or

C -0,Z~ .aa WO ck sin Aed

Neglecting the spatial variation of the unit vectors within

the secondary grid area, the first term on the right hand side can

be shown to be a line integral of h times the outward unit normal

and can be approximated by

k
Z\ I k) b,(5.7)

If, in addition, the variation of h in the secondary grid area is

neglected, the second term on the right hand side becomes

where h denotes some average value of h . This integral can be

wri a ten approximately as

A (5,8)
Z-j ('

j zz
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Equations (5.7) and (5.8) can be combined for an approximation to the

pressure gradient

k

C. Z 4 %J.( __% ;; (5.9)

We are now able to write a general approximation to equations

(5.3) and (5.4). Using the approximations (5.5) and (5.9), the govern-

ing equations become

k k

A0  = L. - (5.10)
4zz a4es

k
A0 C - (5.11)

Let 4 denote the finite difference equivalent to integration

of a scalor over the sph3re, i.e.,

where the summation is taken over all grid points and A-7 is the

area of the sphere, 1 is either h, u, or v ,

Formation of the discrete energy equation shows that for (5.10)

and (5.11) to conserve energy , the following relations must hold
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k k
, -'( o.r- -aC

V & C *. (5.12)

'4.- (5.13)

Again, the first relation (5.12) insures that the space differences

will not produce nonlinear instabilities; the second (5.13) provides

for consistent average conversion between kinetic and potential energy.

We note that when the curvilinear coordinate system reduces to

a cartesian system, equations (5.10) through (5.13) reduce to the cor-

responding cartesian equations (4.10) through (4.13).

Relation (4.12) can be satisfied if we take

\\f (5.14)

kk

Agin, the firteation (51)inueasaesaedffrne

One possible definition of . is
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The energy conversion relation (4.13) then holds provided that

and

7. b

(5.15)

(5.16)

(5.17)

Substitution of k5.14), (5.15), (5.16) and (5.17) into (5.10) and (5.11)

results in

Scheme Is

4-A

aA.

k

TL-j vo kOvo

4i C4

k

(C 4

k

, Ao +4;A.T
The special form this scheme takes when applied to a regular spherical

grid is the same as the scheme of Grimmer and Shaw (1967).

7 ) L OVO

a t

2-As
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A second possible definition of

(V h)

Relation (5.13) is now valid if

. 4

and

Substitution of (5.14), (5.18), (5.19) and (5.20) into (5.10)

and (5.11) results in a second energy cor.rvative scheme given by

Scheme Is

kC

jj

A.

k

UK
is I

k

+4 fl4 LCAc.

k

- 'IAO 0c

The special form Scheme II.; takes wheii applied to a reguLilhr spherical

grid is the same as Kuriharo's scher.E as studied by Gary (1968).

(\\k)

(5.18)

(5.19)

(5.20)

1= , ( .", ) ( \Y. -vi4-
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5.2 Numerical experiments

Several simple numerical experiments are performed to test the

suitability of the difference schemes for use with fluid flow problems.

For these tests the grid is oriented so that the north and south poles

are grid points. This orientation is useful for our evaluation runs

since with this orientation, the grid has a period of five around the

sphere. If the initial conditions also have a period of five, only one

fifth of the computations need be performed. Most of our experiments

will take advantage of this feature.

This orie.tation is not desirable for general usage since the

poles must be treated separately when spherical polar coordinates are

used. In this case the velocity components, u and v, are not defined

at the poles. Since the cases we consider here have little happening

at the pole, the velocity, / , is set equal to zero there and the

height, h, is assigned the average value of the five closest points

when these values are needed by the difference operators. We note that

for general integrations, the poles do not have to be treated separately

if they are not grid points or do not lie on a side of a secondary grid

area. This follows from the application of Gauss' theorem to convert

the area integrals to line integrals for the fundamental approximations.

This relation is a vector relation independent of the particular coor-

dinate system chosen. In this case the difference operators defined

in the previous section car. be applied at every grid point. Also, if

spherical polar coordinates are not used this difficulty does not arise.
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For instance, if a streamfunction is used as in Chapter III there is no

difficulty at the poles.

The results of the experiments are all shown on a cylindrical

projection where intersections of 5 latitude and longitude lines are

mapped onto a square grid. In such a projection the pole points are

distorted into straight lines. Fig. 5.1 shows the 5 grid on such a

projection. Grid points on the sides of the icosahedral triangles are

indicated by 0, points interior to icosahedral triangles are indicated

by +. The continent outlines furnish some idea of the distortions near

the poles.

Gravity Waves

To establisi whether or not the difference schemes introduced

any gross errors when dealing with gravity wave motion, a short inte-

gration was performed with the Coriolis term set equal to zero. The

initial conditions are \ equal to 0, and h equal to a constant

0
8,000 m with an additional cone of fluid of height 800 m and radius 10

e 0
centered at E X , = 180 . Fig. 5.2 shows the ensuing height

and velocity fields at 2, 4, and 6 hours for the 5 grid. The figures

cover the area of -90 to +90 latitude and +90 to 270 longitude.

The contours of the initial height field are then circles centered in

0
the figure with a maximum radius of 1.0 Because of the distortion of

the projection, a circular wa; - front will transform into the square

0
outline of the figure as the radius approaches 90
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Centered time differences are used with a 75 second time step.

A forward difference is taken every 96 (48) time steps for the 5

(2j ) grid to eliminate one of the- two solutions associated with the

centered time differences.

The linear gravity wave speed, , for a fluid of depth

8,000 m is approximately 9.1 /hour. The wave front in the numerical

solution is seen to agree very well with this. The circular wave

front does become square on this projection as the radius approaches

900 and passes over the poles shortly before the 8th hour. The com-

putation could not be carried out further because of the method of

treating the poles.

A similar computation was performed with te 2}0 grid. This

time a conical depression of 800 m was placed at the north pole.

Fig. 5.3 shows the resulting h and v patterns at 4, 8, and 12 hours.

The area covered in the figure is slightly more than two cycles of

the grid. With this projection the wave fronts should appear as

straight horizontal lines and move down the figure. The source is

damped out very fast because of the averaging at the pole. The speed

of the waves is seen to agree very well with the linear speed. The

wave fronts do remain as straight horizontal lines.

Fig. 5.4 shows the kinetic energy as a function of time for

these two cases. Both show a rapid increase in kinetic energy

initially, then a decrease as the wave spreads out. The 5 curve

shows a series of peaks corresponding to new waves being sent out
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from the center point. These peaks are missing in the 21 curve

because the center point is so strongly damped.

Neamtam waves

In order to evaluate these schemes for use with more atmo-

spheric-like motions we use the initial conditions used by Phillips

(1959) and subsequently by other investigators. These conditions

are those of a Neamtan (1946) wave, which, in a nondivergent baro-

tropic atmosphere, propagates eastward with a constant angular

velocity and without chang.- uf shape. For the divergent model

considered here there is no analytic solution; however, several

investigators, namely Grimmer and Shaw (1967) and Gary (1968) have

used the same initial conditions to test difference approximations

for the same model. Our results can be compared with theirs and

hence the difference schemes can be compared with each other.

Thesc initial conditions have another advantage; since they are

analytic, the exact initial tendencies can be calculated and compared

to the discrete initial tendencies.

The initial velocity %y is nondivergent and given by the

stream function

w n a a c a T e i a

where a~ ,Radaare constants, The initial height field is
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determined so that h and Y satisfy the balance equation

+ ~ (e) + c'z3e cos I?\+c&Ce) cos

C Qcos e

The constants are given the following values

cojm K = 7.848 x 10-6 sec

=8 x 103 m2 sec-2

R is taken to be either 4 or 5.

six day (6912 time step) integration was carried out over

the 54 grid. The h, u, and yr fields are shown in Fig. 5.5 at one

day intervals. The region covered by each figure is -90o to +90o

latitude and 0* to 150* longitude, a little over two periods. The

wave speed is a little cver 17 degrees per day compared with an

analytic value for the nondivergent case of 19.8, The fiel~L become

very jaged and the solution is not good at day 6,

Fig. 5.6 shows the results of an 8 day (18432 time step) inte-

gration over a 2} grid. The most noticeable feature is the two-grid
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interval noise superimposed on the pattern. Such phenomena are

present in other schemes (Okamura, 1968) and can be avoided by

changing the space phasing of the variables (Masuda, 1968; Okamura,

1964) or by adding a diffusion term or space smoothing.

Disregarding this two-grid interval noise, these results can

be smoothed by eye and compared with previous investigations. For

the first four or five days, when the original wave is still clearly

defined in the pattern, the wave moved with a speed slightly greater

than 18 degrees per day. Again, the analytic value for the nondiver-

gent model is about 19.8.

Gary (1968) compared two schemes currently being used for

general circulation models: Kurihara's (1965b) and Kasahara and

Washington's (1967), hereafter referred to as Centered. Gary con-

cluded that the Kurihara scheme is more accurate than the centered

scheme for a gi.-en OG9 . However, because of the space-time

phasing of the variables he says the Kurihara scheme at 89 should

be compare.d with the ccntered scheme at approximately AesJi.

Further information he gives suggests that under these conditions

the schemes are probably equally good. Gary also concluded that

the Kurihara scheme with a "uniform mesh spacing," in which the

number of grid points on a latitude circle decreases uniformly from

equator to pole, produces less accurate results than one in v'hich

ZAX was constant and eql to 60 up to around U = <, then

increased.



-95-

With this in mind, we will compare our results with those of

the Kurihara scheme over a regular spherical mesh, not the "uniform

mesh." We will consider his case where the resolution at the equa-

tor is approximately equal to cars. This is his case 503.1, or his

0
Fig. 11. This has a grid size of about 2.65 at the equator with

0
the resolution increasing up to about 65 latitude. This grid has

7044 points compared with 7682 points in the 210 spherical geodesic

grid.

Our patterns evolved very closely to his. The main differ-

ence being that by the eighth day his patterns become very weak due

to a diffusion term he added for stability. Essentially, these two

schemes produce very similar results for this type of initial condi-

tion, and we conclude that in this respect the schemes are equally

good.

We can also compare our results to Gary's Fig. 12 which is

the solution from Kurihara's scheme applied to his "uniform grid."

Our results are seen to be better than these.

Gary's Figs. 28-32 show the evolution of Lhe centered scheme

for six days over a grid of 7048 points (about 2.8 at equator).

Again, our scheme produces better results than this scheme.

We cannot compare the energy conservation properties of these

schemes since Gary always used a diffusion term for stability.

Hence, the energy in his cases always decreased. The total energy
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per unit area in our 2}2 integration remained in the range 4.61564 x

108 to 4.61588 x 108 during the entire eight days. The energy varia-

tion in the 5 integration was.of the same order, about .003%.

From these comparisons we conclude that the space differences

over the spherical geodesic grid are at least as good as those in

use today for general circulation models when applied to a simple

wave. However, when these schemes are combined with centered time

differencing, a very small time step is required for linear stability.

One of the reasons for using a quasi-homogeneous grid is to eliminate

the convergence of grid points at the pole and the very small time

step this convergence imposes.

The Matsuno or Euler-backward time differencing (Kurihara,

1965a) was tried to determine its effect on the linear stability.

A 20 minute time step was found to be stable for the 50 grid and

correspondingly a 10 minute step for the 20 grid. This is up to

four times longer than would be necessary for the present general

circulation models at a similar resolution. Time steps that have

been used are: Mintz (1964), At = 12 min. for = 70; Kasahara

and Washington , At = 6 min. for AE = 5 0; Kurihara and Holloway

(1967), At = 7.5 min. for A= 4 . This could mean a saving of

computer time of a factor of four.

1Private communication
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Height fields for various days are shown in Fig. 5.7 for the

5 and 2}0 grid using Matsuno time differences. The time steps used

are 20 minutes and 7.5 minutes for the 5 and 2i grids respectively.

With a 10 minute time step on the 210 grid, two-grid-interval wiggles

appeared in limited areas at various times and then disappeared. No

sign of this phenomenon was seen with the 7.5 minute time step.

Fig. 5.7 can be compared with Figs. 5.5 and 5.6. The height field

patterns are very similar. The same can be said for the u and v

fields (not shown). The Matsuno schemes produce a slightly slower

phase speed than the centered scheme. The Matsuno scheme also pro-

duces a slight damping. The total energy decreased by 0.4% during

the 8 day run over the 22 grid. Other than these slight differences,

the same conclusions can be made for the Matsuno scheme as were made

for the centered scheme.

5.3 Tnitial tendencies

In order to better understand how these schemes work we consider

the initial tendencies. The analytic initial conditions permit the

initial tendencies to be calcullated anal'ytic-ally and compared with

the discrete tendencies. This will help explain why the 50 grid

produced poor results. First it will prove useful to introduce

another approximation to the mass flux.

The mass flux can be written as the sum of an advection and

a divergence term



V- (kV) = \\/- /b + /\

and each term can be differenced independently. From (5.9) and (5.5)

we have approximations for 7 and /.\ , namely

k

Al

k

Thus we can write an approximation IIIs as

Scheme IIIs

k

2A.

A 
A

This approximation has the same general form as Is and Us, and, as

will be seen, gives very similar results.

To study the initial tendencies we use a wave number four

initial. condition rather than a wave number five. This prevents

the grid pattern and wave pattern from coinciding.
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The left column of Fig. 5.8 shows the initial analytic flux

fields, The two other columns show the flux fields as calculated

0 0
by Scheme Is over a 10 and 5 grid. The momentum fluxes are seen

to be quite good but the mass fluxes only begin to resemble the

analytic field with the 5 grid. The pressure approximations, not

shown, are at least as good as the momentum flux approximations.

Thus we will confine the ensuing discussion to the momentum and mass

flux. The question we wish to consider is why the mass flux approx-

imations are so much poorer than the momentum fluxes.

0
Fig. 5.9 shows the approximations of Scheme IIIs for the 10

and 5 grids. The mass flux is almost identical with that from

Scheme Is. Of the two individual parts of the mass flux, the advec-

tion term is a good approximation to the mass flux but the divergence

term, which should be zero, is very poor. In fact, the approximation

values of the dirergence are larger than the mass flux for the 100

grid and almost as large for the 6 grid. The question now is why

the divergerce approximation is so poor.

To study thim question we apply the difference schemes over

a stencil of points more naturally suited to polar spherical coor-

dinates. Consider four grid points around a central point such that

two have the same latitude as the central point and two have the same

longitude, although they need not be the same distance frpm the

central point (Fig. 5.10). To apply the schemes to this stencil,

the line integrals of the normal vectors and the area are needed.
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These are given by

C W a

AS,)

spherical stencil. In the following we will consider differences

over two cases of this stencil. The first will be called regular

spherical differences. At each grid point of the 50 spherical

geodesic grid we define the stencil so that 0 = h =9

At each of these newly defined stencil points, the appropriate

nnalytic values are assigned to h, u and v. The difference schemes

are applied over this new stencil. We note that this is not appro-

priate for integrating in time, but rather is appropriate for

studying the approximations to the initial tendencies.
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The second case we will consider is called random spherical

differences. In this case OA , AX 3 ' , 94 are given

by A = D(1.0 + 0.lR) where D is the mean value and R is a random

number between -1 and 1 with a rectangular distribution. In the

following we will refer to 10 0, 50 and 2}* stencils. This indicates

the value of D for both the regular and random stencils.

Fig. 5.11 shows the momentum flux calculated with both the
0

regular and random differences over a 10 stencil. Both cases are

seen to be good approximations. As would be expected, the 50 and

21* stencils (not shown) produce even better results.

0 0
Fig. 5.12 shows the mass flux calculated over the 10 , 5 and

2}* regular spherical stencils. The top row is Scheme Ils, the second

row is Scheme IIIs. Again, both schemes produce very similar results.

The third row is the advection part of Scheme IIIs. It is very close

to the analytic values just as in the previous cases. The last row

is the divergence which analytically is zero. It is seen to be as

large as the advection term with the 100 stencil but becomes negligible

with the 2}0 stencil. These regular spherical differences give us

the first indication of what the trouble is, The differences over

a regular stencil are second-order. When the stencil is not regular,

the schemes become first-order and the divergence is not calculated

with enough a-curacy until thm mesh becomes very fine. This is seen

in Fig. 5,13 where the schemes are applied to the random spherical

stencil. This figure has the same format as Fig. 5.12. Here, again,
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the advection term is satisfactory but the divergence error is very

large. It is not until 21 resolution that the mass flux pattern

begins to resemble the analytic value.

We get a better understanding of why the error in the diver-

gence affects only the mass flux in the next section, where the

truncation error is calculated for these schemes over a random

spherical stencil.

5.4 Truncation error

Schemes Is and IIs produce results that are almost identical.

Therefore, for truncation error studies we will consider Scheme Is

since it is a little simpler. The terms considered are

Scheme Is, momentum flux, Q1

43A. (.tt t

Scheme Is, mass flux, M1

k

A=

Scheme IIIs, advection term A2

k

ja
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Scheme IIMs, divergence term, D2

k

2 2A, * * *

Scheme IIIs, mass flux, M2 = A2 + D2

k

The quantities in the difference equations are expanded in Taylor's

Series around the centerpoint

Co -

A . LM

Las
'J-l

-j (P4

The following simplifications are made in the expansions

Cos
2.

1

These simplifications affect the results by less than one percent,

not by orders of magnitude.

~: I o~ 3

;: %- O 4-r,, Lp = V orkY; qO +
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The Taylor's Series' expansions for the approximations are

then

(tsXA~N3~)
Q

~-7.

- L ~ e 4 -)

(2V~

2 C1A

4- O( )

.A 2-

2

Dz

z2 A2X'

-A O(Ae

--2 o

2 ze

N1'

= -9-Nvor)-

MIS

O(A2-)
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where

At cos-

AY

bfritQ= II~A \\,/ (kV) -i}
Ay- CO

A c)

D k -I
2.e 2 9oSE

2 )

-Table 3 gives a bound for the first order error terms for

Schemes Is and IIIs. With the rand&m stencil defined in the previous

section I -6% and (4- ) ,/2 are less than .1A;\

*
and .lAe respectively. Thus, the maximum value of the truncation

error for the advection term of Scheme IIIs is bounded by

or .16eIA2eJ. Table 1 also lists these error bounds for the 100,

0 o
5 , and 2} random stencils. For comparison, Table 4 lists the max-

imum analytic values of momentum and mass fluxes and advection term

for wave number five.
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Table 3

Error Bound

Analytic 10 5 2t

3.9

1.2

9.4

1.6

2.0

1.3

10 2

10

1
10

i210 2

0
10

0
10

6.8

2.1

1.7

2.8

3.7

2.3

100

101

0
10

0
10

- 2
10

10- 2

3.4

1.1

8.2

1.4

1.9

1.2

100

10

1

0

10

-2
10

1.7

5.3

4.1

7.0

9.2

5.7

10

10
-0

10-1

10

-3
10

10-3

-1 -3 -3 -4
A 1.9 x 10 3.3 x 10 1.7 x 10 8.3 x 10

20 -2 -3 -2 -3

D 2.1 x 10 3.7 x 10 1.9 x 10 3.8 x 10

2X

0 -2 -2 -3
D 1.3 x 10 2.3 x 10 1.2 x 10 5.7 x 10
2e

Qie
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Table 4

Analytic Bound

I ~i

IV.\

1.3 x 10-2

1
2.4 x 10

1
3.4 x 10

1.3 x 10

-2
1.3 x 10
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Comparison shows that the maximum possible errors in the mo-

mentum flux approximations are less than the analytic values even

0
for the 10 stencil and are at. least an order of magnitude smaller

for the 20 stencil. This is ±iot the case for the mass flux. Here

the maximum possible errors are the same size as the mass flux even

with the 50 grid and the numerical examples in the previous section

bear out that the actual errors are almost as large. Examination

of Scheme IIIs in the table shows this error can be attributed to

the error in the divergence term. The reason the error in the di-

vergence does not adversely affect the momentum flux is that the

momentum flux is three orders of magnitude larger than the mass flux.

But since Rl\' = (A V.\\) and LA is less than 100 m sec- ,

if the error in the divergence term is the same order as the advec-

tion term in the mass flux, the error in the divergence term is at

least one order smaller than the momentum flux.

Essentially these tables say the maximum possible errors will

not be small enough for satisfactory integration of the continuity

equation unless the resolution of the grid is at least A . This

agrees with the conclusions from the numerical experiments.
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Fig. 5.2 h, u, and v fields for gravity wave solution

over 2)0 grid.
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0
Fig. 5.4 Kinetic energy variation for 5 and

2}" integrations.
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Fig. 5.7 Height field of Neamtan wave solution over

5 and 2-* grids using Matsuno time step.
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Fig, 5.11 Momentum flux calculated over regular and random spherical stencils. Contour
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Fig. 5.12 Fluxes computed over regular spherical stencil.

Contour intervals are given in the upper right

corners.
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Fig. 5.13 Fluxes computed over random spherical stencil.

Contour intervals are given in the upper right

corners.
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CHAPTER VI

CONCLUSIONS

6.1 Conclusions

The properties of spherical grids are reviewed and compared

with one another. Grids based on conformal coordinates have the

problem of interpolating between overlapping grids on two or more

different projections. Grids based on spherical polar coordinates

have difficulties associated with the convergence of meridians

approaching the poles. Heuristically, the spherical geodesic grid

has the most desirable properties for numerical integration over a

sphere. This type of grid is quasi-homogeneous in that the grid

interval has about a 10 percent variation over the sphere. Compared

to other grids, this quasi-homogeneity increases the minimum grid

interval used to determine the maximum time step allowed by linear

stability conditions.

Integrations over homogeneous grids on a beta-plane show that

six-point differences associated with triangular grids produce better

solutions for the primitive barotropic model than square differences

with similar resolution and the same order of truncation error.

Masuda's (1968) figures show that the same conclusion holds for approx-

im±tions of the nondivergent barotropic vorticity equation. It should

be pointed out that the triangular schemes require slightly more com-

puter time than square schemes if both grids contain the same number
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of points. This follows from the fact that the number of computations

required to calculate the time derivatives depends on the number of

grid points times the number of surrounding points. However, since

a triangular grid integrated over a coarser grid produces results as

good as those from a square scheme over a less coarse grid, the trian-

gular schemes actually produce a saving of computer time for the same

quality of solution. One would expect these same conclusions to hold

in spherical geometry as well.

As a first test of the spherical geodesic grid the nondivergent

0
barotropic vorticity equation was integrated for 12 days over a 10

and a 50 grid. The grids were oriented so that no grid point coin-

cided with the poles. This model was chosen for the first test since

it approximates large scale atmospheric behavior yet for certain ini-

tial conditions has a known analytic solution with which to compare

the numerical solution. The triangular difference approximations to

this model work quite well. The only observable error in the contoured

output after 12 days was a small phase error, No indication of a tilt

of the wave with increasing latitude was observed. Such a tilt has

plagued other schemes, Examination of the mean square streamfunction

reveals small truncation errors in the amplitude, with little accumu-

W.tion in the 12 days.

Integrations of the primitive model show that the small variation

in grid interval does introd.uce an unexpected problem. Conservative dif-

ference schemes which are second order when applied to a regular grid
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become first order when applied to a non-regular grid. In the models

we consider, the first order error is bignificant only in calculating

the divergence. Thus there is no trouble in integrating the rondiver-

gent barotropic vorticity equation. When the divergence is relatively

large, such as for gravity wave motions, the relative error in the

divergence becomes acceptably small. This is seen in the gravity

wave problem integrated over a 50 grid. For more atmospheric like

motions, such as a Neamtan wave where the divergence is small, the

error can be significant. This is seen in the integration of a Neamtan

wave over a 5 grid.

This same truncation error will be present in any non-regular

spherical grid for conservative difference approximations of the type

presented here. Any spherical grid with more than twelve points can-

not be completely homogeneous. Gary (1968) points out that Kurihara's

(1965b) and the Centered schemes are first order at the latitudes

where the mesh size increases. in these schemes, the error is con-

centrated in latitude bands; in the spherical geodesic grid it is

spread out over the entire grid.

The truncation error of the spherical geodesic grid can be

made insignificant by taking a fine enough mesh. This is seen with

the 2}0 integration. The need for a fine mesh for a satisfactory

approximation is not necessarily a handicap. Studies by Grammeltvedt

(1968) and Gary (1968) indicate that at least 16 points per wavelength

are needed for a satisfactory approximation to the phase velocity even
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10

with second and fourth order schemes. Thus the 22 grid is suitable

up to wave number nine, An even finer grid is needed for smaller

waves.

Once the mesh size is small enough, the spherical geodesic

schemes are seen to produce good results. Compared to Kurihara's

scheme over his "uniform" grid, the spherical geodesic schemes are

seen to be much better. On the other hand, the spherical geodesic

schemes produce the same results as the Kurihara scheme over a regular

spherical grid. The spherical geodesic schemes are also slightly

better than the scheme of Kasahara and Washington.

The particular time differencing combined with the spherical

geodesic differencec is important. Centered time differences produce

very good results, especially with regard to energy conservation.

However, a very small time step is needed for stability. In fact,

the time step must be almost as small as would be needed with a regular

spherical grid if there were no skipping of grid points near the poles.

The Matsuno time difference, on the other hand, remains stable

for a much larger time step. A time step up to four times longer thn

the time step of the other schemes is possible. Depending on the

complexity of the other schemes, this could mean a saving of four in

computer time. A more realistic figuie is probably a little less than

three because the snherical geodesic schemes use six surrounding points

rather than the more normal four.
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6.2 Suggestions for further research

There is much that can be done to continue the development and

evaluation of the difference approximations over the spherical geo-

desic grid. Schemes with a different space phasing of the variables

could eliminate the two-grid interval noise present in the primitive

model schemes presented here. In schemes of the type presented here,

the two-grid interval waves are treated as inertial motion and hence

they are not damped. By spatially separating the height and velocity

vector, these small waves could be treated as gravity waves and hence

damped by the spatial dispersion. The Matsuno time step also damps

this type of motion.

The development of higher order schemes would also be useful.

Second order schemes would not require as fine a mesh size as 220 to

produce acceptable truncation errors. Such schemes would be useful

to study large scale phenomena for which phase truncation error re-

quirements do not require a 9A grid.

The integrations performed here indicate that the particular

time step scheme' used is very important. It would be useful to have

comparative studies of the various possible time steps combined with

the spatial spherical geodesic schemes.

It would also be desirable to have comparative experiments of

spherical grids using real atmospheric data.
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Another approach to the problem might be taken. The vector

velocity can be broken up into two scaldr fields; a streamfunction

for the nondivergent part and a potential function for the irrota-

tional part. This approach would be an extension of Chapter III,

and does not require the use of spherical polar coordinates with

the polar singularity. A disadvantage of this system, however, is

that Poisson's equation must be solved at each time step. This could

be very time consuming for multi-level models.
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APPENDIX 1

Relations used to simplify truncation error expressions

Relation 1
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Relation 3

1 -= 0 or*1. *g

All

=~ v4hor

K)(2.

~Di oC3,

Vj'.v or

0 or
Ocjj

4cr >3

aVi)
ALj

4-

tyor

1
,3 cs

01- "N PqQ-rl



-132-

Relation 4
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Relation 5
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APPENDIX 2-

COMPUTATION OF C.

Denote the latitude and longitude of the end points ol a great

circle segment of a secondary grid area by (and ( an

The equation of the great circle through them is

C Cos +A sin \ -- in-n G

where OL and are determined by substituting in and

(e . The longitude, of the intersection of this

great circle with the equator is given by

*t b

The angle, e, , the great circle makes with the equator is given by

Now define a new coordinate system such that its equator is

the great circle through '(9 and . . Denote

coordinates in this new system by primes. The coordinates of points

ou the great circle are related in the two systems by

Cos = COS(\ -\ 2 os 9

and

Sin e = i i)G

tCL ( X=- O C0S0
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At any point on the great circle, the unit normal vector in the primed

A '
coordinate system is -j . We now perform a series of transformations

to write this normal in the unprimed coordinate system. First trans-

form the primed system to a cartesian system, then rotate down through

an angle of E , rotate around by an angle of , and return to

spherical polar coordinates (unprimed). The product of the transforma-

tion matrices is the total transformation and the unit normal is given

by

A/r X Sin (, sin + Cos coAe 0  c 'og
/Y)

(cos\ Sin 9 Sin e. Si- Sin -SIn eStn e.A& co .. czas G coELe)A

The line integral can now be calculated numerically. In the experiments

reported here, the trapezoidal rule was used over 10 equally spaced

points on each grid side. Experiments using 40 divisions indicated

that 10 were sufficiently accurate.
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